
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0004075 A1

Frazier et al.

US 20170004075A1

(43) Pub. Date: Jan.5, 2017

(54)

(71)

(72)

(73)

(21)

(22)

(63)

MULTI-SECTION GARBAGE COLLECTION

Applicant:

Inventors:

Assignee:

Appl. No.:

Filed:

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Giles R. Frazier, Austin, TX (US);
Michael Karl Gschwind, Chappaqua,
NY (US); Younes Manton, Toronto
(CA); Karl M. Taylor, Kanata (CA);
Brian W. Thompto, Austin, TX (US)

INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

14/833,452

Aug. 24, 2015

Related U.S. Application Data
Continuation of application No. 14/755,643, filed on
Jun. 30, 2015.

300

304

312

2 35 instruction
Fetching Routine

4 35 instruction

360 Emulation Control
Routine

Translation Routine

Publication Classification

(51) Int. Cl.
G06F 2/02 (2006.01)

(52) U.S. Cl.
CPC. G06F 12/0253 (2013.01); G06F 2212/1044

(2013.01)

(57) ABSTRACT

The embodiments relate to a method for managing a garbage
collection process. The method includes executing a garbage
collection process on a memory block of user address space.
A load instruction is run. Running the load instruction
includes loading content of a storage location into a proces
sor. The loaded content corresponds to a memory address. It
is determined if the garbage collection process is being
executed at the memory address. The load instruction is
diverted to a process to move an object at the memory
address to a location outside of the memory block in
response to determining that the garbage collection process
is being executed at the first memory address. The load
instruction is continued in response to determining that the
garbage collection process is not being executed at the
memory address.

350
Guest Instructions

356
Native instructions

Patent Application Publication Jan. 5, 2017. Sheet 1 of 9

102

Processor

104 1 O6

1 OO 108

FIG. 1

2O2 204 2O6

200 208

FIG. 2

304

312

52
3 instruction

Fetching Routine Guest instructions

Native instructions
354

instruction
Translation Routine

360 Emulation Control
Routine

way www w w w w w w way www w w w w w w way awwax w w w w w w way ww.a.

300

input/Output

US 2017/000407S A1

Input/Output

350

356

Patent Application Publication Jan. 5, 2017. Sheet 2 of 9 US 2017/000407S A1

Oad Monitored Double Word indexed
LDMX

O 6 11 16 21 31
402a 404 406 408 402b

400

FIG. 4

506
Object A

508

520
YApplication Program 504

522 y
ldrix Object C

524 N. 526-Y-EBB Handler
Nstores modified pointer)

510b

? 510a
500

FIG. 5

Patent Application Publication Jan. 5, 2017. Sheet 3 of 9 US 2017/000407S A1

Load monitored Region Register

Load Monitored Region Base Si ZS Address

602 604

600 ?

702 identify Load Monitored Region
(LMR)

704
Assign binary value to each section

700 ?
FIG. 7

802 a Determine pointer points to an
enabled Section within the LMR

804
Store address of load instruction

806 - r

Modify instruction pointer to handler
address

800

FIG. 8

Patent Application Publication Jan. 5, 2017. Sheet 4 of 9 US 2017/000407S A1

902
ldnx DeCoded

is object
indicated by data 914

904 loaded (e.g. NO Execute the Idinx
pointer) in selected normally

portion of
memory?

Yes
916

906 Branch to pointer update Continue at next
hander instruction

908 r
e Modify pointer if needed
e Store updated pointer

90

912 Return to LDMX and
re-execute

900

FIG. 9

Patent Application Publication

Start facilitating garbage collection

OOO
N. Obtain processing control by handler

1002- executing within processor

1004 Ninterpt

10OS \degg garbage Collection

O08
\inst and calculates an address of the

1010 Y

e Obtain from processor hardware via an

e Obtain based on execution of a load
instruction and determination that an object
pointer to be loaded indicates a location
within a selected portion of memory

e Selected portion of memory indicated
by a register (including a base address and
size) or memory location

Handler reads an image of the LDMX

object pointer

Read object pointer

1012
is object pointer to

be modified?

1014 y Modify object pointer

1016
\ Store modified object pointer in a selected

location, e.g., location it was read from or a
location specified by load instruction (e.g.,

target register determined by load
instruction)

102O

Jan. 5, 2017. Sheet 5 of 9

018

Y
Store pointer

End
Applications allowed to Continue
processing (no need to pause)

during garbage collection

FIG. 10

US 2017/000407S A1

Patent Application Publication

1100

1102

110

1112
1114

1116

DeCode load instruction

Does the pointer
indicate an object

in a specified
memory area?

Yes

Branch to handler

o Handler takes action
o Provide alert, optionally

prevent access to
specified memory area,
Continue at next
instruction

e Modify pointer, store
modified pointer, return
to load and re-execute

Jan. 5, 2017. Sheet 6 of 9

1 104

NO

1106

FIG 11

Execute the load as
Conventional

Continue at next
instruction

US 2017/000407S A1

Jan. 5, 2017. Sheet 7 of 9 US 2017/000407S A1 Patent Application Publication

00Z?

Jan. 5, 2017. Sheet 8 of 9 US 2017/000407S A1 Patent Application Publication

Jan. 5, 2017. Sheet 9 of 9 US 2017/000407S A1 Patent Application Publication

EE -—l

US 2017/0004075 A1

MULTI-SECTION GARBAGE COLLECTION

CROSS REFERENCE TO RELATED
APPLICATION(S)

0001. This application is a continuation patent applica
tion claiming the benefit of the filing date of U.S. patent
application Ser. No. 14/755,643 filed on Jun. 30, 2015 and
titled “Multi-Section Garbage Collection now pending,
which is hereby incorporated by reference.

BACKGROUND

0002. The embodiments described herein relate to
executing a garbage collection process on a memory block.
More specifically, the embodiments relate to executing the
garbage collection process while minimizing performance
impact.
0003 Garbage collection is an automatic memory man
agement process that identifies objects in memory that are
no longer being referenced and frees those objects. As
memory objects of varying sizes are allocated and later
freed, the memory in which they are stored becomes increas
ingly fragmented. Eventually, very few large free areas of
memory exist, and it becomes difficult to store additional
objects without increasing the memory size. When this
occurs, a process within garbage collection, referred to as
compaction, is employed in order to consolidate the allo
cated objects into one large area, leaving another large area
of free space available for new objects. During consolida
tion, the memory objects that are still being referenced are
moved from one area of memory to another area of memory.
0004 Conventionally, when garbage collection is per
formed on an object storage area, applications using the
object storage area are required to pause execution. One
reason for this is to determine whether the pointers to the
objects used by the applications to access the objects are still
valid, since the objects may have moved. These pauses,
occasionally several seconds long, prevent the applications
from being used for time-sensitive tasks, such as transaction
processing, real-time games, or mechanical control. Thus, a
need exists for an optimized garbage collection process.

SUMMARY

0005. The aspects described herein include a method for
managing a garbage collection process executed on a block
of user address space.
0006 According to one aspect, a computer-implemented
method is provided to facilitate garbage collection within a
computing environment. Processing control is obtained by a
handler executing within a processor of the computer envi
ronment. The control is based on execution of a load
instruction and a determination that an object pointer to be
loaded indicates a location within a selected portion of
memory undergoing garbage collection. Based on obtaining
processing control, the handler obtains an image of the
instruction and calculates a pointer address from the image.
The address specifies a location of the object pointer. Based
on obtaining the address of the object pointer, the handler
reads the object pointer. The object pointer indicates a
location of an object pointed to by the object pointer. The
handler determines whether the object pointer is to be
modified, and based on determining the modification of the
object pointer, the handler modifies the object pointer and
stores the modified object pointer in a selected location.

Jan. 5, 2017

0007. These and other features and advantages will
become apparent from the following detailed description of
the presently preferred embodiment(s), taken in conjunction
with the accompanying drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0008. The drawings referenced hereinform a part of the
specification. Features shown in the drawings are meant as
illustrative of only some embodiments, and not of all
embodiments unless otherwise explicitly indicated.
0009 FIG. 1 depicts a block diagram illustrating a com
puting environment to incorporate and use one or more
aspects, in accordance with an embodiment.
0010 FIG. 2 depicts a block diagram illustrating a com
puting environment to incorporate and use one or more
aspects, in accordance with an alternative embodiment.
0011 FIG. 3 depicts a block diagram illustrating further
details with respect to the memory of FIG. 2.
0012 FIG. 4 depicts an illustrative example of a load
monitored doubleword indexed instruction, in accordance
with an embodiment.
0013 FIG. 5 depicts a block diagram illustrating detail of
memory for which garbage collection is to be performed, in
accordance with an embodiment.
0014 FIG. 6 depicts an illustrative example of a load
monitored region register, in accordance with an embodi
ment.

(0015 FIG. 7 depicts a flowchart illustrating a process for
configuring the LMRR and LMSER, in accordance with an
embodiment.
0016 FIG. 8 depicts a flowchart illustrating a process for
causing execution to divert from a load instruction to a
pointer update handler, or handler, in accordance with an
embodiment.
0017 FIG. 9 depicts an illustrative example of logic to
perform garbage collection using the load monitored double
word indexed instruction, in accordance with one or more
aspects.
0018 FIG. 10 depicts one embodiment of logic to per
form optimized garbage collection, in accordance with one
or more aspects.
0019 FIG. 11 depicts one embodiment of logic to take
action by a handler based on a specified condition, in
accordance within one or more aspects.
0020 FIG. 12 depicts a block diagram illustrating a
system to perform a garbage collection process, in accor
dance with an embodiment.
0021 FIG. 13 depicts an illustrative example of a cloud
computing environment, in accordance with an embodi
ment.

0022 FIG. 14 depicts an illustrative example of abstrac
tion model layers, in accordance with an embodiment.

DETAILED DESCRIPTION

0023. It will be readily understood that the components of
the embodiments, as generally described and illustrated in
the Figures herein, may be arranged and designed in a wide
variety of different configurations. Thus, the following
detailed description of the embodiments of the apparatus and
the method, as presented in the Figures, is not intended to
limit the Scope of the embodiments, as claimed, but is
merely representative of the selected embodiments.

US 2017/0004075 A1

0024. Reference throughout this specification to “a select
embodiment,” “one embodiment,” or “an embodiment’
means that a particular feature, structure, or characteristic
described in connection with the embodiment is included in
at least one embodiment. Thus, appearances of the phrases
“a select embodiment,” “in one embodiment,” or “in an
embodiment in various places throughout this specification
are not necessarily referring to the same embodiment.
0025. The illustrated embodiments will be best under
stood by reference to the drawings, wherein like parts are
designated by like numerals throughout. The following
description is intended only by way of example, and simply
illustrates certain selected embodiments of devices, systems,
and processes that are consistent with the embodiments as
claimed herein.
0026. In accordance with one or more aspects, a capa

bility is provided for an optimized garbage collection pro
cess that advantageously improves application performance,
improves performance of the processor executing the appli
cation, and/or improves performance of the computing envi
ronment in which the processor executes.
0027. The optimized garbage collection process allows
applications (also referred to as programs) that are accessing
objects in an area of memory not undergoing garbage
collection to continue processing during garbage collection
without interruption, allows applications accessing objects
in an area of memory being garbage collected to continue
processing after a very short unnoticeable delay, and further
improves the handling of the object pointers (also referred to
as pointers). In one embodiment, an instruction, referred to
as a load monitored doubleword indexed (ldmx) instruction,
is provided and used whenever an application accesses a
pointer to an object in memory. When such an instruction
accesses a pointer that indicates an object that lies within a
given address range, the processor causes an asynchronous
branch (referred to as an Event-Based Branch (EBB)) to a
pointer update handler (also referred to as a garbage collec
tion handler, an EBB handler, or handler). This enables the
pointer update handler to update the pointer (e.g., the
address of the object) if the object pointed to has been
moved during an ongoing garbage collection process or is
moved by the handler. In order to update the pointer, the
handler needs to know its address. In one embodiment of the
instruction, the address of the pointer is calculated internally
by the hardware during execution of the lamx instruction,
and is not available to the pointer update handler. Thus, in
order to determine the address of the pointer, the pointer
update handler examines the lamX instruction to determine
the source registers, reads the source registers, and calcu
lates the address of the pointer based on contents of the
Source registers.
0028. With reference to FIG. 1, a block diagram (100) is
provided illustrating a computing environment to incorpo
rate and use one or more aspects. The computing environ
ment includes a processor (102) (e.g., a central processing
unit), memory 104 (e.g., main memory), and one or more
input/output (I/O) devices and/or interfaces (106) coupled to
one another via, for example, one or more buses (108) and/or
other connections.

0029. In one embodiment, processor (102) is based on the
Power Architecture offered by International Business
Machines Corporation. One embodiment of the Power
Architecture is described in “Power ISATM Version 2.07B,
International Business Machines Corporation, Apr. 9, 2015,

Jan. 5, 2017

which is hereby incorporated herein by reference in its
entirety. POWER ARCHITECTURE(R) is a registered trade
mark of International Business Machines Corporation,
Armonk, N.Y., USA. Other names used herein may be
registered trademarks, trademarks, or product names of
International Business Machines Corporation or other com
panies.
0030. In another example, processor (102) is based on the
Z/Architecture offered by International Business Machines
Corporation, and is part of a server, Such as the System Z
server, which implements the Z/Architecture and is also
offered by International Business Machines Corporation.
One embodiment of the Z/Architecture is described in an
IBM(R) publication entitled, “Z/Architecture Principles of
Operation.” IBM(R) Publication No. SA22-7832-09, Tenth
Edition, September, 2012, which is hereby incorporated
herein by reference in its entirety. In one example, the
processor executes an operating system, Such as Z/OS, also
offered by International Business Machines Corporation.
IBM(R), Z/ARCHITECTURE(R) and Z/OS(R) are registered
trademarks of International Business Machines Corporation.
0031. In yet a further embodiment, processor (102) is
based on an Intel architecture offered by Intel Corporation.
Intel(R) is a registered trademark of Intel Corporation, Santa
Clara, Calif. Yet further, processor (102) may be based on
other architectures. The architectures mentioned herein are
merely provided as examples.
0032. Another embodiment of a computing environment
to incorporate and use one or more aspects is described with
reference to FIG. 2. In this example, a computing environ
ment (200) includes, for instance, a native central processing
unit (202), memory (204), and one or more input/output
devices and/or interfaces (206) coupled to one another via,
for example, one or more buses (208) and/or other connec
tions. As examples, computing environment (200) may
include a PowerPC processor, a zSeries server, or a pSeries
server offered by International Business Machines Corpo
ration, Armonk, N.Y.; an HP Superdome with Intel Itanium
II processors offered by Hewlett Packard Co., Palo Alto,
Calif.; and/or other machines based on architectures offered
by International Business Machines Corporation, Hewlett
Packard, Intel, Oracle, or others.
0033 Native central processing unit (202) includes one
or more native registers (210), such as one or more general
purpose registers and/or one or more special purpose regis
ters used during processing within the environment. These
registers include information that represent the state of the
environment at any particular point in time.
0034 Moreover, native central processing unit (202)
executes instructions and code that are stored in memory
(204). In one particular example, the central processing unit
executes emulator code (212) stored in memory (204). This
code enables the processing environment configured in one
architecture to emulate another architecture. For instance,
emulator code (212) allows machines based on architectures
other than the Power architecture, such as zSeries servers,
pSeries servers, HP Superdome servers or others, to emulate
the Power architecture and to execute software and instruc
tions developed based on the Power architecture. In a further
example, emulator code (212) allows machines based on
architectures other than the Z/Architecture, such as PowerPC
processors, pSeries servers, HP Superdome servers or oth
ers, to emulate the Z/Architecture and to execute software

US 2017/0004075 A1

and instructions developed based on the Z/Architecture.
Other architectures may also be emulated.
0035. Further details relating to emulator code (212) are
described with reference to FIG. 3. As shown, FIG. 3 is a
block diagram (300) of a computing environment. Guest
instructions (350) stored in memory (304) comprise soft
ware instructions (e.g., correlating to machine instructions)
that were developed to be executed in an architecture other
than that of a native CPU. For example, guest instructions
(350) may have been designed to execute on a PowerPC
processor or a Z/Architecture processor, Such as processor
(102) of FIG. 1, but instead, are being emulated on a native
CPU, such as native CPU (202). The native CPU may be, for
example, an Intel Itanium II processor. In one example,
emulator code (312) includes an instruction fetching routine
(352) to obtain one or more guest instructions (350) from
memory (304), and to optionally provide local buffering for
the instructions obtained. It also includes an instruction
translation routine (354) to determine the type of guest
instruction that has been obtained and to translate the guest
instruction into one or more corresponding native instruc
tions (356). This translation includes, for instance, identify
ing the function to be performed by the guest instruction and
choosing the native instruction(s) to perform that function.
0036 Further, emulator code (312) includes an emulation
control routine (360) to cause the native instructions to be
executed. Emulation control routine (360) may cause a
native CPU to execute a routine of native instructions that
emulate one or more previously obtained guest instructions
and, at the conclusion of such execution, return control to the
instruction fetch routine to emulate the obtaining of the next
guest instruction or a group of guest instructions. Execution
of the native instructions (356) may include loading data
into a register from memory (304); storing data back to
memory from a register; or performing some type of arith
metic or logic operation, as determined by the translation
routine.

0037 Each routine is, for instance, implemented in soft
ware, which is stored in memory and executed by a native
central processing unit. In other examples, one or more of
the routines or operations are implemented in firmware,
hardware, software or some combination thereof. The reg
isters of the emulated processor may be emulated using
registers of the native CPU or by using locations in memory
(304). In embodiments, the guest instructions (350), the
native instructions (356), and the emulator code (312) may
reside in the same memory or may be disbursed among
different memory devices.
0038. As used herein, firmware includes, e.g., the micro
code, millicode and/or macrocode of the processor. It
includes, for instance, the hardware-level instructions and/or
data structures used in implementation of higher level
machine code. In one embodiment, it includes, for instance,
proprietary code that is typically delivered as microcode that
includes trusted software or microcode specific to the under
lying hardware and controls operating system access to the
system hardware.
0039. In one example, a guest instruction (350) that is
obtained, translated and executed is an instruction described
herein. The instruction, which is of one architecture (e.g., the
Power architecture or Z/Architecture) is fetched from
memory, translated and represented as a sequence of native
instructions (356) of another architecture (e.g., the Z/Archi

Jan. 5, 2017

tecture, Power architecture, Intel architecture, etc.). These
native instructions are then executed.
0040. One instruction used in accordance with one or
more aspects is the load doubleword instruction used to load
data, including object pointers. One particular implementa
tion of the load doubleword instruction in the Power Archi
tecture is described with reference to FIG. 4. In one
example, a load doubleword indexed (ldmx) instruction
(400) includes operation code (opcode) fields (402a) (e.g.,
bits 0-5), (402b) (e.g., bits 21-30) indicating a load opera
tion; a result field (RT) (404) (e.g., bits 6-10) used to indicate
a register to store a result of the load operation; a register
field (RA) (406) (e.g., bits 11-15) used to specify a register
to be used by the load operation; and a second register (RB)
(408) (e.g., bits 16-20) used to specify a second register to
be used by the load operation. Each of the fields (404)-(408),
in one example, is separate and independent from one
another; however, in other embodiments, more than one field
may be combined. Further information on the use of the
fields is described below.
0041. In operation of the ldmx instruction, a check is
made as to whether the data to be loaded (e.g., the object
pointer) points to an object located in a selected portion of
memory, referred to herein as a load monitored region. If the
data to be loaded does not point to an object located in the
selected portion of memory, then a conventional load is
performed. For instance, in one example, the load is per
formed as if a load doubleword indexed instruction (e.g., in
the Power Architecture) is being executed.
0042. In one embodiment, the load doubleword indexed
(ldx) instruction has the same format as the load monitored
doubleword indexed instruction, except the opcode is dif
ferent. In operation of the ldx instruction: Let an effective
address (EA) be the sum (RAIO)+(RB). The doubleword in
storage addressed by EA is loaded into RT.
0043. One example of pseudo-code for the lax instruction
is as follows:

If RA=0 then b s- O
else b - (RA)
EA s- b + (RB)
RT - MEMOEA, 8)

0044 wherein EA is an address of the object pointer, and
MEMCEA, 8) is the object pointer.
0045 Continuing with the lamx instruction, if, however,
the data to be loaded points to an object located in the
selected portion of memory undergoing garbage collection,
then processing is interrupted causing an Event Based
Branch to an update pointer handler that performs one or
more tasks related to garbage collection, including updating
the pointer, if needed, as described herein further below.
0046. One example of pseudo-code for the ldmx instruc
tion is as follows:

If RA=0 then b s- O
else b - (RA)
EA s- b + (RB)
loaded ea - MEMOEA, 8)
if —((loaded ea is in enabled section of load-monitored region) &

BESCR =Ob11)
RT e-loaded ea

US 2017/0004075 A1

0047 wherein loaded ea is the object pointer; EA is an
address of the object pointer; BESCR refers to branch event
status-control register, GE refers to general enable; and
LME=load monitored enabled.
0048 Although, in the examples herein, the instruction
format is for the Power Architecture, similar formats may be
used for other architectures.

0049. Further, in other embodiments, a load doubleword
monitored (ldm) instruction may be used that behaves like
ldmx except that the EA accessed would be calculated like
a load doubleword (ld) instruction using RA and DS fields
instead of operands RA and RB as with lax. With the la
instruction, let an effective address (EA) be the sum (RAO)+
(DSOb00). The doubleword in storage addressed by EA is
loaded into RT.

0050. One example of pseudo-code for the ld instruction
is as follows:

If RA=0 then b s- O
else b - (RA)
EA – b + EXTS(DS || Ob00)
RT - MEMOEA, 8)

0051. In one embodiment, as indicated previously, the
selected portion of memory undergoing garbage collection
(e.g., a memory block of user address space) is referred to
herein as the load monitored region. Referring to FIG. 5, a
block diagram (500) is shown illustrating memory, and
specifically regions within the memory. As shown, memory
(502) includes a load monitored region (504), as well as a
plurality of objects, including Object (506) and Object
(508). As shown, Object (508) is in the load monitored
region (504), meaning that the object is in a portion of
memory in which garbage collection is being performed.
Therefore, the current pointer may need to be updated, if the
object to which the pointer points has been moved due to, for
instance, the garbage collection process.
0052 Further, as used herein, an object area includes the
load monitored region and the area of memory including
objects that are not undergoing garbage collection. Addi
tionally, in one embodiment, memory (502) includes a
plurality of pointers shown as pointer (510a), pointer
(510b), and pointer (510c).
0053. In this figure, it is further shown that an application
program (520) executes an ldmx instruction (522), which
attempts to load pointer (510b). Pointer (510b) points to
Object (508) in the load monitored region, and thus, an
interrupt is performed giving control to the EBB handler
(524) (also known as the update pointer handler, or handler).
In one embodiment, the handler (524) calculates a pointer
address for Pointer (510b) from an image of the load
monitored instruction, modifies the pointer, if necessary, and
if modified stores the pointer in the location from which it
was obtained (526). Processing then returns to the instruc
tion, which is re-executed. Details of the pointer address
calculation are shown in the pseudo code described above.
0054. In a further embodiment, the handler modifies the
pointer, stores the modified pointer in the target register of
the instruction, and processing continues at the instruction
after the ldmx instruction, thereby emulating the load of the
pointer. In one or more aspects, the application is unaware
of the EBB processing, and simply receives the pointer, as
before.

Jan. 5, 2017

0055 As indicated above, interrupt processing is per
formed when the data to be loaded (e.g., the object pointer)
points to an object that is in the load monitored region of
memory. The load monitored region may be identified in
alternative ways. For instance, in one implementation, its
size and base address are stored in a register, Such as
depicted in FIG. 6. As shown, a load monitored region
register (LMRR) (600) includes, for instance, a field (602)
including a load monitored region base address, and a field
(604) including a size of the region.
0056. In one example, the load monitored region base
address includes the high-order bits of the load monitored
region. In this embodiment, it is assumed that the load
monitored region is aligned on a granularity of its size. The
size field is encoded such that each value corresponds to a
specified size. For example, if 16 possible sizes are needed,
the size field has 4 bits. Typical sizes are in the order of 10's
of MBS (megabytes) to over a GB (gigabyte). The number
of bits in the load monitored region base address field can be
derived from the minimum size supported. For example, if
the minimum size supported is 16 MB, then the load
monitored region base address field is 40 bits, which is
sufficient to identify any 16 MB memory region aligned on
a 16 MB address boundary. When the size field indicates
Smaller sizes, then more bits are required to specify the base
address.
0057. In other examples, the size and base address may
be specified in a memory location, or a register used for
another purpose, etc. Additionally, other information may be
used to specify the address range of the load monitored
region.
0058. In some embodiments, the load monitored region is
Subdivided into segments of equal size, where each segment
is 1/Nth of the total load monitored region size. Such
embodiments include a Load Monitored Segment Enable
Register (LMSER) where each bit corresponds to a segment.
For example, a 64-bit register could be used to subdivide a
load monitored region into 64 segments, where each seg
ment is /64" of the total load monitored region.
0059 Now with reference now to FIG. 7 a flowchart
(700) is provided illustrating a process for configuring the
LMRR and LMSER, in accordance with an embodiment.
First, the load monitored region (LMR) is specified in the
LMRR (702). Details of such specification have been
described above, with reference to FIG. 6. Then a binary
value is assigned to each section in the LMSER (704), where
a first binary value corresponds to an enabled section (i.e.,
a section of the load monitored region that is identified for
garbage collection), and a second binary value corresponds
to a disabled section (i.e., a section that is not subject to
garbage collection).
0060. With reference now to FIG. 8, a flowchart (800) is
provided illustrating a process for causing execution to
divert from a load instruction to a pointer update handler, or
handler, in accordance with an embodiment. In response to
determining that a pointer that was read points to an enabled
section within the load monitored region (LMR) (802), as
described, for example, at step (702) of FIG. 7, the address
of the load instruction is stored (804). In one embodiment,
the load instruction address is stored into an event based
branch return register (EBBRR). An instruction pointer is
then modified to point to an address of the handler (806). In
one embodiment, the handler address is contained in an
event based branch handler register (EBBHR), and is used

US 2017/0004075 A1

to in the modification of step (806). Step (806) may include
setting a load monitored event occurred (LMO) bit of the
branch event status and control register (BESCR) to a first
binary value indicating a load monitored exception has
occurred.

0061 Referring now to FIG. 9, a flowchart (900) is
provided illustrating logic associated with executing the
ldmX instruction in accordance with an embodiment. In one
implementation, hardware of a processor executes an appli
cation that issues the lamX instruction, and the processor
hardware decodes the lamx instruction (902). During execu
tion of the instruction, the processor hardware determines
the memory location access, and compares the data (i.e., the
pointer) read with the load monitored region register (or
other register or memory location) that specifies the selected
portion of memory undergoing the garbage collection (904).
If the pointer that was read points to a location within the
load monitored region, then the hardware causes a light
weight interrupt (e.g., an Event Based Branch that does not
involve the supervisor) that diverts execution to the pointer
update handler (906). The handler obtains an image of the
instruction and using the image, the handler calculates a
pointer address from the image, with the pointer address
specifying a location of the object pointer. Details of the
calculation are shown in the pseudo code described above.
The handler also modifies the pointer (908), if needed (e.g.
if the object to which it points was moved during garbage
collection), performs other garbage collection tasks as
needed and as time permits, and stores the pointer, if
modified (910). If the object is moved, then the handler can
return control to the application and re-execute the lamX
(912). In a further embodiment, the modified object pointer
is stored in a location specified by the lamX instruction, and
the handler returns control to the application at the instruc
tion after the lamX. As an example, the update handler reads
the lamX target register, and stores the modified pointer in
the lamX target register. This has the effect of emulating a
load of the modified pointer.
0062 Alternatively, if the object is not moved, then the
update handler does not modify the pointer, and the unmodi
fied pointer is stored in the ldmx target register. This has the
effect of emulating a load of the unmodified pointer.
0063 Returning to inquiry (904), if the pointer that was
read does not point to a location within the load monitored
region, then the processor hardware does not cause the Event
Based Branch, but instead executes the lamx instruction
without the interrupt, (914). For instance, the ldmx instruc
tion is processed as if the load doubleword indexed instruc
tion was executed, as described above. In particular, in one
example, the pointer is read from the location identified by
the instruction and it is stored in the target register. There
after, processing continues to the next instruction, (916).
0064. As described herein, garbage collection is opti
mized by allowing applications to continue processing
(without being paused due to garbage collection) when those
applications are not accessing objects in an area of memory
undergoing garbage collection. Further, garbage collection
is optimized by allowing applications accessing objects in an
area of memory undergoing garbage collection to immedi
ately resume processing after a very brief delay during the
time the lightweight interrupt handler processes the pointer.
This is enabled by determining during the load of the pointer
that the object is in the selected portion of memory under
going garbage collection, and based thereon, causing an

Jan. 5, 2017

interrupt to occur such that the handler may obtain the
address of the pointer to directly access the pointer.
0065 One embodiment of the logic associated with
facilitating garbage collection, in accordance with one or
more aspects is described with reference to FIG. 10. Initially,
a handler executing within a processor obtains processing
control, (1000), via, for instance, an interrupt issued by
processor hardware, (1002). Processing control is obtained
by the handler without supervisor involvement based on
execution of a load instruction (e.g., ldmx) and a determi
nation that an object pointer to be loaded indicates a location
within a selected portion of memory undergoing garbage
collection, (1004). The selected portion of memory is indi
cated by a register that may include a base address and a
size, or a memory location, as examples, (1006).
0.066 Based on obtaining processing control, the handler
reads an image of the lamX instruction and calculates an
address of the object pointer (1008). The address specifies a
location of the object pointer.
0067. The handler then reads the object pointer, (1010).
The handler then determines if the object pointer is to be
modified, (1012). For instance, the handler determines
whether the object pointed to by the object pointer has been
moved. If the object has been moved, then the object pointer
is modified, (1014). Thereafter, the modified object pointer
is stored in a selected location, (1016). For instance, it is
stored in the location it was read from (e.g., calculated from
the instruction image), and control is returned to the appli
cation at the lamX instruction, which is re-executed. In a
further embodiment, the modified object pointer is stored in
a location specified by the lamX instruction (e.g. the lamX
target register) and the handler returns control to the appli
cation at the instruction after the lamx.
0068. Returning to step (1012), if the object pointer is not
modified, it is stored, for instance, in the target register of the
ldmx instruction (1018), and the handler returns control to
the application at the instruction after the ldmx. This has the
effect of emulating a load of the unmodified pointer.
0069 Advantageously, in one or more aspects, garbage
collection is facilitated by allowing applications that are not
accessing objects in the selected portion of memory to
continue processing (that is, no need to pause) during
garbage collection, (1020). Also, applications that are
accessing objects in the selected portion of memory are only
delayed briefly.
0070 Additionally, one or more aspects may be used for
other than garbage collection. For example, since one or
more aspects described herein may be used to detect when
a pointer to a specified storage address range is loaded, it
may be used to provide an advance warning about imminent
access into a restricted memory space. In this case, a
memory region is initialized to be the restricted memory
region, and the pointer storage area is set to indicate the
location of the memory pointers. Subsequently, when a
pointer in the pointer storage area is read that points to a
restricted area, an EBB occurs. For example, one embodi
ment of logic to take action by a handler based on a specific
condition is described with reference to FIG. 11. In one
example, a load instruction is decoded, (1100). The load
instruction may be one of various load instructions, includ
ing the lam or lamX instruction, as examples. The load
instruction is decoded and based on the decoding, the object
pointer is determined. A determination is made as to whether
the object pointer indicates an object in a specified memory

US 2017/0004075 A1

area, (1102). This memory area is, for instance, a specified
storage address range that is to be restricted for one reason
or the other. If the pointer does not indicate an object in the
specified memory area, then the lamX (or other instruction)
is executed as conventional, (1104). Processing then con
tinues at the next instruction, (1106).
0071. However, returning to (1102), if the pointer does
indicate an object in a specified memory area, then control
is obtained by a handler, (1110). For instance, the processor
hardware performs an interrupt (e.g., a lightweight interrupt
that does not involve the operating system) to the handler
(e.g., an application-level handler). The handler may then
take one or more actions, (1112). For instance, in one
embodiment, the handler provides an alert, optionally pre
vents access to the specified memory area, and then contin
ues processing at the next instruction, (1114). As a further
example, the handler obtains the pointer address (e.g.,
calculates it from the instruction), reads the pointer, modifies
the pointer, stores the modified pointer back in the location
from which it was read, and returns control to the instruction
and re-executes the instruction, such that the specified
memory area is not accessed, (1116). Other possibilities also
exist.
0072. As described herein, garbage collection is opti
mized by allowing applications that are accessing objects in
an area of memory not being garbage collected to continue
processing (without being paused) during garbage collec
tion, and allowing applications that are accessing objects in
an area of memory being garbage collected to resume
processing after a short, unnoticeable delay. This is enabled
by determining, during the load of the pointer, that the
address of the object pointer is located in a pointer storage
area and the object being pointed to is in the selected portion
of memory undergoing garbage collection. Thus, an inter
rupt is issued to a handler that manages the pointer. In one
embodiment, the handler calculates the address of the
pointer from the image of the lamX instruction.
0073. In accordance with one or more aspects, upon each
access to an object pointer, processing may be diverted to a
real-time garbage collection handler (e.g., pointer update
handler) if the pointer is located in a pointer storage area and
points to an object in a region of memory being garbage
collected.

0074 As described herein, garbage collection is facili
tated. In one embodiment, processing control is obtained by
a handler executing within a processor of the computing
environment, the obtaining processing control being based
on execution of a load instruction and a determination that
an address of an object pointer to be loaded is located in a
pointer storage area and the object pointer indicates a
location within a selected portion of memory undergoing
garbage collection. Based on obtaining processing control
by the handler, the handler obtains from the pointer storage
area the object pointer, the object pointer indicating a
location of an object pointed to by the object pointer. The
handler determines whether the object pointer is to be
modified, and based on determining the object pointer is to
be modified, the object pointer is modified to provide a
modified object pointer. Based on modifying the object
pointer, the modified object pointer is stored in a selected
location, such as a location within the pointer storage area or
a location specified by the load instruction.
0075 Advantageously, this allows applications using
objects in an area of memory not undergoing garbage

Jan. 5, 2017

collection to continue processing during garbage collection
without interruption, allows an application using an object in
an area of memory undergoing garbage collection to con
tinue processing after a very brief, unnoticeable delay, and
does not require the use of special instructions or program
modifications, thereby improving performance.
0076. In one further embodiment, the selected portion of
memory undergoing garbage collection is part of an object
area that also includes one or more other objects not under
going garbage collection, and advantageously, one or more
applications accessing the object area not undergoing gar
bage collection continue process during garbage collection.
For instance, they continue executing without interruption.
Further, in one embodiment, the application that accessed
the object pointer that indicates an object in the selected
portion of memory undergoing garbage collection immedi
ately resumes processing after a very brief delay during the
time the handler (e.g., application-level handler) processes
the pointer. This enables applications to be used for time
sensitive processing because no application is delayed for a
time period that is significant enough to be noticeable.
0077. Additionally, one or more aspects may be used for
other than garbage collection. For example, since one or
more aspects described herein may be used to detect when
a pointer to a specified storage address range is loaded, it
may be used to provide an advance warning about imminent
access into a restricted memory space. In this case, a
memory region is initialized to be the restricted memory
region, and the pointer storage area is set to indicate the
location of the memory pointers. Subsequently, when a
pointer in the pointer storage area is read that points to a
restricted area, an event-based branch (EBB) occurs. The
EBB handler can then either prevent the access entirely,
provide an advance warning signal to a security monitor that
an access is about to be made into a restricted area of
memory or perform some other selected action. Other
related applications are possible in situations in which there
is a desire for an alert about an expected access that is about
to be made to a specified memory area.
0078. As used herein, storage, central storage, main stor
age, memory and main memory are used interchangeably,
unless otherwise noted, implicitly by usage or explicitly.
One or more aspects may relate to shared resources through
cloud computing. It is to be understood and appreciated that
although this disclosure includes a detailed description on
cloud computing, implementation of the teachings recited
herein are not limited to a cloud computing environment.
Rather, embodiments of the present invention are capable of
being implemented in conjunction with any other type of
computing environment now known or later developed.
0079. As is known in the art, cloud computing is a model
of service delivery for enabling convenient, on-demand
network access to a shared pool of configurable computing
resources (e.g., networks, network bandwidth, servers, pro
cessing, memory, storage, applications, virtual machines,
and services) that can be rapidly provisioned and released
with minimal management effort or interaction with a pro
vider of the service. This cloud model may include at least
five characteristics, at least three service models, and at least
four deployment models. Example of Such characteristics
are as follows:

0080. On-demand self-service: a cloud consumer can
unilaterally provision computing capabilities, such as server

US 2017/0004075 A1

time and network storage, as needed automatically without
requiring human interaction with the service's provider.
0081 Broad network access: capabilities are available
over a network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client
platforms (e.g., mobile phones, laptops, and PDAs).
0082 Resource pooling: the provider's computing
resources are pooled to serve multiple consumers using a
multi-tenant model, with different physical and virtual
resources dynamically assigned and reassigned according to
demand. There is a sense of location independence in that
the consumer generally has no control or knowledge over
the exact location of the provided resources but may be able
to specify location at a higher level of abstraction (e.g.,
country, state, or datacenter).
0083 Rapid elasticity: capabilities can be rapidly and
elastically provisioned, in Some cases automatically, to
quickly scale out and rapidly released to quickly scale in. To
the consumer, the capabilities available for provisioning
often appear to be unlimited and can be purchased in any
quantity at any time.
0084. Measured service: cloud systems automatically
control and optimize resource use by leveraging a metering
capability at Some level of abstraction appropriate to the
type of Service (e.g., storage, processing, bandwidth, and
active user accounts). Resource usage can be monitored,
controlled, and reported providing transparency for both the
provider and consumer of the utilized service.
0085 Service Models are as follows:
I0086 Software as a Service (SaaS): the capability pro
vided to the consumer is to use the providers applications
running on a cloud infrastructure. The applications are
accessible from various client devices through a thin client
interface such as a web browser (e.g., web-based email). The
consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems,
storage, or even individual application capabilities, with the
possible exception of limited user-specific application con
figuration settings.
I0087 Platform as a Service (PaaS): the capability pro
vided to the consumer is to deploy onto the cloud infra
structure consumer-created or acquired applications created
using programming languages and tools Supported by the
provider. The consumer does not manage or control the
underlying cloud infrastructure including networks, servers,
operating systems, or storage, but has control over the
deployed applications and possibly application hosting envi
ronment configurations.
0088 Infrastructure as a Service (IaaS): the capability
provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources
where the consumer is able to deploy and run arbitrary
Software, which can include operating systems and applica
tions. The consumer does not manage or control the under
lying cloud infrastructure but has control over operating
systems, storage, deployed applications, and possibly lim
ited control of select networking components (e.g., host
firewalls).
0089
0090 Private cloud: the cloud infrastructure is operated
solely for an organization. It may be managed by the
organization or a third party and may exist on-premises or
off-premises.

Deployment Models are as follows:

Jan. 5, 2017

0091 Community cloud: the cloud infrastructure is
shared by several organizations and Supports a specific
community that has shared concerns (e.g., mission, security
requirements, policy, and compliance considerations). It
may be managed by the organizations or a third party and
may exist on-premises or off-premises.
0092 Public cloud: the cloud infrastructure is made
available to the general public or a large industry group and
is owned by an organization selling cloud services.
0093. Hybrid cloud: the cloud infrastructure is a compo
sition of two or more clouds (private, community, or public)
that remain unique entities but are bound together by stan
dardized or proprietary technology that enables data and
application portability (e.g., cloud bursting for load balanc
ing between clouds).
0094. A cloud computing environment is service oriented
with a focus on statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.
0.095 Referring now to FIG. 12, a schematic of a system
(1200) is provided. In one embodiment, system (1200) is a
cloud computing node. The cloud computing node is only
one example of a Suitable cloud computing node and is not
intended to Suggest any limitation as to the scope of use or
functionality of embodiments of the invention described
herein. Regardless, the cloud computing node is capable of
being implemented and/or performing any of the function
ality set forth hereinabove.
0096. In the cloud computing node is a computer system/
server (1212), which is operational with numerous other
general purpose or special purpose computing system envi
ronments or configurations. Examples of well-known com
puting systems, environments, and/or configurations that
may be suitable for use with computer system/server (1212)
include, but are not limited to, personal computer systems,
server computer systems, thin clients, thick clients, handheld
or laptop devices, multiprocessor Systems, microprocessor
based systems, set top boxes, programmable consumer elec
tronics, network PCs, minicomputer systems, mainframe
computer systems, and distributed cloud computing envi
ronments that include any of the above systems or devices,
and the like.
(0097. Computer system/server (1212) may be described
in the general context of computer system executable
instructions, such as program modules, being executed by a
computer system. Generally, program modules may include
routines, programs, objects, components, logic, data struc
tures, and so on that perform particular tasks or implement
particular abstract data types. Computer system/server
(1212) may be practiced in distributed cloud computing
environments where tasks are performed by remote process
ing devices that are linked through a communications net
work. In a distributed cloud computing environment, pro
gram modules may be located in both local and remote
computer system storage media including memory storage
devices.
0098. As shown in FIG. 12, computer system/server
(1212) is shown in the form of a general-purpose computing
device. The components of computer system/server (1212)
may include, but are not limited to, one or more processors
or processing units (1216), a system memory (1228), and a
bus (1218) that couples various system components, includ
ing system memory (1228) to processor (1216).

US 2017/0004075 A1

0099 Bus (1218) represents one or more of any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of
bus architectures. By way of example, and not limitation,
such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnect (PCI) bus.
0100 Computer system/server (1212) typically includes
a variety of computer system readable media. Such media
may be any available media that is accessible by computer
system/server (1212), and it includes both volatile and
non-volatile media, removable and non-removable media.
0101 System memory (1228) can include computer sys
tem readable media in the form of volatile memory, such as
random access memory (RAM) (1230) and/or cache
memory (1232). Computer system/server (1212) may fur
ther include other removable/non-removable, volatile/non
Volatile computer system storage media. By way of example
only, storage system (1234) can be provided for reading
from and writing to a non-removable, non-volatile magnetic
media (not shown and typically called a “hard drive”).
Although not shown, a magnetic disk drive for reading from
and writing to a removable, non-volatile magnetic disk (e.g.,
a “floppy disk’), and an optical disk drive for reading from
or writing to a removable, non-volatile optical disk Such as
a CD-ROM, DVD-ROM or other optical media can be
provided. In Such instances, each can be connected to bus
(1218) by one or more data media interfaces. As will be
further depicted and described below, memory (1228) may
include at least one program product having a set (e.g., at
least one) of program modules that are configured to carry
out the functions of embodiments of the invention.
0102 Program/utility (1240), having a set (at least one)
of program modules (1242), may be stored in memory
(1228) by way of example, and not limitation, as well as an
operating system, one or more application programs, other
program modules, and program data. Each of the operating
system, one or more application programs, other program
modules, and program data or some combination thereof,
may include an implementation of a networking environ
ment. Program modules (1242) generally carry out the
functions and/or methodologies of embodiments of the
invention as described herein.
0103 Computer system/server (1212) may also commu
nicate with one or more external devices (1214) such as a
keyboard, a pointing device, a display (1224), etc.; one or
more devices that enable a user to interact with computer
system/server (1212); and/or any devices (e.g., network
card, modem, etc.) that enable computer system/server
(1212) to communicate with one or more other computing
devices. Such communication can occur via Input/Output
(I/O) interfaces (1222). Still yet, computer system/server
(1212) can communicate with one or more networks such as
a local area network (LAN), a general wide area network
(WAN), and/or a public network (e.g., the Internet) via
network adapter (1220). As depicted, network adapter
(1220) communicates with the other components of com
puter system/server (1212) via bus (1218). It should be
understood that although not shown, other hardware and/or
Software components could be used in conjunction with
computer system/server (1212). Examples, include, but are

Jan. 5, 2017

not limited to: microcode, device drivers, redundant pro
cessing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.
0104 Referring now to FIG. 13, an illustrative cloud
computing environment (1300) is depicted. As shown, cloud
computing environment (1300) comprises one or more cloud
computing nodes (1310) with which local computing
devices used by cloud consumers, such as, for example,
personal digital assistant (PDA) or cellular telephone
(1354A), desktop computer (1354B), laptop computer
(1354C), and/or automobile computer system (1354N) may
communicate. Nodes (1310) may communicate with one
another. They may be grouped (not shown) physically or
virtually, in one or more networks, such as Private, Com
munity, Public, or Hybrid clouds as described hereinabove,
or a combination thereof. This allows cloud computing
environment (1300) to offer infrastructure, platforms and/or
Software as services for which a cloud consumer does not
need to maintain resources on a local computing device. It
is understood that the types of computing devices (1354A)-
(1354N) shown in FIG. 13 are intended to be illustrative
only and that computing nodes (1310) and cloud computing
environment (1300) can communicate with any type of
computerized device over any type of network and/or net
work addressable connection (e.g., using a web browser).
0105 Referring now to FIG. 14, a set of functional
abstraction layers (1400) provided by cloud computing
environment (1300) of FIG. 13 is shown. It should be
understood in advance that the components, layers, and
functions shown in FIG. 14 are intended to be illustrative
only and embodiments of the invention are not limited
thereto. As depicted, the following layers and corresponding
functions are provided:
0106 Hardware and software layer (1410) includes hard
ware and Software components. Examples of hardware com
ponents include mainframes (1420); RISC (Reduced
Instruction Set Computer) architecture based servers (1422);
servers (1424); blade servers (1426); storage devices (1428);
networks and networking components (1430). In some
embodiments, software components include network appli
cation server software (1432) and database software (1434).
0107 Virtualization layer (1440) provides an abstraction
layer from which the following examples of virtual entities
may be provided: virtual servers (1442); virtual storage
(1444); virtual networks (1446), including virtual private
networks; virtual applications and operating systems (1448);
and virtual clients (1450).
0108. In one example, management layer (1460) may
provide the functions described below. Resource provision
ing (1462) provides dynamic procurement of computing
resources and other resources that are utilized to perform
tasks within the cloud computing environment. Metering
and Pricing (1464) provide cost tracking as resources are
utilized within the cloud computing environment, and bill
ing or invoicing for consumption of these resources. In one
example, these resources may comprise application software
licenses. Security provides identity verification for cloud
consumers and tasks, as well as protection for data and other
resources. User portal (1466) provides access to the cloud
computing environment for consumers and system admin
istrators. Service level management (1468) provides cloud
computing resource allocation and management Such that
required service levels are met. Service Level Agreement
(SLA) planning and fulfillment (1470) provide pre-arrange

US 2017/0004075 A1

ment for, and procurement of cloud computing resources for
which a future requirement is anticipated in accordance with
an SLA.

0109 Workloads layer (1480) provides examples of func
tionality for which the cloud computing environment may be
utilized. Examples of workloads and functions which may
be provided from this layer include: mapping and navigation
(1482); software development and lifecycle management
(1484); virtual classroom education delivery (1486); data
analytics processing (1488); transaction processing (1490);
and garbage collection processing of one or more aspects of
the present invention (1492).
0110. As will be appreciated by one skilled in the art, the
embodiments described herein may be embodied as a
method, a system, or a computer program product. Accord
ingly, aspects of the embodiments may take the form of an
entirely hardware embodiment, an entirely software embodi
ment (including firmware, resident Software, micro-code,
etc.) or an embodiment containing software and hardware
aspects. Furthermore, aspects of the embodiments may take
the form of a computer program product embodied in one or
more computer readable medium(s) having computer read
able program code embodied thereon.
0111. The computer program product may include a
computer readable storage medium (or media) having com
puter readable program instructions thereon for causing a
processor to carry out aspects of the present invention. The
computer readable storage medium can be a tangible device
that can retain and store instructions for use by an instruction
execution device. The computer readable storage medium
may be, for example, but is not limited to, an electronic
storage device, a magnetic storage device, an optical storage
device, an electromagnetic storage device, a semiconductor
storage device, or any Suitable combination of the foregoing.
A non-exhaustive list of more specific examples of the
computer readable storage medium includes the following:
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any Suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be
construed as being transitory signals per se, Such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a W1.

0112 Computer readable program instructions described
herein can be downloaded to respective computing/process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work, for example, the Internet, a local area network, a wide
area network and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, Switches,
gateway computers and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network and forwards the computer readable

Jan. 5, 2017

program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

0113 Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language Such as Smalltalk, C++ or
the like, and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the users computer,
partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.
0114 Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, systems, and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple
mented by computer readable program instructions.
0115 These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro
cessing apparatus to produce a machine, Such that the
instructions, which execute via the processor of the com
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

0116. The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com
puter implemented process. Such that the instructions which
execute on the computer, other programmable apparatus, or

US 2017/0004075 A1

other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0117 The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of
possible implementations of methods, systems, and com
puter program products according to various embodiments
of the present invention. In this regard, each block in the
flowchart or block diagrams may represent a module, seg
ment, or portion of instructions, which comprises one or
more executable instructions for implementing the specified
logical function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.
0118. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the invention. As used herein, the singular
forms “a”, “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises'
and/or “comprising,” when used in this specification, specify
the presence of Stated features, integers, steps, operations,
elements, and/or components, but do not preclude the pres
ence or addition of one or more other features, integers,
steps, operations, elements, components, and/or groups
thereof.
0119 The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles and the
practical application, and to enable others of ordinary skill
in the art to understand the various embodiments with
various modifications as are Suited to the particular use
contemplated. Accordingly, the implementation of a method
to manage a garbage collection process executed on a
memory block of user address space, and the corresponding
system, are not limited to the embodiments described above.
It will be appreciated that, although specific embodiments of
the invention have been described herein for purposes of
illustration, various modifications may be made without
departing from the spirit and scope of the invention. For
instance, alternative embodiments may include the usage of
other hardware components to perform the method. Accord

Jan. 5, 2017

ingly, the scope of protection of this invention is limited only
by the following claims and their equivalents.
0.120. Furthermore, the described features, structures, or
characteristics may be combined in any suitable manner in
one or more embodiments. In the description provided
herein, numerous specific details are provided to demon
strate a thorough understanding of the embodiments. One
skilled in the relevant art will recognize, however, that the
embodiments can be practiced without one or more of the
specific details, or with other methods, components, mate
rials, etc. In other instances, well-known structures, mate
rials, or operations are not shown or described in detail to
avoid obscuring aspects of the embodiments.
We claim:
1. A computer-implemented method for facilitating gar

bage collection within a computing environment, the com
puter-implemented method comprising:

obtaining processing control by a handler executing
within a processor of the computer environment, the
obtaining processing control being based on execution
of a load instruction and a determination that an object
pointer to be loaded indicates a location within a
Selected portion of memory undergoing garbage col
lection;

based on obtaining processing control by the handler,
obtaining by the handler an image of the instruction and
calculating a pointer address from the image, the
address specifying a location of the object pointer;

based on obtaining the address of the object pointer,
reading, by the handler, the object pointer, the object
pointer indicating a location of an object pointed to by
the object pointer;

determining by the handler whether the object pointer is
to be modified;

modifying by the handler, based on determining the object
pointer is to be modified, the object pointer to provide
a modified object pointer, and

storing, based on modifying the object pointer, the modi
fied object pointer in a selected location.

2. The computer-implemented method of claim 1,
wherein the obtaining processing control is via an interrupt
issued by processor hardware, the interrupt issued based on
execution of the load instruction and determination that the
object pointer to be loaded indicates the location within the
selected portion of memory undergoing garbage collection.

3. The computer-implemented method of claim 1,
wherein the selected portion of memory undergoing garbage
collection is part of an object area that includes one or more
other objects not undergoing garbage collection, and
wherein one or more applications accessing the object area
not undergoing garbage collection continues to process
during garbage collection.

4. The computer-implemented method of claim 1,
wherein determining the garbage collection process is being
executed within the selection portion of memory further
comprising identifying a first memory block Subject to the
garbage collection, including identifying a base address of
the first memory block and a size of the first memory block.

k k k k k

