
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2016/0314307 A1

US 201603143 07A1

Kacin et al. (43) Pub. Date: Oct. 27, 2016

(54) DEAD DROP NETWORK ARCHITECTURE Publication Classification

(71) Applicant: LARC Networks, Inc., Los Altos, CA (51) a 'too (2006.01)
(US) H04L 29/06 (2006.01)

(72) Inventors: Martin Kacin, Los Altos Hills, CA (52) U.S. Cl. s : CPC G06F 21/606 (2013.01); H04L 63/0428
SS Michael R. Gray, Dublin, OH (2013.01); H04L 63/126 (2013.01)

(57) ABSTRACT
A dead drop at a node in a dead drop domain exchanges data

(21) Appl. No.: 15/136,311 between a sender and a recipient. The recipient provides the
sender with a dead drop identifier (DDID) referencing the
dead drop. The sender sends the dead drop domain a write

(22) Filed: Apr. 22, 2016 request including the DDID. Nodes within the domain
forward the request to other nodes until the write request
reaches the node containing the dead drop identified by the

Related U.S. Application Data DDID. The node receives data from the sender and stores the
data in the identified dead drop. The recipient sends the dead

(60) Provisional application No. 62/151,188, filed on Apr. drop domain a read request including the DDID and nodes
22, 2015, provisional application No. 62/193,
filed on Jul. 17, 2015, provisional application

927, within the domain forward the request to other nodes until
No. the read request reaches the node containing the dead drop

62/193.930, filed on Jul. 17, 2015, provisional appli- identified by the DDID. The node retrieves the data from the
cation No. 62/214,124, filed on Sep. 3, 2015.

1.
/

Recipient

dead drop and provides the data to the recipient.

e - is 170
a1DDID, Write Token N-1

N

DDDomain 13

140

14 OE -T 14 i 14OH
K 140J Hist 140L

160

Patent Application Publication Oct. 27, 2016 Sheet 1 of 5 US 2016/0314307 A1

170 s as

1 1DDID, write Token N-1
/ N

Recipient
110

DD Domain 13

FIG. 1

Patent Application Publication Oct. 27, 2016 Sheet 2 of 5 US 2016/0314307 A1

w

c) W
CD
n1 s

Patent Application Publication Oct. 27, 2016 Sheet 3 of 5

Creation
MOCule
310

Data COntrol
MOCule
330

TTL MOCule
325

GeO-fence
MOCule
345

Notification
MOCule
340

Data Storage
390

FIG. 3

US 2016/0314307 A1

Patent Application Publication Oct. 27, 2016 Sheet 4 of 5 US 2016/0314307 A1

Receive Create Request
410

Generate DDID and Tokens
415

Receive Write Request
420

Write Data
425

Receive Read Request
430

FIG. 4

Patent Application Publication Oct. 27, 2016 Sheet 5 of 5 US 2016/0314307 A1

502

518 PROCESSOR

DISPLAY 500

FIF CHIPSET ? 504

520 506

MEMORY
GRAPHICS
ADAPTER CONELER MEMORY

522 | 516

| I/O O NETWORK
STORAGE CONTROLLER ADAPTER
DEVICE HUB

508 Y

510
S. 514

A r

KEYBOARD
PONTING DEVICE

F.G. 5

US 2016/0314307 A1

DEAD DROP NETWORKARCHITECTURE

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application claims the benefit of U.S. Provi
sional Application No. 62/151,188, filed Apr. 22, 2015,
which is incorporated by reference herein. This application
claims the benefit of U.S. Provisional Application No.
62/193.927, filed Jul. 17, 2015, which is incorporated by
reference herein. This application claims the benefit of U.S.
Provisional Application No. 62/193.930, filed Jul. 17, 2015,
which is incorporated by reference herein. This application
claims the benefit of U.S. Provisional Application No.
62/214,124, filed Sep. 3, 2015, which is incorporated by
reference herein.

BACKGROUND

0002 1. Field of Art
0003. The present invention generally relates to the field
of computer networking and data storage and in particular to
a network architecture for facilitating secure data exchange
over a decentralized computer network and data storage
architecture.
0004 2. Background of the Invention
0005. The Internet (including the Web) enables users of
computers to quickly and easily exchange data. There is a
wide range of applications that leverage this ability to
exchange data to achieve powerful results for individuals
and enterprises alike. Examples include email, file sharing,
home automation, entertainment, data management, and
O.

0006. However, the way that data is exchanged over the
Internet makes the data, and those who send the data,
Vulnerable to malicious actors. For instance, data moving
between parties or stored on a remote server typically
include information associated with the sender and the
recipient. Accordingly, an interceptor of the data may asso
ciate the data with the parties. If the data contain sensitive
information, it may leave the parties open to identity theft or
other malicious acts. As a result, many users are discouraged
from sharing important information via the Internet, thereby
missing out on many of the advantages that are afforded to
computer users.

SUMMARY OF THE INVENTION

0007 According to embodiments of the invention, a
method of exchanging data between a sender and a recipient
is described. The method includes receiving, at a node of a
dead drop domain, a write request from the sender to write
data to a dead drop at the node. The dead drop is identified
by a dead drop identifier (DDID). The method further
includes writing the data to the dead drop identified by the
DDID. The method further includes receiving, at the node of
the dead drop domain, a read request from the recipient to
read data from the dead drop identified by the DDID. The
method further includes providing the data from the dead
drop identified by the DDID to the recipient.
0008 According to embodiments of the invention, a
system for exchanging data between a sender and a recipient
is described. The system includes a processor for executing
computer program instructions. The system also includes a
non-transitory computer-readable storage medium storing
computer program instructions executable by the processor

Oct. 27, 2016

to perform steps. The steps include receiving, at a node of a
dead drop domain, a write request from the sender to write
data to a dead drop at the node. The dead drop is identified
by a dead drop identifier (DDID). The steps further include
writing the data to the dead drop identified by the DDID. The
steps further include receiving, at the node of the dead drop
domain, a read request from the recipient to read data from
the dead drop identified by the DDID. The steps further
include providing the data from the dead drop identified by
the DDID to the recipient.
0009. According to embodiments of the invention, a
non-transitory computer-readable storage medium storing
computer program instructions for exchanging data between
a sender and a recipient. The computer program instructions
are executable to perform steps. The steps include receiving,
at a node of a dead drop domain, a write request from the
sender to write data to a dead drop at the node. The dead
drop is identified by a dead drop identifier (DDID). The steps
further include writing the data to the dead drop identified by
the DDID. The steps further include receiving, at the node
of the dead drop domain, a read request from the recipient
to read data from the dead drop identified by the DDID. The
steps further include providing the data from the dead drop
identified by the DDID to the recipient.

BRIEF DESCRIPTION OF DRAWINGS

0010 FIG. 1 is a high-level block diagram illustrating an
example of passing data using a dead drop network archi
tecture according to one embodiment.
0011 FIG. 2 is a high-level block diagram illustrating a
detailed view of the dead drop domain of FIG. 1 according
to one embodiment.

0012 FIG. 3 is a high-level block diagram illustrating an
example of a dead drop storage node according to one
embodiment.

0013 FIG. 4 is a flowchart illustrating steps for using a
dead drop to pass data from a sender to a recipient according
to one embodiment.

0014 FIG. 5 is a high-level block diagram illustrating
physical components of a computer used as part or all of one
or more of the entities described herein in one embodiment.

DETAILED DESCRIPTION

0015 The Figures (FIGS.) and the following description
describe certain embodiments by way of illustration only.
One skilled in the art will readily recognize from the
following description that alternative embodiments of the
structures and methods illustrated herein may be employed
without departing from the principles described herein.
Reference will now be made to several embodiments,
examples of which are illustrated in the accompanying
figures.
0016. It is noted that wherever practicable similar or like
reference numbers may be used in the figures and may
indicate similar or like functionality. This description occa
sionally uses reference numbers in combination with letters
to designate items illustrated in the figures. Herein, a refer
ence number used without an accompanying letter (e.g.,
“150') references any or all instances of the designated item,
while a reference number used with an accompanying letter
(e.g., “150A) refers to the specific item designated with that
label in the figure.

US 2016/0314307 A1

0017 FIG. 1 is a high-level block diagram illustrating an
example of passing data using a dead drop network archi
tecture according to one embodiment. FIG. 1 illustrates a
recipient 110 in communication with a sender 120 via a dead
drop (DD) domain 130. FIG. 1 describes a unidirectional
data pass between a single sender 120 and a single recipient
110. Embodiments can have multiple senders 120 and
recipients 110 engaged in bidirectional one-to-one and one
to-many communications.
0018 Briefly, the recipient 110 uses the DD domain 130
to establish a communication channel that can be used to
pass data to the recipient. The recipient 110 provides the
sender 120 with a dead drop identifier (DDID) referencing
a storage location within the DD domain. The sender 120, in
turn, uses the DDID to pass data (e.g., send a message) to the
recipient 110 via the DD domain 130. The data transmission
from the sender 120 to the recipient 110 is secure in the sense
that it is extremely difficult for a malicious actor or other
third party to locate, intercept, or decipher the data. Thus, the
DD network architecture is suited to communications where
security and privacy concerns are paramount. In addition,
the DD network architecture may be used to provide
enhanced security for general purpose communications.
0019. In one embodiment, the recipient 110 includes
Software executing on a computer used by a user (e.g., a
person) to perform tasks Such as communicating with other
users via the DD domain 130 or via other communication
networks. For example, the recipient 110 may include soft
Ware executing on a desktop, notebook, or tablet computer,
or another electronic device with computer functionality,
Such as a mobile telephone, music player, television set-top
box, home automation component, industrial equipment or
connected appliance. The recipient 110 may include an input
device Such as a keyboard or touch-sensitive display that
allows for the input of data and an output device Such as a
display or speaker that allows for the output of data. Func
tionality enabling the recipient 110 to communicate via the
DD domain 130 may be embedded into the hardware of the
recipient 110 and/or included in software executed by the
recipient 110.
0020 Similarly, the sender 120 includes a computer used
by a user to perform tasks including communicating with
other users via the DD domain 130 or via other communi
cation networks. The sender 120 may include the same
components as the recipient 110. In fact, the sender 120 may
act as a recipient 110 and vice versa, depending upon the
direction of data flow in a given communication transaction.
The users who respectively use the recipient 110 and sender
120 to communicate can be different people or the same
person.

0021. The recipient 110 and sender 120 are connected to
the DD domain 130 via respective communications links
150A, 150B. The communication links 150 may include
network communication links using conventional computer
networking technologies. For example, the communications
links 150 may use wired or wireless network communica
tions technologies Such as the wired and wireless forms of
Ethernet. Likewise, the communication links 150 may use
other communications technologies designed to Support
communication with local peripherals, such as Universal
Serial Bus (USB), Thunderbolt, Bluetooth, Personal Area
Network (PAN), Serial ATA, infrared, heat signatures, and/
or sound. The communications links 150 may be encrypted
using any encryption technologies such as secure sockets

Oct. 27, 2016

layer (SSL), transport layer security (TLS), HTTP Secure
(HTTPS), virtual private networks (VPNs), Internet Proto
col security (IPSec), etc. In another embodiment, commu
nication uses custom and/or dedicated data communications
technologies instead of, or in addition to, the ones described
above.

0022. The DD domain 130 is a collection of one or more
DD nodes 140 (labeled as nodes 140A-L in FIG. 1). ADD
node 140 includes functionality for acting in the DD domain
130 and a memory for storing data within the domain. A
typical DD domain 130 includes many DD nodes 140. Each
node 140 is connected to one or more other nodes via DD
communication links 160. The DD communication links 160
may use the same communication technologies as the com
munication links 150 used by the recipient 110 and sender
120 to connect to the DD domain 130. In one embodiment,
the DD nodes 140 and DD communication links 160 are
arranged within the DD domain 130 such that every node is
reachable by every other node. In another embodiment, the
DD nodes 140 are logically or physically partitioned so that
Some nodes cannot reach other nodes. The path connecting
two DD nodes 140 may pass through one or more interme
diate nodes. In addition, the recipient 150A and sender 150B
communication links respectively connect the recipient 110
and the sender 120 to at least one DD node 140 within the
DD domain 130. The recipient 110 and sender 120 may also
communicate with each other using other communication
links that do not pass through the DD domain 130.
0023 To receive data using the DD domain 130, the
recipient 110 sends a request to the DD domain 130 to create
a DD on behalf of the recipient. ADD node 140 within the
domain 130 receives the create request and either services
the request or selects another node to service the request. For
example, the DD node 140 that receives the request may
randomly select another node within the DD domain 130
and pass the request to the selected node. The random
selection may occur in a manner Such that the node that
receives the request does not know which node ultimately
services the request.
0024. The node 140 that services the request to create the
DD establishes a DDID that uniquely identifies the created
DD. In addition, the node 140 establishes a set of tokens
associated with the DDID. A token describes the access
rights a possessor of the token has with respect to the created
DD. For example, an embodiment includes a read token
giving a possessor of the token the right to read from the DD
identified by the associated DDID and a write token giving
the right to write to the DD identified by the associated
DDID. The node 140 that services the request provides the
DDID and the associated tokens to the recipient 110.
(0025. The recipient 110 typically stores the DDID and
associated tokens in a secure manner. For example, the
recipient 110 may store the DDID and tokens in an
encrypted data store at the recipient. The recipient 110
provides the DDID and the write token to the sender 120 via
a communications link 170. This communications link 170
may be a secure or unsecure link, and may include commu
nication over the Internet and/or dedicated communications
links. For example, the recipient 110 may use encrypted or
unencrypted email to send the DDID and write token to the
sender 120. Alternatively, the recipient may use a different
electronic communications technique, Such as short-range
wireless communications, or even use non-electronic tech
niques to exchange the information (e.g., a pen and paper).

US 2016/0314307 A1

In one embodiment, the DDID and one or more tokens are
combined and may be encrypted or encoded (e.g., by a
hashing function) to form a single code. In this embodiment,
the recipient 110 may share the code with the sender 120
instead of sharing the DDID and write token separately. The
code may be decoded, for example by the sender 120 or at
a DD node 140, to determine the DDID and token.
0026. In addition, the recipient 110 and sender 120 may
choose to encrypt the data sent by the sender using one or
more symmetric or asymmetric encryption techniques. The
recipient 110 and sender 120 may choose to exchange
encryption keys, if necessary, at the same time the recipient
110 provides the DDID and write token to the sender 120.
Alternatively, the recipient 110 and sender 120 may
exchange encryption keys at different times, may use
encryption techniques that do not require a key exchange, or
may choose not to encrypt the data. In one embodiment, the
DD domain 130 itself is used to perform the key exchange
needed to facilitate an encrypted communications link.
0027. The sender 120 uses the DDID and associated write
token to send data to the recipient 110. In one embodiment,
the sender 120 sends a write request to the DD domain 130
that includes the DDID and the write token. This request is
received by an initial DD node 140 in the DD domain 130.
The receiving node 140 determines whether it has the DD
identified by the DDID. If not, the receiving node 140 sends
a message containing the DDID and the write token to the
other nodes within DD domain 130. The node 140 storing
the DD associated with the DDID receives the message and
verifies the write token. If the token verifies, the node storing
the DD creates a connection with the receiving node, which
in turn has a connection with the sender 120. The sender 120
then writes the data to the node storing the DD associated
with the DDID.
0028. Similarly, the recipient 110 uses the DDID and
associated read token to read data from the DD. In one
embodiment, the recipient 110 sends a read request to the
DD domain 130 that includes the DDID and the read token.
This request is received by an initial DD node 140 in the DD
domain 130. The receiving node 140 determines whether it
has the DD identified by the DDID. If not, the receiving
node 140 broadcasts a message containing the DDID and the
read token the other nodes within the DD domain 130. The
node 140 storing the DD associated with the DDID receives
the message and verifies the read token. If the token verifies,
the node 140 storing the DD creates a connection with the
receiving node, which in turn has a connection with the
recipient. The recipient 110 then reads the data from the
node storing the DD associated with the DDID.
0029. Thus, the DD network architecture described above
permits secure and private communications between the
recipient 110 and the sender 120. The sender 120, and/or
other parties possessing the DDID and write token can send
data to the recipient. However, Such parties cannot read the
data from the DD. Moreover, a malicious actor who obtains
access to one or more nodes 140 in the DD domain 130 may
be able to obtain or read data stored in individual DDs. But
the malicious actor cannot determine the intended recipients
of the data because there is no mapping of DDIDs to
recipients. For the same reason, the malicious actor cannot
determine the path between a sender and a recipient. In
addition, the data stored in the DDs may be encrypted.
0030 FIG. 2 is a high-level block diagram illustrating a
detailed view of the DD domain 130 of FIG. 1 according to

Oct. 27, 2016

one embodiment. As described above, the domain 130
typically includes multiple DD nodes 140 connected by DD
communication links 160. The individual nodes 140 within
the DD domain 130 may be formed of physically separate
computers, such as a collection of geographically disparate
computers. In addition, Some or all of the nodes may be
formed of virtual computers. For example, the nodes 140 of
a domain 130 may be instances of virtual computers hosted
in a cloud environment.

0031. Each DD node 140 has an associated set of char
acteristics that describe attributes of the node. The charac
teristics may describe the location of the node 140. The
location may be specified as a geographic location. In
addition, the location may be specified as a logical location
(e.g., a "Zone'). For example, the logical location may
indicate that the node is associated with a particular enter
prise (e.g., a business) or other group. The characteristics
may also describe physical properties of the node. Such as a
node's processing power, storage capacity, uptime, and the
like.
0032. In one embodiment, the set of DD nodes 140 in a
DD domain 130 may be divided into multiple subdomains,
with each Subdomain including a proper Subset of nodes
from the set of DD nodes in the DD domain. The subdo
mains to which a node 140 is member may be determined
based on the characteristics of the node. For example, the
DD domain 130 may include nodes 140 distributed over a
wide geographic area (e.g., a country), and a Subdomain may
include nodes physically located within a smaller area (e.g.,
a state within the country). Similarly, the DD domain 130
may include nodes 140 associated with multiple enterprises,
and a Subdomain may include only nodes associated with
one of the enterprises or a part of an enterprise.
0033. In one embodiment, the DD nodes 140 are
arranged as a mesh network. Each node 140 is connected to
at least one other node via a DD communication link 160.
Moreover, each node 140 maintains a routing table identi
fying the nodes to which it is connected. A node 140 can
send a message to another node by forwarding the message
to the nodes to which it is connected. The nodes 140 that
receive the message in turn forward the message to other
nodes, until the message reaches the node to which it is
directed. The path followed by the message is formed of
hops from node 140 to node along the DD communication
links 160.

0034 Consider the communications between the sender
120 and the recipient 110 described in FIG. 1 in the context
of FIG. 2. As shown in FIG. 2, the recipient 110 is connected
to a node 140A of the domain 130 via a communication link
150A. This node 140A serves as the point of ingress to the
domain 130 for the recipient. The recipient 110 sends a
request to the ingress node 140A of the domain 130 to create
a DD on behalf of the recipient. This request may include
domain information specifying a particular subdomain in
which the DD should be created. For example, the domain
information may specify that the DD should be created in a
node 140 located in a particular geographic area or managed
by a particular enterprise.
0035. The node 140A serving as the point of ingress for
the recipient 110 receives the create request and analyzes the
domain information to identify the subdomain in which the
DD should be created. In one embodiment, the node 140A
services the request by randomly selecting a node within the
specified subdomain that will host the DD. In one embodi

US 2016/0314307 A1

ment, random selection is performed using a load balancing
technique, which may be performed by the node 140A or by
a separate computing device. In one embodiment, the node
140 services the request by randomly selecting a number of
node hops for which the request will be forwarded, and
randomly selecting another node within the specified Sub
domain to which the node 140A is connected. The ingress
node 140A then forwards the request to the randomly
selected node (e.g., node 140D) and also forwards the
selected value for the number of node hops. The node 140D
to which the request was forwarded randomly selects
another node (e.g., node 140E) in the subdomain from its
routing table, decrements the value for the number of node
hops, and forwards the request to the selected node. This
selection, decrement, and forward process repeats until the
value for the number of node hops reaches zero, at which
point the final node establishes and hosts the DD associated
with the request from the recipient 110. In one embodiment,
each node that forwards the create request includes the path
from the ingress node 150A to the forwarding node with the
request. The final node that creates the DD uses the path to
identify and contact the ingress node 140A for the recipient
110. For example, the node 140 may use the path to send the
DDID and associated tokens to the ingress node 140A, so
that the latter node can provide this information to the
recipient.
0036. For example, assume the ingress node 140A
receives a create request from the recipient 110, and also
assume that the request specifies a subdomain encompassing
nodes 140A, 140D and 140E, as well as other nodes within
the domain 130. Also assume the ingress node 140A ran
domly selects “2 as the number of hops. The ingress node
randomly selects a node (e.g., node 140D) from the specified
Subdomain in its routing table, decrements the hop value,
and forwards the request and decremented hop value (e.g.,
“1”) to the selected node. That node 140D, in turn, randomly
selects another node (e.g., node 140E), decrements the hop
value, and forwards the request and decremented hop value
(e.g., “O) to the selected node. The final node 140E evalu
ates the hop value and determines that it is “0” and,
therefore, creates the DD and associated tokens. The final
node 140E then returns the DDID and tokens to the ingress
node 140A via the reverse of the path used to reach the final
node.

0037 Variations on the techniques described above may
be used in Some embodiments. In one embodiment, a node
forwarding a request decrements the hop value only if the
node is within the specified subdomain. This variation may
be used, for example, in situations in which a node receiving
a create request is not within the specified Subdomain and/or
connected to any other nodes in the Subdomain. In this
situation, the nodes may randomly forward the request to
other nodes until a node within the specified subdomain
receives the request, at which point the node in the subdo
main decrements the hop value and forwards the request
anew if the hop value is greater than Zero or creates the DD
and associated tokens if the hop value is Zero.
0038. The sender 120, in turn, is connected to a different
node 140L that serves as the point of ingress for the sender
to the domain 130 via a different communication link 150B.
When the sender 120 makes a write request, the sender
provides the DDID and write token to the sender's ingress
node 140L. This node 140L forwards the request including
the DDID and write token to the other nodes in its routing

Oct. 27, 2016

table, and the other nodes continue to forward the request
until it reaches the node having the DD associated with the
DDID (e.g., node 140E). This node 140E verifies the token
and establishes a connection with the senders ingress node
140L using a return path created by the forwarding nodes.
Alternatively, the node 140E may establish a direct connec
tion with the sender 120. The sender 120 provides the data
to be written to the ingress node 140L, and that node
forwards the data to the node 140E having the DD via the
connection. A read request made by the recipient 110 is
handled in a similar fashion in one embodiment, except that
the recipient reads data from, rather than writes data to, the
node 140E having the DD.
0039 FIG. 3 is a high-level block diagram illustrating an
example of a DD node 140 according to one embodiment.
The node 140 includes a routing module 305, creation
module 310, write module 315, read module 320, time-to
live (TTL) module 325, data control module 330, delete
module 335, notification module 340, geo-fence module
345, and data storage 390. Other embodiments may include
different or other modules in other embodiments. In addi
tion, the behaviors of the modules may differ in other
embodiments.

0040. The data storage 390 stores data used by the node
140. The data may include data being maintained in DDs
managed by the node 140, DDIDs and tokens associated
with the DDs, and information used by the modules within
the node 140 to perform the tasks described herein. Depend
ing upon the embodiment, the data storage 390 may include
one or more types of non-transitory computer-readable
persistent storage media. For example, the data storage 390
may include a hard drive, Solid-state memory device, and/or
other form of persistent memory.
0041 Turning now to the individual modules within the
node 140, the routing module 305 routes messages received
by node 140. As part of this task, an embodiment of the
routing module 305 maintains the routing table for the node
140. The routing module 305 periodically communicates
with other nodes 140 to which it is connected to ascertain
information about those nodes. This information may
include, for example, network addresses of the nodes, infor
mation about the subdomains with which the nodes 140 are
associated, and the like. The routing module 305 stores this
information about the connected nodes in the routing table.
In addition, the routing module 305 responds to routing
table-related communications from routing modules 305 of
other nodes 140.

0042. The messages handled by the routing module 305
include messages related to create requests, write requests,
read requests, and other types of messages and requests
described herein. For a given message, the routing module
305 analyzes the message to determine whether to process
the message locally on the node 140 or to route the message
to another node in the routing table. For example, upon
receiving a create request from another node, the routing
module 305 examines the hop value to determine whether it
is greater than Zero. If the hop value is greater than Zero, the
routing module 305 decrements the hop value, randomly
selects a connected node in the routing table (subject to any
specified Subdomain constraints, if applicable), and for
wards the request and decremented hop value to the selected
node. If the hop value is Zero, the routing module 305
provides the request to the creation module 310.

US 2016/0314307 A1

0043. Similarly, upon receiving a write request, the rout
ing module 305 determines whether the DDID is associated
with a DD maintained by the node 140. If the DDID is not
associated with a DD maintained by the node 140, the
routing module 305 forwards the request to other nodes in its
routing table. If, on the other hand, the DDID is associated
with a DD maintained by the node, the routing module 305
provides the request to the write module 315. The routing
module 305 handles read requests, as well as other requests
described herein, in the same fashion.
0044) The creation module 310 creates DDs in response

to requests received by the node 140. Upon receiving a
create request from the routing module 305, the creation
module 310 generates a DDID to represent the DD for the
request. In addition, the creation module 310 generates a set
of tokens associated with the DDID. The creation module
310 provides the DDID and tokens to the recipient 110 that
requested the DD using the path to the recipients ingress
node 140A as described with respect to FIGS. 1 and 2.
0045. In one embodiment, the creation module 310 gen
erates the DDID as a globally unique identifier (GUID). The
DDID is a value represented using a large number of bits
(e.g., a 128-bit value). A small portion of the bits may be
fixed to identify the value as a DDID or encode other
information, while the other bits are randomly generated by
the creation module 310. The large number of bits makes it
extremely unlikely that the same DDID would be generated
for multiple DDs. Therefore, each DDID is unique for
practical purposes. The DDID may be represented as
sequence of hexadecimal digits.
0046. In one embodiment, the tokens generated by the
creation module 310 may include a write token, a read token,
and an owner token. The write and read tokens respectively
provide the bearer of the token the rights to write data to, and
read data from, the DD associated with the DDID as
described above. The owner token provides the bearer with
administrative rights to the DD, such as the right to delete
data within the DD or delete the entire DD.

0047. In one embodiment, a token, like the DDID, is a
value represented using a large number of bits, some of
which may be fixed and others of which are randomly
generated by the creation module 310. The number of bits in
each token may be fewer than the number of bits in the
DDID. Each token associated with a particular DDID is
unique with respect to other tokens associated with that
DDID.

0048. The creation module 310 allocates space in the data
storage 390 for the created DD and associates this space with
the DDID. The amount of space, and the time when the
space is allocated may vary in different embodiments. In one
embodiment the creation module 310 allocates a fixed
amount of storage space for the DD when creating the DD.
In another embodiment, the creation module 310 allocates
the storage space later, when receiving data to store in the
DD. Likewise, the amount of space allocated for the DD can
vary in different embodiments.
0049. The write module 315 writes data to DDs in
response to write requests received by the node 140. Upon
receiving a write request from the routing module 305, the
write module 315 initially verifies the write token included
in the request. The write module 315 identifies the DDID
and write token included in the request, and compares the
write token to the stored write token created by the creation
module 310 for the DDID. If the compared write tokens do

Oct. 27, 2016

not match, the write module 315 denies the write request.
Depending upon the embodiment, the write module 315 can
deny the request by acting as if the request was not received
(i.e., by not sending any messages in response to the write
request) or by sending a message to the sender 120 indicat
ing that the write token is invalid.
0050. If the compared write tokens match, the write
module 315 uses the return path in the write request to open
a network connection with the ingress node 140L for the
sender 120. The write module 315 receives data from the
sender of the write request, and writes the data to the storage
allocated for the DD identified by the DDID. In one embodi
ment, the write module 315 stores the data in a DD as a
series of discrete messages, such that the data for each write
request to a DD is saved as a logically separate message. The
stored messages for the DD are organized in a queue or
another data structure.

0051. The read module 320 reads data from DDs in
response to read requests received by the node 140. Upon
receiving a read request from the routing module 305, the
read module 320 initially verifies the read token included in
the request. The read module 320 identifies the DDID and
read token included in the request, and compares the read
token to the stored read token created by the creation module
310 for the DDID. If the compared read tokens do not match,
the read module 320 denies the read request. Like the write
module 315, the read module 320 can deny the request by
acting as if the request was not received (i.e., by not sending
any messages in response to the read request) or by sending
a message to the recipient 110 indicating that the read token
is invalid.
0052. If the compared read tokens match, the read mod
ule 320 uses the return path in the read request to open a
network connection with the ingress node 140A for the
recipient 110. The read module 320 reads data from the
storage allocated for the DD, and sends the data to the
recipient 110 via the ingress node 140A. In another embodi
ment, a direct connection is established between the node
storing the DD and the recipient 110 and the data is sent to
the recipient without passing through the ingress node 140A.
If the data in the storage is organized in a queue, an
embodiment of the read module 320 sends the message in
the queue in response to the request (e.g., in a first-in-first
out order) and removes the message from the queue after it
is sent. Other embodiments may send multiple messages per
read request and/or leave message in the queue after the
messages are sent to the recipient 110. In another embodi
ment, the contents of a DD are not read, for example,
because the holder of a read token corresponding to the DD
no longer wishes to communicate with the sender of the
message. In this case, communication may be disconnected
unilaterally by the recipient, without action, consent, or
knowledge by the sender.
0053. The TTL module 325 maintains TTL information
for the node 140. The TTL information generally describes
for how long an entity persists in the domain 130. For
example, DDs, DDIDs, tokens, and data written to DDs may
have associated TTL information that describes how long
the respective entities persist within the domain 130. Once
the duration described by the TTL is reached, the entity to
which the TTL pertains expires, is no longer recognized as
valid, and may be deleted.
0054. In addition, the TTL module 325 enforces the TTLs
by detecting when a duration described by a TTL is reached,

US 2016/0314307 A1

and invalidating the entity associated with the TTL. For
example, if the TTL module 325 detects that a TTL for a DD
is reached, the TTL module deletes the data stored within the
DD and also deletes or otherwise invalidates the DDID and
tokens associated with the DD so that the DD can no longer
be accessed. Similarly, if the TTL module 325 detects that a
TTL for data written to a DD is reached, the TTL module
325 deletes the data from the DD so the data can no longer
be read.

0055. The TTL information may be specified as a counter
(e.g., a duration of time from the present time) or as a
timestamp (e.g., an explicit time after which the entity is no
longer valid). Additionally, the TTL may be specified as a
number of instances of particular types of access (e.g., a DD
expires once it is read from 3 times, or written to once).
Further, the TTL information may be specified as a category
(e.g., “default,” “short,” “medium.” “long,” or “confiden
tial'). In the latter case, the TTL module 325 converts the
category description to a counter or timestamp based on a
TTL policy. Different entities may have different applicable
TTL policies. For example, the TTL policies may specify
that the “default” TTL for a DD is 30 days and the “default”
TTL for a message is 7 days. The TTL module 325 may also
support an “archive' TTL that does not expire, therefore
making the entity having the TTL persistent.
0056. In one embodiment, the recipient 110 specifies the
TTL for a DD when creating it. For example, the TTL
information may be embedded into the create request. Like
wise, the sender 120 may specify the TTL for data by
embedding the TTL in the write request. For example, the
recipient 110 may specify a specific amount of time or
number of instances of access for which the DD is valid, or
specify a category as discussed above. The TTL specified for
the DD is embedded into the create request and received by
the TTL module 325.
0057 The data control module 330 supports management
of DDS for the nodes 140 of the domain 130. The data
control module 330 provides a variety of management
functions that can be accessed by the recipient 110 or other
entity making a request for a particular function and pro
viding tokens granting administrative authority, reading
privilege, writing privilege, etc. for a given DD.
0.058. In one embodiment, the data control module 330
provides a movement function that moves a DD from one
node 140 to another node while maintaining the same DDID.
The recipient 110 may issue a move request that contains the
DDID, the owner token and, optionally, a specification of a
node to which the DD should be moved. In various embodi
ments, movement of a DD may be initiated by a user request,
environmental factors (e.g., a node 140 is scheduled to be
taken offline, time of day), or a policy definition (e.g., a DD
may only stay on a specific node 140 for a certain time
before it is required to be moved). The node 140 to which the
DD should be moved may be specified, for example, by
indicating a subdomain to which the DD should be moved.
In response to a move request having a valid owner token,
the data control module 330 of the node 140 having the DD
identified by the DDID identifies a new node to which the
DD is to be moved. For example, the data control module
330 may randomly select a new node within the specified
Subdomain using the random selection technique described
above and send that node a message identifying the DDID
and the data for maintaining in the DD identified by the
DDID. A data control module 330 in the new node 140

Oct. 27, 2016

establishes a new DD under the existing DDID, and stores
the received data in that DD. Once the new DD is estab
lished, the data control module 330 may optionally delete
the DD identified by the DDID so that the DD has effectively
been moved to the new node.

0059. The data control module 330 also provides a rep
licate function that replicates a DD from a node 140 to one
or more other nodes. The replication is similar to the
movement function, except that the original data control
module 330 does not delete the DD identified by the DDID
after the new DD is created. In one embodiment, replication
is initiated by a recipient 110. In another embodiment,
replication is initiated automatically (e.g., by executable
instructions stored in the DD that specify rules for replica
tion). When a node 140 containing a replicated DD fulfills
a write request, the routing module 305 forwards the write
request to other nodes in the routing table so that each
instance of the replicated DD may fulfill the write request
and maintain data currency.
0060. The data control module 330 further provides an
archive function that stores an archive of a DD in another
node 140. To perform the archive, the data control module
330 of the node 140 storing the DD receives an archive
request similar to the move request. The data control module
330 communicates with the data control module 330 of the
new node 140 to create a new DD associated with the same
DDID. The data control module 330 sets the TTL for the
entities associated with the new DD as “persistent,” meaning
that the new DD acts as an archive for the DD in the original
node. The data control module 130 of the original node 130
may optionally delete the DD identified by the DDID after
the archive is created.

0061. The delete module 335 deletes DDs from a node
140. The delete module 335 receives a delete request from
the recipient 110 or another entity. The delete request
contains a DDID and the associated owner token. The delete
module 335 verifies that the received token grants delete
privileges and, if it does, deletes the DD identified by the
DDID from the node 140. In another embodiment, delete
module 335 may delete one or more messages stored in a
DD and not the entire DD itself. In one embodiment, the
delete module 335 writes data to the storage location from
which the DD is deleted. This writeover data may be
randomly generated or predetermined. Writing writeover
data makes recovering deleted data more difficult. It also
makes finding DD data more difficult by increasing the total
amount of Stored data in the storage location, with the
multiple instances of writeover data obfuscating DD data.
0062. A notification module 340 provides notifications to
recipients 110 regarding changes to DDS. In one embodi
ment, the notification module 340 of a node 140 receives a
notification request from a recipient 110 or another entity.
The notification request 110 includes the DDID of the node
for which the notification is to be created and a token (e.g.,
owner token, read token) associated with the DDID. The
notification request may also indicate the types of events
(i.e., changes to the DD) for which notifications are
requested. For example, the notification request may specify
that notifications are to be made for only writes to a DD. The
notification request further includes a notification address to
which a notification is to be made when there is a change to
the identified DD. In another embodiment, the notification
address may be specified in the form of a DDID and write
token for a different DD in the domain 130. The notification

US 2016/0314307 A1

address may also be specified as a different form of address,
Such as an address on the Internet to which an email or
another form of message may be sent.
0063. If the token for a DDID in a notification request is
correct, the notification module 340 examines the notifica
tion request to identify the type of event for which the
notification is requested. The notification module 340 then
creates a notification for the event. In one embodiment, the
notification module 340 establishes a trigger that detects
when the appropriate type of event occurs for the identified
DD. To this end, the notification module 340 may monitor
the activities of the other modules (e.g., the write module
315) to determine when such events occur. For example, if
the notification request specifies a write event, the notifica
tion module 340 may monitor the write module 315 to detect
writes to the indicated DD.
0064. When the requested event is detected, the notifi
cation module 340 generates and sends a notification to the
specified notification address. The notification may identify
the DD to which the event occurs (e.g., by including the
DDID in the notification) and the type of event that occurred
(e.g., a write to the DD having the DDID). If the notification
address is for a DD, the notification module 340 acts as a
sender 120 and uses the write token and DDID specified in
the notification request to write the notification to the DD. In
this example, the recipient 110 or other entity that requested
the notification can monitor a single DD to receive notifi
cations about events occurring in multiple different DDs. If
the notification address is specified as a different form of
address, the notification module 340 sends the notification
using the appropriate technique for the address.
0065. A geo-fence module 345 receives and analyzes
geographic-related restrictions associated with the DD or
requests received by the DD. The geo-fence module 345
communicates with the other modules in the DD to enforce
such restrictions. The restrictions may specify that a DD is
only accessible by senders and recipients within a geo
graphic area specified by the creator of the DD. Access may
be restricted in various ways in different embodiments. For
example, in one embodiment, requests received by a DD
may be valid only if the originator of the request is located
within a certain geographic area. In another embodiment, a
DD or specific contents of the DD may be accessible only if
a specified party (e.g., owner, recipient, sender, third party,
etc.) is within a certain geographic area. The geo-fence
module 345 may also communicate with the notification
module 340 to send notifications when events (e.g., write
requests, read requests, etc.) occur within specified geo
graphic areas.
0066 FIG. 4 is a flowchart illustrating steps for using a
DD to pass data from a sender 120 to a recipient 110
according to one embodiment. FIG. 4 describes the steps
from the perspective of a node 140 of a domain 130. Other
embodiments may include different and/or other steps than
those described herein, and the steps may be performed in
different orders. Likewise, some or all of the steps may be
performed by entities other than the node 140 in other
embodiments.

0067. The node 140 receives 410 a create request. As
described above, a recipient 110 can issue the create request
and send the request to an ingress node 140A in the domain
130. The ingress node 140A randomly selects a node to
service the request. Assume, then, that the node 140 receives
410 the create request after having been randomly selected

Oct. 27, 2016

to service it. In response to the create request, the node 140
generates 415 a DDID and a set of associated tokens for the
new DD. In addition, the node 140 may allocate storage
space for storing data written to the DD. The node 140
provides the tokens and DDID to the recipient 110.
0068 Subsequently, the node 140 receives 420 a write
request including the DDID and associated write token. The
write request may have been issued by a sender 120 who
received the DDID and write token from the recipient 110.
The sender 120 sends the write request to an ingress node
140L in the domain 130 which, in turn, forwards the write
request to other nodes in the domain until it reaches the node
that created the DD associated with the DDID. The node 140
determines whether the write token is valid. If the token is
valid, the node 140 responds to the write request by estab
lishing a connection with the senders ingress node 140L.
The node 140 receives the data to be written to the DD from
the sender 120 via the ingress node 140L and stores 425 the
data in the DD. If the token is not valid, an embodiment of
the node 140 does not respond to the write request.
0069. The node 140 later receives 430 a read request
including the DDID and associated read token. The read
request may have been issued by the recipient 110 who
established the DD identified by the DDID. Similar to a
write request, the recipient 110 sends the read request to an
ingress node 140A in the domain 130 which forwards the
read request to other nodes in the domain until it reaches the
node that created the DD associated with the DDID. Upon
receiving the read request, the node 140 determines whether
the read token is valid. If the token is valid, the node 140
responds to the read request by establishing a connection
with the recipient’s ingress node 140A and sends it the data
from the DD. For example, if the DD is maintained as a
queue, the node 140 will send the data that is next in the
queue.

0070 FIG. 5 is a high-level block diagram illustrating
physical components of a computer 500 used as part or all
of one or more of the entities described herein in one
embodiment. For example, instances of the illustrated com
puter 500 may be used as the recipient 110, sender 120,
and/or a node 140 in the domain 130. Illustrated are at least
one processor 502 coupled to a chipset 504. Also coupled to
the chipset 504 are a memory 506, a storage device 508, a
keyboard 510, a graphics adapter 512, a pointing device 514,
and a network adapter 516. A display 518 is coupled to the
graphics adapter 512. In one embodiment, the functionality
of the chipset 504 is provided by a memory controller hub
520 and an I/O controller hub 522. In another embodiment,
the memory 506 is coupled directly to the processor 502
instead of the chipset 504. In one embodiment, one or more
Sound devices (e.g., a loudspeaker, audio driver, etc.) is
coupled to chipset 504.
0071. The storage device 508 is any non-transitory com
puter-readable storage medium, Such as a hard drive, com
pact disk read-only memory (CD-ROM), DVD, or a solid
state memory device. The memory 506 holds instructions
and data used by the processor 502. The pointing device 514
may be a mouse, track ball, or other type of pointing device,
and is used in combination with the keyboard 510 to input
data into the computer 500. The graphics adapter 512
displays images and other information on the display 518.
The network adapter 516 couples the computer system 500
to a local or wide area network.

US 2016/0314307 A1

0072. As is known in the art, a computer 500 can have
different and/or other components than those shown in FIG.
5. In addition, the computer 500 can lack certain illustrated
components. In one embodiment, a computer 500 acting as
a node 140 may lack a keyboard 510, pointing device 514,
graphics adapter 512, and/or display 518. Moreover, the
storage device 508 can be local and/or remote from the
computer 500 (such as embodied within a storage area
network (SAN)).
0073. As is known in the art, the computer 500 is adapted
to execute computer program modules for providing func
tionality described herein. As used herein, the term 'mod
ule' refers to computer program logic utilized to provide the
specified functionality. Thus, a module can be implemented
in hardware, firmware, and/or software. In one embodiment,
program modules are stored on the storage device 508,
loaded into the memory 506, and executed by the processor
SO2.
0074 The above description is included to illustrate the
operation of certain embodiments and is not meant to limit
the scope of the invention. From the above discussion, many
variations will be apparent to one skilled in the relevant art
that would yet be encompassed by the spirit and scope of the
invention.
What is claimed is:
1. A method of exchanging data between a sender and a

recipient comprising:
receiving, at a node of a dead drop domain, a write request

from the sender to write data to a dead drop at the node,
the dead drop identified by a dead drop identifier
(DDID);

writing the data to the dead drop identified by the DDID:
receiving, at the node of the dead drop domain, a read

request from the recipient to read data from the dead
drop identified by the DDID; and

providing the data from the dead drop identified by the
DDID to the recipient.

2. The method of claim 1, further comprising:
receiving, at the node of the dead drop domain, a create

request from a requestor;
creating the dead drop at the node responsive to receiving

the create request;
generating the DDID identifying the dead drop, a write

token associated with the dead drop, and a read token
associated with the dead drop; and

providing the DDID, write token, and the read token to the
requestor.

3. The method of claim 2, further comprising:
comparing a write token received in the write request

from the sender with the write token associated with the
dead drop to determine whether the write token is valid,
wherein the data is written to the dead drop identified
by the DDID responsive to a determination that the
write token is valid; and

comparing a read token received in the read request from
the recipient with the read token associated with the
dead drop to determine whether the read token is valid,
wherein the data is read from the dead drop identified
by the DDID responsive to a determination that the
read token is valid.

4. The method of claim 1, further comprising:
receiving the write request at a second node of the dead

drop domain;

Oct. 27, 2016

determining whether the second node has the dead drop
identified by the DDID:

accessing, by the second node, a routing table identifying
one or more other nodes in the dead drop domain to
which the second node is connected; and

forwarding the write request from the second node to the
one or more other nodes in the dead drop domain
responsive to determining that the second node does
not have the dead drop identified by the DDID.

5. The method of claim 1, further comprising:
evaluating time-to-live (TTL) information for the dead

drop at the node of the dead drop domain;
determining whether a duration for the dead drop speci

fied by the TTL information has been reached; and
deleting the dead drop responsive to a determination that

the duration for the dead drop specified by the TTL
information has been reached.

6. The method of claim 1, further comprising:
receiving, at the node of the dead drop domain, a move

request to move the dead drop identified by the DDID
to a second node of the dead drop domain;

determining whether a token associated with the move
request is valid; and

responsive to determining that the token associated with
the move request is valid, moving the dead drop
identified by the DDID to the second node of the dead
drop domain.

7. The method of claim 1, further comprising:
receiving, at the node of the dead drop domain, a notifi

cation request for the dead drop identified by the
DDID;

examining the notification request to identify a type of
event for which a notification is requested and a noti
fication address to which the notification is to be made;
and

creating a trigger that causes the notification to be sent to
the notification address responsive to the identified type
of event occurring at the dead drop identified by the
DDID.

8. A system for exchanging data between a sender and a
recipient comprising:

a processor for executing computer program instructions;
a non-transitory computer-readable storage medium stor

ing computer program instructions executable by the
processor to perform steps comprising:
receiving, at a node of a dead drop domain, a write

request from the sender to write data to a dead drop
at the node, the dead drop identified by a dead drop
identifier (DDID);

writing the data to the dead drop identified by the
DDID:

receiving, at the node of the dead drop domain, a read
request from the recipient to read data from the dead
drop identified by the DDID; and

providing the data from the dead drop identified by the
DDID to the recipient.

9. The system of claim 8, the steps further comprising:
receiving, at a node of a dead drop domain, a write request

from the sender to write data to a dead drop at the node,
the dead drop identified by a dead drop identifier
(DDID);

writing the data to the dead drop identified by the DDID:

US 2016/0314307 A1

receiving, at the node of the dead drop domain, a read
request from the recipient to read data from the dead
drop identified by the DDID; and

providing the data from the dead drop identified by the
DDID to the recipient.

10. The system of claim 9, the steps further comprising:
comparing a write token received in the write request

from the sender with the write token associated with the
dead drop to determine whether the write token is valid,
wherein the data is written to the dead drop identified
by the DDID responsive to a determination that the
write token is valid; and

comparing a read token received in the read request from
the recipient with the read token associated with the
dead drop to determine whether the read token is valid,
wherein the data is read from the dead drop identified
by the DDID responsive to a determination that the
read token is valid.

11. The system of claim 8, the steps further comprising:
receiving the write request at a second node of the dead

drop domain;
determining whether the second node has the dead drop

identified by the DDID:
accessing, by the second node, a routing table identifying

one or more other nodes in the dead drop domain to
which the second node is connected; and

forwarding the write request from the second node to the
one or more other nodes in the dead drop domain
responsive to determining that the second node does
not have the dead drop identified by the DDID.

12. The system of claim 8, the steps further comprising:
evaluating time-to-live (TTL) information for the dead

drop at the node of the dead drop domain;
determining whether a duration for the dead drop speci

fied by the TTL information has been reached; and
deleting the dead drop responsive to a determination that

the duration for the dead drop specified by the TTL
information has been reached.

13. The system of claim 8, the steps further comprising:
receiving, at the node of the dead drop domain, a move

request to move the dead drop identified by the DDID
to a second node of the dead drop domain;

determining whether a token associated with the move
request is valid; and

responsive to determining that the token associated with
the move request is valid, moving the dead drop
identified by the DDID to the second node of the dead
drop domain.

14. The system of claim 8, the steps further comprising:
receiving, at the node of the dead drop domain, a notifi

cation request for the dead drop identified by the
DDID;

examining the notification request to identify a type of
event for which a notification is requested and a noti
fication address to which the notification is to be made;
and

creating a trigger that causes the notification to be sent to
the notification address responsive to the identified type
of event occurring at the dead drop identified by the
DDID.

15. A non-transitory computer-readable storage medium
storing computer program instructions executable by a pro
cessor to perform steps comprising:

Oct. 27, 2016

receiving, at a node of a dead drop domain, a write request
from the sender to write data to a dead drop at the node,
the dead drop identified by a dead drop identifier
(DDID);

writing the data to the dead drop identified by the DDID:
receiving, at the node of the dead drop domain, a read

request from the recipient to read data from the dead
drop identified by the DDID; and

providing the data from the dead drop identified by the
DDID to the recipient.

16. The non-transitory computer-readable
medium of claim 15, the steps further comprising:

receiving, at a node of a dead drop domain, a write request
from the sender to write data to a dead drop at the node,
the dead drop identified by a dead drop identifier
(DDID);

writing the data to the dead drop identified by the DDID:
receiving, at the node of the dead drop domain, a read

request from the recipient to read data from the dead
drop identified by the DDID; and

providing the data from the dead drop identified by the
DDID to the recipient.

17. The non-transitory computer-readable
medium of claim 16, the steps further comprising:

comparing a write token received in the write request
from the sender with the write token associated with the
dead drop to determine whether the write token is valid,
wherein the data is written to the dead drop identified
by the DDID responsive to a determination that the
write token is valid; and

comparing a read token received in the read request from
the recipient with the read token associated with the
dead drop to determine whether the read token is valid,
wherein the data is read from the dead drop identified
by the DDID responsive to a determination that the
read token is valid.

18. The non-transitory computer-readable
medium of claim 15, the steps further comprising:

receiving the write request at a second node of the dead
drop domain;

determining whether the second node has the dead drop
identified by the DDID:

accessing, by the second node, a routing table identifying
one or more other nodes in the dead drop domain to
which the second node is connected; and

forwarding the write request from the second node to the
one or more other nodes in the dead drop domain
responsive to determining that the second node does
not have the dead drop identified by the DDID.

19. The non-transitory computer-readable storage
medium of claim 16, the steps further comprising:

evaluating time-to-live (TTL) information for the dead
drop at the node of the dead drop domain;

determining whether a duration for the dead drop speci
fied by the TTL information has been reached; and

deleting the dead drop responsive to a determination that
the duration for the dead drop specified by the TTL
information has been reached.

20. The non-transitory computer-readable
medium of claim 16, the steps further comprising:

receiving, at the node of the dead drop domain, a move
request to move the dead drop identified by the DDID
to a second node of the dead drop domain;

Storage

Storage

Storage

Storage

US 2016/0314307 A1 Oct. 27, 2016
10

determining whether a token associated with the move
request is valid; and

responsive to determining that the token associated with
the move request is valid, moving the dead drop
identified by the DDID to the second node of the dead
drop domain.

