
US 20200379747A1
IN

((19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0379747 A1

Kaartinen et al . (43) Pub . Date : Dec. 3 , 2020

(54) SOFTWARE UPDATE MECHANISM (52) U.S. CI .
CPC

(71) Applicants : Arm IP Limited , Cambridge (GB) ;
Arm Limited , Cambridge (GB)

GO6F 8865 (2013.01) ; G06F 21/44
(2013.01)

(57) ABSTRACT
(72) Inventors : Mika Jere Petteri Kaartinen , Oulu

(FI) ; Brendan James Moran , Histon
(GB)

(21) Appl . No .: 16 / 884,847

(22) Filed : May 27 , 2020

(30) Foreign Application Priority Data

Provided is a technology including an apparatus and a
machine - implemented method for updating software on a
device , the method performed at the device comprising :
receiving a software update manifest comprising an authen
ticated resource request identifier and an authenticated defi
nition identifying one or more characteristics of the device ;
generating a software update request comprising a value for
each of the one or more identified characteristics of the
device ; transmitting , to a location corresponding to the
resource request identifier , the built software update request ;
receiving a resource enabling access to or including a
software update appropriate for the one or more values of the
one or more identified characteristics ; and updating the
software of the device in accordance with the software
update .

May 28 , 2019 (GB) 1907498.8

Publication Classification

(51) Int . Ci .
G06F 8/65 (2006.01)
GO6F 21/44 (2006.01)

1000 1000 121 122

S302
S304

S306a
S308a

$ 310a

S312a
S314a

S315a

S316a
S306b

S308b

S310b
S312b

$ 314

S315b
S316b

S318

Patent Application Publication Dec. 3 , 2020 Sheet 1 of 6 US 2020/0379 747 A1

Device 100

Processor 102 104

Processor Memory 106 114

Operating System 108 115a

Firmware 110

Processing Circuitry 112

Distributor 121

120

Author 122

FIG . 1

Patent Application Publication Dec. 3 , 2020 Sheet 2 of 6 US 2020/0379 747 A1

121 122 100a 100b

S202
S204 Y Y. W 12 V 1 Y Y N Y N Y N Y Y Y

3

S206
S208

S210a
S212a

S214a

S216a
S218a

S220a
S210b

S2126

S214b
S216b

S218b
S220b

S222

FIG . 2

Patent Application Publication Dec. 3 , 2020 Sheet 3 of 6 US 2020/0379 747 A1

100a 1 1006 121 122

S302
S304

S306a
S308a

S310a

$ 312a
S314a

S315a

S316a
S306b

S308b

S310b
S312b

S315b
S316b

S318

FIG . 3

Patent Application Publication Dec. 3 , 2020 Sheet 4 of 6 US 2020/0379 747 A1

400

402 Start

404 Define Manifest

Provide Manifest to Distributor

Specify Devices

FIG . 4

Patent Application Publication Dec. 3 , 2020 Sheet 5 of 6 US 2020/0379 747 A1

502 Start

Receive Manifest

Transmit manifest

Receive Software update request

Determine software update (s)

Transmit resource (s)

FIG . 5

Patent Application Publication Dec. 3 , 2020 Sheet 6 of 6 US 2020/0379 747 A1

602 Start

Receive Manifest

Parse manifesi

608 Generate software update request

Transmit software update request

612 Receive Resource

C 614 End

FIG . 6

US 2020/0379747 A1 Dec. 3 , 2020
1

SOFTWARE UPDATE MECHANISM

RELATED APPLICATION

[0001] The present application claims priority to Applica
tion No. GB 1907498.8 filed May 28 , 2019 , which is hereby
incorporated herein in its entirety by reference .
[0002] The present technology is directed to distribution
of software to electronic devices over a network .
[0003] In the past , information processing environments
were typically isolated from the “ real world ” , secured from
interference by physical barriers and lack of electronic
connections , and under the control of dedicated profession
als with detailed knowledge of system operation , data integ
rity and system security . Such installations were once kept
behind locked doors and tended by trained operators and
system programmers ; they were often only accessible from
dedicated terminal devices which were themselves often
kept in secure areas of a plant or office . Updates to data
content were usually conducted by selected professionals
whose interactions with the systems were filtered through
access control lists and passwords , and were often subject to
checks and balances such as “ buddy - checking ” , managerial
sign - offs , and sometimes long periods of testing and parallel
operation to ensure that the correct and secure functioning of
the systems was maintained .
[0004] In recent years , by contrast , more and more devices
are becoming networked and provided with local processing
capability ; these devices typically , but not exclusively , oper
ate in unprotected environments , open to the world through
Internet connections , and under the control of people with
out any particular training in system operation , integrity and
security
[0005] Devices from home computers to vehicles and
light - bulbs have begun to acquire these additional functions
and to be connected together through the Internet of Things
(IoT) . With this proliferation of networked devices , system
security and content integrity present increasingly complex
difficulties .
[0006] In a first approach there is provided a machine
implemented method for updating software on a device , the
method performed at the device comprising : receiving a
software update manifest comprising an authenticated
resource request identifier and an authenticated definition
identifying one or more characteristics of the device ; gen
erating a software update request comprising a value for
each of the one or more identified characteristics of the
device ; transmitting , to a location corresponding to the
resource request identifier , the built software update request ;
receiving a resource enabling access to or including a
software update appropriate for the one or more values of the
one or more identified characteristics ; and updating the
software of the device in accordance with the software
update .
[0007] In a further approach there is provided a machine
implemented method for provisioning a software update on
a device , the method performed at a server comprising :
sending , from the server to the device , a software update
manifest comprising an authenticated resource request iden
tifier and an authenticated definition identifying one or more
characteristics of the device ; receiving , at the server from the
device , a software update request ; sending , from the server
to the device , a resource based on or in response to the
software update request , wherein the resource is to enable

the device to access the software update or wherein the
resource includes the software update .
[0008] In a further approach there is provided a machine
implemented method for provisioning a software update
from a first device to a second device , the method performed
at the first device comprising : receiving , at the first device ,
a software update request generated by a second device and
destined for a server ; parsing , at the first device , the software
update request ; sending , from the first device to the second
device , a resource based on or in response to the software
update request when the resource is available , wherein the
resource is to enable the device to access the software update
or wherein the resource includes the software update ; or
forwarding , from the first device to the server , the software
update request when the resource is not available to the
second device .
[0009] In a hardware approach , there is provided elec
tronic apparatus comprising logic elements operable to
implement the methods of the present technology . In another
approach , the computer - implemented method may be real
ized in the form of a computer program operable to cause a
computer system to perform the process of the present
technology
[0010] Implementations of the disclosed technology will
now be described , by way of example only , with reference
to the accompanying drawings , in which :
[0011] FIG . 1 shows an example block diagram of a
deployment of a computer - implemented embodiment of the
present technology comprising hardware , firmware , soft
ware or hybrid components ;
[0012] FIG . 2 shows an illustrative example of device
obtaining a resource from a distributor ;
[0013] FIG . 3 shows a further illustrative example of
device obtaining a resource from a distributor ;
[0014] FIG . 4 shows an example of process of an author
providing a manifest to a distributor ;
[0015] FIG . 5 shows an example of process of a distributor
managing a software update campaign on one or more
devices ; and
[0016] FIG . 6 shows an example of a process for a device
obtaining a software update .
[0017] A device , such as an IoT device , may be provided
with a resource in the form of a software update (e.g.
applications , firmware etc.) , whereby a full software image
is transmitted to the device to enable the device to replace
pre - existing software with the software image . Additionally ,
or alternatively , a delta software update (hereafter " delta
update ”) may be provisioned on the device . A delta update
enables software updates by providing differential software
update data (e.g. the difference between two software ver
sions) to the device and may be accompanied with instruc
tions on how the device is to generate the updated software
version to be installed . The device can then use this delta
update together with the pre - existing software to generate
the updated software version for installation on the device .
Although the device could be provisioned with a full soft
ware update to replace all of the pre - existing software rather
than a delta update , a delta update may be smaller in
comparison to a full software update replacing all of the
pre - existing software and , therefore , the delta update may
save both bandwidth of the network as well as storage and
processing power of the device (s) and distributor (s) in
comparison .

US 2020/0379747 A1 Dec. 3 , 2020
2

[0018] In an embodiment , distribution of a resource com
prising the software update may be achieved by storing the
software update at a network accessible location and sending
to the device a software update manifest (hereafter “ mani
fest ”) comprising a resource request identifier corresponding
to the location at which the device can request the resource .
The resource request identifier may comprise any suitable
identifier which is used to locate a resource such as a
Uniform Resource Identifier (URI) , Uniform Resource loca
tor (URL) , Uniform Resource Name (URN) etc.
[0019] The manifest comprises one or more blocks of data
providing information about a resource . An author may
encode information in the manifest in a format that can
subsequently be decoded by the device (e.g. using a parser
component thereon) . In an illustrative example the informa
tion may be encoded using plaintext , Binary type - length
value (TLV) , Concise Binary Object Representation
(CBOR) or JavaScript Object Notation (JSON) although the
claims are not limited in this respect . Additionally , or
alternatively the information may comprise instructions for
enabling the device to parse the manifest correctly . In
examples the manifest may comprise byte code .
[0020] For security , the manifest may comprise a message
authentication code (MAC) value in the manifest and / or the
manifest may be cryptographically signed to enable the
device to determine if the manifest can be trusted (e.g. by
checking the MAC value / signature are as expected) . Addi
tionally , or alternatively , the manifest may be cryptographi
cally encrypted such that only devices having a correspond
ing cryptographic key can decrypt the manifest . Such
functionality means that when the manifest is taken to be
trusted , the information therein can be taken to be authen
ticated . When the information cannot be authenticated the
device can take an action such as discarding a manifest that
cannot be trusted , logging the incident and / or reporting the
incident (e.g. to the distributor or author) . Such functionality
also provides for end - to - end security between a device and
the entity that generates the manifest (e.g. the author in the
present illustrative example) because the entity that builds
the manifest can have a level of confidence that no other
party (including potential adversaries) can install software
updates on devices without adequate privileges .
[0021] The manifest may also comprise cryptographic
keys (e.g. symmetric or asymmetric keys) which may them
selves be encrypted by a trusted authority . The device can
decrypt the encrypted cryptographic keys and use the
decrypted cryptographic keys to , for example , verify the
signature or decrypt further encrypted data to determine
whether the manifest can be trusted .
[0022] The manifest may also comprise information about
the resource . For example , the manifest may specify a size
of the expected software update so that the device does not
write more data than required when it installs the software
update .
[0023] The manifest may include a hash value or digest
corresponding to the software update , whereby the device
may verify that the digest of a subsequently received soft
ware update matches the digest in the manifest to check that
the received software update is as expected .
[0024] The manifest may also comprise instructions for
the device to obtain a resource . For example , the manifest
may include a characteristic definition specifying one or
more characteristics of the device to be identified by the
device in a software update request . A characteristic of the

device may include one or more of : a hardware configura
tion , a software configuration and a current state of the
device . As an illustrative example , a characteristic of the
device may include : a software version currently active on
the device or active for a component of the device ; the class
of device or the class of a component (s) thereon ; the vendor
of the device or a component (s) thereon ; the manufacturer of
the device or a component (s) thereon ; the current geographic
location thereof ; the security capabilities and / or require
ments for the device or a component (s) thereon ; the com
munications capabilities of the device or a component (s)
thereof ; a schedule specifying when the device (or a com
ponent thereon) is active or asleep . It will be appreciated that
the list of characteristics is exemplary only .
[0025] The instructions in the manifest may define one or
more fields of a software update request which the device is
to populate , whereby the one or more fields be part of a
template having a specific structure . In embodiments the
manifest specifies how the device is to populate the one or
more fields . Additionally , or alternatively , instructions pro
visioned on the device may specify how the device is to
populate the one or more fields .
[0026] In an embodiment the device populates the defined
one or more fields of the software update request with one
or more characteristic values which correspond to one or
more characteristics of the device .
[0027] For example , a characteristic value may correspond
to a Class identifier (ID) ; Vendor ID ; manufacturer ID ;
software version ID (of the device or component thereof) . As
a further example a characteristic value may correspond to
geographical coordinates specifying the current geographic
location of the device . As a further example a characteristic
value may correspond to a software version identifier for a
cryptographic application thereby specifying security capa
bilities for the device or a component (s) thereon . As a further
example a characteristic value may comprise a hardware
identifier for a communications module (e.g. Wi - Fi or Blu
etooth) thereby specifying communications capabilities of
the device . As a further example a characteristic value may
correspond to a plurality of times specifying when the
device (or a component thereon) is active or asleep .
[0028] An entity receiving the software update request
(e.g. the distributor) can then determine the characteristics of
the device based on or in response to the one or more
characteristic values in the software update request . The
entity may then determine which software update is required
for the device based on or in response to the characteristics
thereof .
[0029] A characteristic value may take any suitable form ,
and may comprise one or more characters such as , for
example , numeric characters (e.g. integers , floating point ,
etc) and / or text characters (e.g. letters and symbols) . For
example , a characteristic value may be a string of such
characters (e.g. as plaintext or an output of a hashing
operation) . In a further embodiment a characteristic value
may comprise one or more bits in a bitmap , or a character
istic value may comprise one or more bit flags , set to‘l’or
true when the device has a particular characteristic and set
to ' O ' or false when device does not have a particular
characteristic .
[0030] The form of the characteristic values provided in
the software update request will preferably be sufficient to
enable a receiving entity to identify a correct software
update for a particular characteristic value (s) while avoiding

US 2020/0379747 A1 Dec. 3 , 2020
3

an accidental collision e.g. where two or more software
updates are identified for the same characteristic value (s) . As
an illustrative example the characteristic value (s) may be ,
for example , a unique identifier such as a unique plaintext
value , a Universally unique identifier (UUID) , a globally
unique identifier (GUID) . In some embodiments the one or
more characteristic values may be subject to a cryptographic
operation to provide one or more digests which is / are
included in the software update request as a unique identi
fier .
[0031] As described above , the present techniques enable
an entity receiving a software update request from a par
ticular device to determine the software presently active on
a device and also determine what software updates should be
provided to the device . The device may have multiple
different components and thus may require software updates
for each different component . As an illustrative example , a
device has the following physical components : A host MCU
and a Wi - Fi module and has three software components : an
operating system ; a Wi - Fi module interface driver and
applications . The device may include any number of UUIDs
as characteristic values corresponding to vendor IDs or class
IDs for the physical or software components . For example ,
a device that has an operating system and one or more
applications might include one Vendor ID for the OS and
one or more additional Vendor IDs for the applications . This
device might also include a Class ID for the OS and one or
more Class IDs for the applications . The Wi - Fi module's
firmware has a proprietary update mechanism and doesn't
support manifest processing . This device can report four
class IDs : hardware model / revision , OS , Wi - Fi module
model / revision and an application . A distributor can then ,
using the characteristic values reported in the software
update request determine the correct software update depen
dent on the characteristic values , and tailor the resource (s)
provided to each device accordingly . This allows the OS ,
Wi - Fi module , and application software to be obtained by
the device and updated independently of one another . This
approach allows an entity (e.g. vendor , distributor , owner) to
target , for example , all devices with a particular hardware or
software component with a single manifest , which is a very
powerful mechanism , particularly when used for security
updates .
[0032] The distributor may also determine one or more
capabilities of the device based on or in response to the
information in the software update request . For example ,
when the characteristic value (s) in the software update
request relates to a Bluetooth or Wi - Fi communications
module the distributor can determine that the device has
Bluetooth or Wi - Fi Communications modules , and provide
updates for each of the different modules if required .
[0033] As a further illustrative example , when the char
acteristic value (s) in the software update request relate to a
particular security module the distributor can determine that
the device has particular security capabilities .
[0034] As a further illustrative example , when the char
acteristic value (s) relate to a sleep schedule for the device
the distributor can determine when the device is awake or
asleep . It will be appreciated that the device capabilities
described herein are exemplary only and the claims are not
limited in this respect .
[0035] The distributor can then provide the resource to the
device based on or in response to the determined capabili
ties .

[0036] For example , when the device has certain commu
nication capabilities the distributor can instruct only servers
with those communication capabilities to provision the
software update on the device . Such functionality means that
servers that cannot communicate with a particular device
will not be instructed to attempt to do so .
[0037] In a further example when the device has a certain
sleep schedule the distributor will provision a software
update on the device , or will instruct servers to provision the
software update on the device when the device is scheduled
to be awake . Such functionality means that the distributor or
another server may only attempt to deliver the software
update when the device is active , thereby minimizing unnec
essary power / communication / processing expenditure by the
distributor or other server (s) .
[0038] In a further example when the device is located at
a particular geographical location the distributor will have
servers appropriate for that particular geographic location
provision the software update on the device (e.g. servers in
the same country / region as the device etc.) . Such function
ality means that a server closest to a particular device will
deliver the software update to the device thereby minimizing
latency .
[0039] Furthermore , the distributor can perform load bal
ancing ensuring that a resource is transmitted to a device by
a server that has capacity to do so or when that server has
capacity to do so .
[0040] Thus , by actively managing transmission of the
resources to different devices based on information in the
software requests received from each of the devices , the
distributor can manage the burden on the network (s) (e.g.
processing , communications , bandwidth burden) and
decrease latency for devices receiving the update .
[0041] Referring to FIG . 1 , an example of a deployment of
a computer - implemented embodiment of the present tech
nology is shown .
[0042] Device 100 is shown in FIG . 1 as being networked
with at least distributor 121 and author 122 but is also
operational with numerous other general purpose or special
purpose computing system environments or configurations .
Examples of well - known computing processing systems ,
environments , and / or configurations that may be suitable for
use with device 100 include , but are not limited to , gate
ways , routers , personal computer systems , server computer
systems , thin clients , thick clients , hand - held or laptop
devices , multiprocessor systems , microprocessor - based sys
tems , set top boxes , programmable consumer electronics
(smartphones , smart watches , tablets) , network PCs , mini
computer systems , mainframe computer systems , and dis
tributed computing environments that include any of the
above systems or devices .
[0043] Device 100 , distributor 121 and author 122 may be
described in the general context of computer systems and
computer systems on a chip (SOC) . Such computer systems
comprise executable instructions , such as program modules ,
being executed by a computer processor . Generally , program
modules may include : routines ; programs ; objects ; compo
nents ; logic ; and data structures that perform tasks or
implement abstract data types .
[0044] Device 100 is connected through a network 120 to
distributor 121 and author 122. Network 120 is depicted as
a wide area network (WAN) in FIG . 1 but other types of
network can be used including a low power wireless net

US 2020/0379747 A1 Dec. 3 , 2020
4

some

work . In one embodiment , network 120 may comprise a
cloud computing environment . In embodiments the network
may be a private network .
[0045] Device 100 comprises : processor 102 ; communi
cation circuitry 104 ; and device memory 114 .
[0046] Processor 102 is for loading machine instructions
from device memory 114 and for performing machine
operations in response to the machine instructions . Such
machine operations include : performing an operation on a
value in a register (for example arithmetical or logical
operations) ; moving a value from a register to a memory
location directly and vice versa ; and conditional or non
conditional branching . A typical processor can perform
many different machine operations . The machine instruc
tions are written in a machine code language which is
referred to as a low - level computer language . A computer
program written in a high - level computer language (also
known as source code) needs to be compiled to a machine
code program (also known as object code) before it can be
executed by the processor . Alternatively , a machine code
program such as a virtual machine or an interpreter can
interpret a high - level language (such as C) in terms of
machine operations .
[0047] Communication circuitry 104 is for enabling com
munication between device 100 and other devices . The
communication circuitry 104 may use wireless communica
tion , such as communication using wireless local area net
work (Wi - Fi) , short range communication such as radio
frequency communication (RFID) or near field communi
cation (NFC) , or communications used in wireless technolo
gies such as ZigBee , Thread , Bluetooth , Bluetooth LE , IPv6
over Low Power Wireless Standard (6LOWPAN) or Con
strained Application Protocol (COAP) . Also , the communi
cation circuitry 104 may use a cellular network such as 3G
or 4G . The communication circuitry 104 may also use wired
communication such as using a fibre optic or metal cable .
The communication circuitry 104 could also use two or
more different forms of communication , such as several of
the examples given above in combination .
[0048] Processor 102 comprises : processing circuitry 112 ,
which in turn comprises firmware 110 ; operating system
108 ; and processor memory 106 .
[0049] Processing circuitry 112 is for processing instruc
tions and comprises : fetch circuitry for fetching instructions ;
decode circuitry for decoding instructions , and execution
circuitry for executing instructions (not shown) . Data and
program code stored in device memory 114 are accessible to
processing circuitry 112 .
[0050] Firmware 110 may comprise an operating kernel
program for running one or more processes and environ
ments . Firmware 110 can be embodied in circuitry or
program instructions in processor memory 106 .
[0051] Operating system 108 is a system for loading and
executing program modules including device applications .
Operating system 108 can be embodied in circuitry or
program instructions in processor memory .
[0052] Processor memory 106 provides the execution
environment for processor 102 and space for the program
instructions for the firmware 110 and operating system 108 .
[0053] Device 100 may have hardware / software compo
nents 115 having associated software (e.g. firmware) to
enable the components 115 to function . Such components
may comprise a radio module , camera , GPS module
although the claims are not limited in this respect .

[0054] Author 122 and distributor 121 are similarly opera
tional with numerous other general purpose or special pur
pose computing system environments or configurations and
are typically servers , comprising computer components such
as those described for device 100 but these are not shown
nor described in any great detail . Such servers may be
discrete entities or may comprise two or more distributed
entities .
[0055] Author 122 is an entity trusted by device 100. Such
trust may be established on the basis of cryptographic keys
provisioned on the device 100 (e.g. during a bootstrap
process) although the claims are not limited in this respect
and MAC values or other trust anchors may be used to
establish trust . The device 100 can verify signatures on
communications to determine that the communications were
signed by the author 122. Additionally , or alternatively , the
device 100 can decrypt communications encrypted by the
author 122. In embodiments the device 100 can sign / encrypt
communications that can be verified / decrypted by the author
122 .
[0056] Distributor 121 communicates with the device 100
(e.g. to transmit manifest (s) / receive software update request
(s)) and to distribute a resource to the device 100 in response
to a software update request .
[0057] The distributor 121 and device 100 may commu
nicate via secure communications channel whereby com
munications are signed / encrypted , although in
embodiments the distributor 121 and device 100 may com
municate via a non - secure communications channel .
[0058] The distributor 121 is depicted a single entity in
FIG . 1 , but the claims are not limited in this respect and a
distributor that transmits manifests to the device 100 may be
the same entity (e.g. a single server) or may be a different
entity (e.g. two or more servers) to that which receives a
software update request from the device 100 .
[0059] Similarly , the distributor that distributes a resource
to the device 100 in response to a software update request
may be the same entity or may be a different entity to the
distributor which receives the software update request and /
or the distributor which transmits manifests to the device
100 .
[0060] As will be immediately clear to one of ordinary
skill in the art , the separations between components shown
in the drawing are not to be taken to mean that other
arrangements are excluded from consideration ; in imple
mentations of the present technology , components shown
here as separate may be combined in higher - level compo
nents or implemented in varying physical and logical struc
tures . In the present embodiments the device 100 is taken to
be a constrained device (e.g. constrained bandwidth , power
and / or processing etc.) .
[0061] FIG . 2 shows an illustrative example of devices
100a and 110b obtaining a resource from distributor 121 .
[0062] As an illustrative example devices 100a and 100b
may be owned by author 121 , whereby device 100a has
version 1 (vl) of a firmware thereon and device 100b may
have v2 of the firmware thereon . The author may want all
devices which it owns to be updated to the latest software
version and may engage distributor 121 to update the
devices as part of an update campaign .
[0063] At S202 the author 122 , which is trusted by devices
100a and 100b , generates a software update comprising
firmware V3 . The software update may replace the pre
existing firmware on devices 100a and 100b , or the software

US 2020/0379747 A1 Dec. 3 , 2020
5

update may be a delta update . At S204 the author transmits
the v3 firmware to the distributor 121 .
[0064] At S206 the author defines a manifest to be dis
tributed to the devices that are to be updated and signs the
manifest , for example , using a private cryptographic key .
[0065] At S208 the author 122 transmits the manifest to
the distributor 121. The author 122 also defines the devices
which the distributor is to provision with the manifest (e.g.
some or all of the devices owned by the author) .
[0066] At S210a / b the distributor 121 transmits the mani
fest to the devices defined by the author (depicted as devices
100a / 100b in FIG . 2 although any number of devices may be
defined in practice) . In embodiments the distributor may
have a pre - existing relationship with the devices , whereby
the devices may have registered with the distributor . Alter
natively , the author may provide sufficient information to
enable the distributor to establish a connection with each of
the devices that are to be updated .
[0067] At S212a / 212b the respective devices 100a / 100b
parse the manifest to obtain the instructions for obtaining the
correct resource .
[0068] As described above , the device can determine
whether or not the information in the manifest is authenti
cated and take an action such as discarding a manifest that
cannot be trusted , logging the incident and / or reporting the
incident (e.g. to the distributor or author) when not authen
ticated .
[0069] At S214a / b the respective devices 100a / 100b gen
erate a software update request in accordance with informa
tion in the manifest .
[0070] At S216a / b the respective devices 100a / 100b
transmit the software update request to a location corre
sponding to the resource request identifier (depicted as
distributor 121 in FIG . 2) .
[0071] At S218a / b , the distributor 121 parses the respec
tive software update requests and determines the correct
software update for each device . At S220a / b the distributor
transmits a resource to the respective devices 100a / b .
[0072] In an embodiment the resource may comprise the
software update to be installed by a device . In a further
embodiment the resource may comprise information to
enable the device to obtain the correct software update . For
example , the resource may comprise a further location
identifier for a further distributor from which the device will
obtain the software update to be installed .
[0073] Although not depicted in FIG . 2 , the devices
100a / b will install the software update when received . In
some embodiments the devices 100a / b will verify the soft
ware update is the correct or expected software update as
described in greater detail below .
[0074] At S222 the distributor 121 reports to the author
that the software updates have been distributed .
[0075] In the Illustrative example of FIG . 2 the author is
depicted as generating the software update but in other
embodiments the distributor may generate the software
update based on or in response to the software update
request .
[0076] FIG . 3 shows a further illustrative example of
device obtaining a resource from distributor 121 .
[0077] At S302 the author defines a manifest to be dis
tributed to the devices that are to be updated and authenti
cates the manifest , for example , using a private crypto
graphic key or MAC value .

[0078] At S304 the author 122 transmits the manifest to
the distributor 121. The author 122 also defines the devices
which the distributor is to provision with the manifests as
part of an update campaign .
[0079] At S306a / b the distributor 121 transmits the mani
fest to the devices defined by the author (depicted as devices
100a / b in FIG . 3 although any number of devices may be
defined in practice) .
[0080] AT S308a / b the respective devices 100a / b parse the
manifest . In an illustrative example , parsing the manifest
comprises obtaining the instructions for generating a soft
ware update request . As described above , the device can
determine whether or not the information in the manifest is
authenticated and take an action such as discarding a mani
fest that cannot be trusted , logging the incident and / or
reporting the incident (e.g. to the distributor or author) when
not authenticated .
[0081] At S310a / b the respective devices 100a / b generate
a software update request in accordance with the informa
tion in the manifest .
[0082] At S312a / b the respective devices 100a / b transmit
the software update request to a location corresponding to
the resource request identifier (depicted as distributor 121 in
FIG . 3) .
[0083] At S314a / b , the distributor 121 parses the software
update request and determines the correct software update
for each device .
[0084] At S315a / b the distributor 121 obtains a software
update based on or in response to the software update
requests from the respective devices 100a / b . The software
update may be a full software update to replace pre - existing
firmware on devices 100a and 100b , or the software update
may be a delta update .
[0085] In embodiments the distributor 121 obtains the
software update (s) for a particular device by dynamically
generating the software updates based on or in response to
the software update request received from that device .
Alternatively , the distributor 121 may obtain the software
updates for a particular device by communicating with
another source such as the author 122 to obtain the software
updates based on or in response to the software update
request received from that device .
[0086] At S316a / b , the distributor transmits a resource to
the respective devices 100a / b .
[0087] In an embodiment the resource may comprise the
software update to be installed by a device . In a further
embodiment the resource may comprise information to
enable the device to obtain the correct software update . For
example , the resource may comprise a further location
identifier for a further distributor from which the device will
obtain the software update to be installed .
[0088] Although not depicted in FIG . 3 , the devices
100a / b will install the software update when received . In
some embodiments the devices 100a / b will verify the soft
ware update is the correct or expected software update .
[0089] At S318 the distributor 121 reports to the author
that the software updates have been distributed .
[0090] FIG . 4 shows an example of process 400 of the
author providing a manifest to a distributor .
[0091] An author may want to update the software on one
or more devices as part of an update campaign , whereby the
author may own or may manage the one or more devices .
[0092] At 402 the process starts .
[0093] At 404 the author defines a manifest to be distrib
uted to the devices that are to be updated . The manifest

US 2020/0379747 A1 Dec. 3 , 2020
6

defined by the author specifies information to enable devices
generate a software update request . The manifest may also
specify other information . The author may sign the manifest
(e.g. using a cryptographic key) to enable a receiving device
to verify that the manifest was generated by the author .
[0094] At 406 the author provides the manifest to a
distributor which is to manage distribution of the software
updates to the one or more devices . For example , the
distributor may be part of a device management service with
which the one or more devices are registered .
[0095] At 408 the author specifies the devices to be
updated as part of the update campaign . For example , the
author may specify unique identifiers for each of the devices ,
whereby the unique identifier may comprise a URL , URI ,
GUID , UUID etc. In other examples the author may specify
that all devices having a certain device characteristic (s) are
to be updated .
[0096] At 410 , the process ends .
[0097] FIG . 5 shows an example of process 500 of a
distributor managing a software update campaign on one or
more devices .
[0098] At 502 the process starts .
[0099] At 504 the distributor receives , from an author , a
manifest to be used as part of a software update campaign
for one or more devices . In embodiments the one or more
devices will have established a connection with the distribu
tor , for example whereby each of the one or more devices
performs a registration process with the distributor so as to
exchange data (e.g. device identifier information such as
GUID , UUID ; cryptographic keys , etc) . Following such a
registration process the one or more devices can communi
cate with the distributor (e.g. using end - to - end security) .
[0100] At 506 the distributor transmits the manifest to one
or more devices as part of an update campaign .
[0101] At 508 , the distributor receives a software update
request from each of the one or more devices .
[0102] At 510 , the distributor processes each software
update request and determines the appropriate resource for
each of the one or more devices . For example , the distributor
may identify the current software version active on a par
ticular device (or component) based on or in response to one
or more characteristic values in the software update request
and then determine which software update (if any) is
required for that device .
[0103] At 512 the distributor transmits a resource to the
one or more devices . In an embodiment the resource may
comprise the software update for a particular device . In a
further embodiment the resource may enable the particular
device to access the correct software update whereby , for
example , the resource may comprise a further location
identifier for a further distributor from which the particular
device will obtain the software update .
[0104] At 514 the process ends .
[0105] Although not depicted in FIG . 5 , each device may
send a status update to the distributor (e.g. confirming when
the software update is installed or when there is an issue) .
[0106] Furthermore , although not depicted in FIG . 5 , the
distributor may provide a status update (e.g. to the author) on
the progress of the update campaign . For example , the
distributor can confirm which of the one or more devices
have received the manifest and / or software update and also
provide an update as to which of the one or more devices are

awaiting the manifest and / or the software update , or if any
of the one or more devices have reported an issue with the
software updates .
[0107] As above , the distributor may not necessarily be a
single entity and may , for example , comprise two or more
servers distributed across one or more networks .
[0108] As will be appreciated the software update requests
are tailored for each of the devices from which they are
received and it's possible for the distributor to select the
correct resource for each device .
[0109] FIG . 6 shows an example of a process 600 for a
device obtaining a software update .
[0110] At 602 the process starts .
[0111] At 604 the device receives a manifest (e.g. from a
distributor) .
[0112] At 606 the device parses the manifest to obtain
instructions for generating a software update request and
obtaining a resource request identifier .
[0113] As described above , the device can determine
whether or not the information in the manifest is authenti
cated . The device may , for example , perform a crypto
graphic operation on the manifest or verify a MAC value in
the received manifest to determine whether the manifest can
be trusted . When the manifest is taken to be trusted , the
information therein (e.g. the resource request identifier and
definition identifying the one or more characteristics of the
device) is taken to be authenticated . When the manifest
cannot be trusted , the device can take an action such as
discarding the manifest , logging the incident and / or report
ing the incident (e.g. to the distributor or author) .
[0114] At 608 the device generates a software update
request based on or in response to information in the
manifest .
[0115] At 610 the device transmits the software update
request to a location corresponding to the resource request
identifier .
[0116] The software update request may be transmitted
using any suitable transfer protocol such as , for example ,
HTTP , COAP , FTP etc. For example , using HTTP and COAP
the device could send the software update requests as POST
or GET requests .
[0117] At 612 the device receives a resource . When the
resource is a software update the device will update the
existing software using the software update . When the
resource is a location identifier , the device will obtain the
software update from the location identifier . In embodiments
the device may perform a cryptographic operation on the
software update , to verify that the software update is to be
trusted . Such a cryptographic operation may comprise veri
fying a signature applied to the software and / or decrypting
the software update . When the device cannot verify that the
software update is to be trusted then the device may discard
or ignore the software update or request a new software
update . Such functionality mitigates the risk of the device
installing a software update from an unauthorized party .
[0118] The device may verify that the received software
update is the correct or expected software update . For
example , the device may verify that the software update was
generated by a trusted source (e.g. the author) and received
from a trusted source (e.g. the distributor) . In a further
example the device may verify that the received software
update is the correct or expected software update after
installation on the device by checking that by comparing a
digest of the resulting software image to a hash value in the

US 2020/0379747 A1 Dec. 3 , 2020
7

manifest . However , such functionality means that the soft
ware update may need to be installed prior to verification .
On single - image devices , failing to authenticate the software
update before performing an in - place update could be prob
lematic . As an additional , or alternative , verification the
device may therefore perform a dry - run of the software
update in order to determine whether the result would match
a hash digest in the manifest .
[0119] In a further embodiment the device may perform
block - based verification of the received software update . A
block verification technique is a technique whereby received
blocks of data may be checked individually to ensure that
they are , for example , authorized for use , before they are
processed by the receiver . This offers a means of , for
example , tamper - proofing the blocks of data of a software
update or other download . Thus , for example , a block that is
found to fail verification may be re - requested , without the
need for a full repeat of the original download . In one
embodiment , a block verification technique applied by a
receiver may make use of a chained digest created using a
chained digest technique and sent by the sender .
[0120] A chained digest technique is , at its simplest , a
technique whereby a stream of data is divided into blocks
and each block is processed in turn to append a value derived
by applying a transformative function to another , neighbour
ing block before the output block is transmitted . The value
may be referred to as a digest , a hash value or a check value) .
For example , block B may be processed to append a digest
of block A , and block C to append a digest of block B and
its appended digest of block A , and so on , in a chained
manner , from one end of the stream to the other .
[0121] The chaining digest technique may be applied
forwards or in reverse through a stream of data , according to
the particular requirements of the use - case under consider
ation . This chaining digest technique thus establishes a form
of continuous dependency among the blocks in the output
stream . As will be clear to one of skill in the art , this
description has been much simplified and leaves the treat
ment of the starting block undefined . In one implementation
a random seed may be used for the starting block in place of
a neighbour block digest , although other implementations
will be apparent to one of skill in the art .
[0122] At 614 the process ends .
[0123] Although not depicted in FIG . 6 , the device may
provide a status update (e.g. to the distributor) on the
progress of the software update . For example , the device can
confirm when the software update is installed , and for
example , provide a hash value for the updated software
installed thereon .
(0124] In accordance with the present techniques a mani
fest comprising a single resource request identifier can be
provided to two or more devices , such that each of the two
or more devices can use information in the manifest to send
a software update request to a distributor at the location
corresponding to the resource request identifier and obtain a
software update applicable to each device .
[0125] The present techniques mean that , rather than send
ing a manifest for each different software version , only one
manifest is needed to update different software versions on
two or more devices because the software update requests
are tailored by the respective devices .
[0126] This approach allows an entity to target one or
more devices or particular component (s) on the one or more
devices with a software update specific for each of the one

or more devices / component (s) thereon using a manifest
having a single resource request identifier .
[0127] The present techniques also provide for provision
ing resources on devices which may have different versions
of active software , variations of the software and different
hardware components (or variations thereof) from one
another , whereby the distributor can determine the correct
resource (s) required to be provisioned to each device based
on or in response to the tailored software update requests .
[0128] The present techniques also reduce network band
width and processing power in service / device side when
only one update campaign with a single manifest is required
to update different devices , rather than several concurrent
update campaigns with different manifests for each specific
software update .
[0129] As above , the software update requests may be
transmitted using any suitable transfer protocol . In embodi
ments intermediate devices (e.g. gateways ; routers , servers
etc.) may be located between the one or more devices and
the distributor . Such intermediate devices may be used to
pass requests from the one or more devices and the distribu
tor . Thus , an intermediate device in the intermediate infra
structure receiving (directly or indirectly) a request destined
for the distributor may parse the software update request and
identify the appropriate resource for the device from which
the software update request originated . The intermediate
device may resolve the request by providing a resource
satisfying the software update request to the device that
generated the software update request . As an illustrative
example , the intermediate device may have some or all of
the device characteristics as the device from which the
software update request originated . The intermediate device
may already have received the corresponding software
update (e.g. delta update) . Such functionality reduces band
width in a network (e.g. a mesh network) as the software
update request is not always passed all the way through to
the destination distributor , rather an intermediate component
can resolve the request .
[0130] The present techniques are applicable to con
strained devices such as loT devices . In an illustrative
example the techniques are applicable to lightweight
machine - to - machine (LwM2M) devices . Such LwM2M
devices have various LwM2M resources , which can be read ,
written , executed and / or accessed by servers / services . As an
illustrative example , a LwM2M resource may comprise a
value (e.g. generated by circuitry on the device) . A web
application may , via LwM2M server , request the value from
the LwM2M device (e.g. with a REPORT request) , whereby
the requested value is read and reported back to the web
application by the LwM2M server .
[0131] The LwM2M resources may be further logically
organized into objects , whereby each LwM2M device can
have any number of LwM2M resources , each of which is
associated with a respective object . A set of objects on
LwM2M device may include , for example : “ security object ’
to handle security aspects between the LwM2M device and
one or more servers ; a ' server object to define data and
functions related to a server ; an “ access control object to
define for each of one or more permitted servers the access
rights the one or more servers have for each object on the
LwM2M device ; a “ device object ’ to detail resources on the
LwM2M device . A connectivity monitoring object to
group together resources on the LwM2M device that assist
in monitoring the status of a network connection ; A ‘ firm

US 2020/0379747 A1 Dec. 3 , 2020
8

resource

ware update object enables management of firmware which
is to be updated , whereby the object includes installing
firmware , updating firmware , and performing actions after
updating firmware . A location object ' to group those
resources that provide information about the current location
of the LwM2M device ; A ' connection statistics object to
group together resources on the LwM2M device that hold
statistical information about an existing network connection .
[0132] In embodiments LwM2M device may have one or
more instances of an object . As an illustrative example , a
temperature sensor device may comprise two or more tem
perature sensors , and the LwM2M device may comprise a
different device object instance for each temperature sensor .
In embodiments a LwM2M resource may also comprise one
or more LwM2M resource instances . The objects , object
instances , LwM2M resources and LwM2M
instances may be organized in an object hierarchy where
each of the objects , object instances , LwM2M resources
and / or LwM2M resource instances are elements of the
object hierarchy , and whereby the device can enumerate the
different elements of an object instance hierarchy using one
or more characteristic values (e.g. using a URL ; URN etc.) .
[0133] Thus , a characteristic value (s) in a software update
request generated by a LwM2M device may comprise one or
more elements of the object hierarchy of the LwM2M
device , and a receiving entity (e.g. a LwM2M server) can
determine software updates to be provisioned to the
LwM2M device .
[0134] As will be appreciated by one skilled in the art , the
present techniques may be embodied as a system , method or
computer program product . Accordingly , the present tech
nique may take the form of an entirely hardware embodi
ment , an entirely software embodiment , or an embodiment
combining software and hardware . Where the word “ com
ponent ” is used , it will be understood by one of ordinary skill
in the art to refer to any portion of any of the above
embodiments .
[0135] Furthermore , the present technique may take the
form of a computer program product tangibly embodied in
a non - transient computer readable medium having computer
readable program code embodied thereon . A computer read
able medium may be , for example , but is not limited to , an
electronic , magnetic , optical , electromagnetic , infrared , or
semiconductor system , apparatus , or device , or any suitable
combination of the foregoing .
[0136] Computer program code for carrying out opera
tions of the present techniques may be written in any
combination of one or more programming languages ,
including object - oriented programming languages and con
ventional procedural programming languages .
[0137] For example , program code for carrying out opera
tions of the present techniques may comprise source , object
or executable code in a conventional programming language
(interpreted or compiled) such as C , or assembly code , code
for setting up or controlling an ASIC (Application Specific
Integrated Circuit) or FPGA (Field Programmable Gate
Array) , or code for a hardware description language such as
VerilogTM or VHDL (Very high speed integrated circuit
Hardware Description Language) .
[0138] The program code may execute entirely on the
user's computer , partly on the user's computer and partly on
a remote computer or entirely on the remote computer or
server . In the latter scenario , the remote computer may be
connected to the user's computer through any type of

network . Code components may be embodied as procedures ,
methods or the like , and may comprise sub - components
which may take the form of instructions or sequences of
instructions at any of the levels of abstraction , from the
direct machine instructions of a native instruction - set to
high - level compiled or interpreted language constructs .
[0139] It will also be clear to one of skill in the art that all
or part of a logical method according to embodiments of the
present techniques may suitably be embodied in a logic
apparatus comprising logic elements to perform the steps of
the method , and that such logic elements may comprise
components such as logic gates in , for example a program
mable logic array or application - specific integrated circuit .
Such a logic arrangement may further be embodied in
enabling elements for temporarily or permanently establish
ing logic structures in such an array or circuit using , for
example , a virtual hardware descriptor language , which may
be stored using fixed carrier media .
[0140] In one alternative , an embodiment of the present
techniques may be realized in the form of a computer
implemented method of deploying a service comprising
steps of deploying computer program code operable to ,
when deployed into a computer infrastructure or network
and executed thereon , cause the computer system or network
to perform all the steps of the method .
[0141] In a further alternative , an embodiment of the
present technique may be realized in the form of a data
carrier having functional data thereon , the functional data
comprising functional computer data structures to , when
loaded into a computer system or network and operated
upon thereby , enable the computer system to perform all the
steps of the method .
[0142] It will be clear to one skilled in the art that many
improvements and modifications can be made to the fore
going exemplary embodiments without departing from the
scope of the present disclosure .

1. A machine - implemented method for updating software
on a device , the method performed at the device comprising :

receiving a software update manifest comprising an
authenticated resource request identifier and an authen
ticated definition identifying one or more characteris
tics of the device ;

generating a software update request comprising a value
for each of the one or more identified characteristics of
the device ;

transmitting , to a location corresponding to the resource
request identifier , the built software update request ;

receiving a resource enabling access to or including a
software update appropriate for the one or more values
of the one or more identified characteristics ; and

updating the software of the device in accordance with the
software update .

2. The method of claim 1 , further comprising :
parsing the manifest to derive one or more instructions for

generating the software update request .
3. The method of claim 1 , wherein the one more charac

teristics of the device relate to one or more of : a hardware
configuration and software configuration and a state of the
device .

4. The method of claim , 1 wherein the value for each of
the one or more identified characteristics of the device
comprises a unique identifier .

US 2020/0379747 A1 Dec. 3 , 2020
9

5. The method of claim 1 , wherein receiving the software
update manifest comprises receiving the software update
manifest from a first server .

6. The method of claim 5 , wherein the location corre
sponding to the resource request identifier comprises the first
server .

7. The method of claim 6 , wherein receiving the resource
comprises receiving the resource from the first server .

8. The method of claim 5 , wherein receiving the resource
comprises receiving the resource from an intermediate com
ponent between the device and the first server .

9. The method of claim 1 , wherein the location corre
sponding to the resource request identifier comprises a
second server .

10. The method of claim 9 , wherein receiving the resource
comprises receiving the resource from the second server .

11. The method of claim 1 , wherein the resource enabling
access to the software payload comprises a location identi
fier .

12. The method of claim 1 , wherein updating the software
on the device comprises replacing all of the active software
with the software update .

13. The method of claim 1 , wherein the software update
comprises a delta update .

14. The method of claim 1 , further comprising one or
more of :

verifying that the manifest is trusted and verifying that the
resource is trusted .

15-16 . (canceled)
17. A machine - implemented method for provisioning a

software update on a device , the method performed at a
server comprising :

sending , from the server to the device , a software update
manifest comprising an authenticated resource request
identifier and an authenticated definition identifying
one or more characteristics of the device ;

receiving , at the server from the device , a software update
request ;

sending , from the server to the device , a resource based on
or in response to the software update request , wherein
the resource is to enable the device to access the
software update or wherein the resource includes the
software update .

18. The method of claim 17 , wherein the resource is
appropriate for one or more characteristics of the device
identified in the software update request .

19. The method of claim 17 , further comprising : actively
managing sending the resource based on information in the
software requests .

20. The method of claim 17 , further comprising :
receiving , at the server , the software update ; or
generating , at the server , the software update .
21. The method of claim 17 , further comprising : actively

managing sending the resource based on information in the
software requests .

22. A machine - implemented method for provisioning a
software update from a first device to a second device , the
method performed at the first device comprising :

receiving , at the first device , a software update request
generated by a second device and destined for a server ;

parsing , at the first device , the software update request ;
sending , from the first device to the second device , a

resource based on or in response to the software update
request when the resource is available , wherein the
resource is to enable the device to access the software
update or wherein the resource includes the software
update ; or

forwarding , from the first device to the server , the soft
ware update request when the resource is not available
to the second device .

23-25 . (canceled)

