a9y United States

US 20240265015A1

a2y Patent Application Publication o) Pub. No.: US 2024/0265015 A1

Badii et al. 43) Pub. Date: Aug. 8, 2024
(54) SYSTEMS AND METHODS FOR REDUCING (52) US. CL
THE CARDINALITY OF METRICS QUERIES CPC GO6F 16/24545 (2019.01); GO6F 16/2452
(2019.01)
(71) Applicant: Bitdrift, Inc., San Francisco, CA (US)
57 ABSTRACT

(72) Inventors: Behrooz Badii, Westport, CT (US);
Yann Thomas Ramin, Folsom, CA

Us)

(21) Appl. No.: 18/165,927

(22) Filed: Feb. 7, 2023

Publication Classification

A computing platform may be configured to (i) perform an
analysis of a saved query comprising an expression that
specifies a set of one or more unique metrics for which
metric data is to be fetched from a metrics management
platform when the saved query is run, (ii) determine a
strategy for reducing a cardinality level of the saved query
based at least in part on the analysis of the saved query, and

(51) Imt. ClL (iii) cause the saved query to be modified in accordance with
GO6F 16/2453 (2006.01) the determined strategy for reducing the cardinality level of
GO6F 16/2452 (2006.01) the saved query.

3060
METRICS QUERY METRICS
PRODUCERS 302 ANALYSIS | » CONSUMERS 306
f_)\—\ ENGINE A
308
METRICS METRICS
PRODUCER » CONSUMER
3024 306A
A 4
METRICS —» METRICS METRICS METRICS [METRICS
PRODUCER - INGESTION > PRE-PROCESSING RETRIEVAL < » CONSUMER
3028 SUBSYSTEM ENGINE SUBSYSTEM 1068
—» 304a 304d 304¢ <
y
v
METRICS STORAGE
METRICS SUBSYSTEM 304b METRICS
PRODUCER CONSUMER
302¢C METRICS MANAGEMENT PLATFORM 306C
304

US 2024/0265015 A1l

Aug. 8, 2024 Sheet 1 of 11

Patent Application Publication

Q901
HIANNSNOD
SO LIN

d901
HIANSNOD
SOId.LAN

E

yor

WHOALY1d INJWIOVYNVYIN SOIE LN

A 4

_ qvol INILSASANS _L

_ AOVIOLS SOIELAIN _A

h 4

4

Vo0l
HAANSNOD
SORILAN

\

SORLIN

J
Y
30T SYAWNSNOD

3%0T
NILsASENS
IVAIIRALZY
SOIdLaN

J¢0l
H430NA0™d
SOIHLIN

0T
NILsSASHNS
NOILSTON!
SOIALIN

d201
H30NA0dd
SOIHLAN

Veol
¥30NA0Hd
SOIALIAN

00}

Y
207 S¥30NAa0¥d

SORLIN

Patent Application Publication Aug. 8,2024 Sheet 2 of 11 US 2024/0265015 A1

200

N

Identify at least one saved query for fetching metric 202
data that is to be run by a given metrics consumers

~
\J

Perform an analysis of the saved query’s expression

,\
MY

Based on the analysis, determine whether the saved 206
query is a candidate for cardinality reduction

N
\\/

Determine a strategy for reducing the cardinality level
of the saved query based at least in part on the 208
analysis of the saved query’s expression
Cause one or more actions to be carried out in order to
210

implement the determined strategy for reducing the
cardinality level of the saved query

TN
\/

US 2024/0265015 A1l

Aug. 8, 2024 Sheet 3 of 11

Patent Application Publication

J90¢
HIANNSNOD
SO LIN

Ve 'Ol

d90¢
HIANSNOD
SOId.LAN

4

V90¢
HAANSNOD
SORILAN

\

)

Y
F0T SHINNSNOD ¢

SORLIAN

(2114
INHOALY1d LNIWIOVYNYIN SOIELIN 570¢
¥30NQa0xUd
_ d%0¢ W3LSASANS SOldLAN
_ﬂmo,qmoB SOIYLAN
\ 4 +
oL gzot
IN3LSASEANS INIONT IN3LSASANS
TWATIELT ONISSII0Ud-T¥d NolLsIoNl [¢ mww_wmm_w__n_
SOILIN SOIMLIAW SOIYLAN
vzt
H30NA0YUd
SOIYLTN
80¢ L J
o 3NIONT v
1 SISATVNY Z0T s¥359NA0Nd
AN3IND SOIMLAN

00¢

US 2024/0265015 A1l

Aug. 8,2024 Sheet 4 of 11

Patent Application Publication

V90¢
H3NNSNOD
SOIdL13dN

A

A 4

80¢
3NION3
SISATVNV
Ad3NO

(1ejo3 sysanbai dyy bae

!

(je101 sysonbai—duy)bae

g¢ "Old

01¢
%02 70¢
NILSASENS WHOHLV1d LNIWIDOVYNVIN SOIH L3N
IVATIGL3
SOIdL13dN q¥0¢ IN3ILSASENS

JOVHOLS SOIH1IN

|e1o} sisanbai~dpy bae

p70¢
INION3
ONISS3O0¥Ud-Idd
SOIMLIN

{.£'1"'Z'0l,=Isou} |ejo} sisenbai—dpy

J¢0¢
430N3dodd
SOId13dN

{.2'L'Z'0l,=Isou} |ejo} sisenbai—dpy

By0E
W31SASANS
NOILS3IONI
SOIdL13dN

d¢0¢
430N3dodd
SOId13dN

{.1"1'Z°0l.=Isou} [ejo} sisenbaidpy

A

N

00¢

Veoe
430N3dodd
SOId13dN

)

Y

0€ S¥3IONA0™Ud

SOIMLIN

J¢€ Old

{.1'1'20l,=)s0Y}sa}Aq abesn Alowaw apou bBAae <uoneinp>

US 2024/0265015 A1l

Vo0t
Y3INNSNOD
SOl L3N ({<uonenpsK, | 1'2°01, =)S0y}saihgobesn Alowaw opou)awiy JoA0” BAe
A (143

Yo —_ _

= {.£'1'Z°0l.=Isou} [ejo} sisenbaidpy

- 3%0¢ voe —

= NALSASENS INJOALY1d LNIWIDVYNVIN SOIYLIN 520¢

2 TVATIELIY d30Ndodd

7 S SOIYLIN

SOIYLIN aF0c INILSASANS

2 3JOVHOLS SOIYLIAN

(=]

«a {.Z' L'z’ 0l.=1sou} [ejo} sisenbaidpy

[+ =]

on —_—

= {.1°1°Z°01,=Isou}salkq abesn|Aiowew opou~Bae <uoneinp> dc¢0¢

< ¥30NA0Yd
SOIYLIN

S \ 4

£ 70¢ Py0¢ W |

2 3INIONT R oz_mwm__,_n_uw_,“_mn_-mmn_ «—— Walsisans {.}" 1’2 0L,=)s0U} |e10)s}sanbai~dpyy

S SISATVYNY oL NOILSIONI

A A¥3ND soidan [vZoe

g ¥30NA0¥d

= SOIYLIN

]

=

&

N / L .)

g 00¢ 70T S¥3ONA0Yd

~—

Z SOIMLAN

ae old

0] @ [e1oy sisanbai—dyy wns BAae Aow

US 2024/0265015 A1l

V90
d3ANNSNOD
SOldLaN 010 ‘T7] ‘- ‘0] @) (1e1oy sisenbaiTdpy)uwins jo abeiony
A 0¢¢

Yo —_ _

= {.c" 1"z 0l,=Isou} |ejo) sisenbai~dpy

(= —

° 3%0% v0< |

= N3LSASENS NHO4LY1d LNIWIDOVYNYIN SOIFLIN D20¢

& IWAIIELIY d30NQoyd

7 e SOIYdLaAN

SOIYLIAN Gv0t INILSASANS

3 JOVHOLS SOIdLIN

(=]

a {.2'1 'z 0l,=Isou} |ejo) sisenbai~dpy

[+ =]

ob —_—

Ann.. |e10} sisanbali~dpy wns BABT Aow d¢0¢
¥309Naodd

SOIYdLaAN

£ A 4

(=} —

2 5% Pyoe wWoE <

2 3INIONT 3NION3 NILSASENS {.}" 1’2 0L,=)s0U} |e10)s}sanbai~dpyy

= SISATVYNY > oz_mww_wmw__w_,_ ddd < NOILSIONI

A A¥3no SOIYLIAN B VoS

g ¥309Naodd

= SOIYdLaAN

]

om

=

z / L .)

5 00¢g 70T SY3IONA0YUd

~N—

g SOIMLAN

US 2024/0265015 A1l

Aug. 8, 2024 Sheet 7 of 11

Patent Application Publication

1NIOV

Q90¥
SINNSNOD
SOIALIN

AIN3OV

g90v
JINNSNOD
SOIFLEN

\ 4

Vv 'Ol4

WHOALY1d INJWIDVNYIN SOIHLIN

yor

_ qavoy INJLSASANS _k

A

IN3IDV

Vooy
J3INNSNOD
SOIdLIN

A

\

)

h 4
30F SHIWNSNOD ¢

SORLINW

S5%0F
W3LlsAsSENS
IVAIIA LTS
SOIHLIN

_ IOVIOLS SOIELIN _4

J¢0¥
H430NAa0™d
SOIHLIN

507
NILSASHNS
NOILSTON!
SOIAL3IN

deov
H30NAa0dd
SORALIN

Yoy
H30NA0dd
SOIdLIN

A 4

80¥
INIONIT
SISATVNY
AY3INO

00y

L

J

A
Z0F s¥30Naoyd

SOILIN

US 2024/0265015 A1l

Aug. 8, 2024 Sheet 8 of 11

Patent Application Publication

1IN3IOV

V90
H3NNSNOD
SOIdL13dN

A

gy Old

([<y uoneinp>I{..1°1°2°01, =}soy}sajAq obesn Alowaw apou)awi} 19A0 bae

({<1 uoneanp=l{.1'1'2°0l, =1soy}soiAq obesn” Alowow apou)owl} 1oA0 BAB

(1154

« (1 uoneinp/y uoneinp) + ([<g¢ uoneinp>J{. 1120l
=)soy}sajiq abesn” Alo EoElovo:lm%lANl:oﬁE:vvvoE_#l._o>0|m>m* (1 uoneinp/g¢ uoljeinp)

%0¥
W3LSASANS
IVATIGL3
SOIdL13dN

vov
WHOHLV1d LNIWIDOVYNVIN SOIH L3N

avoy W3LSASANS

JOVHOLS SOIH1IN

A 4

80¥
3NION3
SISATVNV
Ad3NO

(I<¥"uonesnp>]{,1

"1'2°0L, =1soy}soifq obesn” Alowaw apou)awll} JoA0” BAB

By0V
W31SASANS
NOILS3IONI
SOIdL13dN

{.L

1'Z°01,=1s0Y} |E}0} s}sanbaidpy

N

00y

veor
430N3dodd
SOId13dN

US 2024/0265015 A1l

Aug. 8, 2024 Sheet 9 of 11

Patent Application Publication

1IN3IOV

V90
H3NNSNOD
SOIdL13dN

A

[°L @ (1e303 sisenbai~dypy)wns 3 "23a | ‘-] @ [ejo} sisanbai~dpy wns] jo aberany

Jv ‘Ol

1

(1147

019 ‘Z7] ‘i ‘0] @ (Ie10) sisenbaiTdyy)wns jo abeiony

%0¥
W3LSASANS
IVATIGL3
SOIdL13dN

vov
WHOHLV1d LNIWIDOVYNVIN SOIH L3N

avoy W3LSASANS

JOVHOLS SOIH1IN

A 4

80¥
3NION3
SISATVNV
Ad3NO

|e10} sisonbals dyy wns

{.£'1"'Z'0l,=Isou} |ejo} sisenbai—dpy

Jcoy
430N3dodd
SOId13dN

{.2'L'Z'0l,=Isou} |ejo} sisenbai—dpy

By0V
W31SASANS
NOILS3IONI
SOIdL13dN

A

decoy
430N3dodd
SOId13dN

{.1"1'Z°0l.=Isou} [ejo} sisenbaidpy

N

00y

Veor
430N3dodd
SOId13dN

)

Y

¢0¥Y SY3O0NAO0™Ud

SOIMLIN

Patent Application Publication

Aug. 8, 2024 Sheet 10 of 11

PROCESSOR

502 -

SOFTWARE

DATA

A

DATA
STORAGE
504

COMMUNICATION
INTERFACE <

506

COMPUTING DEVICE 500

508

FIG. 5

US 2024/0265015 A1l

Patent Application Publication

Aug. 8, 2024 Sheet 11 of 11

PROCESSOR

602 -

SOFTWARE

DATA

A

DATA
STORAGE
604

COMMUNICATION

INTERFACE < >

606

BACK-END PLATFORM 600

608

FIG. 6

US 2024/0265015 A1l

US 2024/0265015 Al

SYSTEMS AND METHODS FOR REDUCING
THE CARDINALITY OF METRICS QUERIES

BACKGROUND

[0001] Itis becoming increasingly common for computing
devices to generate and output metric data that provides
information about the state and/or performance of the com-
puting devices. For example, a server configured to execute
one or more server applications (e.g., containerized appli-
cations such as microservices) may generate and output
metric data that provides information about the state and/or
performance of some aspect of the server. As another
example, a client device configured to execute one or more
client applications (e.g., a mobile application, desktop appli-
cation, web application, or the like) may generate and output
metric data that provides information about the state and/or
performance of some aspect of the client device. As yet
another example, one computing device may generate and
output metric data that provides information about the state
and/or performance of some aspect of one or more other
computing devices. Other examples of computing devices
that generate and output metric data may exist as well.
[0002] In practice, an organization may be interested in
monitoring metric data being produced by a wide array of
different computing devices (e.g., servers within the orga-
nization’s back-end platform, client devices running
instances of a client application developed by the organiza-
tion, etc.), and in order to make use of the metric data
produced by these disparate software components, the orga-
nization may deploy a centralized “metrics management
platform” that functions to collect and store metric data from
various computing devices that are producing metric data
(referred to herein as “metrics producers™) so that the metric
data can later be accessed and reviewed. For instance, after
a metrics management platform collects and stores metric
data from different metrics producers, individuals associated
with the organization (e.g., developers, engineers, analysts,
etc.) can review the stored metric data in order to gain
visibility into the state and/or performance of the metrics
producers.

SUMMARY

[0003] Disclosed herein is the new technology for reduc-
ing the cardinality of saved queries.

[0004] In one aspect, the disclosed technology may take
the form of a method that involves (i) performing an analysis
of a saved query comprising an expression that specifies a
set of one or more unique metrics for which metric data is
to be fetched from a metrics management platform when the
saved query is run, (ii) determining a strategy for reducing
a cardinality level of the saved query based at least in part
on the analysis of the saved query, and (iii) causing the saved
query to be modified in accordance with the determined
strategy for reducing the cardinality level of the saved query.
[0005] In some embodiments, the method may further
involve, prior to determining the strategy for reducing the
cardinality level of the saved query, determining that the
query is a candidate for cardinality reduction based at least
in part on the analysis of the saved query. This function of
determining that the query is a candidate for cardinality
reduction based at least in part on the analysis of the saved
query may take various forms, and in some embodiments,
may involve determining that the saved query can be modi-

Aug. 8,2024

fied to achieve some level of reduction in a number of
samples that are to be fetched during a respective run of the
saved query.

[0006] Further, the function of performing the analysis of
the saved query may take various forms, and in some
embodiments, may involve one or more of (i) evaluating
how many unique metrics are specified by the saved query,
(ii) evaluating how many samples are to be fetched for each
unique metric specified by the saved query, or (iii) evaluat-
ing which types of operations that are applied by the saved
query.

[0007] Further yet, the determined strategy for reducing
the cardinality level of the saved query may take various
forms.

[0008] For instance, in some embodiments, the deter-
mined strategy for reducing the cardinality level of the saved
query may involve (i) defining at least one new composite
metric that is to be used by the saved query, (ii) configuring
the metrics management platform to begin producing and
storing metric data for the at least one new composite metric
based on metric data for a given subset of one or more
metrics ingested by the metric management platform, (iii)
modifying the saved query so that the expression of the
saved query encodes a request for metric data for the at least
one new composite metric, and perhaps also (iv) configuring
the metrics management platform to either (a) block storage
of metric data for the given subset of one or more metrics
ingested by the metric management platform or (b) store
metric data for the given subset of one or more metrics
ingested by the metric management platform in a lower
storage tier. And in such embodiments, the function of
causing the saved query to be modified in accordance with
the determined strategy for reducing the cardinality level of
the saved query may involve (i) instructing the metrics
management platform to begin producing and storing metric
data for the at least one new composite metric and (ii)
instructing a given metrics consumer that is to run the saved
query to modify the saved query so that the expression of the
saved query encodes the request for metric data for the at
least one new composite metric. Additionally, in such
embodiments, the function of modifying the saved query so
that the expression of the saved query encodes a request for
metric data for the at least one new composite metric may
involve replacing an aggregation operation that is to be
applied to fetched metric data for the given subset of one or
more metrics with the request for metric data for the at least
one new composite metric.

[0009] In other embodiments the determined strategy for
reducing the cardinality level of the saved query may
involve (i) defining at least one new composite metric that
is to be used by the saved query, (ii) configuring the given
metrics consumer to begin (a) extracting metric data for the
at least one new composite metric during runs of the saved
query, and (b) transmitting the extracted metric data for the
at least one new composite metric to the metrics manage-
ment platform for storage, and (iii) modifying the saved
query so that the expression of the saved query encodes a
request for metric data for the at least one new composite
metric. And in such embodiments, the function of causing
the saved query to be modified in accordance with the
determined strategy for reducing the cardinality level of the
saved query may involve (i) instructing an agent installed on
the given metrics consumer to begin (i) extracting metric
data for the at least one new composite metric during runs

US 2024/0265015 Al

of the saved query and (ii) transmitting the extracted metric
data for the at least one new composite metric to the metrics
management platform for storage; and (ii) instructing the
given metrics consumer to modify the saved query so that
the expression of the saved query encodes the request for
metric data for the at least one new composite metric.
[0010] In another aspect, the disclosed technology may
take the form of a computing system comprising at least one
processor, at least one non-transitory computer-readable
medium, and program instructions stored on the at least one
non-transitory computer-readable medium that are execut-
able by the at least one processor such that the computing
platform is configured to carry out the functions of the
aforementioned method.

[0011] Inyet another aspect, the disclosed technology may
take the form of a non-transitory computer-readable medium
comprising program instructions stored thercon that are
executable to cause a computing system to carry out the
functions of the aforementioned method.

[0012] It should be appreciated that many other features,
applications, embodiments, and variations of the disclosed
technology will be apparent from the accompanying draw-
ings and from the following detailed description. Additional
and alternative implementations of the structures, systems,
non-transitory computer readable media, and methods
described herein can be employed without departing from
the principles of the disclosed technology.

BRIEF DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 illustrates an example network in which a
metrics management platform may be utilized to collect and
store metric data being produced by metrics producers and
then make that stored metric data available to metrics
consumers, in accordance with the present disclosure;
[0014] FIG. 2 illustrates a flow diagram showing one
possible example of operations that may be carried out by a
query analysis engine in accordance with the present dis-
closure;

[0015] FIG. 3Aillustrates a network environment in which
a first embodiment of the disclosed technology has been
implemented;

[0016] FIG. 3B illustrates one example of the functionality
that may be carried out by the query analysis engine in
accordance with the first embodiment of the disclosed
technology;

[0017] FIG. 3C illustrates another example of the func-
tionality that may be carried out by the query analysis engine
in accordance with the first embodiment of the disclosed
technology;

[0018] FIG. 3D illustrates yet another example of the
functionality that may be carried out by the query analysis
engine in accordance with the first embodiment of the
disclosed technology;

[0019] FIG. 4Aillustrates a network environment in which
a second embodiment of the disclosed technology has been
implemented;

[0020] FIG. 4B illustrates one example of the functionality
that may be carried out by the query analysis engine in
accordance with the second embodiment of the disclosed
technology;

[0021] FIG. 4C illustrates another example of the func-
tionality that may be carried out by the query analysis engine
in accordance with the second embodiment of the disclosed
technology;

Aug. 8,2024

[0022] FIG. 5 is a simplified block diagram that illustrates
some structural components that may be included in an
example computing device; and

[0023] FIG. 6 is a simplified block diagram that illustrates
some structural components that may be included in an
example back-end platform.

DETAILED DESCRIPTION

[0024] As noted above, it is becoming increasingly com-
mon for computing devices to generate and output metric
data that provides information about the state and/or per-
formance of the computing devices. For example, a server
configured to execute one or more server applications (e.g.,
containerized applications such as microservices) may gen-
erate and output metric data that provides information about
the state and/or performance of some aspect of the server. As
another example, a client device configured to execute one
or more client applications (e.g., a mobile application,
desktop application, web application, or the like) may gen-
erate and output metric data that provides information about
the state and/or performance of some aspect of the client
device. As yet another example, one computing device may
generate and output metric data that provides information
about the state and/or performance of some aspect of one or
more other computing devices. Other examples of comput-
ing devices that generate and output metric data may exist as
well.

[0025] In practice, an organization may be interested in
monitoring metric data being produced by a wide array of
different computing devices (e.g., servers within the orga-
nization’s back-end platform, client devices running
instances of a client application developed by the organiza-
tion, etc.), and in order to make use of the metric data
produced by these disparate software components, the orga-
nization may deploy a centralized “metrics management
platform” that functions to collect and store metric data from
various computing devices that are producing metric data
(referred to herein as “metrics producers™) so that the metric
data can later be accessed and reviewed. For instance, after
a metrics management platform collects and stores metric
data from different metrics producers, individuals associated
with the organization (e.g., developers, engineers, analysts,
etc.) can review the stored metric data in order to gain
visibility into the state and/or performance of the metrics
producers.

[0026] To illustrate with an example, FIG. 1 shows an
example network environment 100 in which a metrics
management platform may be utilized to collect and store
metric data being produced by metrics producers and then
make that stored metric data available to metrics consumers.
As shown in FIG. 1, the network environment 100 may (i)
include a number of metrics producers 102, of which three
representative metrics producers 102A, 102B, and 102C are
shown as examples, (ii) a metrics management platform 104,
and (iii) a number of metrics consumers 106, of which three
representative metrics consumers 106A, 106B, and 106C are
shown as representative examples.

[0027] In general, each of the metrics producers 102 may
comprise a computing device installed with software for
producing metric data and transmitting such metric data to
the metrics management platform 104. Such a metrics
producer 102 may take any of various forms. For instance,
as one possibility, a metrics producer 102 could take the
form of a server configured to execute one or more server

US 2024/0265015 Al

applications (e.g., containerized applications such as micro-
services), which may produce metric data that provides
information about the state and/or performance of the server
and/or the server applications running thereon. As another
possibility, a metrics producer 102 could take the form of a
client device configured to execute one or more client
applications (e.g., a mobile application, desktop application,
web application, or the like), which may produce metric data
that provides information about the state and/or performance
of the client device and/or the one or more client applica-
tions running thereon. As yet another example, a metrics
producer 102 could take the form of a computing device that
produces metric data related to the state and/or performance
of one or more other computing devices and/or the software
running thereon (e.g., cluster-level metric data for a cluster
of nodes running containerized applications). A metrics
producer 102 could take some other form as well.

[0028] Further, each of the metrics producers 102 may be
configured to produce metric data for a respective set of one
or more metrics, where each such metric comprises a
time-series variable that provides information about the state
and/or performance of some aspect of a computing device
(or a collection of computing devices). Such a metric could
take any of various forms.

[0029] For instance, as one possibility, a metrics producer
102 may produce metric data for a metric that provides a
numerical measure of the extent of a certain type of event
that has occurred at a computing device, such as a count or
rate of a certain type of network request that has been
received by the computing device or a count or rate of a
certain type of user request that has been received by the
computing device, among other possible examples. As
another possibility, a metrics producer 102 may produce
metric data for a metric that provides a numerical measure
of the time it takes for a certain type of event to be carried
out at a computing device, such as a processing or trans-
mission duration for a certain type of network request that is
handled by the computing device or a processing duration
for a certain type of user request that is handled by the
computing device, among other possible examples. As yet
another possibility, a metrics producer 102 may produce
metric data for a metric that provides a numerical measure
of the extent of utilization of a certain type of resource at a
computing device, such as an extent of memory utilization,
CPU utilization, disk utilization, etc. at the computing
device, among other possible examples. As still another
possibility, a metrics producer 102 may produce metric data
for a metric that provides a numerical measure of the extent
of a certain type of error incurred while processing a certain
type of event at a computing device, such as a count or rate
of errors incurred while processing a certain type of network
request or a count or rate of errors incurred while processing
a certain type of user request, among other possible
examples. In practice, each of the foregoing types of metrics
could be produced at an application-level such that the
metric reflects the state and/or performance of an individual
software application running on a computing device (e.g., a
particular server application or a particular client applica-
tion), a device-level such that the metric reflects the state
and/or performance of a computing device independent of
any particular software application (e.g., a server or a client
device), or a cluster-level such that the metric reflects the
state and/or performance of a cluster of multiple computing

Aug. 8,2024

devices (e.g., a cluster of multiple servers or multiple client
devices), among other possibilities.

[0030] A metrics producer 102 may produce metric data
for various other types of metrics as well, including but not
limited to a metric that provides a numerical measure of how
many instances of an item of interest (e.g., number of
running containers, number of running application, etc.)
exist across the network environment 100, among various
other possible examples.

[0031] Further yet, in practice, a metrics producer 102
may produce metric data for each metric according to a
respective sampling interval that defines the rate at which
samples of the metric are to be produced by the metrics
producer 102. For instance, if a metrics producer 102 is
configured to produce metric data for a given metric accord-
ing to a 1-minute sampling interval, the metrics producer
102 may function to produce a time series of samples for the
given metric that includes a new timestamped sample of the
given metric every 1 minute.

[0032] Still further, in practice, a metrics producer 102
may identify each unique metric for which it is producing
metrics data in various ways. For instance, according to one
possible identification scheme, a metrics producer 102 may
identify each unique metric using (i) a metric name, which
identifies a general type of information that is represented by
the metric, and (ii) a set of one or more labels (or sometimes
referred to as “dimensions”) that identifies a specific instan-
tiation of the metric name. To illustrate with a first repre-
sentative example, a metric name could identify a general
type of information such as total number of HTTP requests
handled (e.g., http_requests_total), and the set of one or
more labels could identify a particular type of HT'TP request
(e.g., type="400" and/or method="POST"), a particular host
(e.g., host="10.2.1.1”), and/or a particular application (e.g.,
app="app_1") for which the total number of HTTP requests
is to be captured, which defines a specific instantiation of
this metric name. To illustrate with a second representative
example, a metric name could identify a general type of
information such as memory usage in bytes (e.g., node_
memory_usage_bytes), and the set of one or more labels
could identify a particular host (e.g., host="10.2.1.1”) and/or
a particular application (e.g., app="app_1~) for which the
memory usage in bytes is to be captured, which defines a
specific instantiation of this metric name. Many other
examples of metric names and metric labels are possible as
well. Further, a metrics producer 102 may identify each
unique metric for which it is producing metrics data using
various other identification schemes as well, including iden-
tification schemes that use a single type of identifier.
[0033] Each of the metrics producers 102 may transmit the
metric data to the metrics management platform 104 over a
respective communication path. Each of these respective
communication paths may generally comprise one or more
data networks and/or data links, which may take any of
various forms. For instance, each respective communication
path between a metrics producer 102 and the metrics man-
agement platform 104 may include any one or more of
Personal Area Networks (PANs), Local Area Networks
(LANs), Wide Area Networks (WANS) such as the Internet
or cellular networks, cloud networks, and/or point-to-point
data links, among other possibilities. Further, the data net-
works and/or links that make up each respective communi-
cation path may be wireless, wired, or some combination
thereof, and may carry data according to any of various

US 2024/0265015 Al

different communication protocols. Although not shown, the
respective communication paths may also include one or
more intermediate systems, one example of which may
include a metrics aggregation system, among other possi-
bilities. Many other configurations are also possible.
[0034] Turning to the metrics management platform 104,
as shown in FIG. 1, the metrics management platform 104
may comprise various functional subsystems, including a
metrics ingestion subsystem 104qa, a metrics storage subsys-
tem 1045, and a metrics retrieval subsystem 104c¢, each of
which may be configured to carry out certain back-end
functionality of the metrics management platform 104 in
accordance with the present disclosure.

[0035] For instance, the metrics ingestion subsystem 104a
of the metrics management platform 104 may generally be
configured to (i) receive and ingest metric data from the
metrics producers 102, (ii) optionally perform certain pre-
processing operations on the received metric data (e.g.,
validation, cleansing, deduplication, filtering, aggregation,
summarization, enrichment, restructuring, reformatting,
translation, mapping, etc.), and then (iii) write the ingested
metric data to the metrics storage subsystem 1045, among
other possible functions carried out by the metrics ingestion
subsystem 104a.

[0036] Further, the metrics storage subsystem 1045 of the
metrics management platform 104 may generally be con-
figured to store metric data that is received and ingested by
the metrics management platform 104. In practice, the
metrics storage subsystem 1045 may comprise a set of one
or more data stores that are configured to store metric data,
where each such data store could take any of various forms,
examples of which may include a NoSQL database (e.g., a
time series database, columnar database, document data-
base, key-value database, graph database, etc.), a relational
database (e.g., an Online Transactional Processing (OLTP)
database), a file-based data store (e.g., Hadoop Distributed
File System), an object-based data store (e.g., Amazon S3,
Azure Blob, etc.), a data warehouse (which could be based
on one or more of the foregoing types of data stores), a data
lake (which could be based on one or more of the foregoing
types of data stores), a message queue, and/or a streaming
event queue, among other possibilities.

[0037] In at least some implementations, the metrics stor-
age subsystem 1046 could take the form of a multi-tier
storage architecture (or sometimes referred to as a “tiered”
storage architecture) comprising multiple different tiers of
data stores that are designed to store different classes of
metric data. For instance, as one possibility, the metrics
storage subsystem 1045 may take the form of a multi-tier
storage architecture comprising two tiers of data stores: (i)
a first tier of one or more data stores that are designed to
store metric data that is more frequently accessed and/or
considered to be of greater importance, which is sometimes
referred to as a “hot tier” of data storage, and (ii) a second
tier of one or more data stores that are designed to store
metric data that is less frequently accessed and/or considered
to be of lesser importance, which is sometimes referred to as
a “cold tier” of data storage. In this respect, the data stores
in the first tier may have characteristics better suited for
storage of metric data that is more frequently accessed
and/or considered to be of greater importance, such as a data
store that has a higher level of performance (e.g., lower
latency, higher throughput, and/or greater availability,
among other possible aspects of a data store’s performance)

Aug. 8,2024

and/or a lower access cost as compared to the data stores that
may be used for the second storage tier but has a higher
storage cost than the data stores that may be used for the
second storage tier, whereas the data stores in the second tier
may have characteristics better suited for storage of metric
data that is less frequently accessed and/or considered to be
of lesser importance, such as a data store that has a lower
storage cost than the data stores that may be used for the first
storage tier but perhaps has a lower level of performance
(e.g., higher latency, lower throughput, and/or lesser avail-
ability, among other possible aspects of a data store’s
performance) and/or a higher access cost as compared to the
data stores that may be used for the first storage tier, among
other possible distinctions between the data stores in the first
and second storage tiers.

[0038] As another possibility, the metrics storage subsys-
tem 1045 may take the form of a multi-tier storage archi-
tecture comprising three or more tiers of data stores, where
each such tier is designed to store metric data having a
different level of access frequency and/or a different level of
importance. For instance, in line with the discussion above,
the data stores in higher tiers may generally have charac-
teristics better suited for storage of metric data that is more
frequently accessed and/or considered to be of greater
importance, such as data stores having a higher level of
performance and/or a lower access cost but a higher storage
cost, whereas the data stores in lower tiers may generally
have characteristics better suited for storage of metric data
that is less frequently accessed and/or considered to be of
lesser importance, such as data stores having a lower storage
cost but a lower level of performance and/or a higher access
cost. Some representative examples of multi-tier storage
architectures having three or more storage tiers include those
employed by cloud-based storage services such as Amazon
Web Services (AWS) (e.g., multiple different S3 tiers),
Google Cloud (e.g., standard, nearline, coldline, and archive
tiers), and Microsoft Azure (e.g., hot, cool, and archive
tiers), but it will be understood that a multi-tier storage
architecture having three or more storage tiers may take
various other forms as well.

[0039] The metrics storage subsystem 1046 may take
other forms as well.

[0040] Further yet, the metrics retrieval subsystem 104¢ of
the metrics management platform 104 may be generally
configured to (i) receive requests from the metrics consum-
ers 106 for metric data stored within the metrics storage
subsystem 1045, (ii) retrieve the requested metric data from
the metrics storage subsystem 1045, and (iii) return the
requested metric data to the metrics consumers 106, among
other possible functions carried out by the metrics retrieval
subsystem 104c.

[0041] In practice, the metrics management platform 104
may comprise some set of physical computing resources
(e.g., processors, data storage, etc.) utilized to implement the
foregoing functional subsystems. This set of physical com-
puting resources may take any of various forms. As one
possibility, the metrics management platform 104 may com-
prise cloud computing resources supplied by a third-party
provider of “on demand” cloud computing resources, such
as Amazon Web Services (AWS), Amazon L.ambda, Google
Cloud, Microsoft Azure, or the like. As another possibility,
the metrics management platform 104 may comprise “on-
premises” computing resources of the given software pro-
vider (e.g., servers owned by the given software provider).

US 2024/0265015 Al

As yet another possibility, the metrics management platform
104 may comprise a combination of cloud computing
resources and on-premises computing resources. Other
implementations of the metrics management platform 104
are possible as well.

[0042] Further, in practice, the functional subsystems of
the example metrics management platform 104 may be
implemented using any of various software architecture
styles, examples of which may include a microservices
architecture, a service-oriented architecture, and/or a server-
less architecture, among other possibilities, as well as any of
various deployment patterns, examples of which may
include a container-based deployment pattern, a virtual-
machine-based deployment pattern, and/or a Lambda-func-
tion-based deployment pattern, among other possibilities.

[0043] Turning now to the metrics consumers 106, each of
the metrics consumers 106 may comprise a computing
device installed with software that is programmed to con-
sume metric data from the metrics management platform
104. Such a metrics consumer 106 may take any of various
forms. As one possibility, a given metrics consumer 106 may
take the form of a server installed with a server application
(e.g., a back-end service such as a microservice) that is
configured to request and receive metric data from the
metrics management platform 104. Such a server application
could take any of various forms, some examples of which
may include (i) a server application that drives client-side
applications for presenting metric data on a dashboard,
which may be referred to herein as a “dashboard engine,” or
(i) a server application that analyzes metric data for pur-
poses of determining whether to issue alerts, which may be
referred to herein as an “alert engine.” Further, in practice,
such a server application either could be hosted by the same
organization that hosts the metrics management platform
104, in which case the server application may request and
receive the metric data via an internal Application Program-
ming Interface (API) (or the like) of the organization, or
could be hosted by a different organization than the one that
hosts the metrics management platform 104, in which case
the server application may request and receive the metric
data via an external API (or the like) of the organization
hosting the metrics management platform 104, among vari-
ous other possibilities. As another possibility, a given met-
rics consumer 106 may take the form of a client device
installed with a client application that is configured to
request and receive metric data from the metrics manage-
ment platform 104 via an external API (or the like) of the
organization hosting the metrics management platform 104.
A given metrics consumer 106 may take other forms as well.

[0044] Further, each of the metrics consumers 106 may be
configured to communicate with the metrics management
platform 104 over a respective communication path that may
generally comprise one or more data networks and/or data
links, which may take any of various forms. For instance,
each respective communication path between a metrics
consumer 106 and the metrics management platform 104
may include any one or more of PANs, LANs, WANs such
as the Internet or cellular networks, cloud networks, and/or
point-to-point data links, among other possibilities. Further,
the data networks and/or links that make up each respective
communication path may be wireless, wired, or some com-
bination thereof, and may carry data according to any of
various different communication protocols. Although not
shown, the respective communication paths may also

Aug. 8,2024

include one or more intermediate systems, one example of
which may include a metrics aggregation system, among
other possibilities. Many other configurations are also pos-
sible.

[0045] In the network environment 100 of FIG. 1, certain
of the metrics consumers 106 may be configured to run
saved queries that cause the metrics consumers 106 to fetch
the metric data from the metrics management platform 104.
For example, a dashboard engine may be configured to
periodically run a saved query according to some refresh
interval that defines that rate at which the dashboard engine
is to run saved query (e.g., every 5 minutes, every 30
minutes, etc.), which may then enable the dashboard engine
to present the results of the saved query to a user via a
client-side dashboard. As another example, an alert engine
may be configured to periodically run a saved query accord-
ing to some refresh interval that defines that rate at which the
alert engine is to run saved query (e.g., every 5 minutes,
every 30 minutes, etc.), which may then enable the alert
engine to evaluate certain alert rules based on the results of
the saved query. Other examples of metrics consumers 106
that are configured to run saved queries are possible as well.

[0046] In general, each of these saved queries may com-
prise an expression that (i) specifies a set of one or more
metrics for which metric data is to be fetched from the
metrics management platform 104 when the given query is
run by the metrics consumer 106 that is configured to run the
saved query, and may also (ii) specify one or more opera-
tions that are to be applied to the fetched metrics data. The
one or more metrics that may be specified by such a saved
query may take any of various forms—including any of the
example types of metrics described above. Likewise, the one
or more operations that are specified by such a saved query
may take any of various forms. For instance, as one possi-
bility, a saved query may specify an aggregation operation
(e.g., avg, sum, min, max, count, etc.) that is applied to
fetched samples of a single metric from multiple timepoints
(e.g., samples from a given time window) or fetched samples
of multiple different metrics from one or more timepoints.
As another possibility, a saved query may specify a binary
operation that is to be applied to fetched samples (or
aggregations thereof), such as an arithmetic operation (e.g.,
addition, subtraction, multiplication, division, etc.), a com-
parison operation, or a logical operation. As yet another
possibility, a saved query may specify an operation that
computes a non-aggregating, derived value based on one or
more fetched samples (or aggregations thereof), such as an
operation that computes a rate or a derivative based on
multiple fetched samples, among other possible examples.
The one or more operations that are specified by such a
saved query may take other forms as well.

[0047] Thus, each time a metrics consumer 106 runs such
a saved query, the metrics consumer 106 may function to (i)
request a given set of metric data from the metrics manage-
ment platform 104, (ii) receive the given set of metric data
back from the metrics management platform 104, and (iii)
optionally perform one or more operations on the given set
of metric data. In turn, the metrics consumer 106 may use
the results of the saved query for any of various purposes.
For example, if the metrics consumer 106 is a dashboard
engine, the metrics consumer 106 may use the results of the
saved query to populate a client-side dashboard. As another
example, if the metrics consumer 106 is an alert engine, the
metrics consumer 106 may use the results of the saved query

US 2024/0265015 Al

to evaluate alert rules provisioned at the alert engine and
then potentially issue an alert based on the saved query’s
results. A metrics consumer 106 could use the results of the
saved query for other purposes as well.

[0048] This ability to configure metrics consumers 106 to
automatically run saved queries is advantageous, because it
allows the metrics consumers 106 to fetch metrics data on a
periodic basis (and perhaps take some action based on that
data) without requiring human intervention. However, this
ability to configure metrics consumers 106 to automatically
run saved queries can also lead to certain problems.
[0049] One such problem is that organizations typically do
not impose any constraints on the “cardinality” of the saved
queries that are to be run by metrics consumers 106, which
is generally dictated by the extent of data samples that will
need to be fetched during each run of the saved query,
including in particular how many discrete timeseries will
need to be fetched during each run of the saved query. For
instance, a saved query that requires a metrics consumer 106
to fetch a larger number of discrete timeseries during each
run will generally be considered to have a higher cardinality
level, whereas a saved query that requires a metrics con-
sumer 106 to fetch a smaller number of discrete timeseries
during each run will generally be considered to have a lower
cardinality level.

[0050] Because organizations typically do not impose any
constraints on the “cardinality” of the saved queries that are
to be run by metrics consumers 106, situations can arise
where metrics consumers 106 become configured to run
saved queries that have a high cardinality level. To illustrate
with an example, if a given metrics consumer 106 is
configured to run a saved query having an expression that
applies an aggregation operation to samples for a set of
multiple metrics (e.g., by referencing a metric name without
specifying any labels) and that set includes a large number
of different metrics, then the given metrics consumer 106
will be required to fetch a large number of data samples
(e.g., a large number of discrete timeseries) every time the
saved query is run, and the saved query will be considered
to have a high cardinality level. Or to illustrate with another
example, if a given metrics consumer 106 is configured to
run a saved query having an expression that applies an
aggregation operation to a time window of multiple samples
of'a given metric and that time window has a long duration,
then the given metrics consumer 106 will be required to
fetch a large number of data samples every time the saved
query is run, and the saved query will be considered to have
a high cardinality level. Other examples of saved queries
having high cardinality are possible as well. Unfortunately,
allowing metric consumers 106 to be configured with saved
queries such as these that have high cardinality can lead to
several undesirable consequences.

[0051] First, as the cardinality level of a saved query
increases, the time it takes to carry out each run of the saved
query typically increases as well. The primary reason for this
is that a saved query having a higher cardinality level
generally requires a larger number of data samples (e.g., a
large number of discrete timeseries) to be fetched during
each run of the saved query, which increases the time it takes
for the metrics retrieval subsystem 104¢ of the metrics
management platform 104 to locate the requested samples
within the metrics storage subsystem 1044 so that they can
be returned to the metrics consumer 106. In this respect, a
saved query having a higher cardinality level can introduce

Aug. 8,2024

an undesirable delay in software applications that utilize the
results of the saved query, such as dashboard engines and
alert engines, because such applications must wait for each
run of the saved query to complete before taking action
based on the results of the saved query. Moreover, metrics
management platforms and/or metrics consumers often
impose a “timeout” period for queries that defines how long
a given query operation is permitted to take before timing
out (e.g., a 1-minute timeout period), and the increased time
that is required to run saved queries having a higher cardi-
nality level puts those saved queries at risk of not completing
before the query timeout period expires, which would render
those saved queries inoperable and disrupt the functionality
the software applications that rely on such saved queries. For
example, if a dashboard engine is configured to populate
client-side dashboard based on a saved query that cannot
complete before the query timeout period expires, that
client-side dashboard will never get populated, which
degrades user experience. As another example, if an alert
engine is configured to evaluate an alert rule for a given type
of alert based on a saved query that cannot complete before
the query timeout period expires, that alert will never get
triggered, which may prevent an organization from recog-
nizing and remedying issues at the metrics producers 102 in
a timely manner.

[0052] Second, when an organization’s metrics manage-
ment platform is hosted by a third party, there may be a
retrieval cost incurred by each run of a query for fetching
stored metrics data that is dependent on the number of
unique metrics for which metric data is fetched during the
query run, the number of discrete data samples that are
fetched during the query run, or both, and in such a scenario,
saved queries having higher cardinality levels are likely to
increase the retrieval costs paid by the organization. This is
because saved queries having higher cardinality levels are
likely to cause metric data for a larger number of unique
metrics to be fetched during each query run and/or cause a
larger number of discrete data samples to be fetched during
each query run.

[0053] Third, when there is no constraint on the cardinal-
ity level of the saved queries being run by the metrics
consumers 106, the metrics management platform typically
has to persistently store all ingested samples of all unique
metrics that are received from the metrics producers 102 in
a metrics storage subsystem that is suitable for regular
querying, which increases the storage cost of the metrics
management platform and may also degrade the perfor-
mance of the metrics management platform (e.g., by increas-
ing the time it takes to locate metric data within the metrics
storage subsystem).

[0054] To address these and other problems, disclosed
herein is technology for reducing the cardinality of saved
queries for fetching metric data from a metrics management
platform. One aspect of the disclosed technology takes the
form of a new software component referred to herein as a
“query analysis engine,” which is configured to analyze
whether saved queries for fetching metric data are candi-
dates for cardinality reduction and then take action to cause
the cardinality level of certain saved queries to be reduced.
At a high level, the functionality of the disclosed query
analysis engine may involve (i) performing an analysis of a
saved query for fetching metric data that is to be run by a
metrics consumer, (ii) based at least in part on the analysis,
determining a strategy for reducing a cardinality level of the

US 2024/0265015 Al

saved query, which may involve defining a new composite
metric that is to be used by the saved query to reduce the
extent of data samples (e.g., the number of discrete time-
series) fetched during runs of the saved query, and (iii)
causing the determined strategy for reducing the cardinality
level of the saved query to be implemented. This function-
ality will be described in further detail below with respect to
FIGS. 2, 3A-D, and 4A-C.

[0055] The disclosed technology may achieve various
improvements over existing systems for storing and query-
ing metric data. First, by identifying saved queries that are
candidates for cardinality reduction and then taking action to
cause the cardinality level of the identified saved queries to
be reduced, the disclosed technology may decrease the time
it takes to complete the identified saved queries and thereby
reduce the risk that the identified saved queries will timeout
before completing. Second, by identifying saved queries that
are candidates for cardinality reduction and then taking
action to cause the cardinality level of the identified saved
queries to be reduced, the disclosed technology may
decrease the retrieval cost incurred during runs of the saved
queries. Third, by identifying saved queries that are candi-
dates for cardinality reduction and then taking action to
cause the cardinality level of the identified saved queries to
be reduced, the disclosed technology may enable the metrics
management platform to employ a modified storage strategy
whereby metric data for ingested metrics that are not being
utilized by any saved queries can either be blocked from
storage or stored in a different storage tier, which may
reduce the storage cost of the metrics management platform.
The disclosed technology may achieve other improvements
over existing systems for storing and querying metric data as
well.

[0056] FIG. 2 illustrates a flow diagram 200 showing one
possible example of operations that may be carried out by
the disclosed query analysis engine in accordance with the
present disclosure.

[0057] Beginning at block 202, the query analysis engine
may identify at least one saved query for fetching metric
data that is to be run by a given metrics consumer. Such a
saved query could take various forms, examples of which
may include a saved query for fetching metric data that is
scheduled to be run on a recurring basis by a dashboard
engine or an alert engine installed on the given metrics
consumer or a saved query that is stored at the given metrics
consumer and is available to be run “on demand” at the
request of a user, among other possibilities.

[0058] In line with the discussion above, the saved query
that is identified may comprise an expression that (i) speci-
fies a set of one or more metrics for which metric data is to
be fetched from a metrics management platform when the
saved query is run by the given metrics consumer, and that
may also (ii) specify one or more operations that are to be
applied to the fetched metrics data. The one or more metrics
that may be specified by the saved query may take any of
various forms—including any of the example types of
metrics described above (e.g., a metric that provides a
numerical measure of the extent of a certain type of event
that has occurred at a computing device, the time it takes for
a certain type of event to be carried out at a computing
device, the extent of utilization of a certain type of resource
at a computing device, the extent of a certain type of error
incurred while processing a certain type of event at a
computing device, etc.). Likewise, the one or more opera-

Aug. 8,2024

tions that may be specified by such a saved query may take
any of various forms—including any of the example types of
operations described above (e.g., an aggregation operation,
a binary operation, an operation that computes a non-
aggregating, derived value, etc.).

[0059] Further, in line with the discussion above, the saved
query that is identified will have an associated cardinality
level, which is primarily dictated by how many data samples
(e.g., how many discrete timeseries) will need to be fetched
during each run of the saved query. For instance, if the saved
query causes the given metrics consumer to fetch a larger
number of data samples (e.g., a larger number of discrete
timeseries) during each run, the saved query may be con-
sidered to have a higher cardinality level, whereas if the
saved query causes the metrics consumer to fetch a smaller
number of data samples (e.g., a smaller number of discrete
timeseries) during each run, the saved query may be con-
sidered to have a lower cardinality level.

[0060] The saved query that is identified may take other
forms as well.
[0061] At block 204, the query analysis engine may then

perform an analysis of the saved query’s expression that
facilitates a determination of (i) whether the saved query is
a candidate for cardinality reduction and (ii) if so, how the
saved query’s cardinality level can be reduced. This analysis
of the saved query’s expression may take various forms.
[0062] As one possible implementation, the query analysis
engine may begin its analysis of the saved query’s expres-
sion by evaluating how many unique metrics are specified
by the saved query. In order to perform this evaluation, the
query analysis engine may be configured with the capability
to interpret notations utilized by certain query languages
(e.g., PromQL, SQL, etc.) to reference unique metrics, and
the query analysis engine may also have access to a listing
of all metrics that have been ingested by the metrics man-
agement platform, which may be utilized to facilitate the
query analysis engine’s determination of how many unique
metrics are specified by the saved query.

[0063] For instance, in a scenario where the metrics
ingested by the metrics management platform are identified
using metric names and corresponding sets of one or more
labels, it is possible that the saved query may reference a set
of unique metrics by referencing a metric name without
specifying any corresponding label, which amounts to a
request to fetch samples for all unique metrics having that
same metric name. To illustrate with an example, if there is
a set of unique metrics that are identified by the metric name
http_requests_total and a corresponding set of two labels,
type and host, a reference to http_requests_total without any
corresponding labels amounts to a request to fetch samples
of all of the ingested metrics having the metric name
http_requests_total. Or along similar lines, it is possible that
the saved query may reference a set of unique metrics by
referencing a metric name and specifying a value for only
one of multiple possible labels corresponding to the metric
name, which amounts to a request to fetch samples for all
unique metrics having that same combination of metric
name and label value. To illustrate with an example, if there
is a set of unique metrics that are identified by the metric
name http_requests_total and a corresponding set of two
labels, type and host, a reference to http_requests_
total{ type="400"} amounts to a request to fetch samples of
all of the ingested metrics having the metric name http_
requests_total and a type value of 400 across all possible

US 2024/0265015 Al

host values. Thus, if the query analysis engine identifies this
notation within the saved query’s expression, the query
analysis engine may evaluate the saved query’s expression
against a listing of all metrics that have been ingested by the
metrics management platform in order to determine how
many unique metrics are being specified by the saved query.
[0064] The query analysis engine’s evaluation of how
many unique metrics are specified by the saved query could
take various other forms as well.

[0065] Inaddition to evaluating how many unique metrics
are specified by the saved query, the query analysis engine
may also evaluate how many discrete samples are to be
fetched for each unique metric specified by the saved query.
In order to perform this evaluation, the query analysis engine
may be configured with the capability to interpret notations
utilized by certain query languages (e.g., PromQL, SQL,
etc.) to reference multiple samples of a given metric, and the
query analysis engine may also have access to data indicat-
ing the sampling intervals of all metrics that have been
ingested by the metrics management platform, which may
be utilized to facilitate the query analysis engine’s determi-
nation of how many discrete samples are to be fetched for
each unique metric specified by the saved query.

[0066] For instance, if the saved query specifies a given
metric using the PromQL notation of <metric_identifier>
[<duration>], this amounts to a request for all samples of the
given metric having timestamps that fall within a lookback
window having the specified duration back from the run
time of the saved query. To illustrate with an example, if the
saved query includes the notation http_requests_
total {type="400", host="10.2.1.1”}[5m], this amounts to a
request for all samples of the http_requests_
total {type="400", host=10.2.1.1”} metric from a lookback
window that extends 5 minutes back from the run time of the
saved query. Thus, if the query analysis engine identifies this
notation within the saved query’s expression, the query
analysis engine access data indicating the sampling interval
of' the specified metric and then utilize the specified duration
of the lookback window and the specified metric’s sampling
interval to determine the number of discrete samples that are
to be fetched for each unique metric specified by the saved
query.

[0067] Along with evaluating how many unique metrics
are specified by the saved query and how many unique
metrics are specified by the saved query, the query analysis
engine may further evaluate the types of operations that are
applied to fetched metric data for the metrics specified by the
saved query. In order to perform this evaluation, the query
analysis engine may be configured with the capability to
interpret notations utilized by certain query languages (e.g.,
PromQL, SQL, etc.) to specify operations that are to be
applied to fetched metric data for the metrics specified by the
saved query.

[0068] For instance, in line with the discussion above, the
query analysis engine may be configured with the capability
to identify notations for aggregation operations (e.g., avg,
sum, min, max, count, etc.), binary operations (e.g., arith-
metic operations, comparison operations, logical operations,
etc.), and/or operations that compute non-aggregating,
derived values, among various other possible types of opera-
tions that may be applied to fetched metric data. To illustrate
with an example, if the saved query includes the notation
sum(http_requests_total), the query analysis engine may
identify this to be an aggregation option that computes a sum

Aug. 8,2024

of the most-recent sample of every metric having the metric
name http_requests_total. Or to illustrate with another
example, if the saved query includes the notation avg_over_
time(http_requests_total{type=-400", host=10.2.1.1"}
[Sm]), the query analysis engine may identify this to be an
aggregation option that computes an average of the samples
of the http_requests_total {type=*400”, host=10.2.1.1"}
metric from a lookback window that extends 5 minutes back
from the run time of the saved query. Many other examples
are possible as well.

[0069] The query analysis engine’s analysis of the saved
query’s expression may take various other forms as well.

[0070] At block 206, based on the analysis perform at
block 204, the query analysis engine may next determine
whether the saved query is a candidate for cardinality
reduction. At a high level, this function may involve deter-
mining whether any aspect of the saved query’s expression
can be modified to reduce the extent of samples (e.g., the
number of discrete timeseries) that are to be fetched during
each run of the saved query, which may in turn reduce the
cardinality level of the saved query.

[0071] For instance, if the saved query specifies an opera-
tion that is to be applied to multiple fetched samples in order
to compute a single derived value—such as an aggregation
operation that computes an aggregated value from multiple
fetched samples or an operation that computes a non-
aggregating, derived value from multiple fetched samples—
the query analysis engine may determine that the saved
query is a candidate for cardinality reduction because the
specified operation could be replaced by a notation that
relies on a new composite metric and thereby requires a
smaller number of samples to be fetched during each run of
the saved query.

[0072] The query analysis engine’s determination of
whether any aspect of the saved query’s expression can be
modified to reduce the extent of samples (e.g., the number
of discrete timeseries) that are to be fetched during each run
of the saved query may take other forms as well.

[0073] In some implementations, as long as the query
analysis engine determines that the saved query can be
modified to achieve some level of reduction in the extent of
samples (e.g., the number of discrete timeseries) that are to
be fetched during each run of the saved query, the query
analysis engine may determine that the saved query is a
candidate for cardinality reduction and then proceed to block
208. On the other hand, in other implementations, the query
analysis engine may additionally evaluate the extent of the
cardinality reduction that could be achieved by modifying
the saved query before determining whether the saved query
is a candidate for cardinality reduction. For example, if the
query analysis engine determines that the extent of samples
(e.g., the number of discrete timeseries) that are to be
fetched during each run of the saved query can only be
reduced by a smaller amount that falls below a threshold, the
query analysis engine may determine that the saved query is
not a candidate for cardinality reduction and then leave the
saved query unmodified, whereas if the query analysis
engine determines that extent of samples (e.g., the number
of discrete timeseries) that are to be fetched during each run
of'the saved query can be reduced by an amount that exceeds
the threshold, the query analysis engine may determine that
the saved query is a candidate for cardinality reduction and
then proceed to block 208.

US 2024/0265015 Al

[0074] The query analysis engine’s functionality for deter-
mining whether the saved query is a candidate for cardinal-
ity reduction may also take other forms—including but not
limited to the possibility that the query analysis engine may
optionally be configured to perform an initial assessment of
whether the cardinality level of the saved query is within
acceptable limits and then decide whether to proceed further
based on that initial assessment.

[0075] Turning to block 208, if the saved query is deter-
mined to be a candidate for cardinality reduction, the query
analysis engine may next determine a strategy for reducing
the cardinality level of the saved query based at least in part
on the analysis of the saved query’s expression. In this
respect, the strategy that is determined for reducing the
cardinality level of the saved query may take any of various
forms, which may depend on the particular embodiment of
the disclosed technology and particular expression of the
saved query, among other possible factors.

[0076] For instance, according to a first embodiment of the
disclosed technology, a metrics management platform may
be provisioned with a configurable engine that is capable of
performing certain pre-processing operations on metric data
that is ingested by the metric management platform prior to
such metric data being stored, which may be referred to
herein as a “metrics pre-processing engine.” And in this first
embodiment, the determined strategy for reducing the car-
dinality of the saved query may involve (i) defining at least
one new composite metric that is to be used by the saved
query as a means for reducing the extent of samples (e.g., the
number of discrete timeseries) that are to be fetched during
each run of the saved query, (ii) configuring the metrics
pre-processing engine to begin producing samples for the at
least one new composite metric, and (iii) modifying the
saved query’s expression so that it encodes a request for
metric data for the at least one new composite metric in
place of some portion of the original expression.

[0077] To illustrate with an example, if the saved query’s
expression encodes an aggregation operation that is to be
applied to multiple unique metrics, the determined strategy
for reducing the cardinality of the saved query may involve
(1) defining a new composite metric that comprises an
aggregation of the multiple unique metrics, (ii) configuring
the metrics pre-processing engine to begin producing values
for the new composite metric, and (iii) modifying the saved
query’s expression to replace the aggregation operation as
applied to the multiple unique metrics with the request for
metric data for the composite metric. Or to illustrate with
another example, if the saved query’s expression encodes an
aggregation operation that is to be applied to a time window
of multiple samples of a given metric, the determined
strategy for reducing the cardinality of the saved query may
involve (i) defining a new composite metric that comprises
an aggregation of the time window of multiple samples of a
given metric, (ii) configuring the metrics pre-processing
engine to begin producing samples for the new composite
metric, and (iii) modifying the saved query’s expression to
replace the aggregation operation as applied to the time
window of multiple samples of a given metric with the
request for metric data for the composite metric. Many other
examples are possible as well.

[0078] Further, in the first embodiment of the disclosed
technology, the determined strategy may also optionally
involve modifying how metric data for certain ingested
metrics is handled by the metrics management platform,

Aug. 8,2024

such as by configuring the metrics pre-processing engine to
either block metric data for certain metrics from being
persistently stored in the metrics storage subsystem or store
metric data for certain metrics in a lower storage tier of the
metrics storage subsystem. For instance, if the determined
strategy for reducing the cardinality of the saved query
involves replacing the saved query’s reference to one or
more ingested metrics with a reference to a new composite
metric, the query analysis engine may further function to (i)
evaluate whether the one or more ingested metrics are being
utilized by any other saved query for fetching metrics data
from the metrics management platform, and (ii) if any of the
one or more ingested metrics is not being utilized by any
other saved query, configuring the metrics pre-processing
engine to either block metric data for the ingested metric
from being persistently stored in the metrics storage sub-
system or store metric data for the ingested metric in a lower
storage tier of the metrics storage subsystem. In this way, the
disclosed technology may additionally provide a means for
reducing the volume of metric data stored by the metrics
management platform (or at least reducing the volume of
metric data stored in a higher storage tier of the metrics
management platform), which may in turn decrease storage
cost and/or improve the retrieval performance of the metrics
management platform.

[0079] Turning to a second embodiment of the disclosed
technology, metrics consumers that are configured to run
saved queries could each be provisioned with a configurable
agent that is capable of extracting samples of a new com-
posite metric during runs of a saved query and causing the
samples of the composite metric to be transmitted back to
the metric management platform for storage, which may be
referred to herein as “query processing agent.” And in this
second embodiment, the determined strategy for reducing
the cardinality level of the saved query may involve (i)
defining at least one new composite metric that is to be used
by the saved query as a means for reducing the extent of
samples (e.g., the number of discrete timeseries) that are to
be fetched during each run of the saved query, (ii) config-
uring the query processing agent to begin extracting samples
of the at least one new composite metric during runs of the
saved query and transmitting such samples back to the
metrics management platform for storage, and (iii) modify-
ing the saved query’s expression so that it encodes a request
for metric data for the at least one new composite metric in
place of some portion of the original expression.

[0080] To illustrate with another example, if the saved
query’s expression encodes an aggregation operation that
serves to aggregate multiple unique metrics at multiple
different timepoints, the determined strategy for reducing
the cardinality of the saved query may involve (i) defining
a new composite metric that comprises an aggregation of the
multiple unique metrics, (ii) configuring the query process-
ing agent to begin extracting values for the new composite
metric during runs of the saved query and transmitting such
samples back to the metrics management platform for stor-
age, and (iil) modifying the saved query’s expression so that
instead of aggregating multiple unique metrics at multiple
different timepoints, the expression aggregates samples of
the new composite metric at the multiple different time-
points. Many other examples are possible as well.

[0081] The determined strategy for reducing the cardinal-
ity of the saved query may take various other forms as well,

US 2024/0265015 Al

and further examples are described below with reference to
FIGS. 3A-D and FIGS. 4A-C.

[0082] Lastly, at block 210, the query analysis engine may
cause one or more actions to be carried out in order to
implement the determined strategy for reducing the cardi-
nality level of the saved query. The actions that may be
carried out in order to implement the determined strategy
may take various forms, which may depend on the embodi-
ment of the disclosed technology.

[0083] For instance, in the first embodiment of the dis-
closed technology, the query analysis engine may cause the
determine strategy to be implemented by (i) instructing the
metrics pre-processing engine to begin producing and writ-
ing samples for the at least one new composite metric and
(i) instructing the given metrics consumer to modify the
saved query in accordance with the determined strategy. In
turn, the metrics pre-processing engine may thereafter begin
to produce and write samples for the at least one new
composite metric, and the given metrics consumer may
thereafter begin running the modified version of the saved
query.

[0084] Further, in the second embodiment, the query
analysis engine may cause the determine strategy to be
implemented by (i) instructing the query processing agent to
begin extracting samples for the at least one new composite
metric and transmitting such samples back to the metrics
management platform for storage and (ii) instructing the
given metrics consumer to modify the saved query in
accordance with the determined strategy. In turn, the query
processing agent may begin to extract and send samples for
the at least one new composite metric, and the given metrics
consumer may begin running the modified version of the
saved query.

[0085] The one or more actions that the query analysis
engine may carry out in order to implement the determined
strategy may take other forms as well, and further examples
are described below with reference to FIGS. 3A-D and
FIGS. 4A-C.

[0086] Turning now to FIG. 3A, a network environment
300 in which the first embodiment of the disclosed technol-
ogy has been implemented is illustrated. As with the network
environment 100 of FIG. 1, the network environment 300
includes (i) a plurality of metrics producers 302, of which
metrics producers 302A, 302B, and 302C are shown as
examples, (ii) a metrics management platform 304 compris-
ing a metrics ingestion subsystem 304a, a metrics storage
subsystem 3045, and a metrics retrieval subsystem 304¢, and
(iii) a plurality of metrics consumers 306, of which metrics
consumers 306A, 3068, and 306C are shown as examples.
However, unlike the network environment 100 of FIG. 1, the
network environment 300 of FIG. 3 further includes (i) a
metrics pre-processing engine 3044 within the metrics man-
agement platform 304 that sits between the metrics ingestion
subsystem 304a and the metrics storage subsystem 3045 and
(i) a query analysis engine 308 that is configured to interact
with metrics consumers 306 that are configured to run
queries as well as with the metrics pre-processing engine
304d. (While the query analysis engine 308 is shown in FIG.
3 as a separate system from the metrics management plat-
form 304, it should be understood that the query analysis
engine 308 could also be implemented as a functional
subsystem of the metrics management platform 304).
[0087] In accordance with the present disclosure, the
query analysis engine 308 may be configured to analyze

Aug. 8,2024

saved queries that are to be run by one or more of the metrics
consumers 306 in order to determine whether any of the
saved queries are candidates for cardinality reduction. And
for each saved query that is determined to be a candidate for
cardinality reduction, the query analysis engine 308 may
determine a strategy for reducing the saved query’s cardi-
nality level based on its analysis and then cause the deter-
mined strategy to be implemented by (i) defining at least one
new composite metric that is used by the saved query as a
means for reducing the extent of samples (e.g., the number
of discrete timeseries) that are to be fetched during each run
of'the saved query, (ii) instructing the metrics pre-processing
engine 304d to begin producing values for the at least one
new composite metric, and (iii) instructing the given metric
consumer 306 that is configured to run the saved query to
modify the saved query’s expression so that it encodes a
request for metric data for the at least one new composite
metric in place of some portion of the original expression. In
turn, the metrics pre-processing engine 3044 may thereafter
function to produce and write values for the at least one new
composite metric, and the given metric consumer 306 may
thereafter function to run the modified version of the saved
query, which may involve fetching metric data for the at
least one new composite metric instead of metric data for
one or more ingested metrics.

[0088] Additionally, in some implementations, the deter-
mined strategy for reducing a saved query’s cardinality level
may further involve modifying how a corresponding set of
two or more ingested metrics are handled by the metrics
management platform 304, such as by configuring the met-
rics pre-processing engine 3044 to either block metric data
for certain ingested metrics from being persistently stored in
the metrics storage subsystem 3045 or to store metric data
for certain ingested metrics in a lower storage tier of the
metrics storage subsystem 3045, in which case the query
analysis engine’s functionality for causing the determined
strategy to be implemented may further involve instructing
the metrics pre-processing engine 3044 to begin performing
such a modified handling action with respect to metric data
for the corresponding set of two or more ingested metrics.
For instance, if the determined strategy for reducing the
cardinality of the saved query involves replacing the saved
query’s reference to one or more ingested metrics with a
reference to a new composite metric, the query analysis
engine 308 may further function to (i) evaluate whether the
one or more ingested metrics are being utilized by any other
saved query for fetching metrics data from the metrics
management platform, and (ii) if any of the one or more
ingested metrics is not being utilized by any other saved
query, configuring the metrics pre-processing engine 3044 to
either block metric data for the ingested metric from being
persistently stored in the metrics storage subsystem or store
metric data for the ingested metric in a lower storage tier of
the metrics storage subsystem. In this way, the disclosed
technology may additionally provide a means for reducing
the volume of metric data stored in the metrics storage
subsystem 3045 (or at least reducing the volume of metric
data stored in a higher storage tier of the metrics storage
subsystem 3045), which may in turn decrease storage cost
and/or improve the retrieval performance of the metrics
management platform 304.

[0089] One illustrative example of the functionality that
may be carried out by the query analysis engine 308 in
accordance with the first embodiment of the disclosed

US 2024/0265015 Al

technology will now be described with reference to FIG. 3B,
which shows a scenario where (i) a plurality of the metrics
producers 302 are configured to produce metric data for
respective metrics having the same metric name but different
respective labels and (ii) a given metrics consumer 306A is
configured to run a first representative saved query 310
having an expression that applies an aggregation operation
to a set of multiple different metrics (e.g., by referencing a
metric name without specitying any labels), which causes
the given metrics consumer to 306A to fetch metric data for
every single metric in the set (e.g., every metric having the
same metric name) every time the saved query 310 is run.

[0090] In particular, as shown in FIG. 3B, a plurality of the
metrics producers 302 may be configured to produce metric
data for metrics having a same metric name of http_request-
s_total but having different values for a host label. For
example, metrics producer 302A is shown as producing
metric data for an http_requests_total{host="10.2.1.1"}
metric that indicates a total number of HTTP requests
handled by a host having an IP address of “10.2.1.1,” metrics
producer 302B is shown as producing metric data for an
http_requests_total{host=10.2.1.2”"} metric that indicates a
total number of HTTP requests handled by a host having an
1P address of “10.2.1.2,” metrics producer 302C is shown as
producing metric data for an http_requests_total{host=*10.
2.13”} metric that indicates a total number of HTTP
requests handled by a host having an IP address of “10.2.
1.3,” and so on. Further, as shown in FIG. 3B, the saved
query 310 to be run by the given metrics consumer 306A
may have an expression of avg(http_requests_total), which
specifies that the given metrics consumer 306A is to (i) fetch
a most-recent sample for every metric having a metric name
of http_requests_total, and (ii) average the fetched samples
together to produce a single, aggregated value representing
an average of the total number of HTTP requests handled by
the different hosts as of the run time of the saved query 310.
Thus, in this example, the saved query’s cardinality level is
dependent on how many different host-level http_requests_
total metrics are being produced by the metrics producers
306 in the network environment 300—when the number of
hosts in the network environment 300 is smaller, the saved
query’s cardinality level will be lower, but as the number of
hosts in the network environment 300 increases, the
example saved query’s cardinality level will likewise
increase and may eventually reach a point that could impact
negatively query performance.

[0091] In accordance with the first embodiment of the
disclosed technology, the query analysis engine 308 may
perform an analysis of the saved query 310 in order to
determine whether the saved query 310 is a candidate for
cardinality reduction, and if so, the query analysis engine
308 may determine a strategy for reducing the cardinality
level of the saved query 310. For instance, in this example,
the query analysis engine 308 may determine that the saved
query 310 is a candidate for cardinality reduction based on
its use of an aggregation operation on an unbounded set of
individual metrics, and may then determine a strategy for
reducing the cardinality level of the saved query 310 that
involves (i) defining a new composite metric identified as
avg_http_requests_total that comprises an average of the
individual http_requests_total{host=<value>} metrics,
which is to be used by the saved query 310 in place of the
individual http_requests_total{host=<value>} metrics, (ii)
configuring the metrics pre-processing engine 3044 to begin

Aug. 8,2024

producing and writing samples for the new avg_http_re-
quests_total metric, and (iii) updating the expression of the
saved query 310 so that it specifies the new avg http_
requests_total metric instead of the individual http_re-
quests_total {host=<value>} metrics that form the basis for
the avg_http_requests_total metric. In turn, the query analy-
sis engine 308 may cause the determined strategy to be
implemented by (i) instructing the metrics pre-processing
engine 3044 to begin producing and writing samples for a
new avg_http_requests_total metric that comprises an aver-
age of the individual http_requests_total{host=<value>}
metrics ingested from the metrics producers 306 and (ii)
instructing the given metrics consumer 306 A to moditfy the
saved query’s expression from avg(http_requests_total) to
avg_http_requests_total.

[0092] In some implementations, the determined strategy
for reducing the cardinality level of the saved query 310 may
further involve configuring the metrics pre-processing
engine 3044 to either block metric data for the individual
http_requests_total{host=<value>} metrics from being per-
sistently stored in the metrics storage subsystem 3045 or
store metric data for the individual http_requests_
total{host=<value>} metrics in a lower storage tier of the
metrics storage subsystem 3045, in which case the query
analysis engine’s functionality for causing the determined
strategy to be implemented may further involve instructing
the metrics pre-processing engine 3044 to begin performing
such a modified handling action with respect to metric data
for the individual http_requests_total{host=<value>} met-
rics.

[0093] After the query analysis engine 308 carries out this
functionality, the metrics pre-processing engine 3044 may
function to compute a time series of samples for the avg
http_requests_total metric in accordance with a certain sam-
pling interval (e.g., a 1-minute sampling interval), where
each respective sample of the avg_http_requests_total met-
ric is computed by averaging samples of the individual
http_requests_total{host=<value>} metrics from a corre-
sponding point in time. For example, the metrics pre-
processing engine 3044 may compute (i) a first sample S, of
the composite avg http_requests_total metric having a
sample time of T, by averaging ingested samples of the
individual http_requests_total{host=<value>} metrics that
were produced at or near T, (ii) a second sample S, of the
composite avg_http_requests_total metric having a sample
time of T, by averaging ingested samples of the individual
http_requests_total{host=<value>} metrics that were pro-
duced at or near T,, and so on for each subsequent sample
of the composite avg_http_requests_total metric. As noted
above, in some implementations, the metrics pre-processing
engine 3044 may also function to either block the ingested
samples of the individual http_requests_
total{host=<value>} metrics from being persistently stored
in the metrics storage subsystem 3045 or store such ingested
samples in a lower storage tier of the metrics storage
subsystem 3045, so as to reduce the storage footprint of the
metrics data.

[0094] Further, during each subsequent run of the modi-
fied version of the saved query 310, the given metrics
consumer 306A may function to fetch a most-recent sample
of the composite avg_http_requests_total metric as opposed
to fetching a most-recent sample of every metric having a
metric name of http_requests_total. In this respect, the
cardinality level of the saved query 310 is reduced, which in

US 2024/0265015 Al

turn reduces the time and compute resources required to
carry out each subsequent run of the saved query 310.
[0095] The query analysis engine 308 may carry out
similar functionality for other saved queries having expres-
sions that apply an aggregation operation to multiple differ-
ent metrics (e.g., metrics sharing the same metric name but
having different labels), such as an avg, sum, min, max, or
count operation, among other possibilities.

[0096] It should also be understood that, based on the
query analysis engine’s analysis of a saved query having an
expression that applies an aggregation operation to multiple
different metrics, the query analysis engine 308 could deter-
mine not to take an action in order to reduce the cardinality
level of the saved query. For example, if the saved query’s
expression applies an aggregation operation to a relatively-
small, bounded set of metrics, the query analysis engine 308
could determine that the cardinality level of the saved query
is already within acceptable limits and thereby determine not
to take an action in order to reduce the cardinality level of
the saved query despite the fact that some extent of cardi-
nality reduction could be achieved by replacing the aggre-
gation operation with a new composite metric.

[0097] Another illustrative example of the functionality
that may be carried out by the query analysis engine 308 in
accordance with the first embodiment of the disclosed
technology will now be described with reference to FIG. 3C,
which shows a scenario where (i) a given metrics producer
302A is configured to produce metric data for a given metric
and (ii) a given metrics consumer 306A is configured to run
a second representative saved query 320 having an expres-
sion that applies an aggregation operation to a time window
of multiple samples of the given metric.

[0098] In particular, as shown in FIG. 3C, the given
metrics producer 302A may be configured to produce metric
data for a node_memory_usage_bytes{host="10.2.1.1"}
metric that indicates the memory usage of a host having an
IP address of “10.2.1.1.” Further, as shown in FIG. 3C, the
saved query 320 to be run by the given metrics consumer
306A may have an expression of avg_over_time(node_
memory_usage_bytes{host=10.2.1.1”}[<duration>]),
which specifies that the given metrics consumer 306A is to
(1) fetch all stored samples of the node_memory_usage_
bytes{host="10.2.1.1”} metric from a lookback window
having the specified duration back from the execution time
of the saved query 320, and (ii) average the fetched samples
together to produce a single, aggregated value representing
an average of the memory usage of the 10.2.1.1 host during
the lookback window, among other possibilities. Thus, in
this example, the saved query’s cardinality level is depen-
dent on the duration of the lookback window and the
sampling interval of the node_memory_usage_
bytes{host="10.2.1.1"} metric—if the ratio between the
duration of the lookback window and the sampling interval
is smaller (e.g., a duration on the order of minutes and a
1-minute sampling interval), the saved query’s cardinality
level will be lower, whereas if the ratio between the duration
of the lookback window and the sampling interval is larger
(e.g., a duration on the order of hours or days and a 1-minute
sampling interval), the example saved query’s cardinality
level will be higher and could impact negatively query
performance.

[0099] In accordance with the first embodiment of the
disclosed technology, the query analysis engine 308 may
perform an analysis of the saved query 320 in order to

Aug. 8,2024

determine whether the saved query 320 is a candidate for
cardinality reduction, and if so, the query analysis engine
308 may determine a strategy for reducing the cardinality
level of the saved query 320. For instance, in this example,
the query analysis engine 308 may determine that the saved
query 320 is a candidate for cardinality reduction based on
its use of an aggregation operation on a range of multiple
samples for a given metric, and may then determine a
strategy for reducing the cardinality level of the saved query
320 that involves (i) defining a new composite metric
identified as <duration>_avg_node_memory_usage_
bytes{host="10.2.1.1”} that comprises an average of the
samples of the node_memory_usage_bytes{host=10.2.1.
1’} metric during a lookback window having the specified
duration, which is to be used by the saved query 320 in place
of the node_memory_usage_bytes{host=10.2.1.1”} metric,
(i1) configuring the metrics pre-processing engine 3044 to
begin producing and writing samples for the new <dura-
tion>_avg_node_memory_usage_bytes{host="10.2.1.1"}
metric, and (iii) updating the expression of the saved query
320 so that it specifies the new <duration>_avg_node_
memory_usage_bytes{host=10.2.1.1”} metric instead of
the node_memory_usage_bytes{host=10.2.1.1"} metric
that forms the basis for the new <duration>_avg_node_
memory_usage_bytes{host=10.2.1.1”} metric. In turn, the
query analysis engine 308 may cause the determined strat-
egy to be implemented by (i) instructing the metrics pre-
processing engine 304d to begin producing and writing
samples for a new <duration>_avg_node_memory_usage_
bytes{host="10.2.1.1”} metric that comprises an average of
the samples of the node_memory_usage_bytes{host=10.2.
1.1} metric during a lookback window having the specified
duration and (ii) instructing the given metrics consumer
306A to modify the saved query’s expression from avg
over_time(node_memory_usage_bytes{host=10.2.1.1"}
[<duration>]) to <duration>_avg_node_memory_usage_
bytes{host=10.2.1.1"}.

[0100] In some implementations, the determined strategy
for reducing the cardinality level of the saved query 320 may
further involve configuring the metrics pre-processing
engine 3044 to either block metric data for the node_
memory_usage_bytes{host=10.2.1.1”} metric from being
persistently stored in the metrics storage subsystem 3045 or
store metric data for the node_memory_usage
bytes{host="10.2.1.1”} metric in a lower storage tier of the
metrics storage subsystem 3045, in which case the query
analysis engine’s functionality for causing the determined
strategy to be implemented may further involve instructing
the metrics pre-processing engine 3044 to begin performing
such a modified handling action with respect to metric data
for the node_memory_usage_bytes{host=10.2.1.1”} met-
ric.

[0101] After the query analysis engine 308 carries out this
functionality, the metrics pre-processing engine 3044 may
function to compute a time series of samples for the com-
posite <duration>_avg_node_memory_usage_
bytes{host="10.2.1.1”} metric in accordance with a certain
sampling interval (e.g., a 1-minute sampling interval), where
each respective sample of the <duration>_avg _node_
memory_usage_bytes{host=10.2.1.1”} metric is computed
by averaging samples of the node_memory_usage
bytes{host=10.2.1.1”} metric from a lookback window
extending back from the sample time and having the speci-
fied duration. For example, in a scenario where the specified

US 2024/0265015 Al

duration is 1 day, the metrics pre-processing engine 3044
may compute (i) a first sample S, of a composite 1d_avg_
node_memory_usage_bytes{host=10.2.1.1”} metric hav-
ing a sample time of T, by averaging ingested samples of the
node_memory_usage_bytes{host=10.2.1.1”} metric that
were produced in the 1-day window prior to T, (ii) a second
sample S, of the composite 1d_avg_node_memory_usage_
bytes{host="10.2.1.1”} metric having a sample time of T,
by averaging ingested samples of the node_memory_usage_
bytes{host="10.2.1.1”} metric that were produced in the
1-day window prior to T,, and so on for each subsequent
sample of the composite 1d_avg_node_memory_usage_
bytes{host="10.2.1.1”} metric. As noted above, in some
implementations, the metrics pre-processing engine 304d
may also function to either block the ingested samples of the
node_memory_usage_bytes{host=10.2.1.1”} metric from
being persistently stored in the metrics storage subsystem
3045 stored or store such ingested samples in a lower storage
tier of the metrics storage subsystem 3045, so as to reduce
the storage footprint of the metrics data.

[0102] Further, during each subsequent run of the modi-
fied version of the saved query 320, the given metrics
consumer 306A may function to fetch a most-recent sample
of the composite <duration>_avg_node_memory_usage_
bytes{host="10.2.1.1”} metric as opposed to fetching a
number of individual samples of the node_memory_usage_
bytes{host="10.2.1.1”} metric. In this respect, the cardinal-
ity level of the saved query 320 is reduced, which in turn
reduces the time and compute resources required to carry out
each subsequent run of the saved query 320.

[0103] The query analysis engine 308 may carry out
similar functionality for other saved queries having expres-
sions that apply an aggregation operation to a time window
of multiple samples of a given metric, such as an avg, sum,
min, max, or count operation applied over a time window of
metric samples having a specified duration, among other
possibilities.

[0104] It should also be understood that, based on the
query analysis engine’s analysis of a saved query having an
expression that applies an aggregation operation to a time
window of multiple samples of a given metric, the query
analysis engine 308 could determine not to take an action in
order to reduce the cardinality level of the saved query. For
example, if the ratio between the duration of the lookback
window for the aggregation operation and the sampling
interval of the given metric is smaller, such as a ratio that
would only require a relatively small number of samples to
be fetched during each run of the saved query (e.g., duration
on the order of minutes and a 1-minute sampling interval),
the query analysis engine 308 could determine that the
cardinality level of the saved query is already within accept-
able limits and thereby determine not to take an action in
order to reduce the cardinality level of the saved query
despite the fact that some extent of cardinality reduction
could be achieved by replacing the aggregation operation
with a new composite metric.

[0105] Yet another illustrative example of the functional-
ity that may be carried out by the query analysis engine 308
in accordance with the first embodiment of the disclosed
technology will now be described with reference to FI1G. 3D,
which shows a scenario where (i) a plurality of the metrics
producers 302 are configured to produce metric data for
respective metrics having the same metric name but different
respective labels and (ii) a given metrics consumer 306A is

Aug. 8,2024

configured to run a third representative saved query 330
having an expression that aggregates multiple different
metrics over time (e.g., by referencing a metric name
without specifying any labels), which causes the given
metrics consumer to 306A to fetch multiple samples of every
single metric in the set (e.g., every metric having the same
metric name) every time the saved query 300 is run.

[0106] In particular, as in the example of FIG. 3B, the
example of FIG. 3D involves a plurality of the metrics
producers 302 that are configured to produce metric data for
metrics having a same metric name of http_requests_total
but having different values for a host label. However, in the
example of FIG. 3D, the saved query 330 to be run by the
given metrics consumer 306A may have an expression that
applies a sum operation to the individual http_requests_total
metrics at multiple different timepoints (e.g., the current
time and one or more time points in the past) and then
applies an avg operation to the resulting values, which
specifies that the given metrics consumer 306A is to (i) fetch
stored samples of each http_requests_total metric from the
specified timepoints, (ii) at each specified timepoint, sum the
fetched samples together to produce a respective aggregated
value representing a sum of the total number of HTTP
requests handled by the different hosts as of the specified
timepoint, and (iii) average the respective aggregated values
computed for the specified timepoints to produce a single,
aggregated value representing a moving average of the sum
total number of HTTP requests handled by the different
hosts. Thus, in this example, the saved query’s cardinality
level is dependent on how many different host-level http_
requests_total metrics are being produced by the metrics
producers 306 in the network environment 300 as well as the
number of timepoints specified by the saved query 330.

[0107] In accordance with the first embodiment of the
disclosed technology, the query analysis engine 308 may
perform an analysis of the saved query 330 in order to
determine whether the saved query 330 is a candidate for
cardinality reduction, and if so, the query analysis engine
308 may determine a strategy for reducing the cardinality
level of the saved query 330. For instance, in this example,
the query analysis engine 308 may determine that the saved
query 330 is a candidate for cardinality reduction based on
its use of an aggregation operation on an unbounded set of
individual metrics as well as its use of an aggregation
operation on multiple samples over time, and may then
determine a strategy for reducing the cardinality level of the
saved query 330 that involves (i) defining a new composite
metric identified as mov_avg_sum_http_requests_total that
comprises a moving average of the sum of individual
http_requests_total{host=<value>} metrics at multiple time-
points, which is to be used by the saved query 330 in place
of the individual http_requests_total{host=<value>} met-
rics, (ii) configuring the metrics pre-processing engine 3044
to begin producing and writing samples for the new com-
posite mov_avg_sum_http_requests_total metric, and (iii)
updating the expression of the saved query 330 so that it
specifies the new composite mov_avg_sum_http_requests_
total metric instead of the individual http_requests_
total{host=<value>} metrics that form the basis for the
mov_avg_sum_http_requests_total metric. In turn, the query
analysis engine 308 may cause the determined strategy to be
implemented by (i) instructing the metrics pre-processing
engine 3044 to begin producing and writing samples for a
new mov_avg sum_http_requests_total metric that com-

US 2024/0265015 Al

prises a moving average of the sum of individual http_
requests_total{host=<value>} metrics at multiple time-
points and (ii) instructing the given metrics consumer 306A
to modify the saved query’s expression to replace the
portion referencing the individual http_requests_
total {host=<value>} metrics with the new composite mov_
avg_sum_http_requests_total metric.

[0108] In some implementations, the determined strategy
for reducing the cardinality level of the saved query 330 may
further involve configuring the metrics pre-processing
engine 3044 to either block metric data for the individual
http_requests_total{host=<value>} metrics from being per-
sistently stored in the metrics storage subsystem 30454 or
store metric data for the individual http_requests_
total{host=<value>} metrics in a lower storage tier of the
metrics storage subsystem 3044, in which case the query
analysis engine’s functionality for causing the determined
strategy to be implemented may further involve instructing
the metrics pre-processing engine 3044 to begin performing
such a modified handling action with respect to metric data
for the individual http_requests_total{host=<value>} met-
rics.

[0109] After the query analysis engine 308 carries out this
functionality, the metrics pre-processing engine 3044 may
function to compute a time series of samples for the com-
posite mov_avg_sum_http_requests_total metric in accor-
dance with a certain sampling interval (e.g., a 1-minute
sampling interval), where each respective sample of the
mov_avg_sum_http_requests_total metric is computed by
(1) computing a sum of the individual http_requests_
total {host=<value>} metrics at multiple different timepoints
and (ii) averaging the resulting sums together. For example,
the metrics pre-processing engine 3044 may compute (i) a
first sample S, of the composite mov_avg_sum_http_re-
quests_total metric having a sample time of T by summing
ingested samples of the individual http_requests_
total {host=<value>} metrics at multiple different timepoints
that are defined relativeto T, (e.g., T,, T,-1m, T, -2 m, etc.)
and then averaging those summed values, (ii) a second
sample S, of the composite mov_avg_sum_http_requests_
total metric having a sample time of T, by summing ingested
samples of the individual http_requests_
total {host=<value>} metrics at multiple different timepoints
that are defined relative to T, (e.g., T,, T,-1 m, T,-2 m, etc.)
and then averaging those summed values, and so on for each
subsequent sample of the composite mov_avg_sum_http_
requests_total metric. As noted above, in some implemen-
tations, the metrics pre-processing engine 3044 may also
function to either block the ingested samples of the indi-
vidual http_requests_total{host=<value>} metrics from
being persistently stored in the metrics storage subsystem
3045 or store such ingested samples in a lower storage tier
of the metrics storage subsystem 3044, so as to reduce the
storage footprint of the metrics data.

[0110] Further, during each subsequent run of the modified
version of the saved query 330, the given metrics consumer
306A may function to fetch a most-recent sample of the
composite mov_avg_sum_http_requests_total metric as
opposed to fetching multiple different samples of every
metric having a metric name of http_requests_total. In this
respect, the cardinality level of the saved query 330 is
reduced, which in turn reduces the time and compute
resources required to carry out each subsequent run of the
saved query 330.

Aug. 8,2024

[0111] The query analysis engine 308 may carry out
similar functionality for other saved queries having expres-
sions that aggregate multiple different metrics over time.
[0112] It should also be understood that, based on the
query analysis engine’s analysis of a saved query having an
expression that aggregates multiple different metrics over-
time, the query analysis engine 308 could determine not to
take an action in order to reduce the cardinality level of the
saved query. For example, if the saved query’s expression
aggregates a relatively-small, bounded set of metrics over a
relatively-small window of time, the query analysis engine
308 could determine that the cardinality level of the saved
query is already within acceptable limits and thereby deter-
mine not to take an action in order to reduce the cardinality
level of the saved query despite the fact that some extent of
cardinality reduction could be achieved by replacing the
aggregation operations with a new composite metric.
[0113] The functionality that may be carried out by the
query analysis engine 308 in accordance with the first
embodiment of the disclosed technology may take various
other forms as well.

[0114] FIG. 4A illustrates a network environment 400 in
which the second embodiment of the disclosed technology
has been implemented. As with the network environment
100 of FIG. 1, the network environment 400 includes (i) a
plurality of metrics producers 402, of which metrics pro-
ducers 402A, 402B, and 402C are shown as examples, (ii)
a metrics management platform 404 comprising a metrics
ingestion subsystem 404q, a metrics storage subsystem
4045, and a metrics retrieval subsystem 404c¢, and (iii) a
plurality of metrics consumers 406, of which metrics con-
sumers 406A, 406B, and 406C are shown as examples.
However, unlike the network environment 100 of FIG. 1, the
network environment 400 of FIG. 4 further includes (i) a
query processing agent installed on each metrics consumer
406 that is configured to run queries and (ii) a query analysis
engine 408 that is configured to interact with metrics con-
sumers 406 that are configured to run queries and the query
processing agents installed thereon. (While the query analy-
sis engine 408 is shown in FIG. 4 as a separate system from
the metrics management platform 404, it should be under-
stood that the query analysis engine 408 could also be
implemented as a functional subsystem of the metrics man-
agement platform 404).

[0115] In accordance with the present disclosure, the
query analysis engine 408 may be configured to analyze
saved queries that are to be run by one or more of the metrics
consumers 406 in order to determine whether any of the
saved queries are candidates for cardinality reduction. And
for each saved query that is determined to be a candidate for
cardinality reduction, the query analysis engine 408 may
determine a strategy for reducing the saved query’s cardi-
nality level based on its analysis of the saved query and then
cause the determined strategy to be implemented by (i)
defining at least one new composite metric that is to be used
by the saved query as a means for reducing the extent of
samples (e.g., the number of discrete timeseries) that are to
be fetched during each run of the saved query, (ii) instructing
a query processing agent of the metric consumer 406 con-
figured to run the saved query to begin extracting samples of
the at least one new composite metric during runs of the
saved query and sending such samples back to the metric
management platform 404 for storage, and (iii) instructing
the metric consumer 406 to modify the saved query’s

US 2024/0265015 Al

expression so that it encodes a request for metric data for the
at least one new composite metric in place of some portion
of the original expression. In turn, the query processing
agent of the metric consumer 406 may thereafter function to
extract samples of the at least one new composite metric
during runs of the saved query and send such samples back
to the metric management platform 404 for storage, and the
metric consumer 406 may thereafter function to run the
modified version of the saved query.

[0116] One illustrative example of the functionality that
may be carried out by the query analysis engine 408 in
accordance with the second embodiment of the disclosed
technology will now be described with reference to FIG. 4B,
which shows a scenario where (i) a given metrics producer
402A is configured to produce metric data for a given metric
and (ii) a given metrics consumer 406A is configured to run
a first representative saved query 410 having an expression
that applies an aggregation operation to a time window of
multiple samples of the given metric.

[0117] In particular, as shown in FIG. 4B, the given
metrics producer 402A may be configured to produce metric
data for a node_memory_usage_bytes{host="10.2.1.1"}
metric that indicates the memory usage of a host having an
IP address of “10.2.1.1.” Further, as shown in FIG. 4B, the
saved query 410 to be run by the given metrics consumer
406A may have an expression of avg_over_time(node_
memory_usage_bytes{host=10.2.1.1”}[<duration_1>]),
which specifies that the given metrics consumer 406A is to
(1) fetch all stored samples of the node_memory_usage_
bytes{host="10.2.1.1”} metric from a lookback window
having the specified duration_1 back from the execution
time of the saved query, (ii) average the fetched samples
together to produce a single, aggregated value representing
an average of the memory usage of the 10.2.1.1 host during
the lookback window. For example, in a scenario where the
node_memory_usage_bytes{host=10.2.1.1”} metric has a
sampling interval of 1 minute and the specified duration_1
of the saved query 410 is 1 day, then during each run of the
saved query 410, the given metrics consumer 406 A fetches
samples of the node_memory_usage_bytes{host=10.2.1.
1’} metric from a lookback window that extends 1 day back
from the execution time of the saved query 410 (e.g., 1440
samples) and computes an average of the fetched samples
over the past 1 day.

[0118] Thus, in this example, the saved query’s cardinality
level is dependent on the duration of the lookback window
and the sampling interval of the node memory_usage_
bytes{host="10.2.1.1"} metric—if the ratio between the
duration of the lookback window and the sampling interval
is smaller (e.g., a duration on the order of minutes and a
1-minute sampling interval), the saved query’s cardinality
level will be lower, whereas if the ratio between the duration
of the lookback window and the sampling interval is larger
(e.g., a duration on the order of hours or days and a 1-minute
sampling interval), the example saved query’s cardinality
level will be higher and could impact negatively query
performance.

[0119] In accordance with the second embodiment of the
disclosed technology, the query analysis engine 408 may
perform an analysis of the saved query 410 in order to
determine whether the saved query 410 is a candidate for
cardinality reduction, and if so, the query analysis engine
408 may determine a strategy for reducing the cardinality
level of the saved query 410. For instance, in this example,

Aug. 8,2024

the query analysis engine 408 may determine that the saved
query 410 is a candidate for cardinality reduction based on
its use of an aggregation operation on a range of multiple
samples for a given metric, and may then determine a
strategy for reducing the cardinality level of the saved query
410 that involves (i) defining a new composite metric
identified as <duration_2>_avg node_memory_usage_
bytes{host="10.2.1.1”} that comprises an average of the
samples of the node_memory_usage_bytes{host=10.2.1.
1’} metric during a time window having a duration_2 that
corresponds to the refresh interval of the saved query, (ii)
configuring the query processing agent of the given metrics
consumer 406A to begin extracting samples of the new
<duration_2>_avg_node_memory_usage_bytes{host="10.
2.1.1”} metric during runs of the saved query 410 and
sending such samples back to the metric management plat-
form 404 for storage, and (iii) updating the expression of the
saved query 410 so that it uses samples of the composite
<duration_2>_avg_node_memory_usage_bytes{host="10.
2.1.1”} metric in place of certain samples of the node_
memory_usage_bytes{host=10.2.1.1”} metric. In turn, the
query analysis engine 408 may cause the determined strat-
egy to be implemented by (i) instructing the query process-
ing agent to begin extracting and transmitting samples for a
new <duration_2>_avg_node_memory_usage_
bytes{host="10.2.1.1”} metric that each comprises an aver-
age of the samples of the node_memory_usage_
bytes{host="10.2.1.1"} metric during a time window having
a duration_2 that corresponds to the refresh interval of the
saved query 410 and (ii) instructing the given metrics
consumer 406A to modify the saved query’s expression
from avg_over_time(node_memory_usage_
bytes{host="10.2.1.1”} [<duration_1>]) to an expression
that computes the average of the node_memory_usage
bytes{host="10.2.1.1”} metric during the lookback window
having the specified duration_1 by using samples of the
<duration_2>_avg_node_memory_usage_bytes{host="10.
2.1.1”) metric from the portion of the saved query’s look-
back window for which such samples are available, which is
defined as duration_3, and then using samples of the node_
memory_usage_bytes{host=10.2.1.1”} metric from the
remaining portion of the lookback window for which such
samples are not available, which is defined as duration_4
(were duration_3+duration_4=duration_1).

[0120] After the query analysis agent carries out this
functionality, the given metrics consumer 406A may per-
form one additional run of the original version of the saved
query 410, and during that run, the query processing agent
may extract and transmit new samples of the composite
<duration_2>_avg_node_memory_usage_bytes{host="10.

2.1.1”} metric that each comprises an average of the samples
of the node_memory_usage_bytes{host="10.2.1.1’} metric
from a respective time window having a duration_2 that
corresponds to a refresh interval of the saved query 410. For
example, in a scenario where the node_memory_usage_
bytes{host="10.2.1.1”} metric has a sampling interval of 1
minute, the saved query 410 has a refresh interval of 30
minutes, and the specified duration_1 of the saved query’s
lookback window is 1 day, the query analysis agent may
function such that, during the one additional run of the saved
query 410 when the given metrics consumer 406A fetches
samples of the node_memory_usage_bytes{host=10.2.1.
17} metric from the past 1 day (e.g., 1440 samples) and
computes an average of the fetched samples over the past 1

US 2024/0265015 Al

day, the query processing agent may extract and transmit 48
new samples of a composite 30m_avg_node_memory_us-
age_bytes{host="10.2.1.1”} metric that each comprises an
average of the fetched samples of the node_memory_usage_
bytes{host="10.2.1.1"} metric from a respective 30-minute
time window during the saved query’s 1-day lookback
window. In this way, the query processing agent may begin
to produce a time series of samples of the 30m_avg_node_
memory_usage_bytes{host=10.2.1.1”} metric having a
sampling interval of 30 minutes, which matches the refresh
interval of the saved query 410.

[0121] After this one additional run of the original version
of the saved query 410, the given metrics consumer 406A
may begin to run the modified version of the saved query
410, and during each such run of the saved query 410, the
given metrics consumer 406A may function to (i) fetch
samples of the composite <duration_2>_avg node_
memory_usage_bytes{host=10.2.1.1”} metric from the
portion of the lookback window for which such samples are
available, (ii) fetch samples of the node_memory_usage_
bytes{host="10.2.1.1”} metric from the remaining portion
of the lookback window, and (iii) using the fetched samples
of these two metrics to compute an average of the node_
memory_usage_bytes{host=10.2.1.1”} metric across the
lookback window. For example, in a scenario where the
node_memory_usage_bytes{host=10.2.1.1”} metric has a
sampling interval of 1 minute, the saved query 410 has a
refresh interval of 30 minutes, and the specified duration_1
of the saved query’s lookback window is 1 day, there will
typically be samples of the composite 30m_avg_node_
memory_usage_bytes{host=10.2.1.1”} metric available for
the first 23.5 hours of the saved query’s 1-day lookback
window, and the given metrics consumer 406 A may function
to (i) fetch samples of the composite 30m_avg_node_
memory_usage_bytes{host=10.2.1.1”} metric for the first
23.5 hours of the saved query’s 1-day lookback window
(e.g., 47 samples), (ii) fetch samples of the node_memory_
usage_bytes{host="10.2.1.1”"} metric for the last 30 minutes
of the saved query’s 1-day lookback window (e.g., 30
samples), and (iii) use the fetched samples of these two
metrics to compute an average of the node_memory_usage_
bytes{host="10.2.1.1”} metric across the saved query’s
1-day lookback window, which may involve averaging the
samples of the node_memory_usage_bytes{host=10.2.1.
17} metric from the last 30 minutes of the saved query’s
1-day lookback window into a time-aggregated value and
then computing an average of the 47 samples of the 30m_
avg_node_memory_usage_bytes{host=10.2.1.1"} metric
along with the time-aggregated value of the node_memory_
usage_bytes{host="10.2.1.1”"} metric. Correspondingly, the
query processing agent may extract the computed time-
aggregated value of the node memory_usage_
bytes{host="10.2.1.1”} metric as a new sample of the
30m_avg_node_memory_usage_bytes{host="10.2.1.1"}
metric for a new time window extending 30 minutes back
from the execution time of the saved query 410 and transmit
that new sample back to the metrics management platform
404 for storage, so that the new sample is available during
the next run of the saved query 410. Thus, in this example,
the number of samples fetched by the given metrics con-
sumer 406 A during each run by the saved query 410 may be
reduced from 1440 samples to 77 samples, which may in
turn reduce the cardinality of the saved query 410 by nearly
95%.

Aug. 8,2024

[0122] The query analysis engine 408 may carry out
similar functionality for other saved queries having expres-
sions that apply an aggregation operation to a time window
of multiple samples of a given metric, such as an avg, sum,
min, max, or count operation applied over a time window of
metric samples having a specified duration, among other
possibilities.

[0123] It should also be understood that, based on the
query analysis engine’s analysis of a saved query having an
expression that applies an aggregation operation to a time
window of multiple samples of a given metric, the query
analysis engine 308 could determine not to take an action in
order to reduce the cardinality level of the saved query. For
example, if the ratio between the duration of the lookback
window for the aggregation operation and the sampling
interval of the given metric is smaller, such as a ratio that
would only require a relatively small number of samples to
be fetched during each run of the saved query (e.g., duration
on the order of minutes and a 1-minute sampling interval),
the query analysis engine 408 could determine that the
cardinality level of the saved query is already within accept-
able limits and thereby determine not to take an action in
order to reduce the cardinality level of the saved query
despite the fact that some extent of cardinality reduction
could be achieved by replacing the aggregation operation
with a new composite metric.

[0124] Another illustrative example of the functionality
that may be carried out by the query analysis engine 408 in
accordance with the second embodiment of the disclosed
technology will now be described with reference to FIG. 4C,
which shows a scenario where (i) a plurality of the metrics
producers 402 are configured to produce metric data for
respective metrics having the same metric name but different
respective labels and (ii) a given metrics consumer 406A is
configured to run a second representative saved query 420
having an expression that aggregates multiple different
metrics over time (e.g., by referencing a metric name
without specifying any labels), which causes the given
metrics consumer to 406A to fetch multiple samples of every
single metric in the set (e.g., every metric having the same
metric hame) every time the example saved query is run.

[0125] In particular, as in the examples of FIGS. 3B and
3D, the example of FIG. 4C involves a plurality of the
metrics producers 402 that are configured to produce metric
data for metrics having a same metric name of http_request-
s_total but having different values for a host label. Further,
as in the example of FIG. 3D, the saved query 420 to be run
by the given metrics consumer 406A in this example may
have an expression that applies a sum operation to the
individual http_requests_total metrics at multiple different
timepoints within some lookback window (e.g., the current
time and one or more time points in the past) and then
applies an avg operation to the resulting values, which
specifies that the given metrics consumer 406A is to (i) fetch
stored samples of each individual http_requests_total metric
from the specified timepoints, (ii) at each specified time-
point, sum the fetched samples together to produce a respec-
tive aggregated value representing a sum of the total number
of HTTP requests handled by the different hosts as of the
specified timepoint, and (iii) average the respective aggre-
gated values computed for the specified timepoints to pro-
duce a single, aggregated value representing a moving
average of the sum total number of HTTP requests handled
by the different hosts. For example, in a scenario where the

US 2024/0265015 Al

individual http_requests_total{host=<value>} metrics have
a sampling interval of 1 minute, the saved query 420 has a
refresh interval of 30 minutes, and the saved query 420
evaluates timepoints across a S-minute lookback window,
then during each run of the saved query 420, the given
metrics consumer 406A (i) fetches samples of each indi-
vidual http_requests_total metric from the current timepoint
as well as the preceding 5 timepoints, (ii) at each specified
timepoint, sums the fetched samples together to produce a
respective aggregated value representing a sum of the total
number of HTTP requests handled by the different hosts as
of the specified timepoint, which produces a set of 6
aggregated values at the 6 timepoints falling within the
saved query’s 5-minute lookback window, and (iii) average
the 6 aggregated values to produce a single, aggregated
value representing a moving average of the sum total
number of HTTP requests handled by the different hosts
over the S-minute lookback window. Thus, in this example,
the saved query’s cardinality level is dependent on how
many different host-level http_requests_total metrics are
being produced by the metrics producers 406 in the network
environment 400 as well as the number of timepoints
specified by the saved query 420.

[0126] In accordance with the second embodiment of the
disclosed technology, the query analysis engine 408 may
perform an analysis of the saved query 420 in order to
determine whether the saved query 420 is a candidate for
cardinality reduction, and if so, the query analysis engine
408 may determine a strategy for reducing the cardinality
level of the saved query 420. For instance, in this example,
the query analysis engine 408 may determine that the saved
query 420 is a candidate for cardinality reduction based on
its use of an aggregation operation on an unbounded set of
individual metrics as well as its use of an aggregation
operation on multiple samples over time, and may then
determine a strategy for reducing the cardinality level of the
saved query 420 that involves (i) defining a new composite
metric identified as sum_http_requests_total that comprises
the sum of individual http_requests_total{host=<value>}
metrics at a respective timepoint, (ii) configuring the query
processing agent of the given metrics consumer 406A to
begin extracting samples of the new sum_http_requests_
total metric during runs of the saved query 420 and sending
such samples back to the metric management platform 404
for storage, and (iii) updating the expression of the saved
query 420 so that it uses samples of the composite sum_
http_requests_total metric in place of certain samples of the
http_requests_total{host=<value>} metrics. In turn, the
query analysis engine 408 may cause the determined strat-
egy to be implemented by (i) instructing the query process-
ing agent to begin extracting and transmitting samples for a
new sum_http_requests_total metric that each comprises a
sum of the individual http_requests_total{host=<value>}
metrics at a respective timepoint and (ii) instructing the
given metrics consumer 406A to modify the saved query’s
expression so that it uses samples of the new sum_http_
requests_total metric for a portion of the timepoints and uses
samples of the individual http_requests_
total{host=<value>} metrics for at least one remaining
timepoint.

[0127] After the query analysis agent carries out this
functionality, the given metrics consumer 406A may per-
form one additional run of the original version of the saved
query 420, and during that run, the query processing agent

Aug. 8,2024

may extract and transmit new samples of the composite
sum_http_requests_total metric that each comprises a sum
of the individual http_requests_total{host=<value>} metrics
at a respective timepoint within the saved query’s lookback
window. For example, in a scenario where the individual
http_requests_total{host=<value>} metrics have a sampling
interval of 1 minute, the saved query 420 has a refresh
interval of 30 minutes, and the saved query 420 evaluates
timepoints across a S-minute lookback window, the query
analysis agent may function such that, during the one
additional run of the saved query 420 when the given metrics
consumer 406A fetches samples of the individual http_
requests_total{host=<value>} metrics from 6 timepoints
within the S5-minute lookup window, sums the fetched
samples across the hosts at each timepoint, and averages the
timepoint-specific summed values together across the time-
points, the query processing agent may extract and transmit
6 new samples of a composite sum_http_requests_total
metric that each comprises a sum of the fetched samples of
the individual http_requests_total{host=<value>} metrics at
a respective timepoint during the saved query’s S-minute
lookback window. In this way, the query processing agent
may begin to produce a time series of samples of the
sum_http_requests_total metric.

[0128] After this one additional run of the original version
of the saved query 420, the given metrics consumer 406A
may begin to run the modified version of the saved query
420, and during each such run of the saved query 420, the
given metrics consumer 406A may function to (i) fetch
samples of the composite sum_http_requests_total metric
from the portion of the lookback window for which such
samples are available, (ii) fetch samples of the individual
http_requests_total{host=<value>} metrics from the
remaining portion of the lookback window, and (iii) using
the fetched samples of these two metrics to compute a
moving average of the individual http_requests_
total{host=<value>} metrics across the lookback window.
For example, in a scenario where the individual http_
requests_total{host=<value>} metrics have a sampling
interval of 1 minute, the saved query 420 has a refresh
interval of 30 minutes, and the saved query 420 evaluates
timepoints across a S-minute lookback window, there will
typically be samples of the composite sum_http_requests_
total metric available for the first 5 timepoints within the
saved query’s 5-day lookback window, and the given met-
rics consumer 406A may function to (i) fetch samples of the
composite sum_http_requests_total metric for the first 5
timepoints of the saved query’s 5-minute lookback window
(e.g., 5 samples), (ii) fetch samples of the individual http_
requests_total{host=<value>} metrics for the last timepoint
of the saved query’s S-minute lookback window (e.g., the
most-recent sample of each individual http_requests_
total{host=<value>} metric), and (iii) use the fetched
samples of these two metrics to compute a moving average
of the http_requests_total{host=<value>} metrics across the
saved query’s 5-day lookback window, which may involve
summing the samples of the individual http_requests_
total{host=<value>} metrics for the last timepoint into a
host-aggregated value and then computing an average of the
5 samples of the sum_http_requests_total metric along with
the host-aggregated value of the node_memory_usage
bytes{host="10.2.1.1”} metric for the last timepoint. Cor-
respondingly, the query processing agent may extract the
computed host-aggregated value of the individual http_

US 2024/0265015 Al

requests_total{host=<value>} metrics for the last timepoint
as a new sample of the sum_http_requests_total metric at
that timepoint and transmit that new sample back to the
metrics management platform 404 for storage, so that the
new sample is available during the next run of the saved
query 420. Thus, instead of having to fetch samples of the
individual http_requests_total{host=<value>} metrics for
multiple different timepoints during each run of the saved
query 420, the given metrics consumer 406 A may only need
to fetch samples of the individual http_requests_
total {host=<value>} metrics for a single timepoint, which
may in turn reduce the cardinality of the saved query
420—particularly in a scenario where there is a large num-
ber of hosts in the network environment 400.

[0129] The query analysis engine 408 may carry out
similar functionality for other saved queries having expres-
sions that aggregate multiple different metrics over time.
[0130] It should also be understood that, based on the
query analysis engine’s analysis of a saved query having an
expression that aggregates multiple different metrics over-
time, the query analysis engine 408 could determine not to
take an action in order to reduce the cardinality level of the
saved query. For example, if the saved query’s expression
aggregates a relatively-small, bounded set of metrics over a
relatively-small window of time, the query analysis engine
408 could determine that the cardinality level of the saved
query is already within acceptable limits and thereby deter-
mine not to take an action in order to reduce the cardinality
level of the saved query despite the fact that some extent of
cardinality reduction could be achieved by replacing the
aggregation operations with a new composite metric.
[0131] The functionality that may be carried out by the
query analysis engine 408 in accordance with the second
embodiment of the disclosed technology may take various
other forms as well.

[0132] Turning now to FIG. 5, a simplified block diagram
is provided to illustrate some structural components that
may be included in an example computing device 500 that
may be configured to carry out any of the various functions
disclosed herein, including but not limited to the functions
of a metrics producer, a metrics consumer, or a query
analysis engine. At a high level, the example computing
device 500 may include one or more processors 502, data
storage 504, and one or more communication interfaces 506,
all of which may be communicatively linked by a commu-
nication link 508 that may that various forms, one example
of which is a system bus.

[0133] The one or more processors 502 of the example
computing device 500 may comprise one or more processor
components, each of which may take the form of a general-
purpose processor (e.g., a microprocessor), a special-pur-
pose processor (e.g., an application-specific integrated cir-
cuit, a digital signal processor, a graphics processing unit, a
vision processing unit, etc.), a programmable logic device
(e.g., a field-programmable gate array), or a controller (e.g.,
a microcontroller), among other possibilities.

[0134] In turn, the data storage 504 of the example com-
puting device 500 may comprise one or more non-transitory
computer-readable mediums, each of which may take the
form of a volatile medium (e.g., random-access memory, a
register, a cache, a buffer, etc.) or a non-volatile medium
(e.g., read-only memory, a hard-disk drive, a solid-state
drive, flash memory, an optical disk, etc.), and these one or
more non-transitory computer-readable mediums may be

Aug. 8,2024

capable of storing both (i) program instructions that are
executable by the one or more processors 502 of the example
computing device 500 such that the computing device 500 is
configured to perform any of the functions disclosed herein
(e.g., functions of a metrics producer, metrics consumer,
query analysis engine, etc.), and (ii) data related to the
disclosed functionality.

[0135] The one or more communication interfaces 506 of
the example computing device 500 may take the form of any
one or more interfaces that facilitate wireless and/or wired
communication with other computing devices or systems,
such as a metrics management platform. Each such com-
munication interface 506 may take any of various forms,
examples of which may include an Ethernet interface, a
serial bus interface (e.g., Firewire, USB 3.0, etc.), a chipset
and antenna adapted to facilitate any of various types of
wireless communication (e.g., Wi-Fi communication, cellu-
lar communication, short-range wireless protocols, etc.),
and/or any other interface that provides for wireless or wired
communication. Other configurations are possible as well.

[0136] Although not shown, the example computing
device 500 may also additionally include an I/O interface,
which may generally take the form of (i) one or more input
interfaces that are configured to receive and/or capture
information at the example computing device 500 and (ii)
one or more output interfaces that are configured to output
information from the example computing device 500 (e.g.,
for presentation to a user). In this respect, the one or more
input interfaces of I/O interface may include or provide
connectivity to input components such as a microphone, a
camera, a keyboard, a mouse, a trackpad, a touchscreen,
and/or a stylus, among other possibilities, and the one or
more output interfaces of I/O interface may include or
provide connectivity to output components such as a display
screen and/or an audio speaker, among other possibilities.

[0137] It should be understood that the example comput-
ing device 500 is one example of a computing device that
may be used with the example embodiments described
herein. Numerous other arrangements are possible and con-
templated herein. For instance, in other embodiments, the
example computing device 500 may include additional
components not pictured and/or more or fewer of the pic-
tured components.

[0138] Turning now to FIG. 6, a simplified block diagram
is provided to illustrate some structural components that
may be included in an example back-end platform 600,
which may be configured to carry out any of the various
functions disclosed herein, including but not limited to the
functions of a metrics management platform (e.g., metrics
management platform 304 or metrics management platform
404) and/or the query analysis engine. At a high level, the
back-end platform 600 may generally comprise any one or
more computing systems that collectively include one or
more processors 602, data storage 604, and one or more
communication interfaces 606, all of which may be com-
municatively linked by a communication link 608 that may
take the form of a system bus, a communication network
such as a public, private, or hybrid cloud, or some other
connection mechanism. Each of these components may take
various forms.

[0139] The one or more processors 602 may comprise one
or more processor components, each of which may take the
form of a general-purpose processor (e.g., a microproces-
sor), a special-purpose processor (e.g., an application-spe-

US 2024/0265015 Al

cific integrated circuit, a digital signal processor, a graphics
processing unit, a vision processing unit, etc.), a program-
mable logic device (e.g., a field-programmable gate array),
or a controller (e.g., a microcontroller), among other possi-
bilities. In line with the discussion above, it should also be
understood that the one or more processors 602 could
comprise processing components that are distributed across
a plurality of physical computing systems connected via a
network, such as a computing cluster of a public, private, or
hybrid cloud.

[0140] In turn, the data storage 604 may comprise one or
more non-transitory computer-readable storage mediums,
each of which may take the form of a volatile medium (e.g.,
random-access memory, a register, a cache, a buffer, etc.) or
a non-volatile medium (e.g., read-only memory, a hard-disk
drive, a solid-state drive, flash memory, an optical disk, etc.),
and these one or more non-transitory computer-readable
mediums may be capable of storing both (i) program instruc-
tions that are executable by the one or more processors 602
such that the back-end platform 600 is configured to perform
any of the various back-end platform functions disclosed
herein, and (ii) data related to the disclosed back-end plat-
form functionality. In line with the discussion above, it
should also be understood that the data storage 604 may
comprise computer-readable storage mediums that are dis-
tributed across a plurality of physical computing systems
connected via a network, such as a storage cluster of a
public, private, or hybrid cloud that operates according to
technologies such as AWS for Elastic Compute Cloud,
Simple Storage Service, etc.

[0141] The one or more communication interfaces 606
may take the form of any one or more interfaces that
facilitate wireless and/or wired communication with other
computing devices or systems, including but not limited to
metrics producers, metrics consumers, and the query analy-
sis engine (to the extent it is not included as a functional
subsystem of the back-end platform 600), as well as wireless
and/or wired communication between functional subsystems
of the back-end platform 600. Each such communication
interface 606 may take any of various forms, examples of
which may include an Ethernet interface, a serial bus inter-
face (e.g., Firewire, USB 3.0, etc.), a chipset and antenna
adapted to facilitate any of various types of wireless com-
munication (e.g., Wi-Fi communication, cellular communi-
cation, short-range wireless protocols, etc.), and/or any other
interface that provides for wireless or wired communication.
Other configurations are possible as well.

[0142] Although not shown, the back-end platform 600
may additionally include an I/O interface that facilitates user
interaction with the back-end platform 600.

[0143] It should be understood that back-end platform 600
is one example of a back-end platform that may be used with
the embodiments described herein. Numerous other arrange-
ments are possible and contemplated herein. For instance,
other back-end platforms 600 may include additional com-
ponents not pictured and/or more or less of the pictured
components.

CONCLUSION

[0144] This disclosure makes reference to the accompa-
nying figures and several example embodiments. One of
ordinary skill in the art should understand that such refer-
ences are for the purpose of explanation only and are
therefore not meant to be limiting. Part or all of the disclosed

Aug. 8,2024

systems, devices, and methods may be rearranged, com-
bined, added to, and/or removed in a variety of manners
without departing from the true scope and sprit of the present
invention, which will be defined by the claims.

[0145] Further, to the extent that examples described
herein involve operations performed or initiated by actors,
such as “humans,” “curators,” “users” or other entities, this
is for purposes of example and explanation only. The claims
should not be construed as requiring action by such actors
unless explicitly recited in the claim language.

1. A method implemented by a computing platform, the
method comprising:

performing an analysis of a saved query comprising an

expression that specifies a set of one or mere unique
metrics for which metric data is to be fetched from a
metrics management platform when the saved query is
run;

determining a strategy for reducing a cardinality level of

the saved query based at least in part on the analysis of

the saved query, wherein the determined strategy for

reducing the cardinality level of the saved query com-

prises:

defining at least one composite metric that is derived
from a respective subset of the unique metrics in the
set of unique metrics, wherein metric data for the at
least one composite metric is to be produced by one
or both of the metrics management platform or a
given metrics consumer that is configured to run the
saved query; and

modifying the expression of the saved query by replac-
ing a request to fetch at least some portion of the
metric data for the respective subset of the unique
metrics with a request to fetch metric data for the at
least one composite metric; and

causing the saved query to be modified in accordance with

the determined strategy for reducing the cardinality
level of the saved query.

2. The method of claim 1, further comprising:

prior to determining the strategy for reducing the cardi-

nality level of the saved query, determining that the
saved query is a candidate for cardinality reduction
based at least in part on the analysis of the saved query.

3. The method of claim 2, wherein determining that the
saved query is a candidate for cardinality reduction based at
least in part on the analysis of the saved query comprises:

determining that the saved query can be modified to

achieve some level of reduction in an extent of samples
that are to be fetched during a respective run of the
saved query.

4. The method of claim 1, wherein performing the analy-
sis of the saved query comprises one or more of (i) evalu-
ating how many unique metrics are specified by the saved
query, (ii) evaluating how many samples are to be fetched
for each unique metric specified by the saved query, or (iii)
evaluating which types of operations that are applied by the
saved query.

5. The method of claim 1, wherein the determined strategy
for reducing the cardinality level of the saved query further
comprises:

configuring the metrics management platform to begin

producing and storing metric data for the at least one
composite metric.

US 2024/0265015 Al

6. The method of claim 5, wherein the determined strategy
for reducing the cardinality level of the saved query further
comprises:

configuring the metrics management platform to either (i)

block storage of metric data for the respective subset of
the unique metrics or (ii) store metric data for the
respective subset of the unique metrics in a lower
storage tier.

7. The method of claim 5, wherein causing the saved
query to be modified in accordance with the determined
strategy for reducing the cardinality level of the saved query
comprises:

instructing the given metrics consumer to modify the

saved query so that the expression of the saved query
encodes the request to fetch metric data for the at least
one composite metric.

8. The method of claim 5, wherein the expression of the
saved query encodes an aggregation operation that is to be
applied to fetched metric data for the respective subset of the
unique metrics, wherein the at least one composite metric
that is derived from the respective subset of the unique
metrics comprises a composite metric that is derived by
applying an aggregation operation to metric data for the
respective subset of the unique metrics, and wherein replac-
ing the request to fetch at least some portion of the metric
data for the respective subset of the unique metrics with the
request to fetch metric data for the at least one composite
metric comprises:

removing the aggregation operation from the expression

of the saved query.
9. The method of claim 1, wherein the determined strategy
for reducing the cardinality level of the saved query further
comprises:
configuring the given metrics consumer to begin (i)
extracting metric data for the at least one composite
metric that is produced during runs of the saved query,
and (i) transmitting the extracted metric data for the at
least one composite metric to the metrics management
platform for storage.
10. The method of claim 9, wherein causing the saved
query to be modified in accordance with the determined
strategy for reducing the cardinality level of the saved query
comprises:
instructing an agent installed on the given metrics con-
sumer to begin (i) extracting metric data for the at least
one composite metric that is produced during runs of
the saved query and (ii) transmitting the extracted
metric data for the at least one composite metric to the
metrics management platform for storage; and

instructing the given metrics consumer to modify the
saved query so that the expression of the saved query
encodes the request to fetch metric data for the at least
one composite metric.

11. A non-transitory computer-readable medium compris-
ing program instructions stored thereon that are executable
to cause a computing platform to perform functions com-
prising:

performing an analysis of a saved query comprising an

expression that specifies a set of unique metrics for
which metric data is to be fetched from a metrics
management platform when the saved query is run;

determining a strategy for reducing a cardinality level of
the saved query based at least in part on the analysis of

Aug. 8,2024

the saved query, wherein the determined strategy for

reducing the cardinality level of the saved query com-

prises:

defining at least one composite metric that is derived
from a respective subset of the unique metrics in the
set of unique metrics, wherein metric data for the at
least one composite metric is to be produced by one
or both of the metrics management platform or a
given metrics consumer that is configured to run the
saved query; and

modifying the expression of the saved query by replac-
ing a request to fetch at least some portion of the
metric data for the respective subset of the unique
metrics with a request to fetch metric data for the at
least one composite metric; and

causing the saved query to be modified in accordance with

the determined strategy for reducing the cardinality
level of the saved query.

12. The non-transitory computer-readable medium of
claim 11, further comprising program instructions stored
thereon that are executable to cause the computing platform
to, prior to determining the strategy for reducing the cardi-
nality level of the saved query, determine that the saved
query is a candidate for cardinality reduction based at least
in part on the analysis of the saved query.

13. The non-transitory computer-readable medium of
claim 12, wherein determining that the saved query is a
candidate for cardinality reduction based at least in part on
the analysis of the saved query comprises:

determining that the saved query can be modified to

achieve some level of reduction in an extent of samples
that are to be fetched during a respective run of the
saved query.

14. The non-transitory computer-readable medium of
claim 11, wherein performing the analysis of the saved query
comprises one or more of (i) evaluating how many unique
metrics are specified by the saved query, (i) evaluating how
many samples are to be fetched for each unique metric
specified by the saved query, or (iii) evaluating which types
of operations that are applied by the saved query.

15. The non-transitory computer-readable medium of
claim 11, wherein the determined strategy for reducing the
cardinality level of the saved query further comprises:

configuring the metrics management platform to begin

producing and storing metric data for the at least one
composite metric.

16. The non-transitory computer-readable medium of
claim 15, wherein the determined strategy for reducing the
cardinality level of the saved query further comprises:

configuring the metrics management platform to either (i)

block storage of metric data for the respective subset of
the unique metrics or (ii) store metric data for the
respective subset of the unique metrics in a lower
storage tier.

17. The non-transitory computer-readable medium of
claim 15, wherein causing the saved query to be modified in
accordance with the determined strategy for reducing the
cardinality level of the saved query comprises:

instructing the given metrics consumer to modify the

saved query so that the expression of the saved query
encodes the request to fetch metric data for the at least
one composite metric.

18. The non-transitory computer-readable medium of
claim 15, wherein the expression of the saved query encodes

US 2024/0265015 Al

an aggregation operation that is to be applied to fetched
metric data for the respective subset of the unique metrics,
wherein the at least one composite metric that is derived
from the respective subset of the unique metrics comprises
a composite metric that is derived by applying an aggrega-
tion operation to metric data for the respective subset of the
unique metrics, and wherein replacing the request to fetch at
least some portion of the metric data for the respective
subset of the unique metrics with the request to fetch metric
data for the at least one composite metric comprises:
removing the aggregation operation from the expression
of the saved query.

19. The non-transitory computer-readable medium of
claim 11, wherein the determined strategy for reducing the
cardinality level of the saved query further comprises:

configuring the given metrics consumer to begin (i)

extracting metric data for the at least one composite
metric that is produced during runs of the saved query,
and (i) transmitting the extracted metric data for the at
least one composite metric to the metrics management
platform for storage.

20. A computing platform, comprising:

at least one processor;

at least one non-transitory computer-readable medium;

and

program instructions stored on the at least one non-

transitory computer-readable medium that are execut-

Aug. 8,2024

able by the at least one processor such that the com-
puting platform is configured to:
perform an analysis of a saved query comprising an
expression that specifies a set of unique metrics for
which metric data is to be fetched from a metrics
management platform when the saved query is run;
determine a strategy for reducing a cardinality level of
the saved query based at least in part on the analysis
of the saved query, wherein the determined strategy
for reducing the cardinality level of the saved query
comprises:
defining at least one composite metric that is derived
from a respective subset of the unique metrics in
the set of unique metrics, wherein metric data for
the at least one composite metric is to be produced
by one or both of the metrics management plat-
form or a given metrics consumer that is config-
ured to run the saved query; and
modifying the expression of the saved query by
replacing a request to fetch at least some portion
of the metric data for the respective subset of the
unique metrics with a request to fetch metric data
for the at least one composite metric; and
cause the saved query to be modified in accordance
with the determined strategy for reducing the cardi-
nality level of the saved query.

#* #* #* #* #*

