
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0317262 A1

US 20150317262A1

ADDA et al. (43) Pub. Date: Nov. 5, 2015

(54) EXECUTING A KERNEL DEVICE DRIVER AS continuation of application No. 12/949,132, filed on
A USER SPACE PROCESS Nov. 18, 2010, now Pat. No. 8,806,511.

(71) Applicant: INTERNATIONAL BUSINESS Publication Classification
MACHINES CORPORATION,
Armonk, NY (US) (51) Int. Cl.

G06F 3/10 (2006.01)
(72) Inventors: Michael ADDA, Tel Aviv (IL); Dan G06F 9/54 (2006.01)

ALONI, Rishon Le-Zion (IL); Avner G06F II/07 (2006.01)
BRAVERMAN, Tel Aviv (IL) G06F 9/48 (2006.01)

(52) U.S. Cl.
(73) Assignee: INTERNATIONAL BUSINESS CPC G06F 13/102 (2013.01); G06F 9/4843

MACHINES CORPORATION, (2013.01); G06F 9/541 (2013.01); G06F 9/545
Armonk, NY (US) (2013.01); G06F II/0793 (2013.01)

(21) Appl. No.: 14/800,396 (57) ABSTRACT
1-1. A method, including receiving, by a user space driver frame

(22) Filed: Jul. 15, 2015 work (UDF) library executing from a user space of a memory
O O over a monolithic operating system kernel, a kernel applica

Related U.S. Application Data tion programming interface (API) call from a device driver
(63) Continuation of application No. 14/457.203, filed on executing from the user space. The UDF library then per

Aug. 12, 2014, now Pat. No. 9,092.356, which is a

SER SPACE

PCR MANAGEMEN
DAEWON

USERAPPCAON 3O

WCE DRVER

30 DEVICE ORVER

42 30 DEVICE DRIVER

JDF BRARY

T PROCESST
- - - - - - - -A.

H -4
UDF KERNEL MODULE ti-44

A6 - - - - - -26
MONOLITHICKERNEL --32

KERNE SPACE
i-------------....................--------------

UDFLIBRARY PROCESSSCHEDULER
42

30 DEVCE DRVER .

HUDFLIBRARYLIBRARY PROCESSSCHEDULER
is

HUDFLIBRARYLibrary PROCESSCHEDUER

forms an operation corresponding to the kernel API call.

42 45

38

38

38

38

45 36

PROCESSOR

22

Patent Application Publication Nov. 5, 2015 Sheet 1 of 3 US 2015/0317262 A1

USER SPACE

PORMANAGEMEN
DAEMON

USER APPLICATION 30

42 45
DEVICE DRIVER (/

UDFLIBRARY PROCEssCHEDULERK 38

42

30 DEWCE ORVER 38

(UDFLIBRARYL PROCESSSCHEDULER
45

30 DEVCE DRIVER

HUDFLIBRARYLIBRARY PROCESSSCHEDUERT
38

ssa 8

38
45 : :

it. Epics.I.9-
Hero: "

i- 26

KERNE SPACE 22

Patent Application Publication Nov. 5, 2015 Sheet 2 of 3 US 2015/0317262 A1

KERNEAP CA
PROCESSING METHOD

BOOKERNEL ru50

EXECUTE DEVICE ORVER N USER 52
SPACE

RECEIVE A KERNEAP CAL FROM
THE DEVICE DRVER

REOUESTED
KERNE OPERATON

PRVELEGED

CONVEY KERNEL AP CALL OUDF
KERNEL BRARY

PERFORM RECQUESTED OPERATION IN
KERNE SPACE

62

FIG 2

PERFORM
REOUESTED

OPERATION NUSER
SPACE

Patent Application Publication Nov. 5, 2015 Sheet 3 of 3 US 2015/0317262 A1

UNCRUE NSANCES OF DEVICE
DRVER EXECUON MEHOD

BOOKERNE 70

DENTFY TWO OR MORE PORTS OF 72
HE SAME YPE

EXECUE A SEPARATE NSTANCE OF
A DEVICE ORVER FOREACH OF THE 74.

DENFED PORS

ESABLSHA ONE-TO-ONE
CORRESPONDENCE BEWEEN EACH
OF HE DEVCE DRVERS AND EACH

OF THE PORS

76

END

FG. 3

US 2015/0317262 A1

EXECUTING A KERNEL DEVICE DRIVER AS
A USER SPACE PROCESS

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application is a Continuation of U.S. patent
application Ser. No. 14/457.203, filed Aug. 12, 2014, which is
a Continuation of U.S. patent application Ser. No. 12/949,
132, filed Nov. 18, 2010.

FIELD OF THE INVENTION

0002 The present invention relates generally to operating
systems, and specifically to a software framework that
enables kernel device drivers to execute as user-space pro
CCSSCS.

BACKGROUND OF THE INVENTION

0003 Operating systems are computer programs which
manage the way software applications utilize the hardware of
computer systems. A fundamental component of operating
systems is the operating system kernel (also referred to herein
as a "kernel'), which provides secure computer system hard
ware access to Software applications executing on the com
puter system. Since accessing the hardware can be complex,
kernels may implement a set of hardware abstractions to
provide a clean and uniform interface to the underlying hard
ware. The abstractions provided by the kernel provide soft
ware developers easier access to the hardware when writing
Software applications.
0004 Operating systems typically segregate virtual
memory into kernel space and user space. User space is typi
cally the virtual memory region for running user applications,
while the kernel space is typically reserved for running the
kernel and extensions to the kernel.

SUMMARY OF THE INVENTION

0005. There are provided various embodiments for
executing a kernel device driver as a user space process. In
one embodiment, a method comprises, receiving, by a user
space driver framework (UDF) library executing from a user
space of a memory over an operating system kernel operated
by a device driver executing from the user space, a kernel
application programming interface (API) call from a device
driver executing from the user space; determining that the
operation comprises a privileged operation, wherein if the
operation is non-privileged: performing, by the UDF library,
an operation corresponding to the kernel API call, and detect
ing an interrupt and sending a notification of the interrupt via
the file descriptor to the UDF library, wherein upon receiving
the notification: Scheduling by a scheduler an execution of an
interrupt handling of the interrupt handling code of the device
driver, wherein the interrupt handling code is a component of
device driver configured to perform each one of receiving a
notification of an incoming message from a remote network
node, and receiving a notification of a failure in firmware
controlling a hostbus adaptor (HBA).

BRIEF DESCRIPTION OF THE DRAWINGS

0006. The disclosure is herein described, by way of
example only, with reference to the accompanying drawings,
wherein:

Nov. 5, 2015

0007 FIG. 1 is a block diagram of a computer system
configured to execute device drivers as user mode processes,
in accordance with an embodiment of the present invention;
0008 FIG. 2 is a flow diagram that schematically illus
trates a method of processing a kernel application program
ming interface (API) call from a device driver executing as a
user space process, in accordance with an embodiment of the
present invention; and
0009 FIG. 3 is a flow diagram that schematically illus
trates a method of executing a unique instance of a device
driver for each port of the computer system, in accordance
with an embodiment of the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS

Overview

0010 Some operating systems such as LinuxTM, imple
ment a monolithic kernel where the entire operating system
executes from kernel space. In addition to the kernel, the
operating system typically comprises kernel extensions and
device drivers. A device driver is a software application that
accepts a high-level command from a computer program
(e.g., the kernel or a user application), and translates the
high-level command to a series of low-level commands spe
cific to a hardware device (e.g., a network interface control
ler).
0011. During their execution, device drivers typically
issue application programming interface (API) calls to the
kernel. The API is an interface implemented in the kernel that
enables the kernel to interact with other computer programs
(e.g., device drivers and user applications). Computer pro
grams issue API calls to gain access to and manage system
SOUCS.

0012 Embodiments of the present invention provide
methods and systems to enable device drivers to execute as
user space processes in a monolithic kernel environment.
More specifically, embodiments of the present invention
enable device drivers executing from userspace over a mono
lithic kernel to call kernel API functions. In some embodi
ments, an emulation layer executing over the monolithicker
nel receives and processes an API call from a device driver
executing from user space. The emulation layer replicates a
subset of the kernel’s API calls which are applicable to the
device drivers. Since the emulation layer receives and pro
cesses kernel API calls, embodiments of the present invention
enable existing device drivers to execute from user space with
minimal modification.

0013 If a device driver fails while executing from kernel
space over a monolithic kernel, the failure of the device driver
may cause the kernel to fail, thereby causing a system crash.
Since embodiments of the present invention enable device
drivers to execute from user space, kernel stability may be
increased since a failure of a device driver (executing from
user space) may only disable access to the device being con
trolled by the device driver.
0014. In addition to executing device drivers from user
space, embodiments of the present invention provide addi
tional system stability by executing a separate instance (i.e.,
each instance executing as a separate process) of a device
driver for each port of a same type in a computer system. For
example, in a computer system comprising three network
interface cards from a single vendor with four ports on each

US 2015/0317262 A1

card, the kernel may execute twelve separate instances of an
identical device driver, with each device driver dedicated to
one of the twelve ports.
0015 Since operating systems typically load and execute
a single device driver for all devices of the same type, the
device driver typically constitutes a single point of failure,
i.e., a failure of the device driver disables access to all ports
controlled by the device driver. By executing a separate
instance of the device driver for each port, embodiments of
the present invention increase system stability, since a failure
of one of the device drivers only disables the single port
controlled by the failed device driver.

System Description
0016 FIG. 1 is a block diagram of a computer system 20
configured to execute device drivers as user mode processes,
in accordance with an embodiment of the present invention.
In the configuration shown in FIG. 1, computer system 20
comprises a memory 22 coupled to a processor 24. Memory
22 is divided into a kernel space 26 and a user space 28.
0017 Processor 24 executes device drivers 30 from user
space 28. Device drivers 30 accept high level commands from
a monolithic kernel32 and a user application34, and translate
the high level commands to a series of low level commands
for a host bus adapter (HBA) 36, a hardware device which
connects computer 20 to other network and storage devices
(not shown). HBA 36 comprises hardware ports 38, where
each of the ports is controlled by a separate instance of device
drivers 30. A port manager daemon (i.e., a background pro
cess)39, typically executing from user space 28, manages the
relationships between device drivers 30 and ports 38 as
described hereinbelow. While the configuration in FIG. 1
shows HBA36 with hardware ports 38, other system configu
rations can also be employed to implement embodiments of
the present invention, and are thus considered to be within the
spirit and scope of this invention.
0018. An emulation layer 40 in memory 22 is configured

to accept kernel API calls from device drivers 30, and perform
the requested kernel operation. The emulation layer com
prises a user space driverframework (UDF) library 42 execut
ing from the user space and a UDF kernel module 44 execut
ing from the kernel space. In embodiments of the present
invention, UDF library 42 is a component of device driver 30,
and is configured to implement a Subset of application pro
gramming interface (API) calls for kernel 32 that are appli
cable for managing Peripheral Component Interconnect
(PCI) devices, such as HBA36.
0019. In the configuration shown in FIG. 1, emulation
layer 40 comprises UDF kernel module 44 and UDF library
42 of the device driver directly above the UDF kernel module.
Since there are four device drivers 30, there are actually four
emulation layers 40. For simplicity, only one layer 40 is
shown in the figure. The combination of UDF kernel module
44 and the UDF library for each device driver 30 comprises a
separate emulation layer 40.
0020 UDF library 42 is configured to implement API
functions that can be run from user space 28. Examples of API
functions that can be performed by UDF library 42 from user
space 28 include managing lists, timers and a process Sched
uler (PS) 45. Lists typically store information such as mes
sage buffers to transfer to hardware devices such as HBA36,
and timers can be used to detect a situation where the HBA (or
another hardware device) does not respond to a command,
and therefore needs to be reset.

Nov. 5, 2015

0021 Process scheduler 45 typically schedules threads
and interrupt handling code within its associated device
driver 30, enabling the implementation of user-level threads.
In computing, a thread is a component of a process in the
sense that a single process (e.g., an instance of device driver
30 executing from user space 28) may comprise multiple
threads, where all threads within the single process share the
same state, share the same memory space, and communicate
with each other directly.
0022 UDF kernel module 44 is configured to implement
API calls that are typically performed from kernel space 26,
including mapping input output (I/O) memory addresses,
allocating direct memory access (DMA) memory, and catch
ing interrupts. Memory 22 comprises a file descriptor (FD)
46, which is a software mechanism that enables software
processes, in this case UDF library 42 and UDF kernel mod
ule 44, to communicate with one another.
0023. In computing, a privilege refers to a permission to
perform a specific action. The monolithic kernel tasks per
formed by processor 24 are usually divided into privileged
and non-privileged operations. Privileged operations typi
cally have absolute control over critical system resources
(e.g., memory and ports), as opposed to non-privileged opera
tions which typically manage less critical system resources
(e.g., timers and lists). In embodiments of the present inven
tion, UDF kernel module 44 is configured to performed privi
leged operations, and UDF library 42 is configured to perform
non-privileged operations.
0024. When mapping I/O memory addresses (i.e., imple
menting memory mapped I/O), processor 24 assigns
addresses in memory 22 to a device, such as HBA36. Kernel
32 and user application34 can then access HBA36 by reading
from or writing to the assigned memory addresses. When
allocating DMA memory, processor 24 assigns addresses in
memory 22 that are then used to transfer data directly between
memory 22 and a device (e.g., HBA 36) without involving
processor 24, thereby reducing processor overhead.
0025. An interrupt typically comprises a signal that causes
processor 24 to temporarily Suspend execution of a program
(e.g., a process of kernel 32 or user application 34). After
detecting the interrupt, processor 24 may either resume
executing the Suspended program or start executing a differ
ent program (i.e., an application or a process). In general,
there are hardware interrupts and software interrupts. A hard
ware interrupt occurs, for example, when an I/O operation is
completed such as transferring data between HBA 36 and
memory 22. A Software interrupt occurs, for example, when
user application 34 terminates or requests certain services
from kernel32.

0026. In monolithic kernel environments, interrupts are
typically handled from kernel space 26. In some embodi
ments of the present invention, upon detecting an interrupt,
UDF kernel library 44 conveys a notification, via file descrip
tor 46, to UDF library 42 that there is an interrupt. Upon
receiving the notification, scheduler 45 schedules execution
of interrupt handling the device driver's interrupt handling
code. The interrupt handling code is a component of device
driver 30 configured to perform operations such as:

0027 Receiving a notification of an incoming message
from a remote network node. The interrupt handling
code is configured to start processing the notification
upon receipt of the notification.

US 2015/0317262 A1

0028. Receiving a notification of a failure in firmware
controlling HBA36. The interrupt handling code is con
figured to reset HBA36 upon receipt of the notification
of failure.

0029 Processor 24 typically comprises a general-purpose
computer configured to carry out the functions described
herein. Software operated by the processor may be down
loaded to memory 22 in electronic form, over a network, for
example, or it may be provided on non-transitory tangible
media, Such as optical, magnetic or electronic memory media.
Alternatively, some or all of the functions of processor 24
may be carried out by dedicated or programmable digital
hardware components, or by using a combination of hardware
and Software elements.
0030 The present invention may be a system, a method,
and/or a computer program product. The computer program
product may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.
0031. The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device. The computer readable
storage medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an opti
cal storage device, an electromagnetic storage device, a semi
conductor storage device, or any Suitable combination of the
foregoing. A non-exhaustive list of more specific examples of
the computer readable storage medium includes the follow
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an eras
able programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device Such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be con
Strued as being transitory signals perse, such as radio waves
or other freely propagating electromagnetic waves, electro
magnetic waves propagating through a waveguide or other
transmission media (e.g., light pulses passing through a fiber
optic cable), or electrical signals transmitted through a wire.
0032 Computer readable program instructions described
herein can be downloaded to respective computing/process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, Switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.
0033 Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or either
Source code or object code written in any combination of one

Nov. 5, 2015

or more programming languages, including an object ori
ented programming language Such as Smalltalk, C++ or the
like, and conventional procedural programming languages,
Such as the “C” programming language or similar program
ming languages. The computer readable program instructions
may execute entirely on the user's computer, partly on the
user's computer, as a stand-alone software package, partly on
the user's computer and partly on a remote computer or
entirely on the remote computer or server. In the latter sce
nario, the remote computer may be connected to the user's
computer through any type of network, including a local area
network (LAN) or a wide area network (WAN), or the con
nection may be made to an external computer (for example,
through the Internet using an Internet Service Provider). In
Some embodiments, electronic circuitry including, for
example, programmable logic circuitry, field-programmable
gate arrays (FPGA), or programmable logic arrays (PLA)
may execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of the present invention.
0034 Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems), and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer readable program instructions.
0035. These computer readable program instructions may
be provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro
cessing apparatus to produce a machine, such that the instruc
tions, which execute via the processor of the computer or
other programmable data processing apparatus, create means
for implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks. These computer read
able program instructions may also be stored in a computer
readable storage medium that can direct a computer, a pro
grammable data processing apparatus, and/or other devices to
function in a particular manner, Such that the computer read
able storage medium having instructions stored therein com
prises an article of manufacture including instructions which
implement aspects of the function/act specified in the flow
chart and/or block diagram block or blocks.
0036. The computer readable program instructions may
also be loaded onto a computer, other programmable data
processing apparatus, or other device to cause a series of
operational steps to be performed on the computer, other
programmable apparatus or other device to produce a com
puter implemented process. Such that the instructions which
execute on the computer, other programmable apparatus, or
other device implement the functions/acts specified in the
flowchart and/or block diagram block or blocks.

Processing Kernel API Calls from User Space
0037 FIG. 2 is a flow diagram that schematically illus
trates a method of processing a kernel API call from one of
device drivers 30 executing as a process from user space 28,
in accordance with an embodiment of the present invention.
In a first step 50, processor 24 boots kernel 32, and in an
execute step 52, processor 24 executes UDF library 42 and
device drivers 30 from user space 28, and UDF kernel module
44 from kernel space 26.

US 2015/0317262 A1

0038. In a receive step 54, UDF library 42 receivesakernel
API call from its associated device driver 30. The device
driver typically issues the API call after receiving a high level
command from either kernel 32 or user application 34. In a
comparison step 56, if the requested operation associated
with the API call is not privileged, then in a first perform step
58, UDF library 42 performs the requested operation from
user space 28, and the method continues with step 54. Return
ing to step 56, if the requested operation is privileged, then in
a convey step 60, UDF library 42 conveys the API call to UDF
kernel module 44 via file descriptor 46. In a second perform
step 62, UDF kernel module 44 performs the requested opera
tion from kernel space 26, conveys any necessary completion
information back to UDF library 42 via file descriptor 46, and
the method continues with step 54.

Device Driver Port Management
0039 FIG. 3 is a flow diagram that schematically illus

trates a method of executing unique instances of device driv
ers 30 for each port 38, where each port 38 is a same type, in
accordance with an embodiment of the present invention. In a
first step 70, processor 24 boots kernel 32. While the com
puter system shown in FIG. 1 includes a monolithic kernel,
processor 24 may boot a different type of kernel in step 70,
including, but not limited to a hybrid kernel or a microkernel.
In an identification step 72, port manager daemon 39 identi
fies two or more ports 38 of a same type. For example, ports
38 may be positioned on a single device, such as HBA 36.
Additionally or alternatively, ports 38 may be physically posi
tioned on multiple devices.
0040. In an execute step 74, processor 24 executes, in
memory 22, a separate instance of an identical device driver
30 for each of identified ports 38, where each instance is
executed as a separate process from a unique address in
memory 22. For example, in the computer system shown in
FIG.1, processor 24 executes four instances of the same HBA
driver 30 for each HBA port38, and executes each of the HBA
drivers as a separate process.
0041 Finally, in an establish step 78, processor 24 couples
device drivers 30 to ports 38 and establishes a one-to-one
correspondence between each of the device drivers and each
of the ports, and the method terminates. As discussed Supra, a
failure of one of device drivers 30 only disables the port
corresponding to the failed device driver. Typically, in the
event of a failure of one of the device drivers, port manager
daemon 39 detects and identifies the port associated with the
failed device driver, re-launches the failed device driver as a
new process, and couples the re-launched device driver to the
identified port.
0042. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow

Nov. 5, 2015

chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0043. It will be appreciated that the embodiments
described above are cited by way of example, and that the
present invention is not limited to what has been particularly
shown and described hereinabove. Rather, the scope of the
present invention includes both combinations and Subcombi
nations of the various features described hereinabove, as well
as variations and modifications thereof which would occur to
persons skilled in the art upon reading the foregoing descrip
tion and which are not disclosed in the prior art.

1. A method, comprising:
receiving, by a user space driver framework (UDF) library

executing from a user space of a memory over an oper
ating system kernel operated by a device driver execut
ing from the user space, a kernel application program
ming interface (API) call from a device driver executing
from the user space;

determining that the operation comprises a privileged
operation, wherein if the operation is non-privileged:

performing, by the UDF library, an operation correspond
ing to the kernel API call, and

detecting an interrupt and sending a notification of the
interrupt via the file descriptor to the UDF library,
wherein upon receiving the notification:
scheduling by a scheduler an execution of an interrupt

handling of the interrupt handling code of the device
driver, wherein the interrupt handling code is a com
ponent of device driver configured to perform each
one of:
receiving a notification of an incoming message from

a remote network node, and
receiving a notification of a failure in firmware con

trolling a hostbus adaptor (HBA).
2. The method according to claim 1, wherein the operation

comprises a privileged operation.
3. The method according to claim 2, wherein if the opera

tion is privileged:
conveying, via a file descriptor, the API call to a UDF

kernel module executing from a kernel space of the
memory over the operating system kernel, and

performing, by a kernel space emulation module, the privi
leged operation from the kernel space while conveying
completion information back to the UDF library.

4. The method according to claim 1, wherein the non
privileged operation is selected from a group of operations
comprising maintaining a list, maintaining a timer, and main
taining a process Scheduler.

5. The method according to claim3, wherein the privileged
operation is selected from a group of operations comprising
catching an interrupt, allocating direct memory access
(DMA) memory, and mapping input/output (I/O) memory
addresses.

6. The method according to claim 1, wherein the device
driver comprises a Peripheral Component Interconnect (PCI)
device driver.

7. A computer program product, the computer program
product comprising:

a non-transitory computer readable storage medium hav
ing computer readable program code embodied there
with, the computer readable program code comprising:

US 2015/0317262 A1

computer readable program code configured to receive,
by a user space driver framework (UDF) library
executing from a user space of a memory over an
operating system kernel operated by a device driver
executing from the user space, a kernel application
programming interface (API) call from a device
driver executing from the user space; and

computer readable program code configured to, if the
operation is non-privileged, perform an operation, by
the UDF library, corresponding to the kernel API call,
and an interrupt is detected and a notification of the
interrupt is sent via the file descriptor to the UDF
library, wherein upon receiving the notification:
a scheduler schedules an execution of an interrupt

handling of the interrupt handling code of the
device driver, wherein the interrupt handling code
is a component of the device driver configured to
perform each one of receiving a notification of an
incoming message from a remote network node,
and receiving a notification of a failure in firmware
controlling a hostbus adaptor (HBA).

8. The computer program product according to claim 7.
wherein the operation comprises a privileged operation.

9. The computer program product according to claim 8.
further including computer readable program code config

Nov. 5, 2015

ured to determine that the operation comprises a privileged
operation, wherein if the operation is privileged, the API call
is conveyed, via a file descriptor, to a UDF kernel module
executing from a kernel space of the memory over the oper
ating system kernel, and the privileged operation is per
formed, by a kernel space emulation module, the privileged
operation from the kernel space while conveying completion
information back to the UDF library.

10. The computer program product according to claim 7.
wherein the computer readable program code is configured to
select the non-privileged operation from a group of opera
tions comprising maintaining a list, maintaining a timer, and
maintaining a process Scheduler.

11. The computer program product according to claim 9.
wherein the computer readable program code is configured to
select the privileged operation from a group of operations
comprising catching an interrupt, allocating direct memory
access (DMA) memory, and mapping input/output (I/O)
memory addresses.

12. The computer program product according to claim 7.
wherein the device driver comprises a Peripheral Component
Interconnect (PCI) device driver.

k k k k k

