
Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent
Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the
Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been
paid. (Art. 99(1) European Patent Convention).

Printed by Jouve, 75001 PARIS (FR)

(19)
E

P
1 

49
9 

97
0

B
1

��&������������
(11) EP 1 499 970 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention 
of the grant of the patent: 
02.09.2009 Bulletin 2009/36

(21) Application number: 03718398.5

(22) Date of filing: 15.04.2003

(51) Int Cl.: �
G06F 11/20 (2006.01)

(86) International application number: 
PCT/US2003/011533

(87) International publication number: 
WO 2003/091879 (06.11.2003 Gazette 2003/45) �

(54) SYSTEM, METHOD AND APPARATUS FOR DATA PROCESSING AND STORAGE TO PROVIDE 
CONTINUOUS OPERATIONS INDEPENDENT OF DEVICE FAILURE OR DISASTER

SYSTEM, VERFAHREN UND VORRICHTUNG ZUR DATENVERARBEITUNG UND -SPEICHERUNG 
ZUR BEREITSTELLUNG KONTINUIERLICHER OPERATIONEN UNABHÄNGIG VON 
EINRICHTUNGSAUSFALL ODER KATASTROPHEN

SYSTEME, PROCEDE ET APPAREIL DE TRAITEMENT ET DE STOCKAGE DE DONNEES DESTINE 
A ASSURER DES OPERATIONS EN CONTINU INDEPENDAMMENT D’UNE DEFAILLANCE OU 
D’UN SINISTRE DU DISPOSITIF

(84) Designated Contracting States: 
AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 
HU IE IT LI LU MC NL PT RO SE SI SK TR
Designated Extension States: 
AL LT LV MK

(30) Priority: 26.04.2002 US 134666

(43) Date of publication of application: 
26.01.2005 Bulletin 2005/04

(73) Proprietor: Zeronines Technology, Inc. �
Castle Rock, CO 80104 (US) �

(72) Inventors:  
• GIN, Alan

Foster City, CA 94404 (US) �

• FUKUHARA, Keith
Belmont, CA 94002 (US) �

(74) Representative: Haug, Dietmar et al
Andrae Flach Haug 
Balanstrasse 55
81541 München (DE) �

(56) References cited:  
EP- �A- 1 001 343 US- �A- 6 058 424
US- �A- 6 134 673 US- �A1- 2003 014 526
US- �B1- 6 216 051 US- �B1- 6 223 231
US- �B1- 6 247 141 US- �B1- 6 539 494



EP 1 499 970 B1

2

5

10

15

20

25

30

35

40

45

50

55

Description

�[0001] The invention relates, in general, to computing
and methods for providing continuous computing oper-
ations despite a disaster, device failure or other cause
of device unavailability, and more specifically to a method
for providing continuous operations of a user application
at a user computing device.
�[0002] Computing systems, such as systems having
servers and databases supporting multiple users over a
network, may utilize various techniques to provide data
reliability in the event of a device failure - such as a failure
of a primary database. For example, the contents of a
database may be replicated to other mass secondary or
backup storage devices, and an image of the state of the
computing system may be periodically saved as well to
secondary storage devices. In the event of a device fail-
ure or a disaster affecting the primary database, a sec-
ondary storage device is made to functionally replace the
primary storage device for the computing system.
�[0003] As recognized by the present inventors, after a
device failure in such an arrangement, the time for tran-
sitioning from the primary to the secondary system de-
vices may be lengthy and result in delays in the comple-
tion of computing operations that were scheduled prior
to the device failure. There also may be delays in users
having network access to a working computing system
when the primary network or primary storage device be-
come unavailable. Such delays may result in significant
loss of revenues for businesses that rely on computing
systems, or may result in an inferior quality of service
experienced by the user. In the financial industry, down-
time of a brokerage computing network may result in the
loss of millions of dollars in revenues to the brokerage
firm and to its customers.
�[0004] For example, and as recognized by the present
inventors, if a primary server (such as an application serv-
er) or a database fails or becomes unavailable due to a
disaster, then the secondary or backup system needs to
be mounted, the state of the computing system (including
each of the various states of all of the user devices in the
system) needs to be restored and rectified with the state
of the data stored on the secondary storage device (i.e.,
all pointers need to be loaded into the backup system),
and all user connections to the computing system need
to be restored or re-�established. Such a transitioning
process may involve a delay of, for example, fifteen min-
utes to complete. During this delay period, users may be
unable to continue with their use of their computing sys-
tem. Further, the state of the computing system - includ-
ing the various states of all of the user devices - may only
be recoverable to the time at which the last image of the
computing system was persistently saved. Hence, par-
ticular users may experience a loss of some data or may
be unable to complete time-�critical computing opera-
tions.
�[0005] US-�B- �6,216,051 discloses a manufacuring sys-
tem having a mainframe and a backup server for use with

manufacturing systems such as semiconductor process-
ing manufacturing systems with computers.
�[0006] EP-�A-�1 001 343 discloses a client coupled with
a primary server and a secondary server. If the primary
server fails, the client is eventually notified that the pri-
mary server failed and the client retries the failed I/O re-
quest on the secondary server.
�[0007] An object of the invention is to provide a method
for data processing and/or data storage which method
provides continuous operations independent of device
failure or desaster so that failures or unavailability of sys-
tem devices, such as application servers or databases,
are transparent to end users.
�[0008] According to the invention, which is defined in
detail in the appended independent claim 1, there is pro-
vided a method for providing continuous operations of a
user application at a user computing device, the method
comprising: �

providing at least two application servers, each ap-
plication server running the user application;�
in response to a user request for data processing
within the user application,
transmitting the user request to the at least two ap-
plication servers for processing therein;
passing a first received, return result to the user com-
puting device from one of the at least two application
servers, said first received return result correspond-
ing to the user request as processed by the one of
the at least two application servers wherein said op-
eration of passing the first return occurs without wait-
ing for a second return result from the other server;
and
locating said at least two application servers at dif-
ferent geographic locations.

�[0009] The invention will now be described by way of
an example only and with reference to the accompanying
drawings, in which

Fig. 1 illustrates a block diagram of an embodiment
of the present invention.
Fig. 2 illustrates a flow diagram of one example of a
process for data processing and/or data storage to
provide continuous operations independent of de-
vice failure or disaster, in accordance with an em-
bodiment of the present invention.
Fig. 3 illustrates a block diagram of a network em-
ploying a plurality of multicasting engines, listening
devices, and servers for data processing and/or stor-
age to provide continuous operations independent
of device failure or disaster, in accordance with one
embodiment of the present invention.
Fig. 4A illustrates a block diagram of a multicasting
engine communicating with at least two client devic-
es and a network.
Fig. 4B illustrates a block diagram of first listening
device in communications with a first server, and a

1 2 



EP 1 499 970 B1

3

5

10

15

20

25

30

35

40

45

50

55

second listening device in communications with a
second server, wherein both listening devices are
coupled with a network.
Fig. 5 illustrates a flow diagram of an example of
system operations.
Fig. 6 illustrates a diagram of an example of a mes-
sage format.
Fig. 7 illustrates a diagram of an example of a mes-
sage format for encrypted messages.
Fig. 8 illustrates an example of logical operations for
initializing a multicasting engine.
Fig. 9 illustrates an example of logical operations
performed by a session manager module of a mul-
ticasting engine.
Fig. 10 illustrates an example of logical operations
performed by a management processor module of
a multicasting engine.
Fig. 11 illustrates an example of logical operations
performed by a message processor module of a mul-
ticasting engine.
Fig. 12 illustrates an example of logical operations
to initialize a processing thread - of either a multi-
casting engine or a listening device.
Fig. 13 illustrates an example of logical operations
performed by one or more processing threads of a
multicasting engine.
Fig. 14 illustrates an example of logical operations
for initializing a listening device.
Fig. 15 illustrates an example of logical operations
performed by a message processor module of a lis-
tening device.
Fig. 16 illustrates an example of logical operations
performed by a management processor module of
a listening device.
Fig. 17 illustrates an example of logical operations
performed by a session manager module of a listen-
ing device.
Fig. 18 illustrates an example of logical operations
performed by one or more processing threads of a
listening device.
Fig. 19 illustrates an example of logical operations
for initializing a queue in memory.
Fig. 20 illustrates an alternative embodiment for im-
plementing a listening device, in accordance with
one embodiment of the present invention.
Fig. 21 illustrates a block diagram of one embodi-
ment of a system, wherein a portion of the system
is located at a client location and another portion of
the system is located at a remote location.
Fig. 22 illustrates a block diagram of another embod-
iment of a system, wherein the servers are located
at different remote locations, in accordance with one
embodiment of the present invention.
Fig. 23 illustrates an alternative embodiment of the
present invention, wherein a multicasting engine and
two or more listening devices are used to persistently
write data to and read data from at least two storage
devices, in accordance with one embodiment of the

present invention.
Fig. 24 illustrates an alternative embodiment where-
in one or more portions of a multicasting engine are
implemented within a user device.
Fig. 25 illustrates an example of a bank account
transaction implemented using a multicasting sys-
tem.
Fig. 26 illustrates an example of a stock purchase
transaction implemented using a multicasting sys-
tem.
Fig. 27 illustrates an example of a table which may
be used to map a user device or server with a cor-
responding processing thread.
Figs. 28A- �28B illustrate examples of tables which
may be used by a message processor to determine
if a message should be processed or ignored.

DETAILED DESCRIPTION

�[0010] According to one broad aspect of the invention,
disclosed herein is a system and method for data
processing and/or data storage which provides continu-
ous computing operations independent of device failures
or unavailability. In this manner, if a system device such
as a server, a database, or a storage device fails or be-
comes unavailable due to disaster or otherwise, users
are unaffected by such events and may continue to com-
plete their computing operations and continue with new
computing operations. Various embodiments of the in-
vention will now be discussed.
�[0011] Referring to Fig. 1 and in accordance with one
embodiment of the present invention, a multicasting de-
vice or engine 30 is coupled over a network 32A, 32B
with a user device 34 and with two or more servers 36A,
36B, 36C (referred to collectively as 36) each having a
storage device 38A, 38B, 38C, respectively, associated
therewith for providing multiple, redundant, state-�accu-
rate operating versions of the application or applications
40 being run by the user device 34 and the data associ-
ated therewith. Each of the servers 36A, 36B, 36C with
or without an associated storage device, 38A, 38B, 38C
may be referred to herein interchangeably as a data cent-
er or a node 42A, 42B, 42C.
�[0012] As will be described below in greater detail, the
multicasting engine 30 manages data flow between the
user device 34 and the two or more servers 36 to provide
continuous networked data processing irrespective of a
failure of, or disaster affecting, one of the servers 36A,
36B, 36C or data centers 42A, 42B, 42C.
�[0013] The multicasting device or engine 30 may be
implemented as a server or may be implemented as one
or more modules operating at one or more servers or
distributed throughout a network. In one example, the
multicasting engine 30 can be a router, such as a mes-
saging router, or may be a computer, such as a SUN
NETRA (TM) computer, running an operating system
such as LINUX. The multicasting engine 30 may be com-
pliant with NEBS (Network Equipment Building System).

3 4 



EP 1 499 970 B1

4

5

10

15

20

25

30

35

40

45

50

55

Alternatively, some or all portions of the multicasting en-
gine as described herein may be implemented as soft-
ware modules operating on one or more computing de-
vices.
�[0014] The multicasting engine 30 may have, in one
embodiment, one or more ports coupled with one or more
networks 32A, 32B. These ports may be functional or
virtual in nature, as the multicasting engine 30 may have
physical connections that may handle multiple functional
or virtual ports. For instance, the multicasting engine 30
may be implemented using bi-�directional ports, which re-
ceive and transmit data over network connections using,
for example, packetized data using Internet Protocol (IP)
formats. Other data formats, such as Ethernet, may be
used or supported by the multicasting engine 30, for ex-
ample, through the use of one or more media adapters,
to transmit and receive data over various different net-
works 32A, 32B depending upon the particular imple-
mentation.
�[0015] In one embodiment, networks 32A, 32B are
both IP networks. In another embodiment as discussed
below with reference to Fig. 23, network 32A is a SCSI
or fibre channel communication link, and network 32B is
an IP network. It is understood that the types of network
or networks in which embodiments of the present inven-
tion are implemented is a matter of choice depending
upon the particular implementation.
�[0016] In accordance with one embodiment of the
present invention, each of the two or more servers 36A,
36B, 36C will be concurrently running, in real time, the
application or applications 40 that the user device 34 is
running, and the multicasting engine 30 will distribute us-
er requests 44 for application processing - containing,
for example, commands and/or data - to the two or more
servers 36. The multicasting engine 30 will also handle
receiving the results 46 returned from the two or more
servers 36A, 36B, 36C and provides a single result 48
to the user device 34. In this manner, the user device 34
operates without knowledge of the fact that its applica-
tions 40 are transparently being hosted and run redun-
dantly and independently by different servers 36A, 36B,
36C. If one of the servers 36A, 36B, or 36C or data cent-
ers 42A, 42B, or 42C fails or becomes unavailable due
to a disaster or otherwise, then at least one other server/
data center is immediately available and is already aware
of the precise state of the user’s device’s computing op-
erations. In this scenario, the multicasting engine 30 con-
tinues operating with at least one operational server or
data center in order to satisfy the further computing re-
quests of the user device 34. Since each of the servers
36A,� 36B, 36C or data centers 42A, 42B, 42C has been
independently running the application�(s) 40 of the user
device 34 over the network, each server 36A, 36B, 36C
or data center 42A, 42B, 42C has all the state variables
(i.e., pointers) already loaded and all network connec-
tions already established. In this manner, the system of
Fig. 1 provides the user device 34 with continuous fault-
tolerant access to its data and to a working networked

system irrespective of a server or data center failure or
unavailability due to, for example, a disaster.
�[0017] In one embodiment the servers 36A, 36B, 36C
may be arranged as independently operating data cent-
ers 42A, 42B, 42C, each having a plurality of application
servers operating in an environmentally-�controlled and
protected area. In one embodiment, the servers are each
provided with one or more storage devices 38, such as
persistent mass storage devices, and these storage de-
vices 38 may be configured to provide data recovery or
redundancy at the data center 42A, 42B, 42C in the event
of a failure of a storage device. For example, each stor-
age device 38 may be implemented as a disk array such
as a redundant array of inexpensive disks (RAID), in one
example, or may utilize disk mirroring technology, or any
combination thereof. The servers 36A, 36B, 36C may
also be file servers, in one example.
�[0018] Further, the servers 36A, 36B, 36C or data cent-
ers 42A, 42B, 42C may be located in geographically dif-
ferent locations so as to provide security and locational
or geographic independence. In this manner, if one of
the servers 36A, 36B, 36C or data centers 42A, 42B, 42C
is in a building subject to an extreme environmental con-
dition such as a power surge/�outage, fire, failure of the
air conditioning system, or disaster, then due to the ge-
ographic separation, the other servers 36A, 36B, 36C or
data centers 42A, 42B, 42C will be unaffected by such
extreme environmental conditions. The servers may use
the same operating systems or may use different oper-
ating systems, such as LINUX, UNIX, Microsoft’s Win-
dows 98, NT, or 2000 operating systems, DEC VAX, IBM
390 (a mainframe operating system) or IBM MVS or AIX,
HP UX, Sun SOLARIS (TM) or other operating systems,
depending on the particular implementation. As will be
described below, the multicasting engine 30 may be plat-
form independent.
�[0019] In accordance with one embodiment of the
present invention, two or more of the servers 36A, 36B,
36C or data centers 42A, 42B, 42C may act as the ap-
plication server for a user device 34 by maintaining the
applications and data being run by the user device 34
independently and completely on each server 36A, 36B,
36C. The request 44 may contain instructions and/or data
or other information, and the request 44 may relate to a
user session including an instance of a user or process
running a process or an application, such as an applica-
tion on a server. A few examples of user sessions may
include, but are not limited to, an order entry session, an
account session, a word processing session, a gaming
session, a bidding or auction session, an inventory man-
agement session, a data search session, a data read/
write/ �modify session, a file save or file open session, or
the like.
�[0020] The multicasting engine 30 receives a user re-
quest 44 for data processing by an application 40 and
multicasts or transmits this request 44 to two or more
servers 36A, 36B, 36C for processing thereby. Each
server 36A, 36B, 36C independently and completely

5 6 



EP 1 499 970 B1

5

5

10

15

20

25

30

35

40

45

50

55

processes the user request 44 and generates a return
result 46, which each server 36A, 36B, 36C transmits to
the multicasting engine 30. The return result 46 could
include multiple data items encoded as multiple messag-
es or data streams including text, graphics, audio, or oth-
er data.
�[0021] Because each server 36A, 36B, 36C is inde-
pendently running a copy of the application 40 and is
independently processing the request 44, the processing
operations by the servers 36A, 36B, 36C or data centers
42A, 42B, 42C are asynchronous with regard to the other
servers or data centers.
�[0022] In one example, the multicasting engine 30 se-
lects a first return result 46 received and forwards this
return result (shown as 48 in Fig. 1) to the user device
34 so that further user operations may take place. In this
manner, multiple applications can be run redundantly and
independently by the two or more servers 36A, 36B, 36C,
so that if one server of the servers 36A, 36B, 36C fails
or becomes unavailable, that failure is transparent to the
user device’s computing processes. In one example, the
existence of multiple servers may be transparent to the
user device 34 and to each of the servers 36A, 36B, 36C.
�[0023] Referring to Fig. 2, a flow diagram of one ex-
ample of a process for data processing and/or storage
to provide continuous operations independent of device
failure or disaster is illustrated. At operation 50, two or
more servers or data centers are established to each
have or host one or more applications that may be run
by a user. Further, the servers or data centers may be
provided with persistent storage capabilities to locally
store data at the site. In one embodiment, each of the
servers is adapted to run some or all of the various ap-
plications and processes of an enterprise available to a
user device. At operation 52, in response to a user re-
quest, the user request and any data associated there-
with is transmitted or multicast to the two or more serv-
ers--�which are capable of handling the user request-- �for
processing. At operation 54, each server independently
and completely performs the requested operation, and
in one embodiment the results of the operation may be
stored (i.e., persistently) by each server. At operation 56,
each server transmits the results of its operations so that
a result can be passed to the user device 34. In one
embodiment a multicasting engine is provided to receive
multiple results from two or more servers, receives mul-
tiple results from the servers, and the multicasting engine
forwards a single result to the user device. In one exam-
ple, when the multicasting engine receives the results
from each of the two or more servers, the results as re-
ceived are queued. The multicasting engine 30 forwards
one copy of the results to the user device, so that the
user device 34 only receives one copy of the result. The
multicasting engine awaits receipt of the results from the
other server�(s) or data center�(s), but in one example does
not transfer more than one result to the user device--
assuming that the transfer to the user device of the first
result received is successful.

�[0024] Because each server established by operation
50 is, at operation 54, independently processing and
maintaining the program operations of the user, in the
event that a single server fails or is struck by disaster or
otherwise becomes unavailable, that failure is transpar-
ent to the user since the results from the non- �failed server
may be passed to the user by operation 56. The non-
failed server can then continue to service the computing
needs of the user device 34.
�[0025] Referring to the example shown in Fig. 1, a user
device 34 is coupled with a multicasting engine 30, which
communicates with at least two servers 36A, 36B, 36C
data centers 42A, 42B--�shown as Server 1 and Server
2. Each data center 42A, 42B has a storage device 38A,
38B, respectively and at least two servers 36A, 36B
adapted to host the applications running on the user de-
vice 34. The user’s computing device 34 is running an
application 40, shown as "Application 1." In accordance
with the present invention, at least Server 1 36A and
Server 2 36B are also running "Application 1" and are at
the same program state as is the user device 34. Server
36C, shown as Server N, is also shown as running "Ap-
plication 1," because depending on the level of redun-
dancy desired, more than two servers can each inde-
pendently and redundantly run the user application.
�[0026] In one example, where a first level of availability
for application 40 is desired, then the two servers 36A,
36B are provided to each maintain state-�accurate ver-
sions of the application 40. In another embodiment,
where a second level of availability for application 40 is
desired, then three servers 36A, 36B, 36C are provided
to each maintain state-�accurate versions of the applica-
tion 40. In another embodiment, where a third level of
availability for application 40 is desired, more than three
servers may be provided to each maintain state-�accurate
versions of application 40. By continuing to add servers
36, a target level of availability can be achieved ap-
proaching 100% availability.
�[0027] When the user device 34 generates a request
44 for processing - such as when a user double- �clicks a
link within a browser to obtain a desired data set - the
request 44 is sent to the multicasting engine 30, which
transmits the request 44 to at least Server 1 and Server
2. Server 1 and Server 2, operating independently, both
receive and process the request 44. When Server 1 has
completed its operation, Server 1 stores the result of the
requested data set in its storage device 38A and returns
the result 46 to the multicasting engine 30. Before, after,
or during this time, Server 2 completes its operation and
Server 2 stores the result of the requested data set in its
storage device 38B and returns the result 46 to the mul-
ticasting engine 30. The multicasting engine 30 receives,
at some time, the result from Server 1 and Server 2 (not
necessarily in that order), and forwards a single result 48
to the user device 34. In this manner, although the mul-
ticasting engine 30 receives multiple results, the user de-
vice 34 only receives a single copy 48 of the result (i.e.,
the requested data set), in one example.

7 8 



EP 1 499 970 B1

6

5

10

15

20

25

30

35

40

45

50

55

�[0028] Assuming that the user device 34 generates a
second request, the multicasting engine 30 transmits the
second request to the at least two data centers 42A, 42B
at Server 1 and Server 2. If the data center 42B at Server
2 (36B) has failed or become unavailable due to a dis-
aster, Server 2 (36B) will not generate a return response
to the request, but the data center 42A at Server 1 (36A)
will process the request in its normal operations and
transmit the return result to the multicasting engine 30.
The multicasting engine 30 will forward the return result
from the data center 42A at Server 1 (36A) to the user
device 34, and the user device 34 can proceed with its
computing operations despite the fact that the data center
42B at Server 2 (36B) is unavailable. Accordingly, it can
be seen that the system of Fig. 1 can provide continuous
data operations in the event of a failure of either Server
1 (36A) or Server 2 (36B).
�[0029] Figs. 3-21 illustrate examples of a system and
processes thereof for data processing and storage to pro-
vide continuous operations independent of device failure
or disaster, in accordance with an embodiment of the
present invention. Referring now to Fig. 3, an example
of a networked system utilizing multicasting engines, for
example, 60A, 60B, 60C (referred to collectively or ge-
nerically as 60) and listening devices, for example, 62A,
62B, 62C, 62D, 62E (referred to collectively or generically
as 62) is illustrated, in accordance with one embodiment
of the present invention. A plurality of multicasting en-
gines 60A-�C are present and receive processing re-
quests over a network 64 from one or more clients 66,
shown as client X and client Y. As will be described in
greater detail below, one or more of the multicasting en-
gines 60A- �C process a user request and transmits or
multicasts the request over a multicast network 68 to at
least two of the listening devices 62A-�62E, wherein each
listening device 62A- �E is in communication with a server
70A-�E capable of satisfying the request. As will be de-
scribed below, a listening device can be a stand- �alone
device or may be implemented as hardware components
or as software modules operating within a respective
server.
�[0030] As shown in Fig. 3, multiple multicasting en-
gines 60A- �C are present and the multicasting engines
60A-�C may be configured to have fail-�over capabilities,
wherein each multicasting engine 60A-�C may have a
state accurate, shadowing engine that can take over if a
multicasting engine 60A-�C fails. For instance, multicast-
ing engine 60B may shadow multicasting engine 60A so
that if multicasting engine 60A becomes unavailable,
multicasting engine 60B may take over the operations of
multicasting engine 60A. Alternatively, two or more mul-
ticasting engines may be clustered in order to provide
load balancing and high availability.
�[0031] As shown in Fig. 3, each server 70A- �E is asso-
ciated with a listening device 62A-�E, and the listening
device may be a separate device or may be implemented
as hardware integrated with the server or one or more
software modules running on the associated server. In

overall operation, when a client (such as client X) makes
a request, a multicasting engine (such as 60B) services
the request by passing the request to at least two listening
devices (such as 62B and 62D), which each completely
and independently process the request using the respec-
tive servers (such as 70B and 70D) associated with the
listening devices. The return results generated by the
servers are returned by the respective listening device
to the multicasting engine 60B, which passes a result
back to the client 66. In this manner, if one of the servers
becomes unavailable, then the user/�client session can
continue to seamlessly operate without significant delay
using the remaining listening device and associated serv-
er.
�[0032] Referring now to Figs. 4A and 4B, a block dia-
gram of an example of a multicasting engine 80 and two
listening devices 82A-�B is illustrated, in accordance with
an embodiment of the present invention. In Fig. 4A, a
multicasting engine 80 is implemented in this embodi-
ment using a session manager 84, a management proc-
essor 86, and a message processor 88. A plurality of
queues are also utilized, including a general queue 90,
and a plurality of inbound client session queues 92A-�B
and outbound client session queues 94A-�B. Further, de-
pending upon the number of user sessions being handled
by the multicasting engine 80, one or more processing
threads (shown as 96A-�B) will be spawned and operate
within the multicasting engine 80. In one embodiment,
the session manager 84, the management processor 86,
and the message processor 88 are implemented as soft-
ware modules running on a programmable device such
as a Sun Netra (TM) device, in one example.
�[0033] In the embodiment of Fig. 4A, the session man-
ager 84 is generally responsible for receiving communi-
cations from a client/ �user device 98 and establishing, if
needed, user sessions and spawning the appropriate
processing threads 96 for handling these user sessions.
Various operations of one embodiment of a session man-
ager 84 are illustrated in Fig. 9.
�[0034] The management processor 86 of the multi-
casting engine 80 of the embodiment of Fig. 4A is gen-
erally responsible for starting and managing user ses-
sions on the appropriate listening device 82A, 82B cor-
responding to the user sessions of the multicasting en-
gine 80. The management processor may determine if a
user’s request can be handled, and may maintain or ac-
cess a list of supported applications. Various operations
of one embodiment of a management processor 86 are
illustrated in Fig. 10.
�[0035] The message processor 88 of a multicasting
engine 80 of the embodiment of Fig. 4A is generally re-
sponsible for transmitting messages from the multicast-
ing engine 80 to the listening devices 82A, 82B as well
as for receiving messages from the listening devices 82A,
82B to be passed into the multicasting engine 80 for
processing therein. Various operations of a message
processor 86 are illustrated in Fig. 11.
�[0036] The processing threads 96A, 96B of the multi-

9 10 



EP 1 499 970 B1

7

5

10

15

20

25

30

35

40

45

50

55

casting engine 80 of the embodiment of Fig. 4A are gen-
erally responsible for processing the messages or data
in the inbound 92A, 92B and outbound queues 94A, 94B
associated with the processing thread. Various opera-
tions of the processing threads are illustrated in Figs. 12
and 13.
�[0037] In the example of Fig. 4A, two processing
threads are illustrated - processing thread X (96A) and
processing thread Y (96B). In this example, processing
thread X corresponds to a user session with client X, and
processing thread Y corresponds to a user session with
client Y. The multicasting engine 80 communicates with
the user devices through communications interface 99,
in one example, which may support various protocols
such as TCP/IP, NCP, NetBios or others. Accordingly, a
single multicasting engine 80 is capable of handling mul-
tiple user sessions from a plurality of clients.
�[0038] Referring now to Fig. 4B, a block diagram of
two embodiments of listening devices 82A, 82B is illus-
trated. In Fig. 4B, each listening device has a message
processor 100, a management processor 102, and a ses-
sion manager 104. A port communications interface 105
may also be provided to communicate with its respective
server and may use a media card, sockets, pipes, object
linking and embedding (OLEs), application program in-
terfaces (API’s), or direct memory, depending on the im-
plementation and the connections therebetween which
may include TCP/IP, system network architecture (SNA),
direct coupling, SCSI, or Fibre channel, or other commu-
nication links.
�[0039] Each listening device also has one or more
processing threads 106A, 106B, or 106C having inbound
queues 108A, 108B, 108C and outbound queues 110A,
110B, 110C associated therewith. A general queue 112
is also provided for these embodiments of the listening
devices 82A, 82B.
�[0040] As shown in Fig. 4B, listening device 82A is
shown as having processing threads X (106A) and Y
(106B), while listening device 82B is shown having
processing thread X (106C). Accordingly, it can be seen
that requests from client X are being handled as process-
ing thread X in two separate listening devices 82A, 82B
having two separate and independent servers 114, 116,
respectively, associated therewith, in accordance with
one embodiment of the present invention, so as to pro-
vide continuous operations independent of device failure
or disaster of one of the servers 114, 116.
�[0041] The message processors 100 shown in the em-
bodiment of Fig. 4B are each responsible for transmitting
messages from the respective listening device 82A, 82B
to the multicasting engine 80, and receiving a message
from the multicasting engine 80 to be passed to the ap-
propriate queue within the particular listening device 82A,
82B. Various operations of one embodiment of a mes-
sage processor of a listening device are illustrated in Fig.
15.
�[0042] The management processor 102 of a listening
device 82A, 82B of the embodiments of Fig. 4B is gen-

erally responsible for creating and maintaining user ses-
sions within the listening device. Various operations of
one embodiment of a management processor 102 are
illustrated in Fig. 16.
�[0043] The session manager 104 of a listening device
shown in the embodiment of Fig. 4B is generally respon-
sible for managing the processing threads associated
with the user sessions to be handled within the listening
device 82A, 82B. Various operations of one embodiment
of a session manager 104 of a listening device are illus-
trated in Fig. 17.
�[0044] Referring to Fig. 5, an example of operations,
such as for the system shown in Figs. 4A and 4B, is il-
lustrated in accordance with one embodiment of the
present invention. In operation 120, the listening devices
are initialized. In one embodiment, links are established
between the listening devices and their respective serv-
ers. For example, in Fig. 4B, listening device 82A estab-
lishes its link to server 114, and listening device 82B es-
tablishes its link with server 116. At operation 122 of Fig.
5, the multicasting engines are initialized. In one embod-
iment, after the multicasting engine has been initialized,
links may be established between the multicasting en-
gine and one or more clients that will be serviced by the
engine. Having initialized both the listening devices and
the engines, at operation 124, client transactions or re-
quests are processed using multicasting transmissions
between the engines and the listening devices (and their
respective servers). As described above in one embod-
iment, for each user request or transaction, a multicasting
engine effectively transmits the user request to at least
2 listening devices, each listening device having a server
associated therewith capable of processing the request
or transaction. Each server independently and complete-
ly processes the request and a result is returned by the
listening device to the multicasting engine, which passes
the results received from one of the listening devices to
the appropriate client. In this manner, embodiments of
the present invention provide for continuous and uninter-
rupted user sessions in the event of failure or unavaila-
bility of a single server.
�[0045] Referring to Figs. 6 and 7, examples of mes-
sage formats are shown. In one embodiment, messages
130 are encoded using IP message formats, which gen-
erally have a header portion 132 and a payload portion
134. In one embodiment, within the Payload 134, a sub-
header 136 is encoded along with an encapsulated client/
server message 138. The sub-�header 136 includes, in
one embodiment, a field 140 for a message domain, a
field 142 for user session information, and a field 144 for
sequencing and error correction. As will be discussed
further below, the message domain information 140
(which may include an application domain identification
identifying a particular application or set of applications)
and the user session information 142 are utilized as a
filter so that the various components or modules of the
multicasting engine and listening device can quickly and
easily determine whether a message received is intend-

11 12 



EP 1 499 970 B1

8

5

10

15

20

25

30

35

40

45

50

55

ed to be processed by a particular multicasting engine
or listening device as appropriate. The sequence number
may be a unique number used as a transaction number,
or the sequence number may be mapped to a transaction
number which is generated by a third- �party system. As
shown in Fig. 7, a similar message format 150 may be
utilized with conventional IP encryption techniques, such
as utilizing the secure and encrypted IP headers 152 and
encrypted message payloads 154.
�[0046] The operations of one embodiment of a multi-
casting engine 30 will be described with reference to Figs.
8-13. These operations may be used in conjunction with
the multicasting engine 80 shown in Figs. 4A and 4B, or
with other embodiments or implementations as desired.
�[0047] Referring to Fig. 8, at operation 160, the general
message queues 90 of the multicasting engine are ini-
tialized. At operation 162, links between the multicasting
engine 80 and the listening devices 82A, 82B are estab-
lished. At operation 164, the communication ports 99
used to communicate with the client devices 98 are ini-
tialized. In one embodiment, if any of the operations
160-164 fail, the operations may be re-�tried or an error
may be generated and the network management system
associated with the multicasting engine 30 may be noti-
fied of the error.
�[0048] Referring to Fig. 9, at operation 170, the session
manager 84 (Fig. 4A) starts by listening for packets from
a communication port 99 of the engine 80. If a packet is
received on a port 99, then operation 172 determines if
the packet corresponds to a new user session. In one
embodiment, operation 172 checks a port ID (or socket
identification) (see Fig. 27) of the received packet and if
the port ID is not already listed in a table maintained within
the engine, then the received packet corresponds to a
new user session. If the packet does not correspond to
a new user session, then at operation 173, the packet is
passed to an established processing thread (i.e., 96A or
96B) for handling the data for the respective user session.
�[0049] Otherwise, the packet corresponds to a new us-
er session and operation 174 establishes a new port
number (i.e., a virtual port number or a socket number)
for handling future packets associated with this client ses-
sion. Operation 175 creates a user session ID and ap-
plication domain ID corresponding to this new user ses-
sion. As will be explained below, the user session ID and
the application domain ID established at operation 175
are utilized by other components or modules of the sys-
tem to encode messages for transmission, and converse-
ly for filtering and decoding messages. At operation 176,
the user session ID and the application domain ID are
passed to the management processor 86 of the multi-
casting engine 80, which will request that a thread at a
listening device (i.e., 82A, 82B) be spawned to handle
this particular user session. In one embodiment,� at least
two threads are spawned per user session, a first thread
at a first listening device associated with a first sever
capable of supporting the user session, and a second
thread at a second listening device associated with a

second sever capable of supporting the user session.
For example, as shown in Fig. 4B, listening device 82A
has a processing thread X (106A) and listening device
82B also has a processing thread X (106C).
�[0050] Operation 177 waits to receive confirmation
from the management processor 86 that remote listening
devices (i.e., 82A, 82B) are ready to accept messages
from the multicasting engine 80 relating to this user ses-
sion. Once confirmation is received, operation 178 starts
a new processing thread 96A in the multicasting engine
80 corresponding to the user session, and operation 179
passes the thread information, as well as the user session
information in one embodiment, to the communication
port 99 for entry into the table described with reference
to operation 172.
�[0051] The session manager 84 may also receive data
from a processing thread (i.e., thread 96A or 96B) for
transmission out to a client device. At operation 180, a
packet or data is obtained from a processing thread (i.e.,
96A or 96B) of the engine 80, and in one example oper-
ation 181 unencapsulates the packet or data from the
processing thread to strip it of the sub-�header information
(see Figs. 6 and 7) so that the message is in a standard
format that the client device would be capable of decod-
ing, such as traditional IP message formatting. Operation
181 transmits the data to the client through the commu-
nication port 99.
�[0052] Fig. 10 illustrates an example of logical opera-
tions performed by an embodiment of a management
processor of a multicasting engine. These operations will
be explained with reference to Figs. 4A and 4B, although
these operations may be used in other embodiments as
well. In Fig. 10, at operation 190, the management proc-
essor 86 receives a packet from the session manager
84, and at operation 192, the management processor 86
extracts the filter information including, in one embodi-
ment, the user session ID and the application domain ID.
At operation 193, the management processor 86 forms
a message to be sent to and to be processed by at least
two listening devices with servers (i.e., listening devices
82A, 82B with servers 114, 116) associated therewith,
the message including the user session ID and the ap-
plication domain ID in the message frame portion of the
payload, shown as the "client/�server message" portion
138 in Figs. 6 and 7. At operation 194, the management
processor 86 places a "management" application domain
ID value in the "message domain" field 140 of the sub-
message header 136 of the message (see Figs. 6 and
7). At operation 195, the management processor 86 plac-
es the message on the general queue 90, and the mes-
sage processor 88 of the multicasting engine 80 then
transmits the message over a network to the listening
devices (i.e., 82A, 82B). Operation 196 waits for a re-
sponse from the listening devices, and if a successful
response is received, then operation 197 returns a "suc-
cessful start up" message to the session manager 84 of
the multicasting engine 30 (see operation 177 of Fig. 9).
�[0053] Fig. 11 illustrates an example of logical opera-

13 14 



EP 1 499 970 B1

9

5

10

15

20

25

30

35

40

45

50

55

tions performed by an embodiment of a message proc-
essor 88 of a multicasting engine 80. These operations
will be described with reference to Figs. 4A and 4B, al-
though these operations may be used in other embodi-
ments as well. In Fig. 11, at operation 200, a message
processor 88 checks the outbound queues (i.e., 94A,
94B) for messages to be transmitted to listening devices.
If a message exists in an outbound queue, then at oper-
ation 202 the message processor 88 sends the message
over a multicast network to the appropriate listening de-
vices (i.e., 82A, 82B). If there are no messages in the
outbound queue of the engine 80, then operation 203
listens for inbound messages received from the listening
devices. For each message received from a listening de-
vice, operation 204 extracts the filter information, includ-
ing in one embodiment the application domain ID and
the user session ID, and operation 205 attempts to match
the filter values to values contained within a look-�up table
for the inbound queues maintained in the engine 80. If
no match is found, then operation 206 ignores the mes-
sage. If a match is found, then operation 207 places the
received message in the appropriate inbound queue (i.e.,
92A, 92B) for processing by the respective processing
thread (i.e., 96A or 96B) (see Fig. 13).
�[0054] Fig. 12 illustrates various operations for initial-
izing a processing thread, and these operations may be
utilized to start a processing thread in either a multicast-
ing engine, such as engine 80, or a listening device, such
as 82A, 82B. These operations will be described with
reference to Figs. 4A and 4B, although the operations
may be used in other implementations as well. At oper-
ation 208, a signal is received from a management proc-
essor (i.e., 86 or 102) to start or initialize a processing
thread (see, for example, Fig. 9, operation 178, Fig. 10
operation 195). At operation 209, the filter information
including the user session ID and the application domain
ID are obtained. Operation 210 creates the client session
queues, including in one embodiment an inbound queue
and an outbound queue (such as 92A, 108A, 110A) cor-
responding to this processing thread. Operation 211 de-
termines whether the queues have been started properly
(i.e., checking for memory errors) and if successful, op-
eration 212 passes the filter value to the message proc-
essor (i.e., 88 or 100) so that the message processor can
associate the filter value with this particular processing
thread. Operation 213 passes the processing thread link
to the session manager (i.e., 84 or 104) so that the ses-
sion manager is made aware of the existence of the
processing thread.
�[0055] Fig. 13 illustrates examples of logical opera-
tions of a processing thread of a multicasting engine.
These operations will be described with reference to Figs.
4A and 4B, although the operations may be used in other
implementations as well. In Fig. 13, a processing thread
(i.e., 96A or 96B) of the multicasting engine 80 at oper-
ation 214 receives a message from the inbound queue
(i.e., 92A or 92B). If the message is from a listening device
to be transmitted to a client, then operation 215 unen-

capsulates the message so that a message, using con-
ventional data formats in one embodiment, can be trans-
mitted to the appropriate client device. Operation 216
determines whether the message received is redundant
- meaning that the message received has already been
received from another listening device.
�[0056] As described herein, each server processes a
computing request independently and completely, and
stores in its local persistent storage device whatever data
or result is obtained from its performance of the requested
operation. Since each server asynchronously returns the
result to the multicasting engine, the multicasting engine
will, under normal operations, receive more than one re-
sult and the results will likely be identical. Further, in one
embodiment, the multicasting engine sends a new re-
quest to a server only after the server has provided the
multicasting engine with the result from the prior request.
In this manner, the inbound and outbound queues main-
tained by the multicasting engine 80 permit servers that
are slower to respond to the request to still perform and
complete their operations before the multicasting engine
will send a new request to these servers. Hence, the state
of each application running on each server is properly
maintained, while the user receives the first result gen-
erated by one of the servers.
�[0057] Hence, at operation 216, if the message re-
ceived by a processing thread is redundant, then oper-
ation 217 ignores the message or alternatively performs
some validation function on the data received by com-
paring the data received to the data previously received
from another listening device. The multicasting engine
30 may be provided with logic to examine and compare
the results received from the servers in order to determine
if a server has malfunctioned, become inoperable, lost
its network connection, or has otherwise become prob-
lematic.
�[0058] If the message received is not redundant, then
operation 218 determines if the transaction sequencing
is correct by examining the sequence number (see 144
of Figs. 6 and 7) included in the sub-�message header
136 of the message. If the sequencing is correct, then
the data from the message (excluding any encapsulation
in one example) is passed at operation 219 to the session
manager 84 for transmission to the appropriate client de-
vice 98. If, however, the sequencing is incorrect, then
operation 220 may re-�request any missing transactions
from the listening devices so that these transactions may
be processed by the processing thread and transmitted
to the appropriate client device in their proper order.
�[0059] If at operation 214 a message in an inbound
queue is from a client device 98, then operation 221 re-
trieves the message from the session manager 84 and
operation 222 encapsulates the message into a new
message including, at operation 224, the appropriate fil-
ter information (user session ID/ �application domain ID).
Operation 226 adds the encapsulated message to the
outbound queue (i.e., 94A, 94B) of the processing thread
(i.e., 96A, 96B) so that the message can be multicast/

15 16 



EP 1 499 970 B1

10

5

10

15

20

25

30

35

40

45

50

55

transmitted to multiple listening devices.
�[0060] Figs. 14-18 relate to operations performed by
a listening device, in accordance with one embodiment
of the present invention. Fig. 14 illustrates examples of
logical operations to initialize a listening device, and will
be described with reference to Figs. 4A-�4B although
these operations may be used in other implementations.
In Fig. 14, operation 230 establishes a link between a
listening device and its respective server, as well as with
the applications that are resident on the server. Operation
232 initializes the general message queue 112 for the
listening device, and in operation 234, the communica-
tion ports of the listening device are initialized for com-
municating with one or more multicasting engines. If any
of the operations 230-234 are unsuccessful, then the op-
erations may be re-�tried or an error message may be
sent to the network management system.
�[0061] Figs 15-18 relate to various operations per-
formed by components or modules of a listening device,
in accordance with one embodiment of the present in-
vention. Fig. 15 illustrates examples of operations that
may be performed by a message processor, and will be
described with reference to Figs. 4A-�4B although these
operations may be used in other implementations as well.
In Fig. 15, operation 240 checks the outbound queues
(i.e., 110A, 110B, 110C) to determine whether there are
any messages stored therein that should be transmitted
to the network. If so, then at operation 242, the message
processor 100 transmits the message over the multicast
network to the appropriate engine to which the message
corresponds. If operation 240 determines that the out-
bound queues are empty, then at operation 243, the mes-
sage processor 100 listens for inbound messages re-
ceived from multicasting engines. If there are no inbound
messages received from any engines, then control is
passed to operation 240, in one embodiment. If operation
243 determines that an inbound message has been re-
ceived, then operation 244 extracts the filter information
from the message, including, for example, the application
domain ID and the user session ID. Operation 245 match-
es the filter value extracted at operation 244 to a process-
ing thread (i.e., 106A, 106B, 106C) operating within the
listening device, and if a match is found, then operation
246 passes the message onto the appropriate inbound
queue associated with the processing thread match by
operation 245. If operation 245 determines that the filter
value does not correspond to any processing threads
presently operating in the listening device, then operation
247 ignores the message and control is returned to op-
eration 240.
�[0062] Fig. 16 illustrates examples of logical opera-
tions performed by a management processor of a listen-
ing device, and will be explained with reference to Figs.
4A-�4B although these operations may be used in other
implementations as well. Referring to Fig. 16, at opera-
tion 250, the management processor 102 retrieves a
packet from the general message queue 112. Operation
252 examines any message in the queue to determine

whether the message is a session management mes-
sage containing a request to initiate a new user session.
If the message does not relate to establishing a new user
session, then control is passed to operation 253, which
processes the management message. Examples of such
management messages processed at operation 253 in-
clude status request messages for requesting that the
management processor report which threads are active
within the listening device, in one example. If operation
252 determines that the message is a request to establish
a new user session, then control is passed to operation
254, which extracts the user session ID and application
domain ID associated with the new user session. Oper-
ation 255 passes this information to the session manager
104 so that the session manager 104 can establish a
connection with the server with regard to the particular
application associated with the application domain ID. At
operation 256, the management processor 102 waits for
the session manager 104 to start a new processing
thread once the session manager 104 has established a
connection with the server associated with the listening
device. If the session manager 104 was successful in
starting a new processing thread, then operation 257 re-
turns a notification of a successful start-�up of a listening
device thread associated with the new user session.
�[0063] Fig. 17 illustrates examples of operations per-
formed by a session manager, and will be described with
reference to Figs. 4A-�4B, although these operations may
be used in other implementations as well. In Fig. 17, at
operation 260, the session manager 104 checks to see
if a message has been received from the management
processor 102. If so, then operation 262 determines
whether the message is a request for a new user session
and, if so, operation 263 starts a new processing thread
for a new user session, and control is returned to oper-
ation 260.
�[0064] If operation 262 determines that the message
is not a request for a new user session, then operation
264 unencapsulates the filter information contained with-
in the message-- �for example, the user session ID and
the application domain ID-- �and operation 265 starts a
new processing thread to be associated with the filter
value obtained at operation 264. Operation 266 waits for
a response indicating the successful creation of the new
processing thread and upon such successful creation,
operation 267 returns a message to the management
processor 102 indicating that the thread was successfully
started.
�[0065] If there are no messages at operation 260 from
the management processor 102, then operation 268 re-
trieves any messages from any of the processing threads
that are active within the listening device. If such mes-
sages exist, then operation 269 unencapsulates the pay-
load portion of the message, and operation 270 passes
the payload portion (shown as the "client/�server" portion
in Figs. 6 and 7) to the communication port for transmis-
sion from the listening device to a multicasting engine.
�[0066] Fig. 18 illustrates examples of logical opera-

17 18 



EP 1 499 970 B1

11

5

10

15

20

25

30

35

40

45

50

55

tions for a processing thread of a listening device and
will be explained with reference to Figs. 4A-�4B, although
these operations may be used in other implementations
as well. In Fig. 18, a processing thread gets a message
from an inbound queue (i.e., 108A, 108B, 108C) associ-
ated with the processing thread, at operation 280. Oper-
ation 282 unencapsulates the message so as to extract
the "client/ �server" payload portion of the message. Op-
eration 283 passes the payload (also referred to as the
transaction portion of the message) to the session man-
ager 104, and operation 284 waits for a response from
the session manager 104. If a successful response is
received, then control is passed to operation 285.
�[0067] If at operation 280 there are no messages in
the inbound queue, then operation 285 determines
whether there are any messages for the processing
thread from the session manager. If not, then control is
returned to operation 280. If operation 285 determines
that there are messages for the processing thread from
the session manager, then operation 286 encapsulates
the data from the message into a new message to be
transmitted out to the appropriate multicasting engine 80.
Operation 287 adds the filtering information (i.e., the ap-
plication domain ID and the user session ID) to the mes-
sage, and operation 288 adds the formed message to
the outbound queue for transmission to the appropriate
multicasting engine 80.
�[0068] Fig. 19 illustrates the general operations for cre-
ating and initializing a queue in memory, and may be
used for creating a general queue or a inbound or out-
bound queue of a processing thread, in accordance with
one embodiment of the present invention. At operation
290, memory is allocated from a dynamic memory pool,
and if this operation is successful, then at operation 292
the memory address for the beginning of the queue is
returned to the process that requested the queue initial-
ization. In this manner, the module which requested the
creation of the queue now has a memory address range
for use in maintaining a queue of, for instance, messages
or other pieces of data. If operation 290 is unsuccessful,
then operation 294 may return an error message indicat-
ing that the request for the creation of a queue was un-
successful.
�[0069] Fig. 27 illustrates an example of a table or data
structure which may be used by a multicasting engine to
map a user device or server with a corresponding
processing thread. In Fig. 27, the table may be used to
map elements such as an address (i.e., an IP source
address), a Socket identification (that, for example, iden-
tifies a physical or virtual port of the multicasting engine
upon which the data was received) and a processing
thread identification or address for a thread operating in
the multicasting engine. In this manner, when a message
is received by a multicasting engine, the table may be
used as a look- �up table to determine to which processing
thread, if any, within the multicasting engine the message
corresponds. This table may be maintained as part of the
port communications interface 99, or by other portions

of the multicasting engine. Also, non-�IP communication
protocols may be supported as well.
�[0070] Figs. 28A- �28B illustrate examples of tables
which may be used by a message processor (either 88
of Fig. 4A or 100 of Fig. 4B) to determine if a message
should be processed or ignored. In this regard, these
tables may be used to "filter" or quickly examine a re-
ceived message and determine how to proceed with the
received message. In the table of Fig. 28A, a list of ap-
plication domain identifications with their respective user
session identifications and inbound queues is main-
tained, in one example. The application domain identifi-
cations in Fig. 28A are text based identifiers - such as an
application domain identification of "Accounts Payable
Voucher" which maps to a user session identification of
"20" mapping to inbound queue X; or an application do-
main identification of "Accounts Receivable Adjustment"
which maps to a user session identification of "23" map-
ping to inbound queue Y. In Fig, 28B, the application
domain identifications may be numeric based. If a mes-
sage processor determines that a received message
contains an application domain identification which
should be serviced, then the message processor can use
the inbound queue information in the table to determine
the proper inbound queue to place the data of the mes-
sage.
�[0071] Figs. 20-24 illustrate alternative embodiments
of the present invention. In Fig. 20, a listening device is
embodied as one or more software modules 300A, 300B
operating on a respective server device 302A, 302B with
which the listening device is associated. In this sense,
the listening devices described herein with reference to
Figs. 3, 4B, and 14-18 are embodied as software modules
300A, 300B operating on the respective servers 302A,
302B.
�[0072] Figs. 21 and 22 show different embodiments
for positioning or locating the servers and other compo-
nents of a system. In Fig. 21, a first listening device 310,
server 312, and multicasting engine 313 may be located
at a first location 314, such as the client site, for example,
in a large corporation. In order to provide geographical
separation, a second listening device 316, associated
server 318, and multicasting engine 319 can be located
at a data site 320, which is remote and geographically
separated from the first location 314. In Fig. 22, the client
system 330 and one or more multicasting engines 332
may be located at a first location 334, and each of the
listening devices 336, 338 and associated servers 340,
342 may be located at different locations 344, 346, which
are remote from the first location 334. Alternatively, mul-
ticasting engine 332 may be located at location 344, 346,
or another location remote from location 334.
�[0073] The above described system and methods, in
whole or in part, may also be implemented in a single
location to improve the robustness of a computing sys-
tem. Two or more servers may be provided, for instance,
in a single rack to provide fault tolerant operations in the
event of a device failure of one of the servers. Further,

19 20 



EP 1 499 970 B1

12

5

10

15

20

25

30

35

40

45

50

55

the above described system and methods, in whole or in
part, may be implemented in a disk storage system for a
computer system to improve the robustness of disk read
and write operations, as shown in the example of Fig.
23. Two or more storage devices, such as disk drives,
may be provided, for instance, in a single computing sys-
tem to provide fault tolerant storage operations in the
event of a device failure of one of the storage devices.
�[0074] In Fig. 23, a block diagram of a system for mul-
ticasting replications of reads and writes to mass storage
devices is shown. In this example, a server 350 is pro-
vided with multiple and redundant network attached stor-
age devices 352, 354, such as mass storage devices
providing persistent storage of data. Each storage device
352, 354 may be provided with a listening device 356,
358, as describe herein, and a multicasting engine 360
may be provided to communicate between the server
350 and the pairs of listening devices 356, 358 and stor-
age devices 352, 354. Accordingly, when the server 350
writes data, for instance, the multicasting engine 360 re-
ceives the write request and transmits or multicasts the
write request over a network 362 to at least two listening
devices 356, 358, which each independently and com-
pletely process the write request and write the data to
their respective persistent storage device 352, 354. In
this manner, if one of the storage devices 352, 354 be-
comes unavailable or fails, then the server 350 can con-
tinue to operate utilizing the other available storage de-
vice.
�[0075] Existing computer networks may be provided
with embodiments of the invention in various manners.
In one example, a server farm or regional data center of
an application service provider can be provided with a
multicasting engine 30 embodied in a server, and once
the multicasting engine 30 is operational, each user ses-
sion is configured to be serviced by at least two applica-
tion servers located in geographically different servers
farms or data centers.
�[0076] While the multicasting engine has been shown
and described herein as a device or module being sep-
arate from the user device, it is understood that one or
more portions of the multicasting engine or operations
thereof may be integrated with or incorporated in the user
device as desired. In Fig. 24, a user device 370 is pro-
vided with a multicasting engine 372 or one or more func-
tions of a multicasting engine as described herein. In this
embodiment, the multicasting engine may be implement-
ed in the user device 370 so as to pass a single result
received from the two or more servers 374 to the appli-
cation layer 376 of the user device 370. In Fig. 24, the
application layer 376 is shown to contain application 1
and application 2, in this example. For instance, if appli-
cation 1 is an application for which multicasting is utilized,
then the data processing requests generated by applica-
tion 1 are transmitted by multicasting engine 372 to the
two or more servers 374 for processing in each of the
servers, as described above. When the results from the
two or more servers are generated and transmitted to

the multicasting engine 372, the multicasting engine 372
passes a single result to the application layer 376 for
application 1, in this example.
�[0077] Having described various embodiments of the
present invention, Figs. 25-26 illustrate examples of sys-
tems that may incorporate embodiments of the present
invention therein. It is understood that the examples of
Figs. 25-26 are for illustrative purposes only, and that
embodiments of the present invention may be incorpo-
rated into a wide variety of different computing environ-
ments or computing systems. Fig. 25 illustrates an ex-
ample of a bank account system utilizing an example of
multicasting described herein, while Fig. 26 illustrates an
example of a stock trading enterprise or platform incor-
porating an embodiment of the present invention.
�[0078] With reference to Fig. 25, a bank account sys-
tem utilizing multicasting is shown, in accordance with
one embodiment of the present invention. The system
includes a user device 380 coupled with a multicasting
engine 382, which is coupled with at least two data cent-
ers 384, 386 having persistent storage devices 388, 390,
respectively. In this example, the user device 380 is op-
erating a bank account application program 392, which
contains account information 394 for one or more cus-
tomers of the bank. Bank account information 394 is
shown as "Joe Smith’s" account, and includes informa-
tion such as the account’s prior balance and account ac-
tivity. In accordance with the present invention, each
bank data center 384 and 386 maintains complete and
independent copies of the bank account information 394.
These copies are shown as 396 and 398. Whenever the
bank account application 392 operating on user device
380 has a request for data processing with regard to the
"Joe Smith" account of this example (i.e., reading account
information or writing account information), then these
requests are passed from the user device 380 to the mul-
ticasting engine 382, which transmits the request to at
least bank data center 384 and bank data center 386.
Each bank data center 384, 386 completely and inde-
pendently processes the data request and returns a re-
sult to the multicasting engine 382. The multicasting en-
gine 382 returns a single result to the user device 380,
in one embodiment.
�[0079] For instance, as shown in Fig. 25, assume that
the account information 394 has a prior balance of $500,
and $250 is being deposited in the account. At the user
device 380, a user (such as a bank teller) would enter
the $250 deposit amount into the bank account applica-
tion program 392. The user device 380 would transmit a
write request of "deposit $250" to the multicasting engine
382, which would then multicast or transmit the "deposit
$250" request to at least bank data center 384 and bank
data center 386. Bank data center 384 would receive the
"deposit $250" request and process the request at the
bank data center 384, resulting in a new balance for the
account of $750. Bank data center 384 would store the
new balance amount in its persistent storage device 388
and return a result to the multicasting engine 382 indi-

21 22 



EP 1 499 970 B1

13

5

10

15

20

25

30

35

40

45

50

55

cating that the new account balance is $750. Likewise,
bank data center 386 would receive the "deposit $250"
request and process the request in its account informa-
tion 398 to calculate a new balance of $750. Bank data
center 386 would store the new balance amount in its
persistent storage device 390, and transmit a return re-
sult to the multicasting engine 382 indicating that the new
account balance is $750.
�[0080] The multicasting engine 382 would receive,
asynchronously in one example, the results from bank
data center 384 and from bank data center 386. In ac-
cordance with one embodiment of the present invention,
the multicasting engine 382 would pass a single result
to the user device 380 indicating that the new account
balance is $750. Accordingly, the bank account applica-
tion 392 would update its account information 394 to re-
flect the new account balance.
�[0081] It can be seen that in Fig. 25 each bank data
center 384 and 386 maintains separate, independent,
complete, and state accurate data sets of the bank ac-
count information. In this manner, if one of the bank data
centers (for instance, bank data center 384) becomes
unavailable, fails, or is the subject of a disaster, then the
user device 380 and bank account application program
392 can transact banking business utilizing bank data
center 386 without significant delays.
�[0082] Fig. 26 illustrates an example of a stock trading
system or enterprise utilizing multicasting in accordance
with one embodiment of the present invention. In Fig. 26,
a user device 400 is provided with a stock trading account
application program 402, which permits a user to execute
stock trading transactions over a network. In this exam-
ple, the user device 400 is coupled with a multicasting
engine 404 having a transaction number module asso-
ciated therewith. The transaction number module is a
module that generates a unique transaction or confirma-
tion number and associates this number with requests
received from the user device. This transaction number
may be the same as the sequence number shown in Figs.
6 and 7, or may be mapped to or associated with the
sequence number, in one example.
�[0083] For instance, if a request received from a user
device should be supplied with a unique transaction or
confirmation number, then the transaction number mod-
ule 406 generates the unique number and associates the
unique number with the request. If a unique transaction
number is associated with the processing of a request,
then multicasting engine 404 transmits the request along
with the transaction number to the at least two trading
account data centers 410, 412. As shown in Fig. 26, the
multicasting engine may also be provided with an exter-
nal interface 414 for communicating with an external or
third party network to perform one or more computing
processes. In this example, the external interface 414 is
coupled with a stock exchange computing system 408
such as the NASDAQ computing system or the NYSE
computing system to execute stock trades.
�[0084] The multicasting engine 404 may also be pro-

vided with logic 416 for determining communications over
external interface 414 with the computing system 408.
For example, when the multicasting engine receives data
from trading account data center 410 or 412, logic 416
may determine that, based on the data received, a mes-
sage should be transmitted over external interface 414
to computing system 408.
�[0085] In the example of Fig. 26, assume that the user
of application 402 has generated a request to "buy 100
shares." The user device 400 transmits this request to
the multicasting engine 404. In this embodiment, the mul-
ticasting engine 404 utilizes a transaction number mod-
ule 406 which generates a unique transaction number to
be associated with this request. In one embodiment, the
multicasting engine 404 transmits the request to "buy
100 shares" along with the transaction number created
by the transaction number module 406. As described var-
iously above, the multicasting engine transmits this re-
quest and associated transaction number to at least two
trading account data centers 410, 412 for processing
therein. Each trading account data center 410, 412 com-
pletely and independently process this request - for in-
stance, by determining whether the user’s trading ac-
count has sufficient funds to satisfy this request to "buy
100 shares." Assuming there are sufficient funds to sat-
isfy the request, each trading account data center 410,
412 will generate an "execute" of the buy order for this
particular transaction and transmit this information to the
multicasting engine 404. When the multicasting engine
receives this data from the trading account data centers
410 or 412, the Logic 416 determines that the "execute
buy order" message received from the data centers 410,
412 necessitates that a message be generated and
transmitted over the external interface 414 to the stock
exchange computing system 408. Accordingly, in one
embodiment, the Logic 416 performs the appropriate
message (i.e., "buy 100 shares") and transmits this mes-
sage to the stock exchange computing system 408. In
this example, it can be seen that although at least two
trading account data centers 410, 412 processed and
generated a message to "execute" the buy order for 100
shares, the actual transaction was only executed in one
instance with the stock exchange computing system 408.
�[0086] It can be seen that in the example of Fig. 26, if
trading account data center 410 was struck by disaster,
failed, or became otherwise unavailable, the user’s re-
quest to buy 100 shares could be satisfied by utilizing
trading account data center 412 without significant delays
due to the unavailability of trading account data center
410.
�[0087] Accordingly, it can be seen that the various em-
bodiments of the invention will provide the user with con-
tinuous access to its data and to an operational net-
worked system irrespective of a server failure or unavail-
ability due to disaster or other catastrophic failure.
�[0088] While the above description and drawings show
two or three servers running a one or two applications
and handling requests from one or two users, it is under-

23 24 



EP 1 499 970 B1

14

5

10

15

20

25

30

35

40

45

50

55

stood that a larger number of servers could be used in a
similar manner to handle multiple applications running
concurrently with numerous requests from multiple us-
ers, depending upon the particular implementation.
�[0089] Various embodiments of the present invention
may be embodied as a computer program products in-
cluding computer usable medium and computer readable
code embodied on the computer usable medium, the
computer readable code including computer readable
program code devices configured to cause the computer
to perform or effect one or more of the operations de-
scribed herein.
�[0090] While the methods disclosed herein have been
described and shown with reference to particular opera-
tions performed in a particular order, it will be understood
that these operations may be combined, sub-�divided, or
re- �ordered to form equivalent methods without departing
from the teachings of the present invention. Accordingly,
unless specifically indicated herein, the order and group-
ing of the operations is not a limitation of the present
invention.

Claims

1. A method for providing continuous operations of a
user application (40) at a user computing device (34),
the method comprising:�

providing at least two application servers (36A,
36B), each application server (36A, 36B) run-
ning the user application (40);
in response to a user request (44) for data
processing within the user application (40),
transmitting the user request (44) to the at least
two application servers (36A, 36B) for process-
ing therein;
passing a first received return result (46) to the
user computing device (34) from one of the at
least two application servers (36A, 36B), said
first received return result (46) corresponding to
the user request (44) as processed by the one
of the at least two application servers (36A, 36B)
wherein said operation of passing the first re-
ceived return result occurs without waiting for a
second return result from the other server; and
locating said at least two application servers
(36A, 36B) at different geographic locations.

2. A method as defined in claim 1, characterized by
providing at least two persistent storage devices
(38A, 38B), wherein a first persistent storage device
(38A) is associated with a first server (36A) of the at
least two application servers (36A, 36B), and where-
in a second persistent storage device (38B) is asso-
ciated with a second server (36B) of the at least two
application servers (36A, 36B) .

Patentansprüche

1. Verfahren zur Bereitstellung von kontinuierlichen
Operationen einer Anwenderapplikation (40) in ei-
nem Nutzerrechner (34), wobei das Verfahren die
folgenden Schritte aufweist:�

Bereitstellen von mindestens zwei Applikations-
servern (36A, 36B), wobei ein jeder Applikati-
onsserver (36A, 36B) die Anwenderapplikation
(40) durchführt; �
als Reaktion auf eine Nutzeranfrage (44) zur Da-
tenverarbeitung innerhalb der Anwenderappli-
kation (40) das Übertragen der Nutzeranfrage
(44) zu den mindestens zwei Applikationsser-
vern (36A, 36B) für eine Verarbeitung darin;
Durchlaufen eines ersten empfangenen Rück-
laufergebnisses (46) zum Nutzerrechner (34)
von einem der mindestens zwei Applikations-
server (36A, 36B), wobei das erste empfangene
Rücklaufergebnis (46) der Nutzeranfrage (44)
entspricht, wie sie von dem einen der minde-
stens zwei Applikationsserver (36A, 36B) verar-
beitet wurde, wobei die Operation des Durch-
laufens des ersten empfangenen Rücklaufer-
gebnisses ohne ein Warten auf ein zweites
Rücklaufergebnis vom anderen Server erfolgt;
und
Anordnen der mindestens zwei Applikationsser-
ver (36A, 36B) an unterschiedlichen geografi-
schen Orten.

2. Verfahren nach Anspruch 1, dadurch gekenn-
zeichnet, dass mindestens zwei persistente Spei-
chereinrichtungen (38A, 38B) bereitgestellt werden,
wobei eine erste persistente Speichereinrichtung
(38A) mit einem ersten Server (36A) der mindestens
zwei Applikationsserver (36A, 36B) verknüpft ist,
und wobei eine zweite persistente Speichereinrich-
tung (38B) mit einem zweiten Server (36B) der min-
destens zwei Applikationsserver (36A, 36B) ver-
knüpft ist.

Revendications

1. Procédé pour assurer des opérations en continu
d’une application utilisateur (40) au niveau d’un ap-
pareil de calcul utilisateur (34), le procédé compre-
nant les étapes consistant à : �

prévoir au moins deux serveurs d’applications
(36A, 36B), chaque serveur d’application (36A,
36B) abritant l’application utilisateur (40) ;
en réponse à une requête utilisateur (44) pour
le traitement de données au sein de l’application
utilisateur (40), transmettre la requête utilisateur
(44) vers lesdits au moins deux serveurs d’ap-

25 26 



EP 1 499 970 B1

15

5

10

15

20

25

30

35

40

45

50

55

plications (36A, 36B) pour le traitement dans
ceux- �ci ;
faire passer un premier résultat de retour reçu
(46) vers le dispositif de calcul utilisateur (34) et
provenant de l’un desdits au moins deux ser-
veurs d’applications (36A, 36B), ledit premier ré-
sultat de retour reçu (46) correspondant à la re-
quête utilisateur (44) telle que traitée par le ser-
veur concerné parmi lesdits au moins deux ser-
veurs d’applications (36A, 36B), dans lequel la-
dite opération consistant à faire passer le pre-
mier résultat de retour reçu se produit sans at-
tendre un second résultat de retour provenant
de l’autre serveur ; et
localiser lesdits au moins deux serveurs d’ap-
plications (36A, 36B) à des emplacements géo-
graphiques différents.

2. Procédé selon la revendication 1, caractérisé par
l’étape consistant à prévoir au moins deux dispositifs
de stockage persistants (38A, 38B), dans lesquels
un premier dispositif de stockage persistant (38A)
est associé à un premier serveur (36A) desdits au
moins deux serveurs d’applications (36A, 36B), et
dans lequel un second dispositif de stockage persis-
tant (38B) est associé à un second serveur (36B)
desdits au moins deux serveurs d’applications (36A,
36B).

27 28 



EP 1 499 970 B1

16



EP 1 499 970 B1

17



EP 1 499 970 B1

18



EP 1 499 970 B1

19



EP 1 499 970 B1

20



EP 1 499 970 B1

21



EP 1 499 970 B1

22



EP 1 499 970 B1

23



EP 1 499 970 B1

24



EP 1 499 970 B1

25



EP 1 499 970 B1

26



EP 1 499 970 B1

27



EP 1 499 970 B1

28



EP 1 499 970 B1

29



EP 1 499 970 B1

30



EP 1 499 970 B1

31



EP 1 499 970 B1

32



EP 1 499 970 B1

33



EP 1 499 970 B1

34



EP 1 499 970 B1

35



EP 1 499 970 B1

36



EP 1 499 970 B1

37



EP 1 499 970 B1

38



EP 1 499 970 B1

39



EP 1 499 970 B1

40



EP 1 499 970 B1

41



EP 1 499 970 B1

42



EP 1 499 970 B1

43

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader’s convenience only. It does not form part of the European
patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be
excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

• US 6216051 B [0005] • EP 1001343 A [0006]


	bibliography
	description
	claims
	drawings

