
USOO8819396 B2

(12) United States Patent (10) Patent No.: US 8,819,396 B2
USuba (45) Date of Patent: Aug. 26, 2014

(54) PARALLEL PROCESSING USING PLURAL (56) References Cited
PROCESSING MODULES WHEN
PROCESSING TIME INCLUDING PARALLEL
CONTROL OVER HEAD TIMES
DETERMINED TO BE LESS THAN SERIAL
PROCESSING TIME

(75) Inventor: Ryoko Usuba, Kanagawa (JP)

(73) Assignee: Fuji Xerox Co., Ltd., Tokyo (JP)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 383 days.

(21) Appl. No.: 13/223,915

(22) Filed: Sep. 1, 2011

(65) Prior Publication Data

US 2012/O151190 A1 Jun. 14, 2012

(30) Foreign Application Priority Data

Dec. 9, 2010 (JP) 2010-275O14

(51) Int. Cl.
G06F 9/44 (2006.01)

(52) U.S. Cl.
USPC ... 712/32; 712/30

(58) Field of Classification Search
None
See application file for complete search history.

PARALLEL-PROCESSING
DEGREE CALCULATOR

PARALLEL-PROCESSING
PERFORMANCE

DETERMINATION UNIT

OVERHEAD CALCULATOR

U.S. PATENT DOCUMENTS

7,652,671 B2
7,986.419 B2*

2013/O159397 A1*

1/2010 Nagao et al.
7/2011 MaZur 358,113
6/2013 Yamashita et al. TO9,203

FOREIGN PATENT DOCUMENTS

JP 2001-236.227 A
JP 2005-301858 A

8, 2001
10/2005

* cited by examiner
Primary Examiner — Kenneth Kim
(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC
(57) ABSTRACT
A data processing apparatus includes an output unit. The
output unit determines, when parallel control is performed in
a data processor created in the data processing apparatus so
that plural processing modules forming the data processor
perform data processing in parallel, on the basis of a value
representing a parallel-processing time for which at least two
processing modules are operated in parallel and a value rep
resenting a control time, which is not necessary when serial
control is performed so that the processing modules serially
perform data processing but which is necessary when the
parallel control is performed so that the processing modules
perform data processing in parallel, whether a time necessary
to complete data processing performed by the data processor
under the parallel control would be shorter than a time nec
essary to complete data processing performed by the data
processor under the serial control, and outputs a determina
tion result.

21 Claims, 22 Drawing Sheets

45

SELECTION STARTER

START
PROCESSOR

U.S. Patent Aug. 26, 2014 Sheet 1 of 22 US 8,819,396 B2

INPUT PROCESSING MODULE2

LTERING PROCESSING MODULE
COLOR CONVERSION PROCESSING

ILTERING PROCESSINGMODULE 2 MODULE GENERATOR

ENLARGEMENTIREDUCTION
COLOR CONVERSION PROCESSING MODULE GENERATOR

PROCESSIN SINGMODULE1 OUTPUT PROCESSING
COLOR CONVERSION MODULE GENERATOR
PROCESSINGMODULE 2

SELECTION STARTER
ENLARGEMENTREDUCTION
PROCESSINGMODULE1

ENLARGEMENTREDUCTION
PROCESSING MODULE 2

OUTPUT PROCESSINGMODULE RESOURCE
OUTPUT PROCESSING MODULE 2 MANAGER

46C 4
SERAL PROCESSING MANAGE

BUFFERMODULE
(WITHOUT EXCLUSIVECONTROLFUNCTION)

U.S. Patent Aug. 26, 2014 Sheet 2 of 22 US 8,819,396 B2

FIG 2

SELECTION STARTER

PARALLEL-PROCESSING
DEGREE CALCULATOR

PARALLEL-PROCESSING- START
PERFORMANCE

DETERMINATION UNT PROCESSOR

OVERHEAD CALCULATOR

U.S. Patent Aug. 26, 2014 Sheet 3 of 22 US 8,819,396 B2

FIG 3A
50 COLOR ENLARGEMENT
`A (INPUT) CONVERSION REDUCTION (OUTPUT)

PROCESSING) PROCESSING! A PROCESSING | VPROCESSING
38 40 38 40 38 40 38

Gy) IMAGE PROCESSING MODULE B : BUFFERMODULE

SKEW-ANGLE FIG. 3B as E. g.
50 (INPUT) (e.g. g" - INFORMATION

v \PROCESSING PROCESSING :
38 40 38 40 i (or Ske)

* 40 38

(i.i. 24
FIG. 3C

". 22 (erding) IMAGE "ggs (E.)
40

IMAGE DATA
SUPPLY UNIT2

22 38 40
(ording)

U.S. Patent Aug. 26, 2014 Sheet 4 of 22 US 8,819,396 B2

38
IMAGEPROCESSING

38

CONTROLLER

40
SUBSEQUENT

BUFFERMODULE
PREVIOUS

BUFFERMODULE

PROCESSING
ENGINE

PROCESSING MANAGER
(WORKFLOWMANAGER)

38
SUBSEQUENT IMAGE
PROCESSINGMODULE

BUFFER

BUFFER MODULE

US 8,819,396 B2 Sheet 5 of 22 Aug. 26, 2014 U.S. Patent

US 8,819,396 B2

--Åd00

U.S. Patent

U.S. Patent Aug. 26, 2014 Sheet 7 of 22 US 8,819,396 B2

FIG. 7 START

OBIANMEMORY 29

NO
HAS STPOSSIBLE

RESSEYEAD) OOBTANDATA
YES

ARE
NO PLURAL MODULES CONNECTED

TO NOTNESS
YES

AS
DATABEEN OBTANED

FROMALL THE CONNECTED
MODULES

YES

REQUESTSUBSEQUENTMODULETO 232
SECUREDATAOUTPUTREGION

DATAOUTPUTREGION BEENSECURED

YES
INPUTOBTAINED INPUTDATAAND INFORMATION CONCERNING DATA

OUTPUTREGIONNTO IMAGE PROCESSINGENGINEAND OUTPUT PROCESSED
DATATO SUBSEQUENTMODULE (FSUBSEQUENTMODULESBUFFERMODULE,

WRITE PROCESSEDDATANTO INFORMEDADDRESS
38 2

INFORMSUBSEQUENT MODULE OFCOMPLETION OF DATAOUTPUT
240

HA
244 THENUMBEROFEXECUTED NO

OUTPUT PROCESSING OPERATIONS REACHED THE SPECIFIEDNUMBER
COMPLETIONNOTIFICATION OFOPERATIONS
TO WORKFLOWMANAGER YE 242
ANDSUBSEQUENT MODULE

S
246 OUTPUT PROCESSINGCOMPLETIONNOTIFICATIONTO WORKFLOWMANAGER

ERASEINFORMATION 243
PROCESSINGMODULE RELEASEMEMORY

END

U.S. Patent Aug. 26, 2014 Sheet 8 of 22 US 8,819,396 B2

FIG. 8A FIG. 8B

510

DETERMINEFOREACH IMAGE
PROCESSING MODULE THENUMBER OF

UNIT PROCESSING OPERATIONS
SPECIFIED IN ONE PROCESSING REQUEST

INPUT PROCESSING REQUEST
INTO IMAGE PROCESSING MODULE
POSITIONED PRIORTOBUFFER

MODULETHAT HASSENTREQUEST

500

INPUT PROCESSING REQUESTINTO L-504
FINAL IMAGE PROCESSING MODULE

FIG. 8C

INPUT PROCESSING REQUEST INTO
IMAGE PROCESSING MODULE
THATHASSENT PROCESSING
COMPLETION NOTIFICATION

520

NOTIFICATIONFINAL
MODULE

U.S. Patent Aug. 26, 2014 Sheet 9 of 22 US 8,819,396 B2

FIG. 9
50

46A

PROCESSING MANAGER(WORKFLOWMANAGER)

- PROCESSING REQUEST -o- : IMAGEDATA

--- DATAREQUEST -...- PROCESSING COMPLETONNOTIFICATION

U.S. Patent Aug. 26, 2014 Sheet 10 of 22 US 8,819,396 B2

FIG 10A FIG 10B

510
DETERMINE FOREACH IMAGE

PROCESSING MODULE THENUMBER OF
UNIT PROCESSING OPERATIONS

SPECIFIED IN ONE PROCESSING REQUEST

INPUT PROCESSING REQUEST
INTO IMAGE PROCESSING MODULE
POSITIONED PRIORTO BUFFER

MODULE THATHASSENTREQUEST

500

INPUT PROCESSING REQUESTINTO L-504
FINAL MAGE PROCESSINGMODULE

FIG 10C FIG 1 OD

540
IS MODULE

THAT HASSENT
ENTRE-PROCESSING COMPLETION

NOTIFICATIONFINAL
MODULE

YES

INFORMAPPLICATION OF
COMPLETION OF PROCESSING

THAT HASSENT
PROCESSING COMPLETION

NOTIFICATIONFINAL
MODULE

YES

INPUT PROCESSING REQUEST INTO
IMAGE PROCESSING MODULE
THAT HASSENT PROCESSING
COMPLETION NOTIFICATION

520 542

U.S. Patent Aug. 26, 2014 Sheet 11 of 22 US 8,819,396 B2

IMAGEPROCESSING SELECTION APPLICATION STARTER FIG 11

DENTIFYTYPE OF 150
IMAGEDATASUPPLYUNIT

DENTIFYTYPE OF 152
IMAGEOUTPUT UNIT

DETERMINETYPES OF IMAGE
PROCESSING OPERATIONS AND
EXECUTIONORDER THEREOF

STARTSELECTIONSTARTER

CALCULATEPARALLE
PROCESSING DEGREE

CALCULATE OVERHEAD VALUE

DETERMINEPARALLEL DU PROCESSING
PROCESSING PERFORMANCE GER MANAGER

SELECT AND START PARALLEL
OR SERAL PROCESSING

MANAGERINACCORDANCE WITH
DETERMINATION RESULT

156

168

START MODULE GENERATOR
CORRESPONDING

TOSPECIFICIMAGEPROCESSING

NOTIFYSTARTED MODULE
GENERATOR OF INPUTIOUTPUT
INFORMATION, OUTPUT IMAGE BUFFERMODULE 172-2 ATTRIBUTES, AND PROCESSING PARAMETERS AND INSTRUCT GENERATION REQUEST
STARTED MODULE GENERATOR PERFORM GENERATEBUFFER
TOGENERATEMODULE SET MODULE MODULE WITH

GENERATION ORWITHOUTEXCLUSIVE
PROCESSING CONTROL FUNCTION

74 COMPLETONNOTIFICATION 176

GIVENSTRUCTIONTO GIVENSTRUCTIONTO
PERFORMIMAGE PROCESSING ... In PERFORMIMAGE PROCESSING

INFORM USER OF INFORMAPPLICATION OF
COMPLETION OFPROCESSING COMPLETION OFPROCESSING

170
1

MODULE GENERATION
NOTIFICATION

U.S. Patent Aug. 26, 2014 Sheet 12 of 22 US 8,819,396 B2

FIG. 12A

O : IMAGE PROCESSINGMODULE

FIG. 12B

(E) -O-O-O-O-(E)-

U.S. Patent Aug. 26, 2014 Sheet 13 of 22 US 8,819,396 B2

FIG. 13

PROCESSINGLOAD
NUMBER OF LINESTOBE:
PROCESSEDATONE TIME

EXAMPLE
HEIGHT OF IMAGE

(3OOLINES) OUTPUT
UNIT

U.S. Patent Aug. 26, 2014 Sheet 14 of 22 US 8,819,396 B2

F.G. 14A

PROCESSINGLOAD
NUMBER OF LINESTO BE:
PROCESSEDAT ONE TIME

EXAMPLE
HEIGHT OF IMAGE

(300 LINES) OUTPUT
UNIT

24

PROCESSINGLOAD
NUMBER OF LINESTOBE:
PROCESSEDAT ONE TIME

EXAMPLE:
HEIGHT OF IMAGE

(3OOLINES)

PROCESSINGLOAD
NUMBER OF LINES TO BE:
PROCESSEDAT ONE TIME

EXAMPLE:
HEIGHT OF IMAGE

(300 LINES) OUTPUT UNIT

24

U.S. Patent Aug. 26, 2014 Sheet 15 of 22 US 8,819,396 B2

FIG. 15A FIG. 15B

DETERMINE FOREACH IMAGE INPUT PROCESSING REQUEST
PROCESSINGMODULE THENUMBER OF L-500 INTO IMAGE PROCESSINGMODULE L-520

UNIT PROCESSING OPERATIONS THATHASSENT PROCESSING
SPECIFIED NONE PROCESSING REQUEST COMPLETIONNOTIFICATION

INPUT PROCESSINGREQUESTINTO -505
FINAL MAGE PROCESSINGMODULE

FIG. 15C

THAT HASSENT
ENTRE-PROCESSING COMPLETION

NOTIFICATIONFINAL
INPUT PROCESSING REQUEST MODULE
TOMAGE PROCESSING
MODULE SUBSEQUENT TO YES

IMAGE PROCESSING MODULE
INFORMAPPLICATION OF THAT HASSENT PROCESSING

COMPLETION NOTIFICATION COMPLETION OF PROCESSING
542

U.S. Patent Aug. 26, 2014 Sheet 16 of 22 US 8,819,396 B2

FIG 16

46A

PROCESSING MANAGER(WORKFLOWMANAGER)

B
WITHOUT WITH WITHOUT
EXCLUSIVE EXCLUSIVE EXCLUSIVE
CONTROL CONTROL CONTROL
FUNCTION FUNCTION FUNCTION

OPERATING OPERATING
AS THREADA ASTHREADB

MAGE
DATA

SUPPLY
UNIT

IMAGE
OUTPUT
UNIT

U.S. Patent Aug. 26, 2014 Sheet 17 of 22 US 8,819,396 B2

FIG. 17

SELECTION STARTER

PARALLEL-PROCESSING
DEGREE CALCULATOR

PARALLEL-PROCESSING- START
PERFORMANCE PROCESSOR

DETERMINATION UNIT

OVERHEAD CALCULATOR

DETERMINATION START
RESULT INSTRUCTION

U.S. Patent Aug. 26, 2014 Sheet 18 of 22 US 8,819,396 B2

IMAGE PROCESSING SELECTION APPLICATION STARTER FIG. 18

IDENTIFYTYPE OF
IMAGEDATA SUPPLYUNIT

IDENTIFYTYPE OF
IMAGEOUTPUT UNIT

DETERMINETYPES OF IMAGE
PROCESSING OPERATIONS AND
EXECUTION ORDER THEREOF

START SELECTIONSTARTER

CALCULATEPARALLEL
PROCESSING DEGREE

CALCULATE OVERHEAD VALUE

DETERMINEPARALLEL MODULE PROCESSING
162 PROCESSING PERFORMANCE GENERATOR MANAGER

DISPLAY OUTPUT
DETERMINATION RESULT DETERMINATION RESULT

RECEIVE INPUT
STARTINSTRUCTION STARTINSTRUCTION

163 SELECT AND STARTPARALLEL
ORSERAL PROCESSING

168 MANAGERINACCORDANCE
WITHSTART INSTRUCTION

START MODULE GENERATOR
CORRESPONDING

TOSPECIFICIMAGE PROCESSING

NOTIFYSTARTED MODULE
GENERATOR OFINPUTIOUTPUT
INFORMATION, OUTPUT IMAGE
ATTRIBUTES AND PROCESSING GENEllist 172-2
PARAVETERS AND INSTRUCT
SEFEER RER S- GNSEBEFR E-cy. Ell
170 | MESEAN COMPLETIONNOTIFICATION 176

GIVENSTRUCTIONTO GIVENSTRUCTIONTO PERFORMIMAGE PROCESSING - PERFORMIMAGE PROCESSING
INFORM USER OF INFORMAPPLICATION OF

COMPLETION OFPROCESSING COMPLETION OF PROCESSING in a

U.S. Patent Aug. 26, 2014 Sheet 19 of 22 US 8,819,396 B2

F.G. 19 G so

622 612 614 624 616 618
DATA DATA DISPLAY OPERATION

SUPPLY UNIT MEMORY OUTENT
626

620
STORAGE UNIT

PROCESSINGPROGRAM SET
PROCESSING MANAGERLIBRARY MODULE LIBRARY

644 ARTHMETIC PROCESSINGLOAD
MODULE UNIT PROCESSING D

MODULE GENERATOR ARTHMETIC PROCESSINGLOAD
646,646-1 MODULE2, UNIT PROCESSING D

PARALLE ARTHMETIC PROCESSINGLOAD
PROCESSING MANAGER MODULE3 UNIT PROCESSING D

646,646-2
SERIAL ARTHMETIC PROCESSINGLOAD

PROCESSING MANAGER MODULE4 UNIT PROCESSING D

ARTHMETIC

PROCESSING CONSTRUCTION UNIT CONTROL FUNCTION

PROCESSING CONTENTIORDER CONTROL FUNCTION
DETERMINATION UNIT

652
PARALLEL-PROCESSING

PERFORMANCE
DETERMINATION UNIT

645
SELECTION STARTER

U.S. Patent Aug. 26, 2014 Sheet 20 of 22 US 8,819,396 B2

FIG. 20

PROCESSING
CONSTRUCTION UNIT

DETERMINEREQUIRED PROCESSING
ANDEXECUTIONORDER 700

DETERMINEPARALLEL 702 PROCESSING
PROCESSING PERFORMANCE MANAGER

SELECT AND STARTPARALLEL
OR SERAL PROCESSING MANAGER

GENERATEBUFFERMODULE
WITHORWITHOUT

EXCLUSIVECONTROL FUNCTION
704 706

GENERATEEACH
ARTHMETIC MODULE 708

GIVENSTRUCTIONTO GIVEINSTRUCTIONTO
EXECUTEARTHMETIC PROCESSING EXECUTEARTHMETIC PROCESSING

INFORMUSER OFCOMPLETION INFORMPROCESSING CONSTRUCTION
OFPROCESSING UNT OF COMPLETION OF PROCESSING

712

714.

716

U.S. Patent Aug. 26, 2014 Sheet 21 of 22 US 8,819,396 B2

FIG 21A

3 b C d

AMOUNT CALCULATE ADD COO CALCULATE 10% SUBTRACT 50
OF MONEY CONSUMPTIONTAX

3470 4470
1000 1050 2050

1110

INDIVIDUAL FIELDS CAN BE PERFORMANCESIMPROVED BY
PROCESSED IN PARALLEL PERFORMINGPARALLEL PROCESSING

FIG 21B

a b C d

PROCESSINGLOAD: UNIT PROCESSING: GO G) GO
DATANUMBER

O ARTHMETIC MODULE BUFFERMODULE

FIG 21C

SUMOFPROCESSINGLOADS OF ARTHMETCMODULES = 3 + 1 + 3 + 1 = 8

PROCESSINGWATDEGREE=44414 = 1 + 1 + 1 + 1
NUMBER OFARTHMETIC MODULES = 4

8 x 1 > 4

U.S. Patent Aug. 26, 2014 Sheet 22 of 22 US 8,819,396 B2

FIG. 22A
C f 9 h

AMOUNT TOTAL CALCULATE TOTAL TEM RATIOTEM
OF MONEY RATIO BYTEM BY TEM

3305 a 41010 806 - 79.03 - 0.10
1000 1Z. N. 244 17 N 003
105 ZO N 0.26 7. Y 000

28000 W. W. 68.28 / Y 0.86
300 I \ 0.73 a 2097 - 0.03
5550 || |\ 1353 (7 Na 0.65
550 || | \ 134 W \ 0.06
2200 T 5.36 / Y 0.26

N 1 N u1
PROCESSING CANNOT BE PERFORMANCE IS NOT IMPROVEDEVEN
EXECUTED UNTILPREVIOUS -- PROCESSING FINISHES BYPERFORMING PARALLEL PROCESSING

FIG. 22B

0. 9 f h

RESSEG)-BFR-G) CD G)
DATANUMBER

O ARTHMETIC MODULE BUFFERMODULE

FIG. 22C

SUMOFPROCESSINGLOADSOFARTHMETIC MODULES = 1 + 3 + 1 +3=8
1 + 1 + 1 + 1 . PROCESSINGWATDEGREE = 8, 1.4.1 - O.286

NUMBER OFARTHMETIC MODULES = 4

y
8X O.286 = 2.28 k4.

US 8,819,396 B2
1.

PARALLEL PROCESSING USING PLURAL
PROCESSING MODULES WHEN

PROCESSING TIME INCLUDING PARALLEL
CONTROL OVER HEAD TIMES

DETERMINED TO BE LESS THAN SERIAL
PROCESSING TIME

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is based on and claims priority under 35
USC 119 from Japanese Patent Application No. 2010-275014
filed Dec. 9, 2010.

BACKGROUND

(i) Technical Field

The present invention relates to data processing appara
tuses, data processing methods, and non-transitory computer
readable storage media.

SUMMARY

According to an aspect of the invention, there is provided a
data processing apparatus in which a data processor is created
by connecting plural processing modules that perform data
processing including different data processing operations or
that perform a data processing operation with different con
tents. Each of the plural processing modules has a function of
obtaining data from a processing module positioned prior to
itself, performing a predetermined processing operation on
the obtained data, and outputting data as a result of perform
ing the predetermined processing operation on the obtained
data or outputting a result of processing the obtained data to a
processing module positioned Subsequent to itself. The data
processing apparatus includes an output unit. The output unit
determines, when parallel control is performed in the data
processor so that the plural processing modules perform data
processing in parallel, on the basis of a value representing a
parallel-processing time for which at least two of the process
ing modules are operated in parallel and a value representing
a control time, which is not necessary when serial control is
performed so that the processing modules serially perform
data processing but which is necessary when the parallel
control is performed so that the processing modules perform
data processing in parallel, whether a time necessary to com
plete data processing performed by the data processor under
the parallel control would be shorter than a time necessary to
complete data processing performed by the data processor
under the serial control, and outputs a determination result.

BRIEF DESCRIPTION OF THE DRAWINGS

Exemplary embodiment(s) of the present invention will be
described in detail based on the following figures, wherein:

FIG. 1 is a block diagram illustrating the schematic con
figuration of a computer (image processing apparatus)
according to an exemplary embodiment of the invention;

FIG. 2 is a block diagram illustrating an example of the
functional configuration of a selection starter,

FIGS. 3A through 3C illustrate examples of the configu
ration of an image processor,

FIGS. 4A and 4B are block diagrams illustrating the sche
matic configurations and processing to be executed of an
image processing module and a buffer module, respectively;

5

10

15

25

30

35

40

45

50

55

60

65

2
FIGS.5A through5C schematically illustrate image data to

be written are to be stored in plural storage unit buffer regions:
FIGS. 6A through 6C schematically illustrate image data to

be read are stored in plural storage unit buffer regions;
FIG. 7 is a flowchart illustrating image-processing-module

control processing performed by a controller of each image
processing module:

FIGS. 8A through 8D are flowcharts illustrating parallel
control processing performed by a workflow manager of a
parallel processing manager;

FIG.9 is a schematic diagram illustrating the flow of image
processing in an image processor,

FIGS. 10A through 10D are flowcharts illustrating block
unit serial control processing executed by a workflow man
ager of a serial processing manager;

FIG. 11 is a sequence diagram illustrating an example of a
series of processing operations from when an image proces
sor is constructed until when image processing is executed;

FIGS. 12A and 12B illustrate examples of connection
modes of image processing modules;

FIG. 13 illustrates a determination of the parallel process
ing performance of an image processor,

FIGS. 14A through 14C illustrate determinations of the
parallel processing performance of image processors;

FIGS. 15A through 15C are flowcharts illustrating frame
unit serial control processing executed by a workflow man
ager of a serial processing manager;

FIG. 16 is a block diagram illustrating another example of
the configuration of an image processor,

FIG. 17 is a block diagram illustrating another example of
the configuration of a selection starter;

FIG. 18 is a sequence diagram illustrating another example
of a series of processing operations from when an image
processor is constructed until when image processing is
executed;

FIG. 19 is a block diagram illustrating the schematic con
figuration a computer (data processing apparatus) according
to another exemplary embodiment of the invention;

FIG. 20 is a sequence diagram illustrating an example of a
series of processing operations from when a data processor is
constructed until when arithmetic processing is executed; and

FIGS. 21A through 22C illustrate specific examples of
determinations of the parallel processing performance.

DETAILED DESCRIPTION

An exemplary embodiment of the present invention will be
described below in detail with reference to the accompanying
drawing. FIG. 1 illustrates a computer 10 configured to func
tion as an image processing apparatus incorporating a data
processing apparatus of an exemplary embodiment of the
invention. The computer 10 may be integrated in a certain
image handling device that is necessary to perform image
processing within the device. Such as a copying machine, a
printer, a FAX machine, a multifunction device having the
functions of those devices, a scanner, or a photo printer.
Alternatively, the computer 10 may be an independent com
puter, Such as a personal computer (PC), or may be a com
puter integrated in a portable machine. Such as a personal
digital assistant (PDA) or a cellular telephone.
The computer 10 includes a central processing unit (CPU)

12, a memory 14, a display unit 16, an operation unit 18, a
storage unit 20, an image data Supply unit 22, and an image
output unit 24. Those components are connected to one
another via a bus 26. If the computer 10 is integrated in the
above-described image handling device, a display panel
including a liquid crystal device (LCD) and a numeric key

US 8,819,396 B2
3

pad, which are provided in the image handling device, may be
used as the display unit 16 and the operation unit 18, respec
tively. If the computer 10 is an independent computer, a
display connected to the computer 10 may be used as the
display unit 16, and a keyboard and a mouse connected to the
computer 10 may be used as the operation unit 18. As the
storage unit 20, a hard disk drive (HDD) may be suitably used.
Alternatively, another non-volatile storage unit, such as a
flash memory, may be used.
As the image data Supply unit 22, any type of device may be

used as long as it has the function of supplying certain image
data. For example, an image reader for reading an image
recorded on a recording material. Such as paper or a photo
film, and for outputting image data representing the read
image may be used. Alternatively, a receiver for receiving
image data from an external source via a communication
circuit, or an image storage unit (memory 14 or storage unit
20) for storing image data, etc. may be used. As the image
output unit 24, any type of device may be used as longas it has
the function of outputting image data Subjected to image
processing or an image represented by that image data. For
example, an image recorder for recording an image repre
sented by image data on a recording material. Such as paperor
a photosensitive material, may be used. Alternatively, a dis
play unit for displaying an image represented by image data
on a display, etc., a writer for writing image data into a
recording medium, a sender for sending image data via a
communication circuit, may be used. Alternatively, the image
output unit 24 may be an image storage unit (memory 14 or
storage unit 20) for simply storing image data Subjected to
image processing.

In the storage unit 20, as shown in FIG. 1, programs of an
operating system (OS) 30, an image processing program set
34, and application programs 32 (shown as an application
program set 32 in FIG. 1) are stored as various programs
executed by the CPU 12. The programs of the OS 30 are used
for the management of the resources, such as the memory 14,
and for the management of the execution of programs by the
CPU 12. The programs of the OS 30 are also used for con
trolling communication between the computer 10 and an
external source. The image processing program set 34 is used
for enabling the computer 10 to function as an image process
ing apparatus. The application programs 32 are used for
enabling the image processing apparatus to perform desired
image processing.
The image processing program set 34 includes programs

which have been developed for the purpose of reducing a load
experienced when developing the above-described various
image handling devices or cellular telephones or a load expe
rienced when developing image processing programs that can
be used in PCs, etc. Accordingly, the programs of the image
processing program set 34 can be used by all the image
handling devices, cellular telephones, and various devices
(platforms). Such as PCs. In response to an instruction from
the application programs 32, the image processing apparatus,
which is implemented by the image processing program set
34, constructs an image processor that performs image pro
cessing instructed by the application programs 32. In this
manner, the image processing apparatus performs image pro
cessing by using the image processor (details will be given
later). The image processing program set 34 provides the
application programs 32 with a certain interface. This inter
face is used for giving an instruction to construct an image
processor that performs desired image processing (image
processor having a desired configuration) or for giving an
instruction to execute the desired image processing by using
the constructed image processor. Accordingly, when devel

10

15

25

30

35

40

45

50

55

60

65

4
oping a certain new device in which image processing is
required to be performed within the device, it is not necessary
to develop a new program for performing Such image pro
cessing. It is Sufficient that the application programs 32 caus
ing the image processing program set 34 to perform Such
image processing by use of the above-described interface be
developed. Thus, a load experienced when developing
devices and programs can be decreased.
As described above, the image processingapparatus imple

mented by the image processing program set 34 constructs an
image processor that performs image processing in accor
dance with an instruction from the application programs 32
and performs the image processing by using the constructed
image processor. Accordingly, even if the color space or the
number of bits assigned to each pixel of image data to be
Subjected to image processing is indefinite, or even if the
content or the procedure/parameters of image processing to
be performed is indefinite, the application program 32 simply
gives an instruction to reconstruct the image processor,
thereby making it possible to flexibly change image process
ing to be executed by the image processing apparatus (image
processor) in accordance with image data to be processed.

Details of the image processing program set 34 will be
described below. The image processing program set 34
includes, as shown in FIG. 1, a module library 36, a program
of a processing construction unit 42, and a processing man
ager library 47. The processing construction unit 42 of this
exemplary embodiment constructs, as shown in FIGS. 3A
through 3C, in response to an instruction from the application
programs 32, an image processor 50 by connecting plural
image processing modules 38 and buffer modules 40 in the
form of a pipeline or a directed acyclic graph (DAG). The
image processing modules 38 perform predetermined image
processing. Each of the buffer modules 40 is disposed at least
at a position prior to or Subsequent to the corresponding
image processing module 38 and includes buffers for storing
image data therein. Each of the image processing modules 38
forming the image processor 50 is, in reality, a first program
or a second program. The first program is executed by the
CPU 12 and causes the CPU 12 to perform predetermined
image processing. The second program is executed by the
CPU 12 and is used for instructing an external image process
ing apparatus (e.g., a dedicated image processing board).
which is not shown in FIG. 1, to execute processing. In the
above-described module library 36, plural programs of the
image processing modules 38 to perform different types of
predetermined image processing operations (e.g., inputting,
filtering, color conversion, enlargement/reduction, skew
angle detection, image rotation, image combining, output
ting, etc.) are registered. For a simple representation, a
description will be hereinafter given, assuming that each of
the image processing modules 38 forming the image proces
sor 50 is the first program.

Each of the image processing modules 38 includes, as
shown in FIG. 4A by way of example, an image processing
engine 38A and a controller 38B. The image processing
engine 38A performs image processing on image data in
accordance with an amount of data to be processed at one time
(during unit processing) (such an amount of data is hereinaf
ter referred to as the “unit-processing data amount'). The
controller 38B controls input and output of image data into
and from the modules which are disposed prior to and Subse
quent to the corresponding image processing module 38, and
also controls the image processing engine 38A. The unit
processing data amount handled in each of the image process
ing modules 38 is selected and set in advance from among
certain numbers of bytes assigned to, e.g., one line of an

US 8,819,396 B2
5

image, plural lines of an image, one pixel of animage, and one
frame of an image, in accordance with the type of image
processing performed by the image processing engine 38A.
For example, if the image processing module 38 performs
color conversion processing or filtering processing, the unit
processing data amount is one pixel of an image. If the image
processing module 38 performs enlargement/reduction pro
cessing, the unit-processing data amount is one line or plural
lines of an image. If the image processing module 38 per
forms image rotation processing, the unit-processing data
amount is one frame of an image. If the image processing
module 38 performs image compression/decompression, the
unit-processing data amount is N bytes which are determined
by the execution environments.

Additionally, in the module library 36, the image process
ing modules 38 that perform, by using the image processing
engines 38A, image processing operations whose types are
the same but contents are different are also registered. In FIG.
1. Such image processing modules 38 are shown as "module
1 and “module 2. For example, the image processing mod
ules 38 that perform enlargement/reduction processing
include an image processing module 38 that reduces input
image data by 50% by sampling every other pixel and an
image processing module 38 that enlarges or reduces image
data in accordance with a specified enlargement/reduction
ratio. Also, the image processing modules 38 that perform
color conversion processing include an image processing
module 38that converts from an RGB color space into a CMY
color space, an image processing module 38 that converts a
CMY color space into an RGB color space, and an image
processing module 38 that performs another type of color
conversion using, for example, an L*a*b color space.

In the image processing module 38, in order to receive
image data necessary for the image processing engine 38A to
perform image processing in accordance with the unit-pro
cessing data amount, the controller38B obtains image data in
accordance with an amount of data to be read at one time
(such an amount of data is hereinafter referred to as the “unit
read data amount') from a module (e.g., the buffer module
40) positioned prior to the image processing module 38, and
outputs image data received from the image processing
engine 38A to a module (e.g., the buffer module 40) posi
tioned Subsequent to the image processing module 38 in
accordance with an amount of data to be written at one time
(such an amount of data is hereinafter referred to as the “unit
write data amount'). In this case, if the image processing
performed in the image processing engine 38A does not
involve an increase or a decrease in the data amount. Such as
compression, the unit write data amount is equal to the unit
processing data amount. Instead of outputting the image data
to an internal module, the controller 38B outputs a result of
the processing executed by the image processing engine 38A
to an external source of the image processing module 38. For
example, if the image processing engine 38A performs image
analyzing processing. Such as skew-angle detection process
ing, the controller38B outputs an image analyzing processing
result, such as a skew-angle detection result, instead of image
data. In the module library 36, the image processing modules
38 that perform, by using the image processing engines 38A,
image processing operations whose types and contents are the
same but whose unit-processing data amount, unit read data
amount, and unit write data amount are different are also
registered. For example, the image processing modules 38
that perform image rotation processing may include, not only
an image processing module 38 whose unit-processing data
amount is one frame of an image, as discussed above, but also

10

15

25

30

35

40

45

50

55

60

65

6
an image processing module 38 whose unit-processing data
amount is one line or plural lines of an image.
The programs of each of the image processing modules 38

registered in the module library 36 include programs corre
sponding to the image processing engine 38A and programs
corresponding to the controller 38B. The programs of the
controllers 38B are modularized. For the image processing
modules 38 whose unit read data amounts are the same and
whose unit write data amounts are the same, the programs
corresponding to the controllers 38B are modularized (i.e.,
the same programs are used for the controllers 38B) regard
less of the types or contents of image processing executed in
the image processing engines 38A. Accordingly, a load expe
rienced when developing the programs corresponding to the
image processing modules 38 is reduced.
The image processing modules 38 include the following

types of image processing modules 38. If the attributes of an
input image are unknown, the unit read data amount and the
unit write data amount are indefinite. In this case, the
attributes of the input image data are first obtained, and the
obtained attributes are substituted into a predetermined arith
metic expression. The arithmetic expression is then calcu
lated, thereby determining the unit read data amount and the
unit write data amount. In those types of image processing
modules 38, there may be some image processing modules 38
whose unit read data amounts or unit write data amounts can
be determined by using the same arithmetic expression. For
Such image processing modules 38, programs corresponding
to the controllers 38B can be modularized. As discussed
above, the image processing program set 34 of this exemplary
embodiment may be implemented in various devices. How
ever, the number or the types of image processing modules 38
registered in the module library 36 of the image processing
program set 34 can be suitably added, deleted, or replaced in
accordance with image processing which is necessary in a
device implementing the image processing program set 34.

Each of the buffer modules 40 forming the image processor
50 includes, as shown in FIG. 4B by way of example, a buffer
40A and a buffer controller 40B. The buffer 40A is formed by
a memory area which is secured in the memory 14 provided in
the computer 10 through the use of the OS 3.0. The buffer
controller 40B controls input and output of image data into
and from modules which are positioned prior to and Subse
quent to the corresponding buffer module 40, and also con
trols the buffer 40A. The buffer controller 40B of each of the
buffer modules 40 is also formed by a program executed by
the CPU 12, and the program of the buffer controller 40B
(which are shown as “buffer modules' in FIG. 1) is registered
in the module library 36.

Image processing modes employed in the image processor
50 include a parallel processing mode and a serial processing
mode. In the parallel processing mode, the image processing
modules 38 perform image processing in parallel. In the serial
processing mode, only one image processing module 38 per
forms image processing at one time, and also, the image
processing modules 38 are serially switched to perform
image processing. In this exemplary embodiment, when per
forming image processing in accordance with the parallel
processing mode (such processing may be hereinafter simply
referred to as "parallel image processing”), an image proces
sor 50 used for parallel processing (hereinafter may be simply
referred to as a “parallel image processor”) is constructed. In
contrast, when performing image processing in accordance
with the serial processing mode (such processing may be
hereinafter simply referred to as “serial image processing”),
an image processor 50 used for serial processing (hereinafter
may be simply referred to as a "serial image processor”) is

US 8,819,396 B2
7

constructed. In this manner, image processing modes in the
image processor 50 are switched. Details of the parallel pro
cessing mode and the serial processing mode will be given
later.

In the serial processing mode, it is only one image process
ing module 38 that always performs image processing at one
time. Accordingly, only one image processing module 38
accesses the buffer 40A of the buffer module 40. In contrast,
in the parallel processing mode, all the image processing
modules 38 simultaneously perform image processing, and it
is possible that plural image processing modules 38 simulta
neously access the buffer 40A of the buffer module 40. It is
thus necessary to perform exclusive control on access to the
buffer 40A. Accordingly, in this exemplary embodiment,
buffer modules 40 with an exclusive control function used for
parallel processing are provided, and buffer modules 40 with
out an exclusive control function used for serial processing
are provided. In the module library 36, therefore, programs of
the buffer modules 40 with an exclusive control function and
programs of the buffer modules 40 without an exclusive con
trol function are registered.

The processing construction unit 42 that constructs the
image processor 50 in response to an instruction from the
application programs 32 includes, as shown in FIG. 1, plural
module generators 44. The plural module generators 44 cor
respond to different types of image processing operations,
and upon being started, the plural module generators 44 gen
erate different module sets including the image processing
modules 38 and the buffer modules 40, which implement the
corresponding types of image processing operations. The
module generators 44 shown in FIG. 1 are associated with the
types of image processing operations executed by the image
processing modules 38 registered in the module library 36 on
the basis of a one-to-one correspondence. However, each of
the module generators 44 may be associated with image pro
cessing operations implemented by plural image processing
modules 38 (e.g., skew correction processing including skew
angle detection processing and image rotation processing). If
the required type of image processing includes a combination
of plural types of image processing operations, the applica
tion programs 32 sequentially start the module generators 44
corresponding to the plural types of image processing opera
tions. Upon being started by the application programs 32, the
module generators 44 construct the image processor 50 that
performs the required image processing.

In the processing manager library 47, as shown in FIG. 1,
plural programs of processing managers 46 are registered.
Each of the processing managers 46 includes a workflow
manager 46A, a resource manager 46B, and an error handler
46C. The workflow manager 46A controls the execution of
image processing performed in the image processor 50. The
resource manager 46B manages the resources of the com
puter 10, such as the memory 14 and various files, used by the
individual modules of the image processor 50. The error
handler 46C handles errors occurring in the image processor
50. The processing managers 46 are broadly divided into a
parallel processing manager 46-1 and a serial processing
manager 46-2. The parallel processing manager 46-1 causes
the processing construction unit 42 to construct a parallel
image processor 50 including the buffer modules 40 with an
exclusive control function and performs control such that the
constructed image processor 50 executes image processing in
the parallel processing mode. The serial processing manager
46-2 causes the processing construction unit 42 to construct a
serial image processor 50 including the buffer modules 40
without an exclusive control function and performs control
Such that the constructed image processor 50 executes image

10

15

25

30

35

40

45

50

55

60

65

8
processing in the serial processing mode. Hereinafter, when it
is not necessary to specify whether the processing manager
46 is the parallel processing manager 46-1 or the serial pro
cessing manager 46-2, it is generically referred to as the
“processing manager 46.

In FIG. 1, a program of only one parallel processing man
ager 46-1 and a program of only one serial processing man
ager 46-2 are shown. In the processing manager library 47.
however, programs of plural parallel processing managers
46-1 that cause the parallel image processor 50 to perform
different types of parallel processing operations may be reg
istered. Similarly, programs of plural serial processing man
agers 46-2 that cause the serial image processor 50 to perform
different types of serial processing operations may be regis
tered. The above-described processing construction unit 42
includes a selection starter 45. The selection starter 45 selec
tively starts one of the processing managers 46 registered in
the processing manager library 47 in response to an instruc
tion to construct the image processor 50 from the application
program 32.
The function of the selection starter 45 will be described

below with reference to the block diagram of FIG. 2. The
selection starter 45 includes a parallel-processing-degree cal
culator 45A, an overhead calculator 46B, a parallel-process
ing-performance determination unit 45C, and a start proces
Sor 45D.
The parallel-processing-degree calculator 45A calculates a

value representing the degree by which at least two image
processing modules 38 are operated in parallel (such a degree
is hereinafter referred to as the “parallel-processing degree')
when a parallel image processor 50 is constructed to perform
parallel image processing. More specifically, the parallel
processing degree is a value representing a parallel-process
ing time for which at least two image processing modules 38
are operated in parallel.
The overhead calculator 45B calculates a value represent

ing a control time necessary for performing overhead pro
cessing. Such a value is hereinafter referred to as an “over
head value'. The overhead processing is processing which is
not necessary for performing control to execute serial image
processing (Such control may be hereinafter referred to as the
'serial processing control') but is necessary for performing
control to execute parallel image processing (such control
may be hereinafter referred to as “parallel processing con
trol'). The overhead processing includes, for example, exclu
sive control and thread starting control. Details of the over
head processing will be discussed later.

It is not necessary that the parallel-processing degree or the
overhead value be expressed in typical time units, such as
msec or usec, and may be any numeric value representing a
length of time. In this exemplary embodiment, the value of the
parallel-processing degree and the overhead value are com
pared to simply determine which is greater or Smaller.
Accordingly, if the value representing the parallel-processing
degree and the overhead value are roughly the same, they are
calculated to have the same value. Alternatively, instead of
comparing the value of the parallel-processing degree with
the overhead value to determine which is greater or smaller,
each of the parallel-processing degree and the overhead value
may be compared with a threshold. In this case, if the values
representing the parallel-processing degree and the overhead
value are roughly the same, they do not have to be calculated
to have the same value.
The parallel-processing-performance determination unit

45C determines, on the basis of the parallel-processing
degree and the overhead value, regarding whether the time
necessary to complete parallel image processing to be per

US 8,819,396 B2
9

formed in the image processor 50 would be shorter than the
time necessary to complete serial image processing (Such
determination may be hereafter referred to as the “parallel
processing performance determination'), and outputs a deter
mination result.
The start processor 45D selects, on the basis of the deter

mination result output from the parallel-processing-perfor
mance determination unit 45C, the parallel processing man
ager 46-1 or the serial processing manager 46-2 so as to cause
the selected processing manager 46 to perform parallel image
processing or serial image processing.

For example, if the image processing modules 38 of the
image processor 50 are connected, as shown in FIG. 12A
(buffer modules 40 are not shown in FIG. 12A or 12B), there
are a large number of branches in the processing, which
increases the amount of exclusive control processing. As the
exclusive control processing increases, the overhead value
also increases. It is now assumed that, in order to perform
image processing for one line of an image in a certain image
processing module 38 (which is called as an "image process
ing module 38b), image data representing one frame of an
image subjected to image processing in an image processing
module 38 (which is called as an “image processing module
38a) positioned prior to the image processing module 38b is
required. In this case, even if parallel image processing is
performed in the parallel processing mode, the image pro
cessing module 38b cannot start processing until the image
processing module 38a finishes processing for image data
representing one frame of an image. Thus, the processing of
the image processor 50 is Suspended. In this case, the pro
cessing wait degree (which will be discussed later) increases,
thereby decreasing the time for which parallel processing is
performed.

In contrast, if the processing load of each image processing
module 38 forming the image processor 50 is light, as shown
in FIG. 12B, and more specifically, if the time necessary for
each image processing module 38 to execute processing for
the unit-processing data amount (such processing is referred
to as the “unit processing) is light, i.e., if the time necessary
for executing the unit processing is short, the time for which
parallel processing is performed is decreased. Thus, the par
allel-processing degree is not increased even if parallel pro
cessing is performed in the parallel processing mode. In this
case, the entire processing time may even increase depending
on the overhead.

In this manner, even if it is possible to employ the parallel
processing mode, some image processors 50 are not suitable
for parallel processing, or high performance cannot be
expected (the time necessary to perform in the parallel pro
cessing mode is not as short as that in the serial processing
mode) depending on a combination of the image processing
modules 38. In this exemplary embodiment, therefore, on the
basis of the type of processing (by comparing the parallel
processing degree and the overhead value), the selection
starter 45 selects and starts the parallel processing manager
46-1 or the serial processing manager 46-2. Details of the
selection of the selection starter 45 will be discussed later.
The operation of this exemplary embodiment will be dis

cussed below. If a device incorporating the image processing
program set 34 encounters a situation in which certain image
processing is required. Such a situation is detected by a spe
cific application program 32. The situations in which certain
image processing is required may include situations where: a
user gives an instruction to execute a job for reading an image
by using an image reader, which serves as the image data
Supply unit 22, and for recording the image on a recording
material by using an image recorder, which serves as the

10

15

25

10
image output unit 24, for displaying such an input image on a
display unit, which serves as the image output unit 24, for
writing image data representing such an input image into a
recording medium by using a writer, which serves as the
image output unit 24, sending image data representing Such
an input image by using a sender, which serves as the image
output unit 24, or for storing image data representing Such an
input image in an image storage unit, which serves as the
image output unit 24; and a user gives an instruction to
execute a job for receiving image data by using a receiver,
which serves as the image data Supply unit 22, for recording
image data stored in an image storage unit, which serves as
the image data Supply unit 22, on the above-described record
ing medium, displaying the received image data on a display
unit, writing the received image data into a recording
medium, sending the received image data, or storing the
received image data in animage storage unit. The situations in
which certain image processing is required are not restricted
to the situations described above. For example, the names of
processing operations that can be executed by the application
programs 32 in response to an instruction from a user may be
displayed on the display unit 16, and the user may select a
processing operation to be executed.
Upon detecting a situation in which certain image process

ing is required, as described above, a certain application
program 32 identifies the type of image data Supply unit 22
that supplies image data to be processed (see also step 150 of
FIG. 11). Then, the application program 32 identifies the type
of image output unit 24 which receives the image data Sub

30 jected to image processing (see also step 152 of FIG. 11).

35

40

45

50

55

60

65

Subsequently, the application program 32 identifies the
content of image processing to be executed, and decomposes
the image processing to be executed into a combination of
image processing operations corresponding to the module
generators 44. Then, the application program 32 determines
the types of image processing operations necessary for imple
menting the image processing and also determines the execu
tion order of the image processing operations (see also step
154 of FIG. 11). This determination may be made as follows.
The types of image processing operations described above
and the execution order of the image processing operations
are registered in advance in association with a type of job that
can be instructed by a user. When an instruction is given by a
user, the application program 32 reads information corre
sponding to the type of job instructed by a user.

Then, the application program 32 starts the selection starter
45 of the processing construction unit 42 (see also step 156 of
FIG. 11). The selection starter 45 first calculates the parallel
processing degree by using the parallel-processing-degree
calculator 45A (see also step 158 of FIG. 11).

In this case, the value representing the parallel-processing
degree is calculated by the following equation on the basis of
the processing load of each image processing module 38 and
the processing wait coefficient.

Parallel-processing degree-a total of values represent
ing processing loads of the individual image pro
cessing modules 38xprocessing wait coefficient

In this exemplary embodiment, the “processing load of
each image processing module 38 is represented by a load
(time necessary for performing the unit processing), which
has been measured in advance for each image processing
module38, by five levels (level 1 to level 5). As the level of the
processing load increases, the time necessary for performing
the unit processing increases. Alternatively, the processing
load of each image processing module 38 may be represented
by a value corresponding to the number of multiplications

US 8,819,396 B2
11

executed within the unit processing of each image processing
module 38. This is because the processing load increases as
the number of multiplications increases. Alternatively, the
processing load may be represented by a value corresponding
to the number of multiplications and additions executed
within the unit processing of each image processing module
38. As the processing load increases (as the above-described
value increases), the time taken for the plural image process
ing modules 38 to be operated in parallel increases. It is noted
that information concerning the processing loads of the indi
vidual image processing modules 38 is stored in the storage
unit 20 in advance.
A specific example of the calculations of the parallel-pro

cessing degree, the processing wait degree, and the overhead
value will be discussed with reference to FIG. 13. The values
representing the processing loads in the example shown in
FIG. 13 are added. Then, since the processing loads of the
image processing modules 38 are 1, 1, 3, and 1 in the order
from the upstream side to the downstream side of the con
nected image processing modules 38, the total value repre
senting the processing loads of the image processing modules
38 results in 6 (1+1+3+1=6).
The “processing wait coefficient' is a value obtained by

multiplying the processing wait degrees of the individual
image processing modules 38. The processing wait degree of
each image processing module 38 is a value representing how
much a particular image processing module 38 requires data
Subjected to processing performed by the previous image
processing module 38, in other words, how long the particular
image processing module 38 is required to wait for a process
ing result output from the previous image processing module
38. The processing wait degree of each image processing
module 38 is calculated by the following equation.

Processing wait degree of each image processing
module 38-1-unit-processing data amount
(data amount of the entirety of an image to be
processedx2)

The reason for multiplying the data amount of the entire
image to be processed by 2 in this equation is as follows. If the
unit-processing data amount of a particular image processing
module 38 is one frame, processing is Suspended at a position
of the particular image processing module 38 until the previ
ous image processing module 38 finishes processing for one
frame of the image. In other words, the particular image
processing module 38 cannot restart processing until the pre
vious image processing module 38 finishes the entire process
ing for the target image data, and thus, processing is sus
pended at the position of the particular image processing
module 38. As a result, parallel processing is not performed.
In this case, it is necessary to decrease the parallel-processing
degree. Accordingly, 2 is multiplied as an adjustment value.
The magnitude of the adjustment value may be determined
empirically by experiment.
An example of calculation of the processing wait coeffi

cient will be given below. In the example shown in FIG. 13,
the unit-processing data amounts (shown as the "number of
lines to be processed at one time' (line number unit) of the
individual image processing modules 38 are one line, 100
lines, 300 lines, and one line in the order from the upstream
side to the downstream side of the connected image process
ing modules 38, and the data amount of the entire image to be
processed (the height of the entire image represented by lines)
is 300 lines. Accordingly, the processing wait degree of the
first image processing module 38 (counted from the upstream
side) is results in 599/600 (1-1/(300x2)}=599/600). The
processing wait degrees of the second, third, and fourth image

10

15

25

30

35

40

45

50

55

60

65

12
processing modules 38 result in 5/6, 1/2, and 599/600, respec
tively. Thus, the processing wait coefficient is (599/600)x(5/
6)x(1/2)x(599/600)-0.42.
As a result, in the example shown in FIG. 13, the parallel

processing degree is calculated to be 6x0.42s2.5.
After calculating the parallel-processing degree, the over

head calculator 45B calculates the overhead value (see also
step 159 of FIG. 11). As the number of image processing
modules 38 increases, the overhead value increases. Also, as
the number of branches in processing increases, the amount
of exclusive control increases, and thus, the overhead value
increases. In this exemplary embodiment, therefore, a coef
ficient 1 and a coefficient 2 are set for serial connection and
parallel connection, respectively. The coefficient is given to a
target image processing module 38 in accordance with the
connection mode between the target image processing mod
ule 38 and the previous image processing module 38 (two
consecutive modules 38). Then, the coefficients are added as
the overhead value. It is noted that in this example, if the target
image processing module 38 is connected in parallel with the
previous image processing module 38, the coefficient 2 is
given to the target image processing module 38. In the
example shown in FIG. 13, since all the image processing
modules 38 are connected in serial with each other, the over
head value results in 4 (1+1+1+1=4).

In this example, the overhead value is calculated after the
parallel-processing degree has been calculated. However, the
overhead value may be calculated before the parallel-process
ing degree, or the overhead value and the parallel-processing
degree may be calculated simultaneously.

Subsequently, the parallel-processing-performance deter
mination unit 45C of the selection starter 45 determines the
parallel processing performance on the basis of the calculated
parallel-processing degree and overhead value (regarding
whether the time necessary to complete parallel image pro
cessing to be performed in the image processor 50 would be
shorter than the time necessary to complete serial image
processing) (see also step 160 of FIG. 11). If the parallel
processing degree is greater than the overhead value, it is
determined that the time necessary to complete parallel image
processing to be performed in the image processor 50 would
be shorter than the time necessary to complete serial image
processing. If the parallel-processing degree is Smaller than
the overhead value, it is determined that the time necessary to
complete parallel image processing to be performed in the
image processor 50 would be longer than serial image pro
cessing. If the parallel-processing degree is equal to the over
head value, it is determined that the time necessary for per
forming parallel image processing in the image processor 50
is equal to that for serial image processing. In the example
shown in FIG. 13, since the parallel-processing degree is 2.5
and the overhead value is 4, the parallel-processing degree is
smaller than the overhead value. It is thus determined that the
time necessary for performing parallel image processing
would be longer than serial image processing. The parallel
processing-performance determination unit 45C outputs the
determination result to the start processor 45D.

Another specific example will be given below with refer
ence to FIGS. 14A through 14C.
The parallel-processing degree and the overhead value in

the image processor 50 shown in FIG. 14A are calculated as
follows.

Parallel-processing degree=(5+5+5+5)x1=20

Overhead value=1+1+1+1=4

US 8,819,396 B2
13

It is noted that the processing wait coefficient is calculated to
be (599/600)x(599/600)x(599/600)x(599/600)-1.

In this example, since the parallel-processing degree is
greater than the overhead value, the time necessary to com
plete parallel image processing would be shorter than the time
necessary to complete serial image processing. That is, high
performance can be expected by performing parallel process
1ng.
The parallel-processing degree and the overhead value in

the image processor 50 shown in FIG. 14B are calculated as
follows.

Parallel-processing degree=(2+3+3+3+2+3+1+1)x{(5/
6)x(5/6)x(5/6)}=104

Overhead value=1+2+2+2+1+1+1+1=11

It is noted that the processing wait degree of the image
processing module 38 that processes one line at one time
(unit-processing data amount is one line) is calculated to be
(599/600)-1.

In this example, since the parallel-processing degree is
Smaller than the overhead value, the time necessary to com
plete parallel image processing would be longer than the time
necessary to complete serial image processing. That is, high
performance cannot be expected even by performing parallel
processing.

The parallel-processing degree and the overhead value in
the image processor 50 shown in FIG. 14C are calculated as
follows.

Parallel-processing degree=(2+3+3+5+3)x1/2=9.5

Overhead value=1+2+2+1+1=7

As in the above-described examples, in this example, the
processing wait degree of the image processing module 38
that processes one line at one time (unit-processing data
amount is one line) is calculated to be (599/600)s 1.

In this example, since the parallel-processing degree is
greater than the overhead value, the time necessary to com
plete parallel image processing would be shorter than the time
necessary to complete serial image processing. That is, high
performance can be expected by performing parallel process
1ng.
The start processor 45D selects the parallel processing

manager 46-1 or the serial processing manager 46-2 in accor
dance with the determination result input from the parallel
processing-performance determination unit 45C (See also
step 166 of FIG.11). If the determination result shows that the
time necessary to complete parallel image processing would
be shorter than the time necessary to complete serial image
processing, the start processor 45D selects and starts the
parallel processing manager 46-1 so as to cause the parallel
processing manager 46-1 to perform parallel image process
ing. If the determination result shows that the time necessary
to complete parallel image processing would be longer than
the time necessary to complete serial image processing, the
start processor 45D selects and starts the serial processing
manager 46-2 so as to cause the serial processing manager
46-2 to perform serial image processing. If the determination
result shows that the time necessary for performing image
processing in the image processor 50 in accordance with the
parallel processing mode is equal to that in accordance with
the serial processing mode, any one of the parallel processing
manager 46-1 and the serial processing manager 46-2 may be
selected and started. Accordingly, it is determined in advance
which processing manager is to be selected, and the parallel
processing manager 46-1 or the serial processing manager
46-2 is selected and started in accordance with the setting.

10

15

25

30

35

40

45

50

55

60

65

14
Upon being started, the processing manager 46 enters an

operation state and waits for a requestorinstruction (a request
to generate a buffer module oran instruction to execute image
processing, which will be discussed later) to be input from an
external source.

After finishing starting the selection starter 45, the appli
cation program 32 identifies the type of image data Supply
unit 22 in step 150 of FIG. 11. If the type of image data supply
unit identified in step 150 of FIG. 11 is a buffer region (part of
the memory 14), the application program 32 Supplies infor
mation concerning the buffer region which has been specified
as the image data Supply unit 22 to the processing manager 46
in operation. The application program 32 then requests the
processing manager 46 to generate the buffer modules 40.
which function as the image data Supply unit 22 (not shown in
FIG. 11). In this case, the processing manager 46 loads the
program of the buffer controllers 40B into the memory 14 so
that the CPU 12 can execute the programs of the buffer
controllers 40B. The processing manager 46 also sets param
eters so that the buffer controllers 40B can identify the buffer
region (which has been specified as the image data Supply unit
22) as the buffers 40A which have already been secured. The
processing manager 46 thus generates the buffer modules 40.
which function as the image data Supply unit 22, and returns
a response to the application program 32. If the processing
manager 46 in operation is the parallel processing manager
46-1, the buffer modules 40 with an exclusive control func
tion are generated. If the processing manager 46 in operation
is the serial processing manager 46-2, the buffer modules 40
without an exclusive control function are generated.

If the type of image output unit identified in step 152 of
FIG. 11 is a buffer region (part of the memory 14), the appli
cation program 32 Supplies information concerning the buffer
region which has been specified as the image output unit 24 to
the processing manager 46 in operation. The application pro
gram 32 then requests the processing manager 46 to generate
the buffer modules 40, which function as the image output
unit 24 (not shown in FIG. 11). If the processing manager 46
in operation is the parallel processing manager 46-1, the
buffer modules 40 with an exclusive control function are
generated. If the processing manager 46 in operation is the
serial processing manager 46-2, the buffer modules 40 with
out an exclusive control function are generated.
The application program 32 also starts the module genera

tor 44 corresponding to the specific image processing on the
basis of the type of image processing operation and the execu
tion order determined in step 154 of FIG. 11 (see also step 168
of FIG. 11). The application program 32 then supplies infor
mation necessary for the module generator 44 to generate a
module set and parameters used for image processing to be
executed to the started module generator 44 (see also step 170
of FIG. 11), and then instructs the module generator 44 to
generate a module set. The information for the module gen
erator 44 to generate a module set includes input module
identification (ID) information for identifying an input mod
ule that inputs image data to the module set, output module
identification (ID) information for identifying an output mod
ule to which the module set outputs the image data, and input
image attribute information concerning attributes of the
image data to be input into the module set. If the required
image processing includes plural types of image processing
operations, the application program 32 carries out the follow
ing procedure. Upon receiving the completion of the genera
tion of a module set from the started module generator 44, the
application program 32 sequentially starts the other module
generators 44 corresponding to the image processing opera
tions, and sequentially supplies information necessary for the

US 8,819,396 B2
15

module generators 44 to generate module sets in ascending
order of image processing operations (steps 168 and 170 of
FIG. 11).

Concerning the above-described input module, the image
data supply unit 22 serves as the input module for the first
module set which is executed first in the execution order. For
each of the second and Subsequent module sets, the final
module (normally buffer module 40) of the previous module
set serves as the input module. Concerning the above-de
scribed output module, the image output unit 24 serves as the
output module for the final module set which is executed last
in the execution order. However, for the other module sets, an
output module is undefined, and thus, the application pro
gram 32 does not specify the output module, and if necessary,
the module generator 44 generates and sets the output mod
ule. Also, information concerning input image attributes and
image processing parameters are registered in advance in
association with the types of jobs that can be instructed by a
user. When an instruction is given by a user, the application
program 32 reads information corresponding to the type of
job instructed by a user and identifies the corresponding input
image attributes and image processing parameters. Alterna
tively, the user may specify input image attributes and image
processing parameters.

The application program 32 starts the module generator 44
to cause it to perform module generation processing (see also
step 172-1 of FIG. 11). In the module generation processing,
the module generator 44 first obtains input image attribute
information concerning the attributes of input image data to
be input into the image processing module 38. If there is a
buffer module 40 positioned prior to an image processing
module 38 to be generated, the attributes of input image data
may be obtained from the attributes of output image data
output from the image processing module 38 positioned prior
to the buffer module 40.

It is then determined on the basis of the attributes of the
input image data whether it is necessary to generate an image
processing module 38. For example, it is now assumed that
the module generator 44 is a module generator which gener
ates a module set for performing color conversion, and that a
CMY color space is specified as the color space of output
image data by the image processing parameters. In this case,
if the input image data is found to be RGB color space data on
the basis of the obtained input image attribute information, it
is necessary to generate an image processing module 38 for
performing color conversion from a RGB color space to a
CMY color space. However, if the input image data is found
to be CMY color space data, the attributes of the input image
data match the attributes of the output image data in terms of
the color space. Thus, it is not necessary to generate an image
processing module 38 for performing color conversion pro
cessing.

If it is determined that it is necessary to generate an image
processing module 38, a determination is made regarding
whether it is necessary to generate a buffer module 40 posi
tioned Subsequent to the image processing module 38. If an
output module (image output unit 24) is positioned Subse
quent to the image processing module 38 to be generated
(e.g., see the final image processing module 38 in the image
processor 50 shown in FIGS. 3A through 3C), or if an image
processing module 38 performs image processing (e.g.,
analysis) on image data and outputs an image processing
(analysis) result to another image processing module 38, Such
as the image processing module 38 for performing skew
angle detection processing in the image processor 50 shown
in FIG.3B, it is determined that it is not necessary to generate
a buffer module 40. However, except for the above-described

10

15

25

30

35

40

45

50

55

60

65

16
cases, it is determined that it is necessary to generate a buffer
module 40. Then, the application program 32 requests the
processing manager 46 in operation to generate a buffer mod
ule 40 to be connected to the image processing module 38
(Subsequent to the image processing module 38).
Upon receiving a request to generate a buffer module 40.

the processing manager 46 loads a program of the buffer
controller 40B into the memory 14 so that the CPU 12 can
execute the program of the buffer controller 40B, thereby
generating the buffer module 40 (see also step 172-2 of FIG.
11). The processing manager 46 then returns a response to the
module generator 44. If the processing manager 46 in opera
tion is the parallel processing manager 46-1, the buffer mod
ule 40 with an exclusive control function is generated. If the
processing manager 46 in operation is the serial processing
manager 46-2, the buffer module 40 without an exclusive
control function is generated.

Subsequently, the module generator 44 Supplies informa
tion concerning a module (e.g., buffer module 40) positioned
prior to the image processing module 38 (such a module may
be referred to as the “previous module'), information con
cerning a buffer module 40 positioned subsequent to the
image processing module 38 (such a module may be referred
to as the “subsequent buffer module') (only when the subse
quent buffer module 40 has been generated), attributes of
input image data to be input into the image processing module
38, and processing parameters to the processing manager 46.
Then, the module generator 44 selects, from among plural
candidate modules that are registered in the module library 36
and that can be used as the image processing module 38, the
image processing module 38 that matches the obtained
attributes of the input image data and the processing param
eters to be executed in the image processing module 38. The
module generator 44 then loads the program of the selected
image processing module 38 into the memory 14 So that the
CPU 12 can execute the program, and sets parameters that
enable the controller 38B of the image processing module 38
to identify the modules positioned prior to and Subsequent to
the image processing module 38. As a result, the image pro
cessing module 38 is generated.

It is now assumed that the module generator 44 is a module
generator that generates a module set for performing color
conversion, and that a CMY color space is specified as the
color space of output image data by the image processing
parameters and the input image data is RGB color space data.
In this case, from among plural image processing modules 38
that are registered in the module library 36 and that perform
various types of color conversion processing operations, the
image processing module 38 that performs RGB->CMY
color space conversion is selected and generated. If the image
processing module 38 is an image processing module that
performs enlargement/reduction processing and if the speci
fied enlargement/reduction ratio is other than 50%, the image
processing generator 38 that performs enlargement/reduction
processing with a specified enlargement/reduction ratio is
selected and generated. If the specified reduction ratio is 50%,
the image processing module 38that performs reduction pro
cessing with a reduction ratio 50%, i.e., the image processing
module 38that reduces input image data by 50% by sampling
every other pixel, is selected and generated.
The selection of the image processing module 38 is not

restricted to the above-described examples. For example, the
unit-processing data amount in the image processing per
formed by the image processing engines 38A may be differ
ent among the image processing modules 38. Such image
processing modules 38 may be registered in the module
library 36. Then, the image processing module 38 having a

US 8,819,396 B2
17

Suitable unit-processing data amount is selected in accor
dance with the operating environments, such as the size of a
memory area which can be assigned to the image processor
50. For example, as the size of the memory area decreases, the
image processing module 38 having a smaller unit-process
ing data amount is selected. Alternatively, the application
program 32 or a user may select the image processing module
38.
Upon completion of the generation of the image processing

module 38, a set of the ID of the subsequent buffer module 40
and the ID of the generated image processing module 38 is
informed to the processing manager 46 in operation. Any type
of information may be given to those IDs as long as the
individual modules can be uniquely identified. For example,
the numbers assigned to the individual modules in the order in
which the modules have been generated, or addresses
assigned to the objects forming the buffer module 40 and the
image processing module 38 in the memory 14 may be used.
If the module generator 44 generates a module set for per
forming image processing implemented by plural image pro
cessing modules 38 (e.g., skew correction processing imple
mented by the image processing module 38 that performs
skew-angle detection processing and the image processing
module 38 that performs image rotation processing), the
above-described processing is repeated so as to generate a
module set including two or more image processing modules
38. The individual module generators 44 that are sequentially
started by the application program 32 construct the image
processor 50 that performs required image processing, as
shown in FIGS. 3A through 3C.
Upon completion of the construction of the image proces

sor 50 that performs required image processing, the applica
tion program 32 instructs the processing manager 46 in opera
tion to execute image processing by use of the image
processor 50 (see also step 174 of FIG. 11). In response to an
instruction from the application program 32, the processing
manager 46 causes the CPU 12 to execute, as threads, the
programs of the individual modules forming the image pro
cessor 50 that are loaded into the memory 14 through the use
of the OS 3.0 (see also step 176 of FIG. 11). If the processing
manager 46 in operation is the parallel processing manager
46-1, the parallel processing manager 46-1 causes the CPU 12
to execute, as independent threads, the programs of the indi
vidual modules forming the image processor 50 so that the
individual image processing modules 38 perform image pro
cessing in parallel. If the processing manager 46 in operation
is the serial processing manager 46-2, the serial processing
manager 46-2 causes the CPU 12 to execute, as a single
thread, the programs of the individual modules forming the
image processor 50. Instead of threads, the processing man
ager 46 may cause the CPU 12 to execute the programs of the
individual modules as processes or objects.
As described in the operation of the selection starter 45,

exclusive control to be performed when plural image process
ing modules 38 are connected in parallel causes overhead.
Not only exclusive control, but also thread starting control
causes overhead. More specifically, in the serial processing
mode, the image processing modules 38 are started one by
one in the order in which they are connected from the
upstream side to the downstream side. In contrast, in the
parallel processing mode, it is necessary to determine which
thread is to be started in order to perform parallel processing.
This is not necessary in the serial processing mode. Accord
ingly, thread starting control causes overhead in the parallel
processing mode. In the above-described example, the over
head value is calculated in accordance with the connection
mode. If the thread starting control is also considered toward

10

15

25

30

35

40

45

50

55

60

65

18
calculating the overhead value, the number of image process
ing modules 38 forming the image processor 50 may be used
as a parameter for determining the overhead value. As the
number of image processing modules 38 increases, the over
head value increases.
When the programs of the image processing modules 38

are executed as threads, the controller 38B of each of the
image processing modules 38 initializes the image processing
module 38 including that controller 38B. The initialization of
the image processing module 30 is performed as follows. The
controller38B first determines on the basis of the parameters
set by the module generator 44 whether there is a module
positioned prior to the image processing module 38 (herein
after may referred to as the “previous module'). If there is no
previous module positioned prior to the image processing
module 38, the controller 38B does not execute any process
ing. If there is a previous module and if such a previous
module is other than the buffer module 40, e.g., if the previous
module is the image data Supply unit 22 or a specific file, the
controller38B initializes such a module. If the previous mod
ule is a buffer module 40, the controller38B identifies the unit
read data amount, which is the data amount by which the
image processing module 38 obtains image data from the
previous buffer module 40 at one time.

There is only one type of unit read data amount if the
number of previous buffer modules 40 is one. However, as in
the image processing module 38 that performs image com
posing processing in the image processor 50 shown in FIG.
3C, if the number of previous buffer modules 40 is more than
one and if the image processing engine 38A performs image
processing by using image data obtained from each of the
previous buffer modules 40, the unit read data amount corre
sponding to each of the previous buffer modules 40 is deter
mined by the type and the content of image processing to be
performed in the image processing engine 38A and the num
ber of previous buffer modules 40. Then, the controller38B of
the image processing module 38 reports the identified unit
read data amounts to all the previous buffer modules 40 so
that the unit read data amount can be set in the corresponding
buffer modules 40 (see also (1) of FIG. 4A).

Then, the controller 38B of the image processing module
38 determines whether there is a module disposed at a posi
tion after the image processing module 38 (hereinafter may
be referred to as the “subsequent module'). If there is a
Subsequent module and if such a Subsequent module is other
than a buffer module 40, e.g., if the subsequent module is the
image output unit 24 or a specific file, the controller 38B
performs initialization processing if necessary. For example,
if the Subsequent module is the image output unit 24, the
controller 38B informs the image output unit 24 that image
data is output by an amount corresponding to the unit write
data amount. If the subsequent module is a buffer module 40,
the controller 38B identifies the data amount by which image
data is written at one time (unit write data amount), and sets
the unit write data amount in the subsequent buffer module 40
(see also (2) of FIG. 4A). Then, the controller38B informs the
processing manager 46 of the completion of the initialization
of the image processing module 38.

If the programs of the buffer controllers 40B of the buffer
modules 40 are executed as threads, the buffer controller 40B
of each of the buffer modules 40 initializes the buffer module
40 including that buffer controller 40B. More specifically,
upon receiving information concerning the unit write data
amount from the previous image processing module 38 or
upon receiving information concerning the unit read data
amount from the Subsequent image processing module 38, the

US 8,819,396 B2
19

buffer module 40 stores the unit write data amount or the unit
read data amount (see also (1) and (2) of FIG. 4B).
Upon receiving the unit write data amount and the unit read

data amount from all the image processing modules 38 con
nected to the buffer module 40, the buffer module 40 deter
mines, on the basis of the unit write data amount and the unit
read data amount which are set in the image processing mod
ules 38 connected to the buffer module 40, the size of a unit
buffer region, which is a management unit of the buffer 40A
of the buffer module 40, and stores the determined size of the
buffer region therein. As the size of the unit buffer region, the
maximum value of the unit write data amount and the unit
read data amounts set in the image processing modules 38 is
Suitably used. Alternatively, the unit write data amount may
be set, or the unit read data amount may be set (if plural image
processing modules 38 are disposed after the buffer module
40, the maximum value of the unit read data amounts which
are set in the image processing modules 38 may be set).
Alternatively, the lowest common multiple of the unit write
data amount and the maximum value of the unit read data
amounts may be set. If the lowest common multiple is Smaller
than a predetermined value, the lowest common multiple may
be set. If the lowest common multiple is equal to or greater
than the predetermined value, another value (e.g., the maxi
mum value of the unit write data amount and the unit read data
amounts, the unit write data amount, or the maximum value of
the unit read data amounts) may be set.

If the buffer module 40 is a buffer module 40 which serves
as the image data Supply unit 22 or the image output unit 24,
the memory area used as the buffer 40A of the buffer module
40 has already been secured. Accordingly, the size of the unit
buffer region determined as described above is changed to the
size of the memory area used as the buffer 40A of the buffer
module 40. The buffer module 40 also generates a valid data
pointer corresponding to each of the image processing mod
ules 38 positioned subsequent to the buffer module 40, and
initializes the generated valid data pointers. The valid data
pointer is a pointer indicating the head position (next read
start position) and the end position of each of image data
elements (valid data elements) which have been written into
the buffer 40A of the buffer module 40 by the previous image
processing modules 38 and which have not been read by the
corresponding Subsequent image processing modules 38.
When initializing the buffer module 40, specific information
indicating that there is no valid data in that buffer module 40
is set. However, if the buffer module 40 is a buffer module 40
which serves as the image data Supply unit 22, image data to
be processed may have already been stored in the memory
area used as the buffer 40A of the buffer module 40, and in this
case, the head position and the end position of the image data
are set in the valid data pointer corresponding to each of the
Subsequent image processing modules 38. As a result of per
forming the above-described processing, the initialization of
the buffer module 40 is completed, and the buffer controller
40B informs the processing manager 46 of the completion of
the initialization.
Upon receiving information concerning the completion of

the initialization from all the modules forming the image
processor 50, the processing manager 46 starts threads (or
processes or objects) that execute the program of the work
flow manager 46A and instructs the workflow manager 46A
to execute image processing by using the image processor 50.
The types of processing operations performed by the work
flow managers 46A of the processing managers 46 whose
programs are registered in the processing manager library 47
are different from each other. If the processing manager 46 in
operation is the parallel processing manager 46-1, the work

10

15

25

30

35

40

45

50

55

60

65

20
flow manager 46A performs parallel control processing. Such
as that shown in FIG. 8A or 8B. If the processing manager 46
in operation is the serial processing manager 46-2, the work
flow manager 46A performs block-unit serial control pro
cessing, such as that shown in FIG. 10A or 10B. A processing
request is input into the image processing module 38 forming
the image processor 50, and then, the image processor 50
performs image processing under the control of the above
described parallel control processing or serial control pro
cessing. Before describing the operation performed by the
entire image processor 50, processing performed by the
buffer controller 40B of each of the buffer modules 40 and
processing performed by the controller 38B of each of the
image processing modules 38 are sequentially described.

In this exemplary embodiment, when the image processing
module 38 writes image data into the subsequent buffer mod
ule 40, a write request is input from the image processing
module 38 into the subsequent buffer module 40. When the
image processing module 38 reads image data from the pre
vious buffer module 40, a read request is input from the image
processing module 38 into the previous buffer module 40. If
a write request is input from the previous image processing
module 38 into the buffer module 40 with an exclusive control
function (and if a time-out occurs in a timer, which will be
discussed later), the following data write processing is
executed by the buffer controller 40B.

In the data write processing performed by the buffer con
troller 40B of the buffer module 40 with an exclusive control
function, the buffer controller 40B first determines whether
access is being made to the buffer 40A of the buffer module
40. When the image processing modules 38 forming the
image processor 50 perform image processing in parallel, the
reading of data from the buffer 40A is also performed asyn
chronously with the writing of data into the buffer 40A.
Accordingly, if access is being made to the buffer 40A, the
buffer controller 40B stores write request information which
has been input into the buffer 40A in a work memory, and
starts a timer, thereby temporarily discontinuing the data
writing processing. In the following processing, the input
write request information is to be processed. If a time-out
occurs in the timer so as to restart data write processing, write
request information that has been input and stored in a work
memory is extracted from the work memory and is Subjected
to the following processing.

If access is not being made to the buffer 40A, in the data
write processing, the buffer controller 40B informs the
resource manager 46B of the unit write data amount as the
size of a memory area to be secured, and obtains, via the
resource manager 46B of the processing manager 46 in opera
tion, a memory area used for writing data (write buffer region,
see also FIG. 5B), which may be referred to as the “write
memory area'. Then, the buffer controller 40B determines
whether there is a unit buffer region having a space which is
equal to or greater than the unit write data amount in the
storage unit buffer region forming the buffer 40A of the buffer
module 40. In other words, the buffer controller 40B deter
mines whether there is a unit buffer region into which image
data having the unit write data amount can be written. In the
buffer module 40 generated by the module generator 44, a
memory area (unit buffer region) used as the buffer 40A is not
initially secured. Every time there is a shortage of a memory
area, a memory area is secured as the unit buffer region.
Accordingly, when a write request is input into the buffer
module 40 for the first time, there is no memory area (unit
buffer region) used as the buffer 40A. It is thus determined
that there is no unit buffer region having a space which is
equal to or greater than the unit write data amount. Even after

US 8,819,396 B2
21

the unit buffer region used as the buffer 40A is secured as a
result of the following processing, it is determined that there
is no such unit buffer region if the space in the unit buffer
region has become Smaller than the unit write data amount as
a result of writing image data into the unit buffer region.

If it is determined that there is no unit buffer region having
a space which is equal to or greater than the unit write data
amount, the buffer controller 40B informs the resource man
ager 46B of the size of a memory area (unit buffer region) to
be secured. The buffer controller 40B then obtains a memory
area (unit buffer region used for storing image data) used as
the buffer 40A via the resource manager 46B. Then, the buffer
controller 40B notifies the image processing module 38 that
has sent a write request of the head address of the write buffer
region obtained as described above, and also requests the
image processing module 38 to write the Subject image data
from the head address. As a result of this processing, the
image processing module 38 writes the Subject image data
into the write buffer region from the head address (see also
FIG. 5B).

If the size of the unit buffer region is not an integral mul
tiple of the unit write data amount, as a result of repeatedly
writing the unit write data amount of image data into the
buffer 40A (unit buffer region), the remaining space in the
unit buffer region may become smaller than the unit write data
amount, as shown in FIG. 5A. In this case, the unit write data
amount of image data is stored in more than one unit buffer
regions. In this exemplary embodiment, a memory area used
as the buffer 40A is secured in units of unit buffer regions, and
thus, unit buffer regions which are secured at different times
are not necessarily continuous regions in the real memory
(memory 14). In this exemplary embodiment, however,
image data is temporarily written into a write buffer region,
which is secured separately from Storage buffer regions.
Accordingly, image data that has temporarily been written
into the write buffer region is copied into a single or plural
storage unit buffer regions, as shown in FIG. 5C. Thus,
regardless of whether or not the image data is written into
plural unit buffer regions, it is sufficient that information
concerning the head address of the write buffer region (write
area) be supplied to the image processing module 38 that has
sent a write request. With this arrangement, an interface with
the image processing module 38 can be simplified.

If the buffer module 40 is a buffer module that has been
generated by the application program 32, that is, if the
memory area used as the buffer 40A has already been secured,
the buffer controller 40B notifies the image processing mod
ule 38 of the address of the secured memory area as the
address of the write buffer region, and causes the image
processing module 38 to write image data into the memory
area. Upon completion of the writing of the image data into
the write buffer region, attribute information is added to the
image data written into the write buffer region, and the image
data is then written into a storage buffer region. If the size of
a space in the unit buffer region is smaller than the unit write
data amount, the image data written into the write buffer
region is divided into smaller data elements and the divided
data elements are written into plural storage unit buffer
regions, as shown in FIG. 5C.

Then, among the valid data pointers corresponding to the
individual image processing modules 38 positioned Subse
quent to the buffer module 40, the pointer indicating the end
position of the valid data is updated so that the end position of
the valid data indicated by the pointer is moved forward by an
amount equal to the unit write data amount (see also FIG.5C).
Also, the buffer controller 40B causes the resource manager
46B to release the memory area secured as the write buffer

10

15

25

30

35

40

45

50

55

60

65

22
region, and temporarily discontinues the data write process
ing. It is noted that the write buffer region may be secured
when the buffer module 40 is initialized, and may be released
when the buffer module 40 is erased.
The above-described data write processing is performed by

the buffer controller 40B of the buffer module 40 with an
exclusive control function which is integrated into the parallel
image processor 50. The data write processing performed by
the buffer controller 40B of the buffer module 40 without an
exclusive control function integrated into the serial image
processor 50 is the same as the above-described data write
processing, except that the exclusive control processing is not
performed, i.e., the buffer controller 40B does not follow the
following procedure: the buffer controller 40B determines
whether access is being made to the buffer 40A, and if so,
write request information is stored, and a timer is started; and
if a time-out occurs in the timer, the buffer controller 40B
determines again whether access is being made to the buffer
40A. The exclusive control processing, which is not neces
sary in the serial processing, is omitted in the data write
processing in the buffer module 40 without an exclusive con
trol function, thereby improving processing efficiency.
A description will now be given of data read processing

executed by the buffer controller 40B of the buffer module 40
with an exclusive control function when a read request is
input from the Subsequent image processing module 38 into
the buffer module 40 (and when a time-out occurs in a timer,
which will be discussed later).

In the data read processing performed by the buffer con
troller 40B of the buffer module 40 with an exclusive control
function, the buffer controller 40B determines whether the
start of the data read processing is due to the input of a read
request from the Subsequent image processing module 38. If
the result of this determination is YES, information concern
ing the read request input from the Subsequent image process
ing module 38 is registered at the end of a read queue. The
buffer controller 40B then determines whether access is being
made to the buffer 40A of the buffer module 40. If access is
being made to the buffer 40A, the buffer controller 40B deter
mines whether read request information is registered in the
read queue. If read request information is not registered in the
read queue, the buffer controller 40B terminates the data read
processing. If read request information is registered in the
read queue, the buffer controller 40B starts a timer and dis
continues the data read processing. If a time-out occurs in the
timer, the buffer controller 40B restarts the data read process
ing to extract the read request which has been registered in the
read queue and which has not been processed, and performs
processing in accordance with the read request.

Because of this exclusive control in the data read process
ing and in the above-described data write processing, the
occurrence of possible inconveniences when plural requests
are simultaneously or Substantially simultaneously input into
a single buffer module 40 can be avoided. This makes it
possible for the CPU 12 of the computer 10 to execute threads
corresponding to the individual modules of the parallel image
processor 50 in parallel.

If the buffer controller 40B determines that access is not
being made to the buffer 40A of the buffer module 40, read
request information registered at the head of the read queue is
extracted. Then, on the basis of request source ID information
contained in the extracted read request information, the buffer
controller 40B identifies the image processing module 38that
has sent a read request, and also identifies the unit read data
amount set by the image processing module 38. The buffer
controller 40B also identifies, on the basis of the valid data
pointer corresponding to the image processing module 38, the

US 8,819,396 B2
23

head position and the end position of the valid data in the
buffer 40A. Then, the buffer controller 40B determines, on
the basis of the head position and the end position of the valid
data, whether the valid data corresponding to the image pro
cessing module 38 (image data that can be read by the image
processing module 38) is equal to or greater than the unit read
data amount.

If the valid data corresponding to the image processing
module 38 is smaller than the unit read data amount, a deter
mination is further made regarding whether or not the end of
the valid data that can be read by the image processing mod
ule 38 coincides with the end of the image data to be pro
cessed. If the valid data corresponding to the image process
ing module 38 is equal to or greater than the unit read data
amount, or if the end of the valid data coincides with the end
of the image data to be processed even if the valid data
corresponding to the image processing module 38 is Smaller
than the unit read data amount, the buffer controller 40B
performs the following processing. The buffer controller 40B
informs the resource manager 46B of the unit read data
amount corresponding to the image processing module 38 as
the size of a memory area to be secured, and also requests the
resource manager 46B to secure a memory area to be used for
reading data (read buffer region, see also FIG. 6B) and obtains
a read buffer region via the resource manager 46B.

Then, the buffer controller 40B reads the unit read data
amount of valid data from the buffer 40A and writes the valid
data into the read buffer region. The buffer controller 40B
then informs the image processing module 38 of the head
address of the read buffer region as the head address of the
read area, and also requests the image processing module 38
to read the image data from the head address. Upon receiving
this request, the image processing module 38 reads the image
data from the read area (read buffer region) from the head
address. If the end of the valid data coincides with the end of
the image data to be processed, when sending a request to read
the image data, the buffer controller 40B informs the image
processing module 38, together with the size of the image
data to be read, that the end of the valid data coincides with the
end of the image data to be processed. If the buffer module 40
is a buffer module that has been generated by the application
program 32, the memory area (a set of unit buffer regions)
used as the buffer 40A is a continuous region. Accordingly,
the securing of a read buffer region and the writing of image
data into the read buffer region may be omitted, and then, the
image processing module 38 may directly read the image data
from the unit buffer region.
As shown in FIG. 6A, if the valid data is stored in more than

one unit buffer region because the amount of image data,
which is the head portion of the valid data, stored in the unit
buffer region is Smaller than the unit read data amount, the
valid data to be read is not necessarily stored in continuous
regions in the real memory (memory 14). However, in the data
read processing, even in this case, as shown in FIGS. 6B and
6C, the image data to be read is temporarily written into the
read buffer region, and is then read from the read buffer
region. Thus, regardless of whether or not the image data to be
read is written into plural unit buffer regions, it is sufficient
that information concerning the head address of the read area
be supplied to the image processing module 38that has sent a
read request. With this arrangement, an interface with the
image processing module 38 can be simplified.
Upon receiving a reading completion notification from the

image processing module 38, the buffer controller 40B
informs the resource manager 46B of the head address and the
size of the memory area secured as the read buffer region, and
causes the resource manager 46B to release the memory area.

10

15

25

30

35

40

45

50

55

60

65

24
As in the write buffer region, the read buffer region may be
secured when the buffer module 40 is initialized, and may be
released when the buffer module 40 is erased. Additionally,
the pointer indicating the head position of the valid data is
updated so that the head position of the valid data indicated by
the pointer is moved forward by an amount equal to the unit
read data amount (see also FIG. 6C).

Subsequently, by referring to each of the valid data pointers
corresponding to the Subsequent image processing modules
38, the buffer controller 40B determines whether, among the
unit buffer regions forming the buffer 40A, a unit buffer
region from which the image data has been completely read
by the corresponding image processing module 38, i.e., a unit
buffer region in which valid data is not stored, has appeared as
a result of updating the pointers. If the result of this determi
nation is NO, the buffer controller 40B performs read-queue
check processing. More specifically, the buffer controller 40B
checks whether read request information is registered in the
read queue, and then, completes the data read processing. If
the result of this determination is YES, the buffer controller
40B causes the resource manager 46B to release the corre
sponding unit buffer region, and then, performs the above
described read-queue check processing. The buffer controller
40B then completes the data read processing.
On the other hand, if the amount of valid data which is

stored in the buffer 40A and which can be read by the image
processing module 38 is Smaller than the unit read data
amount, and if the end of the valid data does not coincide with
the end of the image data to be processed (if valid data is not
detected in (4) of FIG. 4B), the buffer controller 40B outputs
a data request to request the workflow manager 46A to send
new image data to the workflow manager 46A (see also (5) of
FIG. 4B), and then registers again the read request informa
tion which has been extracted from the read queue at the head
or the end of the read queue. The buffer controller 40B then
performs the read-queue check processing and completes the
data read processing. In this case, a processing requestis input
into the image processing module 38 positioned prior to the
buffer module 40 by the workflow manager 46A. Therefore,
the corresponding read request information is stored in the
read queue and is regularly extracted so that the execution of
the requested processing is attempted until it is determined
that the amount of valid data to be read is equal to or greater
than the unit read data amount or the end of the valid data
coincides with the end of the image data to be processed.
Upon receiving a data request from the buffer module 40,

the workflow manager 46A inputs a processing request into
the image processing module 38 positioned prior to the buffer
module 40 (see also (6) of FIG. 4B). In response to this
processing request as a trigger, the controller 38B of the
image processing module 38 performs the corresponding pro
cessing so that the image processing module 38 is ready to
write image data into the buffer module 40. Then, the image
processing module 38 inputs a write request into the buffer
module 40 so as to cause the buffer module 40 to perform the
above-described data write processing. Then, the image data
is written into the buffer 40A of the buffer module 40 from the
previous image processing module 38 (see also (7) and (8) of
FIG. 4B). This makes it possible for the subsequent image
processing module 38 to read the image data from the buffer
40A (see also (9) of FIG. 4B). Details of this processing will
be discussed later.
The above-described data read processing is performed by

the buffer controller 40B of the buffer module 40 with an
exclusive control function which is integrated into the parallel
image processor 50. The data read processing performed by
the buffer controller 40B of the buffer module 40 without an

US 8,819,396 B2
25

exclusive control function which is integrated into the serial
image processor 50 is the same as the above-described data
read processing, except that the exclusive control processing
is not performed, i.e., the buffer controller 40B does not
follow the following procedure: the buffer controller 40B
determines whether access is being made to the buffer 40A,
and also determines whether read request information is reg
istered in a queue; if the two conditions are satisfied, a timer
is started; if a time-out occurs in the timer, the buffer control
ler 40B determines again whether access is being made to the
buffer 40A; and after finishing processing a single read
request, the buffer controller 40B checks again whether read
request information is stored in the queue. The exclusive
control processing, which is not necessary in the serial pro
cessing, is omitted in the data read processing in the buffer
module 40 without an exclusive control function, thereby
improving processing efficiency.
A description will now be given, with reference to FIG. 7,

of image-processing-module control processing that is per
formed by the controller38B of each of the image processing
modules 38 forming the image processor 50 every time a
processing request is input from the workflow manager 46A
into the image processing module 38. The configuration of
the parallel image processor 50 is the same as that of the serial
image processor 50. Thus, the image-processing-module
control processing will be described without considering
whether the image processor 50 is the parallel image proces
sor 50 or the serial image processor 50.

In the image-processing-module control processing, in
step 219, on the basis of the type and the content of image
processing to be performed by the image processing engine
38A, the controller 38B identifies the size of a memory used
by the image processing module 38 and the presence or the
absence of other resources. The major part of the memory
used by the image processing module 38 is a memory neces
sary for performing image processing by the image process
ing engine 38A. However, if the previous module is the image
data Supply unit 22 or if the Subsequent module is the image
output unit 24, a buffer memory may be necessary for tem
porarily storing image data when sending and receiving the
image data to and from the previous module or the Subsequent
module. Also, if information concerning, for example, a table,
is contained in processing parameters, a memory area for
storing Such information may be necessary. Then, the con
troller 38B requests the resource manager 46B to secure a
memory area having the identified size, and obtains the
secured memory area from the resource manager 46B. If the
image processing engine 38A of the image processing mod
ule 38 needs a resource other than the memory, the controller
38B requests the resource manager 46B to secure the required
resource and obtains the required resource from the resource
manager 46B.

In step 220, if a module (buffer module 40, image data
Supply unit 22, or image processing module 38) is positioned
prior to the image processing module 38, the controller 38B
requests such a module to send data (image data or an image
processing result, such as analyzed data). Then, in step 222,
the controller 38B determines whether it is possible to obtain
data from the previous module. If the result of step 222 is NO.
the controller 38B determines in step 224 whether a process
ing completion notification has been received. If the result of
step 224 is NO, the controller38B returns to step 222 to repeat
steps 222 and 224 until it is determined in step 222 that it is
possible to obtain data from the previous module. If the result
of step 222 is YES, the controller38B proceeds to step 226 to
perform data obtaining processing. More specifically, the
controller 38B obtains data from the previous module, and

10

15

25

30

35

40

45

50

55

60

65

26
writes the obtained data into a temporary storage memory
area of the memory obtained in step 219.

It is now assumed that the previous module is the buffer
memory 40. In this case, the controller 38B requests the
previous module to send data in step 220, and if valid data
stored in the buffer 40A of the buffer module 40 is equal to or
greater than the unit read data amount, or if the end of the valid
data coincides with the end of image data to be processed, the
buffer module 40 immediately informs the image processing
module 38 of the head address of the read area so as to request
the image processing module 38 to read the image data. Even
if neither of the above-described two conditions is satisfied,
the image processing module 38 positioned prior to the buffer
module 40 writes image data into the buffer 40A of the buffer
module 40, and then, one of the two conditions is satisfied.
Then, the buffer module 40 immediately informs the image
processing module 38 of the head address of the read area so
as to request the image processing module 38 to read the
image data. After this processing, the result of step 222 has
become YES, and the controller38B proceeds to step 226. In
step 226, the controller38B performs data obtaining process
ing. More specifically, the controller 38B reads the unit read
data amount of image data (or a data amount Smaller than the
unit read data amount) from the head address of the read area,
and writes the image data into a temporary storage memory
area (see also (3) of FIG. 4A).

It is now assumed that the previous module of the image
processing module 38 is the image data Supply unit 22. In this
case, the controller38B requests the previous module to send
data in step 220, and then, in step 222, the image data Supply
unit 22 immediately informs the image processing module 38
that it is possible to obtain data. Accordingly, the result of step
222 is YES, and the controller 38B proceeds to step 226 to
perform data obtaining processing. More specifically, the
controller 38B obtains the unit read data amount of image
data from the image data Supply unit 22 and writes the image
data into a temporary storage memory area. It is now assumed
that the previous module of the image processing module 38
is the image processing module 38. In this case, the controller
38B requests the previous module to send data in step 220,
and then, in Step 222, if the previous image processing mod
ule 38 is ready to execute image processing, a write request is
input. Thus, the previous image processing module 38
informs that it is possible to obtain data. Accordingly, the
result of step 222 is YES, and the controller 38B proceeds to
step 226 to perform data obtaining processing. More specifi
cally, the controller 38B informs the previous image process
ing module 38 of the address of the temporary storage
memory area and causes the previous image processing mod
ule 38 to write data into the temporary storage memory area.

In step 228, the controller 38B determines whether plural
modules are connected Subsequent to the image processing
module 38. If the result of step 228 is NO, the controller 38B
proceeds to step 232. If the result of step 228 is YES, the
controller 38B proceeds to step 230 to determine whether
data has been obtained from all the modules connected to the
image processing module 38. If the result of step 230 is NO.
the controller 38B returns to step 220 and repeats steps 220
through 230 until the result of step 230 becomes YES. If it is
determined in step 230 that data has been obtained from all
the modules, the result of step 230 becomes YES, and the
controller 38B proceeds to step 232.

In step 232, the controller 38B requests the subsequent
module to secure a data output region. Then, the controller
38B determines in step 234 whether a data output region has
been secured. If the result of step 234 is NO, this determina
tion is repeated until a data output region has been obtained in

US 8,819,396 B2
27

step 232. If the subsequent module is a buffer module 40, the
above-described request to secure a data output region can be
made by outputting a write request to the buffer module 40. If
it is determined in step 234 that a data output region has been
secured (the head address of a write area if the subsequent
module is a buffer module 40) (see also (4) of FIG. 4A), the
controller 38B proceeds to step 236. In step 236, the control
ler 38B inputs data obtained in the data obtaining processing
in step 226, information concerning the data output region
secured from the subsequent module in step 234 (or the head
address of the data output region), and information concern
ing the image-processing memory area used by the image
processing engine 38A of the memory obtained in step 219
(the head address and the size of the memory area) into the
image processing engine 38A, and causes the image process
ing engine 38A to perform predetermined image processing
on the input data by using the image processing memory area
(see (5) of FIG. 4A). The controller38B also causes the image
processing engine 38A to input the processed data into the
data output region (see (6) of FIG. 4A). After the completion
of the input of the unit read data amount of image data into the
image processing engine 38A and after writing the entire data
output from the image processing engine 38A into the data
output region, the controller38B proceeds to step 238 so as to
inform the subsequent module that the output of data has been
completed.

After steps 220 through 238, processing for the image data
for the unit-processing data amount (unit processing) per
formed by the image processing module 238 has been com
pleted. By means of a processing request input from the
workflow manager 46A into the image processing module 38.
the workflow manager 46A may specify the number of unit
processing operations to be executed. Accordingly, in step
240, the controller 38B determines whether the number of
executed unit processing operations has reached the specified
number of unit processing operations. If the specified number
of unit processing operations is one, the result of this deter
mination is unconditionally YES. If the number of unit pro
cessing operations is two or more, the process returns to step
220, and the controller 38B repeats steps 220 through 240
until the result of step 240 becomes YES. If the result of step
240 is YES, the controller 38B proceeds to step 242 to output
a processing completion notification to the workflow man
ager 46A in order to inform the workflow manager 46A that
processing for the input processing request has been com
pleted. Then, in step 243, the controller 38B releases the
memory. Then, the controller 38B completes the image-pro
cessing-module control processing.
The above-described processing is repeated every time a

processing request is input from the workflow manager 46A.
As a result, when the entire image data has been processed
until the end, the previous module informs the image process
ing module 38 that the processing for the entire image data
has been completed. Then, the result of step 224 is YES, and
the controller 38B proceeds to step 244. In step 244, the
controller 38B outputs a processing completion notification
indicating that image data has been processed to the workflow
manager 46A and the Subsequent module. It is noted that, in
most cases, image data to be processed represents one page of
an image, but may represent plural pages of images. In step
246, the controller 38B requests the resource manager 46B to
release all the obtained resources so as to erase the image
processing module 38. Then, the image-processing-module
control processing has been completed.

If the processing manager 46 in operation is the parallel
processing manager 46-1, the workflow manager 46A per
forms parallel control processing 1 shown in FIG. 8A in

5

10

15

25

30

35

40

45

50

55

60

65

28
response to an instruction to execute image processing. As
described above, in a processing request input from the work
flow manager 46A into each of the image processing modules
38 of the image processor 50, the workflow manager 46A may
specify the number of unit processing operations to be
executed. In parallel control processing 1, in step 500, the
workflow manager 46A determines for each image process
ing module 38 the number of unit processing operations
which is specified in one processing request. The number of
unit processing operations specified in one processing request
may be determined so that the numbers of times for which
processing requests are input into the image processing mod
ules 38 while the entire image data is being processed are
averaged. Alternatively, the number of unit processing opera
tions may be determined inaccordance with anotherstandard.
Then, in step 504, the workflow manager 46A inputs a pro
cessing request into the final image processing module 38 of
the image processor 50 (see also (1) of FIG.9). The workflow
manager 46A then completes the parallel control processing
1.

In the image processor 50 shown in FIG. 9, when a pro
cessing request is input from the workflow manager 46A to
the final image processing module 38, the controller 38B of
the image processing module 38 outputs a read request to the
previous buffer module 40 (see (2) of FIG. 9). In this case,
since valid data (image data) that can be read by the image
processing module 38 is not stored in the buffer 40A of the
buffer module 40, the buffer controller 40B of the buffer
module 40 inputs a data request into the workflow manager
46A (see (3) of FIG. 9).

Every time a data request is received from the buffer mod
ule 40, the workflow manager 46A of the parallel processing
manager 46-1 performs parallel control processing 2 shown
in FIG. 8B. In the parallel control processing 2, in step 510,
the workflow manager 46A identifies the image processing
module 38 (in this case, the image processing module 38.)
positioned prior to the buffer module 40 that has sent the data
request (in this case, the buffer module 40). Then, the work
flow manager 46A inputs a processing request to the identi
fied image processing module 38 (see also (4) of FIG.9). The
workflow manager 46A then completes the parallel control
processing 2.
Upon receiving the processing request from the workflow

manager 46A, the controller 38B of the image processing
module 38 inputs a read request into the previous buffer
module 40 (see (5) of FIG. 9). Since image data that can be
read by the image processing module 38 is not stored in the
buffer 40A of the buffer module 40, the buffer controller 40B
of the buffer module 40 inputs a data request into the work
flow manager 46A (see (6) of FIG.9). In response to the data
request from the buffer module 40, the workflow manager
46A performs again the above-described parallel control pro
cessing 2 so as to input a processing request to the previous
image processing module 38 (see (7) of FIG. 9). The con
troller38B of the image processing module 38 inputs a read
request into the previous buffer module 40 (see (8) of FIG.
9). Since image data that can be read by the image processing
module 38 is not stored in the buffer 40A of the buffer module
40, the buffer controller 40B of the buffer module 40, also
inputs a data request into the workflow manager 46A (see (9)
of FIG. 9). In response to the data request from the buffer
module 40, the workflow manager 46A performs again the
above-described parallel control processing 2 so as to input a
processing request to the image processing module 38 (see
(10) of FIG.9).
The module positioned prior to the image processing mod

ule 38 is the image data Supply unit 22. Accordingly, the

US 8,819,396 B2
29

controller 38B of the image processing module 38 inputs a
data request into the image data Supply unit 22 so as to obtain
image data for the unit read data amount from the image data
supply unit 22 (see (11) of FIG. 9). Then, the image process
ing engine 38A of the image processing module 38 performs
image processing on the obtained image data. The image
processing module 38 writes the processed image data into
the buffer 40A of the subsequent buffer module 40 (see (12)
of FIG. 9).
When valid data which is equal to or greater than the unit

read data amount and which can be read by the Subsequent
image processing module 38 is written into the buffer mod
ule 40, the buffer controller 40B of the buffer module 40
requests the image processing module 38 to read the image
data. Then, the controller 38B of the image processing mod
ule 38 reads the image data for the unit read data amount
from the buffer 40A of the buffer module 40 (see (13) of FIG.
9). The image processing engine 38A of the image processing
module 38 processes the image data, and then, the controller
38B of the image processing module 38 writes the processed
image data into the buffer 40A of the subsequent buffer mod
ule 40 (see (14) of FIG.9). When valid data which is equal to
or greater than the unit read data amount and which can be
read by the Subsequent image processing module 38 is writ
ten into the buffer module 40, the buffer controller 40B of the
buffer module 40 requests the image processing module 38
to read the image data. Then, the controller 38B of the image
processing module 38 reads the image data for the unit read
data amount from the buffer 40A of the buffer module 40
(see (15) of FIG.9). The image processing engine 38A of the
image processing module 38 then processes the image data,
and then, the controller 38B of the image processing module
38, writes the processed image data into the buffer 40A of the
subsequent buffer module 40 (see (16) of FIG. 9).

Further, when valid data which is equal to or greater than
the unit read data amount and which can be read by the
Subsequent image processing module 38 is written into the
buffer module 40s, the buffer controller 40B of the buffer
module 40 requests the image processing module 38 to read
the image data. Then, the controller 38B of the image pro
cessing module 38 reads the image data for the unit read data
amount from the buffer 40A of the buffer module 40 (see
(17) of FIG. 9). The image processing engine 38A of the
image processing module 38 then processes the image data,
and then, the controller 38B of the image processing module
38 writes the processed image data into the image output unit
24, which is the subsequent module (see (18) of FIG. 9).
Upon completion of writing of image data into the buffer

40A of the subsequent buffer module 40, the controller38B of
each of the image processing modules 38 sends a processing
completion notification to the workflow manager 46A. Upon
receiving a processing completion notification from each
image processing module 38, the workflow manager 46A of
the parallel processing manager 46-1 performs parallel con
trol processing 3 shown in FIG. 8C. In the parallel control
processing 3, in step 520, the workflow manager 46A inputs
again a processing request to the image processing module 38
that has sent the processing completion notification. The
workflow manager 46A then completes parallel control pro
cessing 3.

In this manner, in the parallel control processing performed
by the workflow manager 46A of the parallel processing
manager 46-1, the following image processing in accordance
with the parallel processing mode is implemented. More spe
cifically, every time a processing completion notification is
input from a certain image processing module 38, the work
flow manager 46A inputs again a processing request into the

10

15

25

30

35

40

45

50

55

60

65

30
image processing module that has sent the processing
completion notification. Thus, Subject image data is sequen
tially delivered from a previous module to a Subsequent mod
ule in units of blocks having a size Smaller than one frame of
an image, and also, the individual image processing modules
38 perform processing on the image data in parallel. When the
image data Supplied from the image data Supply unit 22
reaches the end of the Subject image data, the individual
image processing modules 38 input an entire-processing
completion notification to the workflow manager 46A in the
order from the first image processing module 38 (upstream
side) to the final image processing module 38 (downstream
side).

Every time an entire-processing completion notification is
input from the image processing module 38, the workflow
manager 46A of the parallel processing manager 46-1 per
forms parallel control processing 4 shown in FIG. 8D. In the
parallel control processing 4, in step 540, the workflow man
ager 46A determines whether the image processing module
38 that has sent the entire-processing completion notification
is the final image processing module 38. If the result of step
540 is NO, the processing is completed. However, if the
entire-processing completion notification has been input
from the final image processing module 38 since the entirety
of the image data Subjected to the required image processing
has been output to the image output unit 24, the result of step
540 becomes YES. Then, the workflow manager 46A pro
ceeds to step 542 to inform the application program 32 of the
completion of the image processing (see also step 178 of FIG.
11). Then, the workflow manager 64A completes the parallel
control processing 4. Upon receiving an image-processing
completion notification from the workflow manager 164A,
the application program 32 informs the user of the completion
of the image processing (see step 180 of FIG. 11).

If the processing manager 46 in operation is a serial pro
cessing manager 46-2, the workflow manager 46A performs
the following processing. In response to an instruction to
execute image processing, the workflow manager 46A of the
serial processing manager 46-2 performs block-unit serial
control processing 1 shown in FIG. 10A. Every time a data
request is input from the buffer module 40, the workflow
manager 46A performs block-unit serial control processing 2
shown in FIG. 10B. Every time a processing completion
notification is input from the image processing module 38, the
workflow manager 46A performs block-unit serial control
processing 3 shown in FIG. 10C. Every time an entire-pro
cessing completion notification is input from the image pro
cessing module 38, the workflow manager 46A performs
block-unit serial control processing 4 shown in FIG.10D.The
processes of the block-unit serial control processing 1, 2, and
4 are the same as those of the above-described parallel control
processing 1, 2, and 4, respectively, and an explanation
thereof is thus omitted. A description will be given of the
block-unit serial control processing 3 performed every time a
processing completion notification is input from the image
processing module 38.

In the block-unit serial control processing 3, in step 518,
the workflow manager 46A determines whether the image
processing module 38that has sent the processing completion
notification is the final image processing module 38. If the
result of step 518 is NO, the processing is completed. If the
result of step 518 is YES, the workflow manager 46A pro
ceeds to step 520 to input again a processing request to the
image processing module 38 that has sent the processing
completion notification.

In the block-unit serial control processing performed by
the workflow manager 46A of the serial processing manager

US 8,819,396 B2
31

46-2, the following image processing in accordance with the
serial processing mode is implemented. A processing request
input into the final image processing module 38 of the image
processor 50 is sequentially transferred, and when the pro
cessing request reaches the first image processing module 38.
serial image processing is sequentially performed on data
having a size (block) Smaller than one frame of an image in
the order from the first image processing module 38 to the
final image processing module 38. In this case, only one
image processing module 38 performs image processing at
one time, and also, the image processing modules 38 are
serially Switched to perform image processing. When image
processing for the above-described data performed by the
final image processing module 38 has finished, a processing
request is input again into the final image processing module
38. This processing is repeated.

While the workflow manager 46A is performing control so
that the image processor 50 executes image processing in
accordance with the parallel processing mode or the serial
processing mode, the error handler 46C of the processing
manager 46 is also operated. If an error has occurred in a
certain image processing module 38 of the image processor
50, an error occurrence notification is input from the image
processing module 38 in which an error has occurred into the
error handler 46C. Upon receiving the error occurrence noti
fication, the error handler 46C obtains error information con
cerning the type of error, etc., and also obtains, from the
storage unit 20, etc., device environment information con
cerning the type and configuration of a device into which the
computer 10 having the image processing program set 34 is
integrated. The error handler 46C then determines a manner
of notifying the device of the occurrence of an error which is
suitable for the device environments represented by the
obtained device environment information, and then notifies
the device of the occurrence of the error in accordance with
the determined manner.

In this case, if the image processor 50 performs serial
image processing in accordance with the serial processing
mode, only one image processing module 38 performs image
processing. Accordingly, it is not possible that an error occur
rence notification be simultaneously or substantially simul
taneously input from plural image processing modules 38
into the error handler 46C. Additionally, the programs of the
individual modules forming the image processor 50 are oper
ated as a single thread, and thus, if image processing is ter
minated in one of the image processing modules 38 because
of the occurrence of a crucial error, the entire image process
ing which is being performed in the image processor 50 is also
terminated. In contrast, if the image processor 50 performs
parallel image processing in accordance with the parallel
processing mode, the individual image processing modules
38 perform image processing in parallel. Accordingly, it is
possible that an error occurrence notification be simulta
neously or Substantially simultaneously input from plural
image processing modules 38 into the error handler 46C.
Additionally, the programs of the individual modules forming
the image processor 50 are operated as independent threads,
and thus, even if image processing is terminated in one of the
image processing modules 38 because of the occurrence of a
crucial error, the image processing continues in the other
image processing modules 38 of the image processor 50.

Thus, in order to avoid inconveniences which may be
caused when an error occurrence notification is simulta
neously or Substantially simultaneously input from plural
image processing modules 38 into the error handler 46C of
the parallel processing manager 46-1, the error handler 46C
performs exclusive control. Also, if image processing is dis

10

15

25

30

35

40

45

50

55

60

65

32
continued in one of the image processing modules 38 because
of the occurrence of a crucial error in that image processing
modules 38, the error handler 46C notifies the other image
processing modules 38 of the occurrence of the error and
causes the other image processing modules 38 to discontinue
the image processing, and also terminates the execution of all
the threads corresponding to the individual modules of the
image processor 50. Accordingly, even when the image pro
cessor 50 performs image processing in accordance with the
parallel processing mode, error handling can be carried out
Smoothly.

In this manner, the parallel processing manager 46-1 is
provided with the error handler 46C which performs error
handling Suitable for the parallel processing mode. The serial
processing manager 46-2 is provided with the error handler
46C which performs error handling suitable for the serial
processing mode. The selection starter 45 selectively
Switches between the parallel processing manager 46-1 and
the serial processing manager 46-2, and the two types of error
handlers 46C are also automatically Switched accordingly.
With this arrangement, processing necessary for Switching
the image processor 50 between the parallel processing mode
and the serial processing mode can be simplified.
The processing performed by the workflow manager 46A

when the image processor 50 is operated in accordance with
the serial processing mode is not restricted to the processes of
the block-unit serial control processing 1 through 4 shown in
FIGS. 10A through 10D, respectively. Alternatively, pro
cesses of frame-unit serial control processing 1, 3, and 4
shown in FIGS. 15A through 15C, respectively, may be
executed. In the frame-unit serial control processing 1 shown
in FIG. 15A, in response to an instruction to execute image
processing, in step 500, the workflow manager 46A deter
mines for each image processing module 38 the number of
unit processing operations which is specified in one process
ing request. Then, in step 505, the workflow manager 46A
inputs a processing request into the first image processing
module of the image processor 50. Also, every time a pro
cessing completion notification is input from the image pro
cessing module 38, the frame-unit serial control processing 3
shown in FIG. 15B is started. In step 520, the workflow
manager 46A inputs again a processing request to the image
processing module 38that has sent the processing completion
notification. With this operation, a processing request is
repeatedly input only into the first image processing module
38 (upstream side) of the image processor 50.

Every time an entire-processing completion notification is
input from the image processing module 38, the frame-unit
serial control processing 4 shown in FIG. 15C is started. In
step 540, the workflow manager 46A determines whether the
image processing module 38that has sent the entire-process
ing completion notification is the final image processing
module 38. If the result of step 540 is NO, the process pro
ceeds to step 544. In step 544, a processing request is input
into the image processing module 38 which is positioned
Subsequent to the image processing module 38 that has sent
the entire-processing completion notification in the image
processor 50 configured in the form of a pipeline or a DAG.
With this operation, the image processing module 38 in
operation discontinues image processing on Subject image
data and sends an entire-processing completion notification.
Thereafter, the image processing module 38 that performs
image processing is Switched to the Subsequent image pro
cessing module 38. In this manner, image processing is seri
ally performed on data representing one frame of an image in
the order from the first image processing module to the final
image processing module in accordance with the serial pro

US 8,819,396 B2
33

cessing mode. Then, an entire-processing completion notifi
cation is input from the final image processing module 38. In
this case, the result of step 540 is YES, and the process
proceeds to step 542 to inform the application program 32 of
the completion of the image processing.

In the above-described example, when the image processor
50 is operated in the parallel processing mode, the programs
of the modules forming the image processor 50 are executed
as independent threads. However, this is an example only, and
programs of some of the modules forming the image proces
sor 50 may be executed as a thread. FIG. 16 shows such an
example. The image processor 50 is configured Such that four
image processing modules 38 and buffer modules 40 which
intervene between the image processing modules 38 are con
nected (i.e., the image processing modules 38 and the buffer
modules 40 are alternately connected) in the form of a pipe
line. In this configuration, the first and second image process
ing modules 38 and the buffer module 40 intervening ther
ebetween are executed as thread A, while the third and fourth
image processing modules 38 and the buffer module 40 inter
vening therebetween are executed as thread B. Thread A and
thread B are executed in parallel. In this case, an exclusive
control function is not provided for the buffer module 40A
disposed between the first and second image processing mod
ules 38 that are operated in the serial processing mode or for
the buffer module 40A disposed between the third and fourth
image processing modules 38 that are operated in the serial
processing mode. An exclusive control function is provided
for the buffer module 40A disposed between the second and
third image processing modules 38 that are operated in the
parallel processing mode.

In the above-described example, a program of only one
parallel processing manager 46-1 and a program of only one
serial processing manager 46-2 are registered in the process
ing manager library 47. However, this is an example only.
Plural parallel processing managers may be provided, and in
accordance with the operating environments, etc., of the
image processor 50, a parallel processing manager may be
selected from the plural parallel processing managers. Simi
larly, plural serial processing managers may be provided, and
in accordance with the operating environments, a serial pro
cessing manager may be selected from the plural serial pro
cessing managers. For example, if the number of program
execution resources (e.g., CPU 12) is one, a serial processing
manager may be selected so that the image processor 50 can
perform image processing in the serial processing mode. If
the number of program execution resources is two or more
and is less than the number of image processing modules 38
forming the image processor 50, a parallel processing man
ager may be selected so that the image processor 50 can
perform image processing in the parallel processing mode
shown in FIG.16 (the number of threads is restricted). If the
number of program execution resources is two or more and is
more than the number of image processing modules 38 form
ing the image processor 50, a parallel processing manager
may be selected so that the image processor 50 can perform
image processing in the parallel processing mode in which
the programs of individual modules forming the image pro
cessor 50 are executed as independent threads.

There is a high possibility that the parallel processing mode
in which the programs of individual modules forming the
image processor 50 are executed as independent threads more
effectively function as the number of program execution
resources approaches the number of image processing mod
ules. Thus, if the ratio of the number of program execution
resources to the number of image processing modules is equal
to or greater than a threshold (e.g., 0.8), the parallel process

10

15

25

30

35

40

45

50

55

60

65

34
ing manager that performs image processing in the above
described parallel processing mode may be selected.
The functional configuration of the selection starter 45 is

not restricted to that shown in FIG. 2, and may be that shown
in FIG. 17. In FIG. 17, the same elements as shown in FIG.2
are designated by like reference numerals. However, a deter
mination result output from the parallel-processing-perfor
mance determination unit 45C is not output to the start pro
cessor 45D, but is output to an application program 32 or the
OS 30 that performs display control so that the determination
result is displayed on the display unit 16 or an external display
device. Also, the start processor 45D is configured as follows.
In response to an instruction to start a parallel processing
manager or a serial processing manager given from a user via
the operation unit 18, the start processor 45D selects the
processing manager in accordance with the instruction.

FIG. 18 is a sequence diagram when the processing man
ager 46 is started by the start processor 45D shown in FIG. 17.
In FIG. 18, the same operations as shown in FIG. 11 are
designated by like step numbers, and an explanation thereofis
thus omitted. Steps 150 through 160 are operated in a manner
similar to those discussed with reference to FIG. 11. After the
parallel-processing-performance determination unit 45C
determines the parallel processing performance in step 160,
the process proceeds to step 161. In step 161, the parallel
processing-performance determination unit 45C outputs a
determination result to the application program 32 (or the OS
30) that performs display control for displaying the determi
nation result. Then, in step 162, upon receiving the determi
nation result, the application program 32 or the OS 30 dis
plays the determination result on the display unit 16, etc., and
then waits for a start instruction to be input from a user. In step
163, upon receiving a start instruction from a user through the
operation unit 18, the application program 32 or the OS 30
receives the start instruction. In step 164, the application
program 32 or the OS30 inputs the start instruction to the start
processor 45D of the selection starter 45. Then, in step 165,
the start processor 45D selects and starts the parallel process
ing manager or the serial processing manager in accordance
with the input start instruction.
An exemplary embodiment of the invention may be applied

to a device without the start processor 45D. More specifically,
a device including the parallel-processing-degree calculator
45A, the overhead calculator 45B, and the parallel-process
ing-performance determination unit 45C may be provided
independently of an apparatus that constructs a data processor
(image processor 50). Such a device may determine the par
allel processing performance and output a determination
result to an external Source.

In the above-described exemplary embodiment, the pro
cessing load and the processing wait coefficient (processing
wait degrees) are used as the parameters for calculating the
parallel-processing degree. However, the parameters are not
restricted to the processing load and the processing wait coef
ficient. For example, a variation in the processing loads may
be used as a parameter. For example, the parallel-processing
degree may be calculated to decrease as the variation
increases. Alternatively, one of the processing load and the
processing wait coefficient may be used. Further, in the
above-described example, the processing load is calculated to
increase as the number of multiplications and additions con
tained in the processing performed in the image processing
modules 38 increases. Instead of the number of multiplica
tions and additions, the processing load may be calculated to
increase as the number of specific operations contained in
processing increases. Also, the time necessary for each image
processing module 38 to perform the unit processing may be

US 8,819,396 B2
35

measured in advance, and a table including information con
cerning this time may be stored in the storage unit 20 in
advance. Then, the parallel-processing degree may be calcu
lated by referring to this table. Also, information concerning
the number of lines of a program code for each image pro
cessing module 38 may be stored in the storage unit 20 (or
may be counted every time the parallel-processing degree is
calculated), and the processing load may be calculated to
increase as the number of lines increases.

In the above-described exemplary embodiment, the pro
cessing wait degree of each image processing module 38 is
calculated on the basis of the unit-processing data amount.
However, this is an example only. Alternatively, information
indicating whether image processing performed by the image
processing module 38 is page processing or line processing
may be stored in the storage unit 20. The page processing is
used for processing data representing one frame of an image.
The line processing is used for processing data representing
one line of an image, which is Smaller than one page of an
image. Also, the processing wait degree may be set inadvance
in accordance with whether image processing is to be per
formed on the basis of page processing or line processing, and
the processing wait coefficient may be calculated by use of
Such processing wait degrees.

In the above-described exemplary embodiment, the over
head value is determined in accordance with the connection
mode or the number of image processing modules 38. How
ever, parameters for calculating the overhead value are not
restricted to such factors. For example, the overhead value
may be calculated in accordance with the ratio of the occur
rence of locks in threads. More specifically, in exclusive
control, when data is written into the buffer 40A of the buffer
module 40, a lock is set in order to prevent plural modules
from simultaneously accessing the buffer 40A. In this case,
every time data is written into the buffer 40A, a lock is set, and
as the time for which a lock is set increases, the overhead
necessary for parallel processing increases. Thus, the ratio of
the time for which a lock is set to the time taken by the entire
writing processing may be measured in advance for each
image processing module 38, and as this ratio increases, the
overhead value may be calculated to increase. Alternatively,
the overhead value may be calculated on the basis of at least
one of the number of processing operations, the connection
mode, and the ratio of the time for which a lock is set in
threads. Concerning the connection mode, in the above-de
scribed exemplary embodiment, the coefficient is different
depending on whether the connection mode is parallel con
nection or serial connection. When the connection mode is
parallel connection, the coefficient may be varied in accor
dance with the number of image processing modules 38 con
nected in parallel.

In the above-described exemplary embodiment, in order to
determine the parallel processing performance, the values of
the parallel-processing degree and the overhead value are
compared to simply determine which is greater or Smaller.
However, the parallel processing performance may be deter
mined differently. For example, if the value obtained by sub
tracting the overhead value from the parallel-processing
degree is greater than a predetermined threshold, it may be
determined that the time necessary to complete the parallel
processing would be shorter than the time necessary to com
plete the serial processing. If the above-described value is
equal to or Smaller than the predetermined threshold, it may
be determined that the time necessary to complete the parallel
processing would be longer than the time necessary to com
plete the serial processing. Alternatively, the parallel process
ing performance may be determined on the basis of a result of

10

15

25

30

35

40

45

50

55

60

65

36
comparing the parallel-processing degree with a first thresh
old and a result of comparing the overhead value with a
second threshold. More specifically, if the parallel-processing
degree is greater than the first threshold and if the overhead
value is smaller than the second threshold, it may be deter
mined that the time necessary to complete the parallel pro
cessing would be shorter than the time necessary to complete
the serial processing. If the results are other than the above
described result, it may be determined that the time necessary
to complete the parallel processing would be longer than the
time necessary to complete the serial processing. Alterna
tively, if the parallel-processing degree is Smaller than the first
threshold and if the overhead value is greater than the second
threshold, it may be determined that the time necessary to
complete the parallel processing is the same as the time nec
essary to complete the serial processing.

In the above-described exemplary embodiment, the param
eters used for calculating the parallel-processing degree are
different from those for calculating the overhead value. Alter
natively, both the parallel-processing degree and the overhead
value may be determined by using the common parameters.
As the unit-processing data amount is Smaller, the parallel
processing degree increases. At the same time, however, the
number of exclusive control operation also increases, and
thus, the overhead value increases. Also, as the processing
load increases, the parallel-processing degree increases and
the overhead value decreases. In this manner, by use of
parameters related to both the parallel-processing degree and
the overhead value, the parallel-processing degree and the
overhead value may be calculated.

Instead of separately calculating the parallel-processing
degree and the overhead value, in order to determine the
parallel processing performance, the value (or the parameter)
representing both the parallel-processing degree and the over
head value may be compared with a predetermined threshold.
The processing wait coefficient depends on the unit-process
ing data amount. As described above, as the unit-processing
data amount decreases, the processing wait coefficient
increases, and thus, the parallel-processing degree increases.
At the same time, however, the overhead value also increases.
That is, the processing wait coefficient (or the unit-processing
data amount) may influence both the parallel-processing
degree and the overhead value. Accordingly, if threshold
A-the processing wait coefficient<threshold B (threshold
A-threshold B), it may be determined that the time necessary
to complete the parallel processing would be shorter than the
time necessary to complete the serial processing. If the result
is other than the above-described result, it may be determined
that the time necessary to complete the parallel processing
would belonger than the time necessary to complete the serial
processing. Alternatively, in addition to the processing wait
coefficient, the total of processing loads may also be consid
ered, and if threshold as the total of processing loadsxthe
processing wait coefficient<threshold b (threshold
a-threshold b), it may be determined that the time necessary
to complete the parallel processing would be shorter than the
time necessary to complete the serial processing. If the result
is other than the above-described result, it may be determined
that the time necessary to complete the parallel processing
would belonger than the time necessary to complete the serial
processing.

It is not necessary that the programs of the processing
manager 46 be permanently stored in the processing manager
library 47 of the storage unit 20. Alternatively, from an exter
nal source of the computer 10 via an external storage device,
Such as a universal serial bus (USB) memory, or a communi
cation circuit, a program of a new processing manager (par

US 8,819,396 B2
37

allel processing manager or serial processing manager) may
be received and added or the program of the registered pro
cessing manager may be updated. In accordance with the
adoption of a new architecture for the CPU 12, the optimum
form of parallel processing may be changed. It may also be
difficult to initially provide a program that realizes an opti
mum processing manager, or a high-efficiency algorithm for
a processing manager may be developed in the future. By
considering Such possibilities, it is desirable that the process
ing manager library 47 of the storage unit 20 be configured
Such that new programs can be added or the programs of the
processing manager can be updated.

Alternatively, only a serial processing manager may be
provided initially, and if a user desires faster image process
ing by causing the image processor 50 to perform parallel
processing, the user may be allowed to add new programs that
realizes a parallel processing manager by paying an addi
tional fee. Alternatively, the user may be allowed to update the
programs of the processing manager during a certain period
on the basis of a maintenance contract.

In the above-described exemplary embodiment, the image
processing program set 34 is stored in advance (installed) in
the storage unit 20. However, the image processing program
set 34 may be provided by being recorded on a compact
disc-read only memory (CD-ROM) or a digital versatile disk
(DVD)-ROM.

In the above-described exemplary embodiment, the com
puter 10 is configured as an image processing apparatus.
However, a data processing apparatus that processes various
types of data (e.g., arithmetic processing) other than image
data may be applied to an exemplary embodiment of the
invention.

FIG. 19 is a block diagram illustrating the schematic con
figuration of a computer 600, which serves as a data process
ing apparatus that performs arithmetic processing on data
which is other than image data in accordance with another
exemplary embodiment of the invention. The computer 600
includes a CPU 612, a memory 614, a display unit 616, an
operation unit 618, a storage unit 620, a data supply unit 622,
and a data output unit 624. Those components are connected
to one another via a bus 626. As the display unit 616, a display
connected to the computer 600 may be used, and as the
operation unit 618, a keyboard and a mouse connected to the
computer 600 may be used. As the storage unit 620, an HDD
may be suitably used, or another non-volatile storage device,
Such as a flash memory, may be used.
As the data Supply unit 622, any type of device may be used

as long as it is configured to Supply data to be processed. A
receiver that receives data from an external source via an
interface or a communication circuit used for connecting the
computer 600 with an external memory may be used. Or, a
data storage unit (memory 614 or storage unit 620) for storing
data may be used. As the data output unit 624, any type of
device may be used as long as it is configured to output data
Subjected to arithmetic processing. For example, a display
unit for displaying data on a display, etc., a writer for writing
data on a recording medium, or a sender for sending data via
a communication circuit may be used. Alternatively, the data
output unit 624 may be a storage device (memory 614 or
storage unit 620) for simply storing data Subjected to arith
metic processing.

In the storage unit 620, as shown in FIG. 19, programs of an
OS and an image processing program set 634 are stored as
various programs executed by the CPU 612. The programs of
the OS are used for the management of the resources, such as
the memory 614, and for the management of the execution of
programs by the CPU 612. The programs of the OS are also

10

15

25

30

35

40

45

50

55

60

65

38
used for controlling communication between the computer
600 and an external source. The image processing program
set 634 is used for enabling the computer 600 to function as a
data processing apparatus.

In response to an instruction to construct a data processor
given from an application program (not shown) or a user by
using the operation unit 618, the data processing apparatus
implemented by the processing program set 634 constructs a
data processor that performs data processing (in this case,
arithmetic processing) instructed by the application program
or the user. The data processing apparatus then executes data
arithmetic processing by using the constructed data processor
in response to an instruction from the application program or
the user.

Details of the processing program set 634 will be dis
cussed. As shown in FIG. 19, the processing program set 634
is broadly divided into a module library 636, programs of a
processing construction unit 642, and a processing manager
library 647. As in the above-described image processing
apparatus, the data processing apparatus configured in accor
dance with this exemplary embodiment constructs a data
processor by connecting plural arithmetic modules 638 and
plural buffer modules 640 in the form of a pipeline or a DAG
in response to an instruction from an application program,
etc. The arithmetic modules 638 execute predetermine arith
metic processing. Each of the buffer modules 640 is disposed
at least prior to or Subsequent to the corresponding arithmetic
module 638 and includes a buffer for storing data therein. In
each of the arithmetic modules 638, the processing load and
the unit-processing data amount (in this exemplary embodi
ment, the unit-processing data amount is represented by the
number of data elements, and thus, hereinafter referred to as
the “unit processing data number”) are set. The data processor
is constructed in a manner similar to the above-described
image processor, and an explanation thereof is thus omitted.
Each of the arithmetic modules 638 includes a controller and
an arithmetic processing engine, as in the image processing
module 38 shown in FIG. 4A, and is operated in a manner
similar to the image processing module 38. Each of the buffer
modules 640 includes a buffer controller and a buffer, as in the
buffer module 40 shown in FIG. 4B, and is operated in a
manner similar to the buffer module 40.

In this exemplary embodiment, as well as the above-de
scribed exemplary embodiment, two processing modes, i.e., a
parallel processing mode and a serial processing mode, are
employed. In the parallel processing mode, the arithmetic
modules 638 of the data processor perform arithmetic pro
cessing in parallel. In the serial processing mode, only one
arithmetic module 638 performs arithmetic processing at one
time, and the arithmetic modules 638 are serially switched to
perform arithmetic processing. In the data processing appa
ratus, as in the image processing apparatus, when arithmetic
processing is performed in the parallel processing mode, a
data processor for parallel processing (hereinafter referred to
as the “parallel data processor) is constructed. When arith
metic processing is performed in the serial processing mode,
a data processor for serial processing (hereinafter referred to
as the “serial data processor) is constructed. With this
arrangement, the arithmetic processing mode in the data pro
cessor is switched. As in the buffer modules 40 of the image
processor 50, a buffer module 640 with an exclusive control
function is provided for performing parallel processing, and a
buffer module 640 without an exclusive control function is
provided for performing serial processing. In the module
library 636, a program of the buffer module 640 with an
exclusive control function and a program of the buffer module
640 without an exclusive control function are registered.

US 8,819,396 B2
39

The processing manager library 647 includes, as shown in
FIG. 19, plural module generators 644 (only one is shown in
FIG. 19). The plural module generators 644 are associated
with different arithmetic processing operations, and the pro
cessing construction unit 642 starts each of the module gen
erators 644 So that the module generator 644 generates a
module set including the arithmetic modules 638 and the
buffer modules 640 to implement corresponding arithmetic
processing.

Processing managers 646 whose programs are registered in
the processing manager library 647 are broadly divided into a
parallel processing manager 646-1 and a serial processing
manager 646-2. The parallel processing manager 646-1 con
structs a parallel data processor having a buffer module 640
with an exclusive control function so as to control the con
structed data processor to execute arithmetic processing in the
parallel processing mode (hereinafter may be referred to as
the “parallel arithmetic processing”). The serial processing
manager 642-2 constructs a serial data processor having a
buffer module 640 without an exclusive control function so as
to control the constructed data processor to execute arithmetic
processing in the serial processing mode (hereinafter may be
referred to as the “serial arithmetic processing).

Each of the processing managers 646 includes a workflow
manager, a resource manager, and an error handler. The work
flow manager controls the execution of arithmetic processing
in the data processor. The resource manager manages the
resources of the computer 600, such as the memory 614 and
various files, used by the modules of the data processor. The
error handler handles errors occurring in the data processor.
The operations of the components of the processing manager
646 are similar to those of the processing manager 46 of the
above-described image processing apparatus, and an expla
nation thereof is thus omitted.
The processing construction unit 642, which constructs a

data processor in response to an instruction from an applica
tion program (not shown), includes a processing content/
order determination unit 650, a parallel-processing-perfor
mance determination unit 652, and a selection starter 645.
The processing content/order determination unit 650 identi
fies the content of processing to be executed and determines
the order of arithmetic processing operations forming the
processing. The parallel-processing-performance determina
tion unit 652 calculates the parallel-processing degree and the
overhead value So as to determine the parallel processing
performance on the basis of the parallel-processing degree
and the overhead value. The selection starter 645 selects and
starts the parallel processing manager 646-1 or the serial
processing manager 646-2 on the basis of a determination
result output from the parallel-processing-performance deter
mination unit 652 and performs control so that the selected
processing manager 646 performs parallel arithmetic pro
cessing or serial arithmetic processing. In FIG. 19, as well as
in FIG. 1, a program of only one parallel processing manager
646-1 and a program of only one serial processing manager
646-2 are shown. However, programs of plural parallel pro
cessing managers and programs of plural serial processing
managers may be registered in the processing manager
library 647.
The operation of the data processing apparatus formed by

the computer 600 will now be described below with reference
to FIGS. 20 through 22C. In this case, a data processor that
executes arithmetic processing, such as multiplications and
additions, on data representing the amount of money, and
outputs an arithmetic result is constructed by way of example.
FIG. 20 is a sequence diagram illustrating a series of process
ing operations from when a data processor is constructed until

10

15

25

30

35

40

45

50

55

60

65

40
when arithmetic processing is executed. FIGS. 21A through
22C illustrate specific examples of parallel-processing-per
formance determination processing. In FIGS. 21A and 21B,
“a”, “b”, “c”, and 'd' indicate the types of arithmetic modules
638, and in FIGS. 22A and 22B, “e”, “f”, “g, and “h” also
indicate the types of arithmetic modules 638.

In the data processor shown in FIGS. 21A and 21B, the
arithmetic module “a” calculates a value obtained by adding
a consumption tax to the input amount of money, the arith
metic module “b” adds 1000 to the value calculated by the
arithmetic module “a”, the arithmetic module “c” multiplies
the value calculated by the arithmetic module “b' by /10 to
determine 10% of the resulting value, and the arithmetic
module “d subtracts 50 from the value calculated by the
arithmetic module “c”.

In the data processor shown in FIGS. 22A and 22B, the
arithmetic module 'e' adds the amounts of money of the ten
data elements so as to calculate the total value, the arithmetic
module “f calculates the ratio of the value of each data
element to the total value calculated by the arithmetic module
“e', the arithmetic module “g adds the values calculated by
the arithmetic module “f item by item, and the arithmetic
module “h” calculates the ratio of each value calculated by the
arithmetic module “f” to the total value calculated by the
arithmetic module 'g'.
When it is necessary to perform certain arithmetic process

ing because, for example, a user gives an instruction to
execute arithmetic processing, the processing contentforder
determination unit 650 of the processing construction unit
642 identifies the content of processing to be executed and
decomposes the processing to be executed into a combination
of arithmetic processing operations corresponding to the
module generators 644. The processing content/order deter
mination unit 650 then determines the types of arithmetic
processing operations necessary for implementing the pro
cessing to be executed and also determines the execution
order of the individual arithmetic processing operations (see
also step 700 of FIG. 20).
The parallel-processing-performance determination unit

652 of the processing construction unit 642 calculates values
for determining the parallel processing performance. In this
case, the parallel-processing-performance determination unit
652 calculates the sum of processing loads of the arithmetic
modules 640, the processing wait degrees of the arithmetic
modules 640, and the number of arithmetic modules 640
forming the data processor.
As in the processing load used for calculating the parallel

processing degree of the above-described image processor
50, the “processing load” of each arithmetic module 638 is
represented by a load (time necessary for performing the unit
processing), which has been measured in advance for each
arithmetic module 638, by five levels (level 1 to level 5). The
processing load may be represented by a value corresponding
to the number of additions and multiplications executed
within the unit processing of eacharithmetic module 638. The
parallel-processing-performance determination unit 652
adds the processing loads of the arithmetic modules 638 so as
to calculate the Sum of the processing loads.
The “processing wait degree' is calculated on the basis of

the unit processing data number (the number of data elements
that have been processed in the previous module, i.e., the
number of data elements necessary for performing unit pro
cessing) of each arithmetic module 638 according to the
following equation.

Processing wait degree—the number of arithmetic
modules,the unit processing data number of each
arithmetic module

US 8,819,396 B2
41

Then, the parallel processing performance is determined
by using the above-described values.

If the expression: the sum of processing loads of the arith
metic modulesxprocessing wait degree the number of arith
metic modules, is satisfied, it is determined that the time
necessary to complete the parallel arithmetic processing
would be shorter than the time necessary to complete the
serial arithmetic processing.

If the expression: the sum of processing loads of the arith
metic modulesxprocessing wait degree.<the number of arith
metic modules, is satisfied, it is determined that the time
necessary to complete the parallel arithmetic processing
would belonger than the time necessary to complete the serial
arithmetic processing.

If the expression: the sum of processing loads of the arith
metic modulesxprocessing wait degree the number of arith
metic modules, is satisfied, it is determined that the time
necessary to complete the parallel arithmetic processing is the
same as the time necessary to complete the serial arithmetic
processing.

In the above-described three expressions, “the sum of pro
cessing loads of the arithmetic modulesxprocessing wait
degree” designated in the left side represents the parallel
processing degree, and the "number of arithmetic modules'
designated in the right side represents the overhead value.
The parallel-processing-performance determination unit

652 outputs a determination result to the selection starter 645
(see also step 702 of FIG. 20).

In the example shown in FIGS. 21A through 21C, as shown
in FIG. 21C, the sum of the processing loads of the arithmetic
modules 638 is 8, the processing wait degree is 1, and the
number of arithmetic modules 638 is 4, and thus, 8x1 >4. It is
thus determined that the time necessary to complete the par
allel arithmetic processing would be shorter than the time
necessary to complete the serial arithmetic processing (high
performance can be expected by performing parallel process
ing). In contrast, in the example shown in FIGS. 22A through
22C, as shown in FIG.22C, the sum of the processing loads of
the arithmetic modules 638 is 8, the processing wait degree is
0.286, and the number of arithmetic modules 638 is 4, and
thus, 8x0.286<4. It is thus determined that the time necessary
to complete the parallel arithmetic processing would be
longer than the time necessary to complete the serial arith
metic processing (high performance cannot be expected even
by performing parallel processing).

The selection starter 645 selects a processing manager to
be started in accordance with the determination result
received from the parallel-processing-performance determi
nation unit 652 (see also step 704 of FIG. 20). In this case, if
it is determined that the time necessary to complete the par
allel arithmetic processing would be shorter than the time
necessary to complete the serial arithmetic processing, the
selection starter 645 selects and starts the parallel processing
manager 646-1 so that arithmetic processing is performed in
the parallel processing mode. If it is determined that the time
necessary to complete the parallel arithmetic processing
would belonger than the time necessary to complete the serial
arithmetic processing, the selection starter 645 selects and
starts the serial processing manager 646-2 so that arithmetic
processing is performed in the serial processing mode. If it is
determined that the time necessary to complete the parallel
arithmetic processing is the same as the time necessary to
complete the serial arithmetic processing, either of the paral
lel processing manager 642-1 or the serial processing man
ager 642-2 may be selected and started. Accordingly, a deter
mination regarding whether which processing manager is to

10

15

25

30

35

40

45

50

55

60

65

42
be selected and started is set in advance, and the processing
manager is selected and started inaccordance with the setting.

If the started processing manager is the parallel processing
manager 646-1, the buffer module 640 with an exclusive
control function is generated. If the started processing man
ager is the serial processing manager 646-2, the buffer mod
ule 640 without an exclusive control function is generated
(see also step 706 of FIG. 20). Further, the processing con
struction unit 642 starts the arithmetic module generator 644
corresponding to specific arithmetic processing on the basis
of the type of arithmetic processing and the execution order of
the arithmetic processing operations. The processing con
struction unit 642 then Supplies information necessary for the
arithmetic module 644 to generate a module set and instructs
the arithmetic module 644 to generate an arithmetic module
set (not shown in FIG. 20). If there are plural arithmetic
processing types, the processing construction unit 642 gen
erates other module generators 644 corresponding to the indi
vidual arithmetic processing types, and Supplies information
necessary for the module generators 644 to generate arith
metic modules. This is repeated in ascending order of execu
tion. With this processing, the arithmetic module generators
644 of the processing manager library 647 generate the arith
metic modules 638 (see also step 708 of FIG. 20).
Upon completion of the construction of a data processor

that performs required arithmetic processing as a result of
sequentially generating the arithmetic modules 638 by use of
the arithmetic module generators 644, the data construction
unit 642 instructs the processing manager 646 in operation to
execute arithmetic processing by using the data processor
(see also step 710 of FIG. 20). In response to an instruction to
execute arithmetic processing, the processing manager 646
causes the CPU 612 via the OS to execute, as threads, the
programs of the modules of the data processor loaded into the
memory 614 (see also step 712 of FIG. 20). If the processing
manager 646 in operation is the parallel processing manager
646-1, the parallel processing manager 646-1 causes the CPU
612 to execute, as independent threads, the programs of the
individual modules forming the data processor so that the
individual arithmetic modules 638 perform arithmetic pro
cessing in parallel. If the processing manager 646 in operation
is the serial processing manager 646-2, the serial processing
manager 646-2 causes the CPU 612 to execute, as a single
thread, the programs of the individual modules forming the
data processor. Instead of threads, the processing manager
646 may cause the CPU 612 to execute the programs of the
individual modules as processes or objects.
Upon completion of a series of arithmetic processing

operations executed by the data processor, the processing
manager 646 informs the processing construction unit 642 of
the completion of arithmetic processing (see also step 714 of
FIG. 20). Upon receiving the processing completion notifi
cation, the processing construction unit 642 informs the user
of the completion of arithmetic processing (see also step 716
of FIG. 20).
The configuration of the above-described data processing

apparatus is an example only, and is not restricted to the
above-described example. For example, in the above-de
scribed data processing apparatus, the parallel processing
manager 642-1 or the serial processing manager 642-2 is
selected and started in accordance with a result of determin
ing the parallel processing performance. Alternatively,
instead of selecting and starting the processing manager, only
a determination result may be output. The parallel processing
performance may be determined in another manner. For
example, various parameters may be used to calculate the
parallel-processing degree and the overhead value.

US 8,819,396 B2
43

In the above-described data processing apparatus, a data
processor is constructed by connecting the buffer modules
640 to the arithmetic modules 638. However, if the amount of
data which is delivered from a previous module to a subse
quent module is small, the provision of the buffer modules 40
may be omitted.
The processing mode may be selected by considering the

operating environments of the image processor 50 (or data
processor). For example, the number of program execution
resources (e.g., a CPU) provided in the computer 10 may be
used. For example, the following conditions may be set: “if
the number of program execution resources is equal to N or
greater, and if the result of determining the parallel processing
performance shows that the time necessary to complete the
parallel processing would be shorter than the time necessary
to complete the serial processing, the parallel processing
manager 46-1 (646-1) may be started, and if the result is other
than the above-described result, the serial processing man
ager 46-2 (646-2) may be started.
The foregoing description of the exemplary embodiments

of the present invention has been provided for the purposes of
illustration and description. It is not intended to be exhaustive
or to limit the invention to the precise forms disclosed. Obvi
ously, many modifications and variations will be apparent to
practitioners skilled in the art. The embodiments were chosen
and described in order to best explain the principles of the
invention and its practical applications, thereby enabling oth
ers skilled in the art to understand the invention for various
embodiments and with the various modifications as are Suited
to the particular use contemplated. It is intended that the
scope of the invention be defined by the following claims and
their equivalents.
What is claimed is:
1. A data processing apparatus including a data processor

comprising a plurality of processing modules, configured to
be connected to each other serially or in parallel and executed
on a processor, that perform data processing including differ
ent data processing operations or that perform a data process
ing operation with different contents, each of the plurality of
processing modules having a function of obtaining data from
a processing module positioned prior to itself, performing a
processing operation on the obtained data, and outputting
data as a result of performing the processing operation on the
obtained data or outputting a result of processing the obtained
data to a processing module positioned Subsequent to itself,
the data processing apparatus comprising:

an output unit that determines, in response to performance
of parallel control in the data processor so that the plu
rality of processing modules perform data processing in
parallel, on the basis of a value representing a parallel
processing time for which at least two of the processing
modules are operated in parallel and a value representing
a control time, which is not required when serial control
is performed so that the processing modules serially
perform data processing but which is required when the
parallel control is performed so that the processing mod
ules perform data processing in parallel, whether a time
required to complete data processing performed by the
data processor under the parallel control would be
shorter than a time required to complete data processing
performed by the data processor under the serial control,
and that outputs a determination result.

2. The data processing apparatus according to claim 1,
further comprising:

a controller that performs control so that the parallel con
trol is performed if the determination result which is
output from the output unit indicates that the time

10

15

25

30

35

40

45

50

55

60

65

44
required to complete data processing performed by the
data processor under the parallel control would be
shorter than the time required to complete data process
ing performed by the data processor under the serial
control, and that performs control so that the serial con
trol is performed if the determination result which is
output from the output unit indicates that the time
required to complete data processing performed by the
data processor under the parallel control would be
longer than the time required to complete data process
ing performed by the data processor under the serial
control.

3. The data processing apparatus according to claim 1,
wherein the value representing the parallel-processing time is
calculated by using at least one of a value representing a time
required for each of the plurality of processing modules to
perform unit processing, and a value obtained by multiplying
values, each of which represents an amount of data which is to
be processed by a processing module positioned prior to a
certain processing module and which is required by the cer
tain processing module.

4. The data processing apparatus according to claim 3,
wherein a value “a” is used as the value representing the
parallel-processing time, the value 'a' being expressed by an
equation:

“a”-a sum of values, each of which represents a time
required for each of the plurality of processing modules
to perform the unit processingxa value obtained by mul
tiplying values, each of which represents an amount of
data which is to be processed by a processing module
positioned prior to a certain processing module and
which is required by the certain processing module.

5. The data processing apparatus according to claim 4.
wherein the data processing performed by each of the plural
ity of processing modules of the data processor is image
processing of image data, and a value "b' is used as the value
representing an amount of data which is to be processed by a
processing module positioned prior to a certain processing
module and which is required by the certain processing mod
ule, the value “b' being expressed by an equation:

“b'=1--an amount of data to be processed during the unit
processing by each of the plurality of processing mod
ules/(an amount of image data representing the entirety
of an image to be processed by the data processorxan
adjustment value).

6. The data processing apparatus according to claim 5.
wherein the value representing the amount of data which is to
be processed by a processing module positioned prior to a
certain processing module and which is required by the cer
tain processing module is set to be a value which is deter
mined in advance in accordance with whether image process
ing to be performed in each of the plurality of processing
modules is page processing, which is used for processing data
representing one frame of an image, or line processing, which
is used for processing data representing one line of an image,
which is Smaller than one frame of the image.

7. The data processing apparatus according to claim 3,
wherein the value representing the time required for each of
the plurality of processing modules to perform the unit pro
cessing is set to increase as the number of specific arithmetic
operations to be executed in each of the plurality of process
ing modules increases.

8. The data processing apparatus according to claim 3,
wherein the value representing the time required for each of
the plurality of processing modules to perform the unit pro

US 8,819,396 B2
45

cessing is set to increase as the number of lines of a program
code for each of the plurality of the processing modules
increases.

9. The data processing apparatus according to claim 1,
wherein the value representing the parallel-processing time is
set to decrease as a variation in values, each of which repre
sents a time required for each of the plurality of processing
modules to perform unit processing, increases.

10. The data processing apparatus according to claim 1,
wherein a coefficient corresponding to a connection mode of
two consecutive processing modules positioned in the data
processor is assigned to each of the plurality of processing
modules, and the value representing the control time is set to
be a total value of the coefficients assigned to the plurality of
processing modules.

11. The data processing apparatus according to claim 10,
wherein the coefficient is varied in accordance with whether
the connection mode of the two consecutive processing mod
ules is a serial connection or a parallel connection.

12. The data processing apparatus according to claim 11,
wherein, if the connection mode of the two consecutive pro
cessing modules is parallel connection, the coefficient is var
ied in accordance with the number of processing modules
connected in parallel.

13. The data processing apparatus according to claim 1,
wherein the value representing the control time is set to
increase as the number of processing modules of the data
processor increases.

14. The data processing apparatus according to claim 1,
wherein, if each of the plurality of processing modules of the
data processor is started as a thread, the value representing the
control time is set to increase as the ratio of an occurrence of
a lock in the thread increases.

15. The data processing apparatus according to claim 1,
wherein, if the value representing the parallel-processing
time is greater than the value representing the control time,
the output unit determines that the time required to complete
data processing performed by the data processor under the
parallel control would be shorter than the time required to
complete data processing performed by the data processor
under the serial control, and if the value representing the
parallel-processing time is Smaller than the value represent
ing the control time, the output unit determines that the time
required to complete data processing performed by the data
processor under the parallel control would be longer than the
time required to complete data processing performed by the
data processor under the serial control.

16. The data processing apparatus according to claim 1,
wherein, if a value obtained by subtracting the value repre
senting the control time from the value representing the par
allel-processing time is greater than a threshold, the output
unit determines that the time required to complete data pro
cessing performed by the data processor under the parallel
control would be shorter than the time required to complete
data processing performed by the data processor under the
serial control, and if the value obtained by subtracting the
value representing the control time from the value represent
ing the parallel-processing time is equal to or Smaller than the
threshold, the output unit determines that the time required to
complete data processing performed by the data processor
under the parallel control would be longer than the time
required to complete data processing performed by the data
processor under the serial control.

17. The data processing apparatus according to claim 1,
wherein the output unit determines, on the basis of a result of
comparing the value representing the parallel-processing
time with a first threshold and a result of comparing the value

5

10

15

25

30

35

40

45

50

55

60

65

46
representing the control time with a second threshold,
whether the time required to complete data processing per
formed by the data processor under the parallel control would
be shorter than the time required to complete data processing
performed by the data processor under the serial control.

18. The data processing apparatus according to claim 1,
wherein a parameter used for determining the value repre
senting the parallel-processing time would be substantially
the same as a parameter used for determining the value rep
resenting the control time.

19. The data processing apparatus according to claim 1,
wherein the output unit determines, by comparing a value
representing both the parallel-processing time and the control
time with a first value, whether the time required to complete
data processing performed by the data processor under the
parallel control would be shorter than the time required to
complete data processing performed by the data processor
under the serial control.

20. A data processing method for use in a data processing
apparatus including a data processor comprising a plurality of
processing modules, configured to be connected to each other
serially or in parallel and executed on a processor, that per
form data processing including different data processing
operations or that perform a data processing operation with
different contents, each of the plurality of processing modules
having a function of obtaining data from a processing module
positioned prior to itself, performing a processing operation
on the obtained data, and outputting data as a result of per
forming the processing operation on the obtained data or
outputting a result of processing the obtained data to a pro
cessing module positioned Subsequent to itself, the data pro
cessing method comprising:

determining, in response to performance of parallel control
in the data processor so that the plurality of processing
modules perform data processing in parallel, on the basis
of a value representing a parallel-processing time for
which at least two of the processing modules are oper
ated in parallel and a value representing a control time,
which is not required when serial control is performed so
that the processing modules serially perform data pro
cessing but which is required when the parallel control is
performed so that the processing modules perform data
processing in parallel, whether a time required to com
plete data processing performed by the data processor
under the parallel control would be shorter than a time
required to complete data processing performed by the
data processor under the serial control, and outputting a
determination result.

21. A non-transitory computer-readable storage medium
storing a program causing a computer to execute a process,
the computer being configured to function as a data process
ing apparatus including a data processor comprising a plural
ity of processing modules, configured to be connected to each
other serially or in parallel and executed on the computer, that
perform data processing including different data processing
operations or that perform a data processing operation with
different contents, each of the plurality of processing modules
having a function of obtaining data from a processing module
positioned prior to itself, performing a processing operation
on the obtained data, and outputting data as a result of per
forming the processing operation on the obtained data or
outputting a result of processing the obtained data to a pro
cessing module positioned Subsequent to itself, the process
comprising:

determining, in response to performance of parallel control
in the data processor so that the plurality of processing
modules perform data processing in parallel, on the basis

US 8,819,396 B2
47

of a value representing a parallel-processing time for
which at least two of the processing modules are oper
ated in parallel and a value representing a control time,
which is not required when serial control is performed so
that the processing modules serially perform data pro
cessing but which is required when the parallel control is
performed so that the processing modules perform data
processing in parallel, whether a time required to com
plete data processing performed by the data processor
under the parallel control would be shorter than a time
required to complete data processing performed by the
data processor under the serial control, and outputting a
determination result.

k k k k k

10

48

