
US 20180321880A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0321880 A1

JUNG et al . (43) Pub . Date : Nov . 8 , 2018

(54) RESISTANCE SWITCHING MEMORY - BASED
ACCELERATOR

(71) Applicants : MemRay Corporation , Seoul (KR) ;
YONSEI UNIVERSITY ,
UNIVERSITY - INDUSTRY
FOUNDATION (UIF) , Seoul (KR)

(72) Inventors : Myoungsoo JUNG , Incheon (KR) ;
Gyuyoung PARK , Incheon (KR) ; Jie
ZHANG , Incheon (KR)

(21) Appl . No . : 16 / 032 , 675

Publication Classification
(51) Int . Ci .

G06F 3 / 06 (2006 . 01)
GOOF 13 / 16 (2006 . 01)
G06F 9 / 30 (2006 . 01)

(52) U . S . CI .
CPC G06F 3 / 0659 (2013 . 01) ; G06F 3 / 0604

(2013 . 01) ; G06F 3 / 0679 (2013 . 01) ; G06F
3 / 0652 (2013 . 01) ; G06F 9 / 30043 (2013 . 01) ;

G06F 3 / 0656 (2013 . 01) ; G06F 13 / 1668
(2013 . 01)

(57) ABSTRACT
A resistance switching memory - based accelerator config
ured to be connected to a host including a CPU and a system
memory is provided . A resistance switching memory module
includes a memory cell array including a plurality of resis
tance switching memory cells , and stores a kernel offloaded
from the host . An accelerator core includes a plurality of
processing elements , and the kernel is executed by a target
processing element among the plurality of processing ele
ments . An MCU manages a memory request generated in
accordance with execution of the kernel by the target pro
cessing element . A memory controller is connected to the
resistance switching memory module , and allows data
according to the memory request to move between the
resistance switching memory module and the target process
ing element , in accordance with the memory request trans
ferred from the MCU . A network integrates the accelerator
core , the plurality of processing elements , and the memory
controller .

(22) Filed : Jul . 11 , 2018

Related U . S . Application Data
(63) Continuation - in - part of application No . 15 / 344 , 734 ,

filed on Nov . 7 , 2016 .
(60) Provisional application No . 62 / 366 , 667 , filed on Jul .

26 , 2016 .

(30) Foreign Application Priority Data
Sep . 19 , 2016
Sep . 4 , 2017

Apr . 20 , 2018

(KR) . 10 - 2016 - 0119517
(KR) . 10 - 2017 - 0112840
(KR) . 10 - 2018 - 0046378

CPU

140 131 130
- PE Memory System

Memory Bridge
PRAM Module

I / O Bridge 150

Patent Application Publication Nov . 8 , 2018 Sheet 1 of 23 US 2018 / 0321880 A1

FIG . 1

SVE
131 130

PE | PE | | PE | - - - Memory System
Memory Bridge

PRAM Module

132

1 / 0 Bridge

Patent Application Publication Nov . 8 , 2018 Sheet 2 of 23 US 2018 / 0321880 A1

FIG . 2

7211
- - -

200

1 + 213

Patent Application Publication Nov . 8 , 2018 Sheet 3 of 23 US 2018 / 0321880 A1

FIG . 3

Current

RESET

| READ

tREAD ERST ISET SET Time

Patent Application Publication Nov . 8 , 2018 Sheet 4 of 23 US 2018 / 0321880 A1

FIG . 4

Temperature

Melting Point

Crystallization
Temperature

it wint we winter www wind

| Time TRST they lime

ESET COOL

FIG . 5

Patent Application Publication

Upper Address 520

Data

530

- - - - - + - - - - 1

r?????????L?

BAT

510

Hi - BA

- - - - - - - - - -

Row Decoder

Memory Cell Array

- -

-

-

-

- -

Nov . 8 , 2018 Sheet 5 of 23

-

550

BA

BA

SA

|

WD

i - - - - -
Upper Address

Lower Address |
Data

Overlay Window Registers

Program Buffer

570

580

US 2018 / 0321880 A1

Patent Application Publication Nov . 8 , 2018 Sheet 6 of 23 US 2018 / 0321880 A1

FIG . 6

PARTO PARTO PART1 PART1

PART2 PART2 PART3 PART3

| PART4 PART4 | | PARTS PARTS
PARTO PARTO PART7 PARTY

PARTS PARTS PARTS PARTY

PARTIO PARTIO PARTI1 PART11
PART12 PART12 PART13 PART13

PART14 PART14 PART15 PART15

128 I / O 128 I / O

FIG . 7

Patent Application Publication

I .

LYDEC 1 1 . Tileo | |

. . . | SWD

LYDEC : Tilel

. . . |

BLI . LYDEC
IN : Tile31

SWD . . .

SWDm
LYDEC

LYDEC

LYDEC

GWL

MWD

LYDEC

LYDEC

10

Nov . 8 , 2018 Sheet 7 of 23

720

Tile32

LYDEC
| | | Tile 33

SWD . . .

: | | |

SWD

. . . Em

I

| Tile63 SWD . . .

i III H

BL

LYDEC

LYDEC

7

GWL

| | / LYDEC GBLWL

710 GEL

GYDEC

GYDEC

US 2018 / 0321880 A1

Patent Application Publication Nov . 8 , 2018 Sheet 8 of 23 US 2018 / 0321880 A1

FIG . 8

800 810

PEO PEN PE1
(Agent)

PE2
(Agent) (Server) (Agent)

H - 850
Crossbar Network

860
PCle

Module

Memory
Controller

PSC Memory
Controller

- 840 820
PRAM
Module

2840 870
PRAM
Module

830 830

Patent Application Publication

FIG . 9 L

812b

81200

LID Cache

Cache

reg A

- 813b

813am

L11 Controller

LE

.

ML . S - D 1 . D
. M . L . S

LID Controller

Memory + - 820

Controller

reg B

Nov . 8 , 2018 Sheet 9 of 23

On - chip MC

Memory + - 820

Controller

L2

L2 Cache

| Controller

On - chip MC

Y MCU

- - PEO

8120

8130

814a

US 2018 / 0321880 A1

FIG . 10

520

Preactive Phase

Patent Application Publication

RAB

Active Phase

RAB RAB

a [n , m]

a [m - 1 , x]

a [n , m]

RAB RAB

Upper Address

Lower Address

BA

BA

BA

Row Decoder

Nov . 8 , 2018 Sheet 10 of 23

RDB RDB RDB

DATA

SA | |

Memory Cell Array

RDB RDB

550V

Read Phase

510

US 2018 / 0321880 A1

Patent Application Publication Nov . 8 , 2018 Sheet 11 of 23 US 2018 / 0321880 A1

FIG . 11

[571
570 (572a -

572b ~
572c LO 2 560 580

Meta
Code 0x80

Address 0x88
Multi - purpose 0x90

Execute | 0xc0
Status | 0xCC

| 0x800 Program
Buffer

OxBFF

Memory
Cell Array (572d Program

572e WD Buffer

Patent Application Publication Nov . 8 , 2018 Sheet 12 of 23 US 2018 / 0321880 A1

FIG . 12

860
Interrupt

51220 PCle
Module Host

51210

Kernel Interrupt
8304 PRAM

Module
PEO

(Server)

$ 1240 $ 1260 S12504
Invoke

$ 1230
Sleep Boot Load Invoke S1250

PE1
(Agent) Invoke PSC 7 - 870

Sleep $ 1230

Patent Application Publication Nov . 8 , 2018 Sheet 13 of 23 US 2018 / 0321880 A1

FIG . 13

PEO
(Server) Request

S1270

S1280
Initiate

PE1
(Agent)

DMA PRAM
Module - 830

S1290

Patent Application Publication Nov . 8 , 2018 Sheet 14 of 23 US 2018 / 0321880 A1

FIG . 14

Interrupt - $ 1210
Download and store kernel S1220

Put target agent in sleep mode - S1230

Store memory address of kernel R $ 1240

Revoke target agent $ 1250
Load and execute kernel - S1260

Transfer memory request from target agent to server $ 1270

Initiate DMA between target agent and PRAM module $ 1280

DMA - S1290

Patent Application Publication

FIG . 15

-

-

-

-

-

S1511 - + - - - -

S1515

51517

-

—

—

—

—

—

—

S1504

User

- - - -

S15014
OS

OS - - -

S1505 - S1506

Storage - A S1502

DRAM E - - - L I - - - 1 - - - L

$ 1503 – 4

S1509 – 1

Accelerator

S1516

-

-

-

-

-

—

—

–

-

-

-

S1512

Nov . 8 , 2018 Sheet 15 of 23

S15074 S1508

S1514

-

-

-

- -

-

+

-

-

7

-

-

-

I -

-

-

-

J

Execution

S1513 _ _ _ _ _ .

—

—

—

—

—

—

—

-

-

-

-

-

-

-

$ 1510

US 2018 / 0321880 A1

S1620

YS

S1630

S1610
- - -

- - . - - - - - - - - - - - . - - - -
.

-
. Accelerator — —

- - - - - - - - - - - - - - -

- - E - - - F

FIG . 16

US 2018 / 0321880 A1 Nov . 8 , 2018 Sheet 16 of 23 Patent Application Publication

FIG . 17

Patent Application Publication

Host

Accelerator
I

-

-

-

-

-

-

-

-

- Kernel Loading

| img = packData (meta , appo , . . . , appN , shared) ; 1 .

I

pushData (img , & pram _ addr) ;

ES = = = = = = =

Kernel Parsing
- 7

meta = unpackData (img) ; for each seg in meta . segments :
load (seg , & addr) ;

L

—

—

—

—

—

—

Kernel Scheduling
-

-

-

Execution pel :
{ processing appl }

Nov . 8 , 2018 Sheet 17 of 23

-

pe2 :

i for each app in meta . apps :
pe = polling (available _ pe) ;

sleep (pe) ;

writeMemory (pe . MAGIC _ ADDR , & app . boot _ addr) ; !

boot () ;

-

{ processing 2ppl } }

-

pen :

L

-

-

-

-

-

- -

{ processing nppl } |

US 2018 / 0321880 A1

Patent Application Publication

FIG . 18

RP -

RCD

RL

DQSCK

BURST

Preactive
Active

Read

Data

Row Access

i Column Access

Nov . 8 , 2018 Sheet 18 of 23

RAB

Memory Cell Array

RDB

US 2018 / 0321880 A1

Patent Application Publication

FIG . 19

RCD —

WL

DQSS

BURST –

WRA - -

RP - Preactive
Active

Write

Data

Row Access

Column Access

Nov . 8 , 2018 Sheet 19 of 23

Overlay Window

RAB

Memory Cell Array

US 2018 / 0321880 A1

Patent Application Publication Nov . 8 , 2018 Sheet 20 of 23 US 2018 / 0321880 A1

FIG . 20

reg - 0 req - 0 Preactive Preactive Active Active Read Read
S2020 , S2040 S2050

Accelerator tRP tRCD
DOSCK S2010 TBURST

S2030

req - 1
- - - - - - I - - - - - -
i Preactive i Active
L - - - - - I - - - -

Read

Patent Application Publication Nov . 8 , 2018 Sheet 21 of 23 US 2018 / 0321880 A1

FIG . 21

Memory Cell Array
Partition
Partition

Partition
S2020 S2040

$ 2050
S2010 > Data

Upper Address

Data
RAB RDB

S2040

Patent Application Publication Nov . 8 , 2018 Sheet 22 of 23 US 2018 / 0321880 A1

FIG . 22

Interrupt $ 1210
Download and store kernel 1 51220

S2210 Put target agent in sleep mode $ 1230

Selectional erasing Store memory address of kernel - $ 1240

Revoke target agent $ 1250

Load and execute kernel + $ 1260

Transfer memory request
from target agent to server - 91270

Initiate DMA between target
agent and PRAM module - $ 1280

DMA - $ 1290

FIG . 23

Patent Application Publication

2300

2310

2320

Translator

Memory Control Logic

2340 -

MCU

Mode Register
- 2312 2322

2321 ~

Read / Write Request

Initializer

PEO

Command Generator

Address Register
H

2311

PRAM module

Nov . 8 , 2018 Sheet 23 of 23

Data =

Datapath
2330

US 2018 / 0321880 A1

US 2018 / 0321880 A1 Nov . 8 , 2018

RESISTANCE SWITCHING MEMORY - BASED
ACCELERATOR

CROSS - REFERENCE TO RELATED
APPLICATION

[0001] This application is a continuation - in - part of U . S .
patent application Ser . No . 15 / 344 , 734 filed on Nov . 7 , 2016 ,
and claims priority to and the benefit of U . S . Provisional
Application No . 62 / 366 , 667 filed on Jul . 26 , 2016 , and
Korean Patent Applications Nos . 10 - 2016 - 0119517 filed on
Sep . 19 , 2016 , 10 - 2017 - 0112840 filed on Sep . 4 , 2017 , and
10 - 2018 - 0046378 filed on Apr . 20 , 2018 . The entire contents
of the aforementioned applications are incorporated herein
by reference .

BACKGROUND
(a) Field

[0002] The described technology generally relates to a
resistance switching memory - based accelerator .

(b) Description of the Related Art
[0003] Multi - core based accelerators such as graphics
processing units (GPUs) or many integrated cores (MICs)
have in the recent years improved their computation power
by employing hundreds to thousands of cores .
[0004 The accelerators can process more data than they
have ever had before via parallelism , but use a non - volatile
memory , for example a solid state disk (SSD) , connected to
a host machine to process large sets of data .
[0005] However , the accelerator and the non - volatile
memory are disconnected from each other and are managed
by different software stacks . Consequently , many unneces
sary software interventions and data movements / copies exist
in order to read data from the non - volatile memory or write
data to the non - volatile memory . These overheads causes the
speedup improvement to be not significant compared to the
accelerator performance and a large amount of energy to be
consumed .

resistance switching memory module and the target process
ing element , in accordance with the memory request trans
ferred from the MCU . The network integrates the accelerator
core , the plurality of processing elements , and the memory
controller .
[0008] The data according to the memory request may
move between the resistance switching memory module and
the target processing element without assistance of an oper
ating system (OS) of the host .
[0009] The target processing element may access the
resistance switching memory module through the memory
request without a modification of an existing load / store
instruction .
[0010] The MCU may be included in a processing element
other than the plurality of processing elements .
[0011] The MCU may be included in the target processing
element .
[0012] . The resistance switching memory module may
further include a plurality of row data buffers including a
first row data buffer and a second row data buffer . The
plurality of resistance switching memory cells may be
divided into a plurality of partitions including a first partition
and a second partition . In this case , the memory controller
may process a first operation according to a first memory
request and a second operation according to a second
memory request in parallel , the first operation of bringing
first data from the first partition to the first row data buffer ,
and the second operation of moving second data , which have
been transferred from the second partition to the second row
data buffer , to the target processing element corresponding
to the second memory request .
[0013] The resistance switching memory module may
further include a plurality of row address buffers and a
plurality of row data buffers , and the plurality of resistance
switching memory cells may be divided into a plurality of
partitions . In this case , the memory controller may perform
three - phase addressing . The three - phase addressing may
include a preactive phase for storing an upper address of a
row address , which is divided into at least the upper address
and a lower address , for accessing the resistance switching
memory module in accordance with the memory request , to
a target row address buffer among the plurality of row
address buffers , an active phase for bringing read data from
the memory cell array to a target row data buffer among the
plurality of row data buffers based on a row address com
posed by merging the lower address with the upper address
stored to the target row address buffer , in a case of a read ,
and a read / write phase for transferring the read data from the
target row data buffer to the target processing element .
[0014] The resistance switching memory module may
further include an overlay window including a set of control
registers and a program buffer . In a case of a write , write data
may be stored to the program buffer at the active phase when
the row address is within an address range of the overlay
window , and the write data stored to the program buffer may
be programmed to the memory cell array at the read / write
phase .
[0015] The plurality of partitions may include a first
partition and a second partition , and
[0016] In this case , the memory controller may perform
the read / write phase for the first partition in accordance with
a first memory request while performing the preactive phase
and the active phase for the second partition in accordance
with a second memory request .

SUMMARY
[0006] An embodiment of the present invention provides
a resistance switching memory - based accelerator for remov
ing unnecessary software inventions and data movements /
copies .
[0007] According to an embodiment of the present inven
tion , a resistance switching memory - based accelerator con
figured to be connected to a host including a central pro
cessing unit (CPU) and a system memory is provided . The
resistance switching memory - based accelerator includes a
resistance switching memory module , an accelerator core , a
memory controller unit (MCU) , a memory controller , and a
network . The resistance switching memory module includes
a memory cell array including a plurality of resistance
switching memory cells , and stores a kernel offloaded from
the host . The accelerator core includes a plurality of pro
cessing elements , and the kernel is executed by a target
processing element among the plurality of processing ele
ments . The MCU manages a memory request generated in
accordance with execution of the kernel by the target pro -
cessing element . The memory controller is connected to the
resistance switching memory module , and allows data
according to the memory request to move between the

US 2018 / 0321880 A1 Nov . 8 , 2018

[0017] The memory controller may perform selectional
erasing for setting a resistance switching memory cells
corresponding to addresses to be overwritten by the execu
tion of the kernel to a reset status .
[0018] The memory controller may perform the selec
tional erasing before the execution of the kernel .
[0019] The MCU may store a memory address of the
kernel stored to the resistance switching memory module to
a cache of the target processing element as a boot address ,
for execution of the kernel .
[0020] The resistance switching memory - based accelera
tor may further include a power sleep controller that controls
a sleep mode of the target processing element . In this case ,
the MCU may put the target processing element in the sleep
mode using the power sleep controller before storing the
memory address of the kernel to the target processing
element , and revoke the target processing element using the
power sleep controller after storing the memory address of
the kernel to the target processing element .
[0021] The target processing element may include an L2
cache , a first on - chip memory controller that is connected to
the MCU , generates the memory request , and transfers the
memory request to the MCU , and a second on - chip memory
controller that is connected to the L2 cache , and moves the
data between the L2 cache and the resistance switching
memory module .
[0022] The resistance switching memory module may
include a phase - change memory module , a resistive memory
module , or a magnetoresistive memory module .
10023) According to another embodiment of the present
invention , a resistance switching memory - based accelerator
configured to be connected to a host including a CPU and a
system memory is provided . The resistance switching
memory - based accelerator includes a resistance switching
memory module , an accelerator core , an MCU , a memory
controller , and a network . The resistance switching memory
module stores kernels offloaded from the host , and includes
a plurality of resistance switching memory cells divided into
a plurality of partitions including a first partition and a
second partition , and a plurality of row data buffers includ
ing a first row data buffer and a second row data buffer . The
accelerator core includes a plurality of processing elements ,
each kernel being executed by a corresponding target pro
cessing element among the plurality of processing elements .
The MCU manages memory requests generated in accor
dance with execution of each kernel by the target processing
element . The memory controller is connected to the resis
tance switching memory module , and processes a first
operation in accordance with a first memory request and a
second operation in accordance with a second memory
request in parallel , the first operation of bringing first data
from the first partition to the first row data buffer , and the
second operation of moving second data from the second
row data buffer to the target processing element correspond
ing to the second memory request ; and
[0024] The network integrates the resistance switching
memory module , the accelerator core , and the memory
controller .
[0025] The second data may have been transferred from
the second partition to the second row data buffer before the
memory controller brings the first data from the first parti
tion to the first row data buffer .
[0026] The memory controller may perform three - phase
addressing including a preactive phase , an active phase , and

a read / write phase . In this case , the read / write phase for the
second data may be performed while the preactive phase and
the active phase for the first data are performed .
[0027] According to yet another embodiment of the pres
ent invention , a resistance switching memory - based accel
erator configured to be connected to a host including a CPU
and a system memory is provided . The resistance switching
memory - based accelerator includes a resistance switching
memory module , an accelerator core , an MCU , a memory
controller , and a network . The resistance switching memory
module stores a kernel offloaded from the host and includes
a memory cell array including a plurality of resistance
switching memory cells . The accelerator core includes a
plurality of processing elements , and the kernel is executed
by a target processing element among the plurality of
processing elements . The MCU manages memory requests
generated in accordance with execution of the kernel by the
target processing element . The memory controller is con
nected to the resistance switching memory module , allows
data according to the memory request to move between the
resistance switching memory module and the target process
ing element in accordance with the memory request trans
ferred from the MCU , and programs predetermined data for
addresses of the memory cell array to be overwritten by the
execution of the kernel . The network integrates the resis
tance switching memory module , the accelerator core , and
the memory controller .
[0028] The predetermined data may be data for setting
resistance switching memory cells corresponding to the
addresses to a reset status .
[0029] According to an embodiment of the present inven
tion , unnecessary software inventions and data movements /
copies can be removed by providing the resistance switching
memory - based accelerator .

BRIEF DESCRIPTION OF THE DRAWINGS
[0030] FIG . 1 is a schematic block diagram of a computing
device according to an embodiment of the present invention .
[0031] FIG . 2 schematically shows one memory cell in a
PRAM .
10032] FIG . 3 shows a current applied to a memory cell
shown in FIG . 2 .
[0033] FIG . 4 shows a temperature change when a current
shown in FIG . 3 is applied to a memory cell shown in FIG .

10034) FIG . 5 is a schematic block diagram of a PRAM
module in a PRAM - based accelerator according to an
embodiment of the present invention .
[0035 FIG . 6 shows an example of a partitioning scheme
in a memory cell array of a PRAM module according to an
embodiment of the present invention .
[0036] FIG . 7 schematically shows a half - partition in a
PRAM module according to an embodiment of the present
invention .
[00371 . FIG . 8 is a schematic block diagram showing a
PRAM - based accelerator according to an embodiment of the
present invention .
[0038] FIG . 9 is a schematic block diagram showing an
agent in a PRAM - based accelerator according to an embodi
ment of the present invention .
[0039] FIG . 10 shows three - phase addressing in a PRAM
based accelerator according to an embodiment of the present
invention .

US 2018 / 0321880 A1 Nov . 8 , 2018

10040] FIG . 11 shows an overlay window of a PRAM
based accelerator according to an embodiment of the present
invention .
[0041] FIG . 12 and FIG . 13 show operations of a PRAM
based accelerator according to an embodiment of the present
invention .
10042] FIG . 14 is a flowchart showing data movement
method of a PRAM - based accelerator according to an
embodiment of the present invention .
10043] FIG . 15 shows data movements on an accelerator
of a conventional computing device .
[0044] FIG . 16 shows data movements on a PRAM - based
accelerator of a computing device according to an embodi
ment of the present invention .
[0045] FIG . 17 shows a programming model on a PRAM
based accelerator according to an embodiment of the present
invention .
[0046] FIG . 18 shows a read timing in a PRAM - based
accelerator according to an embodiment of the present
invention .
[0047] FIG . 19 shows a write timing in a PRAM - based
accelerator according to an embodiment of the present
invention .
[0048] FIG . 20 and FIG . 21 show memory request inter
leaving in a PRAM - based accelerator according to an
embodiment of the present invention .
[0049] FIG . 22 shows selectional erasing in a PRAM
based accelerator according to an embodiment of the present
invention .
[0050] FIG . 23 is a schematic block diagram of a memory
controller in a PRAM - based accelerator according to an
embodiment of the present invention .

random access memory (RRAM) or the magnetoresistive
memory , for example , a magnetoresistive random access
memory (MRAM) such as a spin - transfer torque MRAM
(STT - MRAM) .
[0055] The system memory 120 is a main memory of the
computing device and may be , for example , a dynamic
random access memory (DRAM) . An accelerator used in the
PRAM - based accelerator 130 is a supplementary data pro
cessing device different from a general - purpose CPU , and
may be computer hardware for performing data processing
by supplementing functions of the CPU or performing the
data processing independently of the CPU . A graphic pro
cessing unit (GPU) or many integrated core (MIC) device
may be an example of this accelerator .
[0056] In some embodiments , the computing device may
further include a memory bridge 140 for connecting the
system memory 120 and the PRAM - based accelerator 130
with the CPU 110 . The PRAM - based accelerator 130 may be
connected to the memory bridge 140 that locates at the
CPU - side . For example , the PRAM - based accelerator 130
may be connected to the memory bridge 140 via a PCIe
(peripheral component interconnect express) interface . The
memory bridge 140 may be , for example , a northbridge or
a memory controller hub (MCH) .
[0057] Further , the memory bridge 140 may be connected
to an input / output (I / O) bridge 150 . The I / O bridge 150 may
be , for example , a southbridge or an I / O controller hub
(ICH) . The I / O bridge 150 may receive a user input from a
user input device (not shown) and transfer the user input to
the CPU 110 via the memory bridge 140 .
[0058] While a conventional accelerator includes only a
plurality of processing elements for parallelism , the PRAM
based accelerator 130 according to an embodiment of the
present invention is an accelerator , which physically inte
grates a plurality of processing elements 131 corresponding
to accelerator cores with a resistance switching memory
module 132 . As described above , the resistance switching
memory module 132 is assumed as a PRAM module 132 . As
such , operations of the accelerator 130 can be performed
without exchanging data with a storage device by integrating
the accelerator 130 with the PRAM module 132 which is the
non - volatile memory .
[0059] In some embodiments , a system including the CPU
110 , the system memory 120 , the memory bridge 140 , and
the I / O bridge 150 may be called a host .
[0060] The computing device may offload a kernel to the
PRAM - based accelerator 130 , which allows the PRAM
based accelerator 130 to directly execute the kernel . The
kernel means any kind of function or program that can be
executed on the accelerator 130 . For example , these appli
cations may be applications that offload computations from
the host to the PRAM - based accelerator 130 . These appli
cations may be called kernels . Accordingly , the host may
access the PRAM - based accelerator 130 to either offload the
kernel or handle read / write of data . In this case , the pro
cessing elements of the PRAM - based accelerator 130 can
directly access the PRAM module 132 of the PRAM - based
accelerator 130 with executing the kernel . Therefore , many
redundant memory allocations / releases and data copies that
are required to read data from an external memory or write
data to the external memory by the conventional accelerator
can be removed .

DETAILED DESCRIPTION OF THE
EMBODIMENTS

[0051] In the following detailed description , only certain
embodiments of the present invention have been shown and
described , simply by way of illustration . As those skilled in
the art would realize , the described embodiments may be
modified in various different ways , all without departing
from the spirit or scope of the present invention . Accord
ingly , the drawings and description are to be regarded as
illustrative in nature and not restrictive . Like reference
numerals designate like elements throughout the specifica
tion .
[0052] FIG . 1 is a schematic block diagram of a computing
device according to an embodiment of the present invention .
FIG . 1 shows an example of the computing device , and the
computing device according to an embodiment of the pres
ent invention may be implemented by use of various struc
tures .
[0053] Referring to FIG . 1 , a computing device includes a
CPU 110 , a system memory 120 , and a resistance switching
memory - based accelerator 130 .
[0054] Resistance switching memories include , as a non
volatile memory , a phase - change memory (PCM) using a
resistivity of a resistance medium (phase - change material) ,
a resistive memory using a resistance of a memory device ,
or a magnetoresistive memory . While the PCM , in particular ,
a phase - change random access memory (PRAM) is
described as an example of the resistance switching memory
in below embodiments , embodiments of the present inven
tion are not limited to the PCM (or PRAM) , but may be
applicable to the resistive memory , for example , a resistive

US 2018 / 0321880 A1 Nov . 8 , 2018

[0061] Next , an example of the PRAM module 132
included in the PRAM - based accelerator 130 according to
an embodiment of the present invention is described .
[0062] FIG . 2 schematically shows one memory cell in a
PRAM , FIG . 3 shows a current applied to a memory cell
shown in FIG . 2 , and FIG . 4 shows a temperature change
when a current shown in FIG . 3 is applied to a memory cell
shown in FIG . 2 .
10063] The memory cell shown in FIG . 2 is an example
memory cell , and a memory cell of the PRAM according to
embodiments of the present invention may be implemented
in various forms .
[0064] Referring to FIG . 2 , a memory cell 200 of a PRAM
includes a phase change element 210 and a switching
element 220 . The switching element 220 may be imple
mented with various elements such as a transistor or a diode .
The phase change element 210 includes a phase change
layer 211 , an upper electrode 212 formed above the phase
change layer 211 , and a lower electrode 213 formed below
the phase change layer 211 . For example , the phase change
layer 210 may include an alloy of germanium (Ge) , anti
mony (Sb) and tellurium (Te) , which is referred to com
monly as a GST alloy , as a phase change material .
[0065] The phase change material can be switched
between an amorphous state with relatively high resistivity
and a crystalline state with relatively low resistivity . A state
of the phase change material may be determined by a heating
temperature and a heating time .
[0066] Referring to FIG . 2 again , when a current is applied
to the memory cell 200 , the applied current flows through
the lower electrode 213 . When the current is applied to the
memory cell 200 during a short time , a portion , of the phase
change layer 211 , adjacent to the lower electrode 213 is
heated by the current . The cross - hatched portion of the phase
change layer 211 is switched to one of the crystalline state
and the amorphous state in accordance with the heating
profile of the current . The crystalline state is called a set state
and the amorphous state is called a reset state .
[0067] Referring to FIG . 3 and FIG . 4 , the phase change
layer 211 is programed to the reset state when a reset pulse
RESET with a high current is applied to the memory cell 200
during a short time tRST . If a temperature Tr of the phase
change material reaches a melting point as the phase change
material of the phase change layer 211 is heated by the
applied reset pulse RESET , the phase change material is
melted and then is switched to the amorphous state . The
phase change layer 211 is programed to the set state when a
set pulse SET having a lower current than the reset pulse
RESET is applied to the memory cell 200 during a time
tSET being longer than the time tRST . If a temperature Ts of
the phase change material reaches a crystallization tempera
ture lower than the melting point as the phase change
material is heated by the applied set current SET , the phase
change material is transformed to the crystalline state . Since
the reset state and the set state can be maintained when a
pulse is applied with a lower current than the set pulse SET
or with being shorter than the set pulse SET , data can be
programmed to the memory cell 200 .
[0068] The reset state and the set state may be set to data
of “ 1 ” and “ 0 , ” respectively , and the data may be sensed by
measuring the resistivity of the phase change element 210 in
the memory cell 200 . Alternatively , the reset state and the set
state may be set to data of “ O ” and “ 1 , ” respectively .

[0069] Therefore , the data stored in the memory cell 200
can be read by applying a read pulse READ to the memory
cell 200 . The read pulse READ is applied with a low current
during a very short time tREAD such that the state of the
memory cell 200 is not changed . The current of the read
pulse READ may be lower than the current of the set pulse
SET , and the applied time of the read pulse READ may be
shorter than the applied time tRST of the reset pulse RESET .
Because the resistivity of the phase change element 210 in
the memory cell 200 is different according to the state of the
phase change element 210 , the state of the phase change
element 210 , i . e . , the data stored in the memory cell 200 , can
be read by a magnitude of a current flowing to the phase
change element 210 or a voltage drop on the phase change
element 210 .
[0070] In one embodiment , the state of the memory cell
200 may be read by a voltage at the memory cell 200 when
the read pulse READ is applied . In this case , since the phase
change element 210 of the memory cell 200 has a relatively
high resistance in the reset state , the state may be determined
to the reset state in a case that the voltage sensed at the phase
change element 210 is relatively high and to the set state in
a case that the voltage sensed at the phase change element
210 is relatively low . In another embodiment , the state of the
memory cell 200 may be read by an output current when a
voltage is applied to the memory cell 200 . In this case , the
state may be determined to the reset state in a case that the
current sensed at the phase change element 210 is relatively
low and to the set state in a case that the current sensed at
the phase change element 210 is relatively high .
[0071] As writing data is practically a sequence of reset
and set processes in the PRAM , a write operation is much
slower than a read operation by the reset pulse having the
longer applied time .
[0072] FIG . 5 is a schematic block diagram of a PRAM
module in a PRAM - based accelerator according to an
embodiment of the present invention . A PRAM module
shown in FIG . 5 may be a PRAM chip or a PRAM bank .
[0073] Referring to FIG . 5 , a PRAM module 500 includes
a memory cell array 510 , a row address buffer 520 , a row
data buffer 530 , a row decoder 540 , a sense amplifier 550 ,
and a write driver 560 .
[0074] The memory cell array 510 includes a plurality of
word lines (not shown) extending substantially in a row
direction , a plurality of bit lines (not shown) extending
substantially in a column direction , and a plurality of
memory cells (not shown) that are connected to the word
lines and the bit lines and are formed in a substantially
matrix format . The memory cell may be , for example , a
memory cell 200 described with reference to FIG . 2 .
[0075] Both the row address buffer 520 and the row data
buffer 530 form a row buffer . In order to address an
asynchronous latency issue that the write operation is slower
than the read operation , a plurality of row buffers , i . e . , a
plurality of row address buffers 520 and a plurality of row
data buffers 530 are provided . Each row buffer is logically
paired by the row address buffer 520 and the row data buffer
530 , and is selected by a buffer address .
10076] The row address buffer 520 stores commands and
addresses (particularly , row addresses) from a memory con
troller (not shown) . The row data buffer 530 stores data from
the memory cell array 510 .
[0077] In some embodiments , the PRAM module 500 may
employ a non - volatile memory (NVM) interface to use the

US 2018 / 0321880 A1 Nov . 8 , 2018

plurality of row buffers 520 and 530 . In one embodiment , the perform 128 - bit parallel I / O processing . In some embodi
non - volatile memory interface may be a double data ratem ents , the partitions PARTO to PART15 may share a reading
(DDR) interface , for example , LPDDR2 - NVM (low - power circuit such as a sense amplifier (550 of FIG . 5) and a row
double data rate 2 non - volatile memory) interface . In this decoder (540 of FIG . 5) .
case , the row address buffer 520 receives a row address and [0084] Referring to FIG . 7 , in some embodiments , each
a bank address via the NVM interface , and the row data half - partition may include a plurality of sub - arrays which
buffer 530 outputs data via the NVM interface . are referred to as tiles . It is shown in FIG . 7 that one
[0078] The row decoder 540 decodes a row address to half - partition includes 64 tiles Tile® to Tile63 .
select a target row from among the plurality of rows in the [0085] Each tile includes a plurality of memory cells , i . e . , memory cell array 510 . That is , the row decoder 540 selects PRAM cores connected to a plurality of bit lines (e . g . , 2048 a target word line for reading data or writing data from bit lines) BL and a plurality of word lines (e . g . , 4096 word among the plurality of word lines of the memory cell array lines) WL . For convenience , one memory cell among the 510 . plurality of memory cells , and one bit line BL and one word [0079] In some embodiments , the row address transferred line WL connected to the one memory cell are shown in FIG . from the memory controller may be divided into an upper 7 . Further , a phase change element and a switching element
address and a lower address . In this case , the upper address forming the memory cell are shown as a resister and a diode , may be delivered to the row address buffer 520 , and the respectively .
lower address may be directly delivered to the row decoder
540 . The row decoder 540 may combine the upper address [0086] A local column decoder (hereinafter referred to as
accommodated in the row address buffer 520 with the an “ LYDEC ”) 710 may be connected to each tile . The
directly delivered lower address to select the target row . LYDEC 710 is connected to the plurality of bit lines BL of
[0080] The sense amplifier 550 reads data stored in the a corresponding tile . In some embodiments , two LYDECs
memory cell array 510 . The sense amplifier 550 may read 710 may be connected to both ends of the corresponding tile ,
the data , through a plurality of bit lines , from a plurality of respectively . Further , a plurality of global bit lines GBL ,
memory cells connected to the word line selected by the row which correspond to the plurality of tiles respectively , may
decoder 540 . The write driver 560 writes the input data to the be formed in the half - partition . Each global bit line GBL
memory cell array 510 . The write driver 560 may write the may be connected to the plurality of bit lines BL of the
data , through a plurality of bit lines , to a plurality of memory corresponding tile and to a global column decoder (herein

after referred to as a “ GYDEC ”) . In some embodiments , the cells connected to the word line selected by the row decoder
540 . LYDEC 710 together with the GYDEC may be used to select

bit lines BL in the corresponding tile of the corresponding [0081] In some embodiments , to address the issue that the half - partition . A sense amplifier (550 of FIG . 5) may read write operation is slower than the read operation , the PRAM data through the selected bit lines BL or a write driver (560 module 500 may first store the input data to a buffer and then of FIG . 5) may write data through the selected bit lines BL . write the stored data to the memory cell array 510 . For this ,
the PRAM module 500 may include an overlay window 570 [0087] A sub - word line driver (hereinafter referred to as an
and 580 as memory - mapped registers . The overlay window “ SWD ") 720 may be connected to each tile to maximize the
may include overlay window registers 570 and a program degree of parallelism . A global word line GWL may be
buffer 580 . In one embodiment , information on write data formed in the half - partition and may be connected to a main
(for example , the first data address and the number of bytes word line driver (hereinafter referred to as an “ MWD ”) 730 .
to be programmed) may be written to the registers 570 and In this case , a plurality of word lines WL formed in the
then the write data may be stored to the program buffer 580 . half - partition may be connected to the global word line
Next , when a predetermined value is written to the overlay GWL . In some embodiments , as shown in FIG . 7 , two global
window registers 570 , the data stored to the program buffer word lines GWL connected to the MWD 730 may be formed
580 may be written to the memory cell array 510 . In this in the half - partition . This scheme is called a dual word line
case , the memory controller may determine whether the scheme . In this case , the plurality of tiles included in the
write operation is completed by polling the overlay window half - partition may be grouped into two tile groups , and the
registers 570 . two global word lines GWL may correspond to the two tile
10082] FIG . 6 shows an example of a partitioning scheme groups , respectively . All the SWDs within the half - partition
in a memory cell array of a PRAM module according to an are connected to a main word line driver (MWD) . In
embodiment of the present invention , and FIG . 7 schemati addition , the two tiles may be grouped into a block by the
cally shows a half - partition in a PRAM module according to dual word line scheme . In some embodiments , the SWD 720
an embodiment of the present invention . together with the MWD 730 may be used to drive a word
[0083] Referring to FIG . 6 , in some embodiments , a line WL in the corresponding tile . The driven word line WL
memory cell array 510 , for example , a PRAM bank may be may be selected by a row decoder (540 of FIG . 5) .
partitioned into a plurality of partitions PARTO to PART15 . [0088] When the PRAM module 500 uses the partitions
It is shown in FIG . 6 that the memory cell array 510 is shown in FIG . 6 and FIG . 7 , the PRAM module 500 can
partitioned into sixteen partitions PARTO to PART15 by simultaneously perform 64 I / O operations per half - partition .
being divided into two parts in a row direction and into eight Consequently , since 128 - bit parallel I / O operations can be
parts in a column direction . A plurality of row buffers 520 performed per partition and the two partitions can be
and 530 may be connected to the partitions PARTO to accessed in parallel in the partitions shown in FIG . 6 and
PART15 . Each partition may be split into two parts (here FIG . 7 , the PRAM module 500 can simultaneously manipu
inafter referred to as “ half partitions ”) to reduce parasitic late 256 - bit data . For this , sense amplifiers 550 and write
resistances of bit lines and word lines and to address the drivers 560 may be located in front of the bank , which are
sneak path issue . For example , each half - partition may connected to the row buffers .

US 2018 / 0321880 A1 Nov . 8 , 2018

[0089] Next , a PRAM - based accelerator according to an
embodiment of the present invention is described with
reference FIG . 8 to FIG . 13 .
[0090] FIG . 8 is a schematic block diagram showing a
PRAM - based accelerator according to an embodiment of the
present invention , and FIG . 9 is a schematic block diagram
showing an agent in a PRAM - based accelerator according to
an embodiment of the present invention .
[0091] Referring to FIG . 8 , a PRAM - based accelerator
800 includes an accelerator core 810 and a PRAM subsys
tem , and the PRAM subsystem includes a memory control
ler 820 and a PRAM module 830 .
10092] The accelerator core 810 includes a plurality of
processing elements PEO to PEn , and each processing ele
ment includes a processing element core and a cache . In
some embodiments , the cache may include an Ll cache
(level 1 cache) and an L2 cache (level 2 cache) , and the L1
cache may include an L1 instruction (L11) cache and an L1
data (L1D) cache .
[0093] The processing elements PEO to PEn may be
classified into a server PEO and agents PE1 to PEn according
to their roles . Most processing elements PE1 to PEn are
allocated to handle kernels provided by the host . These
processing elements PE1 to En are referred to as agents .
One or a few processing elements PEO are allocated to
resume and suspend kernel executions on the agents and are
referred to as servers . The server PEO may manage memory
traffics requested by the agents PE1 to PEn .
[0094] In some embodiments , since the server PEO man
ages the memory requests generated by the agents PE1 to
PEn , the server PE0 may be implemented by a controller
instead of the processing element used as the core .
[0095] In some embodiments , the server PE0 may include
a memory controller unit (MCU) that takes over a cache
miss , in particular an L2 cache miss , of the agent and
administrates the associated PRAM accesses by collaborat
ing with the memory controller 820 .
[0096] In some embodiments , as shown in FIG . 9 , the
agent may include a processing element 811 , a cache 812a ,
812b , and 812c , a cache controller 813a , 813b , and 813c ,
and an on - chip memory controller 814a and 814b .
[0097] In one embodiment , the cache may include an LII
cache 812a , an LID cache 812b , and an L2 cache 812c . In
this case , the cache controller may include an LlI cache
controller 813a , an LID cache controller 813b , and an L2
cache controller 813c which are connected to the Lil cache
812a , the LID cache 812b , and the L2 cache 812c , respec
tively . Each of the cache controllers 813a , 813b , and 8130
may determine whether a request is a cache hit or cache miss
in a corresponding one of the caches 812a , 812b , and 812c .
The L1I cache 812a and the LID cache 812b may be
connected to the processing element 811 via the LlI cache
controller 813a and the LID cache controller 813b , respec
tively , and the L2 cache 812c may be connected to the
processing element 811 via the L2 cache controller 813c
connected to the LID cache controller 813b . For example ,
the L1I cache controller 813a may be connected to the LII
cache 812a via a 128 - bit bus , the L1D cache controller 813b
may be connected to the L2 cache controller 813c via a
128 - bit bus , and the L2 cache controller 813c may be
connected to the L2 cache 812c via a 128 - bit bus .
[0098] In some embodiments , the core 811 may include a
plurality of functional units and general purpose registers . In
one embodiment , the core 811 may include two sets of

functional units and two general purpose registers regA and
regB . For example , a set of functional units may include four
functional units . M , . L , . S , and . D . The functional units . M ,
. L , . S , and . D and the registers regA and regB may be
connected to the LlI cache 812a through an instruction fetch
(IF) module . The functional unit . D may execute typical load
and store (L / S) instructions related with memory operations .
For example , the functional unit . D may load data from a
memory to the registers regA and regB , or may store results
from the registers regA and reg? to the memory . The
functional unit . M may perform multiplications , the func
tional units . S and . L may perform general sets of arithmetic ,
logical and branch function .
[0099] Further , the LID cache controller 813b may be
connected to the core 811 , i . e . , the two set of functional units
via 64 - bit buses , respectively , and may be connected to the
LID cache 812 via eight 32 - bit buses in parallel .
[0100] In one embodiment , the on - chip memory controller
may be connected to the cache controller , in particular , the
L2 cache controller 813c . The on - chip memory controller
may include on - chip memory controllers 814a and 814b
which are connected to the server PEO and the memory
controller 820 , respectively . For example , the on - chip
memory controller 814a may be connected to the L2 cache
controller 813c via a 256 - bit bus and connected to the server
PE0 via a 256 - bit bus . The on - chip memory controller 814b
may be connected to the L2 cache controller 813c via a
256 - bit bus and connected to the two memory controllers
820 via 128 - bit buses , respectively .
[0101] In some embodiments , the on - chip memory con
trollers 814a and 814b may be direct memory access (DMA)
controllers .
[0102] In one embodiment , the L2 cache controller 8130
may generate a memory request through the on - chip
memory controller 814a when the cache miss occurs in the
L2 cache 812c . The memory request may be transferred to
the server PEO via the on - chip memory controller 814a . Data
which the memory controller 820 reads from the PRAM
module 830 in accordance with the memory request may be
stored to the L2 cache 812c via the on - chip memory con
troller 814b and the L2 cache controller 813c . As such , the
memory requests generated by the on - chip memory control
ler 814a are issued to the PRAM subsystem 820 and 830
through the server PEO , in particular the MCU of the server
PEO , while the target data can be directly forwarded to the
on - chip memory controller 814b connected to the L2 cache
of each agent .
[0103] While it is shown in FIG . 8 that one of the
processing elements PEO to PEn is allocated to the server
and remaining processing elements PE1 to PEn are allocated
to the agents , two or more processing elements may be
allocated the servers .
[0104] In some embodiments , each of the processing
elements PE1 to PEn may include an MCU instead of
providing a processing element PEO as the server . In this
case , each MCU may manage a memory request of a
corresponding processing element .
0105] The memory controller 820 is connected to the
PRAM module 830 via a channel (which may be called a
bus) 840 . The memory controller 820 receives a memory
request from the server and transfers the memory request to
the PRAM module 830 through the channel 840 . Therefore ,
the memory controller 820 can transfers memory read / write

US 2018 / 0321880 A1 Nov . 8 , 2018

commands and addresses to and exchange data with the
PRAM module 830 through the channel 840 .
[0106] In some embodiments , the PRAM module 830 may
employ an NVM interface . In one embodiment , the NVM
interface may be a DDR interface , for example , a LPDDR2
NVM interface . In a case that the PRAM module 830
employs the DDR interface , the channel 840 may be a DDR
channel , for example , an LPDDR channel In some embodi
ments , a plurality of PRAM banks , for example , sixteen
PRAM banks may be commonly connected to one channel
840 .
10107] In some embodiments , a plurality of memory con
trollers 820 may be provided . It is shown in FIG . 8 and FIG .
9 that two memory controllers 820 are provided . In this case ,
the plurality of memory controllers 820 are connected to
different channels 840 , respectively .
[0108] The PRAM - based accelerator 800 may further
include a network 850 for connecting the processing ele
ments PEO to PEn with the memory controller 820 to
integrate the processing elements PEO to PEn , the memory
controller 820 , and the PRAM module 830 . In some embodi
ments , the network 850 may be a crossbar network for p : q
communications (p and q are integers more than one) .
[0109] In some embodiments , the PRAM - based accelera
tor 800 may further include an interface module 860 that is
used for communicating with the host . The interface module
860 may be , for example , a PCIe module for a PCIe
interface . The host can communicate with the accelerator
core 810 , particularly , the server PEO of the accelerator core
810 and the memory controller 820 through the interface
module 860 . For the communication , the interface module
860 is also connected to the network 850 .
[0110] In some embodiments , the PRAM - based accelera
tor 800 may further include a power sleep controller (PSC)
870 . The PSC 870 may control a mode of each of the agents
PE1 to PEn in accordance with a control of the server PEO .
The server PE0 may put each of the agents PE1 to PEn in a
sleep mode (which may be called an idle mode) or revoke
each of the agents PE1 to PEn , using the PSC 870 . Accord
ingly , the server PEO can suspend or resume the kernel
execution in each of the agents PE1 to PEn .
[0111] In some embodiments , each of the processing ele
ments PEO to PEn may be connected to the network 850 via
a master port and a slave port , and the memory controller
820 may be connected to the network 850 via a master port
and a slave port . In one embodiment , the interface module
860 may be connected to the network 850 via a master port
and a slave port such that the host can communicate with the
server PEO and the memory controller 820 . The PSC 870
may be connected to the network 850 via a master port and
a slave port .
[0112] According to the above embodiments , the server
PEO can take over cache misses of each of the agents
PE1 - PEn via the network 850 and then administrate asso
ciated PRAM accesses by collaborating with the memory
controller 820 . The server PE0 may send a memory read or
write message to the memory controller 820 through a bus ,
and then , the memory controller 820 may manage transac
tions upon the PRAM module 830 .
[0113] In some embodiment , in a case that the PRAM
module 830 employs the DDR interface , for example the
LPDDR2 - NVM interface , the memory controller 820 may

convert requests of the server PEO to LPDDR2 - NVM trans
actions . For this , the memory controller 820 may perform
three - phase addressing .
[0114] A memory address , i . e . , a row address to be trans
ferred from the memory controller 820 to the PRAM module
830 may be divided into an upper address and a lower
address . For example , when the row address uses (n + 1) bits ,
the upper address may use upper (n - m + 1) bits (a [n : m]) and
the lower address may use lower (m - x) bits (a [m - 1 : x]) (n ,
m , and x are integers more than zero) .
[0115] FIG . 10 shows three - phase addressing in a PRAM
based accelerator according to an embodiment of the present
invention .
[0116] Referring to FIG . 10 , in a preactive phase that is the
first phase in the three - phase addressing , the memory con
troller (820 of FIG . 8) selects a row address buffer (RAB)
520 by sending a buffer address (BA) selection signal and
stores an upper address (a [n , m]) of a row address associated
with a target row into a target RAB 520 .
[0117] In an active phase that is the second phase , the
memory controller 820 sends a remaining part of the row
address , i . e . , a lower address (a [m - 1 , x]) to a target PRAM
module (830 of FIG . 8) . The lower address (a [m - 1 , x])
delivered to the PRAM module 830 can be merged with the
upper address (a [n , m]) retrieved from the selected RAB 520
to compose the actual row address . Accordingly , the target
PRAM module 830 loads target row data from a memory
cell array 510 and stores them to a row data buffer (RDB)
530 , i . e . , the RDB 530 associated with the selected RAB
520 . For example , the RPAM module 830 may deliver the
row address to a target row decoder (540 of FIG . 5) , and the
row decoder 540 may select the target row from the memory
cell array 510 using the row address . A sense amplifier 550
may transfer the target data from the target row to the target
RDB 530 .
[0118] After the active phase , a specific data location (i . e . ,
a column address) within the selected RDB 530 may be
delivered by read / write phase commands . For example , if
the command is a read , in a read phase that is the last phase ,
the memory controller 820 selects the target RDB 530 using
the buffer address BA and selects a start address of read data
using a column address . Accordingly , the memory controller
820 can read and output the target data stored in the RDB
530 . The target data may be available to pull out from the
designated RDB 530 at every falling and raising edges of an
interface clock signal .
[0119] As such , the memory controller 820 delivers the
row address to the PRAM module 830 by dividing the row
address into the upper address and the lower address such
that the PRAM - based accelerator can be implemented using
the DDR interface , particularly , the LPDDR2 - NVM inter
face .
[0120] In some embodiments , if the upper address of the
target row already exists in the RABs 520 , the memory
controller 820 may skip the preactive phase and directly
enable the active phase . In some embodiments , if data of the
target row are ready on the RDBs 530 , the memory con
troller 830 may skip the active phase .
0121] For example , if the command is a write , the
memory controller 820 may transfer target data to a special
set of registers and a buffer provided by the target PRAM
module 830 . The register set and the buffer may be overlay
window registers (570 of FIG . 5) and a program buffer (580
of FIG . 5) . For example , the row decoder 540 may deliver

US 2018 / 0321880 A1 Nov . 8 , 2018

the merged row address of the upper address and the lower
address to the overlay window registers 570 . Then , the target
data can be stored in the program buffer 580 through the
overlay window registers 570 . Accordingly , a server PEO or
a host can recognize that the target data are written to the
PRAM module 830 such that the issue that the write
operation is slower than the read operation can be solved .
Further , since the data stored in the program buffer 580 are
programmed to the memory cell array 510 , the memory
controller 820 can determine whether the write operation to
the memory cell array 510 is actually completed by polling
the overlay window registers 570 .
[0122] As such , since the PRAM - based accelerator per
forms the write operation using the overlay window registers
570 and the program buffer 580 , the issue that the write
operation is slower than the read operation in the PRAM
module can be solved .
[0123] In some embodiments , to reduce the number of
accesses to the PRAM module 830 , the server PEO may
initiate a memory request based on predetermined bytes per
channel (e . g . , 512 bytes per channel (32 bytes per bank)) by
leveraging its L2 cache , and prefetch data by using all RDBs
530 across different banks .
[0124] FIG . 11 shows an overlay window of a PRAM
based accelerator according to an embodiment of the present
invention .
10125] Referring to FIG . 11 , in some embodiments , an
overlay window , i . e . , overlay window registers 570 and a
program buffer 580 are mapped to an address space of a
memory cell array as a set of special memory - mapped
registers . The overlay window registers 570 include meta
information 571 and a set of control registers 572 as the set
of memory - mapped registers . The meta - information 571
may include an overlay window size , a device ID , a program
buffer offset , and a program buffer size , and have , for
example , 128 bytes . The set of control registers 572 may
include various registers , for example , a command code
register 572a , an address register 572b , a multi - purpose
register 572c , an execution register 572d , and a status
register 572e .
[0126] In some embodiments , addresses of program buffer
580 may be mapped to a predetermined location of an
overlay window space , for example , an end of the overlay
window space . In one embodiment , the program buffer 580
may be located in front of partitions with a write driver 560 .
In one embodiment , the program buffer 580 , as a part of the
overlay window , may begin after the meta - information 571
and control registers 572 .
[0127] . The overlay window 570 and 580 may have an
address range which can be mapped to an address space of
the memory cell array 510 . For example , the address range
of the overlay window 570 and 580 may be mapped to the
address space of the memory cell array 510 through an
overlay window base address (OWBA) . Thus , after config
uring the OWBA , a memory controller can write data into
the program buffer 580 through three - phase addressing .
[0128] Whenever a host requires to persistently program
data to a PRAM module , the memory controller may initiate
the program by updating the command and execute the
overlay window registers 570 . Then , the PRAM module
may automatically fetch the data from the program buffer
580 and store the data into the designated partition based on
a row address , which is stored into the address register 572b
of the overlay window . Once the program is begun , the

memory controller may check the progress of the target
partition via the status register 572e in the overlay window .
These memory operations over the overlay window can be
useful if there is a high data locality and long request interval
since the overlay window can be in parallel mapped to other
addresses while programming the data to the target partition .
[0129] The register manipulations for the overlay window
570 and 580 may be performed by obeying the three - phase
addressing interface . Therefore , the memory controller may
appropriately translate an incoming request to three - phasing
addressing operations . Row buffers may be connected to the
partitions of the target memory cell array through sense
amplifiers 550 , but separated from the overlay window 570
and 580 .
[0130] FIG . 12 and FIG . 13 show operations of a PRAM
based accelerator according to an embodiment of the present
invention , and FIG . 14 is a flowchart showing data move
ment method of a PRAM - based accelerator according to an
embodiment of the present invention .
[0131] Referring to FIG . 12 and FIG . 14 , a host issues an
interrupt , for example , a PCIe interrupt to a PRAM - based
accelerator . Accordingly , the interrupt from the host is
forwarded from an interface module 860 to a server PEO
within the PRAM - based accelerator (S1210) . Then , the
memory controller 820 downloads data including a kernel
through the interface module 860 from a host - side memory
and stores the data to a PRAM module 830 (S1220) . In some
embodiments , the data may be downloaded into a designated
image space of the PRAM module 830 .
[0132] Once the download has been performed , the server
PEO stores , as a boot address , a memory address (i . e . , an
image address of the PRAM module 830) of the kernel to be
executed to a cache of a target agent PE1 among a plurality
of agents (S1240) . In some embodiments , the cache for
storing the memory address may be an L2 cache . In some
embodiments , before storing the memory address of the
kernel , the server PEO may put the target agent PE1 in a
sleep mode using a PSC 870 (S1230) .
10133] . Once the memory address of the kernel is stored ,
the target agent PE1 loads the kernel from the PRAM
module 830 based on the memory address stored in the
cache and executes the kernel (S1260) since the memory
address is stored in the cache as the boot address . In some
embodiments , the server PEO may revoke the target agent
PE1 of the sleep mode via the PSC 870 (S1250) . Then , as the
target agent PE1 awakes , it may load the kernel from the
PRAM module 830 based on the memory address stored in
the cache and execute the kernel (S1260) .
[0134] Referring to FIG . 13 and FIG . 14 , during the kernel
execution , if data requested by the agent PE1 hits the cache ,
for example , the L2 cache , the agent PE1 can use the data
stored in the cache . However , in case of a cache miss , the
agent PE1 issues a memory request generated by the cache
miss to the server PEO , i . e . , an MCU of the server PEO
(S1270) . The server PEO then moves data between the agent
PE1 and a row data buffer (530 of FIG . 5) or an overlay
window (570 and 580 of FIG . 5) of the PRAM module 830
through a memory controller (820 of FIG . 8) (S1280 and
S1290) . In some embodiments , the server PEO may initiate
DMA between the agent PE1 and the row data buffer 530 or
the overlay window 570 and 580 of the PRAM module 830
through the memory controller 820 (S1280) such that the
data can move between the agent PE1 and the PRAM
module 830 (S1290) .

US 2018 / 0321880 A1 Nov . 8 , 2018

m

[0135] In one embodiment , the server PEO transfers the
memory request to the memory controller 820 of the PRAM
module 830 (S1280) . In some embodiments , the memory
controller 820 may transfer a row address for accessing the
PRAM module 830 to the PRAM module 830 by dividing
the row address into an upper address and a lower address ,
in accordance with the memory request . The memory con
troller 820 sends a response with data corresponding to the
memory request to the agent PE1 (S1290) . The memory
controller 820 may move the data from a target row of a
memory cell array (510 of FIG . 5) , which is selected by a
row address buffer (520 of FIG . 5) of the PRAM module
830 , to a row data buffer (530 of FIG . 5) in accordance with
the memory request , and transfer the data moved to the row
data buffer 530 to the agent PE1 . In this case , if the data are
ready on the row data buffer 530 , the memory controller 820
may skip moving the data from the memory cell array 510
to the row data buffer 520 . For example , the memory
controller 820 may upload the data , which are read from the
PRAM module 830 , to the L2 cache of the agent PE1 . As
such , the PRAM - based accelerator can store the data to the
L2 cache of the agent PE1 using the row buffer 520 and 530
of the PRAM module 830 , without an assistance of a main
memory (120 of FIG . 1) or other memories of the computing
device .
[0136] Further , the agent PE1 may issue a memory request
for requesting to write data to the PRAM module 830 to the
server PEO (S1270) . Then , the server PE0 may transfer the
memory request to the memory controller 820 of the PRAM
module 830 (S1280) , and the memory controller 820 may
write the data corresponding to the memory request from the
agent PE1 to the PRAM module 830 and send a response to
the agent PE1 (S1290) . That is , the memory controller 820
may determine a target row address using the row address
buffer 520 and store the write data of the agent PE1 to a
program buffer 580 of the PRAM module 830 in accordance
with the memory request , and write the data stored in the
program buffer 580 to the target row of the memory cell
array 510 . For example , the memory controller 820 may
fetch the data from the L2 cache of the agent and write the
data to the PRAM module 830 . As such , the PRAM - based
accelerator can load the data from the L2 cache of the agent
PE1 and write the data to the PRAM module 830 using the
row address buffer 520 of the PRAM module 830 , without
an assistance of the main memory 120 or other memories of
the computing device .
[0137] Accordingly , the server PEO can transfer the data
between the agent PE1 and the row data buffer 530 or
program buffer 580 of the PRAM module 830 through the
memory controller 820 . As such , each processing element
can directly access a storage core within the PRAM - based
accelerator , i . e . , the PRAM module 830 , through the existing
load / store instructions . That is , the PRAM module accesses
can be done without any modification of the existing instruc
tion set architecture and without an assistance of an oper
ating system (OS) of the computing device . Therefore , data
movements between the host ' s storage device and the accel
erator can be removed .
[0138] FIG . 15 shows data movements on an accelerator
of a conventional computing device , and FIG . 16 shows data
movements on a PRAM - based accelerator of a computing
device according to an embodiment of the present invention .
[0139] Referring to FIG . 15 , an application creates a file
descriptor for a read and / or a write through an OS in

response to a user ' s application execution (S1501) . Then , a
virtual memory is allocated to a system memory , for
example , a DRAM for reading data from a storage device or
writing data to the storage device (S1502) . Further , an
accelerator ' s memory is allocated for writing data to the
accelerator or reading data from the accelerator (S1503) .
[0140] The application then requests a file read for the
storage device through the OS (S1504) , and a physical
memory is allocated to the DRAM (S1505) . File data are
requested for the storage device through the OS (S1506) .
Then , the file data are transferred from the storage device to
the physical memory of the DRAM and are copied from the
physical memory of the DRAM to the virtual memory
(S1507 and S1508) . The application then transfers the file
data from the DRAM to the accelerator ' s memory (S1509) .
Consequently , the accelerator processes the file data . Next ,
result data of the file data are transferred from the accelera
tor ' s memory to the virtual memory of the DRAM (S1510) .
[0141] The application then requests a file write for the
storage device (S1511) . A physical memory is allocated to
the DRAM such that the result data are copied from the
virtual memory to the physical memory of the DRAM
(S1512 and S1513) and are transferred from the physical
memory of the DRAM to the storage device (S1514) .
[0142] Next , the application releases the virtual memory
of the DRAM allocated for the read and / or write (S1515) ,
and releases the accelerator ' s memory allocated for the write
and / or read (S1516) . Further , the application deletes the file
descriptor created for the read and / or write (S1517) .
10143] In FIG . 15 , the steps S1501 to $ 1506 , S1511 ,
S1512 , and S1515 to S1517 represent system operations ,
and the steps S1507 to S1510 , S1513 , and S1514 represent
data movements .
[0144] As described above , the conventional computing
device is required to create the file descriptor and allocate
multiple memory spaces which reside in the host - side
memory (DRAM) and in the accelerator ' s memory . Then ,
inputs / outputs for the storage device and the data move
ments between the host - side memory and the accelerator ' s
memory can be performed . In this case , the CPU is fre
quently required to intervene in data transfers between
multiple user software and kernel modules , which are
involved in both the accelerator and storage stacks . These
interventions introduce user / kernel mode switching and
redundant data copies , which waste a large number of cycles
in moving the data between the storage device and the
accelerator . However , from the viewpoint of the user , the
CPU does not need to access the input (or output) data at all ,
which is mostly used in the target accelerator .
[0145] In contrast , according to an embodiment of the
present invention , as shown in FIG . 16 , a kernel is generated
by the user and is stored in a system memory , for example
a DRAM (S1610) . The kernel is transferred from the DRAM
to a PRAM - based accelerator (S1620) , and tasks of the
kernel are executed and completed within the PRAM - based
accelerator (S1630) .
[0146] As such , the PRAM - based accelerator according to
an embodiment of the present invention unifies computa
tional resources and storage resources , and therefore , the
user can compose a kernel on the host and simply transfer
the kernel to the target accelerator for execution . Accord
ingly , unnecessary host - side software interventions and
memory copies among the CPU , the storage device , and the

US 2018 / 0321880 A1 Nov . 8 , 2018
10

accelerator can be eliminated . Further , the kernel can be
executed without an assistance of the DRAM .
[0147] FIG . 17 shows a programming model on a PRAM
based accelerator according to an embodiment of the present
invention .
[0148] Referring to FIG . 17 , a user packs kernels via a
packData interface (packData () and offloads the kernels to
a PRAM - based accelerator via a pushData interface [push
Data () . Parameters of the packData interface [pushData (1
may include metadata (meta) , which defines the accelera
tor ' s memory address to download code segments for a
plurality of applications (app , appl , appN) and shared
common codes (shared) . The pushData interface packs the
kernels to return a kernel image . Parameters of the pushData
interface (pushData ()] may include a pointer , which refers
to the host ' s memory address of the kernel image (img) and
the accelerator ' s memory address (& pram _ addr) to down
load . Once the kernel image arrives in the accelerator ' s
memory , a server may start to extract metadata information
from the kernel image via the unpackData interface (unpack
Data (img)] and load the code segments to the target
addresses described in the metadata [load) . Parameters of
the load interface [load ()] may include each code segment
(seg) and the target address (& addr) .
[0149] After parsing the kernel image , the server may start
to check each agent for availability via a polling interface
[polling (] . A parameter of the polling interface (polling ()
may include an available agent (available _ pe) and return an
agent in idle . If one agent is in idle , the server may put this
agent in a sleep mode (i . e . , power off this agent) via a sleep
interface (sleep (pe)] , assign a kernel to the agent via a
writeMemory interface [writeMemory) , and revoke (i . e . ,
reboot) the agent via a boot interface [boot () . The write
Memory interface [writeMemoryO] may include , as param
eters , a magic address (MAGIC _ ADDR) and a boot entry
address (& app . boot _ addr) to update the agent ' s magic
address (i . e . , boot address) with the kernel ' s boot entry
address (i . e . , the address to which the kernel is stored) .
Accordingly , each agent (pei) can keep continuing the
execution of the kernel until completing the data processing
(processing appi) .
[0150] Next , read and write timings in a PRAM - based
accelerator according to an embodiment of the present
invention are described with reference to FIG . 18 and FIG .
19 .
[0151] FIG . 18 shows a read timing in a PRAM - based
accelerator according to an embodiment of the present
invention , and FIG . 19 shows a write timing in a PRAM
based accelerator according to an embodiment of the present
invention .
[0152] As described with reference to FIG . 10 , row
accesses for read and write may be performed in preactive
and active phases in three - phase addressing . Referring to
FIG . 18 and FIG . 19 , a PRAM - based accelerator handles a
target row address buffer (RAB) to store an upper address
within a preactive time tRP of the preactive phase . The tRP
time may be similar to a row precharge time of a DDR
interface used in a conventional DRAM .
[0153] An activate time tRCD of the active phase can be
classified by a row address to column address delay , which
may include an address composition time for target row
location (by combining a value stored in the target RAB and
a lower address) and a memory operation time . In a case of
a write command , a target PRAM module may check

whether the composed row address is within an address
range of an overlay window or not in the tRCD time . If the
target row address is matched with the address of the overlay
window , target data associated with the target row address
may be processed by a set of registers of the overlay window
and stored into a program buffer . Otherwise , the target data
may be referred to by a designated memory cell array . In a
case of a read command , the tRCD time may further include
a time to fetch row data from a target row to a target row data
buffer (RDB) .
10154] Referring to FIG . 18 , in a read phase , a read
preamble period that includes a read latency clock (RL) and
a data strobe signal (DQS) output access time , i . e . , a DQS
access time from clock (tDQSCK) is consumed . The data are
then delivered out from the RDB by referring to a column
address , which is embedded in a read phase command ,
during a data burst time (tBURST) .
[0155] Referring to FIG . 19 , in a write phase , a memory
timing for a write phase command is similar to that for the
read phase command . Particularly , the write phase command
exhibits a write latency clock (WL) in a write preamble
period instead of the RL , and exhibits a DOS latching
transition to clock edge (DOSS) in the write preamble
period instead of the tDQSCK . The data are then pro
grammed from a program buffer of the overlay window
RDB to the designated memory cell array by referring to a
column address , which is embedded in the write phase
command , during a data burst time (tBURST) . A program
time sequence of the write phase may further include a write
recovery period (WR) , which is a time to guarantee that all
the data in the program buffer are completely programmed
to the target memory cell array .
[0156] In some embodiments , memory requests for dif
ferent partitions in the same PRAM module may be inter
leaved . Such embodiments are described with reference to
FIG . 20 and FIG . 21 .
101571 . FIG . 20 and FIG . 21 show memory request inter
leaving in a PRAM - based accelerator according to an
embodiment of the present invention .
[0158] For convenience , it is described in FIG . 20 and
FIG . 21 that two read memory requests req - 0 and req - 1 are
processed in parallel . In this case , the two memory requests
req - 0 and req - 1 target to different partitions in the same
PRAM module .
[0159] In some embodiments , to reduce latency of data
movements between a PRAM module (830 of FIG . 8) and
L2 caches of target agents (PE1 of FIG . 8) , a memory
controller (820 of FIG . 8) may schedule memory requests by
being aware of multiple partitions and row buffers of the
PRAM module 830 . The PRAM module 830 can sense data
out from a partition to a row data buffer (RDB) (530 of FIG .
5) , while transferring data out from other RDB 530 to a
target cache , in parallel . Thus , a time to transfer the data can
be overlapped with the latency to access the partition .
[0160] Referring to FIG . 20 and FIG . 21 , the memory
controller 820 issues a preactive command of the memory
request req - 0 (S2010) . It is assumed that pre - active and
active commands of the memory request req - 1 have been
initiated just before the preactive command of the memory
request req - 0 is issued . While it takes a preactive time tRP
and an active time tRCD related to the memory request req - 0
(S2010 , S2020 , and S2040) , the memory controller 820
sends a read phase command for a different target partition
with a different RDB address (S2030) . In other words , while

US 2018 / 0321880 A1 Nov . 8 , 2018

the memory controller 820 accesses a partition and brings
data from the partition to a target RDB (S2020 and S2040)
after storing an upper address to a target row address buffer
(RAB) (S2010) , the memory controller 820 sends the read
phase command for the different target partition in parallel
(S2030) . Since the RDB associated with the memory request
req - 1 is ready to transfer the data , during the tRCD time of
the memory request req - 0 (S2020 and S2040) , the memory
controller 820 can bring the data of the memory request
req - 1 from the RDB and place them on a target L2 cache
(S2030) . In other words , an RL time , a tDQSCK time , and
a tBURST time of the memory request req - 1 can be sequen
tially consumed (S2030) . Once all the data of the memory
request req - 1 have been transferred , read phase operations
(RL , tDQSCK , and tBURST) of the memory request req - 0
while the memory controller 820 is accessing another par
tition (S2050) . In this way , the memory controller can make
the data transfers invisible to the agent PE1 .
[0161] As described above , since the memory requests
req - 0 and req - 1 can be processed in parallel , the latency to
access the memory can be reduced . On the other hand , the
interleaving described with reference to FIG . 20 and FIG . 21
may be different with bank interleaving in the sense that all
the memory requests are interleaved within a single PRAM
module (e . g . , a single PRAM bank) .
[0162] In some embodiments , a PRAM - based accelerator
may perform selectional erasing to reduce an overwrite
overhead . Such embodiments are described with reference
to FIG . 22 .
[0163] FIG . 22 shows selectional erasing in a PRAM
based accelerator according to an embodiment of the present
invention .
[0164] Similar to other NVM technologies (e . g . , flash) , the
PRAM may also support an erase operation that performs
pre - reset on a target block , which can remove reset opera
tions from an overwrite . In a case that the conventional erase
operation is performed in a PRAM module , the latency due
to the erase operation may be longer than the latency of the
overwrite which does not use the erase operation . This long
latency of the erase operation can block all coming requests .
[0165] Accordingly , in some embodiments , a PRAM
based accelerator uses selectional erasing . Since a reset
operation is a process to simply toggle target cells from a
programmed status to a pristine state , a PRAM subsystem
may selectively program data for setting a reset status (e . g . ,
data of “ O ”) for only addresses that will be overwritten . In
one embodiment , a memory controller (820 of FIG . 8) of the
PRAM subsystem may selectively program only addresses
that will be overwritten while a target kernel is loaded . In
this case , the memory controller 820 may selectively pro
gram only addresses that will be overwritten while a target
kernel is loaded , before execution of the target kernel is
completed .
[0166] In one embodiment , referring to FIG . 22 , while a
server PEO puts a target agent PE1 in a sleep mode (S1230) ,
stores a memory address of a kernel to be executed to a
cache of the target agent PE1 (S1240) , and revokes the target
agent PE1 of the sleep mode (S1250) , the memory controller
820 may perform selectional erasing by selectively program
ing the data for setting the reset status for only addresses to
be overwritten by execution of the kernel (S2210) . In this
case , the addresses to be accessed (i . e . , overwritten) by the
execution of the kernel may be provided by a host when the
kernel is downloaded .

(0167] As a result of implementing the selectional erasing
and testing it on the PRAM module , it is confirmed that the
selectional erasing can reduce the overwrite latency by 55 % ,
on average , and there is no bit error per access during the
selectional erasing and after the erase operation .
0168] . FIG . 23 is a schematic block diagram of a memory
controller in a PRAM - based accelerator according to an
embodiment of the present invention .
[0169] Referring to FIG . 23 , a memory controller 2300
includes a translator 2310 , a memory control logic 2320 , and
a datapath 2330 .
[0170] The translator 2310 includes an address register
2311 and a mode register 2312 , which can be linked to a
server (PEO of FIG . 8) , for example , an MCU of the server
PEO . Each of the address register 2311 and the mode register
2312 may be a 32 - bit register . Since data are not written to
a memory cell array directly but are first written to a
program buffer as described above , the translator 2310
handles an overlay window of a target PRAM module 2340
on behalf of the server PEO , using the address register 2311
and the mode register 2312 .
[0171] In some embodiments , for a write operation , the
translator 2310 may first store a write operation code to a
code register (572a of FIG . 11) , which is mapped to a
predetermined address (e . g . , 0x80) of an overlay window
base address (OWBA) , to inform a memory operation type
to the target PRAM module 2340 . Then , the translator 2310
may record a target row address at an address register (572b
of FIG . 11) which is mapped to a predetermined address
(e . g . , OWBA + 0x8B) , and inform a data burst size to the
target PRAM module 2340 in terms of bytes through a
multi - purpose register (572c of FIG . 11) which is mapped to
a predetermined address (e . g . , OWBA + 0x93) . After setting
these registers 572a , 572b , and 572c on the overlay window ,
the translator 2310 may start writing data into the program
buffer which is mapped to a predetermined address (e . g . ,
OWBA + 0x800) , and then execute a write operation by
configuring an execute register (572d of FIG . 11) which is
mapped to a predetermined address (e . g . , OWBA + OXCO) .
These operations of the translator 2310 may be managed by
the memory controller logic 2320 in the same memory
controller . For a read operation , the translator 2310 may
forward reads to the memory controller logic 2320 .
10172] . In some embodiments , data for reads and writes
may be delivered to the target PRAM module 2340 through
16 data pins (4 bytes per cycle) . Since an operand size of
load and store instructions that processing elements use is 32
bytes , 256 - bit registers for load (read) operation and store
(write) operation may be implemented in the datapath 230 .
[0173] The memory control logic 2320 may include a
command generator 2321 and an initializer 2322 .
[0174] The initializer 2322 may handle all PRAM mod
ules ' boot - up process by enabling auto initialization and
calibrating on - die impedance tasks . After the boot - up pro
cess , the initializer 2322 may set up a burst length and the
overlay window address by considering the I / O size (e . g . , 32
bytes per bank) .
[0175] The command generator 2321 may handle three
phase addressing and transactions (e . g . , LPDDR2 transac
tions) . The command generator 2321 may handle the three
phase addressing and the transactions over a PRAM physical
layer (PHY) . Since a single operation is split into preactive ,
activate and read / write phases in the interface of the PRAM
module , the command generator 2321 may convert all

US 2018 / 0321880 A1 Nov . 8 , 2018

memory references requested by the translator 2310 into
three - phase addressing requests . Specifically , the command
generator 2321 may disassemble a target address into an
upper address , a lower address , a row buffer address , and a
column address . These decomposed addresses may be then
delivered to the PRAM module through signal packets (e . g . ,
20 - bit DDR signal packets) . The signal packet may include
an operation type (2 to 4 bits) , a row buffer address (2 bits) ,
a target address (7 to 15 bits) of the overlay window or the
target PRAM partition . At the preactive phase , the command
generator 2321 may select a target row address buffer by
delivering a buffer address (BA) selection signal and store
the upper address to the selected row address buffer . In the
active phase , the command generator 2321 may signal the
lower address and the buffer address to the target PRAM
module 2340 . Thus , the target row can be activated and the
data stored by the program buffer can be delivered and
programmed to the target row . In a read , an internal sense
amplifier of the target PRAM module may transfer data from
the target row to a row data buffer associated with the
selected row address buffer .
[0176] Next , results measured after implementing a
PRAM - based accelerator according to an embodiment of the
present invention on a real hardware are described .
[0177] For performance evaluation , a memory controller
that plugs a 3x nm multi - partition PRAM to 28 nm tech
nology FPGA logic cells is implemented . A PRAM - based
accelerator is architected by this memory controller with a
commercially available hardware platform that employs
parallel embedded cores over a PCIe fabric . Parameters
shown in Table 1 are used as the parameters in the read / write
timing described with reference to FIG . 18 and FIG . 19 . In
Table 1 , CK denotes a clock cycle , and BL4 , BLS , and
BL16 denote burst lengths of 4 , 8 , and 16 , respectively .
[0178] In this case , when the memory request interleaving
and selectional erasing described with reference to FIG . 20
to FIG . 22 are used , the evaluation results reveal that the
PRAM - based accelerator achieves , on average , 47 % better
performance than advanced heterogeneous computing
approaches that use a peer - to - peer DMA between a storage
device and hardware accelerators .

a resistance switching memory module that includes a
memory cell array including a plurality of resistance
switching memory cells , and stores a kernel offloaded
from the host ;

an accelerator core including a plurality of processing
elements , the kernel being executed by a target pro
cessing element among the plurality of processing
elements ;

a memory controller unit (MCU) that manages a memory
request generated in accordance with execution of the
kernel by the target processing element ;

a memory controller that is connected to the resistance
switching memory module , and allows data according
to the memory request to move between the resistance
switching memory module and the target processing
element , in accordance with the memory request trans
ferred from the MCU ; and

a network that integrates the accelerator core , the plurality
of processing elements , and the memory controller .

2 . The resistance switching memory - based accelerator of
claim 1 , wherein the data according to the memory request
move between the resistance switching memory module and
the target processing element without assistance of an oper
ating system (OS) of the host .

3 . The resistance switching memory - based accelerator of
claim 1 , wherein the target processing element accesses the
resistance switching memory module through the memory
request without a modification of an existing load / store
instruction .

4 . The resistance switching memory - based accelerator of
claim 1 , wherein the MCU is included in a processing
element other than the plurality of processing elements .

5 . The resistance switching memory - based accelerator of
claim 1 , wherein the MCU is included in the target process
ing element .

6 . The resistance switching memory - based accelerator of
claim 1 , wherein the resistance switching memory module
further includes a plurality of row data buffers including a
first row data buffer and a second row data buffer ,
wherein the plurality of resistance switching memory

cells are divided into a plurality of partitions including
a first partition and a second partition ,

wherein the memory controller processes a first operation
according to a first memory request and a second
operation according to a second memory request in
parallel , the first operation of bringing first data from
the first partition to the first row data buffer , and the
second operation of moving second data , which have
been transferred from the second partition to the second
row data buffer , to the target processing element cor
responding to the second memory request .

7 . The resistance switching memory - based accelerator of
claim 1 , wherein the resistance switching memory module
further includes :

a plurality of row address buffers ; and
a plurality of row data buffers ,
wherein the plurality of resistance switching memory

cells are divided into a plurality of partitions ;
wherein the memory controller performs three - phase

addressing , and
wherein the three - phase addressing comprises :
a preactive phase for storing an upper address of a row

address , which is divided into at least the upper address
and a lower address , for accessing the resistance

TABLE 1

Parameter Value Parameter Value Parameter Value
RL (cycle)
WL (cycle)
tCK (ns)

6
3
2 . 5

tRP (cycle)
RCD (ns)
DQSCK (ns)

3 DOSS (ns)
80 WRA (ns)

2 . 5 - 5 . 5 DBURST (cycle) :
BL4 / BL8 / BL16

0 . 75 - 1 . 25
15

4 / 8 / 16

[0179] While this invention has been described in connec
tion with what is presently considered to be practical
embodiments , it is to be understood that the invention is not
limited to the disclosed embodiments , but , on the contrary ,
is intended to cover various modifications and equivalent
arrangements included within the spirit and scope of the
appended claims .

What is claimed is :
1 . A resistance switching memory - based accelerator con

figured to be connected to a host including a central pro
cessing unit (CPU) and a system memory , the resistance
switching memory - based accelerator comprising :

US 2018 / 0321880 A1 Nov . 8 , 2018
13

switching memory module in accordance with the
memory request , to a target row address buffer among
the plurality of row address buffers ;

an active phase for bringing read data from the memory
cell array to a target row data buffer among the plurality
of row data buffers based on a row address composed
by merging the lower address with the upper address
stored to the target row address buffer , in a case of a
read ; and

a read / write phase for transferring the read data from the
target row data buffer to the target processing element .

8 . The resistance switching memory - based accelerator of
claim 7 , wherein the resistance switching memory module
further includes an overlay window including a set of
control registers and a program buffer , and

wherein in a case of a write , write data are stored to the
program buffer at the active phase when the row
address is within an address range of the overlay
window , and the write data stored to the program buffer
are programmed to the memory cell array at the read /
write phase .

9 . The resistance switching memory - based accelerator of
claim 8 , wherein the plurality of partitions include a first
partition and a second partition , and

wherein the memory controller performs the read / write
phase for the first partition in accordance with a first
memory request while performing the preactive phase
and the active phase for the second partition in accor
dance with a second memory request .

10 . The resistance switching memory - based accelerator of
claim 1 , wherein the memory controller performs selectional
erasing for setting a resistance switching memory cells
corresponding to addresses to be overwritten by the execu
tion of the kernel to a reset status .

11 . The resistance switching memory - based accelerator of
claim 10 , wherein the memory controller performs the
selectional erasing before the execution of the kernel .

12 . The resistance switching memory - based accelerator of
claim 1 , wherein the MCU stores a memory address of the
kernel stored to the resistance switching memory module to
a cache of the target processing element as a boot address ,
for execution of the kernel .

13 . The resistance switching memory - based accelerator of
claim 12 , further comprising a power sleep controller that
controls a sleep mode of the target processing element , and

wherein the MCU puts the target processing element in
the sleep mode using the power sleep controller before
storing the memory address of the kernel to the target
processing element , and revokes the target processing
element using the power sleep controller after storing
the memory address of the kernel to the target process
ing element .

14 . The resistance switching memory - based accelerator of
claim 1 , wherein the target processing element comprises :

an L2 cache ;
a first on - chip memory controller that is connected to the
MCU , generates the memory request , and transfers the
memory request to the MCU ; and

a second on - chip memory controller that is connected to
the L2 cache , and moves the data between the L2 cache
and the resistance switching memory module .

15 . The resistance switching memory - based accelerator of
claim 1 , wherein the resistance switching memory module

includes a phase - change memory module , a resistive
memory module , or a magnetoresistive memory module .

16 . A resistance switching memory - based accelerator
configured to be connected to a host including a central
processing unit (CPU) and a system memory , the resistance
switching memory - based accelerator comprising :

a resistance switching memory module that stores kernels
offloaded from the host , and includes a plurality of
resistance switching memory cells divided into a plu
rality of partitions including a first partition and a
second partition , and a plurality of row data buffers
including a first row data buffer and a second row data
buffer ;

an accelerator core including a plurality of processing
elements , each kernel being executed by a correspond
ing target processing element among the plurality of
processing elements ;

a memory controller unit (MCU) that manages memory
requests generated in accordance with execution of
each kernel by the target processing element ;

a memory controller that is connected to the resistance
switching memory module , and processes a first opera
tion in accordance with a first memory request and a
second operation in accordance with a second memory
request in parallel , the first operation of bringing first
data from the first partition to the first row data buffer ,
and the second operation of moving second data from
the second row data buffer to the target processing
element corresponding to the second memory request ;
and

a network that integrates the resistance switching memory
module , the accelerator core , and the memory control
ler .

17 . The resistance switching memory - based accelerator of
claim 16 , wherein the second data have been transferred
from the second partition to the second row data buffer
before the memory controller brings the first data from the
first partition to the first row data buffer .

18 . The resistance switching memory - based accelerator of
claim 16 , wherein the memory controller performs three
phase addressing including a preactive phase , an active
phase , and a read / write phase , and

wherein the read / write phase for the second data is
performed while the preactive phase and the active
phase for the first data are performed .

19 . A resistance switching memory - based accelerator
configured to be connected to a host including a central
processing unit (CPU) and a system memory , the resistance
switching memory - based accelerator comprising :

a resistance switching memory module that stores a kernel
offloaded from the host and includes a memory cell
array including a plurality of resistance switching
memory cells ;

an accelerator core including a plurality of processing
elements , the kernel being executed by a target pro
cessing element among the plurality of processing
elements ;

a memory controller unit (MCU) that manages memory
requests generated in accordance with execution of the
kernel by the target processing element ;

a memory controller that is connected to the resistance
switching memory module , allows data according to
the memory request to move between the resistance
switching memory module and the target processing

US 2018 / 0321880 A1 Nov . 8 , 2018
14

element in accordance with the memory request trans
ferred from the MCU , and programs predetermined
data for addresses of the memory cell array to be
overwritten by the execution of the kernel .

a network that integrates the accelerator core , the plurality
of processing elements , and the memory controller .

20 . The resistance switching memory - based accelerator of
claim 19 , wherein the predetermined data are data for setting
resistance switching memory cells corresponding to the
addresses to a reset status .

