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element received by that node by applying a first class of
probability distribution, thereby generating a respective set
of output parameters describing an output probability dis-
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of probability distribution.
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1
INTERPRETABLE NEURAL NETWORK

BACKGROUND

Neural networks are used in the field of machine learning
and artificial intelligence. A neural networks comprises
layers of nodes which are interconnected by links and which
interact with each other. The neural network can take input
data and propagate the input data through the layers of the
network to generate output data. Certain nodes within the
network perform operations on the data, and the result of
those operations is passed to other nodes, and so on.

FIG. 1 shows an extremely simplified version of an
example neural network. The example neural network com-
prises an input layer of nodes, a hidden layer of nodes and
an output layer of nodes. In practice, there will be many
nodes in each layer, and there may also be more than one
layer per section. Each node of the input layer is capable of
generating data (e.g. a value or parameter) at its output by
carrying out a function on the data provided to that node.
Each node in the input layer is connected at least initially to
each node in the first hidden layer adjacent to the input layer.
Like the nodes of the input layer, each node in the hidden
layer is capable of generating data at its output by carrying
out a function on the data provided to that node from a
previous layer. The first hidden layer may be connected to a
second hidden layer. Alternatively, there may be a single
hidden layer which is connected to the output layer. The data
generated by the final hidden layer is supplied to the node(s)
in the output layer. Nodes of the output layer may also
perform an operation on the data which they receive.

At some or all of the nodes of the network, the data input
to that node is weighted by a respective weight. A weight
may define the connectivity between a node in a given layer
and the nodes in the next layer of the neural network. The
weights can be just numerical data or a distribution. When
the weights are defined by a distribution, the neural network
can be fully probabilistic and captures the uncertainty. The
network learns by operating on data input at the input layer,
and adjusting the operations (e.g. the weighting and/or
function) performed by some or all of the nodes on the data
input to those node. Each node is also associated with a
certain value or distribution. This value of the node or the
distribution of the value of the node indicate whether the
node is active or not. If the value is close to zero, the node
is not active. There are different learning approaches, but in
each case there is a forward propagation through the net-
work from left to right in FIG. 1, a calculation of an overall
error, and a backward propagation from right to left in FIG.
1 through the network of the error. In the next cycle, each
node takes into account the back propagated error and
produces a revised set of weights. In this way, the network
can be trained to perform its desired operation.

SUMMARY

Neural networks, e.g. artificial neural networks (ANNs)
are powerful machine learning models that have been suc-
cessful in several highly complex real-word tasks. The
non-linearity of ANNs allows them to capture complex
nonlinear dependencies, a quality which often results in high
predictive performance. Despite widespread success, pre-
dictions from ANNs lack interpretability. Instead, they often
function as a black box. For example, after training an ANN
on the task of outcome prediction it is difficult to determine

40

45

55

2

which input data (i.e. features) are relevant for making
predictions. As a consequence, the application of ANNs in
practice has been limited.

One particular domain in which the interpretability of
neural networks is critical is healthcare. A neural network
may be trained to predict, for example, a patient’s risk of
death or disease, how long a patient has left to live (e.g. after
a traumatic head injury or a cancer diagnosis) or will remain
in hospital, whether the patient requires a particular surgery
or the chances of it being successful, etc. However, it is
highly undesirable in the medical domain to make poten-
tially life-changing decisions without being able to clearly
justity those decisions. In contrast, it would be desirable to
inform a doctor, patient or next-of-kin which factors (e.g.
heart rate, blood pressure, etc.) contributed to a prediction.
Moreover, knowing which factors are relevant for predicting
an outcome would enable a medical practitioner to focus on
collecting that data (e.g. particular measurements of the
patient) whilst disregarding irrelevant factors. Other
domains include sales analysis, education applications etc,
where the decision-making process needs to be interpre-
table.

According to one aspect disclosed herein, there is pro-
vided a computer-implemented method of operating a neural
network. The neural network comprises a plurality of layers,
the plurality of layers comprising: 1) an input layer com-
prising a plurality of input nodes each configured to receive
a respective one of a plurality of input elements, ii) one or
more hidden layers each comprising a plurality of hidden
nodes, each hidden node configured to receive sets of input
parameters where each set describes an input probability
distribution from one of the nodes in a previous layer of the
network, and to output a set of output parameters describing
an output probability distribution to a next layer of the
network, and iii) an output layer comprising one or more
output nodes each configured to output a respective output
element, wherein the one or more hidden layers connect the
input layer to the output layer. The method comprises: at
each of the input nodes, weighting the respective one of the
plurality of input elements received by that input node by
applying an instance of a first class of probability distribu-
tion to that input element, thereby generating a respective set
of output parameters describing an output probability dis-
tribution. The method further comprises, from each of the
input nodes, outputting the respective set of output param-
eters as input parameters to one or more nodes in a next,
hidden layer of the network, and thereby propagating the
respective set of output parameters through the one or more
hidden layers to the output layer. The propagating of the
respective set of output parameters comprises, at each of one
or more nodes of at least one of the hidden layers, combining
the sets of input parameters and weighting the combination
by applying an instance of a second class of probability
distribution to that combined set of input parameters,
thereby generating a respective set of output parameters
describing an output probability distribution for outputting
to a next layer of the network. The first class of probability
distribution is more sparsity inducing than the second class
of probability distribution.

Each class of probability distribution may consist of one
or more possible forms of distribution. Each instance
applied at each node takes the form of one of the distribu-
tions in its respective class. Each form of probability dis-
tribution in the first class is more sparsity inducing than each
form of probability distribution in the second class, at least
in that the first class of probability distributions introduce
more sparsity amongst the set of output parameters gener-
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ated at each of the input nodes compared to if the second
class of probability distribution was used instead of the first
class. “Sparsity” and “sparsity inducing” are terms of art
referring to the tendency of a distribution, when applied as
a weighting in the nodes of a neural network, to drive the
output of lesser-contributing nodes toward zero. A sparsity
inducing probability distribution will tend to result in
smaller values getting smaller (i.e. driven towards zero),
whilst allowing larger values to remain large. In other words,
a more sparsity inducing distribution gives more “decisive”
outputs (closer to binary). It is understood in the art that
some probability distributions are more sparsity inducing
than others.

In general, only Bayesian neural networks have distribu-
tions associated to the weights of the network. However
conventionally only a single, common form of distribution
would be chosen across all nodes of the neural network. The
disclosed network on the other hand uses a mixture of a
sparsity inducing distribution in the input layer and a non-
sparsity inducing distribution in the hidden layers.

An advantage of this neural network design disclosed
herein is that it provides interpretable predictions in terms of
which features (the input elements) are important for pre-
diction. The weighting defines the connectivity between a
node in a given layer and the nodes in the next layer of the
neural network. For instance, said applying of the instance
of the first class of probability distribution may comprise
applying one or more weight values sampled from that
instance. For instance, each input element may be multiplied
by one or more of the sampled weight values. The generated
set of output parameters (e.g. a mean and variance) are
transmitted from an input node to a node in the first hidden
layer and describe a distribution which is associated with the
input element which that input node receives. The first class
of probability distribution drives one or more distribution
parameters (e.g. the mean) of some distributions towards
zero, whilst allowing one or more distribution parameters of
some distributions to remain (relatively) large. This has the
effect that a given input element will either contribute to
later layers of the network, therefore contributing to the
output layer (e.g. the prediction), or make zero or insignifi-
cant contribution to later layers of the network. Inspecting
the model parameters (i.e. the generated set of output
parameters) directly shows which input elements are con-
sidered relevant for prediction and which are considered
irrelevant. The first class of probability distribution is
defined to encourage the weights to be zero or to be values
that are (relatively) far from zero.

Each class of probability distribution may comprise one
or more possible forms of distribution. Each form of the first
class of probability distribution is more sparsity inducing
than each form of the second class of probability distribu-
tion, at least in that the first class of probability distribution
introduces more sparsity amongst the set of output param-
eters generated at each of the input nodes compared to if the
set of output parameters was generated at the input nodes by
applying the second class of probability distribution.

So if, each output distribution of each node in the input
layer has a centre point (e.g. a mean value), the first class of
probability distribution is more sparsity inducing in that it
tends to drive those centre points toward zero more than if
the second class of probability distribution was applied by
the input nodes to the same input elements. E.g. a threshold
may be applied to classify whether the centre point is a zero
value or a non-zero value, and the first class of probability
distribution results in more of those centre points being
classified as zero values.

10

15

20

25

30

35

40

45

50

55

60

65

4

According to a second aspect disclosed herein, there is
provided computing apparatus comprising one or more
processors and storage storing code arranged to run on the
one or more processors, wherein the code is configured so as
when run to perform operations according to any embodi-
ment disclosed herein.

According to a third aspect disclosed herein, there is
provided a corresponding computer program product for
performing any of the operations according to any embodi-
ment disclosed herein.

This Summary is provided to introduce a selection of
concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter. Nor is the claimed
subject matter limited to implementations that solve any or
all of the disadvantages noted herein.

BRIEF DESCRIPTION OF THE DRAWINGS

To assist understanding of the present disclosure and to
show how embodiments may be put into effect, reference is
made, by way of example only, to the accompanying draw-
ings in which:

FIG. 1 is a schematic illustration of an example neural
network

FIG. 2 is a schematic illustration of a computing apparatus
for operating a neural network,

FIG. 3 is an example of a horseshoe distribution, which
can be used as the sparsity inducing prior for the first layer
weights

FIG. 4 is a schematic operation of a node of the network,
using a Gaussian distribution (second class of prior) as an
example

FIG. 5 is another schematic illustration of an example
neural network, and

FIGS. 6a and 65 cach show sets of distribution parameters
connected to the different input elements.

DETAILED DESCRIPTION OF EMBODIMENTS

A machine learning algorithm comprises a model (e.g.
neural net) which maps an input or input vector (set of
inputs) to an output or output vector (set of outputs). It also
comprises a training algorithm (e.g. a feedback algorithm
such as a back-propagation algorithm in the case of a neural
net). The training algorithm trains the mapping of the model
(at least in a supervised approach) based on training data
comprising i) multiple example values of the input vector,
and ii) the corresponding experienced values of the output(s)
that resulted from those training inputs. Based on this data,
the training algorithm can adapt the mapping of the input(s)
to the output(s) in its model so that the mapped outputs of
the model will tend towards matching the experienced
outputs in the training data. This model can then be used to
subsequently infer (i.e. predict) a value of the output(s) for
any given value of the input(s).

As mentioned above, it would be desirable to be able to
determine which input(s) are relevant for predicting the
output(s). Embodiments of the present invention involve the
use of an interpretable neural network which enable the
inputs in predicting one or more outputs to be identified.

FIG. 2 illustrates an example computing apparatus 200
configured to operate the neural network 100 in accordance
with embodiments described herein. The computing appa-
ratus 200 may take the form of a user terminal such as a
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desktop computer, laptop computer, tablet, smartphone,
wearable smart device (e.g. smart watch), etc. Additionally
or alternatively, the computing apparatus 200 may comprise
a server. A server herein refers to a logical entity which may
comprises one or more physical server units located at one
or more geographic sites. Where required, distributed or
“cloud” computing techniques are in themselves known in
the art. The one or more user terminals and the server may
be connected to a packet-switched network, which may
comprise for example a wide-area internetwork such as the
Internet, a mobile cellular network such as a 3GPP network,
a wired local area network (LAN) such as an FEthernet
network, or a wireless LAN such as a Wi-Fi, Thread or
6LoWPAN network.

The computing apparatus 200 comprises at least a con-
troller 202, an interface (e.g. a user interface) 204, and a
machine learning algorithm 206 which runs the neural
network 100. The controller 202 is operatively coupled to
each of the interface 204 and the machine learning algorithm
206.

Each of the controller 202, interface 204, and machine
learning algorithm 206 may be implemented in the form of
software code embodied on computer readable storage and
run on processing apparatus comprising one or more pro-
cessors such as CPUs, work accelerator co-processors or
application specific processors implemented on one or more
computer terminals or units at one or more geographic sites.
The storage on which the code is stored may comprise one
or more memory devices employing one or more memory
media (e.g. electronic or magnetic media), again imple-
mented on one or more computer terminals or units at one
or more geographic sites. In embodiments, one, some or all
of said components of the computing apparatus 200 may be
implemented on the server. Alternatively, a respective
instance of one, some or all of these components may be
implemented in part or even wholly on each of one, some or
all of the user terminals. In further examples, the function-
ality of the above-mentioned components may be split
between any combination of the user terminals and the
server. Again it is noted that, where required, distributed
computing techniques are in themselves known in the art. It
is also not excluded that one or more of these components
may be implemented in dedicated hardware.

The controller 202 comprises a control function for coor-
dinating the functionality of the interface 204 and the
machine learning algorithm 206. The interface refers to the
functionality for receiving and/or outputting data, e.g. to
and/or from one or more users. The interface 204 may
additionally or alternatively receive and output data to a
different component of the computing apparatus and/or to a
different device. E.g. the interface may comprise a wired or
wireless interface for communicating, via a wired or wire-
less connection respectively, with an external device. The
interface 204 may comprise one or more constituent types of
interface, such as voice interface, and/or a graphical user
interface. The interface 204 may be presented to the user(s)
through one or more /O modules on their respective user
device(s), e.g. speaker and microphone, touch screen, etc.,
depending on the type of user interface. The logic of the
interface may be implemented on a server and output to the
user through the I/O module(s) on his/her user device(s).
Alternatively some or all of the logic of the interface 204
may also be implemented on the user device(s) 102 its/
themselves.

The controller 202 is configured to control the machine
learning algorithm 206 to perform operations in accordance
with the embodiments described herein. The machine learn-
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ing algorithm comprises the neural network 100. As shown
in FIG. 1, the neural network 100 comprises a plurality of
layers, each layer comprises one or more nodes. The neural
network comprises an input layer 102/ comprising one or
more input nodes 104, one or more hidden layers 102/ (also
referred to as inner layers) each comprising one or more
hidden nodes 104/ (or inner nodes), and an output layer
1020 comprising one or more output nodes 1040. For
simplicity, only two hidden layers 102/ are shown in FIG.
1. However in general there may be many more hidden
layers. The input nodes 104i of the input layer 102/ are each
connected to one or more hidden nodes 104/ in a first hidden
layer following the input layer 102i. Preferably each input
node 104 is connected to each hidden node 1047 in the first
hidden layer. If examples where there is only a single hidden
layer, one, some or all of the hidden nodes of the first hidden
layer are connected to one, some, or all of the one or more
output nodes of the output layer 1020. Preferably each
hidden node 104/ in this example is connected to each
output node 1040. If, as shown in FIG. 1, there may be a
plurality of hidden layers, the plurality of hidden layers
comprising at least a first hidden layer and a final hidden
layer. The input layer 102i is connected to the first hidden
layer and the final hidden layer is connected to the output
layer 1020. The plurality of hidden layers may comprise one
or more middle hidden layers connecting the first hidden
layer to the final hidden layer. Preferably, each hidden node
104/, of each hidden layer 102/ is connected to each node of
the preceding and following layer which, depending on the
hidden layer’s position in the network, may be the input
layer 102/, another hidden layer 1024, or the output layer
1020. However, it is not excluded that some nodes of a given
layer are not connected to all of the nodes of a preceding or
following layer.

The connections 106 between each node in the network
are sometimes referred to as links or edges. Depending on
the position of the node in the network, a given node may
have one or more input connections and one or more output
connections, with the exception of the input nodes 1040 and
output nodes 1040 which only have output connections and
input connections respectively. For example, the node
labelled “n” in FIG. 1 has five incoming connections 106/
and three outgoing connections 1060. In the special case of
the input nodes 104/, each input node is configured to
receive a respective one of a plurality of input elements 108;i.
The input elements may be, for example, a scalar value, a
vector, a distribution, etc. Each input element may be the
same type of element (e.g. they may all be a number) or
some or all input elements may be of a different type. In the
special case of the output nodes, each output node is
configured to receive a respective output element. The
output elements 1080 may be, for example, a scalar value,
a vector, a distribution, etc. Each output element may be the
same type of element (e.g. they may all be vectors) or some
or all input elements may be of a different type. Each hidden
node 1047 is configured to receive a set of parameters from
a previous layer of the network via its input connections and
output a set of parameters to a next layer of the network via
its output connections. As will be described in more detail
later, each set of parameters describes a respective distribu-
tion. For instance, the parameters may be a centre point and
width of the distribution.

Each node represents a function of its input connections,
the outputs of the function being the output connections of
the node, such that the outputs of a node depend on the
inputs according to the respective function. The function of
each node is parametrized by one or more respective param-
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eters, sometimes also referred to as weights (not necessarily
weights in the sense of multiplicative weights, though that is
one possibility). Thus the relation between the input(s) and
output(s) of each node depends on the respective function of
the node and its respective parameters.

During operation of the neural network 100, each input
node 104 receives a respective one of the input elements
108i. For instance, the input elements 108/ may be supplied
to the input nodes 104i as part of a training phase or a
prediction phase. In some examples, a user may provide the
input elements 108; via the user interface 204, with the
controller 202 then supplying the input elements 108 to the
input nodes 104; of the neural network 100. Upon receiving
one of the input elements 108i, a given input node 104/
weights that input element by applying a first class of
probability distribution to that input element. Each input
node 104/ may apply a same one of the first class of
probability distributions. Alternatively, some or all of the
input nodes 104/ may apply a different one of the first class
of probability distributions. The application of the first class
of probability distribution to the input element generates a
set of distribution parameters. The set of distribution param-
eters parameterize (i.e. describe) a distribution. The set of
distribution parameters may comprise, for example, a cen-
tre-point (e.g. mean) of the distribution, a width of the
distribution (e.g. a variance or standard deviation), etc. Each
respective set of parameters generated by a respective input
node 104/ will, in general, describe a different distribution
due to the different input elements 108i. In the following
disclosure, reference to “a distribution” or “distributions”
should be taken to mean “a probability distribution” or
“probability distributions”.

After generating a respective set of parameters, each node
transmits its respective set of distribution parameters to the
first hidden layer 102/. Each node in the first hidden layer
102/ that receives one or more respective set of parameters
applies a weighting to a combination of those sets of
parameters before transmitting them to the nodes of the next
hidden layer 102/ (if there are more than one hidden layer
1024%) or directly to the node(s) of output layer 1020 (if there
is a single hidden layer). Either way, the set respective sets
of parameters are propagated through the hidden layer(s) of
the neural network 100 to the output layer. A weighting may
also be applied by the output node(s). Each node in the
hidden layer(s) and output layer may receive multiple
respective sets of parameters via its multiple incoming
connections, each set parameterizing a respective distribu-
tion. Each of those nodes may combine the respective sets
of parameters before applying its weighting. Alternatively,
each of those nodes may apply its weighting before combing
the respective sets of parameters that result from a given
weighting.

Upon receiving a set of parameters via an incoming
connection (referred to hereinafter as an incoming set of
parameters, or a set of input parameters), at least one node
in at least one hidden layer 102/ weights that set of
incoming parameters (after combining that set with one or
more incoming sets of parameters) by applying a second
class of probability distribution to the combined set of
incoming parameters. The application of the second class of
probability distribution to a set of parameters generates a
new set of distribution parameters (referred to hereinafter as
an outgoing set of parameters or a set of outgoing param-
eters). The outgoing set of parameters parameterize (i.e.
describe) a new distribution. Each node that generates an
outgoing set of parameters transmits that set to one or more
nodes in a following layer. The at least one layer may be, for
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example, the first hidden layer 102/ (i.e. the hidden layer
102/ immediately following the input layer 102i).

FIG. 4 illustrates an example operation of a node of the
network. In this example, the node receives two respective
sets of parameters, each set having two parameters. The
parameters describe a respective distribution. For instance,
the two parameters may be a mean and standard deviation.
In FIG. 4, one distribution is described by the parameters pl
and ol, and the other distribution is described by the
parameters u2 and o2. The node combines the two respec-
tive sets of parameters (e.g. via a multiplication, a convo-
Iution or some other mathematical operation) and weights
the resulting combination by applying a form of either the
first or second class of probability distribution (e.g. a Gauss-
ian distribution). The Gaussian distribution is also param-
etrised by a respective set of parameters, which are p3 and
03 in FIG. 4. The result of the weighting is a further set of
parameters (u4 and 04) describing a further distribution. The
node in this example may be a hidden node or an output
node. An input node performs a similar operation except that
it receives an input element (which may be a scalar instead
of a set of parameters describing a distribution).

The first class of probability distribution is more sparsity
inducing than the second class of probability distribution.
That is, the first class of probability distribution induces
more sparsity amongst the set of distribution parameters
generated at each of the input nodes 104 i compared to the
set of distribution parameters generated by the application of
the second class of probability distribution at the at least one
node of the at least one hidden layer 102 /4. This has the
effect that some of the respective sets of distribution param-
eters are shrunk, i.e. there is a high probability that the
centre-point of the distribution is zero or very close to zero.
This selective shrinkage of the inputs results in some of the
input elements 108 / not contributing to the output(s) of the
neural network 100, or at least not making a significant
contribution to the output(s) of the neural network 100.

The first class of probability distribution may be, for
example, a horseshoe probability distribution, a spike-and-
slab probability distribution, a Laplace distribution, or a
t-distribution. Each node that applies a first class of distri-
bution may apply the same or a different distribution. E.g.
each node in a given layer may apply the same distribution,
but different layers may apply different distributions. Pref-
erably, each node which applies the first class of probability
distribution applies a horseshoe probability distribution. The
first class of probability distribution may be at least more
sparsity inducing than a Gaussian distribution.

FIG. 3 illustrates an example of a first class of probability
distribution. This example shows a horseshoe probability
distribution. As shown, the horseshoe distribution is char-
acterised by there being a very high probability of the weight
value being zero, with a lower probability that the weight
value is non-zero.

The second class of probability distribution may be, for
example, a Gaussian distribution. Each node that applies a
second class of distribution may apply the same or a
different distribution. E.g. each node in a given layer may
apply the same distribution, but different layers may apply
different distributions. Preferably, each node which applies
the second class of probability distribution applies a Gauss-
ian probability distribution.

Preferably, each node of the at least one hidden layer 102/
weights its incoming set of parameters by applying a second
class of probability distribution. Each node of the at least
one hidden layer 102/ may apply a same one of the second
class of probability distributions. Alternatively, some or all
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of'the nodes of the at least one hidden layer 102/ may apply
a different one of the first class of probability distributions.

As mentioned above, the neural network 100 may com-
prise a plurality of hidden layers. In that case, one, some or
all of the hidden nodes of at least two hidden layers weight
its respective incoming set of parameters by applying a
second class of probability distribution. Each hidden node
(e.g. in the same layer) may apply the same class of second
distribution. Alternatively, one or more nodes in the same
layer, or one or more nodes in a different layer may apply a
different class of second distribution. For instance, the
hidden nodes in the first hidden layer may apply a different
class of second distribution compared to the hidden nodes in
the next hidden layer 102/, or the final hidden layer.

When the neural network 100 comprises a plurality of
hidden layers, each node of at least one hidden layer 102 %
may weight a respective incoming set of parameters by
applying a first class of probability distribution to that
incoming set of parameters. That is, not only do the nodes
of the input layer 102 i apply a first class of probability
distribution, so does at least one of the hidden layers, e.g. the
first hidden layer. In this case, at least one node in one other
hidden layer may weight a respective incoming set of
parameters by applying a second class of probability distri-
bution to that incoming set of parameters. A node may either
apply a first class of probability distribution or a second class
of probability distribution, but not both. Alternatively, a
node may not apply any probability distribution, or a node
may apply a distribution that does not belong to either of the
first or second class of distributions.

In one example, only the first hidden layer is a hidden
layer 102/ which comprises nodes which apply the first
class of probability distribution.

FIG. 5 illustrates an example arrangement of the neural
network 100. In this example the neural network comprises
an input layer 102/ comprising two input nodes, a single
hidden layer 102/ comprising three hidden nodes, and an
output layer comprising one output node 104o0. Each input
node 104 receives a respective input element. Each input
node 104; weights its received input element by applying a
first class of probability distribution 501 (a horseshoe dis-
tribution in this example). For example, said applying may
comprise applying, to an input element, one or more weight
values sampled from the instance of the first class of
distribution. Here, applying may comprise multiplying the
input element by the one or more weight values. This is
known as sampling from a distribution. Alternatively, said
applying may comprise applying an analytical function,
characterised by the instance of the first class of probability
distribution, to the input element. E.g. the input element may
be input to a function of the parameters describing said
instance of the first class of probability distribution. The
input nodes 104/ may apply the same first class or a different
first class of probability distribution. The weighting gener-
ates a respective set of parameters parameterizing a respec-
tive distribution. FIG. 5 shows the shape of the respective
distributions parameterised by the parameters. These respec-
tive sets of parameters are passed to each hidden node of the
hidden layer 102/. Therefore each hidden node receives two
incoming sets of parameters, each set describing a distribu-
tion of the shape shown in FIG. 5. Each hidden node then
combines the incoming sets of parameters and weights the
result by applying a weight value (or multiple weight values)
drawn from a second class of probability distribution 502 (a
Gaussian distribution in this example). The hidden nodes
may apply a weight value from the same second class or a
different second class of probability distribution. The
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weighting generates a respective set of parameters param-
eterizing a respective distribution. FIG. 5 shows the shape of
the respective distributions parameterised by the parameters.
These respective sets of parameters are passed to the output
node 1040 of the output layer 1020. Each set of parameters
may be output as an output element. Alternatively, the sets
of parameters may be combined (and optionally weighted)
before being output as an output element.

The prior distributions (i.e. the instances of the first class
of probability distribution) of the input layer’s weights are
tied such that the same instance of the first class of prob-
ability distribution is shared amongst all weights connected
to the same input element. l.e. the connections between a
given input node and one or more nodes of a first hidden
layer are weighted by the same instance of the first prob-
ability distribution. As shown in FIG. 5, input 104 ia (which
receive input element 108 ia) is connected to hidden nodes
104 /a, 104 1b and 104 he via three separate connections.
Similarly, input node 104 ib (which receive input element
108 ib) is connected to the same hidden nodes 104 ha,
104 %b and 104 /¢ via three separate connections. The
connections between input node 104 ia and the hidden nodes
are each weighted by the same instance 501 a of the first
class of probability distribution (shown by a thick distribu-
tion curve). Similarly, the connections between input node
104 ib and the hidden nodes are each weighted by the same
instance 501 b of the first class of probability distribution
(shown by a thin distribution curve). Therefore input node
104 ia is tied to the hidden nodes via a same instance (e.g.
a first instance) of the first class of probability distribution,
and input node 104 ib is tied to the hidden nodes via a same
instance (e.g. a second instance) of the first class of prob-
ability distribution. This allows certain input elements to be
selected (e.g. because the output parameters transmitted
from 104 ia to 104 / are far from zero) whilst others can be
ignored (e.g. because the output parameters transmitted from
104 ia to 104 / are close to zero).

Before being used in an actual application the neural
network 100 is first operated in a training phase in which it
is trained for that application. Training comprises inputting
training data to the input nodes 104 i of the network and then
tuning the weighting applied by some or all of the nodes
based on feedback from the output(s) of the network. The
training data may comprises multiple different input ele-
ments 108 i, each comprising a value or vector of values
corresponding to a particular input node 104 ; of the network
(e.g. a height node, a weight node, etc.). With each training
data element, resulting output(s) at the output nodes of the
network are generated, and feedback is used to gradually
tune the weighting applied by the nodes so that, over many
cycles, the output(s) of the network are as close as possible
to the actual observed value(s) in the training data across the
training inputs (for some measure of overall error). I.e. with
each piece of input training data, the predetermined training
output is compared with the actual observed output of the
network. This comparison provides the feedback which,
over many pieces of training data, is used to gradually tune
the weighting applied by the various nodes in the network
toward a state whereby the actual output of the graph will
closely match the desired or expected output for a given
input vector. Examples of such feedback techniques include
stochastic back-propagation.

The adjustment of the weighting applied by a given node
may comprise adjusting one or more parameters parameter-
izing the applied distribution (i.e. the first or second class of
distribution). For instance, the first class of distribution
applied by each input node 104/ may initially be parameter-
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ized by the same parameters. After one or more training
cycles, the first class of distribution applied by one or more
of the input node 104; may now be parameterized by
different parameters (i.e. the values of the parameters have
changed). Similarly, the parameters of the second class of
distribution applied by each node which applies said distri-
bution may be adjusted during training of the neural network
100.

Once trained, the neural network 100 may be operated in
a prediction phase (also known as an inference phase) in
which it can be used to predict (or infer) the output
element(s), e.g. an output value or vector, for a given set of
input elements 108i. That is, a set of input elements 108; for
which the output elements are unknown are supplied to the
input nodes. The input nodes 104; weight the input elements
108i according to the embodiments described above (i.e. the
application of the first class of probability distribution) and
then propagate the resulting sets of parameters through the
hidden layer(s) to the output layers. As discussed, some or
all of the sets of parameters are subject to weighting by some
or all of the hidden nodes of the network according to the
embodiments described above (e.g. the application of the
second class of probability distribution). The weighting
applied by the nodes of the network during the prediction
phase is the weighting refined during the training phase.
That is, the respective probability distributions applied by
each node are parameterized by the respective distribution
parameters learnt during the training phase.

As stated, the prediction generates a set of output ele-
ments (i.e. predictions) for a given set of input elements
108 i. The predictions may be output to a user via an
interface (e.g. display screen) of the computing apparatus.
Additionally or alternatively, the predictions may be output
to a different function of the computing apparatus and/or to
a different device. For instance, the predictions may be
recorded in a database (e.g. a medical record for a patient
whose data is the input elements 108 7).

The sets of distribution parameters generated at each of
the input nodes 104; can be used to determine which input
elements 108; are important for predicting the output. Due
to the properties of the first class of probability distributions
(i.e. the sparsity inducing prior distributions), some of the
respective sets of distribution parameters generated at each
input node 104 will not contribute to the output elements as
they are propagated through the hidden layers. As an
example, if a first class of probability distribution, when
applied to a first input element, produces a first set of
distribution parameters comprising an average value of zero,
that zero value cannot contribute to the nodes of the first
hidden layer or any further layer. Put another way, if all of
the incoming sets of parameters are summed at a node of the
first hidden layer, the zero value of the first set of distribution
parameters will not make a difference to the output elements
generated by applying a first or second class of probability
distribution to the incoming sets of parameters. Therefore
the respective sets of distribution parameters generated at
each input node 104/ may be output to interpret the neural
network 100, i.e. to see which input elements 108; matter for
predicting the output(s).

For instance, for each input element, the respective set of
distribution parameters generated by applying one of the
first class of probability distributions to that input element
may be output (e.g. displayed on a display screen) together
with that input element. This would allow a user to infer
which input elements 108; are relevant for prediction and
which are not relevant. For instance, if the input element is
associated with a set of distribution parameters centred on a
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value of zero, the user can determine that that particular
input element does not contribute to the output element(s).
The input elements 108/ may be, for example, those received
by the input nodes 104; during the training phase or the
prediction phase.

In some embodiments, the respective sets of distribution
parameters generated at each input node 104/ may comprise
a centre point (e.g. mean) of the distribution. The centre
point may be output, e.g. to a user. Alternatively, the
controller may cause a decision to be output to the user
based on the centre point. An input element associated with
a non-zero centre point may be interpreted as contributing to
the output elements, and vice versa for a zero centre point.
Therefore if an input element is associated with a non-zero
centre point, a decision may be output indicating that the
input element is relevant for prediction, and if an input
element is associated with a zero centre point, a decision
may be output indicating that the input element is not
relevant for prediction. Thus a binary decision is made—an
input element is said to either contribute or not contribute.
In some examples, the input element may have a non-zero
centre point but its centre point may be less than a threshold
value (which may be, for example, determined by a user). If
the centre point is less than the threshold it is interpreted as
a zero value and the controller outputs a decision indicating
that the associated input element does not contribute to
predicting the output(s).

Additionally or alternatively, the respective sets of distri-
bution parameters generated at each input node 104/ may
comprise a width (e.g. standard deviation or variance) of the
distribution. The width of the distribution may be interpreted
as the confidence in whether an associated input element
contributes to the output element(s). That is, the width
indicates the confidence in the binary decision.

As well as, or instead of, outputting the respective sets of
distribution parameters generated by the input nodes, the
respective input elements 1087 associated with the respective
sets of distribution parameters may be disregarded during a
later operation of the neural network 100 (i.e. not fed into or
used by the neural network 100). For instance, if an input
element is determined not to be relevant for predicting the
output element(s) (e.g. because the associated distribution is
parameterized by a zero mean), that input element may be
prevented from being propagated through the network, e.g.
not supplied to the input layer 102i.

After training the neural network 100 some input ele-
ments 108 may be determined to be irrelevant for prediction
of a set of output elements. Therefore when operating in the
prediction phase for predicting that same set of output
elements, those input elements 108i are no longer required.
Removing the input elements 108/ from the neural network
100 saves on computational resources as less (mathematical)
operations are required. Since that input element is deter-
mined to be irrelevant for prediction, the input element does
not need to be gathered, e.g. if the input element is a
measurement of the patient, that measurement does not need
to be collected. This can, for example, reduce the amount of
time spent by a medical practitioner monitoring or obtaining
measurements from the patient. Moreover, if an input ele-
ment is removed, any node that would have operated on that
input element (or parameters stemming from that input
element) no longer has to operate on that input element.

The following describes an example arrangement of the
neural network which may be trained to make medical
predictions.

Intensive care unit (ICU) clinicians are faced with a large
variety of data types including EHRs, monitoring data and
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diagnostic data. The heterogeneity and volume of this data,
along with short timescales over which clinical changes can
occur, makes the ICU setting a good test case for using
neural networks to model many prediction problems in
healthcare. Most approaches based on static features model
only linear relationships or rely on manual feature engineer-
ing. Manual feature engineering scales poorly, and prevents
models from automatically discovering patterns in the data.
Linear models are easy to interpret, because the importance
of input features can directly be inferred from the magnitude
of the associated model coefficients. This is appealing for
transparent clinical decision making and highly desirable for
real-world applications for two reasons. Firstly, decisions
without a justification are unacceptable both medico-legally
and to clinicians and patients. Secondly, interpretability
allows the model to be queried to gain novel insights into
data which may be biologically hypothesis-generating.
However, the capacity of linear models is limited. In most
real world problems the relationship between input features
and target values is non-linear or may involve complex
interactions between predictors. Consequently, more pow-
erful approaches are needed to model such data well. The
following describes a model for mortality prediction named
HorseshoeBNN. The model is able to both capture non-
linear relationships and learn which input features are
important for prediction, thereby making the model inter-
pretable.
Bayesian Neural Networks

Given an observed dataset D={(x,ly,)},._,", it is desirable
to determine a model y=f(x) that fits the data well and
generalizes to unseen cases. In the context of an example
mortality prediction task described below, the vector x,, (i.e.
the input elements) comprises different medical measure-
ments and y,, is a binary indicator of the outcome for a
specific patient. In parametric modelling a popular model for
such tasks is the artificial neural network (ANN), which
defines highly non-linear functions by stacking multiple
layers of simple non-linear transformations. As an example,
a fully connected ANN with L hidden layers denes the
function y=f(x) in the following way:

hO=x,  BD=q(WOpE-L),
y=a'(WEFDRD)

=1, . . . L
Equation 1:

Here a(*) represents an activation function which is usu-
ally a simple non-linear transformation, e.g. sigmoid or
ReL.U. Depending on the task, the non-linearity a'(*) for the
output layer may be an identity function for regression, or a
sigmoid/softmax function for binary/multiclass classifica-
tion. Bias terms can also be included in each layer by
defining  h®=[h®1]. The following function,
={W®},_“*! is used to represent all parameters of an
ANN, and the function defined by Equation (1) is denoted as
y=f(x; @) to emphasize the dependence of the function
values on cp.

Instead of directly predicting the response y with a
deterministic function f, Bayesian neural networks (BNNs)
start from a probabilistic description of the modelling task,
and estimate the uncertainty of the parameters given the
data. Concretely, the network parameters ¢ are considered
random variables, and a prior distribution p(¢) is selected to
represent the prior belief of their configuration. Assuming
that the observed data is independent and identically dis-
tributed (i.i.d.), the likelihood function of ¢ is defined as:

pDI)=TL,,_ Py, x,.¢) Equation 2:
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where, in case of a binary classification task like the one
presented below, the label y, is a scalar, and

log p(y,1%,,,9)=p, Log(F (%, i0)+(1-,)lofl1=F (x,59))
For regression tasks, p(y,I%X,, ©)=N (v,; f(X,:¢).0°D).

After observing the training data D, a posterior distribution
of the network weights ¢ is defined by Bayes’ rule

Equation 3:

w Equation 4

D)=
plel D) D)

, p(D) :fp(so)p(DIso)dso

This posterior distribution represents the updated belief of
how likely the network parameters are given the observa-
tions. With the posterior distribution one can predict the
response v* of an unseen input x* using the predictive
distribution:

P*Ix* D)=fp(y*Ix*@)p(plD)dep

The HorseshoeBNN: Feature Selection with Sparsity Induc-
ing Priors
When the first class of probability distribution is a horse-
shoe distribution, the neural network is referred to as a
HorseshoeBNN for convenience. The prior distribution p(¢p)
captures the prior belief about which model parameters (i.e.
which input elements) are likely to generate the target
outputs y (i.e. the output elements), before observing any
data. When focusing on feature selection, sparsity inducing
priors are of particular interest. In the following, a horseshoe
prior is used, which in its simplest form can be described as:
wit~N(0,7%) where T~C*(0,b,)

Equation 5:

Equation 6:

where C* is the half-Cauchy distribution and <t is a scale
parameter. The probability density function of the horseshoe
prior with by,=1 is illustrated in FIG. 3. It has a sharp peak
around zero and wide tails. This encourages shrinkage of
weights that do not contribute to prediction, while at the
same time allowing large weights to remain large. For
feature selection a horseshoe prior may be used for the first
layer (the input layer) of a BNN by using a shared half-
Cauchy distribution to control the shrinkage of weights
connected to the same input feature. Specifically, denoting
Wij(l) as the weight connecting the j-th component of the
input vector X to the i-th node in the first hidden layer, the
associated horseshoe prior is given by

W, Ok, v-NO1,2v?) T~C*(0,bg)

v~C*(0,b,)

where and

Equation 7:

The layer-wide scale v tends to shrink all weights in a
layer, whereas the local shrinkage parameter T, allows for
reduced shrinkage of all weights related to a specific input
feature x;. As a consequence, certain features of the input
vector x are selected whereas others are ignored. For the bias
node a Gaussian prior distribution may be used. The prior of
the weights in the second layer of the HorseshoeBNN (e.g.
the first hidden layer) is modelled by a Gaussian distribution,
which prevents overfitting. An example network architecture
is given in FIG. 4. Although the examples described a BNN
with a single hidden layer, the model can easily be enlarged
by adding more hidden layers, e.g. with Gaussian priors.

A direct parameterization of the half-Cauchy prior can
lead to instabilities in variational inference for BNNs. There-
fore, the horseshoe prior may be reparametrized using
auxiliary parameters:

11 1 1
a~C*(0, b)l:)alK'vlnvl"(z, —);K~1nvl"(— —
K

) Equation 8
27 bt
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After adding the auxiliary variables to the Horseshoe
prior, the prior over all the unobserved random variables
e:{{W(i)}Z:1L+ls Vsﬁst:{‘cj}s }":{}‘k}} is

(L+1)

pO) = pW O v 8 T N[ ] pv®),
n=2

pw™) = IN(WP;0,02),1=2, ..., L+1

pWD, v, 9,7, 0) = p(v | HpOIp(; | APANTpN (W 0. 75v%)
W= mt( b L) sy = (3. %)
P(TJ| ;) = Invl E’Z , p(A;) = Inv 5,% 5

| & =1 r(l 1] &) =1 r(l 1]
pv|3d)=Inv 5,5,P()— nv E,E

Scalable Variational Inference for HorseshoeBNN

For most BNN architectures both the posterior distribu-
tion p(01D) and the predictive distribution p(y*Ix*, D) are
intractable due to a lack of analytic forms for the integrals.
To address this outstanding issue a simpler distribution
qe(8)~p(6ID) may be defined and p(6ID) may later be
replaced with q4(6) in prediction. More specifically,

60)=q,(WVIT,1)q,(V)q (O
o,

and using factorized Gaussian distributions for the weights
in upper layers gives:

Equation 9:

wy = v w® Lot l=2 o Ll
g = IV (W Ly )

To ensure non-negativity of the shrinkage parameters, a
log-normal approximation to the posterior of v and T, may be
used, i.e.

g4(v)=M(log ViL,,0.2), g4(t))=N(log Tj;pv,cvz) Equation 10:

In the horseshoe prior (see Eq. 6) the weights W,; and the
scales T, and v are strongly correlated. This leads to strong
correlations in the posterior distribution with pathological
geometries that are hard to approximate. This problem may
be mitigated by reparametrizing the weights in the horseshoe
layer as follows:

[51'/’“N([5ij‘llﬁzja0vﬁij2)a sz(l):'?ﬂ’ﬁij

and equivalently, parametrizing the approximate distribu-
tion q(W™®lv,T) as

Equation 11:

q(wo v,o)=I1, 4( sz(l)“’,Tj):Hi,‘N( Vsz(l);Wkllﬁij,
j20.6ij2 Equation 12:
Because the log-likelihood term p(ylx, 0) does not depend
on ¥ or A, it can be shown that the optimal approximations
q (9) and q (A) are inverse Gamma distributions with
distributional parameters dependent on q (6Y3,1). The varia-
tional posterior q,(8) may be fitted by minimizing the
Kullback-Leibler (KL) divergence KL[q,(0)[p(01D)]. It can
be shown that the KL divergence minimization task is
equivalent to maximizing the evidence lower-bound
(ELBO)

Lg-E o l10g p010)1-KL[g,0)lp0)-
llog p(D)1-KLIa®/9)lp©OID)]

Since the ELBO still lacks an analytic form due to the
non-linearity of the BNN; a black box variational inference
may be applied to compute an unbiased estimate of the
ELBO by sampling 6~q,(6). More specifically, because the

24®) )
Equation 13:
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q distribution may be constructed by a product of (log-)
normal distributions, the reparametrization trick may be
applied to draw samples from the variational distribution:
w~N (w; 0%)<>E~N(E; 0,1), w=u+0€. Furthermore, sto-
chastic optimization techniques may be employed to allow
for mini-batch training, which enables the variational infer-
ence algorithm to scale to large datasets. Combining both,
the doubly stochastic approximation to the ELBO is

X 3 1 2 Nip@
L) = M; 08Py | 1, ©) = KLIg (@)l p(©)]

0~ gg(0), {Gms Yyl | ~ DM

which is used as the loss function for the stochastic gradient
ascent training of the variational parameters ¢.
Interpretable Results

Results of training the HorseshoeBNN with medical train-
ing data are shown in FIGS. 6a and 6b. In the Horseshoe-
BNN each input feature is associated with a vector of 50
distributions (the number of hidden units). The average of
the mean value of these distributions is plotted in the right
panel of each of FIGS. 6a and 65. The left column of each
figure shows the percentage of missing data for the features
in the training data. The right column of each figure shows
the norm of the weights of the HorseshoeBNN. The name of
each input feature is given on the far left of the plots. Feature
weights of zero indicate that the corresponding features are
irrelevant for outcome prediction. All non-zero weights
indicate that the corresponding features are relevant for
predicting mortality.

It will be appreciated that the above embodiments have
been described by way of example only.

The example architecture offers many advantages. Firstly,
being based on a BNN; it represents a non-linear, fully
probabilistic method which is highly compatible with e.g.
clinical decision making processes. Secondly, the model is
able to learn which input features are important for predic-
tion, thereby making it interpretable which is highly desir-
able, especially in the clinical domain.

More generally, according to one aspect disclosed herein
there is provided a computer-implemented method of oper-
ating a neural network, wherein the neural network com-
prises a plurality of layers, the plurality of layers compris-
ing: 1) an input layer comprising a plurality of input nodes
each configured to receive a respective one of a plurality of
input elements, ii) one or more hidden layers each compris-
ing a plurality of hidden nodes, each hidden node configured
to receive sets of input parameters where each set describes
an input probability distribution from one of the nodes in a
previous layer of the network, and to output a set of output
parameters describing an output probability distribution to a
next layer of the network, and iii) an output layer comprising
one or more output nodes each configured to output a
respective output element, wherein the one or more hidden
layers connect the input layer to the output layer; and
wherein the method comprises: at each of the input nodes,
weighting the respective one of the plurality of input ele-
ments received by that input node by applying an instance of
a first class of probability distribution to that input element,
thereby generating a respective set of output parameters
describing an output probability distribution; and from each
of the input nodes, outputting the respective set of output
parameters as input parameters to one or more nodes in a
next, hidden layer of the network, and thereby propagating
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the respective set of output parameters through the one or
more hidden layers to the output layer; said propagating
comprising, at each of one or more nodes of at least one of
the hidden layers, combining the sets of input parameters
and weighting the combination by applying an instance of a
second class of probability distribution to that combined set
of input parameters, thereby generating a respective set of
output parameters describing an output probability distribu-
tion for outputting to a next layer of the network, and
wherein the first class of probability distribution is more
sparsity inducing than the second class of probability dis-
tribution.

In embodiments, said propagating may comprise, at each
node of the at least one hidden layer, combining the sets of
input parameters and weighting the combination by applying
an instance of the second class of probability distribution to
that combination of input parameters.

In embodiments, the one or more hidden layers may
comprise a plurality of hidden layers, and wherein said
propagating comprises, at least one node of some or all of
the hidden layers, combining the sets of input parameters
and weighting the combination by applying an instance of
the second class of probability distribution to that combi-
nation of input parameters.

In embodiments, the first class of probability distribution
may only be applied by the nodes of the input layer, and
wherein each node of the plurality of hidden layers applies
an instance of the second class of probability.

In embodiments, each node that applies the first class of
probability distribution may apply a same form of the first
class of probability distribution.

In embodiments, some or each of the nodes that apply the
first class of probability distribution may apply a different
form of the first class of probability distribution.

In embodiments, each node that applies the second class
of probability distribution may apply the same form of the
second class of probability distribution.

In embodiments, said instance of the first class of prob-
ability distribution may be parametrized by at least a centre
point at zero, and wherein a probability density of that
instance of the first class of probability distribution tends to
infinity at the centre point.

In embodiments, the first class of probability distribution
may comprise one or more of the following forms of
distribution, each instance of the first class taking one of
these forms: a horseshoe probability distribution, a spike-
and-slab probability distribution, a Laplace distribution, and
a t-distribution.

In embodiments, the second class of probability distribu-
tion may comprise one or more of the following forms of
distribution, each instance of the second class taking one of
these forms: a Gaussian distribution, and a uniform distri-
bution.

In embodiments, each form of the first and/or second
classes of probability distributions may be parameterized by
a respective set of parameters, and wherein the respective set
of parameters comprise a centre point and/or a width of the
probability distribution.

In embodiments, said operating may comprise at least
operating the neural network in a training phase, and
wherein the method may comprise: at each of the input
nodes, receiving the respective one of the plurality of input
elements, wherein each input element corresponds to a
different input element of a training dataset; receiving a set
of known output elements, each known output elements
corresponding to a different output element of the training
dataset; and training the neural network to predict the set of
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known output elements based on the received input ele-
ments, wherein said training comprises: an initial cycle of
said weighting at each of the input nodes and said propa-
gating, thereby outputting, by the one or more output nodes,
an initial estimated set of output element; and one or more
further cycles of said weighting at each of the input nodes
and said propagating, thereby outputting, by the one or more
output nodes, an updated estimated set of output elements,
wherein for each further cycle, one or both of the weighting
of the plurality of input elements and the weighting of the
combined set of input parameters are adjusted to generate
the updated estimated set of output elements until the
updated estimated set of output elements differs from the set
of known output elements by less than a threshold.

In embodiments, said operating may comprise at least
operating the neural network in a prediction phase, and
wherein the method may comprise: at each of the input
nodes, receiving the respective one of the plurality of input
elements, wherein each input element corresponds to a
different input element of a prediction dataset; one or more
cycles of said weighting at each of the input nodes and said
propagating, wherein the neural network is trained to pre-
dict, after the one or more cycles, one or more predicted
output elements based on the plurality of input elements; and
at each of the output nodes, outputting a respective predicted
output element.

In embodiments, said outputting of the predicted output
elements may comprise outputting the predicted output
elements to a user.

In embodiments, the method may comprise outputting to
a user the respective sets of output parameters generated by
one or more of the input nodes.

In embodiments, at least one output parameter of each set
of output parameters generated by one or more of the input
nodes may be a centre point of the probability distribution,
and said outputting of those output parameters may com-
prise outputting, for each set of output parameters, either a
zero value or a non-zero value for the centre point of that
probability distribution, wherein a zero value is output if the
centre point is less than a threshold value, and wherein a
non-zero value is output if the centre point is more than the
threshold value.

In embodiments, at least one output parameter of each set
of output parameters may be a width of the probability
distribution, and said outputting of the respective sets of
output parameters may comprise outputting, for each set of
output parameters, the width of that probability distribution.

In embodiments, the method may comprise, after said
weighting of the respective ones of the plurality of input
elements, for any input element that results in the genera-
tion, at one of the input nodes, of a respective set of output
parameters comprising one or more parameters less than a
threshold value, preventing that input element from propa-
gating through the one or more hidden layers to the output
layer.

In embodiments, for each of the plurality of layers other
than the output layer, each node in a given layer is connected
to each node in a next one of the layers (i.e. the adjacent
following layer).

Each distribution of either class may be represented on a
graph having a vertical axis defining a probability density
and a horizontal axis defining a variable, with the centre
point of the distribution being of the variable. Either class
may take the form of a symmetrical distribution. For sym-
metrical distributions, the centre point of the distribution
corresponds to the mean value of the variable.
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In embodiments, the neural network is a Bayesian neural
network.

Each node may apply either a first or second class of
probability distribution. The first class of probability distri-
bution is a sparsity inducing distribution. The second class
of probability distribution is not a sparsity inducing distri-
bution, or induces less sparsity than the first class of prob-
ability distribution. There may be one or more forms of each
class of probability distribution. E.g. one form of the first
class is a horseshoe, another form of the first class is a
spike-and-slab. One form of the second class is a Gaussian.
Each class of distribution is parameterised by a set of
parameters. Each form of each class of distribution may be
parameterised by the same set of parameters or a different set
of parameters. The distributions applied by each node may
be parameterised by different values of the respective sets of
parameters, e.g. the values may be adjusted during training
of the neural network.

In embodiments, some or each of the nodes that apply the
second class of probability distribution applies a different
form of the second class of probability distribution.

In embodiments, the one or more hidden layers may
comprise a plurality of hidden layers, and wherein said
propagating comprises: at each node of one, some or all of
a first set of the hidden layers, combining the sets of input
parameters and weighting the combination by applying an
instance of the first class of probability distribution to that
combination of input parameters; and at each node of one,
some or all of a second, different set of the hidden layers,
combining the sets of input parameters and weighting the
combination by applying an instance of the second class of
probability distribution to that combination of input param-
eters.

In embodiments, the first set of hidden layers may com-
prise a hidden layer directly connected to the input layer.

In embodiments, the centre point may be the mean of the
distribution and the width may be the variance or standard
deviation of the distribution.

In embodiments, the threshold may be a separate thresh-
old for each output element, e.g. each known and estimated
output element must differ by less than a threshold, which
may be the same of different. Alternatively, the threshold
may an overall threshold, e.g. the differences between each
of the known and estimated output elements must sum to be
less than a threshold.

In embodiments, each centre point that has a centre point
value which is less than a threshold value may be classified
as a zero value.

According to another aspect disclosed herein there is
provided computing apparatus comprising one or more
processors and storage storing code arranged to run on the
one or more processors, wherein the code is configured so as
when run to perform operations of operating a neural
network, wherein the neural network comprises a plurality
of layers, the plurality of layers comprising: 1) an input layer
comprising a plurality of input nodes each configured to
receive a respective one of a plurality of input elements, ii)
one or more hidden layers each comprising a plurality of
hidden nodes, each hidden node configured to receive sets of
input parameters where each set describes an input prob-
ability distribution from one of the nodes in a previous layer
of the network, and to output a set of output parameters
describing an output probability distribution to a next layer
of the network, and iii) an output layer comprising one or
more output nodes each configured to output a respective
output element, wherein the one or more hidden layers
connect the input layer to the output layer; and wherein said
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operations comprise: at each of the input nodes, weighting
the respective one of the plurality of input elements received
by that input node by applying an instance of a first class of
probability distribution to that input element, thereby gen-
erating a respective set of output parameters describing an
output probability distribution; and from each of the input
nodes, outputting the respective set of output parameters as
input parameters to one or more nodes in a next, hidden layer
of'the network, and thereby propagating the respective set of
output parameters through the one or more hidden layers to
the output layer; said propagating comprising, at each of one
or more nodes of at least one of the hidden layers, combining
the sets of input parameters and weighting the combination
by applying an instance of a second class of probability
distribution to that combined set of input parameters,
thereby generating a respective set of output parameters
describing an output probability distribution for outputting
to a next layer of the network, and wherein the first class of
probability distribution is more sparsity inducing than the
second class of probability distribution.

According to another aspect disclosed herein there is
provided a computer program embodied on computer-read-
able storage and configured so as when run one or more
processors to perform operations of operating a neural
network, wherein the neural network comprises a plurality
of layers, the plurality of layers comprising: 1) an input layer
comprising a plurality of input nodes each configured to
receive a respective one of a plurality of input elements, ii)
one or more hidden layers each comprising a plurality of
hidden nodes, each hidden node configured to receive sets of
input parameters where each set describes an input prob-
ability distribution from one of the nodes in a previous layer
of the network, and to output a set of output parameters
describing an output probability distribution to a next layer
of the network, and iii) an output layer comprising one or
more output nodes each configured to output a respective
output element, wherein the one or more hidden layers
connect the input layer to the output layer; and wherein said
operations comprise: at each of the input nodes, weighting
the respective one of the plurality of input elements received
by that input node by applying an instance of a first class of
probability distribution to that input element, thereby gen-
erating a respective set of output parameters describing an
output probability distribution; and from each of the input
nodes, outputting the respective set of output parameters as
input parameters to one or more nodes in a next, hidden layer
of'the network, and thereby propagating the respective set of
output parameters through the one or more hidden layers to
the output layer; said propagating comprising, at each of one
or more nodes of at least one of the hidden layers, combining
the sets of input parameters and weighting the combination
by applying an instance of a second class of probability
distribution to that combined set of input parameters,
thereby generating a respective set of output parameters
describing an output probability distribution for outputting
to a next layer of the network, and wherein the first class of
probability distribution is more sparsity inducing than the
second class of probability distribution.

Other variants or applications may become apparent to a
person skilled in the art once given the disclosure herein.
The scope of the disclosure is not limited by the above-
described embodiments but only by the accompanying
claims.

The invention claimed is:

1. A computer-implemented method of operating a neural
network, wherein the neural network comprises a plurality
of layers, the plurality of layers comprising: 1) an input layer
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comprising a first input node and a second input node each
configured to receive at least one input element, ii) a hidden
layer comprising a hidden node, and iii) an output layer; and
wherein the method comprises:

receiving the at least one input element from a training
dataset;

receiving at least one known output element, each of the
at least one known output element corresponding to a
different input element of the training dataset; and

training the neural network to predict the at least one
known output element based on the at least one input
element, wherein training the neural network com-

prises:
at the first input node of the input layer, applying a first
instance of a first class of probability distribution,
wherein the first instance is a horseshoe probability
distribution, thereby generating a first output param-

eter,

at the second input node of the input layer, applying a
second instance of the first class of probability
distribution, wherein the second instance is a t-dis-
tribution, wherein the first instance and the second
instance are different forms of the first class of
probability distribution, and wherein the first class of
probability distribution induces more sparsity
amongst distribution parameters generated at the first
input node compared to distribution parameters gen-
erated by application of a second class of probability
distribution at the hidden node of the hidden layer,
and

propagating the first output parameter through the
hidden layer to the output layer, said propagating
comprising, at the hidden node of the hidden layer,
applying an instance of the second class of probabil-
ity distribution, thereby generating a second output
parameter for outputting to the output layer of the
neural network.

2. The method of claim 1, wherein the hidden layer
comprises a plurality of hidden layers, each of the first input
node and the second input node outputting at least one
output parameter to at least one hidden node of the plurality
of hidden layers.

3. The method of claim 2, wherein said propagating
comprises, at the at least one hidden node of the hidden
layer, combining the first output parameter and the second
output parameter to obtain a combination of output param-
eters and weighting the combination by applying the
instance of the second class of probability distribution to the
combination of output parameters.

4. The method of claim 3, wherein each hidden node of
the plurality of hidden layers applies the second class of
probability distribution.

5. The method of claim 4, wherein each hidden node of
the plurality of hidden layers applies a same form of the
second class of probability distribution.

6. The method of claim 1, wherein the first instance of the
first class of probability distribution is parameterized by at
least a centre point at zero, and wherein a probability density
of the first instance of the first class of probability distribu-
tion tends to infinity at the centre point.

7. The method of claim 1, wherein the hidden node of the
hidden layer applies a Gaussian distribution or a uniform
distribution.
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8. The method of claim 1, wherein said training com-
prises:
an initial cycle of weighting at the first input node of the
input layer and said propagating, thereby outputting, by
an output node, an initial estimated output element; and

one or more further cycles of said weighting at the first
input node of the input layer and said propagating,
thereby outputting, by the output node, an updated
estimated output element, wherein for each further
cycle, the weighting of the at least one input element is
adjusted to generate the updated estimated output ele-
ment until the updated estimated output element differs
from the at least one known output element by less than
a threshold.

9. The method of claim 8, comprising:

after said weighting of the at least one input element
preventing a given input element from propagating
through the hidden layer to the output layer when a
given output parameter corresponding to the given
input element is less than a threshold value.

10. The method of claim 9, wherein the hidden node of the
hidden layer applies a Gaussian distribution.

11. The method of claim 9, wherein the hidden node of the
hidden layer applies a uniform distribution.

12. The method of claim 1, wherein the neural network is
trained to predict a predicted output element based on a
given input element.

13. The method of claim 12, further comprising output-
ting of the predicted output element by displaying the
predicted output element to a user.

14. The method of claim 1, comprising displaying to a
user a given input element and a given output parameter
indicating a relevance of the given input element.

15. The method of claim 14, wherein the given output
parameter is a centre point of the first instance of the first
class of probability distribution, and said outputting of the
given output parameter comprises outputting either a zero
value or a non-zero value for the centre point of the first
instance of the first class of probability distribution, wherein
the zero value is output if the centre point is less than a
threshold value, and wherein the non-zero value is output if
the centre point is more than the threshold value.

16. The method of claim 14, wherein the first output
parameter represents a width of the first instance of the first
class of probability distribution.

17. The method of claim 1, wherein a third input node
applies a Laplace distribution.

18. The method of claim 1, wherein a third input node
applies a spike-and-slab probability distribution.

19. A computing apparatus comprising a processor and
storage storing code arranged to run on the processor,
wherein the code is configured to perform operations of
operating a neural network, wherein the neural network
comprises a plurality of layers, the plurality of layers com-
prising: i) an input layer comprising a first input node and a
second input node each configured to receive at least one
input element, ii) a hidden layer comprising a hidden node,
and iii) an output layer; and wherein said operations com-
prises:

at the first input node, receiving the at least one input

element from a training dataset;

receiving at least one known output element, each of the

at least one known output element corresponding to a
different input element of the training dataset; and
training the neural network to predict the at least one

known output element based on the at least one input
element, wherein training the neural network comprise:
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at the first input node of the input layer, applying a first
instance of a first class of probability distribution,
wherein the first instance is a horseshoe probability
distribution, thereby generating a first output param-
eter,

at the second input node of the input layer, applying a
second instance of the first class of probability
distribution, wherein the second instance is a t-dis-
tribution, wherein the first instance and the second
instance are different forms of the first class of
probability distribution, and wherein the first class of
probability distribution induces more sparsity
amongst distribution parameters generated at the first
input node compared to distribution parameters gen-
erated by application of a second class of probability
distribution at the hidden node of the hidden layer;
and

propagating the first output parameter through the
hidden layer to the output layer, said propagating
comprising, at the hidden node of the hidden layer,
applying an instance of the second class of probabil-
ity distribution, thereby generating a second output
parameter for outputting to the output layer of the
neural network.

20. A computer program embodied on a non-transitory
computer-readable storage and configured so as when run a
processor to perform operations of operating a neural net-
work, wherein the neural network comprises a plurality of
layers, the plurality of layers comprising: i) an input layer
comprising a first input node and a second input node each
configured to receive at least one input element, ii) a hidden
layer comprising a hidden node, and iii) an output layer; and
wherein said operations comprise:
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at the first input node, receiving the at least one input
element from a training dataset;

receiving at least one known output element, each of the
at least one known output element corresponding to a
different input element of the training dataset; and

training the neural network to predict the at least one
known output element based on the at least one input
element, wherein training the neural network com-
prises:

at the first input node of the input layer, applying a first
instance of a first class of probability distribution,
wherein the first instance is a horseshoe probability
distribution, thereby generating a first output param-
eter,

at the second input node of the input layer, applying a
second instance of the first class of probability distri-
bution, wherein the second instance is a t-distribution
wherein the first instance and the second instance are
different forms of the first class of probability distri-
bution, and wherein the first class of probability dis-
tribution induces more sparsity amongst distribution
parameters generated at the first input node compared
to distribution parameters generated by application of a
second class of probability distribution at the hidden
node of the hidden layer; and

propagating the first output parameter through the hidden
layer to the output layer, said propagating comprising,
at the hidden node of the hidden layer, applying an
instance of the second class of probability distribution,
thereby generating a second output parameter for out-
putting to the output layer of the neural network.
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