
(19) United States
US 20080250411A1

(12) Patent Application Publication (10) Pub. No.: US 2008/0250411 A1
Agostini et al. (43) Pub. Date: Oct. 9, 2008

(54) RULE BASED ENGINE FORVALIDATING
FINANCIAL TRANSACTIONS

(76) Inventors: Lucio Agostini, Ontario (CA);
Sumit Taneja, Ontario (CA);
Yining Chen, Ontario (CA); J.
Paul Morrison, Ontario (CA)

Correspondence Address:
SCHMEISER, OLSEN & WATTS
22 CENTURY HILL DRIVE, SUITE 302
LATHAM, NY 12110 (US)

(21) Appl. No.: 12/118,799

(22) Filed: May 12, 2008

Related U.S. Application Data

(63) Continuation of application No. 10/178.439, filed on
Jun. 24, 2002, now Pat. No. 7,398,237.

(30) Foreign Application Priority Data

Jun. 26, 2001 (CA) 2,351,990

214

NETWORK
CONNECTION
22

NETWORK
INTERFACE

226

MEMORY

232
COMMUNICATIONS

SUTE

Publication Classification

(51) Int. Cl.
G06F 9/46 (2006.01)

(52) U.S. Cl. .. 71.8/101

(57) ABSTRACT

A method and system for checking whether customer orders
for transactions of financial instruments conform to business
logic rules. Executable rule files are created and stored in a
repository. New executable rule files can be created by script
ing the new business logic rules in a script file which is
converted into a corresponding source code file written in a
computer programming language. The Source code file is
compiled to create an individual executable rule file. A rule
selection repository contains identification of groups of
selected executable rule files. The invention determines the
category of the customer order and reads, from the rule selec
tion repository, a group of executable rule files that corre
spond to the identified category of the customer order. The
selected executable rule files are executed to check the con
formance of the customer order. Execution results are stored
in a status repository for Subsequent retrieval and analysis.

NPUTIOUTPUT
INTERFACE

US 2008/0250411A1 Oct. 9, 2008 Sheet 1 of 17 Patent Application Publication

NOLLWLOTNO LEXI?+\/|N
0B, B,

XIO LON/XO SI YHEICTHO :HOIVOICINI SñIWLS ECHOO (JECT>JO
gol

ETEW LITOEXE (JEWOLST\C)

(uu) ESTE (oqe) NEHL
(ZÁX) -II

2„…„…„…„…„……………… •••••••=== ************************************ laer): §ESTIONXISIC]? 2| 5õ?0?,802# |-(JELLTldWOO| |? X\\/Tc|SICI? ?ffy0Z} |WELSÅS HELDdWOO TVNOILNBANOOZOZ| ·-……………………><!-------------------------------------- ZLZ NOI LOENNOO XR-IONALEN

Oct. 9, 2008 Sheet 2 of 17

?IELTìd|NOO CIEXRJONALEN
NOI LOENNOO XHONALEN

VZ, “?INH

Patent Application Publication

US 2008/0250411 A1

NOLLOENNOO XÈHONA LEIN

£IZ "?INH

Patent Application Publication

US 2008/0250411A1 Oct. 9, 2008 Sheet 4 of 17 Patent Application Publication

EGIOO ETEW LÍTOEXE H+--------->|ETICHINOOZ8€.

888,

XIO LON/XO (HECT-IO :?-HO IVOICIN? STILLVILS Z88,£8£
EGIOO EONTOSlès HECIHO (NOILOVSNV HL) XJEWOLSnO :fie V/LV/C)]

V79 *{OIMH see#88C 988,ESVEVIVCI

N# ETT, HON# ETT H HO EGIOO ETEVLIYOEXE?IETICHINOOECHOO EONTOS

US 2008/0250411A1 Oct. 9, 2008 Sheet 6 of 17 Patent Application Publication

||LOEHICIENTOSW%| | / |- -<ldROS> #

º gaewaewaewaewae!!! www.; * * * *m*****************

US 2008/02SO411 A1

assasso anssage sworners writerror

Aluno=TEGOOTINENnº LSNI AÐ HLINA ?WL ILSNOO HOB EGOOllllllll……...............................---****************************"“”“”“”“”“”“”“”“”“”“”“” £IG "?I H

Patent Application Publication

samwawaaaaasanau

US 2008/0250411 A1 Oct. 9, 2008 Sheet 10 of 17

V79 °{OIMH
w

t

s

f

F
s

R

t

E
R
s

g

:
A.

t

s
s

g

f

E.

t
t

w

g

g
g
g
B

s

s

t
t
:

f

t
g
f
e

g
s

w

E
s
s

t
E
t
s

f

R

:
s

s
s
s

8

e

g
:

s
g

s

g

Patent Application Publication

US 2008/0250411A1 Oct. 9, 2008 Sheet 11 of 17 Patent Application Publication

up in Jalile M ovatown as as a

nanui villa war yearn on now nosannaurs an unuoussa no more earn

wwow was aw

an unusa at ammuniserpy newwo playa hubasaladanan

N.

new no was at a a

was now uses won tPev the

N.
Vs
(s

rena narror

was was WR with w which will lets

{{9 °{OI, H

US 2008/0250411A1 Oct. 9, 2008 Sheet 12 of 17 Patent Application Publication

ETIH NnNo.] ETEW LITOEXE : ELLVERHO OL ET|-|| EGIOO EKOSITIOS ETICHWOO

90/S

ETHE ECJOO EO-ITYOS O L ETI=| Ld]>HOS LYHE/\NOO ETIH LCHRHOS ELLI}}}/V\

þOZS 20ZS

US 2008/0250411A1 Oct. 9, 2008 Sheet 15 of 17 Patent Application Publication

assanor

unreanwnnauru

E
e

f
8.

s
k

y
g
g

s

e

r
s
F

s

r
s
g
s

8

y
w

k
B

8

w
A.

f
t

an

waterwww.m-www.ww.nws was remonaswan-e-w-

roa

US 2008/02SO411 A1 Oct. 9, 2008 Sheet 16 of 17 Patent Application Publication

S. S.
So

U
a newa-araswansensert."'"

s an essessions an as a waters"

.....................---------------------------------~--~~~~~*******************************
(p?uoo) OI "?I H

ease was new asperasers."

a. ... a nasarasu are starter.""

US 2008/02SO411 A1

RULE BASED ENGINE FORVALIDATING
FINANCIAL TRANSACTIONS

0001. This application is a continuation application claim
ing priority to Ser. No. 10/178.439, filed Jun. 24, 2002.

FIELD OF THE INVENTION

0002 The present invention relates to a system and
method for checking conformance of input data prior to Sub
sequent processing, and more specifically to a system and a
method for checking whether financial transactions conform
to corresponding sets of selected executable rule files con
taining business logic rules.

BACKGROUND OF THE INVENTION

0003. The brokerage industry can be highly competitive.
Strategically, brokerage firms often attempt to gain a larger
market share of customers by offering lower transactions
fees. It is highly desirable for brokers to continually find ways
to reduce their operating costs associated with fulfilling or
transacting customer orders for financial instruments, such as
stocks, bonds, options, and mutual funds, while maintaining
or improving their ability to serve customers by reliably full
filling customer orders on a timely basis.
0004 Typically, brokerages accept or input customer
orders via their systems and then forward the orders to an
existing order fulfilment system or legacy system for subse
quent transaction of the customer order. Typically, the order
fulfilment system is a legacy system that has been reliably
operating formany years, and legacy systems are rarely modi
fied to perform significantly new functions to avoid poten
tially undesirable consequences to the overall system perfor
mance. However, when a customer order for a financial
transaction has flaws, the existing order fulfilment system
cannot fulfil the customer order and the subsequently unful
filled customer order is returned by the existing order fulfil
ment system to the broker along with a financial charge for
incurred processing time on the existing order fulfilment sys
tem. In Such a situation, the customer order may not be full
filled on a timely basis and undesirable costs may be incurred
in the attempt to transact the customer order.
0005 Typically, a programming application, written in a
computer programming language, includes nested program
ming logic having if/then programming statements each
implementing business logic rules for a specific broker. The
programming application is Subsequently compiled into an
executable file which is then used by a central processing unit
to check the conformance of customer orders. Typically, the
implemented business logic rules are relevant for the business
needs of a specific broker. Frequently, the programming
application requires modifications to the implemented busi
ness logic rules, in which case, the entire program needs to be
reviewed by an expert computer programmer and recompiled
and re-tested to ensure suitable and reliable operation. How
ever, the prior art applications are frequently difficult to main
tain typically because expert computer programmers do not
remain with the same employer, or documentation of the
programming is severely lacking in depth. Therefore, new
programmerS face the task of learning a new programming
language to remove, add, modify business logic rules and
re-test the updated computer application. Additionally, the
known prior art computer applications require that all of the

Oct. 9, 2008

rules need to be serially or sequentially applied in an inflex
ible manner to each customer order. This inflexibility leads to
an accumulation of unnecessary processing time and effort on
the behalf of a computer system because not all of the rules
may be required to check whether data elements of each
customer order conform to the business logic rules.
0006 Another problem experienced with on-line transac
tion of customer orders is that even though the customer
orders may appear to be acceptable to a existing order fulfil
ment system, the customer order may not be appropriate with
respect to an investment profile or preferences of the cus
tomer. This can lead to brokers transacting inappropriate
types of customer orders for some customers. Some jurisdic
tions require brokers to know the investment tolerances or
profiles of their clients before transacting customer orders,
which is known as know your customer rules.
0007. In conclusion, prior art systems codify the business
logic rules into a single source code file and Subsequently
compile the source code file to create a single executable file.
However, when the business logic rules require to be changed,
a computer programmer is required to examine the original
Source code, ascertain the extent of the required changes, test,
and debug the new code, followed by the required compila
tion to create an updated or revised executable file. Disadvan
tageously, this required the talents of an experienced pro
grammer, and if that programmer were new to the
organization, then more time would be required to understand
the original source code especially if the original source code
were not properly documented. Also, even an experienced
programmer would not typically appreciate or understand the
requirements of a business and the types of business logic
rules that would be required to check conformance of cus
tomer orders. Disadvantageously, the business logic would
change periodically to Suit the needs of regulatory agencies or
stock market conditions, which would place a undue burden
on the programmer attempting to adapt the Source code to
newly developed business logic rules.

SUMMARY OF THE INVENTION

0008. The present invention provides a system for check
ing whether input data, Such as customer orders for transac
tions of financial instruments, conform to business logic
rules. The system enables a non-programmer to include,
remove, and/or reorder, in a simple text file, a set of individu
ally identified executable rule files each encoding business
logic rules, thereby significantly reducing the need to recom
pile the entire program application. Each executable rule file
is individually created and stored in a repository of available
executable rule files (AERFs). When an executable rule
becomes obsolete, a new executable rule file can be created by
Scripting the new business logic rules in a script file which in
turn is converted into a corresponding source code file being
written in a convenient computer programming language.
Subsequently, the Source code file is compiled to create an
individual executable rule file, which is then placed into the
rule repository. A rule selection repository, which can be
implemented as a structured text file, is used for containing
identification of groups of selected executable rule files. The
system of the invention determines the category of the cus
tomer order and reads, from the rule selection repository, a
group of selected executable rule files that correspond to the
identified category of the customer order. The group of
selected executable rule files are executed to check the con

US 2008/02SO411 A1

formance of the customer order. Execution results are stored
in a status repository for Subsequent retrieval and analysis.
0009. According to a first aspect of the present invention,
there is provided a method for testing at least one data item in
a transaction order against at least one business logic rule, the
method including the steps of creating a repository of execut
able rules, each executable rule adapted to encode a business
logic rule, listing a Subset of executable rules to be used in
checking the transaction order, at least one listed executable
rule being adapted to test the at least one data item against at
least one business logic rule, locating the listed Subset of
executable rules in the repository, causing the at least one
executable rule of the subset to test the at least one data item
against the at least one business logic rule, and indicating
whether the at least one data item conforms to the at least one
business logic rule.
0010. According to a second aspect of the present inven

tion, there is provided a computer program product for use in
a computer system operatively coupled to a computer read
able memory, the computer program product including a
computer-readable data storage medium tangibly embodying
computer readable program code for directing the computer
to for test at least one data item in a transaction order against
at least one business logic rule, the code including code for
instructing the computer system to create a repository of
executable rules, each executable rule adapted to encode a
business logic rule, code for instructing the computer system
to list a subset of executable rules to be used in checking the
transaction order, at least one listed executable rule being
adapted to test the at least one data item against at least one
business logic rule, code for instructing the computer system
to locate the listed subset of executable rules in the repository,
code for instructing the computer system to cause the at least
one executable rule of the subset to test the at least one data
item against the at least one business logic rule, and code for
instructing the computer system to indicate whether the at
least one data item conforms to the at least one business logic
rule.
0011. According to a third aspect of the present invention,
there is provided a computer system having a computer read
able memory, the system for testing at least one data item in a
transaction order against at least one business logic rule, the
system including executable code for placement in the
memory, a repository of executable rules, each executable
rule adapted to encode a business logic rule, a listing of a
Subset of executable rules to be used in checking the transac
tion order, at least one listed executable rule being adapted to
test the at least one data item against at least one business
logic rule, wherein the executable code includes: means for
locating the listed subset of executable rules in the repository,
means for causing the at least one executable rule of the Subset
to test the at least one data item against the at least one
business logic rule, and means for indicating whether the at
least one data item conforms to the at least one business logic
rule.
0012. A better understanding of these and other aspects of
the invention can be obtained with reference to the following
drawings and description of the preferred embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

0013 Reference is made to the accompanying drawings
which show, by way of example, embodiments of the present
invention, and in which:
0014 FIG. 1 depicts an example of the prior art;

Oct. 9, 2008

0015 FIGS. 2A and 2B depict a computer system and
Subsystems of the computer system for operation with various
embodiments of the invention;
0016 FIGS. 3A and 3B depict an embodiment and a pre
ferred embodiment of the invention;
0017 FIGS. 4A and 4B depict a script file having a busi
ness logic rule, and a method for converting the Script file to
a source code file;
(0018 FIGS.5A and 5B depicta source code file created by
converting the script file of FIG. 4a,
(0019 FIGS. 6A and 6B depict a rule selection repository;
0020 FIG. 7 depicts a flowchart of an operation of a rule
engine;
0021 FIG. 8 depicts a flowchart of an operation of a rule
generator,
0022 FIG. 9 depicts a flowchart of an operation of an
execution analyser,
0023 FIG. 10 depicts a rule selection repository enabled
for dynamic rule selection; and
0024 FIG. 11 depicts a flowchart of an operation for
dynamically selecting rules.

DETAILED DESCRIPTION

0025 Referring to FIG. 1, there is depicted a prior art
method for checking whether data, Such as customer order
108 for transacting financial instruments, conforms to various
rules which are encoded in source code 102. The computer
programmed instructions, hereinafter called instructions of
source code 102 include “if then, else' style of instructions
which are executed serially or can include branching state
ments for bypassing particular groups of instructions to Suit a
specific programming need. When the encoded rules must be
changed, an experienced programmer modifies the instruc
tions of source code 102 and uses compiler 104 to compile
source code 102 to generate executable code 106 that replaces
an older version of executable code. The newly generated
executable code 106 is tested to ensure that the modified
Source code works properly and does not negatively impact
the unmodified source code. Then, the tested source code can
be used with the customer order 108.
0026 Executable code 106 examines the customer order
108 and may use related information that is useful for check
ing the conformance of the customer order 108. The related
information can be a market quotation 110 for a quote to
transact financial instruments mentioned in customer order
108 or can be data from a database 112 containing customer
specific information, such as account numbers and the like.
After the executable code 106 examines customer order 108,
a market quotation 110, and data from database 112, execut
able code 106 proceeds to check whether customer order 108
conforms to the encoded rules. Executable code 106 provides
a status indicator 114 for indicating whether customer order
108 conforms to the encoded rules.
0027. The main disadvantage of using the prior art is that
when the rules need to be changed, an experienced computer
programmer must update or modify source code 102. The
frequency of changing the encoded rules occurs on a very
frequent basis in which the source code 102 must be recom
piled to generate new executable code 106.
0028 Referring to FIG. 2A, there is depicted an embodi
ment of a computing platform in which various embodiments
of the invention operate. The computing platform is a system
that includes a conventional computer system 200 operation
ally coupled to a networked computer 218 via suitable net

US 2008/02SO411 A1

work connections 212,216 and network 214. Network 214 is
a conventional network Such as a local area network, wide
area network, intranets, Internet, and the like, or a convenient
combination thereof. Essentially, the network 214 provides a
convenient mechanism for transporting data, Such as cus
tomer orders for transacting a financial instrument, to the
computer system 200. It will be appreciated that in another
embodiment of computer system 200, computer 200 is not
connected to the network 214 via network connection 212,
provided the data or customer order is entered directly to the
memory of computer system 200 via a keyboard/mouse 206
or via a removable computer readable medium, Such as a
floppy disk 210. For convenience, aspects of the present
invention can be distributed amongst various networked com
puters interacting with a computer system 200 via network
214 or a combination of networks. Preferably, a majority of
the invention will be implemented in computer system 200.
Computer system 200 includes a computer 204 which com
municates with various output devices such as a display ter
minal 202 or a printer 208, with the network 214, and with
various input devices. Such as keyboard/mouse 206, or floppy
disk 210. Other devices can include various computer periph
eral devices such as a scanner, CD-ROM drives, and the like.
0029 Referring to FIG. 2B, there is depicted an embodi
ment of computer 204 that includes a bus 224 that operation
ally interconnects various Subsystems or components of the
computer 204, such as a central processing unit (CPU) 220, a
memory 222, a network interface 226, and an input/output
interface 228.

0030) CPU 220 is a commercially available CPU suitable
for operations described herein. Other variations of CPU 220
can include a plurality of CPUs. Suitable support circuits or
components can be included for adapting the CPU 220 for
optimum performance with the subsystems of computer 204.
0031. Input/output interface 228 enables communication
between various subsystems of computer 204 and various I/O
devices, such as keyboard/mouse 206. Input/output interface
228 includes a video card for operational interfacing with
display terminal 202, and preferably a disk drive unit for
reading Suitable removable computer-readable medium, Such
as a floppy disk 210, or CD. The removable medium provides
programming instructions for Subsequent execution by CPU
220 to configure and enable computer 204 to achieve the
functions of the invention, or can provide removable data
storage if desired.
0032 Network interface 226, in combination with a com
munications Suite 232, enables Suitable communication
between computer 204 and other computers operationally
connected via network 214. Examples of a conventional net
work interface can include an Ethernet card, a token ring card,
a modem, or the like. Optionally, network interface 226 may
also enable retrieval of transmitted programming instructions
or data to configure and enable computer 204 to achieve the
functions of the invention. Optionally, aspects of the inven
tion can be enabled in various computer systems operation
ally networked to form a distributed computing environment
to achieve the functions of the invention.

0033 Memory 222 includes both volatile and persistent
memory for storage of an embodiment 234 of the invention as
depicted in FIG. 3A, and a preferred embodiment 240 of the
invention as depicted in FIG. 3B. Embodiments 234 and 240
each include computer programmed instructions 236 and 242
respectively for instructing the CPU 220, and include data
structures 238 and 244 respectively such as databases or

Oct. 9, 2008

lookup tables. Memory 222 also includes operating system
230, and communications suite 232. Preferably, memory 222
includes a combination of random access memory (RAM),
read only memory (ROM), and a hard disk storage device. It
will be appreciated that programmed instructions 236 and
242 can be delivered to memory 222 from an input/output
device, such as a floppy disk 210 inserted in a floppy disk
drive via input/output interface 228, or downloaded to
memory 222 from network 214 via network interface 226.
Operating system 230 suitably co-operates with CPU 220 to
enable various operational interfacing with various Sub
systems of computer 204, and for providing various function
ality, Such as multitasking chores and the like. Communica
tions Suite 232 provides, through interaction with operating
system 230 and network interface 226, suitable communica
tions protocols to enable appropriate communications with
networked computing devices via network 214, such as TCP/
IP, ethernet, token ring, and the like.
0034 Referring to FIG. 3A, there is depicted a system
block diagram of an embodiment of the invention. The
embodiment is depicted as embodiment 234 of FIG.2B. The
invention provides a method for testing at least one data item
in a transaction order against at least one business logic rule.
The invention also provides a computer program product for
use in a computer system operatively coupled to a computer
readable memory, the computer program product including a
computer-readable data storage medium tangibly embodying
computer readable program code for directing the computer
to for test at least one data item in a transaction order against
at least one business logic rule. The invention also provides a
computer system having a computer readable memory, the
system for testing at least one data item in a transaction order
against at least one business logic rule.
0035 Source code 381 contains instructions which are
compiled by compiler 382 to generate executable code 383.
Executable code 383 is only generated one from source code
381, and no matter how frequently the business logic rules
need to be identified, changed, added, removed or the order in
which the rules are executed it is not required to modify
source code 381 and regenerate executable code 383. In this
manner, executable code 383 remains constant, as will be
explained below, unless additional functions are added or
removed to Suit other particular requirements of executable
code 383.

0036. The system reads data 384, which can be a customer
order to transact financial instruments such as Stocks, bonds
and the like. It will be appreciated that data 384 can be one or
more data files, and can also be a customer order to purchase
pharmaceutical drugs, vehicles, real estate, customer goods,
and the like. The system can also read other pertinent data
which can be available from other databases 385 and 386. For
the example that the data 384 is a customer order to transact
financial instruments, database 385 can provide a related
market quotation for the customer's transaction and database
386 can provide related customer information such as
account numbers and the like.
0037 Group 388, which can be generated and managed by
executable code 383, includes a location, such as a lookup
table, database, or repository, for containing individually
executable rules which are identified or labelled as "Rule #1
to “Rule iN inclusive. The group of rules 388 can also be
called a repository. The repository is created for holding
executable rules whereby each executable rule is adapted to
encode a business logic rule. Each rule of group 388 is indi

US 2008/02SO411 A1

vidually executable and includes a business logic rule. It will
be appreciated that a rule of group 388 can include more than
one business logic rule.
0038 Listing of rules 389 is a convenient lookup table or
database and the like having identifiers for identifying a spe
cific subset of rules from the group 388, in which the identi
fied subset of rules are to be executed after executable code
383 reads listing 389. Listing 389 is a listing of a subset of
executable rules to be used in checking the data 384 (e.g.
transaction order), wherein at least one listed executable rule
is adapted to test the at least one data item against at least one
business logic rule, and executable code 383 locates the listed
subset of executable rules in the repository 388. Executable
code 383 looks up the identified subset of rules of listing 389
and then locates the identified subset of rules from the group
388. It will be appreciated that the group of rules 388 can be
merged with executable code 383 into one single unit of
executable code. Preferably, group 388 is kept separate from
executable code 383 for simplicity of operation. Executable
code 383 requests only the identified rules (being identified
from the listing 389) from group 388 and causes execution of
their encoded business logic rules to check conformance of
data 384. Once the executable code 383 has caused the execu
tion of executable rules, the executing executable rules check
whether the data 384 conforms to the business logic rules
encoded in the executing rules. Executable code 383 causes
the at least one executable rule of the subset to test the at least
one data item against the at least one business logic rule.
0039. A status indicator 387 indicates whether the data
384 conforms to the business logic rules encoded in the iden
tified rules of listing 389. The system is adapted to indicate
whether at least one data item conforms to the at least one
business logic rule. The indication can be provided by execut
able code 383 or directly from an executable rule. Indicator
387 can be updated by the executing executable rules or by the
executable code 383. Advantageously, executable code 383 is
never changed. What changes is the individually executed
rules and the listing that identifies the individually executed
rules. When the rules need to be identified, changed, deleted
or new rules need to be added to group 388, a user can manage
group 388 and listing 389.
0040. To create new rules for placement in group 388, a
user writes source code 391 for a rule and then uses compiler
392 to compile code 391 to created executable code 393
which is then subsequently placed in group 388. Then the user
can proceed to identify the newly created executable rule in
listing 389 if desired. Listing 389 can be organized in any
Suitable manner Such as grouping specific identified rules into
Subgroups for sake of simplicity. The subgroup of identified
rules can be used for checking the conformance of data 384
that belongs to a category of data. Alternatively, a new listing
390 can be used for checking data that belongs to another
category of data.
0041 Referring to FIG. 3B, there is depicted a preferred
embodiment of the invention. System module 300 includes
rule generator 310, rule repository 320, rule selection reposi
tory 330, rule engine 340, data repository 350, and status
repository 360. The arrows in FIG. 3B indicate the paths for
exchanging data between the modules of system 300. System
300 is depicted as embodiment 240 of FIG. 2B.
0042 Rule generator 310 and rule engine 340 (modules
310 and 340) include programmed instructions which can be
enabled as dedicated electronic circuits or Subsystems opera
tionally coupled to CPU 220. Preferably, modules 310 and

Oct. 9, 2008

340 are conveniently enabled as executable programmed
instructions stored in memory 222 of FIG. 2, for directing the
CPU 220 to achieve the desired functions and results of the
preferred embodiment of invention. The programmed
instructions of modules 340 and 310 are created by using
compilers 302 and 305 respectively to compile source code
301 and 304 respectively to generate executable code of mod
ules 340 and 310 respectively. Preferably, the source code 301
and 304 of modules 340 and 310 respectively are written in an
objectoriented computer programming language such as Java
for convenience of programming. Rule repository 320, data
repository 350, and status repository 360 (modules 320,350,
and 360) are enabled as data structures and they are stored in
memory 222 in data structures 238 of FIG. 2. Optionally,
these modules can also be enabled in dedicated electronic
circuits and Subsystems. The structure of these modules is
described below. It will be appreciated that modules 310,320,
330,340,350, and 360 can reside in a distributed computing
environment, such as operationally networked computer sys
tems, so that the modules can co-operate with each other to
achieve the purposes of the invention.
0043 Rule generator 310 is used for creating executable
rule files (ERFs) 316 for subsequent placement in the rule
repository 320. Scriptfiles 312 each have business logic rules
(BLRs) for checking an aspect of a customer order for trans
acting a financial instrument in conjunction with market quo
tation for the financial instrument. Preferably, and for the sake
of convenience, a script file is a structured document. Such as
a text file, or more conveniently, it is an XML formatted file
that is written in a suitable markup language having data tags,
Such as Extensible Mark-up Language (XML). Essentially, a
user uses the script file 312 to write or script business logic
rules into the script file 312. FIG. 4A depicts an example of a
script file 312. For simplicity of programming, each BLR is
defined in an individual scriptfile 312. Optionally, a scriptfile
312 can include two or more BLRs. FIG. 4B depicts a method
for converting script file 312 into source code file 314. The
executable rules generated by rule generator 310 are subse
quently placed in rule repository 320.
0044) To create source code files, the rule generator 310
can read and convert the script file 312 into a suitable corre
sponding source code file 314 having suitable high level
Source code written in a computer programming language.
Preferably, each script file 312 is converted into a correspond
ing source code file 314, and the high level source code is
written in an object oriented programming language, such as
Java. FIGS. 5a and 5b provide an example of a script code file
and a source code file of an executable rule.

0045. A suitable and compatible compiler can be used to
compile the source code file 314 into a corresponding execut
able rule file 316 that can direct CPU 220 to perform business
logic rule on a customer order. Preferably, the compiler can
compile Java programmed source code into executable pro
grammed code. An advantage provided by the invention is
that the user who writes the scriptfiles 312 does not need to be
familiar with computer programming languages. It is
expected that the user is familiar with business logic that is
needed to check customer orders for transacting financial
instruments. The user is required to insert Suitable business
logic rules in the script file for Subsequent conversion, by the
rule generator 310, into appropriate source code files 314, and
then Subsequent conversion or compilation into an executable
rule file (ERF) 316. FIG. 7 provides an example of a flow
chart that illustrates the operation of the rule generator 310.

US 2008/02SO411 A1

0046. The rule repository 320 can be any convenient data
base and provides a data structure for Suitably holding or
containing a plurality of N available executable rule files
(AERFs) 323A-323N each being identifiable by a unique
identification, such as a filename. Preferably, the executable
rule files 323A-323N stored in rule repository 320 are inde
pendently executable files. Executable rules 323A-323N are
shown to illustrate that each executable rule is separate and
individually executable. The rule engine 340 will retrieve a
plurality of suitable executable rule files, from the rule reposi
tory 320, for Subsequent testing of a customer order, in a
manner to be detailed later. It will be appreciated that the rule
repository 320 can be split into convenient Subgroups and
subsequently distributed over a plurality of networked com
puters. However, for a convenient explanation, the rule
repository 320 is maintained as a whole in the memory of a
single computer system. The rule engine 340 uses the rule
repository 320 to obtain a suitable executable rule having the
encoded business logic rule. The rule repository 320 is a
convenient container for placing all of the available execut
able rules.

0047 Rule selection repository 330 is a listing of selected
AERFs from rule repository 320, and provides a convenient
data structure for Muser-identified groups of selected avail
able executable rule files 332A-323 M. Preferably, the rule
selection repository 330 is a text file, and more preferably, the
text file is formatted in Extensible Markup Language (XML)
using data tags. Preferably, a user constructs a pair of group
name data tags, each pair of group name tags for identifying
a group of selected executable rule files, for example the
group of selected AERFs 332A. Preferably, nested or inserted
within each pair of group name data tags are pairs of rule
identification data tags, in which each pair of rule identifica
tion tags is used for identifying or selecting a name of a
preferred executable rule file. Each selected available execut
able rule file that is identified between each rule identification
data tag is available from the rule repository 320. FIGS. 6A
and 6B provide an example of a preferred embodiment of a
rule selection repository enabled as a text file incorporating
XML formatting and data tags. In Summary, rule engine 340
examines the rule selection repository 330 to locate one or
more identified or preferred executable rules, and the rule
engine must Subsequently locate the preferred executable
rules from the rule repository 320. Once the preferred execut
able rules are located in rule repository 320, the rule engine
executes the located preferred executable rules to check the
conformance of the customer order. When the rules need to be
changed, the rule selection repository, which can be a simple
lookup table, can be modified to Suit the current requirements.
Advantageously, the executable code having the programmed
instructions of rule engine 340 does not need to be regener
ated. To adapt to the new requirements for checking the con
formance of the customer order, either new executable rules
are generated via rule generator 310 or the rule selection
repository 320 is modified, or both actions can be taken as
required, but the executable code of rule engine 340 is not
regenerated.
0.048. To check whether a customer order conforms to the
business logic rules, rule engine 340 reads, from the rule
selection repository 330, identification, such as a file name, of
executable rule files from between each pair of rule identifi
cation data tags, and Subsequently, the rule engine requests
execution of identified executable rule files. When the num
ber of executable rule files contained in the rule repository

Oct. 9, 2008

320 is very large, it would be preferable that each group
332A-332M be assigned to a corresponding category of cus
tomer orders. It may be desirable to organize customer orders
into Suitably convenient categories to reduce the quantity of
rules that need to be executed. Also, it would be advantageous
to execute certain rules that do apply to specific categories of
customers orders.

0049. It will be appreciated that a suitably structured file
can be used as a rule selection repository 330, in which the
structure of the file would allow for convenient identification
of the groups or Subgroups of selected executable rule files,
and allows a user to conveniently add, remove, or reorder the
selected executable rule files. This feature advantageously
allows a user to compile executable rule files when needed,
and avoid recompiling an executable file for the rule engine
340. If a recently compiled executable rule file fails to execute
properly, a user can focus their debugging effort on the script
file 312, and avoid having to deal with the executable file for
the rule engine 340.
0050. Each group of selected AERFs 332A-332M corre
sponds to a specific category of customer orders, such as a
first customer order category for transacting sale of a stock, a
second customer order category for transacting purchases of
stocks, and so on for bonds, mutual funds, options and the
like. The organization of executable rule files into categories
is used for simplicity and convenience of organization, where
332A-332M have identifications of executable rule files. The
group is used for checking conformance of a specific category
of customer orders. Optionally, a single group of executable
rule files can be used for testing all types of customer orders
but at a potential disadvantage of added complexity for the
user. Preferably, the rule selection repository 330 is a struc
tured file or a document that is written in a suitable markup up
language having data tags, such as the Extensible Mark-up
Language (XML). The rule selection repository 330 is
described in more detail with reference to FIGS. 6a and 6b.

0051 Data repository 350 provides a convenient data
structure for storing or containing input data, such as a plu
rality of J customer orders 352A-352.J. Rule engine 340 reads
a customer order from repository 350. It will be appreciated
that the input data will be compared with suitably matching
business logic rules, and the scope of this invention is not
limited to merely checking customer orders for financial
transactions. For ease of programming, it is preferred to cat
egorize the customer orders into convenient categories, as
explained earlier. A market quotation 354A-354J is associ
ated with a corresponding customer order 352A-352.J. As
quotation provides a market condition of the customer order
for a financial transaction, Such as the price of a stock or a
bond. A market quotation can reveal the market conditions at
the time the associated customer order was placed.
0.052 Status repository 360 provides a convenient mecha
nism for indicating whether a customer order 352A-352J
conforms to business logic rules as implemented and
executed in executable rule files 316. Rule engine 340 places
the indicator in repository 360. After execution of an AERF,
the executed AERF provides an execution result, in which the
rule engine can store the execution result in status repository
360 or the executed rule file can store its own execution result
in the status repository360. The status indicators 361 indicate
whether the customer orders conform to the business logic
rules encoded in the executed rule files 316. Preferably, the

US 2008/02SO411 A1

status indicators 361 contain the status execution of the
executed rule files associated with a group of selected AERFs
332A-332M.

0053 Rule engine 340 can transmit a message to a
requesting application, which had previously requested the
rule engine 340 to check conformance of the customer order.
The message can show that one of the status indicators 361 is
available for review by the requesting application so that the
requesting application can decide whether to forward the
analysed customer order to a order fulfilment system or for
ward the customer order and the status indicator back for
modification and Subsequent re-testing by rule engine 340.
The rule engine 340 can be adapted to perform an analysis of
the status indicators 361, and the rule engine 340 can decide
whether to senda customer order to the legacy system, Such as
an order fulfilment system, or send the customer order back
for modification.

0054. It will be appreciated that if nonconforming cus
tomer orders were to be submitted to the legacy system, there
would be a possibility that the legacy system would reject
nonconforming customer orders. When customer orders do
not conform to the executed business logic rules, the status
indicators 361 can be queried by the user to provide the
reasons why the customer order does not conform so that
appropriate corrective action can be taken to appropriately
modify the nonconforming customer order.
0055 Rule engine 340 is used for checking whether cus
tomer orders 352A-352J conform to business logic rules
(BLRs). The rule engine 340 can be adapted to analyse vari
ous types of data. In the preferred embodiment, the data is a
customer order for transacting a financial instrument, such as:

Order type: buy
Quantity of shares: 1,000
Stock symbol: IBM
Price per share: S150
Broker ID: 987
Account No. ABC1234
Account Type: tax sheltered
Customer Name: John Smith

0056. In the preferred embodiment, the Customer Name is
not contained in the order because the Account ID would be
Sufficient. A joint account can have two or more customer
aCS.

0057 The data that is provided in the above example
includes a set of data elements, such as order type, quantity
of shares, Stock symbol, etc., and each data element has a
corresponding data value, such as buy, 1,000, IBM, etc.
0.058 A user can submit a customer order to a financial
broker and request fulfilment of the submitted order. To fulfil
the submitted order, the broker can obtain related business
factor data. For example, the related business factor data can
be a quotation for the financial instrument, Such as:

Stock symbol: IBM
Bid price: S 140
Ask price: S 170
Closing price: S 140
Volume of shares: 1,500,000

Oct. 9, 2008

0059 Rule engine 340 includes various sub-modules to
achieve various desirable functions, such as a reader 341, a
determinator 342, a locator 344, a requestor 345, a receiver
346, an execution analyser 347, a transmitter 348, and a
dynamic rule selector 349. It will be appreciated that the sub
modules 341 to 349 of rule engine 340 can be distributed in a
convenient manner throughout a distributed computer net
working environment. However, for the convenience of
describing the preferred embodiment of the invention, the sub
modules 341 to 349 of rule engine 340 reside in computer 204
(FIG. 2A), and more preferably in memory 222 of computer
204, in which the sub modules are conveniently enabled as
various source code files having logic, in which the source
code files are subsequently compiled into executable files that
achieve the functions of the sub modules, as known to skilled
persons in the art of computer programming languages and
computer systems in general. FIG. 8 provides an example of
a flow chart for illustrating the general operation of the rule
engine 340.
0060. The rule engine 340 includes a reader 341 used for
reading a customer order 352A-352.J. Determinator 343 is
used for determining a category of the read customer order.
Locator 344 is used for locating, from the rule selection
repository 330, a group of user-selected executable rule files
332A-332M that corresponds to the determined category of
the read customer order.

0061 Requestor 345 is used for locating, from the rule
repository 320, and initiating execution of available execut
able rule files 316 that are identified in a group of the user
Selected executable rule files 332A-332M from rule selection
repository 330. Subsequent execution of each identified
AERF obtains data from the customer order that is preferably
located in the data repository 350.
0062 Receiver 346 is used for receiving or obtaining an
execution result that is contained in the status indicators 361.
Preferably, the rule engine 340 includes execution analyser
347 responsive to the execution result for each executed
executable rule file. The execution analyser 347 can include
logic to determine whether the rule engine should execute the
remaining unexecuted executable rule files of a group 332A
332M, depending on the execution result of the previously
executed executable rule file. For example, if an execution
result indicates the executed business logic of the first execut
able rule of group 332A was satisfied, then the execution
analyser 347 can direct the rule engine 340 to execute the next
executable rule file identified in group 332A. Alternatively, if
the execution result indicates the executed business logic was
not satisfied, the execution analyser 347 can direct the rule
engine 340 to stop further executions of unexecuted execut
able rule files and indicate that one of the status indicators 361
is available for analysis so that the customer order can be
adjusted and resubmitted for additional testing by the rule
engine 340. The operation of the rule execution analyser is
depicted in the flowchart of FIG.9.
0063. The execution analyser 347 provides enhanced and
beneficial functionality to the rule engine 340. However, it
will be appreciated that the execution analyser 347 can be
disabled to remove these preferred enhancements to realize a
simpler operation of the rule engine 340.
0064 Preferably, transmitter 348 is used for transmitting
availability of the status indicators 361, located in status
repository 360, to a requesting application that Submitted a
request to check the conformance of a customer order against

US 2008/02SO411 A1

business logic rules. Optionally, the rule engine 340 can be
adapted to transmit status indicators 361 to the requesting
application.
0065 Preferably, rule engine 340 includes a dynamic rule
selector 349 used for sequencing a preferred sub-selection of
executable rule files of a group 332A-332M. In the preferred
embodiment, the dynamic rule selector 349 is used for check
ing requests to change or modify operational or system
parameters of system 300 of FIG. 3. However, it will be
appreciated that the dynamic rule selector 349 can be used for
examining customer orders. The operation of the dynamic
rule selector 349 is illustrated in the flowchart of FIG. 11.
Preferably, the dynamic rule selector 349 engages when rule
selection repository is Suitably adapted with keyed informa
tion, as will be explained below.
0066 Referring to FIG. 4A, there is depicted an embodi
ment of a script file 312 of FIG. 3B. The script file is imple
mented in a text file incorporating XML formatting with data
tags. Preferably, the business logic rules are inserted between
a pair of data tags in an XML document. An XML file is
merely a text file that contains strings of text in which each
string of text is encapsulated within a pair of data tags. Names
of the data tags provide the meaning of the encapsulated text.
It will be appreciated that other file structures can be adapted
for usage with the invention, provided that the structure of the
file gives meaning to the string of text. Exemplary Script file
400 includes a header 402, a rule severity indicator or a rule
status indicator 404, a first scripted text string 406 represent
ing a factor used for validating the subject (i.e., the data that
the rule engine 340 will be checking or validating against the
validation logic), a second Scripted text string 408 represent
ing the source and the description of the Subject, and a third
Scripted text string 410 representing the validation logic. The
header 402 includes a first line that is a standard XML file
header, which is not specific to the rule engine 340, and a
second line that includes rule syntax validation. The rule
severity indicator or a rule status indicator 404 is used by the
rule engine 340 to determine an appropriate execution path
within the set of rules depending on the validation results of a
currently checked portion of the subject. The first scripted text
string 406 is used for retrieving predefined values to be used
by the third scripted text 410 for validation. The second
scripted text string 408 is used for retrieving data supplied by
the client to be used by the third scripted text 410 for valida
tion. The third scripted text string 410 describes the actual
validation logic that will be used to validate a portion of the
Subject.
0067. Referring to FIG. 4B, there is depicted a preferred
method for converting a script file such as script file 400 into
source code file 314 of FIG. 3B. The process of conversion
begins in step S432. In step S434, the scriptfile 400 is read. In
step S436, elements of the script file are identified. FIG. 4A
depicts various values of elements of script file 400 as blocks
408A, 408B and 408C. The script file 400 is an XML docu
ment. However, any document having a predetermined struc
ture will suffice. XML technology was chosen because the
data tags help impose structure into the document. Element
value 408A is “com.ibm.eb2engine.rm.Orders VDO for ele
ment".<DATA CLASSNAM="... />. In step S438, a deter
mination is made whether each identified element conforms
to a list of predetermined element identifiers. Since the pre
ferred embodiment is using XML documents, DTD (Docu
ment Type Definition) is used to check whether the elements
of script file 400 conform to the predetermined types of ele

Oct. 9, 2008

ments that will be acceptable. If a user attempts to use an
element name that is not defined in the DTD, then an error
message is created and the Script file is rejected in step S448.
The process then ends with step S446.
0068. It will be appreciated that an XML parser can be
used for identifying elements of the script file which is an
XML document. The DTD defines the elements that are
allowable, the sequence of the elements, the number of allow
able occurrences of the element, and what element values can
be allowed for an element. The DTD is used to check whether
the writer of the scriptfile 312 followed or used the acceptable
element names and element values.

0069. Otherwise, (i.e., the elements conform), in step
S440 a source code template is read. The source code tem
plate has predetermined locations in which the element values
will be placed in a later step. In step S442, the identified
element values of the script file are inserted into correspond
ing predetermined locations in the template. For example,
element value 408A will be inserted into block 524 of FIG.
5A. Element value 408B will be inserted into block 526.
Element value 408C will be inserted into block 528. In step
S444, the process writes the source code file which is the
template having the inserted element values.
(0070 Referring to FIGS.5A and 5B, there is depicted an
example of various portions of a source code file 314. Pref
erably, the rule generator 310 converts the script file 312 into
the source code file 314 that is written in an object oriented
computer programming language. Such as Java. Source code
portion 502 corresponds to section 406 of FIG. 4A. Source
code portion 500 corresponds to section 408 of FIG. 4A.
Source code portion 504 corresponds to section 410 of FIG.
4A. The rule generator 310 includes a converter module for
achieving the functional task of converting the script file 312
into the source code file 314. FIG. 4B depicts a method for
converting script files into Source code files.
(0071 Referring to FIGS. 6A and 6B, a preferred embodi
ment of the rule selection repository 330 is illustrated. In this
embodiment, the rule selection repository 600 is a text file
incorporating XML formatting and data tags. The rule selec
tion repository 600 is illustrated as extending between FIGS.
6a and 6b. The rule selection repository 600 includes aheader
section 602, a first group 604 having subgroups 606, 608, 610,
and a second group 612 having Subgroups 614 and 616, and
an footer 620.
0072 Identification, preferably a file name, of an execut
able rule file of the executable rule files 316 of FIG. 3B is
indicated in rule selection repository 600 by using a pair of
rule identification data tags: <RULE NAME=name of
executable rule file/>.
0073. The identification of a plurality of executable rule
files 316 can be sequenced in a preferred order to tale advan
tage of the functions provided by an execution analyser347 or
a dynamic rule selector 349, as will be detailed later in this
description. Briefly, the execution analyser 347 will read an
execution status of an executed executable rule file and sub
sequently determine whether to request execution of the
remaining unexecuted executable rule files being identified in
the appropriate group of selected AREFs 332A-332M.
Briefly, the dynamic rule selector 349 will read and dynami
cally determine which data elements present within an invali
dated subject actually match up with names of the executable
rule file from the appropriate group 332A-332M, and subse
quently execute only the matching executable rule files and
bypass the remaining unmatched executable rule files. Cur

US 2008/02SO411 A1

rently, the dynamic rule selector 349 has been implemented
for a system configuration/parameter list (an example is
depicted in FIG. 10). The parameter list can include system
parameters such as userpasswords, number of lines to display
on a computer monitor and the like. If required, it will be
appreciated that selector 349 can be implemented for validat
ing customer orders.
0074 The identification of one of the groups of selected
AREFs 332A-332M of rule repository 320 is indicated in
repository 600 within the following group name data tags:
<LAYERGROUP ENTITYNAME=“layer group name''>
0075 Identified group 604 is named “CIOptionOrder”.
Group 604 is used for checking a customer order for trans
acting an option. Group 604 identifies subgroup 606 named
“cloplayer1, subgroup 608 named “cloplayer2, and sub
group 610 named “clopcxr. Identified group 612 identifies
subgroup 614 named "climflayer1, subgroup 616 named
“climflayer2. Identification of subgroups 606, 608, 610, 614,
618 is indicated in repository 600 as the following pair of
Subgroup identification data tags. LAYER
NAME="subgroup name''>
0076. Each subgroup 606, 608, 610, 614, 618 is used to
identify a set of file names of executable rule files located in
rule repository 320. When a customer order for transacting an
option is received by system 300, the rule engine 340 identi
fies that a category of the customer order is option and
locates group 604 corresponding to the category option.
Layers, such as "cloplayerl', represent a logical grouping of
several rules, which do not correspond to a data element of a
Subject undergoing validation, such as a customer order. The
motivation to create the layers, such as "cloplayer1 is for
convenience in that some rules logically belong to a group of
their own in that they only make sense when executed
together as a group of rules.
0077 Referring to FIG. 7, there is depicted a preferred
method for operating the rule generator 310 of FIG. 3B. At
step S700, a user begins the process for creating executable
rule files. In step S702, the user writes business rule logic into
the script file 312. Preferably, the script file 312 is formatted
using the XML standard which adheres to a suitable style
sheet. It will be appreciated that the script file 312 represent a
convenient mechanism to identify the written business logic
rules scripted by the user. In step S704, the rule generator 310
reads and converts the script file 312 into a suitable source
code file 314. FIG. 4B depicts a method for converting script
files into source code files.
0078. In step S706, the rule generator 310 compiles the
source code file into a corresponding executable rule file 316.
In step S708, the user can decide to script another script file
312, or decide to stop scripting script files 312 altogether.
0079 Referring to FIG. 8, there is depicted a preferred
operation of rule engine340 of FIG.3B. In step S800, the rule
engine 340 is initialized and the process starts. In step S802,
a request to check a customer order was received by the rule
engine 340, perhaps from another computer application or
from a keyboard signal. The rule engine 340 identifies a
category of the customer order that needs to be checked for
conformance to business logic rules. In step S804, the rule
engine 340 identifies one of the groups of selected AREFs
332A-323N, the group corresponding to the identified cat
egory of the customer order. In step S806, the rule engine 340
requests or begins a process for executing the executable rule
files that are identified in the identified group. In step S808,
after the identified executable rule files have completed their

Oct. 9, 2008

execution, the rule engine 340 receives a notification that the
identified executable rule files have completed their execu
tion. Preferably, the executed rule files place their execution
results in the status repository 360, preferably into a corre
sponding status indicator of the status indicators 361.
0080 Optionally, rule engine 340 could transmit the status
indicator to the requesting application that the execution
results are available for review by the requesting application.
In turn, the requesting application can review the execution
results and, depending on the types of execution results con
tained in the status indicator, determine whether to forward
the analysed customer order back for modification, or
whether to forward the analysed customer order to an existing
legacy system for transaction execution of the analysed cus
tomer order. Optionally, the rule engine 340 can be adapted to
decide whether to forward the customer order for transaction
execution, by including an appropriate module to handle this
extra functionality.
I0081 Referring to FIG. 9, there is depicted a preferred
operation of the execution analyser 347 of the rule engine 340
of FIG. 3B. In steps S900 and S901, the execution analyser
347 obtains and reads the status indicator of an executed
executable rule file from the status indicator 361. In step
S902, the execution analyser 347 reads an execution result of
PASS from the status indicator. PASS indicates that a data
element of the customer order satisfactorily conforms to the
executed executable rule file, and that the next available
executable rule file of the current group of selected AREFs
can be executed (or the next group can be executed), as
indicated in step S914. If the execution result is not PASS,
then the operation continues to step S904.
I0082 In step S904, the execution analyser 347 reads an
execution result of INFO from the status indicator. INFO
indicates that the data element of the customer order con
forms to the executed executable rule file, and that the next
available executable rule of the current group of selected
AREFs can be executed (or the next group can be executed),
as indicated in step S916; however, the data element conforms
reasonably but there might be something about the customer
order that the user may wish to review. If the execution result
is not INFO, then the operation continues to step S906.
I0083. In step S906, the execution analyser 347 reads an
execution result of “WARN from the status indicator.
“WARN indicates that the next executable rule can be
executed, but attention should be placed to the execution
results stored in the status indicator 361, as shown in step
S918. If the execution result is not “WARN, then the opera
tion of the execution analyser 347 continues to step S908.
I0084. In step S908, the execution analyser 347 reads an
execution result of ERROR from the status indicator.
“ERROR indicates that the unexecuted rules of the current
subgroup of the current group of selected AREFs can be
executed, but remaining unexecuted executable rule files that
are identified in remaining subgroups are not to be executed,
as shown in step S920. The execution result indicates some
thing is wrong with the customer order, but the remaining
executable rule files of the current subgroup can be executed,
as shown in step S920. If the execution result is not “ERROR,
then the operation of the execution analyser 347 continues to
step S910.
I0085. In step S910, the execution analyser 347 reads an
execution result of HARDSTOP’. HARDSTOP indicates
that any remaining unexecuted executable rule files are not to
be executed because the execution result indicates something

US 2008/02SO411 A1

seriously incorrect with the customer order, as shown in step
S922. Processing then continues to step S912 where the pro
cess stops and control is passed back to the rule engine 340.
I0086) Referring to FIG. 10, illustrated is a preferred
embodiment of a rule selection repository 330 enabled for
dynamic selection of executable rule files of the groups of
selected AREFs 332A-332M. The preferred rule selection
repository 1000 includes a group 1002 enabled for dynamic
selection of executable rules 316. The name of group 1002 is
ParameterLst. It is a group 1002 of identified or selected
executable rules organized into various Subgroups, for
example, subgroups 1004 and 1006. Group 1002 is used for
changing the system parameters of system 300 of FIG. 3B.
Subgroup 1004 is used for changing system parameters dedi
cated to monitoring various market conditions. Subgroup
1006 is used for changing system parameters for a historical
review of transacted customer orders. An identified rule name
1008, located in subgroup 1004, is a particular executable rule
file for validating the support phone number of the broker.
Ideally, when one or only a few system parameters need to be
changed, it would be preferable to execute the rules that
match the particular system parameter that needs to be
changed.
I0087. Referring to FIG. 11, there is depicted a preferred
operation of dynamic rule selector 349 of the rule engine 340
of FIG.3B. In steps S1100 and S1102, the process begins and
rule engine 340 determines a category of the input data, the
input data can be either a customer order or a request to
change the system parameters of system 300 of FIG. 3B. In
step S1104, the rule engine 340 determines that the identified
category listed in the rule selection repository is enabled for
dynamic rule selection by a dynamic rule selector 349, in
which case operation continues to step S1108; otherwise,
processing continues to step S1106 in which case the rule
engine operates as previously described.
I0088. In step S1108, the dynamic rule selector 349 selects
identified executable rules, such as identified executable rule
file 1008 of FIG. 10, that are listed in the group being enabled
for dynamic rule selection, such as group 1002 of FIG. 10, in
which the selected identified executable rules match up with
the data elements that are present within the request to change
the system parameters.
I0089. In step S1110, the dynamic rule selector 349 pro
vides a list of matching executable rule files for the rule
engine 340 to execute. In step S1112, the dynamic rule selec
tor 349 passes system control back to the rule engine 340.
0090 The system provides a modularized approach which
does not require an experienced programmer to update the
listing of executable rule files in response to requirements for
periodically incorporating new business logic, or reordering
the rules. Advantageously, a non-programmer can operate
and adapt the invention to execute preferred executable rule
files as required.
0091 Advantageously, the present invention reduces
associated transaction expenses and improves customer Ser
vice. Additionally, the invention also reduces complexity of
usability for modifying or changing sequences of desired rule
execution. The invention provides a mechanism for determin
ing whether a submitted customer order complies with know
your client guidelines, for determining whether customers
are covered for their buy/sell order, and for determining
whether the composition of the customer order conforms to
business logic rules.

Oct. 9, 2008

0092. It will be appreciated that variation of some ele
ments are possible to adapt the invention for specific condi
tions or functions. The concepts of the present invention can
be further extended to a variety of other applications that are
clearly within the scope of this invention. Having thus
described the present invention with respect to a preferred
embodiment as implemented, it will be apparent to those
skilled in the art that many modifications and enhancements
are possible to the present invention without departing from
the basic concepts as described in the preferred embodiment
of the present invention. Therefore, what is intended to be
protected by way of letters patent should be limited only by
the scope of the following claims.

1. A computer program product, comprising a computer
usable storage medium having a computer readable program
code stored therein, said computer readable program code
containing instructions that when executed by a processor of
a computer system implement a method for processing a
customer order pertaining to a transaction, said method com
prising:

identifying a category of the customer order;
identifying a group of executable rule files corresponding

to the identified category, each executable rule file com
prising at least one business logic rule, said group of
executable rule files stored in a repository, said group of
executable rule files consisting of a first Subgroup of
executable rule files and at least one remaining Subgroup
of executable rule files, said first subgroup of executable
rule files consisting of a first executable rule file and at
least one remaining executable rule file, each Subgroup
of the at least one remaining Subgroup of executable rule
files comprising one or more executable rule files;

selecting the first subgroup followed by selecting the first
executable rule file in the first subgroup;

after said selecting the first executable rule file in the first
Subgroup, executing the first executable rule file in the
first subgroup with respect to the customer order prior to
execution of any other executable rule file in the group of
executable rule files, wherein executing any executable
rule file of the group of executable rule files with respect
to the customer order comprises applying the at least one
business logic rule of said any executable rule file to the
customer order,

receiving an execution result of the executed first execut
able rule file;

first determining whether the execution result is PASS:
ifsaid first determining determines that the execution result

is PASS, then executing a next executable rule file of the
at least one remaining executable rule file in the first
Subgroup with respect to the customer order;

ifsaid first determining determines that the execution result
is not PASS, then second determining whether the
execution result is INFO:

if said second determining is performed and determines
that the execution result is INFO, then selecting a next
executable rule file of the at least one remaining execut
able rule file in the first subgroup and executing the
selected next executable rule file with respect to the
customer order, wherein the execution result of INFO
denotes a need for reviewing an aspect of the customer
order;

if said second determining is performed and determines
that the execution result is not INFO, then third deter
mining whether the execution result is WARN:

US 2008/02SO411 A1

if said third determining is performed and determines that
the execution result is WARN, then picking the next
executable rule file of the at least one remaining execut
able rule file in the first subgroup and executing the
picked next executable rule file with respect to the cus
tomer order, wherein the execution result of WARN
denotes a need for reviewing results from the executed
first executable rule file;

if said third determining is performed and determines that
the execution result is not WARN, then fourth determin
ing whether the execution result is ERROR;

if said fourth determining is performed and determines that
the execution result is ERROR, then choosing a next
executable rule file of the at least one remaining execut
able rule file in the first Subgroup, executing the chosen
next executable rule file with respect to the customer
order, identifying each subgroup of the at least one
remaining Subgroup of executable rule files, and inhib
iting execution of each executable rule file in each iden
tified subgroup of the at least one remaining subgroup of
executable rule files;

if said fourth determining is performed and determines that
the execution result is not ERROR, then fifth determin
ing whether the execution result is HARDSTOP:

if said fifth determining is performed and determines that
the execution result is HARDSTOP, then inhibiting
execution of all executable rule files of the at least one
remaining executable rule file in the first subgroup with
respect to the customer order and further inhibiting
execution of the one or more executable rule files in each
Subgroup of the at least one remaining Subgroup of
executable rule files with respect to the customer order;

if said fifth determining is performed and determines that
the execution result is not HARDSTOP, then stopping
performance of said method;

wherein said first determining determines that the execu
tion result is not PASS, wherein said second determining
determines that the execution result is not INFO,
wherein said third determining determines that the
execution result is not WARN, and wherein said fourth
determining determines that the execution result is
ERROR;

wherein said selecting the first Subgroup comprises select
ing a Subgroup used for changing a plurality of system
parameters dedicated to monitoring market conditions
relevant to the transaction, wherein said executing the
chosen next executable rule file comprises changing a
first system parameter of the plurality of system param
eters in the selected Subgroup used for changing the
plurality of system parameters dedicated to monitoring
market conditions relevant to the transaction, wherein
said identifying each Subgroup of the at least one
remaining Subgroup of executable rule files comprises
identifying a subgroup used for changing a plurality of
system parameters for a historical review of the cus
tomer order, and wherein said inhibiting execution of
each executable rule file in each identified subgroup of
the at least one remaining Subgroup of executable rule
files comprises inhibiting execution of each executable
rule file in the identified subgroup used for changing the
plurality of system parameters for a historical review of
the customer order.

2. A computer system comprising a processor and a com
puter readable memory unit coupled to the processor, said

Oct. 9, 2008

memory unit containing instructions that when executed by
the processor implement a method for processing a customer
order pertaining to a transaction, said method comprising:

identifying a category of the customer order;
identifying a group of executable rule files corresponding

to the identified category, each executable rule file com
prising at least one business logic rule, said group of
executable rule files stored in a repository, said group of
executable rule files consisting of a first Subgroup of
executable rule files and at least one remaining Subgroup
of executable rule files, said first subgroup of executable
rule files consisting of a first executable rule file and at
least one remaining executable rule file, each Subgroup
of the at least one remaining Subgroup of executable rule
files comprising one or more executable rule files;

selecting the first subgroup followed by selecting the first
executable rule file in the first subgroup;

after said selecting the first executable rule file in the first
Subgroup, executing the first executable rule file in the
first subgroup with respect to the customer order prior to
execution of any other executable rule file in the group of
executable rule files, wherein executing any executable
rule file of the group of executable rule files with respect
to the customer order comprises applying the at least one
business logic rule of said any executable rule file to the
customer order,

receiving an execution result of the executed first execut
able rule file;

first determining whether the execution result is PASS:
ifsaid first determining determines that the execution result

is PASS, then executing a next executable rule file of the
at least one remaining executable rule file in the first
Subgroup with respect to the customer order;

ifsaid first determining determines that the execution result
is not PASS, then second determining whether the
execution result is INFO:

if said second determining is performed and determines
that the execution result is INFO, then selecting a next
executable rule file of the at least one remaining execut
able rule file in the first subgroup and executing the
selected next executable rule file with respect to the
customer order, wherein the execution result of INFO
denotes a need for reviewing an aspect of the customer
order;

if said second determining is performed and determines
that the execution result is not INFO, then third deter
mining whether the execution result is WARN:

if said third determining is performed and determines that
the execution result is WARN, then picking the next
executable rule file of the at least one remaining execut
able rule file in the first subgroup and executing the
picked next executable rule file with respect to the cus
tomer order, wherein the execution result of WARN
denotes a need for reviewing results from the executed
first executable rule file;

if said third determining is performed and determines that
the execution result is not WARN, then fourth determin
ing whether the execution result is ERROR;

if said fourth determining is performed and determines that
the execution result is ERROR, then choosing a next
executable rule file of the at least one remaining execut
able rule file in the first Subgroup, executing the chosen

US 2008/02SO411 A1

next executable rule file with respect to the customer
order, identifying each subgroup of the at least one
remaining Subgroup of executable rule files, and inhib
iting execution of each executable rule file in each iden
tified subgroup of the at least one remaining subgroup of
executable rule files;

if said fourth determining is performed and determines that
the execution result is not ERROR, then fifth determin
ing whether the execution result is HARDSTOP:

if said fifth determining is performed and determines that
the execution result is HARDSTOP, then inhibiting
execution of all executable rule files of the at least one
remaining executable rule file in the first subgroup with
respect to the customer order and further inhibiting
execution of the one or more executable rule files in each
Subgroup of the at least one remaining Subgroup of
executable rule files with respect to the customer order;

if said fifth determining is performed and determines that
the execution result is not HARDSTOP, then stopping
performance of said method;

wherein said first determining determines that the execu
tion result is not PASS, wherein said second determining
determines that the execution result is not INFO,
wherein said third determining determines that the

Oct. 9, 2008

execution result is not WARN, and wherein said fourth
determining determines that the execution result is
ERROR;

wherein said selecting the first Subgroup comprises select
ing a Subgroup used for changing a plurality of system
parameters dedicated to monitoring market conditions
relevant to the transaction, wherein said executing the
chosen next executable rule file comprises changing a
first system parameter of the plurality of system param
eters in the selected Subgroup used for changing the
plurality of system parameters dedicated to monitoring
market conditions relevant to the transaction, wherein
said identifying each Subgroup of the at least one
remaining Subgroup of executable rule files comprises
identifying a subgroup used for changing a plurality of
system parameters for a historical review of the cus
tomer order, and wherein said inhibiting execution of
each executable rule file in each identified subgroup of
the at least one remaining Subgroup of executable rule
files comprises inhibiting execution of each executable
rule file in the identified subgroup used for changing the
plurality of system parameters for a historical review of
the customer order.

