US 20130007490A1

a9 United States

a2y Patent Application Publication o) Pub. No.: US 2013/0007490 A1

Yamashita et al.

43) Pub. Date: Jan. 3, 2013

(54)

(735)

(73)

@

(22)

(63)

MULTICORE PROCESSOR SYSTEM, POWER
CONTROL METHOD, AND COMPUTER
PRODUCT

Inventors: Koichiro Yamashita, Hachioji (JP);
Hiromasa Yamauchi, Kawasaki (JP);
Kiyoshi Miyazaki, Machida (JP);
Takahisa Suzuki, Kawasaki (JP); Koji
Kurihara, Kawasaki (JP)

Assignee: FUJITSU LIMITED, Kawasaki-shi (JP)
Appl. No.: 13/608,001
Filed: Sep. 10, 2012

Related U.S. Application Data

Continuation of application No. PCT/JP2010/054251,
filed on Mar. 12, 2010.

Publication Classification

(51) Int.CL

GOGF 1/32 (2006.01)

GOGF 15/76 (2006.01)
(52) US.CL .cooooom.. 713/320; 712/32; 712/E09.001
(57) ABSTRACT

A multicore processor system having multiple cores, includes
processors configured to measure bandwidth of a network;
compare the measured bandwidth and a given threshold;
determine among the cores and based on an obtained com-
parison result, a core adjustment number by which the num-
ber of cores executing a given process related to data com-
municated through the network is adjusted; calculate the
number of executing cores after adjustment by the core
adjustment number and based on the number of cores execut-
ing the given process before the adjustment and the deter-
mined core adjustment number; specify a core executing the
given process among the cores and based on the calculated
number of executing cores after the adjustment; and distribute
the communicated data to the specified core executing the
given process.

100
v <106
FLASH ROM |
1 DISPLAY
101 102 103 104 y <105 107
| FLASH ROM
CPUs ROM I RAM FLASH ROM CONTROLLER
ﬂl ‘ h 1\ A F ¥y
h 4 Y v v <110
F y
KEYBOARD
108 il 109
Q=0
(@
I/F o
OO0
288
OSO
111

NETWORK

AHOML3N
LLL

US 2013/0007490 A1

O
o
<
<
<

D
g0l 3 801> H

00000
00000

A1

gavOgA3Ir

Jan. 3,2013 Sheet 1 of 9

HITIOHINOOD
NOM HSY4 WOY HSV3 AWVH WOH SNdO

/0L Gol> bOL> coL> 201> LOL>
AV1dSIa

WOY HSV4

904> A

00l

1" Old

Patent Application Publication

Patent Application Publication

COMMUNICATION

BANDWIDTH

Jan. 3,2013 Sheet2 of 9

FIG.2B

BANDWIDTH
215— MONITORING
MODULE

CPU SCHEDULER }-216

BUFFER SCHEDULER }-—217

214—

APPLICATION

A

A

(

210

CLIENT

MODULE

\
I

APPLICATION J‘
INTERFACE UNIT 211

s

\

BANDWIDTH }
INTERLOCKING UNIT 212

PU#0 CPU#1

MEMORY —209

213-0

2131

TIME

US 2013/0007490 A1

201

202

Patent Application Publication Jan. 3,2013 Sheet 3 of 9 US 2013/0007490 A1

FIG.2C

_-1 BANDWIDTH MONITORING MODULE [—215 \

/ APPLICATION |-214

' %4

| T

R CLIENT MODULE

210~

cpuso || crust || cpuse || cpuks 203
110
209~ MEMORY
213-1

o B 2 |
215 BANDWIDTH 2132 2133 \
.~ MONITORING MODULE

7

/ APPLICATION |-214

‘\

1

> CLIENT MODULE

210~

CPU#0 -

209

213-0 2131 213-2 213-3

Patent Application Publication Jan. 3,2013 Sheet 4 of 9 US 2013/0007490 A1

CPU#0 CPU#1
[301 [302
MEASURING |,| COMPARING
UNIT UNIT
/307 v f303
| DETECTING DETERMINING
> UNIT UNIT
/308 L 304
ADJUSTMENT | [CORE NUMBER
AMOUNT CALCULATING
CALCULATING UNIT
UNIT
4 /305
/309 |,
SPECIFYING
SETTING UNIT UNIT
(310 | 4 /306 /311
DISTRIBUTING || |. ACQUIRING
STORING UNIT > RIBY > IR
/7‘
/ \110
MEMORY / 200
1
/

213-0 213-1

Jan. 3,2013 Sheet 5 of 9 US 2013/0007490 A1

Patent Application Publication

d344N9
ERVERER!

.

d344N9g
3ISvan3ad

| -

el ¥3ad4ngd
0-€l2c ¥344dng

y3d4ng - v
ECYERET| j
«— AN3dsSNsS _\\\\\\\\\\\\\; ! aN3dSNsS } P
«—] aN3dSNS L”\\\\\\\\\\\w\\\\\\\\”\\: AN3dSNS | —
2 L\ L A
— 77777777777 NS A et
Ndo Ndo m_mpN,‘_Jhw_m_m“_u o.__,_n_uw@mz%%z_ JIVAILOY
AN3dSNS| anN3dsns mmn_n_am\:anw /
S A AN OIS S E SIS LS A A 4 I
JLYLS NdD 712 NOILYOIddV
3ZITVILINI g
«—[Fud}—{bud}—{Bud|— g }—{ 6 | —{6ud |—[bW e
DAYME = Mg aaymg = Mg SAYMY > MF SAYME > Mg 9AYMYg = Mg OAYME < ME 8AYMY < Mg anymg = mg OIZhM_A\u,m,rmﬂ@_m
le N| le N|
I HLAIMAONVE il I HLAIMANYg i
MO7 3AIM FHINDOY

! |

I J
9

b

l
I
¢!

old

|]

€

} 9

US 2013/0007490 A1

Jan. 3,2013 Sheet 6 of 9

Patent Application Publication

L0G

Y0S m) o _ m 3ZIS ¥344Nd

dodgzisingxe

Begzisjngxe

Patent Application Publication Jan. 3,2013 Sheet 7 of 9 US 2013/0007490 A1

FIG.6

START COMMUNICATION I—\«8601

SET INITIAL CPU NUMBER AND INITIAL BUFFER |_ 5602
NUMBER

ACQUIRE AVERAGE EFFECTIVE S603
BANDWIDTH BwAve

o
)

A

MEASURE ACQUIRED BANDWIDTH Bw I’\78604

EXECUTE CPU SCHEDULER 216 S605

HAS CLIENT
EXECUTION CPU BEEN NEWLY
ACTIVATED?

PA 4
<

YES S607
EXECUTE BUFFER SCHEDULER 217

UNUSED BUFFER PRESENT?

Patent Application Publication

START

Bw>BwAve ?

ARE ALL CLIENT
EXECUTION CPUs IN
OPERATION?

NO
5*8703

Jan. 3,2013 Sheet 8 of 9 US 2013/0007490 A1

NO

FIG.7

YES

ADD ONE CLIENT
EXECUTION CPU

NEWLY ACTIVATE ONE
CLIENT EXECUTION CPU

GENERATE CONTEXT FOR
CLIENT MODULE 210

Bw<BwAve ?

YS-MZ

INITIALIZE CLIENT

EXECUTION CPUs

ARE ALL CLIENT
EXECUTION CPUs
SUSPENDED?

REDUCE ONE CLIENT
EXECUTION CPU

MAKE SUSPENSION REQUEST
TO CLIENT MODULE 210 OF
CLIENT EXECUTION CPU TO BE
SUSPENDED

SHIFT TO POWER-SAVING
MODE, CLIENT EXECUTION
CPU THAT IS TO BE
SUSPENDED

I

-
>
h

PROVIDE ACTIVATION SUSPENSION CONTROL
TO BANDWIDTH INTERLOCKING UNIT 212

S711

A 4

END

Patent Application Publication Jan. 3,2013 Sheet 9 of 9 US 2013/0007490 A1

FIG.8

START

S801
HAS

CLIENT EXECUTION
CPU BEEN NEWLY
ACTIVATED?

NO

¢ S803

INCREASE NUMBER OF BUFFERS
BY ONE

DECEASE NUMBER OF
BUFFERS BY ONE

NOTIFY APPLICATION INTERFACE
UNIT 211 OF NUMBER OF
BUFFERS

S804

PROVIDE ACTIVATION
SUSPENSION CONTROL TO
BANDWIDTH INTERLOCKING UNIT
212

S805

US 2013/0007490 Al

MULTICORE PROCESSOR SYSTEM, POWER
CONTROL METHOD, AND COMPUTER
PRODUCT

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a continuation application of
International Application PCT/JP2010/054251, filed on Mar.
12, 2010 and designating the U.S., the entire contents of
which are incorporated herein by reference.

FIELD

[0002] The embodiments discussed herein are related to a
multicore processor system, a power control method, and a
power control program that control power.

BACKGROUND

[0003] Recently, accompanying increases in the speed of
networks, moving image delivery services where a large vol-
ume of streaming data is delivered from a server, received by
a receiving terminal and played, have spread. Correspond-
ingly, bandwidth speed is increasing in radio networks rep-
resented by Long Term Evolution (LTE) and WiMax (IEEE
802.16).

[0004] The following techniques have been disclosed as
techniques of efficiently receiving such large volumes of data.
A technique has been disclosed that improves overall effi-
ciency by concurrently downloading multiple content items
when excess bandwidth is available (see, for example, Japa-
nese Laid-Open Patent Publication No. 2004-151149). A
technique has been disclosed that includes multiple Direct
Memory Accesses (DMAs) to concurrently transfer received
data to applications (see, for example, Japanese Laid-Open
Patent Publication No. 2008-299439). A scheduling tech-
nique has been disclosed that changes the priority of a thread
depending on the bandwidth between a public line and a
server in a terminal apparatus that access multiple servers
(see, for example, Japanese Laid-Open Patent Publication
No. 2000-112858).

[0005] Various power-saving techniques are applied to
mobile terminals. The period of operation can be extended by
suppressing power consumption. If the period of operation is
the same, the battery size can be reduced by suppressing
power consumption and the overall weight and bulk of the
mobile terminal can be reduced.

[0006] A technique of varying the number of operating
central processing units (CPUs) by a mechanism that moni-
tors power-source connection configuration and a heat sensor
to achieve the most efficient operation has been disclosed as
a power-saving technique (see, for example, Japanese Laid-
Open Patent Publication No. H9-138716). A technique has
also been disclosed that preliminarily accumulates statistical
values of the load necessary for a process to control the
frequency of a CPU based on the statistical value, in an
application process causing an adjustment of internal pro-
cesses while the communication volume is constant (see, e.g.,
Japanese Laid-Open Patent Publication No. 2009-501482).
[0007] However, among the conventional techniques
described above, the technique disclosed in Japanese Laid-
Open Patent Publication No. 2004-151149 has a problem in
that the requirement of a process on the server side makes the
technique difficult to implement. The technique according to
the Japanese Laid-Open Patent Publication No. 2008-299439

Jan. 3, 2013

has a problem of excessive DMA processes in the case of a
bandwidth that is lower than the processing capacity of
DMAs since multiple DMAs are included. The technique
according to the Japanese Laid-Open Patent Publication No.
2000-112858 is on the basis of an environment in which
bandwidth is secured between a public line and a terminal.
While bandwidth is unstable as in the case of mobile termi-
nals, a problem of excessive processes occurs as is the case
with Japanese Laid-Open Patent Publication No. 2008-
299439.

[0008] In terms of the power-saving techniques, the tech-
nique according to the Japanese Laid-Open Patent Publica-
tion No. H9-138716 realizes power saving by saving a pro-
cess of a CPU that is to be terminated to another CPU and
putting the CPU that is to be terminated in a power-saving
mode if the apparatus is moving. However, if a process is
saved to another CPU, a saving process of saving a program
counter, stack pointer, etc., must be executed. The saving
process includes a number of processes and a load is prob-
lematically applied in an embedded environment having a
relatively lower processing ability such as a mobile terminal.
The technique according to the Japanese Laid-Open Patent
Publication No. 2009-501482 requires load characteristics of
data and therefore, has a problem in that the technique is
inapplicable to versatile data without load characteristics.

[0009] The techniques according to Japanese Laid-Open
Patent Publication Nos. 2004-151149, 2008-299439, 2000-
112858, H9-138716, and 2009-501482 focus attention on
how the throughput of access is improved under the environ-
ment where the bandwidth between a public line and a termi-
nal is stable and secured. Bandwidth significantly fluctuates
in mobile terminals due to radio wave conditions etc. The
techniques according to Japanese Laid-Open Patent Publica-
tion Nos. 2004-151149, 2008-299439, 2000-112858,
HO9-138716, and 2009-501482 have a problem in that appli-
cations cannot be operated stably if the bandwidth signifi-
cantly fluctuates.

SUMMARY

[0010] According to an aspect of an embodiment, a multi-
core processor system having multiple cores, includes pro-
cessors configured to measure bandwidth of a network; com-
pare the measured bandwidth and a given threshold;
determine among the cores and based on an obtained com-
parison result, a core adjustment number by which the num-
ber of cores executing a given process related to data com-
municated through the network is adjusted; calculate the
number of executing cores after adjustment by the core
adjustment number and based on the number of cores execut-
ing the given process before the adjustment and the deter-
mined core adjustment number; specify a core executing the
given process among the cores and based on the calculated
number of executing cores after the adjustment; and distribute
the communicated data to the specified core executing the
given process.

[0011] The object and advantages of the invention will be
realized and attained by means of the elements and combina-
tions particularly pointed out in the claims.

[0012] Itisto be understood that both the foregoing general
description and the following detailed description are exem-
plary and explanatory and are not restrictive of the invention.

US 2013/0007490 Al

BRIEF DESCRIPTION OF DRAWINGS

[0013] FIG. 1 is a block diagram of a hardware configura-
tion of a multicore processor system according to an embodi-
ment;

[0014] FIG. 2A is an explanatory diagram of a communi-
cation bandwidth of a multicore processor system 100;
[0015] FIGS. 2B and 2C are explanatory diagrams of states
of a portion of the hardware and software corresponding to
the communication bandwidth of the multicore processor
system 100;

[0016] FIG. 3 is a block diagram of a functional configura-
tion of the multicore processor system 100;

[0017] FIG. 4 is an explanatory diagram of CPU usage
status and communication buffer usage status in the embodi-
ment;

[0018] FIG.5 is an explanatory diagram of communication
buffer usage statuses in a conventional example and the
embodiment;

[0019] FIG. 6 is a flowchart of a process of a bandwidth
monitoring module 215;

[0020] FIG.7 is a flowchart of the process of a CPU sched-
uler 216; and
[0021] FIG. 8 is a flowchart of the process of a buffer
scheduler 217.

DESCRIPTION OF EMBODIMENTS
[0022] Preferred embodiments of the present invention will

be explained with reference to the accompanying drawings.

[0023] FIG. 1 is a block diagram of a hardware configura-
tion of a multicore processor system 100 according to an
embodiment. As depicted in FIG. 1, the multicore processor
system 100 includes multiple central processing units (CPUs)
101, read-only memory (ROM) 102, random access memory
(RAM) 103, flash ROM 104, a flash ROM controller 105, and
flash ROM 106. The multicore process system includes a
display 107, an interface (I/F) 108, and a keyboard 109, as
input/output devices for the user and other devices. The com-
ponents of the multicore system are respectively connected
by a bus 110.

[0024] The CPUs 101 govern overall control of the multi-
core processor system 100. The CPUs 101 refer to CPUs that
are single core processors connected in parallel. Details of the
CPUs 101 will be described hereinafter with reference to F1G.
2. Further, the multicore processor system 100 is a system of
computers that include processors equipped with multiple
cores. Provided that multiple cores are provided, implemen-
tation may be by a single processor equipped with multiple
cores or a group of single-core processors in parallel. For the
sake of simplicity, in the present embodiments, description
will be given using a processor group constituted by CPUs
that are connected in parallel and are single-core processors.
[0025] The ROM 102 stores therein programs such as a
boot program. The RAM 103 is used as a work area of the
CPUs 101. The flash ROM 104 stores system software such as
an operating system (OS), and application software. For
example, when the OS is updated, the multicore processor
system 100 receives a new OS via the I/F 108 and updates the
old OS that is stored in the flash ROM 104 with the received
new OS.

[0026] The flash ROM controller 105, under the control of
the CPUs 101, controls the reading and writing of data with
respect to the flash ROM 106. The flash ROM 106 stores
therein data written under control of the flash ROM controller

Jan. 3, 2013

105. Examples of the data include image data and video data
received by the user of the multicore processor system
through the I/F 108. A memory card, SD card and the like may
be adopted as the flash ROM 106.

[0027] The display 107 displays, for example, data such as
text, images, functional information, etc., in addition to a
cursor, icons, and/or tool boxes. A thin-film-transistor (TFT)
liquid crystal display and the like may be employed as the
display 107.

[0028] The I/F 108 is connected to a network 111 such as a
local area network (LAN), a wide area network (WAN), and
the Internet through a communication line and is connected to
other apparatuses through the network 111. The I/F 108
administers an internal interface with the network 111 and
controls the input/output of data from/to external apparatuses.
For example, a modem or aLAN adaptor may be employed as
the I/F 108.

[0029] The keyboard 109 includes, for example, keys for
inputting letters, numerals, and various instructions and per-
forms the input of data. Alternatively, a touch-panel-type
input pad or numeric keypad, etc. may be adopted.

[0030] FIG. 2A is an explanatory diagram of a communi-
cation bandwidth of the multicore processor system 100.
FIGS. 2B and 2C are explanatory diagrams of states of a
portion of the hardware and software corresponding to the
communication bandwidth of the multicore processor system
100. A classification into three states based on an acquired
bandwidth of the communication bandwidth will be
described with reference to the explanatory diagram denoted
by reference numeral 201. The states of hardware and soft-
ware in each of the states classified in the explanatory dia-
gram denoted by reference numeral 201 will be described
with reference to block diagrams denoted by reference
numerals 202 to 204.

[0031] The explanatory diagram denoted by reference
numeral 201 is a graph depicting changes in the communica-
tion band over time. The horizontal axis of the graph repre-
sents time and the vertical axis represents acquired bandwidth
in the communication bandwidth. The communication band-
width means a communication speed, and a wide bandwidth
and a low bandwidth represent a fast communication speed
and a slow communication speed, respectively. An acquired
bandwidth represents an actual communication speed. A
dashed line 205 indicates the value of an average effective
bandwidth. For example, when an actually usable average
bandwidth is set to about 50 [Mbps] with consideration of a
communication method having a theoretical bandwidth of
100 [Mbps], the average effective bandwidth is defined as 50
[Mbps].

[0032] In the graph denoted by reference numeral 201, a
classification into three states can be made according to a
positional relationship between the dashed line 205 and the
acquired bandwidth. In the state depicted by a range of ref-
erence numeral 206, the acquired bandwidth is equal to the
average effective bandwidth and this state is referred to as a
steady state. Even when the acquired bandwidth is not com-
pletely identical to the average effective bandwidth, for
example, a range of the average effective bandwidth may be
provided and, a state may be defined as the steady state if the
acquired bandwidth is included in the range. For example, the
average effective bandwidth may be defined as 50+5 [Mbps]
and a state may be defined as the steady state if the acquired
bandwidth is within a range of 45 [Mbps] to 55 [Mbps].

US 2013/0007490 Al

[0033] In the state indicated by a range of reference
numeral 207, the acquired bandwidth is higher than the aver-
age effective bandwidth and this state is referred to as a
bandwidth raised state. The bandwidth raised state occurs, for
example, when the multicore processor system 100 can fully
use aline of a base station since the radio wave conditions are
favorable and the base station wirelessly connected to the
multicore processor system 100 has few other connected
terminals.

[0034] In the state indicated by a range of reference
numeral 208, the acquired bandwidth is lower than the aver-
age effective bandwidth and this state is referred to as a
bandwidth lowered state. The bandwidth lowered state
occurs, for example, when the multicore processor system
100 is hidden behind a building and radio wave conditions
deteriorate. If a user carrying the multicore processor system
100 is moving and the base station connected to the multicore
processor system 100 is changed, the bandwidth lowered
state also occurs. If the base station connected to the multi-
core processor system 100 has a number of other connected
terminals and bandwidth is utilized in a divided manner since
concurrent users increase, the bandwidth lowered state also
occurs.

[0035] The block diagram denoted by reference numeral
202 of FIG. 2B is a block diagram of configurations of a
portion of the hardware and software in the steady state
denoted by reference numeral 206. First, the configurations of
aportion of the hardware and software will be described with
reference to the block diagram denoted by reference numeral
202. The block diagram denoted by reference numeral 202
depicts the CPUs 101 and memory 209 as the hardware con-
figuration. The CPUs 101 according to this embodiment are
made up of multiple CPUs, which include a CPU #0, a
CPU#1, a CPU #2, and a CPU#3. The CPUs and the memory
209 are respectively connected through a bus 110. The
memory 209 is a storage device accessed by the CPUs 101
and corresponds to the ROM 102, the RAM 103, and the flash
ROM 104.

[0036] The CPUs execute software with the hardware con-
figuration described above. The executed software includes a
client module 210, an application 214, and a bandwidth moni-
toring module 215. The software access a buffer 213-0 and a
buffer 213-1 in the memory 209.

[0037] The client module 210 is a library having a function
of executing a process of a presentation layer in an OSI
reference model in a communication function. In the process
of the presentation layer, data is converted so as to eliminate
the necessity for the application 214 to recognize a difference
in syntax in terms of communicated data. For example,
HyperText Markup Language (HTML) and Extensible
Markup Language (XML) coincide with the specifications of
the presentation layer. The client module 210 includes an
application interface unit 211 and a bandwidth interlocking
unit 212 internally. The communicated data may be either
data received from the I/F 108 or data transmitted to the I/F
108.

[0038] The application interface unit 211 has a function of
delivering data to the application 214 at regular intervals
without interlocking with a communication bandwidth. The
bandwidth interlocking unit 212 has a function of dynami-
cally changing the number of operating CPUs if the band-
width monitoring module 215 specifies the number of CPUs.
The bandwidth interlocking unit 212 also has a function of
allocating buffers to the currently operating CPUs and dis-

Jan. 3, 2013

tributing data in the buffers to the CPUs if the number of
buffers is changed. The application interface unit 211 and the
bandwidth interlocking unit 212 are connected by an asyn-
chronous interface such as that of message communication
and first-in, first-Out (FIFO).

[0039] The buffer 213-0 and the buffer 213-1 are areas in
the memory 209 temporarily storing data communicated
through the I/F 108. The buffer 213-0 and the buffer 213-1 are
secured by the bandwidth monitoring module 215. The num-
ber of buffers secured is dynamically changed if communi-
cated data is data received from the I/F 108.

[0040] Although one buffer has an arbitrary size, the size
may be set in accordance with the rules of a protocol for
exchange by the I/F 108. For example, the maximum size of
one packet of data received by the I/F 108 conforms to a
maximum transmission unit (MTU), which is the maximum
unit transferable in one transfer set in a data link layer. If the
MTU is 1500 [bytes], the size of the data portion in the packet
is at most 1500 [bytes]. Therefore, if one bufter is configured
such that 32 packets of data can be saved, the buffer size is
1500x32=48000 [bytes].

[0041] A method of setting the number of packets for one
buffer may be set according to the processing ability of the
CPU. For example, a CPU is assumed to have a client pro-
cessing efficiency Cl 0f 384000 [bits per second] (bps) and to
process 48000 [bytes] per second. The CPU is further
assumed to read data from a buffer once every second. In this
case, since the number of packets that can be processed in one
second is 48000/1500=32, the number of packets is set to 32.
If the CPU reads data twice every second, the number of
packets may be reduced to half, i.e., 16, and the size of the
buffer may be 24000 [bytes].

[0042] The application 214 is software that performs an
operation that a user using a computer wants to execute.
When using a communication function, the application 214
accesses the client module 210. Examples of the application
214 include streaming video playing software and a web
browser, for example.

[0043] The bandwidth monitoring module 215 has a func-
tion of monitoring a communication bandwidth for a cur-
rently connected server. The bandwidth monitoring module
215 is made up of a periodically activated daemon or thread.
The bandwidth monitoring module 215 includes a CPU
scheduler 216 and a buffer scheduler 217 internally.

[0044] The CPU scheduler 216 calculates the number of
CPUs necessary to operate the bandwidth interlocking unit
212 based on the monitoring of the communication band-
width. The buffer scheduler 217 has a function of securing a
buffer if the concurrency of the bandwidth interlocking unit
212 increases, based on the monitoring of the communication
bandwidth. The buffer scheduler 217 has a function of releas-
ing a buffer in conjunction with a decrease in buffering data as
the process of the application interface unit 211 proceeds. The
details of the processes of the bandwidth monitoring module
215, the CPU scheduler 216, and the buffer scheduler 217 will
be described later with reference to FIGS. 6, 7, and 8, respec-
tively.

[0045] In the hardware and software configurations
described above, the multicore processor system 100 realizes
the function of the application 214. With regard to the CPUs
in the steady state, the CPU #0 and the CPU #1 are in opera-
tion and the CPU #2 and the CPU #3 are in a suspended state.
The CPU #2 and the CPU #3 are not performing a process
related to the application 214 and no other application is

US 2013/0007490 Al

running thereon. The CPU #2 and the CPU #3 and are oper-
ated in a power-saving mode under the power control. In the
block diagram denoted by reference numeral 202, the buffer
213-0 is allocated to the CPU #0 and the buffer 213-1 is
allocated to the CPU #1.

[0046] The block diagram denoted by reference numeral
203 in FIG. 2C is a block diagram of configurations of a
portion of the hardware and software in the bandwidth raised
state denoted by reference numeral 207. The bandwidth
monitoring module 215 detects the bandwidth raised state
and provides cancelation control of the power-saving mode
for the CPU #2 and the CPU #3 to the client module 210. The
client module 210 cancels the power-saving mode ofthe CPU
#2 and the CPU #3.

[0047] The bandwidth monitoring module 215 notifies the
application interface unit 211 of the client module 210 of the
number of buffers and the application interface unit 211
secures a buffer 213-2 and a buffer 213-3. The secured buffers
are allocated to the CPUs by the bandwidth interlocking unit
212. In the block diagram denoted by reference numeral 203,
the buffer 213-2 is allocated to the CPU #2 and the buffer
213-3 is allocated to the CPU #3.

[0048] The block diagram denoted by reference numeral
204 of FIG. 2C is a block diagram of configurations of a
portion of the hardware and software in the bandwidth low-
ered state denoted by reference numeral 208. The bandwidth
monitoring module 215 detects the bandwidth lowered state
and controls the client module 210 such that the CPU #2 and
the CPU #3 are operated in the power-saving mode.

[0049] The bandwidth monitoring module 215 monitors
the status of usage of the buffer 213-0, the buffer 213-1, the
buffer 213-2, and the buffer 213-3 and checks for an unused
buffer. In the block diagram denoted by reference numeral
204, the buffer 213-1 is not used and the application interface
unit 211 releases the buffer 213-1. Because the buffers are
reduced, the bufters are re-allocated to the CPUs by the band-
width interlocking unit 212. In the block diagram denoted by
reference numeral 204, the buffer 213-0 is allocated to the
CPU #0 and the buffer 213-2 and the buffer 213-3 are allo-
cated to the CPU #1.

[0050] A functional configuration of the multicore proces-
sor system 100 will be described. FIG. 3 is a block diagram of
the functional configuration of the multicore processor sys-
tem 100. The multicore processor system 100 includes a
measuring unit 301, a comparing unit 302, a determining unit
303, a core number calculating unit 304, a specifying unit
305, a distributing unit 306, a detecting unit 307, an adjust-
ment amount calculating unit 308, a setting unit 309, a storing
unit 310, and an acquiring unit 311. The functions (the mea-
suring unit 301 to the acquiring unit 311) acting as a control
unit, for example, are implemented by the CPUs 101 execut-
ing programs stored in storage devices such as the ROM 102,
the RAM 103, and the flash ROM 104 depicted in FIG. 1. The
functions may be implemented by another CPU executing the
programs via the I/F 108.

[0051] Although the CPU #0 has the functions of the mea-
suring unit 301 to the storing unit 310 and the CPU #1 has the
function of the acquiring unit 311 in FIG. 3, the CPU #0 also
has the acquiring unit 311 when executing the client module
210. The measuring unit 301 to the core number calculating
unit 304, the detecting unit 307, and the adjustment amount
calculating unit 308 belong to the bandwidth monitoring
module 215, and the specifying unit 305, the distributing unit
306, the setting unit 309, the storing unit 310, and the acquir-

Jan. 3, 2013

ing unit 311 belong to the client module 210. This embodi-
ment will be described with respect to a state where the
bandwidth monitoring module 215 is executed by the CPU
#0. The bandwidth monitoring module 215 may be executed
by another CPU among the CPU #1 to the CPU #3 or may be
executed by an external CPU different from the CPU #0 to the
CPU #3.

[0052] The measuring unit 301 has a function of measuring
bandwidth of a network. The CPU #0 transmits a ping to the
I/F 108 at a constant frequency to measure bandwidth with a
response from a server. The CPU #0 may make the measure-
ment from an amount of data transmitted or received in a
certain period, other than the measuring method using the
ping. The measured data is stored in a storage area such as the
RAM 103 and the flash ROM 104.

[0053] Thecomparing unit302 has a function of comparing
the bandwidth measured by the measuring unit 301 and a
given threshold value. For example, when the average effec-
tive bandwidth is 50 [Mbps], if the measured bandwidth is 60
[Mbps] and exceeds the given threshold value, the multicore
processor system 100 is in the bandwidth raised state. If the
measured bandwidth is 40 [Mbps] and falls below the given
threshold value, the multicore processor system 100 is in the
bandwidth lowered state. If the measured bandwidth is 50
[Mbps] and is equal to the given threshold value, the multi-
core processor system 100 is in the steady state. Comparison
results are stored to a storage area such as in the RAM 103 and
the flash ROM 104.

[0054] The determining unit 303 has a function of deter-
mining a core adjustment number indicative of the number of
cores to be increased/decreased to execute a given process
related to data communicated through a network among mul-
tiple cores, based on a comparison result of the comparing
unit 302. The cores correspond to the CPU #0 to the CPU #3
in this embodiment. The given process is a process executed
by the client module 210 and is a process of the presentation
layer, for example. Process details may be those of a process
of another layer.

[0055] For example, in the case of transmission to the I/F
108, a Secure Sockets Layer (SSL) may be executed that is a
session layer. If the application 214 is streaming video play-
ing software, the transmitted or received data may be a Real
Time Streaming Protocol (RTSP) controlling streaming
video in an application layer. For the transmitted or received
data, a real-time Transport Protocol (RTP) may be used that
manages streaming data in a transport layer.

[0056] As an example of the determining unit 303, the state
of the multicore processor system 100 is assumed to be
defined as the bandwidth raised state based on the comparing
unit 302, for example. The determining unit 303 determines
that the number of CPUs executing the client module 210 is to
be increased by one. The determined number of CPUs is
stored in a storage area such as in the RAM 103 and the flash
ROM 104.

[0057] The core number calculating unit 304 has a function
of calculating the number of executing cores after the adjust-
ment, based on the number of cores executing the given
process before the adjustment and the core adjustment num-
ber determined by the determining unit 303. For example, if
the number of CPUs executing the client module 210 before
the adjustment is two and the number of CPUs is increased by
one by the determining unit 303, the number of CPUs after the
adjustment is three. The calculated result is stored in a storage
area such as in the RAM 103 and the flash ROM 104.

US 2013/0007490 Al

[0058] The specifying unit 305 has a function of specifying
a core executing a given process among the cores, based on
the number of executing cores after the adjustment calculated
by the core number calculating unit 304. For example, assum-
ing that the CPU #0 and the CPU #1 execute the client module
210 and are client execution CPUs before the adjustment, in
this case, if the number of the executing CPUs after the
adjustment is calculated as three, the CPU #0 specifies either
the CPU #2 or the CPU #3 currently not executing the client
module 210 as a new client execution CPU via the specitying
unit 305. Information of the specified CPU is stored in a
storage area such as in the RAM 103 and the flash ROM 104.
[0059] The distributing unit 306 has a function of distrib-
uting communicated data to the core that is specified by the
specifying unit 305 and is executing the given process. The
distributing unit 306 may distribute data stored in the storage
area after the adjustment of the cores executing the given
process, depending on the storage area after the adjustment
stored to by the storing unit 310. For example, if the CPU #0
and the CPU #1 execute the client module 210, the distribut-
ing unit 306 distributes the buffer 213-0 storing communi-
cated data to the CPU #0 and the buffer 213-1 storing com-
municated data to the CPU #1. Distribution results are stored
to a storage area such as in the RAM 103 and the flash ROM
104.

[0060] The detecting unit 307 has a function of detecting
available space in a given storage area. The given storage area
is a currently established buffer among the buffers 213-0 to
213-3. For example, when the buffer 213-0 and the buffer
213-1 are secured, if data received by a client execution CPU
is released and generates available space corresponding to
one buffer, the detecting unit 307 detects the available space
corresponding to one buffer. Information of the detected
available space is stored to a storage area such as in the RAM
103 and the flash ROM 104.

[0061] The adjustment amount calculating unit 308 has a
function of calculating an adjustment amount of the given
storage area based on a decreased amount acquired by con-
verting the amount of available space detected by the detect-
ing unit 307 into a given unit, and the amount of received data.
If the comparing unit 302 indicates that the measured band-
width exceeds a given threshold value, the adjustment amount
calculating unit 308 may add a given increased amount to
make the calculation. The given increased amount is a data
amount corresponding to one buffer and the given unit is an
amount on the basis of one buffer.

[0062] For example, if the available space is 60000 [bytes]
and the bufter size of one buffer is 48000 [bytes], a decrease
amount is 60000/48000=1 with a reminder of 12000 [bytes]
and therefore, the amount of available space is one buffer. In
an example of the adjustment amount calculating unit 308, for
example, when the measured acquired bandwidth exceeds the
average effective bandwidth, if the detected available space
corresponds to one buffer and received data also corresponds
to one buffer, an adjustment amount is 1+(-1)+1=1. Calcu-
lated values are stored to a storage area such as in the RAM
103 and the flash ROM 104.

[0063] The setting unit 309 has a function of setting, as the
given storage area, a storage area after the adjustment, based
on the adjustment amount of the given storage area calculated
by the adjustment amount calculating unit 308. For example,
the multicore processor system 100 is assumed to have
secured two buffers, i.e., the buffer 213-0 and the buffer
213-1. If an adjustment amount is one, the CPU #0 newly

Jan. 3, 2013

secures the buffer 213-2 to turn the number of buffers to three
and defines the buffers 213-0 to 213-2 as the storage area after
the adjustment. The CPU #0 sets the storage area after the
adjustment as a given storage area, which is subject to detec-
tion by the detecting unit 307.

[0064] The storing unit 310 has a function of storing the
received data into the storage area after the adjustment set by
the setting unit 309. The received data may be data transmit-
ted through a network. For example, the CPU #0 stores
received data into the buffer 213-0 or the buffer 213-1.
[0065] The acquiring unit 311 has a function of acquiring
communicated data distributed by the distributing unit 306.
For example, the CPU #1 specified as the client execution
CPU by the specifying unit 305 acquires the data communi-
cated by the buffer 213-1.

[0066] FIG. 4 is an explanatory diagram of CPU usage
status and communication buffer usage status in this embodi-
ment. The multicore processor system 100 activates the appli-
cation at time t0. The multicore processor system 100 allo-
cates two CPUs among the CPUs #0 to #3 to the process of the
client module 210 as the initial state. The multicore processor
system 100 secures two buffers among the buffers 213-0 to
213-3.

[0067] Aftertimet]l when the application 214 is completely
activated, the multicore processor system 100 starts the band-
width monitoring via the bandwidth monitoring module 215.
As a result of the bandwidth monitoring, at time t1 and time
12, the multicore processor system 100 is in the steady state,
where the acquired bandwidth Bw is equal to an average
effective bandwidth BwAve, and allocates the CPU #0 and the
CPU #1 to the process of the client module 210. The multicore
processor system 100 secures two arbitrary buffers among the
buffers 213-0 to 213-3.

[0068] Attimet3 and timet4, the acquired bandwidth Bw is
a wide bandwidth exceeding the average effective bandwidth
BwAve and the multicore processor system 100 turns to the
bandwidth raised state. At time t3, the multicore processor
system 100 allocates the CPU #2 to the process of the client
module 210 and newly secures one unused buffer among the
buffers 213-0 to 213-3. At time t4, similarly, the multicore
processor system 100 allocates the CPU #3 to the process of
the client module 210 and newly secures one unused buffer
among the buffers 213-0 to 213-3.

[0069] At time t5, as a result of the bandwidth monitoring,
the multicore processor system 100 turns to the steady state.
The multicore processor system 100 turning to the steady
state cancels the allocation of the CPU #2 and the CPU #3 to
the process of the client module 210 and puts the CPU #2 and
the CPU #3 into the suspended state if no other process is
executed. The buffers 213-0 to 213-3 are all in use and there-
fore, not released.

[0070] Attimet6 and timet7, the acquired bandwidth Bw is
a low bandwidth lower than the average effective bandwidth
BwAve and the multicore processor system 100 turns to the
bandwidth lowered state. At time t6, the multicore processor
system 100 cancels the allocation of the CPU #1 to the pro-
cess of the client module 210 and puts the CPU #1 into the
suspended state if no other process is executed. If an unused
buffer exists, the buffer is released.

[0071] At time t7, the multicore processor system 100 can-
cels the allocation of the CPU #0 to the process of the client
module 210 and puts the CPU #0 into the suspended state if no
other process is executed. Since the bandwidth monitoring
module 215 etc., operate in the CPU #0 in this embodiment,

US 2013/0007490 Al

the CPU #0 does not completely suspended and, for example,
the CPU #0 lowers a clock frequency ofthe CPU and operates
in the power-saving mode. Each time an unused buffer is
detected among the buffers 213-0 to 213-3, the multicore
processor system 100 releases the buffer.

[0072] At time t8, the acquired bandwidth Bw becomes
equal to the average effective bandwidth BwAve and the
multicore processor system 100 turns to the steady state. The
multicore processor system 100 is in the initial state and
allocates the CPU #0 and the CPU #1 to the process of the
client module 210. With regard to the buffers, the multicore
processor system 100 performs operation to secure two arbi-
trary buffers among the buffers 213-0 to 213-3. Attime t9, the
multicore processor system 100 is in the steady state and
continues the execution of the application 214. If an unused
buffer is detected, the multicore processor system 100 per-
forms operation to release the unused buffer.

[0073] Although not depicted, in a CPU usage status and a
communication buffer usage status in a conventional
example, a multicore processor in the conventional example
turns to an excessive operation state in the steady state and the
bandwidth lowered state. In the excessive operation state, if a
process is lower than a client processing efficiency that is a
processing efficiency of a CPU, the process is completely
completed and the multicore processor enters a state of wait-
ing for data for a given period. The occurrence of the state of
waiting for data generates a spin loop for periodically check-
ing whether data has been acquired.

[0074] For example, in Japanese Laid-Open Patent Publi-
cation No. 2008-299439, an error such as data under flow
occurs during DMA setting and an overhead of recovery is
generated. As a result, in the excessive operation state, waste-
ful power consumption occurs due to the overhead described
above.

[0075] FIG. 5 is an explanatory diagram of communication
buffer usage statuses in a conventional example and the
embodiment. The horizontal axis of a graph represents the
time from the start time of data reception and the vertical axis
represents buffer size. A solid line 501 indicates usage status
associated with a temporal change in the communication
buffer in this embodiment and a dashed line 502 indicates
usage status associated with a temporal change in the com-
munication buffer in the conventional example. A dashed-
dotted line 503 indicates a maximum value MaxBufsizeprop
of the communication buffer in this embodiment and a
dashed-dotted line 504 indicates a maximum value MaxBuf-
sizearg of the communication buffer in the conventional
example. A usage amount Bufsize(t) of the communication
buffers is expressed by equation (1).

d (65)]
Bufsize(r) = %fCZ-N(t)-f(t)dt

[0076] In this equation, Cl denotes client processing effi-
ciency [bps]; t denotes time [s]; N(t) denotes operating CU
number; and f(t) denotes reception speed [bps]. In this case,
the maximum buffer size satisfies the condition expressed by
equation (2).

Jan. 3, 2013

dy o @
7 ufsize(r) =

[0077] Equation (3) expresses Bufsize(t') at t=t' satisfying
Equation (2), which is the maximum buffer size in this
embodiment.

MaxBufsize,,,,, =CIN{)AT) 3)
[0078] Similarly, equation (4) expresses the maximum

buffer size in the conventional example.

N < @
ax. ufszzearg =1ra’
[0079] In this equation, D denotes a total amount of data.

The buffer can be reduced by MaxBufsizearg-MaxBuf-
sizeprop, i.e., a difference denoted by reference numeral 505,
as an effect. In this embodiment, the buffer can be reduced by
the difference denoted by reference numeral 505 and more
efficient operation can be achieved as compared to typical
buffer management modes. The client processing efficiency
Cl may be obtained by measuring the processing efficiencies
of the CPUs #0 to #3 in advance.

[0080] For example, assuming that the client processing
efficiency Cl is 10 [Mbps]; (1) is 384 [kbps] to 100 [Mbps];
and time t of reception completion is 600 [seconds], in this
case, MaxBufsizeprop is several megabytes. Since operation
is performed in the case of MaxBufsizearg such that a larger
buffer size is secured when D is larger consequent to equation
(4), the difference becomes greater when a data amount is
larger.

[0081] FIG. 6 is a flowchart of a process of the bandwidth
monitoring module 215. The CPU #0 executing the band-
width monitoring module 215 starts communication with the
application 214 (step S601). Subsequently, the CPU #0 sets
the initial CPU number and the initial buffer number allocated
to the client module 210 at the start of the communication
(step S602). For example, the CPU #0 allocates a half of all
the CPUs and prepares buffers equivalent in number to the
CPUs. In this embodiment, the multicore processor system
100 allocates two CPUs and prepares two buffers. The set
values are reported to the bandwidth interlocking unit 212 and
the application interface unit 211.

[0082] After the start of the communication, the CPU #0
acquires the average effective bandwidth BwAve of the com-
munication (step S603). The average effective bandwidth
represents an average bandwidth in the started communica-
tion standard and, for example, if a theoretical bandwidth is
100 [Mbps], the average effective bandwidth may be defines
as 100/2=50 [Mbps].

[0083] The CPU #0 then measures the acquired bandwidth
Bw (step S604). The acquired bandwidth is an actual com-
munication speed and, for example, a ping is sent to measure
the acquired bandwidth. After measuring Bw, the CPU #0
executes the CPU scheduler 216 (step S605). The details of
the process of the CPU scheduler 216 will be described with
reference to FIG. 7. After the process of the CPU scheduler
216, the CPU #0 checks whether a client execution CPU has
been newly activated in the process of the CPU scheduler 216
(step S606).

US 2013/0007490 Al

[0084] If activated (step S606: YES), the CPU #0 executes
the buffer scheduler 217 (step S607). The details of the pro-
cess of the buffer scheduler 217 will be described later with
reference to FIG. 8. After the operation at step S607, or if no
client execution CPU under operation (step S606: NO), the
CPU #0 detects whether an unused buffer is present as a result
ofrelease of received data from the buffers (step S608). If the
presence of an unused buffer is detected (step S608: YES), the
CPU #0 goes to the operation at step S607. [f no unused buffer
exists (step S608: NO), the CPU #0 goes to the operation at
step S604.

[0085] FIG. 7 is a flowchart of the process of the CPU
scheduler 216. The CPU #0 compares Bw and BwAve at steps
S701 and S706. If Bw is greater than BwAve (step S701:
YES), the CPU #0 checks whether all the client execution
CPUs are in operation (step S702). If a client execution CPU
not in operation exists (step S702: NO), the CPU #0 adds one
client execution CPU (step S703).

[0086] After the addition, the CPU #0 newly activates one
client execution CPU not in operation as a client execution
CPU (step S704). After the activation, the CPU #0 generates
context for the client module 210 (step S705). After the
completion of the operation at step S705, the CPU #0 termi-
nates the CPU scheduler process. If the process path of step
S705 is executed, the client execution CPU is newly activated
and, therefore, the CPU #0 executes the path of YES at step
S606.

[0087] If Bw is equal to or less than BwAve (step S701:
NO), the CPU #0 checks whether Bw is smaller than BwAve
(step S706). If Bw is smaller than BwAve (step S706: YES),
CPU #0 checks whether all of the client execution CPUs are
suspended (step S707). If an executing CPU exists (step
S707: NO), the CPU #0 reduces one client execution CPU
(step S708).

[0088] The CPU #0 then makes a suspension request to the
client module 210 of the client execution CPU to be sus-
pended among the executing CPUs (step S709). After making
the suspension request, the CPU #0 shifts the client execution

CPU that is to be suspended, to the power-saving mode (step
S710).

[0089] The CPU #0 then provides activation suspension
control to the bandwidth interlocking unit 212 (step S711)
and terminates the process. In the operation at step S711, the
CPU #0 notifies the bandwidth interlocking unit 212 of the
increased/decreased number of execution CPUs determined
at step S708 or step S712 described later. If the process path
of step S711 is executed, no client execution CPU is newly
activated and, therefore, the CPU #0 executes the path of NO
at step S606.

[0090] Viathenotified bandwidth interlockingunit 212, the
CPU #0 adds the increased/decreased number of the notifi-
cation to the number of CPUs executing the client module 210
before the adjustment to calculate the number of executing
CPUs after the adjustment. After the calculation, the CPU #0
specifies the CPUs executing the client module 210 according
to the number of CPUs after the adjustment.

[0091] In this specifying method, for example, if the num-
ber of CPUs is increased, the CPU #0 sets any one of non-
executing CPUs as a CPU to execute the client module 210
without changing the executing CPUs before the adjustment.
If the number of CPU is decreased, the CPU #0 refers to the
buffers allocated to the CPUs among the executing CPUs
before the adjustment to detect a buffer having the smallest

Jan. 3, 2013

amount of data received in the buffer. For the CPU accessing
the buffer, the CPU #0 cancels the allocation to the client
module 210.

[0092] After specifying the CPU, the CPU #0 distributes
secured buffers to the specified CPU in the client module 210.
In the distributing method, for example, if the number of
CPUs is increased, since the number of buffers is also
increased, a newly secured buffer may be allocated, and the
data of the newly secured buffer may be distributed, to a
newly allocated CPU. Ifthe number of CPUs is decreased, the
CPU #0 allocates a buffer processed by a CPU with the
allocation cancelled such that the buffer is processed by a
remaining CPU, thereby distributing data among CPUs.
[0093] IfBw is equal to BwAve (step S706: NO), the CPU
#0 initializes the client execution CPUs (step S712) and goes
to the operation at step S711. The initialization of the execu-
tion CPUs is the same as at step S602 and, for example, ifone
CPU operates before step S712, the CPU #0 causes two CPUs
to operate according to the initial value. Although the buffers
are not initialized, if the number thereof is lower than the
initial value, the CPU #0 restores the number to the initial
value.

[0094] Although the average effective bandwidth is com-
pared to the acquired bandwidth in the determining opera-
tions at step S701 and S706, the average effective bandwidth
may have a certain width. For example, if the average effec-
tive bandwidth is set to 50+5 [Mbps], the operation at step
S701 is executed as “Bw>(BwAve+5)” and the operation at
step S706 is executed as “Bw<(BwAve-5)". A width may be
provided in this way to execute the operation at step S712
when the average effective bandwidth is substantially equal to
the acquired bandwidth.

[0095] FIG. 8 is a flowchart of the process of the buffer
scheduler 217. The CPU #0 checks whether a client execution
CPU has been newly activated (step S801). If a client execu-
tion CPU has been newly activated (step S801: YES), the
CPU #0 increases the number of buffers by one (step S802).
If no client execution CPU has been newly activated (step
S801: NO), a result of checking the buffer remaining amount
indicates the presence of an unused buffer and the CPU #0
deceases the number of buffers by one (step S803).

[0096] Afterthe operation at step S802 or S803, the CPU #0
notifies the application interface unit 211 of the number of
buffers (step S804). After the notification, the CPU #0 pro-
vides the activation suspension control to the bandwidth
interlocking unit 212 (step S805) and terminates the process.
In the operation at step S805, the CPU #0 notifies the band-
width interlocking unit 212 of the increased/decreased num-
ber of execution CPUs determined at step S703.

[0097] Via the notified application interface unit 211 and
the bandwidth interlocking unit 212, the CPU #0 notifies the
CPUs executing the client module 210 of the adjustment in
buffers. Based on the increased/decreased number indicated
in the notification, the CPU #0 sets the buffers after the
adjustment. The CPU #0 then distributes the buffers distrib-
uted to the CPUs, according to the buffers after the adjust-
ment. For example, if a buffer is increased, the CPU #0
distributes the data stored in the newly secured buffer to an
arbitrary CPU executing the client module 210. In this case,
since no data exists in the newly secured buffer, the CPU #0
may store a portion of data of an already secured buffer again
into the newly secured buffer.

[0098] As described above, according to the multicore pro-
cessor system, the power control method, and the power

US 2013/0007490 Al

control program, the number of CPUs processing communi-
cated data is calculated according to the communication
bandwidth to distribute the communication data among the
CPUs. As a result, an optimum number of CPUs can be
operated according to the communication band and lower
electric power can be achieved by performing the power
control with respect to CPUs not under operation.

[0099] If the communication bandwidth exceeds a given
threshold value, the multicore processor system may calcu-
late an adjustment amount from a given increased amount of
a buffer, available space of a storage area, and a received data
amount; set the storage area after the adjustment; and distrib-
ute the data of the storage area after the adjustment among the
CPUs. As a result, a storage area of a size suitable for the
processing ability of the CPUs can be secured and the area
used in the storage area can be reduced. Since the amount of
the memory 209 is not large in an embedded environment of
a mobile terminal etc., it is useful to reduce the amount of
memory used.

[0100] If the communication bandwidth does not exceed
the given threshold value, the multicore processor system
may calculate an adjustment amount from the available space
of'the storage area and a received data amount; set the storage
area after the adjustment; and distribute the data of the storage
area after the adjustment among the CPUs. As a result, a
storage area of a size suitable for the processing ability of the
CPUs can be secured and lower electric power can be
achieved without falling into the excessive operation state
particularly in the case of the steady state or the bandwidth
lowered state.

[0101] If a buffer allocated to a CPU before migration is
allocated to a CPU after migration in the bandwidth lowered
state in this embodiment, the processing amount can be
reduced. For example, if the buffer is implemented by FIFO
of'a ring buffer, migrated data include four data, which are the
start and end addresses of the buffer, an address indicative of
an unprocessed position and a process completed address of
data. Since the CPU after migration has a thread executing the
same process as the CPU before migration, the thread present
in the CPU after migration may be used and therefore, a
migrating process is not necessary for data other than the four
data described above. This processing amount is smaller than
the processing amount in the saving process implemented in
Japanese Laid-Open Patent Publication No. H9-138716, for
example.

[0102] The power control method described in the present
embodiment may be implemented by executing a prepared
program on a computer such as a personal computer and a
workstation. The program is stored on a computer-readable
recording medium such as a hard disk, a flexible disk, a
CD-ROM, an MO, and a DVD, read out from the computer-
readable medium, and executed by the computer. The pro-
gram may be distributed through a network such as the Inter-
net.

[0103] According to the multicore processor system, the
power control method, and the power control program, an
optimum number of CPUs can be operated according to com-
munication bandwidth and by performing power control with
respect to CPUs not operated, lower power consumption can
be achieved.

[0104] All examples and conditional language provided
herein are intended for pedagogical purposes of aiding the
reader in understanding the invention and the concepts con-
tributed by the inventor to further the art, and are not to be

Jan. 3, 2013

construed as limitations to such specifically recited examples
and conditions, nor does the organization of such examples in
the specification relate to a showing of the superiority and
inferiority of the invention. Although one or more embodi-
ments of the present invention have been described in detail,
it should be understood that the various changes, substitu-
tions, and alterations could be made hereto without departing
from the spirit and scope of the invention.
What is claimed is:
1. A multicore processor system having a plurality of cores,
the system comprising processors configured to:
measure bandwidth of a network,
compare the measured bandwidth and a given threshold,
determine among the cores and based on an obtained com-
parison result, a core adjustment number by which the
number of cores executing a given process related to data
communicated through the network is adjusted,

calculate the number of executing cores after adjustment
by the core adjustment number and based on the number
of cores executing the given process before the adjust-
ment and the determined core adjustment number,

specify a core executing the given process among the cores
and based on the calculated number of executing cores
after the adjustment, and

distribute the communicated data to the specified core

executing the given process.

2. The multicore processor system according to claim 1, the
processors configured to:

detect available space in a given storage area,

calculate an adjustment amount of the given storage area,

when the comparison result indicates that the measured
bandwidth exceeds the given threshold value and based
on a given increased amount, a decreased amount
acquired by converting the amount of detected available
space into a given unit, and the amount of data received
through the network,

set a storage area after the adjustment as the given storage

area based on the calculated adjustment amount of the
given storage area, and

store the received data into the set storage area, wherein

the processor, according to the storage area to which the

received data is stored, distributes the data stored to the
storage area to the core executing the given process.

3. The multicore processor system according to claim 2,
wherein

the processor calculates the adjustment amount of the

given storage area based on the decreased amount
acquired by converting the amount of the detected avail-
able space into a given unit and the amount of data
received through the network, when the comparison
result indicates that the measured bandwidth does not
exceed the given threshold value.

4. A power control method executed by a multicore pro-
cessor system having a plurality of cores, the method com-
prising:

measuring bandwidth of a network;

comparing the measured bandwidth and a given threshold;

determining among the cores and based on an obtained

comparison result, a core adjustment number by which
the number of cores executing a given process related to
data communicated through the network is adjusted;
calculating the number of executing cores after adjustment
by the core adjustment number and based on the number

US 2013/0007490 Al

of cores executing the given process before the adjust-
ment and the determined core adjustment number;

specifying a core executing the given process among the
cores and based on the calculated number of executing
cores after the adjustment; and

distribute the communicated data to the specified core

executing the given process.

5. A computer-readable recording medium storing a pro-
gram for causing a multicore processor system having a plu-
rality of cores to execute a power control process comprising:

measuring bandwidth of a network;

comparing the measured bandwidth and a given threshold;

determining among the cores and based on an obtained

comparison result, a core adjustment number by which

Jan. 3, 2013

the number of cores executing a given process related to
data communicated through the network is adjusted;

calculating the number of executing cores after adjustment
by the core adjustment number and based on the number
of cores executing the given process before the adjust-
ment and the determined core adjustment number;

specifying a core executing the given process among the
cores and based on the calculated number of executing
cores after the adjustment; and

distribute the communicated data to the specified core
executing the given process.

