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METHOD AND SYSTEM FOR PREDICTING FORMATION TOP

[0001]

[0002]

[0003]

[0004]

DEPTHS
BACKGROUND

Formation top predictions are commonly used in the oil and gas industry,
and small variations between predicted depths and actual depths of a formation
top may impact hydrocarbon exploration and production. Current formation top
predictions may be performed manually, and are heavily dependent on a
geologist’s expertise. Consequently, human predictions introduce subjectivity

and errors in the process.

SUMMARY

This summary is provided to introduce a selection of concepts that are
further described below in the detailed description. This summary is not
intended to identify key or essential features of the claimed subject matter, nor
is it intended to be used as an aid in limiting the scope of the claimed subject

matter.

In general, in one aspect, embodiments relate to a method that includes
obtaining, by a computer processor, seismic data regarding a geological region
of interest. The method further includes obtaining, by the computer processor,
well log data from a wellbore within the geological region of interest. The
method further includes determining, by the computer processor, a formation
top depth using the seismic data, the well log data, a stratigraphic column, and
a machine-learning model. The stratigraphic column describes an order of
various formations within the geological region of interest. The machine-
learning model assigns a feature among the seismic data and the well log data
to a formation among the formations in the stratigraphic column to determine

the formation top depth.

In general, in one aspect, embodiments relate to a system that includes a
logging system coupled to various logging tools and a drilling system coupled

to the logging system. The system further includes a reservoir simulator that
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[0005]

[0006]

[0007]

[0008]

includes a computer processor. The reservoir simulator is coupled to the
logging system and the drilling system. The reservoir simulator obtains seismic
data regarding a geological region of interest. The reservoir simulator obtains
well log data from a wellbore within the geological region of interest. The
reservoir simulator determines a formation top depth using the seismic data, the
well log data, a stratigraphic column, and a machine-learning model. The
stratigraphic column describes an order of various formations within the
geological region of interest. The machine-learning model assigns a feature
among the seismic data and the well log data to a formation among the

formations in the stratigraphic column to determine the formation top depth.

In general, in one aspect, embodiments relate to a non-transitory computer
readable medium storing instructions executable by a computer processor. The
instructions obtain seismic data regarding a geological region of interest. The
instructions obtain well log data from a wellbore within the geological region
of interest. The instructions determine a formation top depth using the seismic
data, the well log data, a stratigraphic column, and a machine-learning model.
The stratigraphic column describes an order of various formations within the
geological region of interest. The machine-learning model assigns a feature
among the seismic data and the well log data to a formation among the

formations in the stratigraphic column to determine the formation top depth.
Other aspects and advantages of the claimed subject matter will be

apparent from the following description and the appended claims.

BRIEF DESCRIPTION OF DRAWINGS

Specific embodiments of the disclosed technology will now be described
in detail with reference to the accompanying figures. Like elements in the

various figures are denoted by like reference numerals for consistency.

FIGs. 1, 2, and 3 show systems in accordance with one or more

embodiments.
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[0009]

[0010]

[0011]

[0012]

[0013]

[0014]

FIG. 4 shows a flowchart in accordance with one or more embodiments.

FIGs. 5A, 5B, 6, 7, 8, and 9 show examples in accordance with one or

more embodiments.

FIG. 10 shows a computer system in accordance with one or more

embodiments.

DETAILED DESCRIPTION

In the following detailed description of embodiments of the disclosure,
numerous specific details are set forth in order to provide a more thorough
understanding of the disclosure. However, it will be apparent to one of ordinary
skill in the art that the disclosure may be practiced without these specific
details. In other instances, well-known features have not been described in

detail to avoid unnecessarily complicating the description.

Throughout the application, ordinal numbers (e.g., first, second, third,
etc.) may be used as an adjective for an element (i.e., any noun in the
application). The use of ordinal numbers is not to imply or create any particular
ordering of the elements nor to limit any element to being only a single element
unless expressly disclosed, such as using the terms "before", "after”, "single",
and other such terminology. Rather, the use of ordinal numbers is to distinguish
between the elements. By way of an example, a first element is distinct from a

second element, and the first element may encompass more than one element

and succeed (or precede) the second element in an ordering of elements.

In general, embodiments of the disclosure include systems and methods
for predicting formation top depths using a machine-learning model. For
example, a machine-learning model may use a single variable input or multiple
variable inputs, such as well logs and seismic traces, in order to determine one
or more formation top depths. In particular, time-series data may be obtained
by recording sensors that measure a certain physical or chemical property of a

geological formation and store this measured property as a time or depth record.
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[0015]

[0016]

For well logs, the order of recording the time series readings may be performed
naturally from top to bottom in a wellbore where readings are obtained during
adrilling operation. Thus, sensor measurements may be obtained from younger
layers to older layers with respect to geological events. Accordingly, a sensor
measurement may be correlated to a geological time event in a geological
history of one or more formations. Using the timewise nature of geological
history, a formation top depth may be predicted as well as analyzed further to

determine if the formation top depth is valid.

Turning to FIG. 1, FIG. 1 shows a schematic diagram in accordance with
one or more embodiments. As shown in FIG. 1, FIG. 1 illustrates a well
environment (100) that may include a well (102) having a wellbore (104)
extending into a formation (106). The wellbore (104) may include a bored hole
that extends from the surface into a target zone of the formation (106), such as a
reservoir. The formation (106) may include various formation characteristics of
interest, such as formation porosity, formation permeability, resistivity, density,
water saturation, and the like. Porosity may indicate how much space exists in a
particular rock within an area of interest in the formation (106), where oil, gas,
and/or water may be trapped. Permeability may indicate the ability of liquids and
gases to flow through the rock within the area of interest. Resistivity may
indicate how strongly rock and/or fluid within the formation (106) opposes the
flow of electrical current. For example, resistivity may be indicative of the
porosity of the formation (106) and the presence of hydrocarbons. More
specifically, resistivity may be relatively low for a formation that has high
porosity and a large amount of water, and resistivity may be relatively high for a
formation that has low porosity or includes a large amount of hydrocarbons.

Water saturation may indicate the fraction of water in a given pore space.

Keeping with FIG. 1, the well environment (100) may include a drilling
system (110), a logging system (112), a control system (114), and a reservoir
simulator (160). The drilling system (110) may include a drill string, drill bit, a

mud circulation system and/or the like for use in boring the wellbore (104) into
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the formation (106). The control system (114) may include hardware and/or
software for managing drilling operations and/or maintenance operations. For
example, the control system (114) may include one or more programmable logic
controllers (PLCs) that include hardware and/or software with functionality to
control one or more processes performed by the drilling system (110).
Specifically, a programmable logic controller may control valve states, fluid
levels, pipe pressures, warning alarms, and/or pressure releases throughout a
drilling rig. In particular, a programmable logic controller may be a ruggedized
computer system with functionality to withstand vibrations, extreme
temperatures, wet conditions, and/or dusty conditions, for example, around a
drilling rig. Without loss of generality, the term “control system” may refer to a
drilling operation control system that is used to operate and control the
equipment, a drilling data acquisition and monitoring system that is used to
acquire drilling process and equipment data and to monitor the operation of the
drilling process, or a drilling interpretation software system that is used to

analyze and understand drilling events and progress.

[0017] Turning to the reservoir simulator (160), a reservoir simulator (160) may
include hardware and/or software with functionality for storing and analyzing
well logs (140), core sample data (150), seismic data, and/or other types of data
to generate and/or update one or more geological models (175). Geological
models may include geochemical or geomechanical models that describe
structural relationships within a particular geological region. While the reservoir
simulator (160) is shown at a well site, in some embodiments, the reservoir
simulator (160) may be remote from a well site. In some embodiments, the
reservoir simulator (160) is implemented as part of a software platform for the
control system (114). The software platform may obtain data acquired by the
drilling system (110) and logging system (112) as inputs, which may include
multiple data types from multiple sources. The software platform may aggregate
the data from these systems (110, 112) in real time for rapid analysis. In some

embodiments, the control system (114), the logging system (112), and/or the
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reservoir simulator (160) may include a computer system that is similar to the
computer system (1000) described below with regard to FIG. 10 and the

accompanying description.

[0018] The logging system (112) may include one or more logging tools (113),
such as a nuclear magnetic resonance (NMR) logging tool and/or a resistivity
logging tool, for use in generating well logs (140) of the formation (106). For
example, a logging tool may be lowered into the wellbore (104) to acquire
measurements as the tool traverses a depth interval (130) (e.g., a targeted
reservoir section) of the wellbore (104). The plot of the logging measurements
versus depth may be referred to as a “log” or “well log”. Well logs (104) may
provide depth measurements of the well (102) that describe such reservoir
characteristics as formation porosity, formation permeability, resistivity, density,
water saturation, and the like. The resulting logging measurements may be stored
and/or processed, for example, by the control system (114), to generate
corresponding well logs (140) for the well (102). A well log may include, for
example, a plot of a logging response time versus true vertical depth (TVD)

across the depth interval (130) of the wellbore (104).

[0019] Reservoir characteristics may be determined using a variety of different
techniques. For example, certain reservoir characteristics can be determined via
coring (e.g., physical extraction of rock samples) to produce core samples and/or
logging operations (e.g., wireline logging, logging-while-drilling (LWD) and
measurement-while-drilling (MWD)). Coring operations may include physically
extracting a rock sample from a region of interest within the wellbore (104) for
detailed laboratory analysis. For example, when drilling an oil or gas well, a
coring bit may cut plugs (or “cores” or “core samples”) from the formation (106)
and bring the plugs to the surface, and these core samples may be analyzed at the
surface (e.g., in a lab) to determine various characteristics of the formation (106)

at the location where the sample was obtained.

[0020] To determine porosity in the formation (106), various types of logging

techniques may be used. For example, the logging system (112) may measure

6



WO 2022/050967 PCT/US2020/054966

[0021]

the speed that acoustic waves travel through rocks in the formation (106). This
type of logging may generate borehole compensated (BHC) logs, which are
also called sonic logs. In general, sound waves may travel faster through high-
density shales than through lower-density sandstones. Likewise, density
logging may also determine density measurements or porosity measurements
by directly measuring the density of the rocks in the formation (106).
Furthermore, neutron logging may determine porosity measurements by
assuming that the reservoir pore spaces within the formation (106) are filled
with either water or oil and then measuring the amount of hydrogen atoms (i.e.,
neutrons) in the pores. In some embodiments, gamma ray logging is used to
measure naturally occurring gamma radiation to characterize rock or sediment
regions within a wellbore. In particular, different types of rock may emit
different amounts and different spectra of natural gamma radiation. For
example, gamma ray logs may distinguish between shales and
sandstones/carbonate rocks because radioactive potassium may be common to
shales. Likewise, the cation exchange capacity of clay within shales also results
in higher absorption of uranium and thorium further increasing the amount of

gamma radiation produced by shales.

Turning to FIG. 2, FIG. 2 illustrates a system in accordance with one or
more embodiments. As shown in FIG. 2, a seismic volume (290) is illustrated
that includes various seismic traces (e.g., seismic traces (250)) acquired by
various seismic receivers (e.g., seismic receivers (226)) disposed on the earth’s
surface (230). More specifically, a seismic volume (290) may be a three-
dimensional cubic data set of seismic traces. Individual cubic cells within the
seismic volume (290) may be referred to as voxels or volumetric pixels (e.g.,
voxels (260)). In particular, different portions of a seismic trace may correspond
to various depth points within a volume of earth. To generate the seismic volume
(290), a three-dimensional array of seismic receivers (226) are disposed along
the earth’s surface (230) and acquire seismic data in response to various pressure

waves emitted by seismic sources. Within the voxels (260), statistics may be
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calculated on first break data that is assigned to a particular voxel to determine
multimodal distributions of wave travel times and derive travel time estimates
(e.g., according to mean, median, mode, standard deviation, kurtosis, and other
suitable statistical accuracy analytical measures) related to azimuthal sectors.
First break data may describe the onset arrival of refracted waves or diving waves
at the seismic receivers (226) as produced by a particular seismic source signal

generation.

[0022] Furthermore, seismic data may refer to time domain data that is acquired
from a seismic survey (e.g., acquired seismic data may result in the seismic
volume (290)). However, seismic data may also refer to data acquired over
different periods of time, such as in cases where seismic surveys are repeated to
obtain time-lapse data. Seismic data may also refer to various seismic attributes
derived in response to processing acquired seismic data. In some embodiments,
seismic data may also refer to depth data. For example, seismic data may be
processed, e.g., using a seismic inversion operation, to generate a velocity model
of a subterranean formation, or a migrated seismic image of a rock formation

within the earth's surface.

[0023] While seismic traces with zero offset are generally illustrated in FIG. 2,
seismic traces may be stacked, migrated and/or used to generate an attribute
volume derived from the underlying seismic traces. For example, an attribute
volume may be a dataset where the seismic volume undergoes one or more
processing techniques, such as amplitude-versus-offset (AVO) processing. In
AVO processing, seismic data may be classified based on reflected amplitude
variations due to the presence of hydrocarbon accumulations in a subsurface
formation. With an AVO approach, seismic attributes of a subsurface interface
may be determined from the dependence of the detected amplitude of seismic
reflections on the angle of incidence of the seismic energy. This AVO
processing may determine both a normal incidence coefficient of a seismic
reflection, and/or a gradient component of the seismic reflection. Likewise,

seismic data may be processed according to a pressure wave’s apex. In
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particular, the apex may serve as a data gather point to sort first break picks for
seismic data records or traces into offset bins based on the survey dimensional
data (e.g., the x-y locations of the seismic receivers (226) on the earth surface
(230)). The bins may include different numbers of traces and/or different
coordinate dimensions. With respect to the seismic interpreter (261), a seismic
interpreter (261) may include a processor and hardware and/or software with
functionality for interpreting, processing, and/or acquiring seismic data. In some
embodiments, a seismic interpreter (261) is a component within a reservoir

simulator (e.g., reservoir simulator (160)).

[0024] Turning to FIG. 3, FIG. 3 shows a schematic diagram in accordance with
one or more embodiments. As illustrated in FIG. 3, FIG. 3 shows a geological
region (300) that may include one or more reservoir regions (e.g., reservoir
region (330)) with various wells (i.e., new well A (311), historical well B (312),
historical well C (313), and historical well D (314)). Historical wells may
include wells where the depth of one or more formation tops have previously
been determined, e.g., by drilling through various formations and/or predicting
the location of formation tops from well log data. The term “formation top” may
refer to a location of a surface of a formation that is in closest proximity to the
well. For example, a well path of a vertical well may drill to a formation top
prior to reaching the remaining portion of the respective formation. In FIG. 3,
wellbore A (341) of new well A (311) is shown being drilled through various
formation tops (i.e., formation top A (321), formation top B (322), formation top

C (323), formation top D (324), formation top E (325).

[0025] Returning to FIG. 1, geosteering may be used to position the drill bit or
drill string of the drilling system (110) relative to a boundary between different
subsurface layers (e.g., overlying, underlying, and lateral layers of a pay zone)
during drilling operations. In particular, measuring rock properties during
drilling may provide the drilling system (110) with the ability to steer the drill
bit in the direction of desired hydrocarbon concentrations. As such, a geosteering

system may use various sensors located inside or adjacent to the drilling string

9
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[0026]

[0027]

to determine different rock formations within a well path. In some geosteering
systems, drilling tools may use resistivity or acoustic measurements to guide the

drill bit during horizontal or lateral drilling.

Returning to a reservoir simulator (160), a reservoir simulator (160) may
include hardware and/or software with functionality for generating one or more
machine-learning models (170) for use in analyzing the formation (106). For
example, the reservoir simulator (160) may store well logs (140) and data
regarding core samples (150), and further analyze the well log data, the core
sample data, seismic data, and/or other types of data to generate and/or update
one or more machine-learning models (170) and/or one or more geological
models (175). Thus, different types of machine-learning models may be trained,
such as convolutional neural networks, deep neural networks, recurrent neural
networks, support vector machines, decision trees, inductive learning models,
deductive learning models, supervised learning models, etc. In some
embodiments, the reservoir simulator (160) may generate augmented or
synthetic data to produce a large amount of interpreted data for training a

particular model.

With respect to neural networks, for example, a neural network may
include one or more hidden layers, where a hidden layer includes one or more
neurons. A neuron may be a modelling node or object that is loosely patterned
on a neuron of the human brain. In particular, a neuron may combine data inputs
with a set of coefficients, i.e., a set of network weights for adjusting the data
inputs. These network weights may amplify or reduce the value of a particular
data input, thereby assigning an amount of significance to various data inputs
for a task being modeled. Through machine learning, a neural network may
determine which data inputs should receive greater priority in determining one
or more specified outputs of the neural network. Likewise, these weighted data
inputs may be summed such that this sum is communicated through a neuron’s
activation function to other hidden layers within the neural network. As such,

the activation function may determine whether and to what extent an output of

10
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[0028]

[0029]

[0030]

a neuron progresses to other neurons where the output may be weighted again

for use as an input to the next hidden layer.

Keeping with FIG. 1, a well path of a wellbore (104) may be updated by
the control system (114) using a geological model (e.g., one of the geological
models (175)). For example, a control system (114) may communicate
geosteering commands to the drilling system (110) based on well data updates
that are further adjusted by the reservoir simulator (160) using a geological
model. As such, the control system (114) may generate one or more control
signals for drilling equipment based on an updated well path design and/or a
geological model. In some embodiments, the reservoir simulator (160)
determines one or more formation top depths from seismic data and/or well log
data. The reservoir simulator (160) may use these formation top depths to adjust

the well path of the wellbore (104) accordingly.

While FIGs. 1, 2, and 3 shows various configurations of components,
other configurations may be used without departing from the scope of the
disclosure. For example, various components in FIGs. 1, 2, and 3 may be
combined to create a single component. As another example, the functionality
performed by a single component may be performed by two or more

components.

Turning to FIG. 4, FIG. 4 shows a flowchart in accordance with one or
more embodiments. Specifically, FIG. 4 describes a general method for
determining formation top depths using machine learning. One or more blocks
in FIG. 4 may be performed by one or more components (e.g., reservoir
simulator (160)) as described in FIGs. 1, 2 and/or 3. While the various blocks
in FIG. 4 are presented and described sequentially, one of ordinary skill in the
art will appreciate that some or all of the blocks may be executed in different
orders, may be combined or omitted, and some or all of the blocks may be
executed in parallel. Furthermore, the blocks may be performed actively or

passively.

11
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[0031]

[0032]

[0033]

In Block 400, seismic data are obtained for a geological region of interest
in accordance with one or more embodiments. A geological region of interest
may be a portion of a geological area or volume that includes one or more
formations of interest desired or selected for analysis, e.g., for determining
location of hydrocarbons or reservoir development purposes. The seismic data
may be similar to the seismic data, such as seismic volume (290), described

above in FIG. 2 and the accompanying description.

In Block 410, well log data are obtained for a geological region of interest
in accordance with one or more embodiments. For example, seismic data
and/or well log data may be obtained from various databases, preprocessed,
and/or augmented to serve as training data for a machine-learning model or as
input data for predicting formation top depths. In some embodiments, the well
log data may be similar to the well logs (140) described above in FIG. 1 and

the accompanying description.

In Block 420, an input sequence is generated for a machine-learning
model using seismic data and/or well log data in accordance with one or more
embodiments. More specifically, the input sequence may correspond to a series
of features in a time series vector. Likewise, some embodiments use multiple
feature vectors as inputs to a machine-learning model. Given a single point
within a well, for example, several measurements may be obtained for the same
point, e.g., using gamma ray measurements, density measurements, resistivity
measurements, and/or seismic measurements. Thus, seismic data and/or well
log data may be converted to one or more input sequences for mapping input
features to a geological time event sequence. As such, a machine-learning
model may uses all or multiple points in an input sequence to determine a full
context of a particular point or location. For example, deep machine learning
may use temporal data before and after a respective point in the input sequence
in order to determine a corresponding class for a feature in an output sequence,

e.g., below in Block 430.

12
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[0034]

[0035]

[0036]

[0037]

In some embodiments, the machine-learning model is a deep neural
network that includes multiple dilated layers. For example, a dilated layer may
be a convolutional layer that includes a dilation factor. In some embodiments,
the machine-learning model is a model with multiple input streams such as
convolutional and recurrent streams that are concatenated at a final hidden
layer. In some embodiments, the machine-learning model is a temporal
convolutional network with multiple dilated layers with different dilation

factors.

In Block 430, an output sequence for one or more formation top depths is
determined using an input sequence, a stratigraphic column, and a machine-
learning model in accordance with one or more embodiments. In some
embodiments, for example, a stratigraphic column provides a baseline
reference for time-series samples of well log data and/or seismic data. By
mapping this time series data to a stratigraphic column to produce an output
sequence, some geological time events may be marked as interest points, e.g.,
specific features in a geological region of interest that are known in advance.
As geological time events become progressively older as a wellbore proceeds
into the subsurface, geological time events in a time series may follow this
property imposed by the natural process of sedimentation as described within

the stratigraphic column.

Based on the features identified in an input sequence, a machine-learning
model may classify a particular point in the well as belonging to a
predetermined class in a stratigraphic column, e.g., as a particular stratigraphic
unit in an output sequence of the machine-learning model. An example
stratigraphic column is shown in FIGs. 5A and 5B, where FIG. 5A is closest to
the well surface and FIG. 5B is the stratigraphic column farthest into the earth.
In particular, FIGs. 5A and 5B illustrate various classes of formations and

layers based on geological age, stratigraphic units, and lithology.

To illustrate this prediction process, for example, a point may be selected

at 10000 feet of measured depth (MD) in a well. Using input data from different
13
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[0038]

[0039]

[0040]

sensors, machine learning may be performed based on the different
measurements to assign this point to a specific layer (e.g., a particular interval
on a stratigraphic column). As such, a machine-learning model may determine
a one-to-one mapping for each point of an input sequence to respective
individual classes of a stratigraphic column to form an output. Accordingly, a
final output sequence from the machine-learning model may be a sequence of
mapped classes. In another embodiment, a depth value is output directly for
each formation top (e.g., an output sequence for 10 formation tops may have a

corresponding depth value for each of the 10 formation tops).

In some embodiments, the stratigraphic column is generated using well
log data from various historical wells around the geological region of interest.
As such, the stratigraphic column may be known at a well prior to drilling a
new wellbore for a new well based on past information collected for the
geological region of interest. Likewise, the stratigraphic column may be
determined using one or more seismic surveys for a geological region of

interest.

Turning to FIG. 6, FIG. 6 shows an example of an input sequence for a
machine-learning model in accordance with one or more embodiments. As
shown in FIG. 6, an input sequence M (600) includes gamma ray log data (605)
with various formation tops (e.g., formation top X (611), formation top Y (612),
formation top Z (613)) highlighted as boundaries. The input sequence M (600)
may be used in a training process for a machine-learning model to map to the
desired geological time events, e.g., the formation tops (611, 612, 613). Based
on predictions by a machine-learning model with respect to the formation tops
(611, 612, 613), the machine-learning model may be updated accordingly to

reduce error associated with the predicted formation tops.

Turning to FIG. 7, FIG. 7 shows an example of formation top depth
predictions in comparison to geologist selections in accordance with one or
more embodiments. As shown in FIG. 7, a formation top comparison table

(700) illustrates a geologist selection (701) of a formation top depth for a
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respective layer alongside a machine-learning model prediction (702) of the
formation top depth for the same layer. The formation top comparison table
(700) also shows the difference (703) between a predicted depth by a machine-
learning model as well as the geologist selections (701) of depths. Here,
formation top depths are determined for various formation layers, i.e., layer A
(711), layer B (712), layer C (713), layer D (714), and layer E (715).
Accordingly, the output of this machine-learning model in this example highly

resembles the geologist selections (701).

Turning to FIG. 8, FIG. 8 provides an example of generating a machine-
learning model to predict formation top depths in accordance with one or more
embodiments. The following example is for explanatory purposes only and not

intended to limit the scope of the disclosed technology.

In FIG. 8, a neural network model X (851) is trained using a supervised
learning algorithm Q (830) for predicting various formation top depths within a
geological region (e.g., formation top depth Q (890)). In particular, the neural
network model X includes five hidden layers, i.e., two convolutional layers (i.e.,
convolutional layer A (881), convolutional layer E (885)) and three dilational
layers (i.e., a dilational layer B (882), a dilational layer C (883), and a dilational
layer D (884)). Moreover, the neural network model X (851) obtains two
different variables for determining formation top depths, (i.e., seismic data input
sequence X (810) and a gamma ray log input sequence Y (820)) as inputs for

training.

Returning to FIG. 4, in Block 435, an output sequence from a machine-
learning model is processed for noise in accordance with one or more
embodiments. By classifying each point in the input sequence using a machine-
learning model, for example, each point may provide a vote for a final answer
in the output sequence. Thus, the initial output sequence may provide some
noise or incorrect class identifications for use in determining formation top
depths. Using machine learning, however, each point may contribute a single

vote that indicate whether the point is before or after the exact depth of the
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formation top, e.g., through binary segmentation discussed below. By using
this voting mechanism, uncertainty of determining single answers may be

minimized.

In some embodiments, a binary classification is assigned for each
geological time event. For example, one segment in time series data may be
younger than a current data point (e.g., with respect to a seismic measurement
or a well log measurement) and another segment in time series data is older
than the current data point. A sequence number may be assigned to each data
sample progressively from top to bottom. This sequence number may be
associated with the output of a machine-learning model. However, in extraction
time, samples may be assigned a binary value to either belong to the older or
the younger geological time event. These labeling procedures may thus

minimize the amount of searching performed by a machine-learning model.

For illustration of this binary classification process, an example noisy
output sequence may be
“1111161113112222224222333333444414444555525552555”. In this noisy
output sequence, various values in the sequence may identify different classes
in arespective stratigraphic column. For example, a third formation top location
may be associated with the value ‘3 and segment sequences may be separated
as being less than ‘3’ or greater than ‘3’. Thus, a reservoir simulator may
binarize values of the noise output sequence to be ‘0’ for values less than ‘3’
and ‘1’ for values greater than ‘3’. However, the output sequence may still
have significant noise. Accordingly, a cross-entropy optimization of noisy
output data may obtain an optimal location of a formation top depth by using
an objective function that minimizes differences between desired outputs in
relation to the noisy output. For example, a cross entropy value may be
determined between this illustrated binarized output sequence and another
vector that assumes the true location at each point N. Thus, the cross entropy
value is obtained at each N location, and thereby, a minimum value of the cross

entropy may be identified as the correct formation top location.
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In Block 440, one or more verifications are performed regarding one or
more formation top depths in accordance with one or more embodiments. After
determining formation top depths for a geological region of interest, one or
more verification analyses may be performed to determine a valid depth. For
example, geological erosion of a formation or missing sensor values during
acquisition of well logs or seismic data may result in the loss of necessary
information for a valid prediction by a machine-learning model. In one
verification analysis, for example, a reservoir simulator may automatically
determine whether a thickness of a respective formation is greater than a
predetermined erosion threshold. The predetermined erosion threshold may
correspond to a number associated with a particular well location. If the
thickness of a formation is less than the predetermined erosion threshold, the
predicted formation top depth may be determined as invalid and thus excluded
from consideration. To determine the thickness of a formation, a reservoir

simulator may use the distance between two consecutive formation top depths.

In some embodiments, a reservoir simulator determines whether a
formation top depth is within a predetermined threshold range of missing sensor
values. For this verification analysis, a reservoir simulator may determine a
formation boundary from a side of the formation top in question. In analyzing
the formation boundary, the reservoir simulator may determine whether the
boundary lies on missing sensor values or in close proximity to missing sensor

value according to a predetermined threshold range.

In Block 450, a geological model is generated for a geological region of
interest using one or more formation top depths in accordance with one or more
embodiments. For example, the geological model may be updated in real-time
using one or more predicted formation top depths during a drilling operation in
a geological region of interest. The geological model may include 2-D maps
and/or 3D maps of one or more formations. Likewise, a geological model may
be used in hydrocarbon exploration and/or production for the geological region

of interest. For example, the geological model may be used in basin modeling
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or reservoir simulations by a reservoir simulator. The geological model may be
similar to the geological models (175) described above in FIG. 1 and the

accompanying description.

In Block 460, a well path is determined using one or more formation top
depths and/or a geological model in accordance with one or more embodiments.
For example, a control system for a drilling system may perform various
geosteering operations at the same time based on formation top depth
predictions and/or updates while drilling. For more information on geosteering,

see FIG. 1 above and the accompanying description.

Turning to FIG. 9, FIG. 9 provides an example of determining formation
top depths in accordance with one or more embodiments. The following
example is for explanatory purposes only and not intended to limit the scope of
the disclosed technology. In FIG. 9, FIG. 9 shows a time series dataset (910) for
well X in the Permian Basin. The time series dataset (910) includes data from a
seismic survey A (911), gamma ray log B (912), and a sonic log C (913). Here,
a reservoir simulator determines two input sequences (i.e., seismic data input
sequence (931), well log data input sequence (932)) for input to a recurrent

neural network X (930).

Keeping with FIG. 9, the recurrent neural network X (930) generates an
initial output sequence of stratigraphic column classes (940) for well X.
However, the initial output sequence (940) may include invalid predictions or
include noise from the prediction process. The reservoir simulator then applies
a noise minimization function (902) (e.g., similar to Block 435 above) to the
initial output sequence (940) to produce a final output sequence of stratigraphic
column classes (945). Accordingly, the reservoir simulator then uses a depth
matching function (904) to determine formation top depth values (950) from the
final output sequence (945), e.g., by matching measured depth values of
measurements in the input sequences (931, 932) to the determined stratigraphic

column classes of the final output sequence (945). Finally, the reservoir
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simulator uses the formation top depth values (950) to generate an update (960)

for a Permian Basin model.

Embodiments may be implemented on a computer system. FIG. 10 is a
block diagram of a computer system (1002) used to provide computational
functionalities associated with described algorithms, methods, functions,
processes, flows, and procedures as described in the instant disclosure,
according to an implementation. The illustrated computer (1002) is intended to
encompass any computing device such as a server, desktop computer,
laptop/notebook computer, wireless data port, smart phone, personal data
assistant (PDA), tablet computing device, one or more processors within these
devices, or any other suitable processing device, including both physical or
virtual instances (or both) of the computing device. Additionally, the computer
(1002) may include a computer that includes an input device, such as a keypad,
keyboard, touch screen, or other device that can accept user information, and
an output device that conveys information associated with the operation of
the computer (1002), including digital data, visual, or audio information (or a

combination of information), or a GUI.

The computer (1002) can serve in a role as a client, network component,
a server, a database or other persistency, or any other component (or a
combination of roles) of a computer system for performing the subject matter
described in the instant disclosure. The illustrated computer (1002)is
communicably coupled with a network (1030). In some implementations, one
or more components of the computer (1002) may be configured to operate
within environments, including cloud-computing-based, local, global, or other

environment (or a combination of environments).

At a high level, the computer (1002) is an electronic computing device
operable to receive, transmit, process, store, or manage data and information
associated with the described subject matter. According to some
implementations, the computer (1002) may also include or be communicably

coupled with an application server, e-mail server, web server, caching server,
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streaming data server, business intelligence (BI) server, or other server (or a

combination of servers).

The computer (1002) can receive requests over network (1030) from a
client application (for example, executing on another computer (1002)) and
responding to the received requests by processing the said requests in an
appropriate software application. In addition, requests may also be sent to
the computer (1002) from internal users (for example, from a command
console or by other appropriate access method), external or third-parties, other
automated applications, as well as any other appropriate entities, individuals,

systems, or computers.

Each of the components of the computer (1002) can communicate using
a system bus (1003). In some implementations, any or all of the components of
the computer (1002), both hardware or software (or a combination of hardware
and software), may interface with each other or the interface (1004) (or a
combination of both) over the system bus (1003) using an application
programming interface (API) (1012)or a service layer (1013)(or a
combination of the API (1012) and service layer (1013). The API (1012) may
include specifications for routines, data structures, and object classes. The API
(1012) may be either computer-language independent or dependent and refer to
a complete interface, a single function, or even a set of APIs. The service layer
(1013) provides software services to the computer (1002) or other components
(whether or not illustrated) that are communicably coupled to the computer
(1002). The functionality of the computer (1002) may be accessible for all
service consumers using this service layer. Software services, such as those
provided by the service layer (1013), provide reusable, defined business
functionalities through a defined interface. For example, the interface may be
software written in JAVA, C++, or other suitable language providing data in
extensible markup language (XML) format or other suitable format. While
illustrated as an integrated component of the computer (1002), alternative

implementations may illustrate the API (1012) or the service layer (1013) as

20



WO 2022/050967 PCT/US2020/054966

[0057]

[0058]

[0059]

stand-alone components in relation to other components of the computer
(1002) or other components (whether or not illustrated) that are communicably
coupled to the computer (1002). Moreover, any or all parts of the API (1012) or
the service layer (1013) may be implemented as child or sub-modules of
another software module, enterprise application, or hardware module without

departing from the scope of this disclosure.

The computer (1002) includes an interface (1004). Although illustrated as
a single interface (1004) in FIG. 10, two or more interfaces (1004) may be used
according to particular needs, desires, or particular implementations of
the computer (1002). The interface (1004) is used by the computer (1002) for
communicating with other systems in a distributed environment that are
connected to the network (1030). Generally, the interface (1004 includes logic
encoded in software or hardware (or a combination of software and hardware)
and operable to communicate with the network (1030). More specifically, the
interface (1004) may include software supporting one or more communication
protocols associated with communications such that the network (1030) or
interface's hardware is operable to communicate physical signals within and

outside of the illustrated computer (1002).

The computer (1002) includes at least one computer processor (1005).
Although illustrated as a single computer processor (1005) in FIG. 10, two or
more processors may be used according to particular needs, desires, or
particular implementations of the computer (1002). Generally, the computer
processor (1005) executes instructions and manipulates data to perform the
operations of the computer (1002) and any algorithms, methods, functions,

processes, flows, and procedures as described in the instant disclosure.

The computer (1002) also includes a memory (1006) that holds data for
the computer (1002) or other components (or a combination of both) that can
be connected to the network (1030). For example, memory (1006) can be a
database storing data consistent with this disclosure. Although illustrated as a

single memory (1006) in FIG. 10, two or more memories may be used
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according to particular needs, desires, or particular implementations of
the computer (1002) and the described functionality. While memory (1006) is
illustrated as an integral component of the computer (1002), in alternative

implementations, memory (1006) can be external to the computer (1002).

The application (1007)1is an algorithmic software engine providing
functionality according to particular needs, desires, or particular
implementations of the computer (1002), particularly with respect to
functionality described in this disclosure. For example, application (1007) can
serve as one or more components, modules, applications, etc. Further, although
illustrated as a single application (1007), the application (1007) may be
implemented as multiple applications (1007) on the computer (1002). In
addition, although illustrated as integral to the computer (1002), in alternative
implementations, the application (1007) can be external to the computer

(1002).

There may be any number of computers (1002) associated with, or
external to, a computer system containing computer (1002), each computer

29 Ld

(1002) communicating over network (1030). Further, the term “client,” “user,”
and other appropriate terminology may be used interchangeably as appropriate
without departing from the scope of this disclosure. Moreover, this disclosure
contemplates that many users may use one computer (1002), or that one user

may use multiple computers (1002).

Although only a few example embodiments have been described in detail
above, those skilled in the art will readily appreciate that many modifications
are possible in the example embodiments without materially departing from
this invention. Accordingly, all such modifications are intended to be included
within the scope of this disclosure as defined in the following claims. In the
claims, any means-plus-function clauses are intended to cover the structures
described herein as performing the recited function(s) and equivalents of those
structures. Similarly, any step-plus-function clauses in the claims are intended

to cover the acts described here as performing the recited function(s) and
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equivalents of those acts. It is the express intention of the applicant not to
invoke 35 U.S.C. § 112(f) for any limitations of any of the claims herein, except
for those in which the claim expressly uses the words “means for” or “step for”

together with an associated function.
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CLAIMS

What is claimed:

1. A method, comprising:

obtaining, by a computer processor, seismic data regarding a geological region
of interest;

obtaining, by the computer processor, well log data from a wellbore within the
geological region of interest; and

determining, by the computer processor, a formation top depth using the seismic
data, the well log data, a stratigraphic column, and a machine-learning
model,

wherein the stratigraphic column describes an order of a plurality of formations
within the geological region of interest, and

wherein the machine-learning model assigns one or more features among the
seismic data and the well log data to a formation among the plurality of

formations in the stratigraphic column to determine the formation top

depth.

2. The method of claim 1, further comprising:
determining, by the computer processor, a well path through the geological
region of interest using the formation top depth; and

performing the well path using a drilling system.

3. The method of claims 1 or 2, further comprising:
processing an output sequence of the machine-learning model using binary
segmentation to produce a binary sequence,
wherein the binary sequence is further processed using a cross entropy analysis

to determine the formation top depth.

4. The method of any one of claims 1 to 3,
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wherein the machine-learning model is a deep neural network comprising a
plurality of dilation layers,
wherein a respective dilation layer among the plurality of dilation layers is a

convolutional layer that uses a predetermined dilation factor.

5. The method of any one of claims 1 to 4, further comprising:
generating a first input sequence using the seismic data; and
generating a second input sequence using the well log data,
wherein the machine-learning model determines a predicted formation top depth

using the first input sequence and the second input sequence.

6. The method of any one of claims 1 to 3,
wherein the seismic data and the well log data are processed as time-series inputs
to the machine-learning model,
wherein the formation top depth corresponds to a geological time event in an
output sequence from the machine-learning model that is determined

using time-series data before and after the geological time event.

7. The method of any one of claims 1 to 6, further comprising:

determining a plurality of formation top depths of a plurality of formations
within the geological region of interest using the seismic data and the well
log data;

determining a thickness of a respective formation among the plurality of
formations; and

determining whether a respective formation top depth among the plurality of
formation top depths is invalid due to the respective formation being
eroded,

wherein the respective formation top is determined to be invalid in response to
the thickness of the respective formation being less than a predetermined

erosion threshold.

8. The method of any one of claims 1 to 7, further comprising:
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determining that the formation top depth is within a predetermined threshold
range of missing seismic data values or missing well log values,

wherein the formation top depth is excluded from an update to a geological
model in response to determining that the formation top depth is within

the predetermined threshold range.

9. The method of any one of claims 1 to 8,
wherein the well log data comprise a plurality of gamma ray logs that are

acquired in real-time during a drilling operation at a wellbore.

10. A system, comprising:
a logging system coupled to a plurality of logging tools;
a drilling system coupled to the logging system; and
a reservoir simulator comprising a computer processor, wherein the reservoir
simulator is coupled to the logging system and the drilling system, the
reservoir simulator comprising:
means for obtaining seismic data regarding a geological region of interest;
means for obtaining well log data from a wellbore within the geological
region of interest; and
means for determining, by the computer processor, a formation top depth
using the seismic data, the well log data, a stratigraphic column,
and a machine-learning model,
wherein the stratigraphic column describes an order of a plurality of
formations within the geological region of interest, and
wherein the machine-learning model assigns one or more features among
the seismic data and the well log data to a formation among the
plurality of formations in the stratigraphic column to determine the

formation top depth.

11. The system of claim 10, wherein the drilling system further comprises:
means for performing a well path through the geological region of interest using

the formation top depth.
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12. The system of claims 10 or 11, wherein the reservoir simulator further comprises:
means for generating a first input sequence using the seismic data; and
means for generating a second input sequence using the well log data,
wherein the machine-learning model determines a predicted formation top depth

using the first input sequence and the second input sequence.

13. The system of any one of claims 10 to 12,
wherein the seismic data and the well log data are processed as time-series inputs

to the machine-learning model,
wherein the formation top depth corresponds to a geological time event in an
output sequence from the machine-learning model that is determined

using time-series data before and after the geological time event.

14. The system of any one of claims 10 to 13, wherein the reservoir simulator further
comprises:

means for determining a plurality of formation top depths of a plurality of
formations within the geological region of interest using the seismic data
and the well log data;

means for determining a thickness of a respective formation among the plurality
of formations; and

means for determining whether a respective formation top depth among the
plurality of formation top depths is invalid due to the respective formation
being eroded,

wherein the respective formation top is determined to be invalid in response to
the thickness of the respective formation being less than a predetermined

threshold.

15. A non-transitory computer readable medium storing instructions executable by a
computer processor, the instructions comprising functionality for:
obtaining seismic data regarding a geological region of interest;
obtaining well log data from a wellbore within the geological region of interest;

and
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determining a formation top depth using the seismic data, the well log data, a
stratigraphic column, and a machine-learning model,

wherein the stratigraphic column describes an order of a plurality of formations
within the geological region of interest, and

wherein the machine-learning model assigns one or more features among the
seismic data and the well log data to a formation among the plurality of
formations in the stratigraphic column to determine the formation top

depth.
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Formation Top Comparison Table 700

Geologist Machine-Learning :
Selections 701 | Model Predictions 7o2 |  Difference 703

Layer A 711 -6220.31' -6220.50' 0.19'
LayerB 712 -6296.60° -6296.50° -0.10'
Layer C 713 -6380.46' -6380.99' 0.58
LayerD 714 -3470.64" -3470.00 -0.64'
Layer E 715 -6211.27° -6210.99' -0.28'

FIG. 7
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