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ELECTRICALLY VARIABLE SUSPENSION stiffness and are much simpler mechanically , these systems 
still have moving parts and often a heavy or bulky actuator , 

CROSS - REFERENCE TO RELATED precluding their use in applications with tight mass or 
APPLICATIONS volume constraints . 

5 Electroactive polymers have been described as " artificial 
This application is a 371 of PCT / US2013 / 035956 filed on muscles ” due to several muscle - like properties , such as 

Apr . 10 , 2013 . PCT / US2013 / 035956 filed on Apr . 10 , 2013 inherent passive compliance and damping , low weight , 
claims the benefit of 61 / 622 , 246 filed on Apr . 10 , 2012 . flexible geometry , and silent operation . They have been 

examined most often as a prime mover actuator , with very 
STATEMENT OF GOVERNMENT SPONSORED 10 high strains and forces possible using careful design and 

SUPPORT multiple film layers . However , their disadvantages include 
high voltage requirements , low bandwidth due to hysteretic 

This invention was made with Government support under losses , and actuator failure due to manufacturing defects , 
contract no . W911NF - 10 - 2 - 0016 awarded by the U . S . Army mechanical film overstrain and tearing , and dielectric break 
Research Laboratory . The Government has certain rights in 15 down and shorting . 
the invention . What is needed is a variable stiffness spring that is 

light - weight , flexible and highly responsive . 
FIELD OF THE INVENTION 

SUMMARY OF THE INVENTION 
This invention relates to suspensions and actuators with 20 

scalable and variable stiffness . A variable stiffness spring is provided that includes a 
dielectric diaphragm having a biaxially pre - strained film , 

BACKGROUND OF THE INVENTION where the dielectric diaphragm includes an out - of - plane 
stiffness at zero voltage , a first electrode disposed on a first 

Passive compliance has become an increasingly important 25 side of the dielectric diaphragm and a second electrode 
aspect of robotic and rehabilitation systems . Classically , disposed on a second side of the dielectric diaphragm , where 
robots have relied on stiff appendages and precise position the out - of - plane stiffness is relaxed by an applied voltage 
control of joints to facilitate high - speed trajectory tracking between the first electrode and the second electrode . 
However , many applications benefit from an alternative According to one aspect of the invention , the biaxially 
approach that relies on inherent compliance to improve 30 pre - strained film includes a biaxial pre - strain up to 400 % x 
performance . 400 % . 

Biologically - inspired robots have long included passive In another aspect of the invention , a first anti - tear coating 
compliance as a key design element . Running , hopping , is disposed between the first electrode and the dielectric 
climbing and perching robots have been designed where diaphragm , where a second anti - tear coating is disposed 
appropriate selection of joint and appendage impedance 35 between the second electrode and the dielectric diaphragm , 
leads to reduced shock forces , increased robustness , and in one aspect the first anti - tear coating and the second 
increased efficiency via energy storage and release . Such anti - tear coating are made from material selected from the 
strategies are inspired in part by animals ' ability to vary joint group consisting of silicone rubber , latex rubber and poly 
impedance via co - contraction of antagonistic muscles . urethane and similar elastomeric materials . 
Active impedance control with stiff actuators is possible , but 40 According to a further aspect of the invention , a first 
is limited by bandwidth , weight , and power consumption . frame element is disposed on an outsides surface of the first 
Human - safe robot operation also shares similar require - electrode and a second frame element is disposed on an 

ments . In industrial robot manipulators , passive compliance outside surface of the second electrode . In one aspect , a first 
helps prevent humans from experiencing high forces during frame element and the second frame element are made from 
accidental contact . In rehabilitation devices , impedance 45 material that can include fiberglass reinforced plastic sheet , 
matching with the patient is necessary for many tasks . Here , acrylic sheet , acetal sheet and other non - conductive hard 
passive compliance promotes “ fail - safe ” operation when plastics . It is also possible to use conductive materials such 
compared to active impedance control . as metal ( e . g . , aluminum ) or carbon fiber reinforced sheet if 

Passive compliance can be achieved through devices such an insulating layer ( e . g . kapton film ) is used between the 
as the series elastic actuator ( SEA ) , combining a passive 50 frame and electrode . 
spring and a stiff motor . Advantages include low weight and in a further aspect of the invention , the dielectric dia 
few moving parts . However , their ability to vary this com - phragm is an acrylic dielectric diaphragm . 
pliance is still limited to active control of the serial motor . In yet another aspect of the invention , a first anti - tear 
To achieve variable passive compliance , several different coating is disposed between the first electrode and the 
techniques can be used , broadly categorized into antagonis - 55 dielectric diaphragm , and a second anti - tear coating is 
tic systems and structure - controlled systems . disposed between the second electrode and the dielectric 

Antagonistic systems rely on manipulation of nonlinear diaphragm , wherein a first frame element is disposed on an 
springs to change their equilibrium position . An example outsides surface of the first electrode and a second frame 
such as AMASC can independently control joint position element is disposed on an outside surface of the second 
and stiffness . These systems , while similar to the biological 60 electrode , where the variable stiffness is a stack of at least 
strategy of muscle co - contraction , have disadvantages in two the variable stiffness springs . 
compact robotic devices due to their motor size require 
ments , power usage , mechanical complexity , and weight . BRIEF DESCRIPTION OF THE DRAWINGS 

Structure - controlled systems exploit a change in passive 
spring geometry or coupling . Varying the effective length of 65 FIG . 1a - 1c show a single layer diaphragm . ( a ) Front view , 
a spring or the moment of inertia of a beam are common ( b ) Side view , no displacement , ( c ) Side view , displaced , 
methods to achieve this . While they use less power to change according to one embodiment of the invention . 
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tion . 

FIG . 2a - 2c show a side view ( 2a ) of single diaphragm on required . Additional examples , could be the use of other 
the left with applied force F and resulting displacement x . films or materials as well as other electrode materials over 
Radial slice ( 26 - 2c ) show film tension T cancel and Tx terms the film . 
equal F , according to one embodiment of the invention . According to embodiments of the current invention , the 

FIG . 3 shows the effective electrostatic pressure applied to 5 design , analysis , and experimental validation of a variable 
a constrained film of unit width , according to one embodi stiffness device based on annular dielectric electroactive 
ment of the invention . polymer ( EAP ) actuators is provided . In one embodiment , 

FIG . 4 shows an exploded view of the diaphragm , accord the example device is based on a diaphragm geometry , 
which partially linearizes the viscoelastic response of acrylic ing to one embodiment of the invention . 

FIG . 5 shows an example actuator showing misalignment ant 10 dielectrics , providing voltage - controlled stiffness without 
high damping losses . In a further embodiment , multiple of fiberglass frame and compliant electrode . The distance diaphragms can be connected in a single device to increase between the arrows is approximately 800 um , according to stiffness or provide custom stiffness profiles . The geometry 

one embodiment of the invention . is analyzed to determine the relationship among force , FIG . 6 shows a workloop test on planar sample of VHB 15 . 15 15 displacement and voltage . An example single - layer dia 
4910 , according to one embodiment of the invention . phragm was constructed and tested to validate the concept , 

FIG . 7 shows modeled vs experimental force - displace - demonstrating up to 10x change in stiffness . 
ment for different applied voltages . Dotted lines are experi - Provided below is an embodiment of a variable stiffness 
mental , solid lines are modeled , according to one embodi device that utilizes the applied voltage ( from 0 to 6 kV at 100 
ment of the invention . 20 UA ) to vary the effective mechanical pre - strain of the actua 

FIG . 8 shows the stiffness vs Voltage and Displacement tor film , allowing a 7x to 10x change in stiffness . The 
Range at 1 Hz , according to one embodiment of the inven geometry and construction of the device greatly reduce 
tion . failure rates , linearize the viscoelastic hysteresis of the film 

FIG . 9 shows the stiffness vs Voltage and Displacement material , and allow scaling to a range of displacements and 
Range at 4 Hz , according to one embodiment of the inven - 25 forces suited to small robots . 

In one embodiment of the invention , provided is a device 
FIG . 10 shows multi - unit stack variable springs , accord - that takes advantage of voltage - induced relaxation to sig 

ing to one embodiment of the invention . nificantly change its out - of - plane stiffness . The significant 
FIG . 11 shows a cross - section of three units , according to prestrain required for acrylic dielectrics translates into mea 

one embodiment of the invention . 30 surable stiffness at zero voltage . When voltage is applied , the 
FIGS . 12a - 12b show a simulated stiffness profile for two prestrain relaxes , dropping the effective stiffness . The dia 

unit multi - stack . 12 ( a ) shows individual unit profiles for phragm concept can be seen in FIG . 1 . 
varying biases . 12 ( b ) shows stack profile for varying biases , Turning now to the relationship between the displacement 
according to one embodiment of the invention . of the diaphragm , x and the corresponding spring force , Tx . 

35 as well as the effect of voltage V . When examining the 
DETAILED DESCRIPTION stresses due to prestrain , voltage , and mechanics in an 

infinitesimal element of the membrane , the radial forces are 
The present invention provides suspensions or actuators scaled by cross - sectional area , which in polar coordinates 

useful in bio - inspired devices such as robots , prosthetics and has width rdo on one side of the element and ( r + dr ) do on the 
rehabilitation devices as well as other applications , such as 40 other side . This causes nonlinear radial effects , such as the 
vibration damping , shock absorption , vehicle suspension , approximately catenoid shape of the annulus under out - of 
toys , loudspeakers or the like . Current methods and devices plane deformation . 
require mechanical motion to change stiffness . The time to making some assumptions to simplify modeling of the 
change stiffness associated with these devices is on the order device ' s behavior under small displacements , first it is 
of hundreds of milliseconds . The necessary components to 45 assumed that the out - of - plane slope of the membrane under 
capture this change , such as gears , pulleys , or other deformation is approximately constant , forming a conical 
mechanical hardware , add weight and mechanical complex - frustrum . Here , it is assumed that the material is linear 
ity to the devices . The devices of the present invention weigh elastic , since moderate displacements of the diaphragm only 
orders of magnitude less and can change stiffness orders of cause small displacements of the dielectric material . Ini 
magnitude fasters than these current devices . In one embodi - 50 tially , one cross - sectional slice of material is examined , as 
ment of the invention , the stiffness of a spring can be shown in FIGS . 2a - 2c . 
electrically changed as needed by the device it is part of . The The relationship between the tension in the prestrained 
spring , according to one example , can be an electroactive film and the displacement of the film is given by 
polymer actuator . These actuators rely on voltages applied to T = To + k ( L - Lo ) - T , ( 1 ) thin , stretchy films that cause the films to deform . By 55 
constraining the film ' s deformation , the stiffness of the film where To is the tension due to prestrain , Lo is the film length 
decreases under applied voltage . Because the stiffness at x = 0 , and T , is the relaxation due to applied voltage . To 
change does not rely on mechanical movement , this change calculate the relationship between the displacement of the 
can occur very quickly ( e . g . < 5 ms ) . In one example , the diaphragm , x and the required force , Ty we use trigonometry 
electrically tunable spring can change stiffness by a factor of 60 to show that 
10 in less than 10 ms compared to devices dependent on 
mechanical motion to change stiffness . The devices accord 

X T , ing to the invention are easily scalable to different sizes and coso = 
can be powered by a < 10 gram high voltage power supply . 
Application of a signal between 0 - 10 V causes the spring 65 L = V x2 + L3 stiffness to change . The films can be stacked or connected in 
ways to adapt their force and displacement to the application 

a i NA IL 
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Lo 
+ kn 

P = ERE , E2 – 60€ , V2 12 

EO Er VW Ty = 60€ , V * * 

- continued fiberglass reinforced plastic sheet , acrylic sheet , and acetal 
sheet , carbon fiber reinforced sheet , where an insulating 

Tx = 1 T . ( To - Ty ) x 
layer is used between the carbon fiber reinforced sheet frame V x2 + L3 x2 + LE and each said electrode . 

To address this , an alignment system was implemented for 
each mask and part . Templates were made from acrylic and The effect of voltage on the tension in the film is modeled 

in FIG . 3 . For a given radial slice of the frustrum membrane non - stick backing layers using a laser cutter ( Helix 24 , 
Epilog , USA ) to allow rapid yet precise hand placement and an incompressible material , the slice experiences zero 

strain due to boundary conditions , giving us a hydrostatic without damaging the dielectric film . As a result , the time 
10 needed for a single actuator manufacturing run dropped to pressure equivalence : approximately 1 hour , with the volume limited only by the 

P = P ( 5 ) laser cutter bed dimensions , while the manufacturing yields 
The effective Maxwell pressure due to an applied electric improved to close to 100 % . 

field is given by An important advantage of the alignment system was the 
15 ability to implement small but consistent overlaps between 

the electrode material and the anti - tear coating . This effec 
( 6 ) tively thickens the film at the mechanical interface , provid 

ing two advantages . First , this decreases stress concentra 
tions under loading and results in fewer mechanical failures . 

For length 1 , thickness t , and width w , the voltage - induced ced 20 Second , the charges on each electrode repel each other , 
relaxation T , in the film is resulting in locally higher voltages at the edges of the 

electrode . Increasing the film thickness at the edges reduces 
the electric field strength , reducing the likelihood of dielec 
tric breakdown . The implementation of this coating layer has Ty = Pztw 

25 resulted in actuator samples with thousands of cycles of both 
( 8 ) mechanical and electrical loading without failure either 

during shelf storage or testing . The anti - tear coating can be 
made from material that includes silicone rubber , latex 
rubber or polyurethane and similar elastomeric materials . 

Finally , included is the relationship between t and x . Since 30 Design variables for a single diaphragm , besides gener 
radial symmetry precludes any change in w and the material alized actuator parameters such as prestrain , are limited to 
is incompressible , we know that inner and outer diameter of the active area . For a proof - of 

Design variables for a single diaphragm , besides generalized 
actuator parameters such as prestrain , are limited to inner 

to Lo ( 9 ) 35 and outer diameter of the active area . For a proof - of - concept 
V x2 + LZ test , the inner diameter was minimized without jeopardizing 

arcing while the outer diameter was chosen for ease of 
handling and testing . 

Combining equations ( 4 ) , ( 8 ) , and ( 9 ) , the relationship Experimental data were collected using a muscle lever 
between Tx , x , and V is given by : 40 ( 305B , Aurora Scientific , Canada ) that can prescribe either 

a force or length trajectory and return measured force and 
length . The model used in these experiments was limited to 

To - KLO , COEV ? w ( 10 ) 5N of force and 20 mm of displacement . T , = 1 
\ x2 + L to Lo Sinusoidal length trajectories were applied for five sec 

45 onds . The resulting force vs length curve , known as a 
workloop , is used in characterization of compliant biological 

Example fabricated actuators were based on an acrylic tissue . An ideal spring would yield a perfectly linear plot . 
film , VHB 4910 ( 3M Corporation , USA ) , that was pre - Hysteresis , represented by the area inside the loop , indicates 
strained biaxially 400 % x400 % . A silicone or latex film was losses due to damping . As seen in the planar sample test in 
applied over the entire non - active film area , preventing 50 FIG . 6 , VHB 4910 has considerable viscoelastic losses , 
tearing and early dielectric breakthrough at the electrode complicating modeling and constraining its application as a 
edges . Masks were applied and the film sprayed with con - variable stiffness device . 
ductive electrode composed of carbon black powder ( Vulcan However , the geometry of a diaphragm actuator results in 
XC72R , Cabot Corporation , USA ) and polydimethylsilox - a significantly more linear response . This is due in part to the 
ane ( PDMS ) oil ( ClearCo , USA ) , thinned with hexanes . An 55 low strain of the active material relative to displacement of 
exploded view of the actuator is shown in FIG . 4 . the diaphragm . Viscoelastic losses become noticeable at 
Hand alignment was sufficient for the planar actuators in , higher displacements , but are still much lower than for the 

with large actuator parts and only single layers of dielectric . base VHB material . 
When these techniques were applied to diaphragms , mis The relationship between F , x , and V generally matches 
alignment was frequent . As seen in FIG . 5 , smaller parts , 60 the model presented in Equation 10 . FIG . 7 shows force 
free - floating elements , and multiple layers caused offsets displacement curves for different voltages . Note that for 
between overlapping layers . Resulting actuators had low displacements above 2 . 5 mm , viscoelastic losses , nonlinear 
manufacturing yields or early failures due to high voltage film loading , and nonlinear voltage relaxation cause some 
arcing and stress concentrations at stiff - soft interfaces . In deviation from the model . 
addition , it was noted empirically that both electrical shorts 65 The slope of the workloop , dF / dx , is the effective stiff 
and mechanical tears almost always initiated at the electrode ness . By calculating the average stiffness over several dis 
edges . The frame element can be made of material such as placement ranges and voltages , a map can be formed as in 

t = = 

= + k - 60€ , V2W ) 
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FIG . 8 and FIG . 9 . We can see that for low frequencies , The present invention has now been described in accor 
average stiffness slightly increases as displacement dance with several exemplary embodiments , which are 
increases , but generally there is a 700 - 1000 % possible intended to be illustrative in all aspects , rather than restric 
change in stiffness . As frequencies increase , the viscoelastic tive . Thus , the present invention is capable of many varia 
losses at high displacements become significant , increasing 5 5 tions in detailed implementation , which may be derived 

from the description contained herein by a person of ordi the average stiffness and decreasing the change to approxi nary skill in the art . For example multiple units may be mately 400 % . A summary of the properties of the test unit combined in parallel to achieve a variable spring with higher 
are shown in Table I . stiffness and multiple alternating layers of film and electrode 

may be deposited to achieve a single unit of higher stiffness . 
TABLE I In addition , the geometry of the diaphragm can be varied , for 

example as an oval or ellipse instead of a circle , to better Test diaphragm properties match packaging requirements . 
Mass ( g ) 1 . 6 All such variations are considered to be within the scope 
Dimensions ( mm ) 38 x 38 x 0 . 7 and spirit of the present invention as defined by the follow 
Inner diameter ( mm ) 15 ing claims and their legal equivalents . 
Outer diameter ( mm ) 25 What is claimed : Displacement range ( mm ) 1 . A variable stiffness spring , comprising : Stiffness range over 1 mm ( N / m ) 15 - 102 
Stiffness range over 8 mm ( N / m ) 32 - 117 a . a dielectric diaphragm , wherein said dielectric dia 

phragm comprises a biaxially pre - strained film , 
wherein said dielectric diaphragm comprises an out 

The stiffness of a single diaphragm is limited by the of - plane stiffness at zero voltage ; 
stiffness of the actuator material . To scale stiffness for a b . a first electrode disposed on a first side of said dielectric 
given application , more than one actuator layer is used , diaphragm ; and 
according to embodiments of the invention . In one embodi - c . a second electrode disposed on a second side of said 
ment , multiple layers in the same diaphragm unit are pro - 25 dielectric diaphragm , wherein said out - of - plane stiff 
vided , where the multi - layer diaphragm unit , due to the ness is relaxed by an applied voltage between said first 

electrode and said second electrode , wherein a first contact between electrodes , has identical geometry and anti - tear coating is disposed between said first electrode electrical activation across all layers . and said dielectric diaphragm , and a second anti - tear The single layer diaphragm units in a stacked configura coating is disposed between said second electrode and 
tion , is shown in FIG . 10 and with exaggerated geometries 30 said dielectric diaphragm . 
and spacing in FIG . 11 . Design variables include the spacing 2 . The variable stiffness spring of claim 1 , wherein said 
between units ( an ) , the offset between output shafts ( bn ) , the biaxially pre - strained film comprises a biaxial pre - strain up 
applied voltages ( Vn ) , and the diameter of each unit ( Ln ) . to 400 % X400 % . 
Each unit ' s force - length curve would depend on its geom - . 3 . The variable stiffness spring of claim 1 , wherein said 
etry and applied voltage , while the equilibrium position » first anti - tear coating and said second anti - tear coating are 
would be shifted by the unit spacing and output offsets . The made from material selected from the group consisting of 
force - length curves , or stiffness profiles , of each unit are silicone rubber , latex rubber and polyurethane . 
superimposed to give the stiffness profile of the entire stack . 4 . The variable stiffness spring of claim 1 , wherein a first 
According to further embodiments , by manipulating the frame element is disposed on an outsides surface of said first 
design variables , custom profiles can be constructed for a electrode and a second frame element is disposed on an 
given application . Independent voltage channels for each outside surface of said second electrode . 
actuator would allow even more customization during 5 . The variable stiffness spring of claim 4 , wherein a first 

frame element and said second frame element are made from operation . 
In one exemplary embodiment , given are two units with 45 material selected from the group consisting of fiberglass 

reinforced plastic sheet , acrylic sheet , and acetal sheet . L1 = L2 and V1 = V2 . By varying the displacement bias before 6 . The variable stiffness spring of claim 4 , wherein a first coupling them , which varies the quantity a - b , each dia 
phragm ' s equilibrium point is can be shifted along its frame element and said second frame element are made from 
force - length curve , as seen in FIG . 12a . Lining up these material selected from the group consisting of aluminum 
equilibrium points in a way that achieves force balance ) and 50 sheet and carbon fiber reinforced sheet , wherein an insulat 
adding the curves yields the resultant profile , as shown in ing layer is used between said carbon fiber reinforced sheet 

FIG . 12b . Biasing and shifting a linear spring curve always frame and each said electrode . 
yields a linear output , but , as seen in this example , a 7 . The variable stiffness spring of claim 1 , wherein said 

dielectric diaphragm comprises an acrylic dielectric dia nonlinear curve can be linearized . 
The current invention relies on a combination of electric 55 phr 8 . The variable stiffness spring of claim 1 , wherein a first actuation and a viscoelastic load - bearing structure in a single 

material . This makes the device light , compact , scalable , and anti - tear coating is disposed between said first electrode and 
said dielectric diaphragm , and a second anti - tear coating is mechanically simple , while leveraging the inherent band disposed between said second electrode and said dielectric width and low power consumption of dielectric EAP actua 

tors . The invention is well - suited to robotic and rehabilita - 60 diaphragm , wherein a first frame element is disposed on an 
tion systems . outside surface of said first electrode and a second frame 

The invention overcomes the disadvantages of dielectric element is disposed on an outside surface of said second 
EAP actuators . Higher manufacturing yield rates ( approach electrode , wherein said variable stiffness comprises a stack 

of at least two said variable stiffness springs . ing 100 % ) and very low failure rates ( > 1000 cycles inven 
tion . * * * * * 


