WO 02/17576 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

28 February 2002 (28.02.2002)

PCT

(10) International Publication Number

WO 02/17576 A2

(51) International Patent Classification’: HO4L 12/56,

29/06, GO6F 13/38, 15/16, 9/46

(21) International Application Number: PCT/US01/26559

(22) International Filing Date: 24 August 2001 (24.08.2001)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

09/645,364 24 August 2000 (24.08.2000) US

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US]; 901
San Antonio Road, Palo Alto, CA 94303 (US).

(72) Inventors: DEARTH, Glenn, A.; 20 Squannacook Drive,
Box 1146, Groton, MA 01450 (US). WEBBER, Thomas,
P.; 21 South Main Street, Box 234, Petersham, MA 01366
(US). WARD, Kenneth, A.; 5 Joyce Circle, Shrewsbury,
MA 01545 (US).

(74) Agents: ROSENTHAL, Alan, D. et al.; Rosenthal & Osha
L.L.P,, Suite 2800, 1221 McKinney, Houston, TX 77010
(US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,

AZ,BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,

CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,

GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, I.C,

LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,

MX, MZ, NO, NZ, PH, PL, PT, RO, RU, SD, SE, SG, SI,

SK, SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA,

ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,

KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian

patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European

patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,

IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF,

CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD,

TG).

Declarations under Rule 4.17:
as to applicant’s entitlement to apply for and be granted a
patent (Rule 4.17(ii)) for all designations

[Continued on next page]

(54) Title: MECHANISM FOR COMPLETING MESSAGES IN MEMORY

1 1 3

s Channel Adapterl~

Process

871| Memory Space

Processor

10

System Area Network

Subnet

Subnet

Subnet

13

Channel Adapter ?
7

Memory Space

Processor

12

o]

(57) Abstract: A method for transmitting messages between two processes includes creating a communications channel between
a first channel adapter coupled to a client process and a second channel adapter coupled to a remote process. The method further
includes reading a request message at the first channel adapter, segmenting the request message into a series of packets, assigning a
sequence number to each packet, and transmitting the packets in order to the second channel adapter through the communications
channel. The method further includes receiving the packets at the second channel adapter and sending at least one acknowledgement
message to the first channel adapter in response to the received packets. The acknowledgement message has a packet sequence
number field containing a packet sequence number and a payload containing a message sequence number, wherein the message
sequence number identifies a complete message last received at the second channel adapter and the packet sequence number identifies

a packet last received at the second channel adapter.

w0 02/17576 A2 DO 0RO OO AR

— as tothe applicant’s entitlement to claim the priority of the
earlier application (Rule 4.17(iii)) for all designations

Published:

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.
— without international search report and to be republished

upon receipt of that report

WO 02/17576 PCT/US01/26559

10

15

20

25

MECHANISM FOR COMPLETING MESSAGES IN MEMORY

BACKGROUND OF THE INVENTION

Most of today’s distributed systems use shared-bus technology, e.g.,
peripheral component interconnect (PCI) cards, to comnect computers to
input/output (I/O) modules, e.g., video, graphics, Ethernet, small computer
system interface (SCSI). For these distributed systems, there is a practical limit
to the number of I/O modules that can be connected to the. computer via the
shared bus. There is also a limit to how far apart the /O modules can be from
the computer. Furthermore, all communications between the
processor/memory complex of the computer and the /O modules must pass
through a single point of contention, the shared bus. All these factors, among
others, pose limitations on the scalability, reliability, flexibility, and
performance of the system. To address this problem, a group of computing
industry leaders recently proposed an I/O architecture, called Infiniband™™,
which defines a system area network for connecting various components of one
or more computer systems. Examples of system area networks are known in
the computing world, including High Performance Parallel Interface (HiPPI)
and Fiber Channel technologies which are used to connect massively parallel
processors to scalable storage servers and data vaults. U.S. Patent 6,044,415
issued to Futral et al. discloses a virtual connection between an application
program and an I/O device which is implemented as a system area network.

The Infiniband®™ system area network consists of nodes which
communicate through a channel-based, switched fabric. Each of the nodes
could be a processor node, an I/O subsystem, a storage subsystem, or a router
which connects to another network. The switched fabric is made of a
collection of switches, routers, and links that connect a set of channel adapters.
The channel adapters form an interface between the switched fabric and the
nodes. The Infiniband™ system area network can be divided into subnets

interconnected by routers. At this level, each Infiniband® subnet is essentially

WO 02/17576 PCT/US01/26559

10

15

20

25

30

a switched network. In general, switched networks are considered more
scalable, i.e., more capable of growing to large number of nodes, than shared-
media networks because of their ability to support many hosts at full speed.
Infiniband™™ is expected to provide a scalable performance of 500 Mbytes per)
second (4 Gbits per second) to 6 Gbytes per second (48 Gbits per second) per
link.

In Infiniband™, a client process has the ability to place a set of
instructions that the hardware executes in a work queue. A client is the
requesting program in a client/server relationship, and a process is an instance
of a program running on a computer. Each process on a computer runs largely
independently of other processes, and the operating system is responsible for
making sure that resources, such as address space and CPU cycles, are
allocated to all the current processes. The work queue holds instructions that
cause data to be transferred between the client’s memory and another process
in one queue, called the send work queue, and instructions about where to place
data that is received from another process in another queue, called the receive
work queue. This other process is typically called a remote process, even if it
is collocated on the same computer as the client process. The hardware
executes the instructions in the order that they were placed in the work queue.
For a send operation, messages are sent from the client process to the remote
process in the form of a series of data units called packets. The sending
hardware (sender) transmits the packets to a receiving hardware (receiver),
where they can be accessed by the remote process. For operations such as
remote direct memory access (RDMA) read operation, the remote process
sends a reply message to the client process which contains the requested
information.

Switches are used to route packets between the sender and the receiver.
The switches typically route packets using either a datagram (or
connectionless) network or a virtual-circuit (or connection-oriented) network.

In a datagram network, each packet contains enough information, i.e.,

WO 02/17576 PCT/US01/26559

10

15

20

25

destination address, to enable any switch to decide how to get the packet to its
destination. In a virtual-circuit network, a virtual connection is first set up
between the source host and the destination host. This virtual connection may
be set up by a network administrator. Alternatively, a host can send messages
into the network to cause the state to be established. In a datagram-based
network, a sequence of packets sent from a source host to a destination host
may take different paths. Infiniband*" also supports a form of datagram-based
network which is based upon explicit setup of switch routing tables by the
subnet manager. In a virtual-circuit network, a sequence of packets sent from a
source host to a receiver host takes the path established by the virtual circuit.
Infiniband®™ provides reliable transport services between client and
remote processes using a combination of packet sequence numbers (PSNs) and
acknowledgement (ACK) messages. That is, each packet sent to the receiver is
assigned a PSN, and the receiver sends an ACK message to the sender
acknowledging receipt of the packet. A negative ACK (NAK) message is sent
for dropped or lost packets. The ACK messages tell the sender what packets
have been received at the remote end by providing the PSN of the received
packet. A message is completed when all the outstanding packets for the
message have been acknowledged. However, with just the returned PSNs, the
sender has no effective way of knowing when the message has been completed.
To determine when a message has been completed, the sender reads a
descriptor in the client’s memory space, for every returned PSN, to determine
the size of the original message, i.e., the number of packets in the original
message. Then the sender uses this information along with the PSN to
determine whether the message has been completed. These extra reads of
descriptors translate into additional system bus overhead on top of the data
movement between the processor and memory. Schemes to minimize this

overhead can significantly improve system performance.

WO 02/17576 PCT/US01/26559

10

15

20

25

SUMMARY OF THE INVENTION

In one aspect, the invention relates to a system of transmitting messages
between a client process and a remote process which comprises a system area
network providing a communications channel between the client process and
the remote process. The system further includes a first channel adapter
forming an interface between the client process and the communications
channel. The first channel adapter is configured to receive a message from the
client process, segment the message into a series of packets, assign a sequence
number to each packet, and place the packets in order on the communications
channel. The system further includes a second channel adapter forming an
interface between the remote process and the communications channel. The
second channel adapter is configured to receive packets from the
communications channel and send at least one acknowledgement message to
the first channel adapter in response to the received packets. The
acknowledgement message has a packet sequence number field containing a
packet sequence number and a payload containing a message sequence number.
The message sequence number identifies a complete message last received at
the second channel adapter, and the packet sequence number identifies a packet
last received at the second channel adapter.

In some embodiments the client process has a work queue in which
instructions to be executed by a communications interface are placed. In some
embodiments the work queue comprises a send work queue in which messages
to be sent to the remote process are placed, and the first channel adapter reads a
message from the send work queue. In some embodiments the work queue
further includes a receive work queue in which instructions about where to
place a reply message received from the second channel adapter are placed.

In another aspect, the invention relates to a method of transmitting
messages between two processes which comprises creating a communications

channel between a first channel adapter coupled to a client process and a

WO 02/17576 PCT/US01/26559

10

15

20

25

second channel adapter coupled to a remote process. At the first channel
adapter, the method further includes reading a request message from the client
process, segmenting the request message into a series of packets, assigning a
sequence number to each packet, and transmitting the packets in order to the
second channel adapter through the communications channel. At the second
channel adapter, the method further includes receiving the packets from the
first channel adapter and sending at least one acknowledgement message to the
first channel adapter in response to the received packets, the acknowledgement
message having a packet sequence number field containing a packet sequence
number and a payload containing a message sequence number, wherein the
message sequence number identifies a complete message last received at the
second channel adapter and the packet sequence number identifies a packet last
received at the second channel adapter.

Other aspects and advantages of the invention will be apparent from the

following description and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 schematically depicts a client node and a remote node attached
to a system area network.

Figure 2 schematically depicts a client process connected to a remote
process by a communications channel provided by the system area network of
Figure 1.

Figure 3 is a graphical illustration of a packet structure in accordance
with one embodiment of the invention.

Figure 4 shows packets transmitted between channel adapters in
accordance with one embodiment of the invention.

Figure 5 illustrates a communication process between the channel
adapters shown in Figure 4 including a lost packet and a process for resending

a lost packet.

WO 02/17576 PCT/US01/26559

10

15

20

25

Figure 6 illustrates a communication process between the channel

adapters shown in Figure 4 including a lost acknowledgement message.

DETAILED DESCRIPTION OF THE INVENTION

Various embodiments of the invention will now be described with
reference to the accompanying drawings. Figure 1 schematically depicts a
client node 1 and a remote node 2 attached to a system area network 3. The
client and remote nodes 1, 2 may be any subsystem that can be attached to the
system area network 3, e.g., a parallel computer, a redundant array of
independent disks (RAID) subsystem, an I/O subsystem, a scalable storage
server, etc. The system area network 3 comprises interconnected subnets 4.
Each subnet 4 is made up of a set of interconnected switches (not shown), a
router (not shown), and a subnet manager (not shown). The system area
network 3 provides a communications channel (5 in Figure 2) between a client
process 6 on the client node 1 and a remote process 7 on the remote node 2.
The client process 6 is located in a memory space 8 on the client node 1, and
the remote process 7 is located in a memory space 9 on the remote node 2. The
client node 1 includes a processor 10 which interacts with the memory space 8
and a logic called channel adapter 11 which forms an interface between the
client process 6 and the system area network 3. The remote process 7 includes
a processor 12 which interacts with the memory space 9 and a logic called
channel adapter 13 which forms an interface between the remote process 7 and
the system area network 3. The channel adapters 11, 13 may be implemented
in an application-specific integrated circuit. The client node 1 and the remote
node 2 may each include more than one processor and channel adapter.

Figure 2 shows the client process 6 and the remote process 7 connected
by a communication channel 5. A work queue 14 provided in the memory
space 8 of the client node 1. Although only one work queue 14 is shown, it
should be clear that there may be multiple work queues in the memory space 8.

When the client process 6 submits a work request, an instruction called a work

6

WO 02/17576 PCT/US01/26559

10

15

20

25

queue element is placed on the work queue 14. The work queue 14 includes a
send work queue 14a and a receive work queue 14b. The work queue elements
that cause data to be transferred between the memory spaces 8, 9 are placed on
the send work queue 14a, and the work queue eclements that include
instructions about where to place data that is received from the memory space 9
are placed on the receive work queue 14b. A communications interface, which
may be the processor 10 (shown in Figure 1) or the channel adapter 11 or other
processor on the client node 1 (shown in Figure 1), e.g., an I/O processor (not
shown), executes the work queue elements in the order they were placed on the
work queue 14. ‘

The basic unit of communication between the client process 6 and the
remote process 7 is a message. A message can be a send or receive operation, a
remote direct memory access (RDMA) read or write operation, an atomic
operation, or a multicast operation. For a send operation, the work queue
element specifies a block of data in the memory space 8 to be sent to the
remote node 2, leaving the remote node 2 to determine where to place the
received data. For a receive operation, the work queue element specifies where
to place data in the memory space 8. A RDMA operation is a direct exchange
of data between the memory spaces 8 and 9. For a RDMA operation, the work
queue element specifies an address in the memory space 9 where data is to be
placed. For RDMA-read operation, a work queue element in the send work
queue 14a indicates that data is to be transferred from the memory space 9 to
the memory space 8. For RDMA-write operation, a work queue element on the
send work queue 14a indicates that data is to be transferred from the memory
space 9 to the memory space 8. It should be noted that work queue elements
are not needed in the memory space 9 for RDMA operations. An atomic
operation stipulates that the hardware is to perform a read of a location in the
memory space 9 and update the contents in the location. Atomic operation 18

transaction-based and can be undone if necessary. A multicast operation

WO 02/17576 PCT/US01/26559

10

15

20

25

30

involves sending a message to the remote node 2 which may be delivered to
multiple ports or nodes.

Messages from the client process 6 are sent to the remote process 7
when the instructions on the send work queue 14a are executed by the
communications interface, e.g., the processor 10 (shown in Figure 1) or the
channel adapter 11 or other processor on the client node 1 (shown in Figure 1).
Messages from the remote process 7 are received by the client process 6 when
the instructions on the receive work queue 14b are executed by the
communications interface. The mechanism for transmitting messages between
the client process 6 and the remote process 7 comprises the communications
channel 5 and the channel adai)ters 11, 13. The messages to be sent to the
remote process 7 are transferred from the memory space 8 to the channel
adapter 11, and the messages to be received from the remote process 7 are
transferred from the channel adapter 11 to the memory space 8. The channel
adapter 11 may be configured to directly read messages from and write
messages into the memory space 8 without involvement of a work element in
the receive work queue 14b. In this case, the receive work queue 14b gives the
channel adapter 11 a pair of buffer descriptor lists. One of the pair of buffer
descriptor lists specifies the address/length of buffers containing the data to be
transmitted out of the memory space 8. The other buffer descriptor list
specifies the address/length of buffers in the memory space 8 into which data
are to be placed. The processor 10 (shown in Figure 1) or other processor on
the client node 1 (shown in Figure 1) may alternatively transfer data between
the memory space 8 and the channel adapter 11. In this case, the channel
adapter 11 would include a memory for temporarily storing the data to be
transferred between the channel adapter 11 and the memory space 8.

Regardless of the mechanism used to transfer data between the channel
adapter 11 and the memory space 8, the channel adapter 11 generally segments
each message to be transmitted over the communications channel 5 into a series

of data units 20 called packets. The messages may be segmented in the

WO 02/17576 PCT/US01/26559

10

15

20

25

30

memory space 8 or, if the channel adapter 11 includes a memory, in the
memory of the channel adapter 11. As illustrated graphically in Figure 3, each
packet 20 includes a routing header 22, a transport header 24, a packet payload
24, and an error-detecting code 28, e.g., checksum or cyclic redundancy check
(CRC). The routing header 22 includes a source address and a destination
address of the packet 20. The transport header includes among other things a
packet sequence number (PSN) field and Flags field. The Flags field is used to
relay information between the channel adapters 11 and 13. The packet payload
24 contains the actual data that will be used by the remote process 7. The
error-detecting code 28 is used to verify the integrity of the packet 20 at the
receiving end. The channel adapter 11 (shown in Figures 1 and 2) gives each
packet 20 in a message a PSN. The PSN is stored in the PSN field of the
packet.

Returning to Figure 2, the communications channel 5 may be a virtual
circuit (or connection-oriented network) which interconnects the channel
adapters 11 and 13. Alternatively, the communications channel 5 may be a
datagram-based network. All Infiniband®™ service types require explicit setup
of switch routing tables by the subnet manager. The connection setup between
the channel adapters 11 and 13 could be asymmetric or symmetric. If the
connection setup is asymmetric, one side, e.g., the channel adapter 11, is active
and the other side, e.g., the channel adapter 13, is passive, or vice versa. The
active side makes an open call to the passive side and both sides engage in an
exchange of messages to establish the connection. If the connection setup is
symmetric, both sides are active and both sides try to open the connection at
the same time. A connection manager (not shown) typically manages the
connection setup between the channel adapters 11 and 13. Once the connection
is established between the channel adapter 11 and 13, messages can be
transmitted between the channel adapters 11 and 13 through the
communications channel 16. A program running on the communications

interface, e.g., the processor 10 (shown in Figure 1) or the channel adapter 11

WO 02/17576 PCT/US01/26559

10

15

20

25

30

or other processor on the client node 1, e.g., an I/O processor, reads work
queue elements in the order they were placed on the work queue 14. The
program processes the work queue elements on the send work queue 14a by
instructing the channel adapter 11 to send messages to the remote process 7 and
the work queue elements on the receive work queue 14b by instructing the
channel adapter 11 to receive messages from the remote process 7.

The channel adapter 11 reads a message to be sent to the remote process
7, segments the message into packets, e.g., packets 20, assigns a PSN to each
packet 20, and sends the packets 20 in order to the channel adapter 13. The
channel adapter 13 receives the packets 20 and places them in the memory
space 9, where they can be accessed by the remote process 7. The channel
adapter 13 acknowledges receipt of the packets 20 by sending
acknowledgement (ACK) messages, e.g., ACK packet 21, to the channel
adapter 11. The ACKs are transmitted to the channel adapter 11 over the same
communications channel 5. For RDMA-read operations, the channel adapter
13 sends reply messages, e.g., reply messages 23, to the client process 6. The
channel adapter 13 sends the reply messages to the channel adapter 11 over the
communications channel 5. When the channel adapter 11 receives a reply
message from the remote process 7, the channel adapter 11 stores the reply
message in the memory address indicated by information in the original send
descriptor.

Figure 4 illustrates how the channel adapter 11 sends messages to the
channel adapter 13. Suppose that there are three messages are to be sent to the
remote process 7. Further assume that the channel adapter 11 segments the
first message into three packets 28-32, the second message into six packets 34-
44, and the third message into two packets 46-48. The channel adapter 11
assigns a PSN to each of the packets 28-32. For example, the PSNs for the
packets 28-32 may be 1 through 3, respectively, the PSNs for the packets 34-44
may be 4 through 9, respectively, and the PSNs for the packets 46 and 48 may
be 10 and 11, respectively. The PSNs are stored in the PSN fields of the

10

WO 02/17576 PCT/US01/26559

10

15

20

25

30

packets. The packets 28-48 are then transmitted to the channel adapter 13 in
order. The channel adapter 13 may generate an ACK for each packet received.
The channel adapter 13 may send an ACK to the channel adapter 11 after
receiving each packet. Alternatively, the channel adapter 13 may coalesce
multiple ACKs into a single ACK packet, which is then transmitted to the
channel adapter 13. This alternative method minimizes bandwidth usage. The
structure of the ACK packet is similar to the one illustrated in Figure 3. The
PSN field of each ACK sent to the channel adapter 11 contains the PSN of the
last successfully received packet.

In the illustration shown in Figure 4, an ACK 50 is sent to the channel
adapter 11 after receiving all the packets 28-32 in the first message, an ACK 52
is sent to the channel adapter 11 after receiving all the packets 34-44 in the
second message, and an ACK 54 is sent to the channel adapter 11 after
receiving all the packets 46-48 in the third message. The PSN field of the ACK
50 contains the PSN of the packet 32, the PSN field of the ACK 52 contains the
PSN of the packet 44, and the PSN field of the ACK 54 contains the PSN of the
packet 48. In addition to the PSN information, the payload of each of the
ACKs 50-54 contains a message sequence number (MSN). The channel
adapter 13 uses the MSN to notify the channel adapter 11 of the end of a
message. The channel adapter 13 knows when a message is completed because
a flag is set in the header of the packet if the packet is the last one in the
message. For example, flags are set in the headers of the packets 32, 44, and
48 which indicate that these packets are the last ones in their respective
messages. When the channel adapter 11 receives ACKs, the channel adapter
11 examines the payload of the ACK to determine whether a message has been
completed.

For the example in Figure 4, when the channel adapter 13 first receives a
packet from the channel adapter 11, e.g., the packet 28, the channel adapter 13
may generate an ACK (not shown) and initialize the payload of the ACK to

some initial value. When the channel adapter 13 receives the second packet 30,

11

WO 02/17576 PCT/US01/26559

10

15

20

25

the channel adapter 13 may generate an ACK (not shown) and again initialize
the payload of the ACK to the same initial value used for the first packet 28.
When the channel adapter 13 receives the third packet 32, the channel adapter
13 sees a flag set in the header of the packet 32 which indicates that this is the
last packet in the first message. The channel adapter 13 generates an ACK for
the packet 32, but this time, the channel adapter 13 writes a starting MSN in the
payload of the ACK. This ACK, which is identified as ACK 50 in Figure 4, is
then transmitted to the channel adapter 11. When the channel adapter 11
receives the ACK 50, the channel adapter 11 inspects the ACK payload and
deduces from the MSN in the ACK payload that the first message has been
completed. It should be noted that the PSN field of the ACK 50 contains the
PSN of the packet 32. Thus, the channel adapter 11 assumes that the preceding
packets 28 and 30 have been successfully received by the channel adapter 13.
This type of assumption is valid in a connection-oriented network, where
packets arrive at the channel adapter 13 in the order the channel adapter 11 sent
them.

In order for the channel adapter 11 to know which message has been
completed, the channel adapters 11, 13 must agree on the starting MSN that the
channel adapter 13 will use. This starting MSN is established at the time the
connection is made between the channel adapters 11, 13. For example, the -
connection manager (not shown) may give the channel adapters 11, 13 the
starting MSN to use. Alternatively, the channel adapters 11, 13 may exchange
hlessages to establish a starting MSN. The channel adapters 11, 13 may also
agree to always start at some MSN, for example, zero. The MSN may be
generated using any suitable method as long as the channel adapters 11, 13
both know how the MSN is generated. In one embodiment, the MSN is a
monotonically increasing sequence number which is generated by modulo
arithmetic. The MSN could be generated, for example, by a modulo 2%

counter, which counts sequentially from zero and wraps (returns to zero) at 2>*,

12

WO 02/17576 PCT/US01/26559

10

15

It should be noted that the ACK payload must have at least 24 bits to hold the
MNSN in this case.

Assume for discussion purposes that the ACK payload is initialized to
2% (FFFFF) and that the starting MSN is 0. Then, for the first packet 28, the
channel adapter 13 will generate an ACK having a PSN = 1 and a payload =
FFFFFFs. For the second packet 30, the channel adapter 13 will generate an
ACK having a PSN = 2 and a payload = FFFFFFs. For the third packet 32,
which is the last packet in the first message, the channel adapter 13 will
generate an ACK, i.e., ACK 50, having a PSN = 3 and a payload = 1. It should
be noted that the channel adapter 13 generates the ACK 50 only if the packets
28 and 30 were successfully received. Table 1 below summarizes the content
of the PSN field and payload of the ACKs generated for each packet received
by the channel adapter 13 assuming that the starting MSN is 0 and the channel
adapter 13 generates an ACK for every received packet.

Table 1: PSN field and Payload for ACKs

PSN field Payload (MSN)
1 FFFFFFy4
2 FFFFFF
3 0
4 1
5 1
6 1
7 1
8 1
9 1
10 2
11 2

13

WO 02/17576 PCT/US01/26559

10

15

20

25

If the channel adapter 13 generates an ACK only when a message is completed,

then the ACKSs received by the channel adapter 11 will be as shown in Table 2.

Table 2: PSN field and Payload for ACKs

ACK PSN field Payload (MSN)
50 1 0
52 2 1
54 3 2

The channel adapter 11 examines the payload of the ACKs it receives, as
previously described. When the ACK payload changes, the channel adapters
11 knows that a message has been completed. For each completed message,
the channel adapter 11 notifies the processor 10 (shown in Figure 1) or other
processor on the client node 1 (shown in Figure 1) of the completion of the
message. For each completed message, a complete work queue element is
placed in a completion queue 16 (shown in Figure 2) in the memory space 8.
Thus far, only a well-behaved case in which all the packets transmitted
to the channel adapter 13 are successfully received the first time has been
considered. In some cases, one or more of the packets sent to the channel
adapter 13 may become corrupted. A corrupted packet is typically referred to
as a lost packet. In such cases, the channel adapter 11 has to resend the lost
packet to the channel adapter 13. The channel adapter 13 notifies the channel
adapter 11 of a lost packet by sending a negative acknowledgement (NAK)
packet to the channel adapter 11. A flag is set in the NAK to indicate that the
information carried by the NAK is related to a lost packet. The channel adapter
11 uses the PSN in the PSN field of the NAK and the MSN in the payload of
the NAK to determine the packets to retransmit to the channel adapter 13.
Referring to Figure 5, assume that the second packet 30 of the first
message was not successfully received by the channel adapter 13. The channel

adapter 13, upon receipt of the third packet 32, generates a NAK 56 for the

14

WO 02/17576 PCT/US01/26559

10

15

20

25

30

second packet 30 that was not successfully received. The PSN field of the
NAK 56 contains the PSN of the last packet successfully received before the
lost packet. The last packet successfully received before the lost packet in this
case is packet 28. Thus, the PSN field of the NAK 56 would contain 1. The
payload of the NAK 56 would also be set to the payload of the packet 28, i.e.,
FFFFFF;s. When the channel adapter 11 receives the NAK 56, the channel
adapter 11 knows that the packet sent after a packet having a PSN =1 and a
MSN = 0 was not successfully received. It should be noted that the channel
adapter 11 knows that the lost packet belongs to the first message, i.e., MSN =
0, because the NAK payload is initialized to FFFFFF;s. The channel adapter
11 retransmits all the packets sent after the packet having a PSN = 1 and a
MSN = 0.

In another scenario, an ACK sent by the channel adapter 11 to the
channel adapter 13 may also get lost. In this case, however, it is not necessary
to retransmit the ACK because receipt of packets can be implied from
subsequent successfully transmitted ACKs. Thus, for example, 1f the ACK 50
is lost and the ACK 52 is successfully received by the channel adapter 11, as
shown in Figure 6, the channel adapter 11 can infer that because the second
message was successfully received by the channel adapter 13, the first message
must also have been successfully received by the channel adapter 13. The
channel adapter 11 then notifies a processor, e.g., the processor 10 (shown in
Figure 1), that the first and second messages have been completed.
Alternatively, the channel adapter 11 may only notify the processor that the
second message has been completed, and the processor may then have to check
descriptors in memory to see if the first message has been completed.

Figure 4 illustrates one method for transmitting packets from the
channel adapter 11 to the channel adapter 13. However, there are other
methods which may be used in transmitting packets between the channel
adapters 11, 13. One method, called stop-and-wait, involves sending a packet

to the channel adapter 13 and waiting for the channel adapter 13 to

15

WO 02/17576 PCT/US01/26559

10

15

20

25

acknowledge receipt of the packet before sending another packet. This
transmission mechanism is useful in a datagram-based network. A response
time is established within which the channel adapter 13 must acknowledge
receipt of the packet. If the channel adapter 13 does not acknowledge receipt
of the packet within the response time, the channel adapter 11 resends the
packet to the channel adapter 13. Another method, called sliding window,
allows the channel adapter 11 to transmit multiple packets up to the size of a
selected window before receiving an ACK. As ACKs are returned for those
packets in the window that were sent first, the window slides, allowing more
packets to be sent. The channel adapter 11 examines the ACK payload, as
previously described, to determine when a message has been completed.

Embodiments of the invention provide a mechanism for completing
messages in memory for a client process and a remote process linked by a
reliable connection. The mechanism makes use of the fact that the receiver of
the message, e.g., the channel adapter 13, knows when a message is completed
because a flag is set in the packet header. Using a MSN, the receiver can then
notify the message sender, e.g., the channel adapter 11, of the completion of the
message. In this way, the sender does not need to go into memory to read a
descriptor for every ACK that it receives. Because message completion checks
are made on message boundaries rather than on packet boundaries, the
performance of the system is optimized.

While the invention has been described with respect to a limited number
of embodiments, those skilled in the art, having benefit of this disclosure, will
appreciate that other embodiments can be devised which do not depart from the
scope of the invention as disclosed herein. Accordingly, the scope of the

invention should be limited only by the attached claims.

16

WO 02/17576 PCT/US01/26559

O© 00 NN N i B W N

e e e S S S S i G S Y
OW 00 3 & W KA W N = O

CLAIMS
What is claimed is:
1. A system of transmitting messages between a client process and a
remote process, comprising:

a system area network providing a communications channel between
the client process and the remote process;

a first channel adapter forming an interface between the client process
and the communications channel, the first channel adapter being configured to
receive a message from the client process, segment the message into a series of
packets, assign a sequence number to each packet, and place the packets in
order on the communications channel; and

a second channel adapter forming an interface between the remote
process and the communications channel, the second channel adapter being
configured to receive packets from the communications channel and send at
least one acknowledgement message to the first channel adapter in response to
the received packets, the acknowledgement message having a packet sequence
number field containing a packet sequence number and a payload containing a
message sequence number, wherein the message sequence number identifies a
complete message last received at the second channel adapter and the packet
sequence number identifies a packet last received at the second channel

adapter.

17

WO 02/17576 PCT/US01/26559

O 00 3 O Lt b W N

| N T N I N T T T o T e S S S S
N = O O o I N W Bk~ W N = O

2. A system of transmitting messages between a client process and a
remote process, the client process having a work queue in which instructions to
be executed by a communications interface are placed, the work queue
comprising a send work queue in which messages to be sent to the remote
process are placed, the system comprising:

a system area network providing a communications channel between the

client process and the remote process;

a first channel adapter forming an interface between the client process
and the communications channel, the first channel adapter being configured to
read a message from the send work queue, segment the message into a series of
packets, assign a sequence number to each packet, and place the packets in
order on the communications channel; and

a second channel adapter forming an interface between the remote
process and the communications channel, the second channel adapter being
configured to receive packets from the communications channel and send at
least one acknowledgement message to the first channel adapter in response to
the received packets, the acknowledgement message having a packet sequence
number field containing a packet sequence number and a payload containing a
message sequence number, wherein the message sequence number identifies a
complete message last received at the second channel adapter and the packet
sequence number identifies a packet last received at the second channel

adapter.

3. The system of claim 2, wherein the work queue further includes a
receive work queue in which instructions about where to place a reply message

received from the second channel adapter are placed.

18

WO 02/17576 PCT/US01/26559

O &0 3 & »n L W N

T e S S o S G G T S Sy
0 ~ N W S~ W N = O

N O S

—

4. A method of transmitting messages between two processes, comprising:
creating a communications channel between a first channel adapter
coupled to a client process and a second channel adapter coupled to a remote
process;
at the first channel adapter,
reading a request message from the client process, segmenting
the request message into a series of packets, assigning a sequence number to
each packet, and transmitting the packets in order to the second channel adapter
through the communications channel; and
at the second channel adapter,
receiving the packets from the first channel adapter and sending
at least one acknowledgement message to the first channel adapter in response
to the received packets, the acknowledgement message having a packet
sequence number field containing a packet sequence number and a payload
containing a message sequence number, wherein the message sequence number
identifies a complete message last received at the second channel adapter and
the packet sequence number identifies a packet last received at the second

channel adapter.

5. The method of claim 4, further comprising the first channel adapter
using the message sequence number in the acknowledgement message to
determine whether all the packets in the message transmitted to the second

channel adapter have been received.

6. The method of claim 5, further comprising the first channel adapter

notifying the client process of the completion of the message.

7. The method of claim 4, wherein creating a communications channel
between the first channel adapter and the second channel adapter includes

establishing a starting message sequence number.

19

WO 02/17576 PCT/US01/26559

BOW N = wnm AW N =

BN =

8. The method of claim 7, wherein sending at least one acknowledgement
message to the first channel adapter includes the second channel adapter
writing the starting message sequence number into the payload of the
acknowledgement upon receiving the last packet in the message from the first

channel adapter.

9. The method of claim 7, wherein sending at least one acknowledgement
message to the first channel adapter includes sending a negative
acknowledgement message to the first channel adapter if a packet is not

successfully received at the second channel adapter.

10. The method of claim 9, wherein the first channel adapter determines the
packet not successfully received at the second channel adapter from the packet
sequence number and the message sequence number of the negative

acknowledgement message and retransmits the packet.

11. The method of claim 4, wherein the second channel adapter generates an
acknowledgement message for every packet received from the first channel

adapter.

12. The method of claim 11, wherein the second channel adapter coalesces
acknowledgement messages for multiple packets into a single

acknowledgement message.

13. The method of claim 4, wherein reading a request message from the
client process includes specifying a location in a memory space of the client

process in which the request message is stored.

20

WO 02/17576 PCT/US01/26559

1 14. The method of claim 13, wherein reading a request message from the
2 client process further includes specifying a location in the memory space of the

3 client process in which to write a reply to the request message.

1 15. The method of claim 13, wherein reading a request message from the
2 client process further includes specifying a location in the memory space of the

3 remote process in which to write the request message.

16. The method of claim 4, wherein the communications channel is created

2 ina system area network.

21

PCT/US01/26559

WO 02/17576

1/6

¢l

/
Josseo0ld
|
aoedg Alowe 6
L J4N9Id
$S900.1d
I /
_ fm
Jaydepy jpuuey)
7 ol
el MIOM)}SN eoly WalsAS \
10Ss920.1d
| |
soedg Alowsiy | | g
L1
$$890.1d
I ~g
| Joydepy jsuuey)
¥ 7\
¢ H !

WO 02/17576

PCT/US01/26559

2/6
8
\
16| Memory Space
AN
Completion
14 Queue 11
h /
N
| Receive Work
14b”"] Queue T Channel
Sond Work LLL__1 Adapter
14a~7] Queue “
Process /{: T
/ /[1
6 I~
20 || >
\E “j/ 21
||
/\[| 723 /9
i l d Memory Space
]
Channel
Adapter
/ Pro<\3ess
13 \
7

FIGURE 2

WO 02/17576

3/6

22
AN
AN
Routing Header
2 Transport Header
/
24

Packet Payload

Error Checking Code

FIGURE 3

26

28

PCT/US01/26559

WO 02/17576 PCT/US01/26559

4/6

32 "
11/ 30 o8 13

,/50/

38
30 34

44
42 40

48 46

L

FIGURE 4

WO 02/17576

11

5/6

32

A 30

28

/56/

32 30

48
46

PCT/US01/26559

/54/

FIGURE 5

WO 02/17576

11

v 30

6/6

32
28

8

38
30 54
44
42 41
—
48
46

PCT/US01/26559

s

FIGURE 6

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

