wo 20197241195 A1 |0 0000 00000 O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property '

Organization
=

International Bureau

(43) International Publication Date
19 December 2019 (19.12.2019)

(10) International Publication Number

WO 2019/241195 Al

WIPO I PCT

(51) International Patent Classification:
GO6F 16/00 (2019.01) GO6F 21/60 (2013.01)

(21) International Application Number:
PCT/US2019/036473

(22) International Filing Date:
11 June 2019 (11.06.2019)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

16/005,182 11 June 2018 (11.06.2018) UsS

(71) Applicant: SNOWFLAKE INC. [US/US]; 450 Concar
Drive, San Mateo, CA 94402 (US).

(72) Inventors: FUNKE, Florian, Andreas; 450 Concar Dri-
ve, San Mateo, CA 94402 (US). CRUANES, Thierry; 450
Concar Drive, San Mateo, CA 94402 (US). DAGEVILLE,
Benoit, 450 Concar Drive, San Mateo, CA 94402 (US).

ZUKOWSKI, Marcin; 450 Concar Drive, San Mateo, CA
94402 (US).

(74) Agent: LANG, Roger; SCHWEGMAN LUNDBERG &
WOESSNER, P.A., P.O. Box 2938, Minneapolis, Minneso-
ta 55402 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,

(54) Title: SYSTEMS, METHODS, AND DEVICES FOR MANAGING DATA SKEW IN A JOIN OPERATION

Uiilize the hash tabie

Compute a hash table for

2 join operation.
1302

A

Select a rowsst
comprising a plurality of

computad for the join
operation and probe each

rows of the join ogeration.
1304

v

row of the rowset in
space saving algorithm.
1308

Update the space saving
algorithm based on
incoming data.
1308

Frequency of

ioin key exceeds
predetenmined

threshold?

1314

Serd the rows having the
frequent probe-side join
key to a remate server.
1318

frequent probe-side

rI

For each update to the space saving
algorithm, identify how frequently the
frequent probe-side join key is probed
as a side-effect of updating the space

Identify a frequernt probe-
side joinkey during a
probe phase of the join

N
NO

saving algorithm. op‘]egtg)n.
1312 S
y
Retain the rows having
FIG. 13

the frequent probe-side
join key on the current
server.

318

(57) Abstract: Systems, methods, and devices, for managing data skew during a join operation are disclosed. A method includes
computing a hash value for a join operation and detecting data skew on a probe side of the join operation at a runtime of the join
operation using a lightweight sketch data structure. The method includes identifying a frequent probe-side join key on the probe side
of the join operation during a probe phase of the join operation. The method includes identifying a frequent build-side row having a
build-side join key corresponding with the frequent probe-side join key. The method includes asynchronously distributing the frequent
build-side row to one or more remote Servers.

[Continued on next page]

WO 2019/241195 AT JI 000000000 000000010 O

UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FI, FR, GB, GR, IR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SL SK, SM,
TR). OAPI (BF, BJ, CF, CG, CL CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

WO 2019/241195 PCT/US2019/036473

SYSTEMS, METHODS, AND DEVICES FOR MANAGING DATA SKEW IN A JOIN

OPERATION

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority to U.S. Patent Application Serial No. 16/005,182,
filed June 11, 2018, titled “Systems, Methods, And Devices For Managing Data Skew In A Join

Operation,” which is incorporated herein by reference in its entirety

TECHNICAL FIELD

[0002] The present disclosure relates to database query processing and more particularly

relates to managing data skew in database a join operation.

BACKGROUND

[0003] Databases are widely used for data storage and access in computing applications.
Databases may include one or more tables that include or reference data that can be joined, read,
modified, or deleted using queries. Databases can store small or extremely large sets of data within
one or more tables. This data can be accessed by various users in an organization or even be used
to service public users, such as via a website or an application program interface (API). Both
computing and storage resources, as well as their underlying architecture, can play a significant
role in achieving desirable database performance.

[0004] A join operation may be conducted on database data and cause columns from one or

more database tables to be merged. Relational databases are often normalized to eliminate

WO 2019/241195 PCT/US2019/036473

duplication of information such as when an entity type may have one-to-many relationships with
a plurality of other entity types. A join operation may be utilized to join entity types according to
certain join predicates. A join operation may be utilized in response to a database query to return

the appropriate entity types that are requested in the query.

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Non-limiting and non-exhaustive implementations of the present disclosure are
described with reference to the following figures, wherein like reference numerals refer to like or
similar parts throughout the various views unless otherwise specified. Advantages of the present
disclosure will become better understood with regard to the following description and
accompanying drawings where:

[0006] FIG. 1 is a block diagram illustrating a processing platform for a database system
according to an example embodiment of the systems and methods described herein,;

[0007] FIG. 2 is a block diagram illustrating components of a database service manager,
according to an example embodiment of the systems and methods described herein,;

[0008] FIG. 3 is a schematic diagram illustrating an example join operation according to an
embodiment of the disclosure;

[0009] FIG. 4 is a schematic diagram illustrating an example join operation according to an
embodiment of the disclosure;

[0010] FIG. 5 is a schematic diagram illustrating an example join operation according to an

embodiment of the disclosure;

WO 2019/241195 PCT/US2019/036473

[0011] FIG. 6 is a schematic diagram illustrating an example join operation according to an
embodiment of the disclosure;

[0012] FIG. 7 is a schematic diagram illustrating an example join operation according to an
embodiment of the disclosure;

[0013] FIG. 8 is a schematic diagram illustrating an example join operation according to an
embodiment of the disclosure;

[0014] FIG. 9 is a schematic diagram illustrating an example join operation according to an
embodiment of the disclosure;

[0015] FIG. 10 is a schematic diagram illustrating an example join operation according to an
embodiment of the disclosure;

[0016] FIG. 11 is a schematic diagram illustrating an example join operation according to an
embodiment of the disclosure;

[0017] FIG. 12 is a schematic flow chart diagram of an example process flow for detecting
and managing probe-side skew during a join operation, according to an embodiment of the
disclosure;

[0018] FIG. 13 is a schematic flow chart diagram of an example process flow for detecting
skew during a join operation, according to an embodiment of the disclosure;

[0019] FIG. 14 is a schematic flow chart diagram of a process flow for heavy hitter
redistribution, according to an embodiment of the disclosure;

[0020] FIG. 15 illustrates a schematic block diagram of a process flow for query processing,

according to an embodiment of the disclosure;

WO 2019/241195 PCT/US2019/036473

[0021] FIG. 16 illustrates a schematic flow chart diagram of a method for managing probe-
side skew during a join operation, according to an embodiment of the disclosure;

[0022] FIG. 17 illustrates a schematic flow chart diagram of a method for managing probe-
side skew during a join operation, according to an embodiment of the disclosure; and

[0023] FIG. 18 is a schematic diagram of an example computing device, according to an

embodiment of the disclosure.

WO 2019/241195 PCT/US2019/036473

DETAILED DESCRIPTION

[0024] Databases are widely used for data storage and access in computing applications.
Databases may include one or more tables that include or reference data that can be read, modified,
or deleted using queries. Querying very large databases and/or tables might require scanning large
amounts of data. Reducing the amount of data scanned is one of the main challenges of data
organization and processing.

[0025] A join is an operation in query processing that determines rows in two input streams
that “match” with respect to some of their attributes. In an embodiment, those attributes are
referred to as join keys. Join operations are typically very time-consuming operations during query
execution. A known embodiment of a join operation includes a SQL join clause for combining
columns from one or more tables in a relational database. The join clause is a means for combining
columns from one or more tables by using values common to each of the one or more tables.
[0026] A hash join is an example of a join algorithm that may be used in the implementation
of a relationship database management system. Various forms of hash joins are commonly used in
database systems to compute the result of a join. Hash joins build one or more multiple hash tables
with rows of one of the inputs (typically the smaller input) referred to as the “build side” input.
The rows are probed from the other input (typically the larger input) referred to as the “probe side”
input and into the hash tables. In massively parallel database systems with N servers, two
distribution strategies are often distinguished: broadcast joins and hash-hash joins (hash-hash-
joins are also commonly referred to as shuffle joins).

[0027] A broadcast join is an example of a join algorithm where a single side of the data to

be joined is materialized and sent to a plurality of workers or servers. Broadcast joins are efficient

WO 2019/241195 PCT/US2019/036473

when the build side input fits into a main memory of a single server. Broadcast joins distribute all
rows of the build side to all N servers and then hash partition the probe side over the servers such
that each server of the N servers receives only a fraction of the probe side input. Each of the N
servers probes its partition into its copy of the hash table wherein its copy of the hash table includes
all data from the build side input.

[0028] Hash-hash joins are often employed where the build side input does not fit into a main
memory of a single server. Hash-hash joins are configured to hash-partition the build side input
across all N servers and then hash-partition the probe side input with the same partitioning
function. In a hash-hash join, each server of the N servers probes its fraction of the probe side input
into its fraction of the build side. The partitioning function ensures that if a row from probe
partition PPi has matches in the build side, those matches are in build partition BPi. This leads to
equal utilization of all N participating servers during the probe phase of the hash-hash join, if an
only if the partitioning function partitions the probe input into N partitions of equal size. In
particular, if one server receives a disproportionately large amount of probe side data, it will take
much longer than the rest of the servers to process its share of the probe side. This can stall the rest
of the query execution. This is often caused by a few frequently occurring join keys on the probe
side wherein some rows on the build side will match many rows on the probe side. This is referred
to as probe-side skew.

[0029] In light of the foregoing, Applicant has developed systems, methods, and devices for
managing data skew in a join operation, and particularly for managing probe-side data skew in a
relational database join operation. An embodiment of the disclosure relates to redirecting a portion

of a join operation to one or more other servers or computing devices. In an embodiment, a server

WO 2019/241195 PCT/US2019/036473

or computing device that has been tasked with a join operation detects data skew on the join
operation in real-time during runtime of the join operation. The server determines a frequent or
heavy hitter join key on a probe side of the join operation. The server identifies a frequent or heavy
hitter build-side row that comprises an equivalent value to the frequent join key on the probe side
of the join operation. The server then distributes the frequent build-side row (it should be
appreciated this may include many thousands of rows, for example) to one or more other servers
or computing devices. The one or more other servers or computing devices are configured to
receive the frequent build-side rows and process the join operation for those frequent build-side
rows. The final result of the join operation is then a combination of the processing done by the
local host server and any other servers that received a portion of the join operation. In an
embodiment, the join operation is processed by a plurality of servers such that the join operation
may be efficiently and quickly processed without burdening a single server with the join operation.
[0030] An embodiment of the disclosure includes a method for managing data skew in a join
operation. The method includes computing a hash value for a join operation and detecting data
skew on a probe side of the join operation at a runtime of the join operation using a lightweight
sketch data structure. The method includes identifying a frequent probe-side join key on the probe
side of the join operation during a probe phase of the join operation. The method includes
identifying a frequent build-side row having a build-side join key corresponding with the frequent
probe-side join key. The frequent build-side row may comprise many rows having a certain join
key on the build side, and/or the frequent build-side row may comprise many join partners on the
probe side. The method includes asynchronously distributing the frequent build-side row to one or

more remote Servers.

WO 2019/241195 PCT/US2019/036473

[0031] In an embodiment of the disclosure, a method for managing data skew during a join
operation is disclosed. The method includes computing a hash value for a join operation, and the
hash value may comprise a hash table. The method includes selecting a rowset comprising a
plurality of rows of the join operation and probing each of the plurality of rows of the rowset into
a space saving algorithm using the hash value for the join operation. The method includes updating
the space saving algorithm base on incoming data, wherein the incoming data includes probe side
rowsets. The method includes, for each update to the space saving algorithm, identifying a
frequency indicating how frequently a frequent probe-side join key is probed as a side-effect of
the updating the space saving algorithm. The method includes determining if the frequency
exceeds a predetermined threshold. The method includes identifying a frequent build-side row
having a build-side join key corresponding with the frequent probe-side join key. The method
includes, in response to the frequency exceeding the predetermined threshold, asynchronously
distributing the frequent build-side row to the one or more remote servers.

[0032] A detailed description of systems and methods consistent with embodiments of the
present disclosure is provided below. While several embodiments are described, it should be
understood that this disclosure is not limited to any one embodiment, but instead encompasses
numerous alternatives, modifications, and equivalents. In addition, while numerous specific details
are set forth in the following description in order to provide a thorough understanding of the
embodiments disclosed herein, some embodiments may be practiced without some or all of these
details. Moreover, for clarity, certain technical material that is known in the related art has not

been described in detail to avoid unnecessarily obscuring the disclosure.

WO 2019/241195 PCT/US2019/036473

[0033] Turning to FIG. 1, a block diagram is shown illustrating a processing platform 100 for
providing database services, according to one embodiment. In one embodiment, the processing
platform 100 may store and maintain database tables using incremental cluster maintenance, as
discussed herein. The processing platform 100 includes a database service manager 102 that is
accessible by multiple users 104, 106, and 108. The database service manager 102 may also be
referred to herein as a resource manager or global services. In some implementations, database
service manager 102 can support any number of users desiring access to data or services of the
processing platform 100. Users 104-108 may include, for example, end users providing data
storage and retrieval queries and requests, system administrators managing the systems and
methods described herein, software applications that interact with a database, and other
components/devices that interact with database service manager 102.

[0034] The database service manager 102 may provide various services and functions that
support the operation of the systems and components within the processing platform 100. Database
service manager 102 has access to stored metadata associated with the data stored throughout data
processing platform 100. The database service manager 102 may use the metadata for optimizing
user queries. In some embodiments, metadata includes a summary of data stored in remote data
storage systems as well as data available from a local cache (e.g., a cache within one or more of
the clusters of the execution platform 112). Additionally, metadata may include information
regarding how data is organized in the remote data storage systems and the local caches. Metadata
allows systems and services to determine whether a piece of data needs to be processed without

loading or accessing the actual data from a storage device.

WO 2019/241195 PCT/US2019/036473

[0035] As part of the data processing platform 100, metadata may be collected when changes
are made to the data using a data manipulation language (DML), which changes may be made by
way of any DML statement. Examples of manipulating data may include, but are not limited to,
selecting, updating, changing, merging, and inserting data into tables. Table data for a single table
may be partitioned or clustered into various partitions. As part of the processing platform 100, files
or partitions may be created, and the metadata may be collected on a per file, per partition, and/or
a per column basis. This collection of metadata may be performed during data ingestion or the
collection of metadata may be performed as a separate process after the data is ingested or loaded.
In an implementation, the metadata may include a number of distinct values; a number of null
values; and a minimum value and a maximum value for each file, partition, or column. In an
implementation, the metadata may further include string length information and ranges of
characters in strings.

[0036] Database service manager 102 is further in communication with an execution platform
112, which provides computing resources that execute various data storage and data retrieval
operations. The execution platform 112 may include one or more compute clusters. The execution
platform 112 is in communication with one or more data storage devices 116, 118, and 120 that
are part of a storage platform 114. Although three data storage devices 116, 118, and 120 are shown
in FIG. 1, the execution platform 112 is capable of communicating with any number of data storage
devices. In some embodiments, data storage devices 116, 118, and 120 are cloud-based storage
devices located in one or more geographic locations. For example, data storage devices 116, 118,
and 120 may be part of a public cloud infrastructure or a private cloud infrastructure, or any other

manner of distributed storage system. Data storage devices 116, 118, and 120 may include hard

10

WO 2019/241195 PCT/US2019/036473

disk drives (HDDs), solid state drives (SSDs), storage clusters, or any other data storage
technology. Additionally, the storage platform 114 may include a distributed file system (such as
Hadoop Distributed File Systems (HDFS)), object storage systems, and the like.

[0037] In some embodiments, the communication links between database service manager
102 and users 104-108, mutable storage 110 for information about metadata files (i.e., metadata
file metadata), and execution platform 112 are implemented via one or more data communication
networks and may be assigned various tasks such that user requests can be optimized. Similarly,
the communication links between execution platform 112 and data storage devices 116-120 in
storage platform 114 are implemented via one or more data communication networks. These data
communication networks may utilize any communication protocol and any type of communication
medium. In some embodiments, the data communication networks are a combination of two or
more data communication networks (or sub-networks) coupled to one another. In alternate
embodiments, these communication links are implemented using any type of communication
medium and any communication protocol.

[0038] The database service manager 102, mutable storage 110, execution platform 112, and
storage platform 114 are shown in FIG. 1 as individual components. However, each of database
service manager 102, mutable storage 110, execution platform 112, and storage platform 114 may
be implemented as a distributed system (e.g., distributed across multiple systems/platforms at
multiple geographic locations) or may be combined into one or more systems. Additionally, each
of the database service manager 102, mutable storage 110, the execution platform 112, and the
storage platform 114 may be scaled up or down (independently of one another) depending on

changes to the requests received from users 104-108 and the changing needs of the data processing

11

WO 2019/241195 PCT/US2019/036473

platform 100. Thus, in the described embodiments, the data processing platform 100 is dynamic
and supports regular changes to meet the current data processing needs.

[0039] In an embodiment of the disclosure, a local component, such as the execution platform
112 that may be distributed across a plurality of servers, handles data skew during a join operation.
In such an embodiment, partitioning of data for handling data skew is not implemented or
computed by the database service manager 102 but is instead computed on one or more servers
such as the execution platform 112. In an embodiment of the disclosure, the determination of data
skew and of frequent probe-side join keys is made locally on an execution platform 112 where a
join operation is performed. In such an embodiment, the execution platform 112 may
asynchronously distribute the frequent probe-side join keys to one or more other remote servers
that may include one or more remote execution platforms 112.

[0040] FIG. 2 illustrates a block diagram depicting components of database service manager
102, according to one embodiment. The database service manager 102 includes an access manager
202 and a key manager 204 coupled to a data storage device 206. The access manager 202 handles
authentication and authorization tasks for the systems described herein. The key manager 204
manages storage and authentication of keys used during authentication and authorization tasks. A
request processing service 208 manages received data storage requests and data retrieval requests.
A management console service 210 supports access to various systems and processes by
administrators and other system managers.

[0041] The database service manager 102 also includes an SQL compiler 212, an SQL
optimizer 214 and an SQL executor 216. SQL compiler 212 parses SQL queries and generates the

execution code for the queries. SQL optimizer 214 determines the best method to execute queries

12

WO 2019/241195 PCT/US2019/036473

based on the data that needs to be processed. SQL executor 216 executes the query code for queries
received by database service manager 102. For example, the SQL optimizer may prune out rows
or partitions of a table that do not need to be processed in the query because it is known, based on
metadata, that they do not satisfy a predicate of the query. A query scheduler and coordinator 218
sends received queries to the appropriate services or systems for compilation, optimization, and
dispatch to an execution platform 212. A virtual warehouse manager 220 manages the operation
of multiple virtual warehouses.

[0042] Additionally, the database service manager 102 includes a configuration and metadata
manager 222, which manages the information related to the data stored in the remote data storage
devices and in the local caches. A monitor and workload analyzer 224 oversees the processes
performed by the database service manager 102 and manages the distribution of tasks (e.g.,
workload) across the virtual warehouses and execution nodes in the execution platform 112.
Configuration and metadata manager 222 and monitor and workload analyzer 224 are coupled to
a data storage device 226.

[0043] The database service manager 102 also includes a transaction management and access
control module 228, which manages the various tasks and other activities associated with the
processing of data storage requests and data access requests. For example, the transaction
management and access control module 228 provides consistent and synchronized access to data
by multiple users or systems. Since multiple users/systems may access the same data
simultaneously, changes to the data may be synchronized to ensure that each user/system is

working with the current version of the data. Transaction management and access control module

13

WO 2019/241195 PCT/US2019/036473

228 provides control of various data processing activities at a single, centralized location in
database service manager 102.

[0044] The database service manager 102 includes a cluster maintenance module 230 that
manages the clustering and ordering of partitions of a table. The cluster maintenance module 230
may partition each table in a database into one or more partitions or micro-partitions. The cluster
maintenance module 230 may not require or achieve ideal clustering for the table data but may
maintain “good enough” or approximate clustering. For example, ideal clustering on a specific
attribute may result in each partition either having non-overlapping value ranges or having only a
single value for the specific attribute. Because the cluster maintenance module 230 does not require
perfect clustering, significant processing and memory resources may be conserved during data
loading or DML command operations.

[0045] At least some embodiments may manage the ordering or clustering of a table using
micro-partitions. As mentioned previously, traditional data warehouses rely on static partitioning
of large tables to achieve acceptable performance and enable better scaling. In these systems, a
partition is a unit of management that is manipulated independently using specialized data
definition language (DDL) and syntax. However, static partitioning has a number of well-known
limitations, such as maintenance overhead and data skew, which can result in disproportionately-
sized partitions. Embodiments disclosed herein may implement a powerful and unique form of
partitioning, called micro-partitioning, that delivers all the advantages of static partitioning without
the known limitations, as well as providing additional significant benefits.

[0046] In one embodiment, all data in tables is automatically divided into micro-partitions,

which are contiguous units of storage. By way of example, each micro-partition may contain

14

WO 2019/241195 PCT/US2019/036473

between 50 MB and 500 MB of uncompressed data (note that the actual size in storage may be
smaller because data may be stored compressed). Groups of rows in tables are mapped into
individual micro-partitions, organized in a columnar fashion. This size and structure allows for
extremely granular pruning of very large tables, which can be comprised of millions, or even
hundreds of millions, of micro-partitions. Metadata may be automatically gathered about all rows
stored in a micro-partition, including: the range of values for each of the columns in the micro-
partition; the number of distinct values; and/or additional properties used for both optimization
and efficient query processing. In one embodiment, micro-partitioning may be automatically
performed on all tables. For example, tables may be transparently partitioned using the ordering
that occurs when the data is inserted/loaded.

[0047] FIG. 3 illustrates an example join operation 300. The join operation 300 results in
result table 320 are constructed based on a join operation to the build side table 302 and the probe
side table 310. The build side table 302 is smaller than the probe side table 310 as illustrated in
FIG. 3. The build side table includes two attributes (columns) including bKey 304 and bVal 306.
The probe side table 310 further includes two attributes pKey 312 and pVal 314. The result table
320 indicates the result of the join operation 300 wherein bKey 304 is equal to pKey 312. The join
operation 300 pairs up every row from the build side table 302 with every row from the probe side
table 310 and then eliminates those rows where the attribute bKey 304 does not match the attribute
pKey 312. In a hash join, the smaller table (in this case, the build side table 302) will be called the
“build side” and the larger table (in this case, the probe side table 310) will be called the “probe
side.” Applicant further notes that the order in which rows are depicted in any of the tables is not

relevant. It should be appreciated that the systems and methods of the disclosure may be

15

WO 2019/241195 PCT/US2019/036473

implemented where the build side table is not the smaller table and is instead the larger table. Such
an implementation would not impact the ability to leverage the skew handling techniques as
disclosed herein.

[0048] As an example as illustrated in FIG. 3, there is a bKey 304 value equal to “42” that is
associated with the bVal 306 value “X.” Additionally there is a pKey 312 value “42” that is
associated with the pVal 314 value “d.” As illustrated in the result table 320 where bKey is equal
to pKey, the bKey 304 value of “42” is matched with the pKey 312 value of “42,” returning bVal
306 and pVal 314 values of “X” and “d,” respectively.

[0049] As illustrated in FIG. 3, where there is a build-side key value (bKey 304) in the build
side table 302 that is not represented as a probe-side key value (pKey 312) in the probe side table
310, any rows including that value do not appear in the result table 320. Similarly, where there is
a probe-side key value (pKey 312) in the probe side table 310 that is not represented as a build-
side key value (bKey 304) in the build side table 302, any row including that value is not included
in the result table 320. An example of such a row in the build side table 302 is [512,W] because
the “512” key is not represented in the probe side table 310. Examples of such rows in the probe
side table 310 include [2,a] and [2003,f] because the “2” key and the “2003” key are not
represented in the build side table 302.

[0050] FIGS. 4-7 illustrate data tables representing steps associated with a broadcast join
operation. FIG. 4 illustrates an example set of tables for a join in a parallel database system,
wherein FIG. 4 illustrates the tables before broadcast 400. In a parallel database system with

multiple servers, data may be structured as illustrated in FIG. 4 before the join operation. It should

16

WO 2019/241195 PCT/US2019/036473

be appreciated that any number of servers may be involved in a broadcast join operation, and the
figures herein illustrate two servers for simplicity in illustrating the join operation.

[0051] Each server, including server one 401 and server two 421 include a build table and a
probe table. Server one 401 includes a build table B.1 402 and a probe table P.1 410. Server two
421 includes a build table B.2 420 and a probe table P.2 430. The build table B.1 402 includes
bKey 404 values and bVal 406 values, and the probe table P.1 410 includes pKey 412 values and
pVal 414 values. The build table B.2 420 includes bKey 422 values and bVal 424 values, and the
probe table P.2 430 includes pKey 432 values and pVal 434 values. An issue as illustrated in FIG.
4 is that server one 401 includes some rows (see e.g. [42,X]) that need to be joined with one or
multiple rows of a probe table that reside on a different server (see e.g. [42,d] located on server
two 421). To perform the join, the tables need to be repartitioned or redistributed in a way that
allows an efficient computation of the join operation. Depending on the size of the build table
(typically the smaller table), this is done via a broadcast join or a hash-hash join.

[0052] In an embodiment, FIG. 4 illustrates a broadcast join with the assumption that the
combination of build table B.1 402 and build table B.2 420 is small enough to fit into memory of
a single server. The build side is broadcasted to ensure that every server has all the rows of each
of build table B.1 402 and build table B.2 420. Afterward, each server can probe the subset of a
probe table (see probe table P.1 410 or probe table P.2 430) that it owns into the hash table to find
matches.

[0053] FIG. 5 illustrates the same overall table values as illustrated in FIG. 4, but after
broadcast of the build side 500 of the join operation. As illustrated in FIG. 5, after broadcast of the

build side 500, each server (see server one 401 and server two 421) includes a complete copy of

17

WO 2019/241195 PCT/US2019/036473

the broadcasted build table 502. The broadcasted build table 502 includes all values of the build
side of the join operation, including values stored in build table B.1 402 and build table B.2 420.
The probe side of the join operation (see probe table P.1 410 and probe table P.2 430 is not altered
by the broadcasting of the build side 500 to each server.

[0054] FIG. 6 illustrates the same overall table values as illustrated in FIGS. 4-5, but after
probing the probe side 600 of the join operation such that the final result of the join operation is
illustrated. Server one 401 has generated a result R.1 602. Server two 421 has generated a result
R.2 620. The union of result R.1 602 and result R.2 620 provides the final result. Each server (see
server one 401 and server two 421) probes its subset of the probe side table (see probe table P.1
410 and probe table P.2 430) into the broadcasted build table 502. It should be appreciated that the
broadcasted build table 502 may alternatively be referred to as the hash table. Thus, each server
computes a part of the result and the combined results of all servers yields the correct overall result
of the join.

[0055] FIG. 7 illustrates the final result 700 of the broadcast join operation computed based
on the table values illustrated in FIGS. 4-6. The final result 700 includes bKey and bVal values
originally found in the build side of the join operation. The final result 700 further includes pKey
and pVal values originally found in the probe side of the join operation. The final result 700 is the
union of result R.1 602 and result R.2 620 that were determined after probing the probe side of the
join.

[0056] FIGS. 8-10 illustrate data tables representing various steps of a hash-hash join
operation. Applicant notes that FIGS. 8-10 include the same overall table values as illustrated in

FIGS. 4-7 for simplicity in illustrating differences between a broadcast join and a hash-hash join.

18

WO 2019/241195 PCT/US2019/036473

A hash-hash join is commonly implemented where the totality of build side comprises too much
data to fit into a main memory of a single server. Both the build side data and the probe side data
are hash-partitioned or redistributed to break up the total work into equal parts. For simplicity,
FIGS. 8-10 illustrate a simple hash-partitioning function that will send each row where the join
key is an even number to server one 801 and send each row where the join key is an odd number
to server two 821. During a build phase of the join, each server will hash-partition every row of
the build side (see build table B.1 802 and build table B.2 820). The probe side is then redistributed
according to the same hash function. Each server can thus compute its part of the result locally.
[0057] FIG. 8 illustrates data tables on server one 801 and server two 821 before hash
partitioning 800. Thus, FIG. 8 may represent the original data stored on one or more remote servers
before a join operation is commenced. It should be appreciated that any number of servers may be
involved in a hash-hash join, and the figures herein illustrate two servers for simplicity. Server one
801 includes a build table B.1 802 having bKey 804 values and bVal 806 values. Server one 801
further includes a probe table P.1 810 having pKey 812 and pVal 814 values. Server two 821
includes a build table B.2 820 having bKey 822 values and bVal 824 values. Server two 821 further
includes a probe table P.2 830 having pKey 832 values and pVal 834 values.

[0058] The key values (see bKey 804, pKey 812, bKey 822, and pKey 832) constitute join
keys. The join keys indicate how a match may be made between data stored in a build side of the
join and data stored in a probe side of the join. That is, the final result of the join operation
mandates that the bKey values match the pKey values. Where a build-side join key corresponds

with, 7.e. matches, a probe-side join key, the build-side row and the probe-side row may be joined.

19

WO 2019/241195 PCT/US2019/036473

[0059] FIG. 9 illustrates the same overall table values as in FIG. 8 after hash partitioning of
the build side 900. FIG. 9 illustrates the result of the build phase of the join operation. During the
build phase of the join operation, each server hash-partitions each row of the build side (see build
table B.1 802 and build table B.2 820) to generate new partitioned build tables (see partitioned
build table B.1 902 and partitioned build table B.2 920). The probe side tables remain the same
(see probe table P.1 810 and probe table P.2 830). Server one 801 includes partitioned build table
B.1 902 and probe table P.1 810. Server two 821 includes partitioned build table B.2 920 and probe
table P.2 830.

[0060] For simplicity, a simple hash-partitioning function is used in an embodiment as
illustrated in FIG. 9 such that each build-side row having an even-numbered join key (see bKey
804 and bKey 822) is sent to server one 801 and each build-side row having an odd-numbered join
key (see bKey 804 and bKey 822) is sent to server two 821. During the build phase of the join
operation, each server will hash-partition every row of the build side. For example, server one 801
will keep row [42,X] of build table B.1 802 because the join key (42) is an even number. Server
one 801 will send row [11,Y] to server two 821 because the join key (11) is an odd number. Server
two 821 will send row [512,Z] to server one 801 because the join key (512) is an even number.
Server two will keep rows [7,Q] and [123,Z] because the join keys (7 and 123) are odd numbers.
[0061] FIG. 10 illustrates the same overall table values as in FIGS. 8-9 after hash partitioning
of the probe side 1000. The probe side (see probe table P.1 810 and probe table P.2 830) is
redistributed according to the same hash function used with respect to the build side as illustrated
in FIG. 9. That is, probe-side rows having an even-numbered join key are partitioned to server one

801 and probe-side rows having an odd-numbered join key are partitioned to server two 821. As

20

WO 2019/241195 PCT/US2019/036473

illustrated in FIG. 10, the partitioned probe table P.1 1010 on server one 801 includes rows having
an even-numbered join key including [2,a] and [42,d]. The partitioned probe table P.2 1030 on
server two 821 includes rows having an odd-numbered join key including [11,b], [11,h], [123,g],
[2003.f], [11,e], [11,0], and [11,u]. As such, each server can compute its part of the join result
locally.

[0062] In an embodiment, the results of the partitioned probe data (see partitioned probe table
P.1 1010 and partitioned probe table P.2 1030) are not stored on the respective servers after the
probe side data has been partitioned. Rather, the partitioned probe data is streamed through a server
such that each probe data row either remains on the current server or is transmitted to a remote
server. Either way, the probe data row is immediately probed into the hash table (i.e. the respective
partitioned build table) and matched with one or more rows of the build side. The resulting rows
are transmitted to the next operator of the query execution logic.

[0063] FIG. 11 illustrates the partitioned result 1100 after probing the partitioned probe data
(see partitioned probe table P.1 1010 and partitioned probe table P.2 1030) into the partitioned
build data (see partitioned build table B.1 902 and partitioned build table B.2 920). Server one 801
returns result R.1 1102 and server two 821 returns result R.2 1104. The final result of the hash-
hash join operation includes the union of result R.1 1102 and result R.2 1104. As such, the final
result of the hash-hash join operation is computed locally by one or more servers, and the
individual results of each of the individual servers is combined to generate the final result.

[0064] As illustrated in FIG. 11, the partitioned result 1100 includes a great deal of data skew
indicating by server two 821 having a great deal more data than server one 801. The result R.2

1104 includes many more rows of data than the result R.1 1102. This is caused by a presence of

21

WO 2019/241195 PCT/US2019/036473

more rows having an odd-numbered join key than rows having an even-numbered join key. In an
embodiment as illustrated in FIG. 11, server two 821 would take much longer to finish its part of
the join operation work. Applicant presents methods, systems, and devices for detecting probe-
side data skew as illustrated in FIG. 11. The methods, systems, and devices as disclosed by
applicant are configured to redistribute a frequent build-side row (see e.g. rows having join key
“117) to one or more remote servers such that all rows having the frequent key (in this case “117)
may be probed on any of the one or more remote servers.

[0065] FIG. 12 illustrates a process flow 1200 of a system and method for detecting and
managing probe-side skew during a join operation, according to one embodiment. The process
flow 1200 includes skew detection at 1202. The skew detection at 1202 includes detecting probe-
side skew at a runtime of a join operation utilizing a lightweight sketch data structure. The skew
detection at 1202 further includes identifying frequent or heavy hitter join keys on the probe side
during a probe phase of the join operation. The process flow 1200 includes heavy hitter
redistribution at 1204. Heavy hitter redistribution at 1204 includes identifying frequently hit build-
side rows having a build-side join key corresponding to the previously identified frequent (i.e.
heavy hitter) join keys. The heavy hitter redistribution at 1204 further includes asynchronously
distributing the frequently hit build-side rows to one or more remote servers. The process flow
includes remote servers receiving heavy hitters at 1206. The remote servers receiving heavy hitters
at 1206 includes the one or more remote servers asynchronously receiving the frequently hit build-
side rows and generating a separate hash table for the frequently hit build-side rows. The process
flow 1200 includes remote servers changing input links at 1208. The remote servers changing input

links at 1208 includes the one or more remote servers changing an input link to route frequent

22

WO 2019/241195 PCT/US2019/036473

probe-side rows no longer to a specific remote server but to the local instance of the probe to
reduce network traffic.

[0066] It should be appreciated that a heavy hitter includes a frequently seen or frequently
used join key or row. In an embodiment, a heavy hitter includes a build-side row that is frequently
hit by the probe side of the join operation. In an embodiment, a heavy hitter includes a probe-side
join key that does not find a build-side row. In an embodiment, a heavy hitter includes a probe-
side join key that is frequently probed by the build side.

[0067] The process flow 1200 can enable a local computing device, such as a server or an
execution platform 112, to outsource one or more frequent build-side rows to one or more other
servers. The one or more other servers may be referred to as “remote” servers and this may denote
that the one or more other servers is simply different from the local server that is conducting the
join operation. A remote server need not be physically remote and may be located in the same
geographical region as the local server. In an embodiment of the disclosure, a plurality of
computing devices or servers are in communication with one another and the plurality of
computing devices or servers share the computing load of processing a join operation. In such an
embodiment, a local server asynchronously distributes frequently hit build-side rows to one or
more remote servers, and the one or more remote servers are configured to asynchronously receive
the frequently hit build-side rows and generate a separate hash table for the frequently hit build-
side rows. In an embodiment of the disclosure the plurality of computing devices or servers and
configured to efficiently process a join operation such that frequently hit build-side rows are

distributed amongst the plurality of computing devices or servers.

23

WO 2019/241195 PCT/US2019/036473

[0068] FIG. 13 illustrates a process flow 1300 of a process for skew detection (see e.g.1202
at FIG. 12), according to one embodiment. The process flow 1300 includes computing a hash table
for a join operation at 1302 and selecting a rowset comprising a plurality of rows of the join
operation at 1304. The process flow 1300 includes utilizing the hash table computed for the join
operation and probing each row of the rowset into a space saving algorithm at 1306. The process
flow 1300 includes updating the space saving algorithm based on incoming data, wherein the
incoming data includes probe side rowsets at 1308. The process flow 1300 includes identifying a
frequent probe-side join key on a probe side of the join operating during a probe phase of the join
operation at 1310. The process flow 1300 includes, for each update to the space saving algorithm,
identifying how frequently the frequent probe-side join key is probed as a side-effect of updating
the space saving algorithm at 1312. The process flow 1300 includes the determination of whether
the frequency of the frequent probe-side join keys exceeds a predetermined threshold at 1314. If
the determination at 1314 is yes, then the process flow 1300 includes sending rows associated with
the frequent probe-side join key to a remote server at 1316. If the determination at 1314 is no, then
the process flow 1300 includes retaining the rows associated with the frequent probe-side join key
on the current server at 1318.

[0069] FIG. 14 illustrates a process flow 1400 of a process for heavy hitter redistribution (see
e.g. 1204 at FIG. 12). The process flow 1400 includes recording a total number of rows inserted
into the space saving algorithm at 1402. The process flow 1400 includes calculating a threshold
per worker based on the total number of rows inserted into the space saving algorithm at 1404 and
ensuring that frequent join keys are frequent among all threads of at least one server at 1406. The

process flow 1400 includes determining heavy hitters comprising one or more of frequent build-

24

WO 2019/241195 PCT/US2019/036473

side rows that are frequently hit by the probe side and frequent probe-side keys that do not find a
build side row at 1408. The process flow 1400 includes the determination of whether the heavy
hitters should be broadcast to all remote servers at 1410. This may be determined by a client
request, a threshold metric to be satisfied, and so forth. If the determination at 1410 is yes, then
the process flow 1400 includes broadcasting heavy hitters to every remote server at 1412, If the
determination at 1410 is no, then the process flow 1400 includes broadcasting heavy hitters to only
those remote servers that frequently sent the heavy hitter key at 1414.

[0070] The space saving algorithm includes, for example, the space saving algorithm and
space saving sketch as disclosed in: Metwally, Ahmed, Divyakant Agrawal, and Amr El Abbadi.
Efficient Computation of Frequent and Top-4 Elements in Data Streams. Department of Computer
Science University of California, Santa Barbara, which is disclosed herein by reference in its
entirety. The space saving algorithm provides an integrated approach for solving problems of
finding frequent elements in a data stream such as a join operation. The space saving algorithm
provides an associated stream summary data structure. The underlying concept of the space saving
algorithm is to maintain partial information of interest, 7.e. only certain elements are monitored.
Counters are updated in a way that accurately estimates frequencies of significant elements, and a
lightweight sketch data structure is utilized that keeps the elements sorted by their estimated
frequencies.

[0071] The space saving algorithm includes observing an element that is monitored and
incrementing the element’s counter. If an element is not monitored, the element is given the least
estimated hits and the counter is calculated as the last estimated hits plus one. For each monitored

element, the space saving algorithm keeps track of its over-estimation resulting from the

25

WO 2019/241195 PCT/US2019/036473

initialization of its counter when it was inserted into the list. The space saving algorithm makes
use of the skewed property of the data in that the space saving algorithm expects a minority of the
elements, 7.e. the more frequent elements, to receive the majority of hits. Frequent elements will
reside in the counters of bigger values and will not be distorted by the ineffective hits of the
infrequent elements, and thus, will not be replaced out of the monitored counters. The infrequent
elements will reside on smaller counters, whose values will grow slower than those of the larger
counters. If skew remains but the popular elements change overtime, the space saving algorithm
will adapt automatically. The elements that are growing more popular will gradually be pushed to
the top of the list as they receive more hits. If one of the previously popular elements loses its
popularity, it will receive less hits. Thus, the relative position of the previously popular element
will decline as other counters are incremented, and the previously popular element might
eventually be dropped from the list.

[0072] In the space saving algorithm, even if the data is not skewed, the errors in the counters
will be inversely proportional to the number of counters. Maintaining only a moderate number of
counters will reduce error because the more counters that are maintained, the less it is probable to
replace elements, and the smaller the over-estimation errors in a counter’s values. In an
embodiment the space saving algorithm is implemented in a data structure that increments counters
without violating the order of the counters and ensures constant time retrieval.

[0073] FIG. 15 illustrates a schematic block diagram of a process flow 1500 for query
processing. The process flow 1500 depicts an execution plan comprising multiple operators or

building blocks. The process flow 1500 computes a hash join between a build-side table and a

26

WO 2019/241195 PCT/US2019/036473

probe-side table and then filters out some of the resulting rows and performs an aggregation over
all of the build-side keys and the probe-side keys as a result of the join operation.

[0074] The process flow 1500 includes scanning a build table by reading the build table from
a disk at 1502 and partitioning the build table at 1504. The process flow 1500 includes scanning a
probe table by reading the probe table from a disk at 1506. The process flow 1500 includes joining
the build table with the probe table at 1508. The process flow 1500 includes filtering rows where
a build-side value is not equal to a set key at 1510. The process flow 1500 includes aggregating
the sum of all build-side keys and probe-side keys at 1512. The process flow 1500 includes
providing the result at 1514.

[0075] FIG. 16 illustrates a schematic flow chart diagram of a method 1600 for managing
probe-side skew during a join operation of a database. The method 1600 begins and a server
computes a hash value for a join operation at 1602. The server detects data skew on a probe side
of the join operation at a runtime of the join operation using a lightweight sketch data structure at
1604. The server identifies a frequent probe-side join key on the probe side of the join operation
during a probe phase of the join operation at 1606. The server identifies a frequent build-side row
having a build-side join key corresponding with the frequent probe-side join key at 1608. The
server asynchronously distributes the frequent build-side row to one or more remote servers at
1610. It should be appreciated that the server may include any suitable computing platform,
including the execution platform 112 discussed in FIG. 1.

[0076] FIG. 17 illustrates a schematic flow chart diagram of a method 1700 for handling
probe-side skew during a join operation of a database. The method 1700 begins and a server

computes a hash value for a join operation at 1702 wherein the hash value may comprise a hash

27

WO 2019/241195 PCT/US2019/036473

table. The server selects a rowset comprising a plurality of rows of the join operation and probes
each of the plurality of rows of the rowset into a space saving algorithm using the hash value for
the join operation at 1704. The server updates the space saving algorithm based on incoming data
at 1706. The server, for each update to the space saving algorithm, identifies a frequency indicating
how frequently a frequent probe-side join key is probed as a side effect of the updating the space
saving algorithm at 1708. The server determines if the frequency exceeds a predetermined
threshold at 1710. The server identifies a frequent build-side row having a build-side join key
corresponding with the frequent probe-side join key at 1712. The server, in response to the
frequency exceeding the predetermined threshold, asynchronously distributes the frequent build-
side row to the one or more remote servers at 1714. It should be appreciated that the server may
include any suitable computing platform, including the execution platform 112 discussed in FIG.
1.

[0077] In an embodiment of the disclosure, systems, methods, and devices for detecting and
managing data skew during a join operation are disclosed. As illustrated in FIGS. 8-11, a hash-
hash join includes two phases. The hash-hash join includes a build phase wherein the hash tables
are generated (the hash tables include build-side data). The hash-hash join includes a probe phase
wherein probe-side data is probed into the hash table to find matching build-side rows for the
probe-side rows based on the respective join keys.

[0078] In an embodiment, skew detection is conducted in a vectorized way wherein batches
of rows are processed together. In an embodiment, a batch includes, for example, hundreds or
thousands of rows that are be process together as a single rowset. In an embodiment a probe rowset

is selected for detection of data skew. In an embodiment, a first rowset is not selected and then

28

WO 2019/241195 PCT/US2019/036473

approximately every n' rowset is selected for detection of data skew. In an embodiment, the hash
value computed for the join operation is reused to probe each row of the rowset into a space saving
algorithm and data structure.

[0079] The space saving algorithm and data structure approximately maintains the N most
frequent probe-side join keys. Due to the probabilistic nature of the space saving algorithm, the
result might not be entirely accurate and may return a small error that increases in accuracy as the
distribution of data becomes more skewed. In an embodiment, the space saving algorithm is not
updated with every rowset. In an embodiment, the space saving algorithm is updated with a subset
of incoming data, for example a small hash table of size N. In an embodiment, the hash value that
was computed for the join operation is reused and is updated with the same subset of incoming
data. In an embodiment after the space saving algorithm has been updated one or more times, the
systems, methods, and devices of the disclosure will begin to identify frequent join keys as a side-
effect of updating the space saving algorithm. In an embodiment, for each update, the frequency
of the frequent join key is detected and if the number exceeds a threshold, the associated build-
side row having the frequent join key is sent to one or more remote servers.

[0080] In an embodiment, for all workers threads of a server, the total number of rows inserted
into the space saving algorithm is recorded. Based on the number of rows inserted into the space
saving algorithm, a threshold per worker thread is computed that ensures that keys are frequent
among all threads of at least one server if the row is classified as a “frequent” or heavy hitter. In
an embodiment, rows comprising a frequent join key are redistributed to one or more remote
servers. It should be appreciated that a “frequent” key or row (also referred to as a heavy hitter)

may include either of a build-side row that is frequently hit by the probe side or a probe-side key

29

WO 2019/241195 PCT/US2019/036473

that does not find a build-side row and is probed anyway because a bloom filter fails to remove it
from the join operation. In an embodiment, rows comprising a frequent join key are broadcasted
to every other remote server. In an embodiment, the rows comprising a frequent join key are broken
down and distributed per server that sent the frequent join key. In an embodiment, if only a subset
of remote servers frequently sends the join key, the rows comprising the frequent join key may be
distributed only to that subset of remote servers.

[0081] In an embodiment, a link change is made. In an embodiment a link is a software
component configured to connect two operators and send a rowset from a source operator to a
destination operator. The source operator and the destination operator may be on the same server
or on different servers. A link governs which row is sent to which instance of the next operator. A
local link invokes the destination operator on the same server with the rowset. A broadcast link
transmits each row in the rowset to every instance of the destination operator. A hash link computes
a hash value of some of the attributes of the rowset and distributes the rows according to that hash
value. In an embodiment for probe-side skew handling, a hash link also checks a small separate
hash table that contains exceptions. If the hash link finds an exception for a hash value, it does not
send the row to the instance associated with that hash value but instead to its local counterpart (i.e.
the destination operator’s instance on the same server). In an embodiment, changing a link includes
adding an entry into the small hash table in the link.

[0082] In an embodiment of the disclosure, a system for managing data skew is disclosed.
The system includes a means for computing a hash value for a join operation. The system includes
a means for detecting data skew on a probe side of the join operation at a runtime of the join

operation using a lightweight sketch data structure. The system includes a means for identifying a

30

WO 2019/241195 PCT/US2019/036473

frequent probe-side join key on the probe side of the join operation during a probe phase of the
join operation. The system includes a means for identifying a frequent build-side row having a
build-side join key corresponding with the frequent probe-side join key. The system includes a

means for asynchronously distributing the frequent build-side row to one or more remote servers.

[0083] It will be appreciated that the structures, materials, or acts disclosed herein are merely
one example of, for example, a means for computing a hash value for a join operation, and it should
be appreciated that any structure, material, or act for computing a hash value for a join operation
which performs functions the same as, or equivalent to, those disclosed herein are intended to fall
within the scope of a means for computing a hash value for a join operation, including those
structures, materials, or acts for computing a hash value for a join operation which are presently
known, or which may become available in the future. Anything which functions the same as, or
equivalently to, a means for computing a hash value for a join operation falls within the scope of
this element.

[0084] It will be appreciated that the structures, materials, or acts disclosed herein are merely
one example of, for example, a means for detecting data skew on a probe side of the join operation
at a runtime of the join operation using a lightweight sketch data structure, and it should be
appreciated that any structure, material, or act for detecting data skew on a probe side of the join
operation at a runtime of the join operation using a lightweight sketch data structure which
performs functions the same as, or equivalent to, those disclosed herein are intended to fall within
the scope of a means for detecting data skew on a probe side of the join operation at a runtime of
the join operation using a lightweight sketch data structure, including those structures, materials,
or acts for detecting data skew on a probe side of the join operation at a runtime of the join

31

WO 2019/241195 PCT/US2019/036473

operation using a lightweight sketch data structure which are presently known, or which may
become available in the future. Anything which functions the same as, or equivalently to means
for detecting data skew on a probe side of the join operation at a runtime of the join operation
using a lightweight sketch data structure falls within the scope of this element.

[0085] It will be appreciated that the structures, materials, or acts disclosed herein are merely
one example of, for example, means for identifying a frequent probe-side join key on the probe
side of the join operation during a probe phase of the join operation, and it should be appreciated
that any structure, material, or act for identifying a frequent probe-side join key on the probe side
of the join operation during a probe phase of the join operation which performs functions the same
as, or equivalent to, those disclosed herein are intended to fall within the scope of a means for
identifying a frequent probe-side join key on the probe side of the join operation during a probe
phase of the join operation, including those structures, materials, or acts for detecting data skew
on a probe side of the join operation at a runtime of the join operation using a lightweight sketch
data structure which are presently known, or which may become available in the future. Anything
which functions the same as, or equivalently to means for identifying a frequent probe-side join
key on the probe side of the join operation during a probe phase of the join operation falls within
the scope of this element.

[0086] FIG. 18 is a block diagram depicting an example computing device 1800. In some
embodiments, computing device 1800 is used to implement one or more of the systems and
components discussed herein. For example, the computing device 1800 may be used to implement
one or more of the database service manager 102, components or modules configured to detecting

and managing data skew during a join operation, and one or means for carrying out process steps

32

WO 2019/241195 PCT/US2019/036473

for detecting and managing data skew during a join operation. Further, computing device 1800
may interact with any of the systems and components described herein. Accordingly, computing
device 1800 may be used to perform various procedures and tasks, such as those discussed herein.
Computing device 1800 can function as a server, a client or any other computing entity. Computing
device 1800 can be any of a wide variety of computing devices, such as a desktop computer, a
notebook computer, a server computer, a handheld computer, a tablet, and the like.

[0087] Computing device 1800 includes one or more processor(s) 1802, one or more memory
device(s) 1804, one or more interface(s) 1806, one or more mass storage device(s) 1808, and one
or more Input/Output (I/O) device(s) 1810, all of which are coupled to a bus 1812. Processor(s)
1802 include one or more processors or controllers that execute instructions stored in memory
device(s) 1804 and/or mass storage device(s) 1808. Processor(s) 1802 may also include various
types of computer-readable media, such as cache memory.

[0088] Memory device(s) 1804 include various computer-readable media, such as volatile
memory (e.g., random access memory (RAM)) and/or nonvolatile memory (e.g., read-only
memory (ROM)). Memory device(s) 1804 may also include rewritable ROM, such as Flash
memory.

[0089] Mass storage device(s) 1808 include various computer readable media, such as
magnetic tapes, magnetic disks, optical disks, solid state memory (e.g., Flash memory), and so
forth. Various drives may also be included in mass storage device(s) 1808 to enable reading from
and/or writing to the various computer readable media. Mass storage device(s) 1808 include

removable media and/or non-removable media.

33

WO 2019/241195 PCT/US2019/036473

[0090] I/O device(s) 1810 include various devices that allow data and/or other information to
be input to or retrieved from computing device 1800. Example I/0O device(s) 1810 include cursor
control devices, keyboards, keypads, microphones, monitors or other display devices, speakers,
printers, network interface cards, modems, lenses, CCDs or other image capture devices, and the
like.

[0091] Interface(s) 1806 include various interfaces that allow computing device 1800 to
interact with other systems, devices, or computing environments. Example interface(s) 1806
include any number of different network interfaces, such as interfaces to local area networks
(LANSs), wide area networks (WANSs), wireless networks, and the Internet.

[0092] Bus 1812 allows processor(s) 1802, memory device(s) 1804, interface(s) 1806, mass
storage device(s) 1808, and I/O device(s) 1810 to communicate with one another, as well as other
devices or components coupled to bus 1812. Bus 1812 represents one or more of several types of
bus structures, such as a system bus, PCI bus, IEEE 1394 bus, USB bus, and so forth.

[0093] For purposes of illustration, programs and other executable program components are
shown herein as discrete blocks, although it is understood that such programs and components may
reside at various times in different storage components of computing device 1800 and are executed
by processor(s) 1802. Alternatively, the systems and procedures described herein can be
implemented in hardware, or a combination of hardware, software, and/or firmware. For example,
one or more application specific integrated circuits (ASICs) can be programmed to carry out one
or more of the systems and procedures described herein. As used herein, the terms “module” or
“component” are intended to convey the implementation apparatus for accomplishing a process,

such as by hardware, or a combination of hardware, software, and/or firmware, for the purposes

34

WO 2019/241195 PCT/US2019/036473

of performing all or parts of operations disclosed herein. The terms “module” or “component” are
intended to convey independent in how the modules, components, or their functionality or
hardware may be implemented in different embodiments.

Examples

[0094] The following examples pertain to further embodiments.

[0095] Example 1 is a method for managing data skew. The method includes: computing a
hash value for a join operation; detecting data skew on a probe side of the join operation at a
runtime of the join operation using a lightweight sketch data structure; identifying a frequent
probe-side join key on the probe side of the join operation during a probe phase of the join
operation; identifying a frequent build-side row having a build-side join key corresponding with
the frequent probe-side join key; and asynchronously distributing the frequent build-side row to
one or more remote servers.

[0096] Example 2 is a method as in Example 1, wherein the one or more remote servers is
configured to: asynchronously receive the frequent build-side row; and generate a separate hash
table for the frequent build-side row.

[0097] Example 3 is a method as in any of Examples 1-2, further including: selecting a rowset
comprising a plurality of rows of the join operation; and probing each of the plurality of rows of
the rowset into a space saving algorithm using the hash value for the join operation.

[0098] Example 4 is a method as in any of Examples 1-3, updating the space saving algorithm
based on incoming data; and for each update to the space saving algorithm, identifying a frequency
indicating how frequently the frequent probe-side join key is probed as a side-effect of the updating

the space saving algorithm.

35

WO 2019/241195 PCT/US2019/036473

[0099] Example 5 is a method as in any of Examples 1-4, wherein asynchronously distributing
the frequent build-side row to the one or more remote servers comprises: in response to the
frequency exceeding a predetermined threshold, asynchronously distributing the frequent build-
side row to the one or more remote servers; and in response to the frequency not exceeding the
predetermined threshold, retaining the frequent build-side row on a current server.

[0100] Example 6 is a method as in any of Examples 1-5, further including: calculating a total
number of rows of the join operation that have been probed into the space saving algorithm;
calculating a threshold per worker thread based on the total number of rows of the join operation
that have been probed into the space saving algorithm; and based on the threshold per worker
thread, determining whether the frequent build-side join key is frequent among all threads of at
least one server.

[0101] Example 7 is a method as in any of Examples 1-6, wherein asynchronously distributing
the frequent build-side row to the one or more remote servers comprises one of: broadcasting the
frequent build-side row to each of a plurality of available remote servers; or broadcasting the
frequent build-side row only to one or more remote servers that frequently transmitted the frequent
build-side join key.

[0102] Example 8 is a method as in any of Examples 1-7, further comprising altering an input
link of a server to route a frequent probe-side row comprising the frequent probe-side join key to
a local instance of the join operation such that network traffic is reduced.

[0103] Example 9 is a method as in any of Examples 1-8, wherein asynchronously distributing
the frequent build-side row to the one or more remote servers occurs only after determining, to a

threshold confidence level, that the frequent probe-side join key is frequent on a server.

36

WO 2019/241195 PCT/US2019/036473

[0104] Example 10 is a method as in any of Examples 1-9, wherein the lightweight sketch
data structure comprises a hash table space saving algorithm.

[0105] Example 11 is non-transitory computer readable storage media storing instructions
that, when executed by one or more processors, cause the one or more processors to: compute a
hash value for a join operation; detect data skew on a probe side of the join operation at a runtime
of the join operation using a lightweight sketch data structure; identify a frequent probe-side join
key on the probe side of the join operation during a probe phase of the join operation; identify a
frequent build-side row having a build-side join key corresponding with the frequent probe-side
join key; and asynchronously distribute the frequent build-side row to one or more remote servers.
[0106] Example 12 is non-transitory computer readable storage media as in Example 11,
wherein the instructions further cause the one or more processors to: select a rowset comprising a
plurality of rows of the join operation; and probe each of the plurality of rows of the rowset into a
space saving algorithm using the hash value for the join operation.

[0107] Example 13 is non-transitory computer readable storage media as in any of Examples
11-12, wherein the instructions further cause the one or more processors to: update the space saving
algorithm based on incoming data; and for each update to the space saving algorithm, identify a
frequency indicating how frequently the frequent probe-side join key is probed as a side-effect of
the one or more processors updating the space saving algorithm.

[0108] Example 14 is non-transitory computer readable storage media as in any of Examples
11-13, wherein causing the one or more processors to asynchronously distribute the frequent build-
side row to the one or more remote servers comprises: in response to the frequency exceeding a

predetermined threshold, asynchronously distribute the frequent build-side row to the one or more

37

WO 2019/241195 PCT/US2019/036473

remote servers; and in response to the frequency not exceeding the predetermined threshold,
retaining the frequent build-side row on a current server.

[0109] Example 15 is non-transitory computer readable storage media as in any of Examples
11-14, wherein the instructions further cause the one or more processors to: calculate a total
number of rows of the join operation that have been probed into the space saving algorithm;
calculate a threshold per worker thread based on the total number of rows of the join operation that
have been probed into the space saving algorithm; and based on the threshold per worker thread,
determining whether the frequent build-side join key is frequent among all threads of at least one
server.

[0110] Example 16 is non-transitory computer readable storage media as in any of Examples
11-15, wherein causing the one or more processors to asynchronously distribute the frequent build-
side row to the one or more remote servers comprises one of: broadcasting the frequent build-side
row to each of a plurality of available remote servers; or broadcasting the frequent build-side row
only to one or more remote servers that frequently transmitted the frequent build-side join key.
[0111] Example 17 is non-transitory computer readable storage media as in any of Examples
11-16, wherein the instructions further cause the one or more processors to alter an input link of a
server to route a frequent probe-side row comprising the frequent probe-side join key to a local
instance of the join operation such that network traffic is reduced.

[0112] Example 18 is a system for managing data skew. The system includes: a means for
computing a hash value for a join operation; a means for detecting data skew on a probe side of
the join operation at a runtime of the join operation using a lightweight sketch data structure; a

means for identifying a frequent probe-side join key on the probe side of the join operation during

38

WO 2019/241195 PCT/US2019/036473

a probe phase of the join operation; a means for identifying a frequent build-side row having a
build-side join key corresponding with the frequent probe-side join key, and a means for
asynchronously distributing the frequent build-side row to one or more remote servers.

[0113] Example 19 is a system as in Example 18, further including: a means for selecting a
rowset comprising a plurality of rows of the join operation; and a means for probing each of the
plurality of rows of the rowset into a space saving algorithm using the hash value for the join
operation.

[0114] Example 20 is a system as in any of Examples 18-19, further including: a means for
updating the space saving algorithm based on incoming data; and for each update to the space
saving algorithm, a means for identifying a frequency indicating how frequently the frequent
probe-side join key is probed as a side-effect of the updating the space saving algorithm.

[0115] Example 21 is a system as in any of Examples 18-20, wherein the means for
asynchronously distributing the frequent build-side row to the one or more remote servers is further
configured to: in response to the frequency exceeding a predetermined threshold, asynchronously
distribute the frequent build-side row to the one or more remote servers; and in response to the
frequency not exceeding the predetermined threshold, retaining the frequent build-side row on a
current server.

[0116] Example 22 is a system as in any of Examples 18-21, further including: a means for
calculating a total number of rows of the join operation that have been probed into the space saving
algorithm; a means for calculating a threshold per worker thread based on the total number of rows

of the join operation that have been probed into the space saving algorithm; and a means for

39

WO 2019/241195 PCT/US2019/036473

determining, based on the threshold per worker thread, whether the frequent build-side join key is
frequent among all threads of at least one server.

[0117] Various techniques, or certain aspects or portions thereof, may take the form of
program code (i.e., instructions) embodied in tangible media, such as floppy diskettes, CD-ROMs,
hard drives, a non-transitory computer readable storage medium, or any other machine-readable
storage medium wherein, when the program code is loaded into and executed by a machine, such
as a computer, the machine becomes an apparatus for practicing the various techniques. In the case
of program code execution on programmable computers, the computing device may include a
processor, a storage medium readable by the processor (including volatile and non-volatile
memory and/or storage elements), at least one input device, and at least one output device. The
volatile and non-volatile memory and/or storage elements may be a RAM, an EPROM, a flash
drive, an optical drive, a magnetic hard drive, or another medium for storing electronic data. One
or more programs that may implement or utilize the various techniques described herein may use
an application programming interface (API), reusable controls, and the like. Such programs may
be implemented in a high-level procedural, functional, object-oriented programming language to
communicate with a computer system. However, the program(s) may be implemented in assembly
or machine language, if desired. In any case, the language may be a compiled or interpreted
language, and combined with hardware implementations.

[0118] It should be understood that many of the functional units described in this specification
may be implemented as one or more components or modules, which are terms used to more
particularly emphasize their implementation independence. For example, a component or module

may be implemented as a hardware circuit comprising custom very large-scale integration (VLSI)

40

WO 2019/241195 PCT/US2019/036473

circuits or gate arrays, off-the-shelf semiconductors such as logic chips, transistors, or other
discrete components. A component may also be implemented in programmable hardware devices
such as field programmable gate arrays, programmable array logic, programmable logic devices,
or the like.

[0119] Components may also be implemented in software for execution by various types of
processors. An identified component of executable code may, for instance, comprise one or more
physical or logical blocks of computer instructions, which may, for instance, be organized as an
object, a procedure, or a function. Nevertheless, the executables of an identified component need
not be physically located together but may comprise disparate instructions stored in different
locations that, when joined logically together, comprise the component and achieve the stated
purpose for the component.

[0120] Indeed, a component of executable code may be a single instruction, or many
instructions, and may even be distributed over several different code segments, among different
programs, and across several memory devices. Similarly, operational data may be identified and
illustrated herein within components and may be embodied in any suitable form and organized
within any suitable type of data structure. The operational data may be collected as a single data
set or may be distributed over different locations including over different storage devices, and may
exist, at least partially, merely as electronic signals on a system or network. The components may
be passive or active, including agents operable to perform desired functions.

[0121] Reference throughout this specification to “an example” means that a particular
feature, structure, or characteristic described in connection with the example is included in at least

one embodiment of the present disclosure. Thus, appearances of the phrase “in an example” in

41

WO 2019/241195 PCT/US2019/036473

various places throughout this specification are not necessarily all referring to the same
embodiment.

[0122] As used herein, a plurality of items, structural elements, compositional elements,
and/or materials may be presented in a common list for convenience. However, these lists should
be construed as though each member of the list is individually identified as a separate and unique
member. Thus, no individual member of such list should be construed as a de facto equivalent of
any other member of the same list solely based on its presentation in a common group without
indications to the contrary. In addition, various embodiments and examples of the present
disclosure may be referred to herein along with alternatives for the various components thereof. It
is understood that such embodiments, examples, and alternatives are not to be construed as de
facto equivalents of one another but are to be considered as separate and autonomous
representations of the present disclosure.

[0123] Although the foregoing has been described in some detail for purposes of clarity, it
will be apparent that certain changes and modifications may be made without departing from the
principles thereof. It should be noted that there are many alternative ways of implementing both
the processes and apparatuses described herein. Accordingly, the present embodiments are to be
considered illustrative and not restrictive.

[0124] Those having skill in the art will appreciate that many changes may be made to the
details of the above-described embodiments without departing from the underlying principles of

the disclosure.

42

WO 2019/241195 PCT/US2019/036473

CLAIMS
What is claimed is:
1. A method for managing data skew, the method comprising:

computing a hash value for a join operation;

detecting data skew on a probe side of the join operation at a runtime of the join
operation using a lightweight sketch data structure;

identifying a frequent probe-side join key on the probe side of the join operation during a
probe phase of the join operation;

identifying a frequent build-side row having a build-side join key corresponding with the
frequent probe-side join key; and

asynchronously distributing the frequent build-side row to one or more remote servers.

2. The method of claim 1, wherein the one or more remote servers is configured to:
asynchronously receive the frequent build-side row; and

generate a separate hash table for the frequent build-side row.

3. The method of claim 1, further comprising:
selecting a rowset comprising a plurality of rows of the join operation; and
probing each of the plurality of rows of the rowset into a space saving algorithm using the

hash value for the join operation.

4. The method of claim 3, further comprising:

43

WO 2019/241195 PCT/US2019/036473

updating the space saving algorithm based on incoming data; and
for each update to the space saving algorithm, identifying a frequency indicating how
frequently the frequent probe-side join key is probed as a side-effect of the updating the space

saving algorithm.

5. The method of claim 4, wherein asynchronously distributing the frequent build-side row
to the one or more remote servers comprises:

in response to the frequency exceeding a predetermined threshold, asynchronously
distributing the frequent build-side row to the one or more remote servers; and

in response to the frequency not exceeding the predetermined threshold, retaining the

frequent build-side row on a current server.

6. The method of claim 3, further comprising:

calculating a total number of rows of the join operation that have been probed into the
space saving algorithm;

calculating a threshold per worker thread based on the total number of rows of the join
operation that have been probed into the space saving algorithm; and

based on the threshold per worker thread, determining whether the frequent build-side

join key is frequent among all threads of at least one server.

7. The method of claim 1, wherein asynchronously distributing the frequent build-side row

to the one or more remote servers comprises one of

44

WO 2019/241195 PCT/US2019/036473

broadcasting the frequent build-side row to each of a plurality of available remote
servers; or
broadcasting the frequent build-side row only to one or more remote servers that

frequently transmitted the frequent build-side join key.

8. The method of claim 1, further comprising altering an input link of a server to route a
frequent probe-side row comprising the frequent probe-side join key to a local instance of the

join operation such that network traffic is reduced.

9. The method of claim 1, wherein asynchronously distributing the frequent build-side row
to the one or more remote servers occurs only after determining, to a threshold confidence level,

that the frequent probe-side join key is frequent on a server.

10. The method of claim 3, wherein the lightweight sketch data structure comprises a hash

table space saving algorithm.

11. Non-transitory computer readable storage media storing instructions that, when executed
by one or more processors, cause the one or more processors to:

compute a hash value for a join operation;

detect data skew on a probe side of the join operation at a runtime of the join operation

using a lightweight sketch data structure;

45

WO 2019/241195 PCT/US2019/036473

identify a frequent probe-side join key on the probe side of the join operation during a
probe phase of the join operation;

identify a frequent build-side row having a build-side join key corresponding with the
frequent probe-side join key; and

asynchronously distribute the frequent build-side row to one or more remote servers.

12. The non-transitory computer readable storage media of claim 11, wherein the instructions
further cause the one or more processors to:

select a rowset comprising a plurality of rows of the join operation; and

probe each of the plurality of rows of the rowset into a space saving algorithm using the

hash value for the join operation.

13. The non-transitory computer readable storage media of claim 12, wherein the instructions
further cause the one or more processors to:

update the space saving algorithm based on incoming data; and

for each update to the space saving algorithm, identify a frequency indicating how
frequently the frequent probe-side join key is probed as a side-effect of the one or more

processors updating the space saving algorithm.

14. The non-transitory computer readable storage media of claim 13, wherein causing the one
or more processors to asynchronously distribute the frequent build-side row to the one or more

remote servers compri SES:

46

WO 2019/241195 PCT/US2019/036473

in response to the frequency exceeding a predetermined threshold, asynchronously
distribute the frequent build-side row to the one or more remote servers; and
in response to the frequency not exceeding the predetermined threshold, retaining the

frequent build-side row on a current server.

15. The non-transitory computer readable storage media of claim 12, wherein the instructions
further cause the one or more processors to:

calculate a total number of rows of the join operation that have been probed into the
space saving algorithm;

calculate a threshold per worker thread based on the total number of rows of the join
operation that have been probed into the space saving algorithm; and

based on the threshold per worker thread, determining whether the frequent build-side

join key is frequent among all threads of at least one server.

16. The non-transitory computer readable storage media of claim 11, wherein causing the one
or more processors to asynchronously distribute the frequent build-side row to the one or more
remote servers comprises one of’

broadcasting the frequent build-side row to each of a plurality of available remote
servers; or

broadcasting the frequent build-side row only to one or more remote servers that

frequently transmitted the frequent build-side join key.

47

WO 2019/241195 PCT/US2019/036473

17. The non-transitory computer readable storage media of claim 11, wherein the instructions
further cause the one or more processors to alter an input link of a server to route a frequent
probe-side row comprising the frequent probe-side join key to a local instance of the join

operation such that network traffic is reduced.

18. A system for managing data skew, the system comprising:

a means for computing a hash value for a join operation;

a means for detecting data skew on a probe side of the join operation at a runtime of the
join operation using a lightweight sketch data structure;

a means for identifying a frequent probe-side join key on the probe side of the join
operation during a probe phase of the join operation;

a means for identifying a frequent build-side row having a build-side join key
corresponding with the frequent probe-side join key; and

a means for asynchronously distributing the frequent build-side row to one or more

remote servers.

19. The system of claim 18, further comprising:
a means for selecting a rowset comprising a plurality of rows of the join operation; and
a means for probing each of the plurality of rows of the rowset into a space saving

algorithm using the hash value for the join operation.

20. The system of claim 19, further comprising:

48

WO 2019/241195 PCT/US2019/036473

a means for updating the space saving algorithm based on incoming data; and
for each update to the space saving algorithm, a means for identifying a frequency
indicating how frequently the frequent probe-side join key is probed as a side-effect of the

updating the space saving algorithm.

21. The system of claim 20, wherein the means for asynchronously distributing the frequent
build-side row to the one or more remote servers is further configured to:

in response to the frequency exceeding a predetermined threshold, asynchronously
distribute the frequent build-side row to the one or more remote servers; and

in response to the frequency not exceeding the predetermined threshold, retaining the

frequent build-side row on a current server.

22. The system of claim 19, further comprising:

a means for calculating a total number of rows of the join operation that have been
probed into the space saving algorithm;

a means for calculating a threshold per worker thread based on the total number of rows
of the join operation that have been probed into the space saving algorithm; and

a means for determining, based on the threshold per worker thread, whether the frequent

build-side join key is frequent among all threads of at least one server.

49

PCT/US2019/036473

WO 2019/241195

1/18

L Ol

act
sbrioig
BIE(]

8i7
afelng
2ed

IT wiocpeid ebeiolg

git
afeioig

2312 Tg!

T
sbeing
B|GEINA

T

it

UWLIOREId UOHNDSXT

0t

(s80IAIB g [BOCID)

isbeusiy

QllAIeg esegeie(d

201
N 1880

801
7 /80

vov
| 18S

PCT/US2019/036473

WO 2019/241195

2/18

¢ 9Oid

SINPOIA
JOJILIC) SS800Y
pue jusuiebeurRiy
LIOROBSURS |

0ce

Jabeueiy
BSNOUBIBAA [BNIIA

8ig

JOIRLIDICOY) puR
Jamnpeyog Alnd

o}
BINPOJN SoUBUSIUIRIN
Busisnio

Ty
14 5T i
B JOINosxT zndo Tos sspdwoen
1S 108 T 108
g
are 80¢
BOIAIBS aoiAleg
iz e 8I08LO T BUISS8201d
szApuy Jebeuepy wsweabBeuepw 188nbey
DEOPUOAA BlEDEISI pUE
plUE JOHUCIH usienByucy BT

Jebeuely 9lIABS BSBRABRIEG

N

80¢
sbeioig e

a— 208
y0c 1sbeusiy
Jebeuriy Aoy ssc00y

PCT/US2019/036473

WO 2019/241195

3/18

€ Old

B £zl Z £zl
! . 0 .
¥ bl A bl
g Ll A Ll
n bl A bl
o Ll A Ll
8 Ll A bl
p 2y X Az
it 2ie 80¢]
ead Aanyd BAY Asyiq

Aasid = A8 8iBUM

02T ol L linsay

! £00Z
B £Z1
Y bl
p Z
q bl Z £zl
n) M Zig
! L O 4
o) A bL
B Z X Zy
° H mmw Mwmw
FIE 459 -
eAd Aayd AU

3

SiUEL 8pIg 8qlid

8jqe] epig ping

AN

00g

PCT/US2019/036473

WO 2019/241195

4/18

¥ Old

$ £00Z " bl
B ezt ! A
Y Ll Z £z 0 L
p A M ZLs e Z A Ll
g A O L 9 bl X Zv
1237 %7 747 ol 12572 A2 o0% 17817
ead Aoid Al Aeoyy ead Aeyd A Aemg
ey acy oty A0}
Z'd 9jqe L egqoid Z d9jqey piing L 'd 8jge) 8qold L'd slge L ping

[XéZ

OM] JBAIBR

U BABS

oov
1SEOpEO.] Blojeg

PCT/US2019/036473

5/18

G Old

! £00Z A A n A Z £Z1

B £ZTL X Zy m L M r4Re

Y A Z £zl o A O Z

p A M A% B Z A bl

q A D L S A X A
fead Aoid EAQ Aaxq EeAd Aoyd A AsMq

0ty 208 OtF 08

Z'd 9|qe L 8q0id sjqe] piing peiseopecig | d Sige L 8gold siqe] ping peisespeoig

[¥44

OM] Jsniag

BUQ JBAIBg

0¥

ABAISS

WO 2019/241195

o0&

SpIS piing 8y} JO 1SEOPBOIG JBYY HoES O} peiseopealq

2JE SMOL BpIS-pIing

PCT/US2019/036473

6/18

6 1A Z cel n Li A LL
Y Li A LL I z 9] Z
R P X ov o Li A LL
g Li A LL = Li A LL
eAd Aayd BAG ASM4 eAd Aayd BAG ASM4
\ 078 \ 2098
{Aayid = Aeya) 7Y Insey {Aaoyid = Aeya) | insey
472 1%} 72
oM I8aleg au(y Isnieg

WO 2019/241195

008
8IS 840 8 Bulgoid Yy

WO 2019/241195 PCT/US2019/036473

718

700

Final Result of Broadcast Join Operation
bKey = pKey

bKey bVal pKey pVal
11 Y 11 b
42 X 42 d
11 Y 11 h
123 Z 123 g
1 Y 11 e
1 Y 11 O
7 Q 7 i
1 Y 11 U

FIG. 7

PCT/US2019/036473

WO 2019/241195

8/18

g8 9id

4 £002
B €ZL
Y Ll Z £zl
p 2y M ZLs
q b1 0 .
%% ce8 174 ces
eAd Agpid BAQ Aaxq
0g8 028
Z'd 9jqe .t eqoid Z'delgel ping

128

oM} Joneg

L

| l

o Li

B 4 A bl

8 Ly X Zy
518 T8 508 ¥08
eAd Aayd A Aadiq

o18
L'd ejge] egoid L g sjge] ping

BUQ JOAISS

108

aog

Buiuoiyued yseH aiojog

PCT/US2019/036473

WO 2019/241195

9/18

6 Old

‘OM] Jondas

o1 pauoiiued sl Ay
i £00¢ L ujof passgquINU-ppo ue
N Buiney smos epis-ping 4
U Ll A i
P A4 z £zt
* Ll O L
ead Aajd BAY Aayq
p—— g0cs
Z'd wm%%awmnoi ¢ deidEl
pling pauoiiued

[¥4:]
oMY JBAIBG

008

"BUC JOAISS O)
N bl { psuciiyed ase Asy uiol
\ palsquinu-usrs ue §
m Jmcﬁmg SMO mwmmimmmsm............
© bl
© ¢ M Axe
o18 c06
L'd m%%%mﬂem L BlgeL
ping pauoiiued

108
BUQ Jerag

epis piing jo Buioniued use suy

PCT/US2019/036473

WO 2019/241195

10/18

3 P W
o "OM}
b Jaales o) pauciiued
aie Aaoy uiol paisquinu
3 Ll -ppo ue Buiney
N SMOI 8pis-e00id
h. MQDN T csmeceeeens
e ezl A bL
Y L Z Al
G Li O L
eAd Aomd BAY Asmig
0eol ace
Z'deige] cgsiae}

8q0id pauonibE

piing pauchijied

QM Jeniag

3pIS BY0id jo Buuoniped useH By

0001

0L "Old

BUO
JBAISS 0O} pausiiued
aie Aoy uiol paisgquinu

-usre ue Buiasy
N SMOJ BpIS-800id

< oy A AR
g z X P
eAd Aeyd BAd Ao
orotT 208
L d ®jgB L a=k-lei-7]
8g0id peuoiiued pling pauochiued

108
BUQ JOAIES

PCT/US2019/036473

WO 2019/241195

11/18

s £zl 2 £zl
n bl A L
o Ll A bl
8 bl A bl
Y Ll A bl
q bl A bl
eAd Aayd A Aonig
iz
2 unsey
Prs)
OM} JBAIBY

L Old

o Fd'g X Zy
eAd Aayd BAY Asnia
2ot
L Hnsey
108
au0) Jaaleg

Buigoid Jsuy

0041

PCT/US2019/036473

WO 2019/241195

12/18

¢l Ol

Diges
YIoMIBU 9oNpal 01 8qoud
8Y} JO 80UEISUI |BO0
BU} O} INQ JBAISS 3j0Wal
aioads g o) Jebuoi
OuU SMOJ apis-aqoud
anbaly 8INaL 03 MUl
ndui ue abusyD siaales
SIOWIBS SIOUL JO BUC BUY

YA
SYUIT Induy
sebusyn Jaalag s10wey

SMOL BRIS

~piing 1y Ajuenbey sy

Jo} @ige) ysey sieiedes
2 mwm._mcmm SIgAlas

SioUsd sloWw Jo suUo sl

SMOS BRIS-PING
wy Apusnbaly sy} sasoal
AISNOUCIYDUASE SIBAISS
BI0WBS BJOUL 0 U 8Y |

g0ct
SISLI AABBH
OB JBAIDS BI0WSY

s foccon

‘SioAlas aoweal
SI0UL JO BUC 0] SMOL 8DIS
-ping 1y Ajusnbal ey
FINQASID AISNOUOIUOUASY

‘shey uol wenbay
payiusp Alsnociasid
al o1 Buipuodssiuiod

Asy uiof epis-piing

2 BUIABY SMOI 8RIS-DIING
1y Ajuenbsly Apjuep)

iZzor 4
UORNGIASIDeY
JBRiH Aresi

<oty

‘uoneiado
wol sy J0 eseud sqoud e
Buunp apis sgoud eyl uo
sAey uol wenbai Ajiusp

BINONAS
ejep yoleys Jubemub
g Buziin uonesado
ol B o swnun g 18
mavs spis-sgoid 108180

4o A)
UOI0SIa(MaYS

00ct

PCT/US2019/036473

WO 2019/241195

13/18

giel

1BAJDS
UBLIND Byl U0 Asy uiof
apis-agoud wsanbay auy

ON

£l ol Buiasy SMOL BUL UIBISY
e SLEL
gilel .
Loneiedo wiyiobie Buiaes

uiof ays jo aseud sqoud
e Bulnp Asy uiol spis
-3qo4d jusnbaij 8 Aguapi

ol

aords sy Bunepdn 0 108)18-8Dis B 8B
paqod si Aay uiol epis-agoud jusnbsly
syl Apusnbal, aoy Alnuspl ‘uwiyiobie
Buiaes aords syl 01 81BRdAN ULES IO

guEl
eyep Buloou
uo peseq wyyiobie
Buines eords sy e1epdn

aoel
“wiruobie Buiaes soeds
B OlUl 19SMOJ SL] J0 MOJ
yoes agoid pue uoneisdo
uiol el 1ol peindwios
aiae] ysey aiy 8zijun

spasoxa Asy uio!
. OPis-agoud Jusnbaly
S\ J0 Aouenbaig

iz
‘uoneiado uiof au Jo smal
jo Aieinid g Buisudwos
18SMOI B 108185

g9itl
UBAISS Bj0Wsl B 0 Asy

wiof spis-aqoid wsnbay
sy} Buiaey smod 8y} pusg

4

viel
Lpioysaly
poulLLeIBpaId

cael
uonesado uici g
J04 8jge) ysey e endwios

AN

0act

PCT/US2019/036473

WO 2019/241195

14/18

7l Ol

252
ASY Jeniy Aresy
e ues Ajusnball 1BY] Si8Ales slowal
850U} AjUO O} sisliiy AABey 18EODECIG

ON

g0FT
MO
2pis-Ping B pul Jou op
1Y) sAay epis-agoud Jo
/pue epis aqoad e Ag 1y
Alusnbal aie Bl sSMmol
apis-piing Buisudwo
sisniy ArRay sliuLBR(

523
%EE@w alowsl B 0} w‘hmxf
- ANEBL 1SBODROIE

JBAISS Blowal AlsAs O}
sisiiy Aneay 1seopEoIg

454’

1z N
wiyoble Bulaes
aords sy} o pagod
SMOL JO JBGLUNU [BI0Y aU)
U0 PBSBY PESIUL JOYJOM
Jad pjousaiul e snoEen

aov T
ionas
SUO 1SB8| 1B JO SPEBIYL [|E e
Buowe Jusnbay ale sAay
uiol wsnbaly 1BY) 8insu

e

o1
“wipuotie Buines
goeds sl U pegoud
LS8 9ABY 1BU} SMOI J0
JBQUINL B0} B S1BINSIED

oori

WO 2019/241195 PCT/US2019/036473

15/18

1500 Show Result

Aggregate: Sum Up bKey
And pKey

Filter: Remove Rows
Where bval Is Not X

Join Build Table With
Probe Table

1508

Scan Probe Table: Read

Partition Build Table Probe Table From Disk

1204 15086
Scan Build Table: Read
Build Table From Disk
FIG. 15

1202

WO 2019/241195 PCT/US2019/036473

16/18

1600

Computing A Hash Value For A Join Operation.
1602

;

Detecting Data Skew On A Probe Side Of The Join Operation At A Runtime Of The Join
Operation Using A Lightweight Sketch Data Structure.
1604

;

ldentifying A Frequent Probe-Side Join Key On The Probe Side Of The Join Operation
During A Probe Phase Of The Join Operation.
1606

:

ldentifying A Frequent Build-Side Row Having A Build-Side Join Key Corresponding With The
Frequent Probe-Side Join Key.
1608

;

Asynchronously Distributing The Frequent Build-Side Row To One Or More Remote Servers.
18180

FIG. 16

WO 2019/241195 PCT/US2019/036473

17/18

1700

AN

Computing A Hash Value For A Join Operation.
1702

Y

Selecting A Rowset Comprising A Plurality Of Rows Of The Join Operation And Probing
Each Of The Plurality Of Rows Of The Rowset inlo A Space Saving Algorithm Using The
Hash Value For The Join Operation.

1704

Y

Updating The Space Saving Algorithm Based On incoming Data,
1706

Y

For Each Update To The Space Saving Algorithm, tdentifying A Frequency Indicating How
Frequently A Frequent Probe-Side Join Key Is Probed As A Side-Effect Of The Updating The
Space Saving Algorithm.

1708

v

Determining If The Frequency Exceeads A Predatarmined Threshold.
1710

Y

identifying A Frequent Build-Side Row Having A Build-Side Join Key Corresponding With The
Frequent Probe-Side Join Key.
1712

Y

in Response To The Frequency Exceeding The Predetermined Threshold, Asynchronously
Distributing The Freguent Build-Side Row To The One Or More Remole Servers.
1714

FiG. 17

WO 2019/241195 PCT/US2019/036473

18/18

1802 4 500
1 1812‘L ﬁ/
PROCESSOR(S)
18081

pe] MASS STORAGE

18041 DEVICE(S)

MEMORY

DEVICE(S) i i 1810 1

INPUT/OUTPUT (I
Q)

1806 “i\ DEVICE(S)

INTERFACE(S) i

FIG. 18

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2019/036473

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GOGF 16/00; GO6F 21/60 (2019.01)
CPC -

GO6F 16/2358; GO6F 16/137; GO6F 16/152; GO6F 16/1727; GOBF 16/21; GOBF 16/214; GO6F
16/2282; GO6F 16/258; GOBF 21/60; GO6F 21/6218 (2019.08)

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

See Search History document

Minimum documentation searched (classification system followed by classification symbols)

USPC - 707/713; 707/7 18 (keyword delimited)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

See Search History document

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X RODIGER et al. "Flow-Join: Adaptive Skew Handling for Distributed Joins over High-Speed 1-8, 10-22
--- Networks," 2016 IEEE 32nd International Conference on Data Engineering (ICDE), [retrieved on | ---

Y 2019-08-10). Retrieved from the Internet: <URL:
https://db.in.tum.de/~roediger/papers/roediger2016flowjoin.pdf> pp 1-12

Y CUTT. "Improving Hash Join Performance By Exploiting Intrinsic Data Skew," University of 9
British Columbia, 2009 [retrieved on 2019-08-10). Retrieved from the Internet: <URL:
https://pdfs.semanticscholar.org/e34c¢/5¢389d68111835e6884bfaf46861798d71ec.pdf> pp 1-60
US 2015/0261820 A1 (CHENG et al) 17 September 2015 (17.09.2015) entire document

A 1-22
US 2016/0275078 A1 (INTERNATIONAL BUSINESS MACHINES CORPORATION) 22

A September 2016 (22.09.2016) entire document . 1-22

D Further documents are listed in the continuation of Box C.

D See patent family annex.

. Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E" earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“Q” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

“X” document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&" document member of the same patent family

Date of the actual completion of the international search

10 August 2019

Date of mailing of the international search report

05 SEP 2019

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.0O. Box 1450, Alexandria, VA 22313-1450

Facsimile No. 571-273-8300

Authorized officer
Blaine R. Copenheaver

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (January 2015)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - claims
	Page 49 - claims
	Page 50 - claims
	Page 51 - claims
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - drawings
	Page 61 - drawings
	Page 62 - drawings
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - wo-search-report

