a9y United States

Eich et al.

US 20200320078A1

a2y Patent Application Publication o) Pub. No.: US 2020/0320078 A1

(54) BENCHMARK FRAMEWORK FOR

COST-MODEL CALIBRATION
(71) Applicant:

(72) Inventors:

(21) Appl. No.: 16/374,521
(22) Filed: Apr. 3, 2019
Publication Classification
(51) Int.ClL
GO6F 16/2453 (2006.01)
202\ 206\
. Execution
Ex!ecu[tzl';)n > Plan
Plan File Object

SAP SE, Walldorf (DE)

Marius Eich, Neustadt (DE); Dennis
Felsing, Leimen (DE)

43) Pub. Date: Oct. 8, 2020
(52) U.S. CL

CPC oo GOGF 16/24545 (2019.01)
(57) ABSTRACT

In some aspects, there is provided a method including
receiving an execution plan file, the execution plan file
utilizing at least one operator of interest and further utilizing
other actions separate from the at least one operator of
interest. The method further includes forming an execution
plan object by modifying the execution plan file by isolating
the at least one operator of interest from the other actions.
The method further includes performing a series of tests
executing an extended execution plan object. The series of
tests can include receiving the input data identified by the
one or more pointers in the extended execution plan object,
executing the extended execution plan object using the
received input data, measuring, based on the execution of
the extended execution plan object, at least one cost metric
representative of execution of the at least one operator of
interest, and outputting the measured cost metric.

212

%

iy

Processing (e.g.,
Deserializing) 205

Data
Generator

Benchmark Framework Loop 21

214 216
N N 220\
Extended :
_ | Execution - » Cost
Plan Execution Result File
Object Engine

Oct. 8,2020 Sheet 1 of 6 US 2020/0320078 A1

Patent Application Publication

H

19 I q06T VOGT
aseqgeleq aseqeleq asegeleq
66T Idv 2uidu3 ST auISu3 uonndax3
uoI1Ndax3 aseqeieq
NllNll.H.. WCO_U.mL wao ﬂlﬂ s
. pealesausn - suonesadp 811l |
apo) _ow__n_EOum._a JOleI3UIL) cm._n_w
0t 97T viT
uolIndaxj ue|d sapdwo) ueld uol3ldun4 150D
uonnIaxy " uonNIaX3
GTT au1du3 0TT Jeziwndo
uolinzaxy Alanp paseg-1s0)
09T 09T 09T
<qT Jdmuwedd yJeng Jdmuield 4 yJeng Jdmuiedd YJienNg
Aseaqry yiewyduag NZOT uawdinba gcot wawdinba V20T wawdinba
Jasn usip Jasn uaip Jasn sl

|
L

00T

Oct. 8, 2020 Sheet 2 of 6 US 2020/0320078 A1

Patent Application Publication

9!4 3InsSayY

1500 [

Z

0ce

¢ 'Old

012 doo yJomawel ylewyoduag
SuISu3 Jojelouan

. 193(q0 eyeq

uoiindoax3j ue|d

) e B
\\\\\\\ uoIINdaxJ Wy, B
m\ww\mw.\k%» \\

(7 apualx ol |

il PapHRI §

19[q0
ue|ld
uoIINdaxy

N—

50¢

2

S0t (8uizijelasag
8'9) 8uIssad0.d

9|l4 Ueld

[uoIIND9X]

N—

¢0¢

Patent Application Publication Oct. 8,2020 Sheet 3 of 6 US 2020/0320078 A1

300

— ywaaw“z e roperstors: Hashdedn®,
“$<§M&i§r&ﬁ“° E% A

}} * v B9 G BSE .« ® 320

“m.oollsctValuelxprs®: [
PaeS¥pE Y "hex:iplangen::Field®,
“morslld®r 8, .

*m.relfolid®: o, vy P
“mW*ﬁsﬁihY§“$“ CPH_ORESIRLYTYREY

B,

b

§\$mm Sy «as}\%xi +§3 Fny
el ld®r g,

'm, reifelld™: ©, vy 0
“roresulnTyps™s “PH_RESULTTYRE

"m AoskapValueBeprs™: [
- \
e

5
&
7y
2
%
Frct
4

z
L3

.E}é i *(;«-330c

m joinType®: "PH _JUINTYPE®,

FIG. 3

Oct. 8, 2020 Sheet 4 of 6 US 2020/0320078 A1

Patent Application Publication

Vv 'S

0GP Ol1OW JSOO PAINSBIW O} UO
paseq 1sa1o3ul Jo 101e12dO JY) J0J [9POW-1SOD B dUIWINRJ

Oby owRw 1509 painsedw Ay} ndinQ

0Ey 1s2191u1 JO 103RIddO QUO JSBI[JE Y} JO
UOTINJIXI JO 9ANBIUISIIAL DLIJAW SO B AINSBIN

pue ‘ejep indur poaAIdIAI Y} FuISN 1SAIUI JO J0JeIddO dU)
1M 102[qo ue[d UOTINDIXD PIPUIIXI Y} ANIIXH
‘e1ep INdur 9A1009Y

1199[qo ueyd

UOTINDIXI PAPUIIXS UB TUNNIIXI §)$3) JO SALIDS B WIOJIDJ

0cP suomnoe I9YJ0 YY) WOIJ 1S919]UT JO Jojeado auo
1583 1B U} Sune[ost AQ 2[1F ue[d UONNIAXD JY} FuIAJIpow
pue Surssad01d Aq 199[qo ue[d UONNIIXS UL WIO

OTy 1saJaiul jo Jojesado auo lseag| le
9yl WoJ} 91esedas SUOI1de JaYylo pue 1saJalul JO Jojesado
aUO0]1sea| 1e sazZl|iln leyl 9|l Cm_n_ UOIINJ3aXa UE 9AIgl9Y

00)7%

Oct. 8,2020 Sheet S of 6 US 2020/0320078 A1

Patent Application Publication

4 "9Oid

087 uo1s1oA wnwndo
paynuapI Ayl ursn 3sanbax A1onb paA1d921) 2IN0IXH

St A1onb poarddal
9} 9IN2AX 0} 1SAIAUI JO $10JeIdO 2IOW JO JUO JO UOISIOA
wnwndo ue Amuapt ‘A1anb 2yl yam pJeIdOSSE 153IUT JO
$107219d0 2JOW JO AUO YIIM PIJRIDOSSE S[OPOW-}SOI IOW JO
Quo SuIsn ‘pue s1wered aseqeIRp PAYNUIPI Y} UO paseq

0Zv A19nD PoAIdO2I U) YIM PIIRIDOSSE sIdjowered
aseqelep Amuaprt ‘uejd uonndadx?d panidwod ay) Suisn

qop ue[d uonnIIXd
[entur ue ojur }sanbax Axanb paa1sar oy Apdwio)

oF 1sonbax A1onb € 9A1009y

117

Oct. 8, 2020 Sheet 6 of 6 US 2020/0320078 A1

Patent Application Publication

g Old

ovS
S30IA3d
1NdLNO/LNdNI

0SS
sng
0cS —
0e5
39IA3d
JOVHOLS AHOWIW

01s
d408S300dd

00S \\w

US 2020/0320078 Al

BENCHMARK FRAMEWORK FOR
COST-MODEL CALIBRATION

TECHNICAL FIELD

[0001] The subject matter described herein relates to data-
base management, and more particularly, cost-based opti-
mization for query execution planning.

BACKGROUND

[0002] Database management systems have become an
integral part of many computer systems. For example, some
systems handle hundreds if not thousands of transactions per
second. On the other hand, some systems perform very
complex multidimensional analysis on data. In both cases,
the underlying database may need to handle responses to
queries very quickly in order to satisfy systems requirements
with respect to transaction time.

[0003] Query execution engines may use an optimizer to
find the optimal execution plans for database queries. This
may involve the ordering of operators and the selection of
the best-fitting implementation for each of these operators.
To come up with such an optimal execution plan, a thorough
investigation of each operator’s performance characteristics
is needed. The gathered information can then be used as the
basis for a linear regression analysis to derive a mathemati-
cal model predicting the operator’s performance.

[0004] Optimization typically relies on a collection of
precise performance information for each operator. One
approach for collecting this performance information would
be to run a certain set of queries involving the operators of
interest on a certain set of input data via an SQL interface of
the database system and measure the execution time of these
queries. This approach has a number of drawbacks, which
render it basically useless for execution plan optimization.

SUMMARY

[0005] In some aspects, there is provided a system includ-
ing at least one data processor; and at least one memory
storing instructions which, when executed by the at least one
data processor, result in operations including receiving an
execution plan file, the execution plan file utilizing at least
one operator of interest and further utilizing other actions
separate from the at least one operator of interest. The
operations further include forming, based on the execution
plan file, an execution plan object by modifying the execu-
tion plan file by isolating the at least one operator of interest
from the other actions; performing a series of tests executing
an extended execution plan object, the extended execution
plan object formed by modifying one or more dummy
operators in the execution plan object to include pointers
identifying input data. The series of tests include receiving
the input data identified by the one or more pointers in the
extended execution plan object, executing the extended
execution plan object using the received input data, and
measuring, based on the execution of the extended execution
plan object, at least one cost metric representative of execu-
tion of the at least one operator of interest; and outputting the
measured cost metric.

[0006] In some variations, the operations can further
include one or more features disclosed herein including the
following. Forming the extended execution plan object can
include deserializing the execution plan file. Modifying the
execution plan file can include replacing one or more of the

Oct. 8, 2020

other actions with one or more of at least one pointer
identifying input data and one or more dummy operators.
Replacing the one or more other actions can include replac-
ing a table scan with the at least one pointer identifying the
input data. Replacing the one or more other actions can
include replacing a projection operator with a dummy pro-
jection operator that receives data produced by the operator
of interest. The cost metric can be execution time of the
extended execution plan object. The operations can further
include generating the input data using a random number
generator. The operations can further include determining,
based on the at least one output cost metric, a cost-model for
the operator of interest based on the measured cost metric.
The system can further include a database execution engine;
a benchmark framework communicatively coupled to the
database execution engine; and one or more databases,
where the benchmark framework receives the execution plan
file, and forms the extended execution plan object, the
benchmark framework performs the series of tests and
outputs the measured cost metric, the input data is received
from the one or more databases, and the benchmark frame-
work determines the cost-model for the operator of interest
based on the measured cost metric. The system can further
include a cost-based optimizer communicatively coupled to
the database execution engine and configured to perform
operations including receiving a query request, compiling
the received query request into an initial execution plan,
using the compiled execution plan, identifying database
parameters associated with the received query request, iden-
tifying, based on the identified database parameters and
using one or more cost-models associated with one or more
operators of interest associated with the received query
request, an optimum version of the one or more operators of
interest to execute the query, and executing the received
query request using the identified optimum version.

[0007] In some aspects, there is provided a computer
program product including a non-transitory machine-read-
able medium storing instructions that, when executed by at
least one programmable processor, cause the at least one
programmable processor to perform operations including
receiving an execution plan file, the execution plan file
utilizing at least one operator of interest and further utilizing
other actions separate from the at least one operator of
interest, forming, based on the execution plan file, an
execution plan object by modifying the execution plan file
by isolating the at least one operator of interest from the
other actions, performing a series of tests executing an
extended execution plan object, the extended execution plan
object formed by modifying one or more dummy operators
in the execution plan object to include pointers identifying
input data. The series of tests include receiving the input data
identified by the one or more pointers in the extended
execution plan object, executing the extended execution
plan object using the received input data, measuring, based
on the execution of the extended execution plan object, at
least one cost metric representative of execution of the at
least one operator of interest, and outputting the measured
cost metric.

[0008] In some variations, the operations can further
include one or more features disclosed herein including the
following. Forming the extended execution plan object can
include deserializing the execution plan file. Modifying the
execution plan file can include replacing one or more of the
other actions with one or more of at least one pointer

US 2020/0320078 Al

identifying input data and one or more dummy operators.
Replacing the one or more other actions can include replac-
ing a table scan with the at least one pointer identifying the
input data. Replacing the one or more other actions can
include replacing a projection operator with a dummy pro-
jection operator that receives data produced by the operator
of interest.

[0009] Insome aspects, there is provided a method includ-
ing receiving an execution plan file, the execution plan file
utilizing at least one operator of interest and further utilizing
other actions separate from the at least one operator of
interest, forming, based on the execution plan file, an
execution plan object by modifying the execution plan file
by isolating the at least one operator of interest from the
other actions, performing a series of tests executing an
extended execution plan object, the extended execution plan
object formed by modifying one or more dummy operators
in the execution plan object to include pointers identifying
input data. The series of tests can include receiving the input
data identified by the one or more pointers in the extended
execution plan object, executing the extended execution
plan object using the received input data, measuring, based
on the execution of the extended execution plan object, at
least one cost metric representative of execution of the at
least one operator of interest, and outputting the measured
cost metric.

[0010] The cost metric can be execution time of the
extended execution plan object. The method can further
include generating the input data using a random number
generator. The method can further include determining,
based on the at least one output cost metric, a cost-model for
the operator of interest based on the measured cost metric.
Replacing the one or more other actions can include replac-
ing a projection operator with a dummy projection operator
that receives data produced by the operator of interest.
[0011] Implementations of the current subject matter can
include systems and methods consistent with the present
description, including one or more features as described, as
well as articles that comprise a tangibly embodied machine-
readable medium operable to cause one or more machines
(e.g., computers, etc.) to result in operations described
herein. Similarly, computer systems are also described that
may include one or more processors and one or more
memories coupled to the one or more processors. A memory,
which can include a computer-readable storage medium,
may include, encode, store, or the like one or more programs
that cause one or more processors to perform one or more of
the operations described herein. Computer implemented
methods consistent with one or more implementations of the
current subject matter can be implemented by one or more
data processors residing in a single computing system or
multiple computing systems. Such multiple computing sys-
tems can be connected and can exchange data and/or com-
mands or other instructions or the like via one or more
connections, including but not limited to a connection over
a network (e.g. the Internet, a wireless wide area network, a
local area network, a wide area network, a wired network, or
the like), via a direct connection between one or more of the
multiple computing systems, etc.

[0012] The details of one or more variations of the subject
matter described herein are set forth in the accompanying
drawings and the description below. Other features and
advantages of the subject matter described herein will be
apparent from the description and drawings, and from the

Oct. 8, 2020

claims. While certain features of the currently disclosed
subject matter are described for illustrative purposes in
relation to an enterprise resource software system or other
business software solution or architecture, it should be
readily understood that such features are not intended to be
limiting. The claims that follow this disclosure are intended
to define the scope of the protected subject matter.

DESCRIPTION OF DRAWINGS

[0013] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, show
certain aspects of the subject matter disclosed herein and,
together with the description, help explain some of the
principles associated with the disclosed implementations. In
the drawings,

[0014] FIG. 1 depicts a block diagram for a system, in
accordance with some example embodiments;

[0015] FIG. 2 depicts an example embodiment of a high-
level flow diagram of a benchmark framework loop process
for determining a cost model of one or more operators of
interest contained in an execution plan;

[0016] FIG. 3 depicts an example embodiment of an
execution plan file that can be executed during tests using
the benchmark framework loop process of FIG. 2;

[0017] FIG. 4A depicts an example of a process for
developing a cost-model for analyzing performance of an
operator of interest, in accordance with some example
embodiments;

[0018] FIG. 4B depicts an example of a process for
determining an optimum format to execute a query request,
in accordance with some example embodiments; and
[0019] FIG. 5 depicts a block diagram illustrating a com-
puting system, in accordance with some example embodi-
ments.

[0020] When practical, similar reference numbers denote
similar structures, features, or elements.

DETAILED DESCRIPTION

[0021] In some example embodiments, a cost-based opti-
mizer is used to find an optimal execution plan for perform-
ing database queries. The cost-based optimizer utilizes a cost
model, which allows for predicting the “cost” of applying a
certain operator implementation at a certain position in the
execution plan. In various example embodiments, cost can
be a performance metric, such as execution time, memory
consumption, etc. The cost-based optimizer selects the “least
costly” plan according to the cost model and passes it to an
execution framework to be executed.

[0022] Running a complete query may involve a lot of
overhead which is included in most cost-based measure-
ments of the actual database query. The overhead cannot be
separated from the cost information of an operator imple-
mentation of interest that is being optimized. For example,
if one is only interested in the execution time of a join
operator for two tables of certain input sizes, running a query
with a join operator will inevitably also involve the execu-
tion of two table scans, which will consume an unknown
portion of the execution time of the query. For some
example embodiments of the cost-model used by the cost-
based optimizer described herein, it is desirable to have a
cost measurement only for the join operator itself, since the
cost-based optimizer is only interested in the cost of the one
or more individual operators being optimized.

US 2020/0320078 Al

[0023] Controlling the execution plan resulting from run-
ning a SQL query is difficult. For example, if one is
interested in the performance of a certain implementation of
a join operator, it may not be possible to control the database
system not to use any other join implementation for the
execution of the respective SQL query. In typical database
systems, the decision of what specific join implementation
to use is intentionally hidden from the user interface and not
necessarily meant to be influenced by the user.
[0024] To get meaningful cost measurement numbers, a
rather large set of input parameter combinations is needed.
For example, a user might be interested in the runtime
measurements of a scan operator for table sizes ranging from
1 to 1,000,000,000 rows in relatively small increments, say
10,000 rows. Collecting this information in the database
system itself would involve the creation of a large number
oftables with the desired table sizes and the insertion of data
into these tables. For example, 100,000 tables would be
needed to provide table sizes ranging from 1 to 1,000,000,
000 rows in increments of 10,000 rows.
[0025] To overcome these problems, a benchmark frame-
work allowing for measuring the execution times of select
operators by a database execution engine for an arbitrary set
of determinant parameters in an easy-to-use manner has
been developed. The benchmark framework makes use of
one or more benchmark libraries of operators, which provide
all the tools necessary for automatic generation of input
parameter values and reliable measurement of a cost metric.
In some example embodiments, the input to the benchmark
framework is a JSON-file encoding the query execution plan
containing the operator of interest to be optimized. The
JSON-file is deserialized into an execution plan object
designed to be executed by the database execution engine.
This provides the user with full control over what exactly is
executed in the execution plan and for which operator or
operators cost is/are measured.
[0026] The input data used for the optimization testing is,
in some example embodiments, provided by providing the
execution plan object with “dummy” or “placeholder”
operators (e.g., dummy scan operators) that simply pass the
input data to the operator of interest without any significant
overhead. This allows for isolating the cost of executing the
operator of interest from other superfluous operations that
surround the operator of interest in a regular execution.
[0027] Using the benchmark framework described herein,
it is possible to collect precise cost data on the performance
of a certain select operator or operators subject to a wide
range of influence factors (e.g., a number of distinct values
in a number of rows or columns, or a selectivity of an
operator predicate) which can then be input into the cost-
model to be used by the cost-based optimizer. In some
example embodiments, the cost data is determined using
standard statistical analysis software of a number of cost
measurements. Conducting these cost-based performance
tests does not require a running instance of the database
system. The entire process can be automated to develop
and/or update the cost-model describing the performance of
the select operator whenever the characteristics of an opera-
tor change during ongoing development.
[0028] In some example embodiments, the cost-based
benchmark framework provides the following enhanced
features:

[0029] The system is easy to use and does not require a

running instance of a database system. In some

Oct. 8, 2020

example embodiments, the system works similarly to a
unit test, which only requires the compilation of the
code that is executed (in this case code executed by the
database execution engine), but not that executed by
the whole database system.

[0030] The process of running the benchmark generated
tests can be automated within a build structure of the
database execution engine and can done on a recurring
basis to re-calibrate the cost-model during ongoing
development.

[0031] The benchmark framework provides full control
over which operators are executed and on specified
input data. The input data can be generated for each
operator execution and the input characteristics (e.g.,
distribution, value range, etc.) are controlled by the
user.

[0032] One or more selected operators can be analyzed
in isolation. The results are not blurred by the effects of
other operators that are typically contained in a regular
query execution plan, such as table scans at the leaves
of an operator tree and/or a projection at the root of the
operator tree.

[0033] The results can be provided in a format that may
be processed by standard statistics software to derive
cost-formulas for the respective operators (e.g., using
CSV or JSON).

[0034] In some example embodiments, there may be pro-
vided an execution engine that may decouple a higher-level,
application layer from a lower database layer (e.g., the
persistence or storage layer where data including database
tables may be stored and/or queried using instructions, such
as commands and/or the like). The execution engine may be
implemented separately from the database layer and/or the
application layer. Furthermore, the execution engine may be
configured to receive a query, generate a query plan (includ-
ing for example query algebra), optimize the query plan,
and/or generate executable code, which can be executed at
runtime. The executable code may include pre-compiled
code (which can be selected for certain operations in the
query plan) and/or code that is generated just-in-time spe-
cifically for execution of the query plan.

[0035] The execution engine may be configured to per-
form some operations itself, while the execution engine may
send some operations (e.g., relatively basic commands, such
as reads, writes, scans, and/or the like) to the database layer.
Furthermore, the execution engine may receive correspond-
ing responses from the database layer where data is stored/
persisted and certain commands, such as reads, writes,
scans, and/or the like, can be performed. The execution
engine may perform more complex execution operations,
such as rule-based operations including relatively more
complex operations such as joins, projections, and/or the
like, while accessing the database’s storage/persistence layer
when needed to read, write, update, and/or perform other
operations.

[0036] The execution engine may be configured to support
a wide range of database types to reduce, if not eliminate, the
need for specialized execution engines for each type of
database. For example, rather than having an execution
engine for each type of database (e.g., an execution engine
for an OLAP database, another execution engine for an
OLTP database, an execution engine for a row-store data-
base, an execution engine for a column-store database,
and/or the like), the execution engine disclosed herein can

US 2020/0320078 Al

perform query execution for a variety of database types and
send queries to the different types of database layers (and/or
their storage/persistence layer) and handle the correspond-
ing responses.

[0037] FIG. 1 shows a block diagram of an example
embodiment of a system 100, in accordance with some
example implementations.

[0038] The system 100 may include one or more client
user equipment 102A-N; such as a computer, a smart phone,
a tablet, an Internet of Things (IoT) device, and/or other
computer or processor-based devices. The client user equip-
ment 102 may include a user interface, such as a browser or
other application to enable access to one or more applica-
tions, database layer(s), and/or databases, to generate que-
ries to one or more databases 190A-N, and/or to receive
responses to those queries.

[0039] In the example of FIG. 1, the databases 190A-N
represent the database layer of a database management
system where data may be persisted and/or stored in a
structured way, and where the data can be queried or
operated on using operations including SQL commands or
other types of commands/instructions to provide reads,
writes, and/or perform other operations. To illustrate by way
of an example, client user equipment 102A-N may send a
query plan describing an execution plan including one or
more operators to a database execution engine 150. The
database execution engine 150 may send the query plan to
the database layer 190A-B, which may represent a persis-
tence and/or storage layer where database tables may be
stored and/or queried. The query plan may be sent via a
connection, such as a wired and/or wireless connection (e.g.,
the Internet, cellular links, WiF1i links, and/or the like).

[0040] The database execution engine 150 may include a
cost-based optimizer 110, such as a SQL optimizer and/or
another type of optimizer, to receive at least one query from
a user equipment 102 and generate a query plan (which may
be optimized) for execution by the execution engine 112.
The cost based optimizer 110 may receive a request, such as
a query request, and then form or compile the received query
request into an initial execution plan. The cost-based opti-
mizer 110 may then identify database parameters associated
with an operator of interest in the received query request.
The database parameters may include one or more of a
number of rows, a number of columns, a number of distinct
values for each column, and a selectivity of an operator
predicate, for which cost-models for the operator of interest
have been previously generated. Using the identified data-
base parameters and one or more cost-models, the cost-
based optimizer may identify an optimum version of the
operator of interest to execute the query request. The execu-
tion engine 150 may then execute the received query request
using the identified optimum version. Further details of the
cost-based optimization of the operators of interest are
described below.

[0041] For example, SELECT Columns from Table A and
Table B, and perform an INNER JOIN on Tables A and B
may represent a query received by the database execution
engine 150 including the cost-based optimizer 110. There
may be several ways of implementing execution of this
query. As such, the query plan may offer hints or propose an
optimum query plan with respect to the execution time of the
overall query. To optimize a query, the cost-based optimizer
110 may obtain one or more costs for the different ways of
executing of the query plan. The costs may be obtained via

Oct. 8, 2020

the execution interface 112 A from a cost function 114, which
responds to the cost-based optimizer 110 with the cost(s) for
a given query plan (or portion thereof), and these costs may
be in terms of execution time at the database layer 190A-N,
for example.

[0042] The cost-based optimizer 110 may form an opti-
mum query plan, which may represent a query algebra, as
noted above. To compile a query plan, the cost-based
optimizer 110 may provide the query plan to the query plan
compiler 116 to enable compilation of some, if not all, of the
query plan. The query plan compiler 116 may compile the
optimized query algebra into operations, such as program
code and/or any other type of command, operation, object,
or instruction. This code may include pre-compiled code
(which can be pre-compiled and stored, and then selected for
certain operations in the query plan) and/or just-in-time code
generated specifically for execution of the query plan. For
example, plan compiler 116 may select pre-compiled code
for a given operation as part of the optimization of the query
plan, while for another operation in the query plan the plan
compiler 116 may allow a compiler to generate the code. The
pre-compiled and generated code represent code for execut-
ing the query plan, and this code may be provided to the plan
generator 118, which interfaces with the query execution
engine 115.

[0043] Insome implementations, the cost-based optimizer
110 may optimize the query plan by compiling and gener-
ating code. Moreover, the cost-based optimizer 110 may
optimize the query plan to enable pipelining during execu-
tion.

[0044] The query execution engine 115 may receive, from
the plan generator 118, compiled code to enable execution of
the optimized query plan, although the query execution
engine may also receive code or other commands directly
from a higher-level application or other device, such as user
equipment 102A-N.

[0045] The query execution engine 115 may then forward,
via an execution interface 112B, the code to a plan execution
engine 120. The plan execution engine 120 may then prepare
the plan for execution, and this query plan may include
pre-compiled code 125 and/or generated code 127. When the
code for the query plan is ready for execution during
runtime, the query execution engine 115 may step through
the code performing some of the operations within the
database execution engine 150 and sending some of the
operations (or commands in support of an operation, such as
a read, write, and/or the like) to an execution engine appli-
cation programming interface (API) 199 for execution at one
or more of databases layers 190A-N.

[0046] Insome example embodiments, the user equipment
102A-102N is connected to or can operate directly a bench-
mark framework 160. The benchmark framework 160 may
be connected to a benchmark library 165 via a connection,
such as a wired and/or wireless connection (e.g., the Inter-
net, cellular links, WiFi links, and/or the like). In some
embodiments, the benchmark library 165 may be local to the
user equipment 102A-102N. The benchmark framework 160
allows for measuring one or more cost metrics (e.g., the
execution time, memory allocation, etc.) of select operators
for an arbitrary set of determinant parameters.

[0047] The benchmark framework 160 makes use of one
or more benchmark libraries 165 of operators, which pro-
vide all the tools necessary for automatic generation of input
parameter values and reliable measurement of the cost

US 2020/0320078 Al

metric. In some example embodiments, the input to the
benchmark framework 160 is a JSON-file encoding the
query execution plan containing the operator of interest to be
analyzed to form the cost-model. The JSON-file is deseri-
alized into an execution plan object designed to be executed
by the database execution engine 150. This provides a user
of one of the client user equipment 102 with full control over
what exactly is executed in the execution plan and for which
operator or operators the cost metric is/are measured in
developing the cost-model.

[0048] FIG. 2 shows an example embodiment of a high-
level flow diagram of a benchmark framework loop process
200 for determining a cost-model of one or more operators
of interest contained in an execution plan.

[0049] The process 200 starts with the benchmark frame-
work 160 receiving, as an input (e.g., from a user of client
user equipment 102A-102N), an execution plan file (e.g., a
JSON file) 202 that includes an encoding of a query plan
directed at one or more of the databases 190A to 190N. The
execution plan file 202 contains information needed by the
execution engine 150 to generate an execution plan object
206, including the one or more operators of interest to be
optimized by the cost-based optimizer 110. The execution
plan file 202 also contains expressions (e.g., predicates, field
expressions, etc.) utilized by the query execution engine 115
to execute the query plan represented by the execution plan
file 202.

[0050] Upon receiving the execution plan file 202, the
benchmark framework may form an execution plan object
206 by processing (e.g., deserializing) 205 the execution
plan file 202. In some example embodiments, the processing
205 of the execution plan file 202 into the execution plan
object 206 includes converting a JSON execution plan file
202 into an object in memory. The processing 205 may
include, in some example embodiments, the construction of
an object in memory that contains all the information that is
also contained in the execution plan file 202. In general, no
information is added or modified during the processing 205.
However, various placeholder strings may be replaced by
other strings during the processing 205. The execution plan
file 202 is a representation of an in-memory object which
can be persistently stored on disk in contrast to a volatile
in-memory representation. The benchmark framework 160
modifies the execution plan object 206 by isolating the
operators of interest from other superfluous actions (e.g.,
other operators, scans, projections, etc.) that consume over-
head separate from the operators of interest. Before the
execution plan object 206 is executed, the execution plan
object 206 is further processed by adding one or more data
sources as leaf nodes of an operator tree structure represent-
ing the execution plan object 206. The benchmark frame-
work 160 revises the execution plan object 206 by repre-
senting table scans included in the execution plan file 202
with operators (referred to as DummyData) resulting in an
extended execution plan object 214. In some example
embodiments, pointers to the input data are held by the
DummyData operators. The previously generated input data
resides in memory and can be directly streamed to the one
or more operators of interest when under test in a benchmark
framework loop process 210.

[0051] Insome example embodiments, the input data used
to fill tables being operated on by the operator(s) of interest
is generated on the fly by a data generator 212 of the
benchmark framework 150 for each execution in the bench-

Oct. 8, 2020

mark framework loop process 210 according to parameters
specified by a user (e.g., of one of the client user equipment
102A to 102N). In this way, the input data does not have to
be stored in a file on disk. Typical examples for the user
specified parameters may include a number of rows, a
number of columns, a number of distinct values for each
column, a selectivity of an operator predicate, etc. Selectiv-
ity is a probability that any row will satisfy a predicate. For
example, a selectivity of 0.01 (1%) for a predicate operating
on a table with 1,000,000 rows means that the predicate will
return an estimated 10,000 rows and discard an estimated
990,000 rows. The specified parameters later become inde-
pendent variables of the cost-function 114 employed by the
cost-based optimizer 110. In contrast to an actual table scan,
which typically makes use of some more complex data
structures and comprises a separate materialization step, the
streaming of input data using the pointers of the Dummy-
Data causes no significant overhead, thus not affecting the
cost-function 114.

[0052] The input data used to fill the tables utilized by the
operators of interest may be generated by the data generator
212 using a random number generator, in some example
embodiments. This provides a fast and simple way to fill
tables of various sizes according to the input parameters
specified by the user.

[0053] Before executing the extended execution plan
object 214, the benchmark framework 160 further revises
the execution plan object 206 by replacing one or more
projection operators with one or more “dummy” projection
operators added at a root of the operator tree structure. When
being executed, the dummy projection operators receive the
data produced by the operator of interest under test and
basically ignore the received data. In an actual execution of
the execution plan object 206, a projection operator buffers
a query result and potentially applies a set of projection
functions to it, which causes some overhead that are not to
be included in the cost-metric measurements.

[0054] Having revised the execution plan object 206, as
described above, to form the extended execution plan object
214, the extended execution plan object 214 is then passed
to an execution engine 216 to be executed in the benchmark
framework loop process 210. In some example embodi-
ments, the execution engine 216 is the query execution
engine 115.

[0055] The benchmark framework 160 runs a series of
tests, represented by the benchmark framework loop process
210, using the tables filled with the random input data
generated by the data generator 212 using a random number
generator as described above. While running the series of
tests, the benchmark framework 160 measures at least one
cost metric (e.g., execution time, memory allocation, etc.)
representative of execution of a candidate version of at least
one operator of interest.

[0056] The benchmark framework 160 outputs the at least
one measured cost metric for individual tests to a cost result
file 220. In some example embodiments where execution
time is the cost-metric, the time taken for the execution of
individual tests is measured and communicated to and stored
in the cost result file 220. In some example embodiments,
the benchmark framework loop process 210 starting with
generating the input data with the data generator 212 to
executing the extended execution plan object 214 at the
execution engine 210, measuring the cost metric and com-
municating and storing the measured cost metric in the cost

US 2020/0320078 Al

result file 220 is conducted by the benchmark library 165
which provides a mechanism for running a series of bench-
marks in benchmark framework loop 210 with varying input
parameters. In this way, a plurality of cost-based experi-
ments can be executed using the same extended execution
plan object 214 repeatedly with a large number of different
input sizes and data distributions while executing the bench-
mark framework loop process 210 just once.

[0057] Further processing of the outputted cost result file
220 can be provided using standard statistical software. An
example cost result file 220 is described below. The cost-
based optimizer 110 may identify, based on the at least one
output cost metric, an optimum one of the plurality of
candidate versions of the at least one operator of interest.
The optimum candidate version of the operator of interest
may be the candidate version that results in the lowest
average measured execution time or the lowest memory
allocation, for example.

[0058] FIG. 3 depicts an example embodiment of an
execution plan file 300 (e.g., the execution plan file 202 of
FIG. 2) that can be received from one of the user equipment
102A-102N and formed into the extended execution plan
object file 214 executed during tests using the benchmark
framework loop process 210 of FIG. 2. The execution plan
file 300 encodes a query execution plan containing a hash-
join operator 310 comprising lines 01-25.

Oct. 8, 2020

tiSemi.” Similarly, there are a set of valid values for the data
type of an operators result (“PH_RESULTTYPE” in line 14
of FIG. 3). So, the string placeholder mechanism, allows just
one generic file for all supported join types and users do not
have to create and store 8 different plan files, which only
differ in the join type to cover all supported join types. This
allows for further parameterization of the plan. In the
example execution plan object file 300, the data type of the
join result and the join type (e.g., inner, left outer, etc.) is not
fixed in the execution plan object file 300. In this way, only
one relatively generic execution plan object file 300 needs to
be written and stored for all benchmark experiments involv-
ing a hash-join.

[0061] Table 1 shows an example of a CSV-file version of
the cost result file 220 produced by the benchmark for a plan
containing an inner hash join on integer columns. Each
HashJoinINT entry contains the input parameter values
including: a number of distinct values “1Distinct” in each
row of a first (left) table, a number of rows “IRows” in the
first table, a number of distinct values “rDistinct” in a second
(right) table, a number of rows “rRows” in the second table,
and a selectivity “sel.” The input parameter values are used
in the respective execution of each iteration resulting in
output values for the cpu_time and real_time elapsed during
the execution (e.g., in nanoseconds) for each iteration.

TABLE 1

name iteration real_time cpu_time IDistinct 1Rows rDistinct rRows sel
HashJoinINT 336227 2097.57 2097.64 1 1 1 1 1
HashJoinINT 334358 2099.28 2099.33 1 1 1 2 1
HashJoinINT 3405272 2089.94 2089.96 1 1 2 2 0.5
HashJoinINT 95 7.36807e+06 7.3684e+06 2048 32768 8192 32768 1.2e-3
HashJoinINT 134 5.2212e+06 5.22132e+06 2048 32768 16384 32768 6.le-4

171 4.11875e+06 4.11894e+06 2048 32768 32768 32768 3.le-4

HashJoinINT

[0059] The hash-join operator 310, in this example, is the
operator of interest for which the benchmark framework
loop process 210 will collect information needed to derive a
cost-model. Lines 3 to 9 define children operators 315A and
315B of the hash-join operator 310. The children operators
315A and 315B are of the type DummyData as described
above, which is a name for a data source operator. In the
execution plan object file 300, the DummyData operators act
as placeholders for the input data that are later created by the
data generator 212 and inserted into the execution plan
object file 300 before being executed in the benchmark
framework loop process 210.

[0060] Lines 10-21 define a specification of a predicate of
the hash-join' operator 310, including a collect expression
320 (the build side of the hash-join operator 310) and a
lookup expression 325 (the probe side of the hash-join
operator 310). Strings 330A, 330B and 330C with prefix
“PH” (lines 14, 20 and 22) are placeholder strings that are
later replaced by a different string during the processing 205.
The strings are replaced during processing 205. They can be
replaced by a string that has a certain meaning to the
database execution engine 150. For example, “PH_JOIN-
TYPE” may be replaced by one of the following specific
strings: “Inner”, “LeftOuter”, “RightOuter”, “FullOuter”,
“LeftSemi”, “RightSemi”, “LeftAntiSemi” or “RightAn-

[0062] The file format of Table 1 is exemplary and can be
provided by the benchmark library 165, and can be used by
the benchmark framework 160 when running the benchmark
framework loop process 210 for a plurality of iterations. The
iterations continue until the variance of the measurements of
cpu_time reaches a certain lower bound, upon which the
framework loop process 210 outputs the statistics (e.g.,
average and standard deviation) of all the iterations to the
cost result file 220. This may guarantee meaningful numbers
being output, because the first iteration typically acts as a
“warmup” run for the following iterations and usually is
much slower.

[0063] FIG. 4A depicts an example process 400 for devel-
oping a cost-model for analyzing performance of an operator
of interest, in accordance with some example embodiments.

[0064] At 410, an execution plan file may be received
from a user. For example, the benchmark framework 160
may receive an execution plan file from user equipment
102A. The execution plan file utilizes at least one operator
of'interest and further utilizes other actions separate from the
at least one operator of interest. The benchmark framework
160 may form, based on the execution plan file, an execution
plan object at 420. For example, the benchmark framework
160 may modify the execution plan file by isolating the at
least one operator of interest from the other actions.

US 2020/0320078 Al

[0065] At 420, the benchmark framework 160 may form
the execution plan object by processing (e.g., deserializing)
the execution plan file as described above. The benchmark
framework 160 may replace one or more of the other actions
with one or more operators including, for example, at least
one DummyData operator including a pointer identifying
input data and one or more other dummy operators (e.g.,
projections). The benchmark framework 160 may replace a
table scan with at least one pointer to the input data. The
benchmark framework may replace a projection operator
with a dummy projection operator that receives data pro-
duced by the operator of interest. As discussed above, during
this process, the benchmark framework 160 may replace
placeholder strings in the execution plan file with various
values of actual strings.

[0066] At 430, the benchmark framework 160 may per-
form a series of tests executing an extended execution plan
object. The extended execution plan object may be formed
by replacing the DummyData operators with the correspond-
ing input data and adding one or more dummy projection
operators to the in-memory object. The series of tests, in
some example embodiments may include receiving the input
data identified by the one or more pointers, executing the
extended execution plan object using the received input data
with the at least one operator of interest. The benchmark
framework 160 may generate the input data using a random
number generator as described above. The benchmark
framework 160 may further measure, based on the execution
of the extended execution plan object, at least one cost
metric representative of execution of the at least one opera-
tor of interest. The benchmark framework 160 may output
the measured cost metric at 440 to be received by the
cost-based optimizer 110. The cost metric may be one or
more of execution time and memory allocation of the
extended execution plan object.

[0067] At 450, the benchmark framework 160 determines
a cost-model for the tested operator of interest based on the
at least one output measured cost metric. The cost-model
may be generated using statistical analysis processes to
generate curves to fit the variations in input parameters (e.g.,
a number of rows, a number of columns, a number of distinct
values for each column, a selectivity of an operator predi-
cate, etc.) for which the series of tests performed at 430
covered.

[0068] The process 400 may be repeated a number of
times for different versions of the operator of interest in
order to generate several cost-models related to the operator
of interest.

[0069] FIG. 4B depicts an example of a process 455 for
determining an optimum format to execute a query request,
in accordance with some example embodiments. The pro-
cess 455 may be executed by the cost-based optimizer 110.
[0070] At 460, the cost-based optimizer 110 receives a
query request. The query request may be received from one
of the user equipment 120A-120N. The query request will
include one or more operators of interest for which one or
more cost-models were generated using the process 400 of
FIG. 4A.

[0071] At 465, the cost-based optimizer 110 compiles the
received query request to form an initial execution plan. At
470, the cost-based optimizer 110 identifies, using the com-
piled initial execution plan, database parameters associated
with the received query request. The database parameters
may include one or more of a number of rows, a number of

Oct. 8, 2020

columns, a number of distinct values for each column, a
selectivity of an operator predicate, for which the cost-
models of the operator of interest were generated.

[0072] At 475, the cost-based optimizer 110 identifies,
based on the identified database parameters and using one or
more of the cost-models associated with the one or more
operators of interest associated with the received query, an
optimum version of the one or more operators of interest to
execute the received query. The identified optimum version
may be the version that, according to the cost-model,
resulted in the lowest estimated execution time based on the
identified database parameters associated with the received
query request.

[0073] At 480, the received query request is executed, e.g.,
by the database execution engine, using the identified opti-
mum version of the one or more operators of interest in the
received query request.

[0074] FIG. 5 depicts a block diagram illustrating a com-
puting system 500 consistent with implementations of the
current subject matter. Referring to FIGS. 1 and 5, the
computing system 500 can be used to implement the bench-
mark framework 160 and the database execution engine 150
and/or any components therein.

[0075] As shown in FIG. 5, the computing system 500 can
include a processor 510, a memory 520, a storage device
530, and input/output device 540. The processor 510, the
memory 520, the storage device 530, and the input/output
device 540 can be interconnected via a system bus 550. The
processor 510 is capable of processing instructions for
execution within the computing system 500. Such executed
instructions can implement one or more components of, for
example, the data ingestion engine 120. In some example
embodiments, the processor 510 can be a single-threaded
processor. Alternately, the processor 510 can be a multi-
threaded processor. The processor 510 is capable of pro-
cessing instructions stored in the memory 520 and/or on the
storage device 530 to display graphical information for a
user interface provided via the input/output device 540.
[0076] The memory 520 is a computer readable medium
such as volatile or non-volatile that stores information
within the computing system 500. The memory 520 can
store data structures representing configuration object data-
base management systems, for example. The storage device
530 is capable of providing persistent storage for the com-
puting system 500. The storage device 530 can be a floppy
disk device, a hard disk device, an optical disk device, a
solid-state device, a tape device, and/or any other suitable
persistent storage means. The input/output device 540 pro-
vides input/output operations for the computing system 500.
In some example embodiments, the input/output device 540
includes a keyboard and/or pointing device. In various
implementations, the input/output device 540 includes a
display unit for displaying graphical user interfaces.
[0077] According to some example embodiments, the
input/output device 540 can provide input/output operations
for a network device. For example, the input/output device
540 can include Ethernet ports or other networking ports to
communicate with one or more wired and/or wireless net-
works (e.g., a local area network (LAN), a wide area
network (WAN), the Internet).

[0078] In some example embodiments, the computing
system 500 can be used to execute various interactive
computer software applications that can be used for orga-
nization, analysis and/or storage of data in various formats.

US 2020/0320078 Al

Alternatively, the computing system 500 can be used to
execute any type of software applications. These applica-
tions can be used to perform various functionalities, e.g.,
planning functionalities (e.g., generating, managing, editing
of spreadsheet documents, word processing documents, and/
or any other objects, etc.), computing functionalities, com-
munications functionalities, etc. The applications can
include various add-in functionalities or can be standalone
computing products and/or functionalities. Upon activation
within the applications, the functionalities can be used to
generate the user interface provided via the input/output
device 540. The user interface can be generated and pre-
sented to a user by the computing system 500 (e.g., on a
computer screen monitor, etc.).

[0079] One or more aspects or features of the subject
matter described herein can be realized in digital electronic
circuitry, integrated circuitry, specially designed application
specific integrated circuits (ASICs), field programmable
gate arrays (FPGAs) computer hardware, firmware, soft-
ware, and/or combinations thereof. These various aspects or
features can include implementation in one or more com-
puter programs that are executable and/or interpretable on a
programmable system including at least one programmable
processor, which can be special or general purpose, coupled
to receive data and instructions from, and to transmit data
and instructions to, a storage system, at least one input
device, and at least one output device. The programmable
system or computing system may include clients and serv-
ers. A client and server are generally remote from each other
and typically interact through a communication network.
The relationship of client and server arises by virtue of
computer programs running on the respective computers and
having a client-server relationship to each other.

[0080] These computer programs, which can also be
referred to as programs, software, software applications,
applications, components, or code, include machine instruc-
tions for a programmable processor, and can be imple-
mented in a high-level procedural and/or object-oriented
programming language, and/or in assembly/machine lan-
guage. As used herein, the term “machine-readable medium”
refers to any computer program product, apparatus and/or
device, such as for example magnetic discs, optical disks,
memory, and Programmable Logic Devices (PLDs), used to
provide machine instructions and/or data to a programmable
processor, including a machine-readable medium that
receives machine instructions as a machine-readable signal.
The term “machine-readable signal” refers to any signal
used to provide machine instructions and/or data to a pro-
grammable processor. The machine-readable medium can
store such machine instructions non-transitorily, such as for
example as would a non-transient solid-state memory or a
magnetic hard drive or any equivalent storage medium. The
machine-readable medium can alternatively or additionally
store such machine instructions in a transient manner, such
as for example as would a processor cache or other random
access memory associated with one or more physical pro-
cessor cores.

[0081] To provide for interaction with a user, one or more
aspects or features of the subject matter described herein can
be implemented on a computer having a display device, such
as for example a cathode ray tube (CRT) or a liquid crystal
display (LCD) or a light emitting diode (LED) monitor for
displaying information to the user and a keyboard and a
pointing device, such as for example a mouse or a trackball,

Oct. 8, 2020

by which the user may provide input to the computer. Other
kinds of devices can be used to provide for interaction with
a user as well. For example, feedback provided to the user
can be any form of sensory feedback, such as for example
visual feedback, auditory feedback, or tactile feedback; and
input from the user may be received in any form, including,
but not limited to, acoustic, speech, or tactile input. Other
possible input devices include, but are not limited to, touch
screens or other touch-sensitive devices such as single or
multi-point resistive or capacitive trackpads, voice recogni-
tion hardware and software, optical scanners, optical point-
ers, digital image capture devices and associated interpre-
tation software, and the like.
[0082] The subject matter described herein can be embod-
ied in systems, apparatus, methods, and/or articles depend-
ing on the desired configuration. The implementations set
forth in the foregoing description do not represent all
implementations consistent with the subject matter
described herein. Instead, they are merely some examples
consistent with aspects related to the described subject
matter. Although a few variations have been described in
detail above, other modifications or additions are possible.
In particular, further features and/or variations can be pro-
vided in addition to those set forth herein. For example, the
implementations described above can be directed to various
combinations and sub-combinations of the disclosed fea-
tures and/or combinations and sub-combinations of several
further features disclosed above. In addition, the logic flows
depicted in the accompanying figures and/or described
herein do not necessarily require the particular order shown,
or sequential order, to achieve desirable results. Other imple-
mentations may be within the scope of the following claims.
[0083] The illustrated methods are exemplary only.
Although the methods are illustrated as having a specific
operational flow, two or more operations may be combined
into a single operation, a single operation may be performed
in two or more separate operations, one or more of the
illustrated operations may not be present in various imple-
mentations, and/or additional operations which are not illus-
trated may be part of the methods.
What is claimed is:
1. A system comprising:
at least one data processor; and
at least one memory storing instructions which, when
executed by the at least one data processor, result in
operations comprising:
receiving an execution plan file, the execution plan file
utilizing at least one operator of interest and further
utilizing other actions separate from the at least one
operator of interest;
forming, based on the execution plan file, an execution
plan object by modifying the execution plan file by
isolating the at least one operator of interest from the
other actions;
performing a series of tests executing an extended
execution plan object, the extended execution plan
object formed by modifying one or more dummy
operators in the execution plan object to include
pointers identifying input data, the series of tests
comprising:
receiving the input data identified by the one or more
pointers in the extended execution plan object,
executing the extended execution plan object using
the received input data,

US 2020/0320078 Al

measuring, based on the execution of the extended
execution plan object, at least one cost metric
representative of execution of the at least one
operator of interest; and

outputting the measured cost metric.

2. The system of claim 1, wherein forming the extended
execution plan object further comprises deserializing the
execution plan file.

3. The system of claim 1, wherein modifying the execu-
tion plan file further comprises replacing one or more of the
other actions with one or more of at least one pointer
identifying input data and one or more dummy operators.

4. The system of claim 3, wherein replacing the one or
more other actions comprises replacing a table scan with the
at least one pointer identifying the input data.

5. The system of claim 3, wherein replacing the one or
more other actions comprises replacing a projection operator
with a dummy projection operator that receives data pro-
duced by the operator of interest.

6. The system of claim 1, wherein the cost metric is
execution time of the extended execution plan object.

7. The system of claim 1, wherein the operations further
comprise generating the input data using a random number
generator.

8. The system of claim 1, wherein the operations further
comprise determining, based on the at least one output cost
metric, a cost-model for the operator of interest based on the
measured cost metric.

9. The system of claim 8, further comprising:

a database execution engine;

a benchmark framework communicatively coupled to the

database execution engine; and
one or more databases, wherein:
the benchmark framework receives the execution plan
file, and forms the extended execution plan object;

the benchmark framework performs the series of tests
and outputs the measured cost metric;

the input data is received from the one or more data-
bases; and

the benchmark framework determines the cost-model
for the operator of interest based on the measured
cost metric.

10. The system of claim 9, further comprising:

a cost-based optimizer communicatively coupled to the
database execution engine and configured to perform
operations comprising:

receiving a query request;

compiling the received query request into an initial execu-
tion plan;

using the compiled execution plan, identifying database
parameters associated with the received query request;

identifying, based on the identified database parameters
and using one or more cost-models associated with one
or more operators of interest associated with the
received query request, an optimum version of the one
or more operators of interest to execute the query; and

executing the received query request using the identified
optimum version.

11. A computer program product comprising a non-tran-
sitory machine-readable medium storing instructions that,
when executed by at least one programmable processor,
cause the at least one programmable processor to perform
operations comprising:

Oct. 8, 2020

receiving an execution plan file, the execution plan file
utilizing at least one operator of interest and further
utilizing other actions separate from the at least one
operator of interest;

forming, based on the execution plan file, an execution

plan object by modifying the execution plan file by
isolating the at least one operator of interest from the
other actions;

performing a series of tests executing an extended execu-

tion plan object, the extended execution plan object

formed by modifying one or more dummy operators in

the execution plan object to include pointers identifying

input data, the series of tests comprising:

receiving the input data identified by the one or more
pointers in the extended execution plan object,

executing the extended execution plan object using the
received input data,

measuring, based on the execution of the extended
execution plan object, at least one cost metric rep-
resentative of execution of the at least one operator
of interest; and

outputting the measured cost metric.

12. The computer program product of claim 11, wherein
forming the extended execution plan object further com-
prises deserializing the execution plan file.

13. The computer program product of claim 11, wherein
modifying the execution plan file further comprises replac-
ing one or more of the other actions with one or more of at
least one pointer identifying input data and one or more
dummy operators.

14. The computer program product of claim 13, wherein
replacing the one or more other actions comprises replacing
a table scan with the at least one pointer identifying the input
data.

15. The computer program product of claim 13, wherein
replacing the one or more other actions comprises replacing
a projection operator with a dummy projection operator that
receives data produced by the operator of interest.

16. A method comprising:

receiving an execution plan file, the execution plan file

utilizing at least one operator of interest and further
utilizing other actions separate from the at least one
operator of interest;

forming, based on the execution plan file, an execution

plan object by modifying the execution plan file by
isolating the at least one operator of interest from the
other actions;

performing a series of tests executing an extended execu-

tion plan object, the extended execution plan object

formed by modifying one or more dummy operators in

the execution plan object to include pointers identifying

input data, the series of tests comprising:

receiving the input data identified by the one or more
pointers in the extended execution plan object,

executing the extended execution plan object using the
received input data,

measuring, based on the execution of the extended
execution plan object, at least one cost metric rep-
resentative of execution of the at least one operator
of interest; and

outputting the measured cost metric.

17. The method of claim 16, wherein the cost metric is
execution time of the extended execution plan object.

US 2020/0320078 Al Oct. 8, 2020
10

18. The method of claim 16, further comprising generat-
ing the input data using a random number generator.

19. The method of claim 16, further comprising deter-
mining, based on the at least one output cost metric, a
cost-model for the operator of interest based on the mea-
sured cost metric.

20. The method of claim 16, wherein replacing the one or
more other actions comprises replacing a projection operator
with a dummy projection operator that receives data pro-
duced by the operator of interest.

#* #* #* #* #*

