

US 20160333323A1

(19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0333323 A1

MIZUGUCHI et al.

(54) CONDITIONALLY REPLICATING **ADENOVIRUS**

- (71) Applicant: NATIONAL INSTITUTE OF **BIOMEDICAL INNOVATION**, Osaka (JP)
- (72) Inventors: Hiroyuki MIZUGUCHI, Ibaraki-shi (JP); Fuminori SAKURAI, Ibaraki-shi (JP)
- (73) Assignee: NATIONAL INSTITUTE OF **BIOMEDICAL INNOVATION**, Osaka (JP)
- (21) Appl. No.: 15/183,661
- (22) Filed: Jun. 15, 2016

Related U.S. Application Data

(63) Continuation-in-part of application No. 14/240,216, filed on Mar. 12, 2014, filed as application No. PCT/JP2012/053814 on Feb. 17, 2012.

(30)**Foreign Application Priority Data**

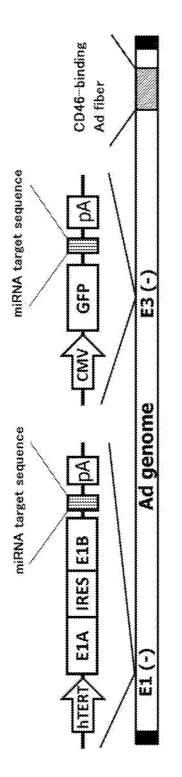
Aug. 23, 2011 (JP) 2011-181414

Publication Classification

(51) Int. Cl.

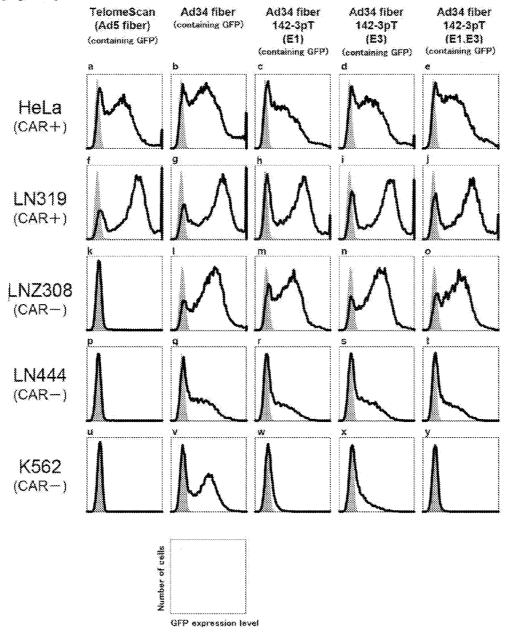
C12N 7/00	(2006.01)
C07K 14/005	(2006.01)

Nov. 17, 2016 (43) **Pub. Date:**

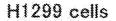

(2006.01)
(2006.01)
(2006.01)
(2006.01)

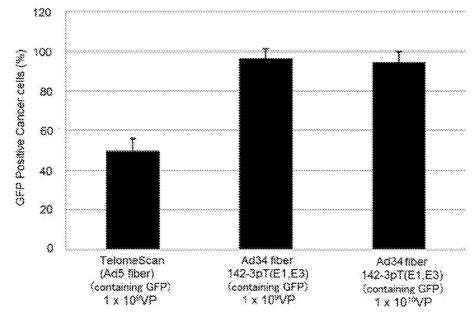
(52) U.S. Cl. CPC C12N 7/00 (2013.01); C12N 9/1276 (2013.01); C12Y 207/07049 (2013.01); C12N 15/113 (2013.01); G01N 33/57492 (2013.01); C12Q 1/6897 (2013.01); C07K 14/005 (2013.01); C12N 2710/10021 (2013.01); C12N 2840/203 (2013.01); C12N 2310/141 (2013.01); G01N 2333/075 (2013.01); G01N 2333/705 (2013.01)

(57)ABSTRACT

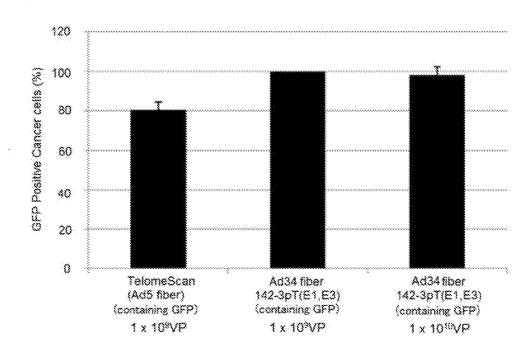

The object of the present invention is to provide a novel conditionally replicating adenovirus and a reagent comprising the same for cancer cell detection or for cancer diagnosis.

The present invention provides a polynucleotide, which comprises human telomerase reverse transcriptase (hTERT) promoter, E1A gene, IRES sequence and E1B gene in this order and which comprises a target sequence of a first miRNA. The present invention also provides a recombinant adenovirus, which comprises a replication cassette comprising the above polynucleotide, wherein the replication cassette is integrated into the E1 region of the adenovirus genome.

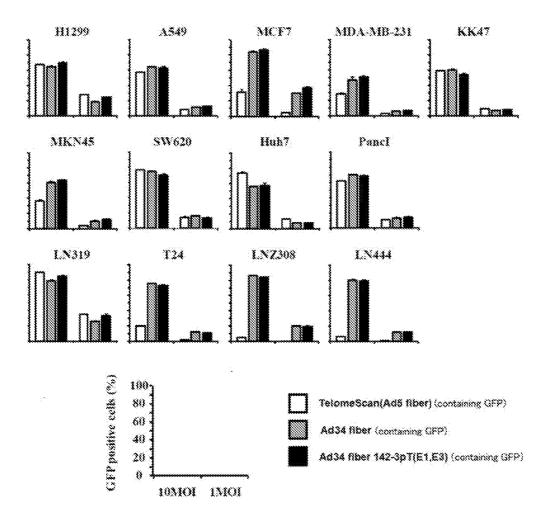


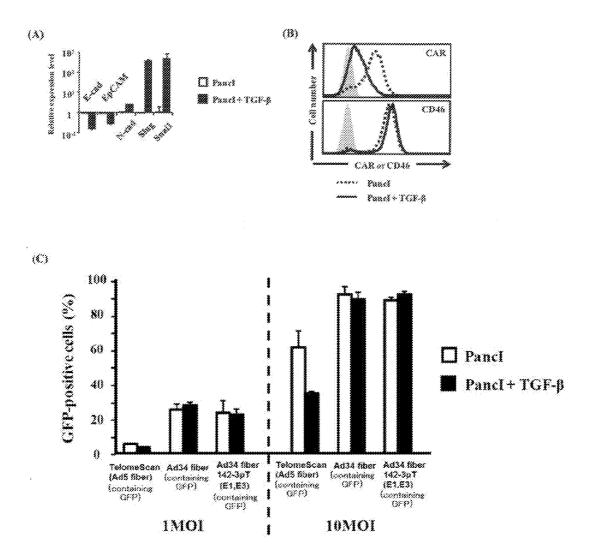


[Figure 2]

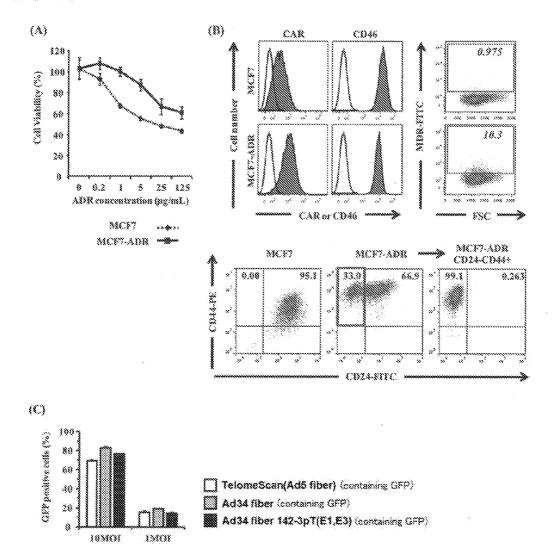


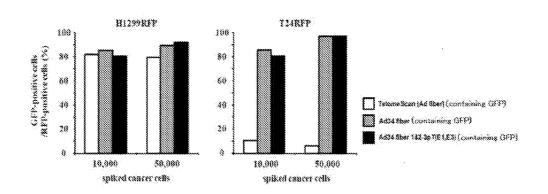
[Figure 3]

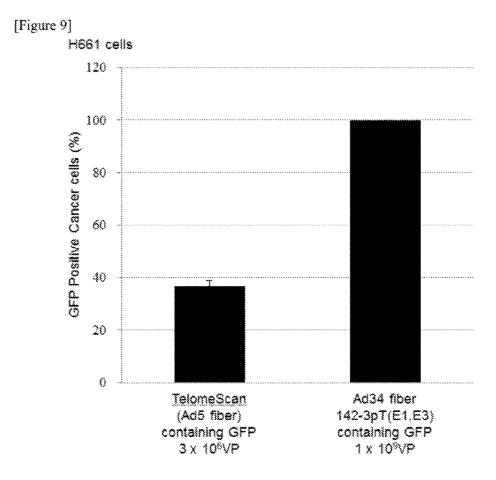


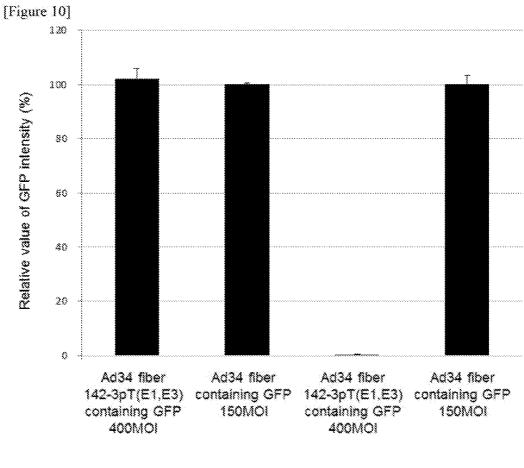


A549 cells


[Figure 5]







[Figure 8]

K562

CONDITIONALLY REPLICATING ADENOVIRUS

[0001] This application is a continuation-in-part application of U.S. application Ser. No. 14/240,216 filed on Mar. 12, 2014, which is the U.S. National Phase of International Patent Application No. PCT/JP2012/053814, filed on Feb. 17, 2012, and claims the benefit of the filing date of JP application 2011-181414 filed on Aug. 23, 2011. These documents are hereby incorporated by reference for all purposes.

REFERENCE TO SEQUENCE LISTING SUBMITTED VIA EFS-WEB

[0002] This application includes an electronically submitted sequence listing in .txt format. The .txt file contains a sequence listing entitled "2016-06-15_SequenceListing_4456-0189PUS2.txt" created on Jun. 15, 2016 and is 137, 556 bytes in size. The sequence listing contained in this .txt file is part of the specification and is hereby incorporated by reference herein in its entirety.

TECHNICAL FIELD

[0003] The present invention relates to a novel conditionally replicating adenovirus and a reagent comprising the same for cancer cell detection or for cancer diagnosis.

BACKGROUND ART

[0004] Techniques currently used for cancer diagnosis mainly include (i) those using large-sized testing instruments (e.g., MRI) and (ii) those for measuring tumor markers or the like in blood, and expectations are now focused on (ii) which are simple techniques with less burden on patients. In particular, cancer cells circulating in the peripheral blood of cancer patients (i.e., circulating tumor cells (CTCs)) show a close relationship with clinical symptoms because these cells increase the risk of systemic metastasis and because the prognosis of patients with CTCs is significantly poor. Thus, it has been expected to develop a technique for simple and highly sensitive detection of CTCs as a predictive factor or surrogate marker for prognosis.

[0005] Techniques used for CTC detection include detection with a cancer-related antigen such as EpCAM (epithelial cell adhesion molecule) or cytokeratin-8 (e.g., Cell-Search system) and detection by means of RT-PCR, etc. However, these cancer-related antigens are also expressed on normal epithelial cells and hence are highly likely to cause false positive detection, while cell morphology characteristic of cancer cells cannot be observed at the same time in the case of PCR detection. For these reasons, there has been a demand for a new technique in terms of sensitivity, simplicity, accuracy and costs.

[0006] On the other hand, the inventors of the present invention have already developed a conditionally replicating adenovirus which grows specifically in cancer cells and expresses GFP (GFP-expressing conditionally replicating adenovirus: GFP-CRAd) (which is referred to as TelomeS-can®, OBP-401 or Telomelysin-GFP) (Patent Document 1: WO2006/036004). Moreover, the inventors of the present invention have also developed a simple technique for CTC detection using this TelomeScan (Non-patent Document 1: Kojima T, et al, J. Clin. Invest., 119: 3172, 2009).

[0007] However, since TelomeScan has the fiber protein of adenovirus type 5 and infects via coxsackievirus and adenovirus receptor (CAR) in target cells, TelomeScan may not infect cells which do not express CAR. In particular, it is known that CAR expression is reduced in highly malignant cancer cells which are highly invasive. metastatic and proliferative (Non-patent Document 2: Okegawa T., et al, Cancer Res., 61: 6592-6600, 2001); and hence TelomeScan may not detect these highly malignant cancer cells. Moreover, although less likely. TelomeScan may give false positive results by infecting and growing in normal blood cells (e.g., leukocytes) to cause GFP expression.

[0008] For these reasons, there has been a demand for a reagent for cancer cell detection and a reagent for cancer diagnosis, each of which detects almost all cancer cells including CAR-negative ones and does not give any false positive results in normal blood cells.

PRIOR ART DOCUMENTS

Patent Documents

[0009] Patent Document 1: WO2006/036004

[0010] Non-patent Document 1: Kojima T., et al, J. Clin. Invest., 119: 3172, 2009

[0011] Non-patent Document 2: Okegawa T., et al, Cancer Res., 61: 6592-6600, 2001

SUMMARY OF THE INVENTION

Problem to be Solved by the Invention

[0012] The present invention has been made under these circumstances, and the problem to be solved by the present invention is to provide a reagent for cancer cell detection and a reagent for cancer diagnosis, each of which detects almost all cancer cells including CAR-negative ones and does not give any false positive results in blood cells, as well as to provide a conditionally replicating recombinant adenovirus which is useful as such a reagent.

Means to Solve the Problem

[0013] As a result of extensive and intensive efforts made to solve the above problem, the inventors of the present invention have found that not only CAR-positive cells, but also CAR-negative cells can be detected when the fiber of adenovirus type 5 in TelomeScan is replaced with another adenovirus fiber binding to CD46, which is highly expressed on almost all human cells, particularly cancer cells in general. Moreover, the inventors of the present invention have succeeded in avoiding any false positive results in blood cells by integration of a microRNA (miRNA)-mediated gene regulatory system into TelomeScan, which led to the completion of the present invention.

[0014] Namely, the present invention is as follows.

[0015] (1) A polynucleotide, which comprises human telomerase reverse transcriptase promoter, E1A gene, IRES sequence and E1B gene in this order and which comprises a target sequence of a first microRNA.

[0016] (2) The polynucleotide according to (1) above, wherein the first microRNA is expressed in non-cancer cells. **[0017]** (3) The polynucleotide according to (1) or (2) above, wherein the first microRNA is at least one selected from the group consisting of miR-142, miR-15, miR-16,

miR-21, miR-126, miR-181, miR-223, miR-296, miR-125, miR-143, miR-145, miR-199 and let-7.

[0018] (4) A recombinant adenovirus, which comprises a replication cassette comprising the polynucleotide according to any one of (1) to (3) above, wherein the replication cassette is integrated into the E1 region of the adenovirus genome.

[0019] (5) The recombinant adenovirus according to (4) above, which further comprises a labeling cassette comprising a reporter gene and a promoter capable of regulating the expression of the gene, wherein the labeling cassette is integrated into the E3 region of the adenovirus genome.

[0020] (6) The recombinant adenovirus according to (5) above, wherein the labeling cassette further comprises a target sequence of a second microRNA.

[0021] (7) The recombinant adenovirus according to (4) above, wherein a cell death-inducing cassette comprising a gene encoding a cell death induction-related protein and a promoter capable of regulating the expression of the gene is further integrated into the E3 region of the adenovirus genome.

[0022] (8) The recombinant adenovirus according to (7) above, wherein the cell death-inducing cassette further comprises a target sequence of a second microRNA.

[0023] (9) The recombinant adenovirus according to (6) or (8) above, wherein the second microRNA is expressed in non-cancer cells.

[0024] (10) The recombinant adenovirus according to (9) above, wherein the second microRNA is at least one selected from the group consisting of miR-142, miR-15, miR-16, miR-21, miR-126, miR-181, miR-223, miR-296, miR-125, miR-143, miR-145, miR-199 and let-7.

[0025] (11) The recombinant adenovirus according to (5) or (6) above, wherein the reporter gene is a gene encoding a protein which emits fluorescence or a gene encoding an enzyme protein which generates a luminophore or a chromophore upon enzymatic reaction.

[0026] (12) The recombinant adenovirus according to any one of (5) to (10) above, wherein the promoter is human telomerase reverse transcriptase promoter or cytomegalovirus promoter.

[0027] (13) The recombinant adenovirus according to any one of (4) to (12) above, which further comprises a gene encoding a CD46-binding fiber protein.

[0028] (14) The recombinant adenovirus according to (13) above, wherein the CD46-binding fiber protein comprises at least the fiber knob region in the fiber protein of adenovirus type 34 or 35.

[0029] (15) A reagent for cancer cell detection, which comprises the recombinant adenovirus according to any one of (4) to (14) above.

[0030] (16) A reagent for cancer diagnosis, which comprises the recombinant adenovirus according to any one of (4) to (14) above.

[0031] (17) The reagent according to (15) above, wherein the cancer cells are derived from a biological sample taken from a subject.

[0032] (18) The reagent according to (17) above, wherein the biological sample is blood.

[0033] (19) The reagent according to (15) or (18) above, wherein the cancer cells are circulating tumor cells.

[0034] (20) The reagent according to any one of (15) and (17) to (19) above, wherein the cancer cells are drug-resistant cancer cells.

[0035] (21) The reagent according to any one of (15) and (17) to (20) above, wherein the cancer cells are cancer stem cells.

[0036] (22) The reagent according to any one of (15) and (17) to (21) above, wherein the cancer cells are cancer cells having undergone epithelial-mesenchymal transition or mesenchy mal-epithelial transition.

[0037] (23) A method for cancer cell detection, which comprises contacting cancer cells with the recombinant adenovirus according to (11) above and detecting the fluorescence or color produced by the cancer cells.

[0038] (24) The method according to (23) above, wherein the cancer cells are derived from a biological sample taken from a subject.

[0039] (25) The method according to (24) above, wherein the biological sample is blood.

[0040] (26) The method according to (25) above, wherein the cancer cells are circulating tumor cells.

[0041] (27) A recombinant adenovirus, which comprises: **[0042]** a replication cassette comprising a polynucleotide comprising a human telomerase reverse transcriptase promoter, E1A gene, IRES sequence and E1B gene in this order, and a target sequence of a first microRNA, wherein the first microRNA is miR-142 and the target sequence comprises a nucleotide sequence having at least 98% identity to the nucleotide sequence consisting of SEQ ID NO: 52, and wherein the replication cassette is integrated into the E1 region of the adenovirus genome;

[0043] a labeling cassette comprising a reporter gene, a promoter capable of regulating the expression of the reporter gene, and a target sequence of a second microRNA, wherein the second microRNA is miR-142 and the target sequence comprises a nucleotide sequence having at least 98% identity to the nucleotide sequence consisting of SEQ ID NO: 52, and wherein the labeling cassette is integrated into the E3 region of the adenovirus genome; and

[0044] a gene encoding a CD46-binding fiber protein comprising at least the fiber knob region in the fiber protein of adenovirus type 34 or 35, which comprises a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 50 and is integrated into the adenovirus genome.

[0045] (28) The recombinant adenovirus according to (27) above, wherein the reporter gene is a gene encoding a protein which emits fluorescence or a gene encoding an enzyme protein which generates a luminophore or a chromophore upon enzymatic reaction.

[0046] (29) The recombinant adenovirus according to (27) above, wherein the promoter capable of regulating the expression of the reporter gene is a human telomerase reverse transcriptase promoter or cytomegalovirus promoter. **[0047]** (30) The recombinant adenovirus according to (27) above, wherein the replication cassette comprises a nucleo-

tide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 53. **[0048]** (31) The recombinant adenovirus according to (27) above, wherein the labeling cassette comprises a nucleotide

sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 54. [0049] (32) A recombinant adenovirus, which comprises:

[0050] a replication cassette comprising a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 53 and is integrated into the E1 region of the adenovirus genome:

[0051] a labeling cassette comprising a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 54 and is integrated into the E3 region of the adenovirus genome; and

[0052] a gene encoding a CD46-binding fiber protein comprising a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 50 and is integrated into the adenovirus genome.

[0053] (33) A recombinant adenovirus, which comprises a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 51.

Effects of the Invention

[0054] The present invention enables simple and highly sensitive detection of CAR-negative cancer cells without detection of normal blood cells (e.g., leukocytes).

BRIEF DESCRIPTION OF THE DRAWINGS

[0055] FIG. **1** is a schematic view showing an example of the structure of the recombinant adenovirus of the present invention.

[0056] FIG. **2** shows the results measured for activity of recombinant adenoviruses by flow cytometry.

[0057] FIG. **3** shows the results detected for H1299 cells contained in blood samples.

[0058] FIG. **4** shows the results detected for A549 cells contained in blood samples.

[0059] FIG. **5** shows the results measured for activity of the recombinant adenovirus of the present invention in various types of cancer cells.

[0060] FIG. **6** shows the results detected for cancer cells having undergone epithelial-mesenchymal transition (EMT).

[0061] FIG. 7 shows the results detected for cancer stem cells.

[0062] FIG. **8** shows the results detected for H1299 and T24 cells contained in blood samples by using a red fluorescent protein.

[0063] FIG. **9** shows the results detected for H661 cells contained in blood samples.

[0064] FIG. **10** shows the results measured for activity of the recombinant adenovirus of the present invention in HeLa and K562 cells.

DESCRIPTION OF EMBODIMENTS

[0065] The present invention will be described in more detail below. The following embodiments are illustrated to describe the present invention, and it is not intended to limit the present invention only to these embodiments. The present invention can be implemented in various modes, without departing from the spirit of the present invention. Moreover, this specification incorporates the contents disclosed in the specification and drawings of Japanese Patent Application No. 2011-181414 (filed on Aug. 23, 2011), based on which the present application claims priority.

1. SUMMARY

[0066] TelomeScan (i.e., a conditionally replicating adenovirus comprising hTERT promoter, E1A gene, IRES sequence and E1B gene integrated in this order into the E1-deficient region of adenovirus type 5 and comprising cytomegalovirus (CMV) promoter and GFP integrated in this order into the E3-deficient region of adenovirus type 5),

which has been previously developed by the inventors of the present invention, has problems in that: (i) TelomeScan may not detect highly malignant cancer cells where CAR expression is reduced; and (ii) TelomeScan may detect normal blood cells as false positive. As a result of extensive and intensive efforts made to solve these problems, the inventors of the present invention have found that highly malignant CAR-negative cancer cells can be detected when the fiber of adenovirus type 5 in TelomeScan is replaced with another adenovirus fiber binding to CD46, which is highly expressed on almost all human cells, particularly cancer cells in general. Moreover, the inventors of the present invention have also found that when a target sequence of miR-142-3p, which is miRNA, is integrated into each of the replication and labeling cassettes in TelomeScan, virus growth and labeling protein expression can be prevented in normal blood cells to thereby prevent the occurrence of false positive results in normal blood cells.

[0067] Namely, in a preferred embodiment of the present invention, the recombinant adenovirus of the present invention is a recombinant adenovirus, in which a replication cassette comprising hTERT promoter. E1A gene, IRES sequence, E1B gene and a target sequence of microRNA is integrated into the E1 region of the adenovirus genome and a labeling cassette comprising a reporter gene, a promoter capable of regulating the expression of the gene and a target sequence of microRNA is integrated into the E3 region of the adenovirus genome, and which comprises a gene encoding a CD46-binding adenovirus fiber protein (FIG. 1). This recombinant adenovirus has the following features.

(i) Because of comprising a gene encoding a CD46-binding adenovirus fiber protein, this recombinant adenovirus is able to infect almost all cells including CAR-negative cells.

(ii) Because of comprising hTERT promoter, this recombinant adenovirus grows specifically in hTERT-expressing cancer cells and also increases reporter gene expression upon growth, whereby the production of a labeling protein, a chromophore or the like can be increased to detectable levels.

(iii) Because of comprising a target sequence of miRNA, this recombinant adenovirus can prevent the occurrence of false positive results even when the virus infects normal cells having hTERT promoter activity, because expression of this miRNA prevents not only growth of the virus but also expression of the reporter gene. In particular, because of comprising a target sequence of miRNA which is expressed specifically in blood cells, this recombinant adenovirus can prevent the occurrence of false positive results even when the virus infects normal blood cells having hTERT promoter activity, because expression of this miRNA prevents not only growth of the virus in blood cells but also expression of the reporter gene.

[0068] The present invention has been completed on the basis of these findings.

2. RECOMBINANT ADENOVIRUS

(1) Replication Cassette

[0069] The present invention relates to a polynucleotide, which comprises human telomerase reverse transcriptase (hTERT) promoter, E1A gene, IRES sequence and E1B gene in this order and which comprises a target sequence of microRNA. In addition, the present invention relates to a recombinant adenovirus, which comprises a replication cas-

sette comprising the above polynucleotide, wherein the replication cassette is integrated into the E1 region of the adenovirus genome.

[0070] By the action of the above polynucleotide (or a replication cassette comprising the same), the recombinant adenovirus of the present invention can grow specifically in cancer cells and can also be prevented from growing in cells which express the desired miRNA. For example, if the target sequence of miRNA contained in the replication cassette of the present invention is a target sequence of miRNA which is expressed specifically in blood cells, the recombinant adenovirus of the present invention grows specifically in hTERT-expressing cancer cells and is prevented from growing in blood cells.

[0071] Human telomerase reverse transcriptase (hTERT) promoter is a promoter for reverse transcriptase which is an element of human telomerase. Although human telomerase activity will be increased by splicing of hTERT mRNA, post-translational modification of hTERT protein and other events, enhanced hTERT gene expression, i.e., increased hTERT promoter activity is thought to be the most important molecular mechanism. Human telomerase has been confirmed to show increased activity in 85% or more of human cancers, whereas it shows no activity in most normal cells. Thus, the use of hTERT promoter allows a gene downstream thereof to be expressed specifically in cancer cells. In the present invention, the hTERT promoter is located upstream of E1A gene, IRES sequence and E1B gene, whereby the virus can grow specifically in hTERT-expressing cancer cells.

[0072] hTERT has been confirmed to have many transcription factor binding sequences in a 1.4 kbp region upstream of its 5'-terminal end, and this region is regarded as hTERT promoter. In particular, a 181 bp sequence upstream of the translation initiation site is a core region important for expression of its downstream genes. In the present invention, although any sequence may be used as long as it includes this core region, an upstream sequence of approximately 378 bp which covers this core region in its entirety is preferred for use as the hTERT promoter. This sequence of approximately 378 bp has been confirmed to have the same efficiency of gene expression as the 181 bp core region alone. The nucleotide sequence of a 455 bp long hTERT promoter is shown in SEQ ID NO: 1.

[0073] In addition to the sequence shown in SEQ ID NO: 1, the nucleotide sequence of hTERT promoter includes the nucleotide sequences of polynucleotides which are hybridizable under stringent conditions with DNA consisting of a nucleotide sequence complementary to DNA consisting of SEQ ID NO: 1 and which have hTERT promoter activity. Such polynucleotides may be obtained from cDNA and genomic libraries by known hybridization techniques (e.g., colony hybridization, plaque hybridization, Southern blotting) using a polynucleotide which consists of the nucleotide sequence shown in SEQ ID NO: 1 or a fragment thereof as a probe.

[0074] For preparation of cDNA libraries, reference may be made to "Molecular Cloning, A Laboratory Manual 2nd ed." (Cold Spring Harbor Press (1989)). Alternatively, commercially available cDNA and genomic libraries may also be used for this purpose.

[0075] Stringent conditions in the above hybridization include, for example, conditions of $1\times$ SSC to $2\times$ SSC, 0.1% to 0.5% SDS and 42° C. to 68° C., more specifically

prehybridization at 60° C. to 68° C. for 30 minutes or longer and the subsequent 4 to 6 washings in 2×SSC, 0.1% SDS at room temperature for 5 to 15 minutes.

[0076] As to detailed procedures for hybridization, reference may be made to "Molecular Cloning, A Laboratory Manual 2nd ed." (Cold Spring Harbor Press (1989); particularly Section 9.47-9.58), etc.

[0077] In a preferred embodiment of the invention, the hTERT promoter comprises the nucleotide sequence of SEQ ID NO: 1 or a variant thereof. The variant of the hTERT promoter comprises the nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97%, 98%, or 99% identity to that of SEQ ID NO: 1, wherein the nucleotide sequence has an hTERT promoter activity.

[0078] E1A and E1B genes are both included in the E1 gene of adenovirus. This E1 gene refers to one of the early genes among the virus early (E) and late (L) genes related to DNA replication, and it encodes a protein related to the regulation of viral genome transcription. E1A protein encoded by the E1A gene of adenovirus activates the transcription of a group of genes (e.g., E1B, E2, E4) required for infectious virus production. E1B protein encoded by the E1B gene of adenovirus assists late gene (L gene) mRNAs to accumulate into the cytoplasm of infected host cells and inhibits protein synthesis in the host cells, thereby facilitating virus replication. The nucleotide sequences of the E1A and E1B genes are shown in SEQ ID NO: 2 and SEQ ID NO: 3, respectively. In addition to the sequences shown in SEQ ID NO: 2 and SEQ ID NO: 3, the nucleotide sequences of the E1A and E1B genes include nucleotide sequences which are hybridizable under stringent conditions with DNA consisting of a nucleotide sequence complementary to DNA consisting of SEQ ID NO: 2 or SEQ ID NO: 3 and which encode a protein having E1A or E1B activity. Procedures and stringent conditions for hybridization are the same as those described above for the hTERT promoter.

[0079] In a preferred embodiment of the invention, the E1A gene comprises the nucleotide sequence of SEQ ID NO: 2 or a variant thereof. The variant of E1A gene comprises the nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97%, 98%, or 99% identity to that of SEQ ID NO: 2, wherein the nucleotide sequence encodes a polypeptide having an E1A activity.

[0080] In a preferred embodiment of the invention, the E1B gene comprises the nucleotide sequence of SEQ ID NO: 3 or a variant thereof. The variant of E1B gene comprises the nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97%, 98%, or 99% identity to that of SEQ ID NO: 3, wherein the nucleotide sequence encodes a polypeptide having an E1B activity.

[0081] Identity of any two nucleotide sequences can be determined by those skilled in the art based, for example, on a BLAST 2.0 computer alignment. BLAST 2.0 searching is known in the art and is publicly available, for example, at ncbi.nlm.nih.gov/BLAST/.

[0082] IRES (internal ribosome entry site) sequence is a protein synthesis initiation signal specific to the picomavirus family and is considered to serve as a ribosomal binding site because of having a sequence complementary to the 3'-terminal end of 18S ribosomal RNA. It is known that translation of mRNAs derived from viruses of the picomavirus

family is mediated by this sequence. The efficiency of translation from the IRES sequence is high and protein synthesis occurs even from the middle of mRNA in a manner not dependent on the cap structure. Thus, in the virus of the present invention, the E1A gene and the E1B gene, which is located downstream of the IRES sequence, are both translated independently by the action of hTERT promoter. With the use of the IRES sequence, hTERT promoter-mediated expression regulation occurs independently in both the E1A gene and the E1B gene, and hence virus growth can be more strictly limited to cells having telomerase activity when compared to the case where any one of the E1A gene or the E1B gene is regulated by the hTERT promoter. Moreover, the IRES sequence inserted between the E1A gene and the E1B gene can increase the growth capacity of the virus in host cells. The nucleotide sequence of the IRES sequence is shown in SEQ ID NO: 4. In addition to the sequence shown in SEQ ID NO: 4, the nucleotide sequence of the IRES sequence includes nucleotide sequences which are hybridizable under stringent conditions with DNA consisting of a nucleotide sequence complementary to DNA consisting of SEQ ID NO: 4 and which encode a protein having IRES activity. Procedures and stringent conditions for hybridization are the same as those described above for the hTERT promoter.

[0083] In a preferred embodiment of the invention, the IRES sequence comprises the nucleotide sequence of SEQ ID NO: 4 or a variant thereof. The variant of the IRES sequence comprises the nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97%, 98%, or 99% identity to that of SEQ ID NO: 4, wherein the nucleotide sequence has an IRES activity.

[0084] miRNA generally refers to short single-stranded RNA of approximately 15 to 25 nucleotides and is considered to regulate the translation of various genes upon binding to its target sequence present in mRNA. Thus, for example, when miRNA-expressing cells are infected with a recombinant adenovirus comprising a desired gene and a target sequence of the miRNA, the desired gene is prevented from being expressed in these cells. Such a target sequence of miRNA may be inserted into any site as long as a desired gene is prevented from being expressed, but it preferably inserted into an untranslated region of the desired gene, more preferably downstream of the desired gene.

[0085] The target sequence of miRNA to be used in the present invention includes target sequences of miRNAs which are expressed in non-cancer cells. Non-cancer cells are intended to mean cells that are not malignant tumor cells, and examples include normal cells, benign tumor cells and so on. Normal cells include, for example, normal blood cells, normal endothelial cells, normal fibroblasts, normal stem cells and so on. On the other hand, circulating tumor cells are regarded as cells originating from malignant tumors, and hence they fall within malignant tumor cells in the present invention.

[0086] The target sequence of miRNA to be used in the present invention also includes target sequences of miRNAs which are expressed specifically in blood cells. In the present invention, "blood cells" may include not only normal blood cells, but also cancerous blood cells. Namely, in the present invention. "miRNA which is expressed specifically in blood cells" may be expressed specifically in normal blood cells or may be expressed specifically in both normal

blood cells and cancerous blood cells. Even when expressed specifically in both normal blood cells and cancerous blood cells, miRNA can also reduce false positive cases of normal blood cells during detection of circulating tumor cells and thereby ensures accurate detection of circulating tumor cells released from solid cancers. In the present invention, "miRNA which is expressed specifically in blood cells" is more preferably miRNA which is expressed in normal blood cells but is not expressed in cancerous blood cells.

[0087] In the present invention, blood cells include, but are not limited to, leukocytes (i.e., neutrophils, eosinophils, basophils, lymphocytes (T cells and B cells), monocytes, dendritic cells), CD34-positive cells, hematopoietic cells, hematopoietic stem cells, hematopoietic progenitor cells, peripheral blood mononuclear cells (PBMCs) and so on. Likewise, cancerous blood cells include leukemia cells, lymphoma cells and so on. In the present invention, being "expressed specifically" in certain cells is intended to mean not only that expression is limited only to the intended cells, but also that expression levels are higher in the intended cells than in other cells. For example, being "expressed specifically in blood cells" is intended to mean not only that expression is limited only to blood cells, but also that expression levels are higher in blood cells than in any cells other than blood cells.

[0088] miRNA which is expressed specifically in blood cells includes, for example, miR-142, miR-15, miR-16, miR-21, miR-126, miR-181, miR-223, miR-296 and so on, with miR-142, miR-15 and miR-16 being preferred.

[0089] Although miRNA is single-stranded RNA, it is possible to use a target sequence of either strand of premature double-stranded RNA as long as a desired gene can be prevented from being expressed. For example, there are miR-142-3p and miR-142-5p for miR-142, and a target sequence of either miRNA may be used in the present invention. Namely, in the present invention, "miR-142" includes both miR-142-3p and miR-142-5p, with miR-142-3p being preferred. Likewise, in the present invention. "miR-15" includes the sense strand (referred to as "miR-15S") and antisense strand (referred to as "miR-15S") of premature double-stranded RNA. The same applies to other miRNAs.

[0090] miR-142-3p gene is located at a site where translocation occurs in B cell leukemia (aggressive B cell leukemia), and is known to be expressed in hematopoietic tissues (e.g., bone marrow, spleen, thymus), but not expressed in other tissues. Moreover, miR-142-3p has been observed to be expressed in mouse fetal liver (fetal hematopoietic tissue) and hence is considered to be involved in differentiation of the hematopoietic system (Chang-Zheng Chen, et al., Science, 2004).

[0091] In this embodiment, gene expression is regulated in two stages in a selective manner, because specific gene expression is caused in cancer cells by the action of hTERT promoter and gene expression in blood cells is regulated by the action of miRNA.

[0092] In another embodiment, the target sequence of miRNA to be used in the present invention includes a target sequence of miRNA whose expression is suppressed in cancer cells. miRNA whose expression is suppressed in cancer cells includes, for example, miR-125, miR-143, miR-145, miR-199, let-7 and so on. In this embodiment, specific gene expression in cancer cells is doubly regulated by the action of hTERT promoter and miRNA.

[0093] Although miRNA molecules have been initially found in nematodes, yeast and other organisms, there are currently found several hundreds of miRNAs in humans and mice. The sequences of these miRNAs are known, and sequence information and so on can be obtained by access to public DBs (e.g., miR Base: the microRNA database (world wide web.mirbase.org), microRNA.org—Targets and Expression (world wide web.microrna.org/microrna/home. do)).

[0094] The sequences of miR-142, miRNA-15, miRNA-16, miR-21, miR-126, miR-181, miR-223, miR-296, miR-125, miR-143, miR-145, miR-199 and let-7 are shown below.

miR-142-3p:	(SEQ ID NO: 5)
5 ' - UGUAGUGUUUCCUACUUUAUGGA	(SEQ ID NO: 5)
miR-142-5p:	(SEQ ID NO: 6)
5 ' - CAUAAAGUAGAAAGCACUACU	(SEQ ID NO: 6)
miR-15S:	(SEQ ID NO: 7)
5 ' - UAGCAGCACAUAAUGGUUUGUG	(SEQ ID NO: /)
miR-15AS:	(SEQ ID NO: 8)
5 ' - CAGGCCAUAUUGUGCUGCCUCA	(SEQ ID NO: 8)
miR-16S:	(SEQ ID NO: 9)
5 ' - UAGCAGCACGUAAAUAUUGGCG	(SEQ ID NO: 9)
miR-16AS:	(SEQ ID NO: 10)
5 ' - CCAGUAUUAACUGUGCUGCUGA	(SEQ 10 NO. 10)
miR-21S:	(SEQ ID NO: 11)
5 ' - UAGCUUAUCAGACUGAUGUUGA	(SEQ ID NO: II)
miR-21AS:	(SEQ ID NO: 12)
5 ' - CAACACCAGUCGAUGGGCUGU	(SEQ 10 NO. 12)
miR-126S:	(SEQ ID NO: 13)
5 ' - UCGUACCGUGAGUAAUAAUGCG	(SEQ 10 NO. 13)
miR-126AS:	(SEQ ID NO: 14)
5 ' - CAUUAUUACUUUUGGUACGCG	(550 ID NO. 14)
miR-181:	(SEQ ID NO: 15)
5 ' - AACAUUCAACGCUGUCGGUGAGU	(SEQ 10 NO. 13)
miR-223S:	(SEQ ID NO: 16)
5 ' - UGUCAGUUUGUCAAAUACCCCA	(SEQ 10 NO. 10)
rniR-223AS:	(SEQ ID NO: 17)
5 ' - CGUGUAUUUGACAAGCUGAGUU	(SEQ ID NO: 17)
miR-296-3p:	(SEQ ID NO: 18)
5 ' - GAGGGUUGGGUGGAGGCUCUCC	(SEQ ID NO: 18)
miR-296-5p:	(SEQ ID NO: 19)
5 ' - AGGGCCCCCCCUCAAUCCUGU	(250 ID NO: 19)

miR-125:	-continued				
5'-UCCCUGAG	GACCCUUUAACCUGUGA	(SEQ	ID	NO :	20)
miR-143S:		(SEO	חד	NO ·	21)
5 ' - UGAGAUGA	AAGCACUGUAGCUC	(510	10	110 .	21)
miR-143AS:		(SEO	TD	NO :	22)
5 ' - GGUGCAGU	JGCUGCAUCUCUGGU	(<u>z</u>			,
miR-145S:		(SEO	ID	NO :	23)
5 ' - GUCCAGU	JUUCCCAGGAAUCCCU	. ~			,
miR-145AS		(SEO	ID	NO :	24)
5 ' - GGAUUCCI	JGGAAAUACUGUUCU				
miR-199:		(SEQ	ID	NO :	25)
5 ' - CCCAGUGI	JUCAGACUACCUGUUC				
let-7:		(SEQ	ID	NO :	26)
5 ' - HGAGGHAG	IIAGGIIIGIIAIIAGIIII				

[0095] In the present invention, a single unit of a target sequence of miRNA is composed of a sequence complementary to the whole or part of the miRNA, and has a nucleotide length of 7 to 30 nucleotides, preferably 19 to 25 nucleotides, more preferably 21 to 23 nucleotides. In the present invention, a single unit of a target sequence of miRNA is intended to mean a nucleotide sequence having the minimum length required for serving as a target of certain miRNA. More specifically, it is intended to mean an oligonucleotide of at least 7 nucleotides in length selected from complementary sequences of the nucleotide sequences shown in SEQ ID NOs: 5 to 26, and such an oligonucleotide may comprise substitution, deletion, addition or removal of one or several nucleotides at any site(s).

[0096] The target sequence as a whole to be integrated into the polynucleotide or recombinant adenovirus of the present invention may comprise several copies of a single unit of target sequence in order to ensure effective interaction between miRNA and the target sequence. The target sequence as a whole to be integrated into the recombinant adenovirus may be of any length as long as it can be integrated into the viral genome. For example, it may comprise 1 to 10 copies, preferably 2 to 6 copies, and more preferably 2 or 4 copies of a single unit of target sequence (John G. Doench, et al., Genes Dev. 2003 17:438-442). An oligonucleotide of appropriate length may be inserted between single units of target sequence contained in the target sequence as a whole. The length of such an oligonucleotide of appropriate length is not limited in any way as long as the target sequence as a whole can be integrated into the recombinant adenovirus genome. For example, such an oligonucleotide may be of 0 to 8 nucleotides in length. Moreover, in the case of comprising several units of a target sequence of miRNA, the target sequences in the respective units may be those toward the same miRNA or those toward different miRNAs. Furthermore, in the case of comprising target sequences toward the same miRNA, the target sequences in the respective units may have different lengths and/or different nucleotide sequences.

[0097] The target sequence of miRNA to be contained in the polynucleotide of the present invention (or a replication

cassette comprising the same) can also be referred to as a "target sequence of a first microRNA" in order that the polynucleotide, when integrated into the recombinant adenovirus, should be distinguished from other miRNA target sequences present in the recombinant adenovirus.

[0098] When miR-142-3p is used as miRNA in the present invention, a target sequence thereof may be exemplified by sequences comprising the following sequences, by way of example.

(i) Sequence comprising two units of a target sequence of miR-142-3p:

(SEQ ID NO: 27 5'-gcggcc<u>tccataaagtaggaaacactaca</u>cagc<u>tccataaagtagga</u> <u>aacactaca</u>ttataagcggtac,

each underline represents a single unit of a target sequence of miR-142-3p)

(ii)-1. Sequence comprising four units of a target sequence of miR-142-3p:

(SEQ ID NO: 28 5'-ggcct<u>ccataaagtaqqaaacactaca</u>cagc<u>tccataaagtaqqaaa</u> <u>cactacattaattccataaagtaqqaaacactaca</u>ccac<u>tccataaagta</u> ggaaacactacagtac,

each underline represents a single unit of a target sequence of miR-142-3p)

(ii)-2. Sequence comprising four units of a target sequence of miR-142-3p:

SEQ ID NO: 55 5'-<u>tccataaaqtaqqaaacactaca</u>cagc<u>tccataaaqtaqqaaacact</u> <u>aca</u>ttaat<u>tccataaaqtaqqaaacactaca</u>ccac<u>tccataaaqtaqqaa</u> <u>acactaca</u>

each underline represents a single unit of a target sequence of miR-142-3p)

[0099] The nucleotide sequence of SEQ ID NO: 55 corresponds to the sequence from position 5 to 109 in the nucleotide sequence of SEQ ID NO: 28.

(ii)-3. Sequence comprising four units of a target sequence of miR-142-3p:

	(SEQ	ID	NO :	52
5'-tccataagtaggaaacactacacagctccataagt	acga	aac	acta	C
$\underline{a} \texttt{ttaat} \underline{\texttt{tccataaagtaggaaacactacaggac} \underline{\texttt{tccat}}$	caaag	tag	gaaa	C
<u>actaca</u> -3',				

each underline represents a single unit of a target sequence of miR-142-3p)

[0100] In a preferred embodiment of the invention, the sequence comprising four units of a target sequence of miR-142-3p comprises the nucleotide sequence of SEQ ID NO: 52 or 55, or a variant thereof. The variant of the sequence comprising four units of a target sequence of miR-142-3p comprises the nucleotide sequence having at least 90/%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97%, 98%, or 99% identity to that of SEQ ID NO: 52 or 55.

[0101] The nucleotide sequence of SEQ ID NO: 55 has 98.1% (103/105) identity to the nucleotide sequence of SEQ ID NO: 52. The nucleotide sequence of SEQ ID NO: 52 has 98.1% identity to the nucleotide sequence of SEQ ID NO:

55. That is, the nucleotide sequences of SEQ ID NOs: 52 and 55 have 98.1% (103/105) nucleotide identity each other.

[0102] In the present invention, a target sequence of miRNA is placed downstream of the construct of hTERT promoter-E1A gene-IRES sequence-E1B gene, and the resulting polynucleotide comprising the hTERT promoter, the E1A gene, the IRES sequence, the E1B gene and the target sequence of miRNA in this order (which polynucle-otide is referred to as a replication cassette) is integrated into the adenovirus genome, whereby E1 gene expression and virus growth can be prevented in cells expressing the miRNA.

[0103] In the present invention, a target sequence of miRNA is integrated downstream of the E1B gene or the reporter gene described later, whereby a gene located upstream thereof is prevented from being expressed. Although the details of this mechanism are not clear, a possible mechanism is as follows. First, miRNA-RISC (RNA-induced silencing complex) cleaves a target sequence on mRNA to thereby remove polyA from the mRNA. This would reduce the stability of the mRNA to cause degradation of the mRNA and hence prevention of gene expression. Alternatively, miRNA-RISC would recruit polyA ribonuclease, as in the case of normal miRNA, to cause polyA degradation, as a result of which the stability of mRNA would be reduced and gene expression would be prevented. [0104] It should be noted that there are previous reports showing that the miRNA-induced inhibitory effect against gene expression was not obtained for the expression (translation) of a gene inserted downstream of the IRES sequence (Ramesh S. Pillai et al., Science 309, 1573(2005): Geraldine Mathonnet, et al., Science 317, 1764 (2007)). However, when the inventors of the present invention confirmed gene expression for the recombinant adenovirus of the present invention comprising hTERT promoter, E1A gene, IRES sequence, E1B gene and a target sequence of miRNA in this order, the miRNA was found to sufficiently prevent the expression of the E1B gene inserted downstream of the IRES sequence. This is a new finding in the present invention.

[0105] The genes to be contained in the replication cassette of the present invention can be obtained by standard genetic engineering techniques. For example, it is possible to use nucleic acid synthesis with a DNA synthesizer, which is commonly used as a genetic engineering technique. Alternatively, it is also possible to use PCR techniques in which gene sequences serving as templates are isolated or synthesized, and primers specific to each gene are then designed to amplify the gene sequence with a PCR system (Current Protocols in Molecular Biology, John Wiley & Sons (1987) Section 6.1-6.4) or gene amplification techniques using a cloning vector. The above techniques can be easily accomplished by those skilled in the art in accordance with Molecular cloning 2^{nd} Edt. Cold Spring Harbor Laboratory Press (1989), etc. For purification of the resulting PCR product, known techniques can be used. If necessary, conventionally used sequencing techniques may be used to confirm whether the intended gene has been obtained, as expected. For example, dideoxynucleotide chain termination sequencing (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA 74: 5463) or the like may be used for this purpose. Alternatively, an appropriate DNA sequencer (e.g., ABI PRISM (Applied Biosystems)) may also be used for sequence analysis.

[0106] In the present invention, the target sequence of miRNA can be obtained by being designed and synthesized such that each single unit of target sequence is complementary to the whole or part of the nucleotide sequence of the miRNA. For example, a target sequence of miR-142-3p can be obtained by synthesizing DNA such that it is complementary to the nucleotide sequence of miR-142-3p.

[0107] Then, the respective genes obtained as above are ligated in a given order. First, the above genes are each cleaved with known restriction enzymes or the like, and the cleaved DNA fragment of each gene is inserted into and ligated to a known vector in accordance with known procedures. As a known vector, pIRES vector may be used, by way of example. The pIRES vector comprises the IRES (internal ribosome entry site) sequence of encephalonmyocarditis virus (ECMV) and is capable of translating two open reading frames (ORFs) from one mRNA. With the use of the pIRES vector, it is possible to prepare a "polynucleotide which comprises hTERT promoter, E1A gene. IRES sequence and E1B gene in this order and which comprises a target sequence of microRNA" by sequentially inserting the required genes into a multicloning site. Such a target sequence of miRNA may be inserted into any site, but it is preferably inserted downstream of the hTERT promoter-E1A-IRES-E1B construct. For DNA ligation, DNA ligase may be used. Alternatively, CMV promoter contained in a known vector (e.g., pShuttle) may be removed with known restriction enzymes and a sequence cleaved from the hTERT promoter-E1A-IRES-E1B-miRNA target sequence with appropriate restriction enzymes may then be inserted into this site, if necessary. Once the E1 gene required for adenovirus growth is allowed to be expressed under the control of the hTERT promoter, the virus can be grown specifically in cancer cells.

[0108] In a preferred embodiment of the invention, hTERT promoter and E1A gene, E1A and IRES sequence. IRES sequence and E1B gene, and E1B gene and miRNA target sequence may be linked by spacer sequences.

[0109] In another preferred embodiment of the invention, the replication cassette comprises the nucleotide sequence of SEQ ID NO: 53 or a variant thereof. The variant of the polynucleotide cassette comprises the nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97%, 98%, or 99% identity to that of SEQ ID NO: 53, wherein the nucleotide sequence encodes a polypeptide having an activity to enable an adenovirus to replicate selectively in tumor cells. The activity can be determined by infecting the adenovirus comprising the replication cassette to tumor cells and measuring viral titer of the adenovirus.

[0110] (2) Labeling Cassette

[0111] In yet another embodiment, the present invention relates to a recombinant adenovirus in which the above replication cassette is integrated into the E1 region of the adenovirus genome and a labeling cassette is further integrated into the E3 region of the adenovirus genome. Such a labeling cassette comprises a reporter gene and a promoter capable of regulating the expression of the gene, and may further comprise a target sequence of miRNA.

[0112] The adenovirus E3 region contains 11.6 kDa ADP (adenovirus death protein), and ADP has the function of promoting cell damage and virus diffusion. The recombinant adenovirus of the present invention is designed to eliminate any viral genome region like the E3 region containing ADP,

which encodes a protein having the function of promoting cell damage and virus diffusion, so that the timing of cell death is delayed to facilitate identification of cancer tissues by production (emission, expression) of fluorescence (e.g., GFP). This is also effective in that circulating tumor cells (CTCs) described later can be detected alive over a long period of time.

[0113] The reporter gene to be contained in the labeling cassette in the recombinant adenovirus of the present invention is not limited in any way, and examples include a gene encoding a protein which emits fluorescence, a gene encoding an enzyme protein which generates a luminophore or a chromophore upon enzymatic reaction, a gene encoding an antibiotic, a gene encoding a tag-fused protein, a gene encoding a protein which is expressed on the cell surface and binds to a specific antibody, a gene encoding a membrane transport protein, and so on. Examples of a protein which emits fluorescence (i.e., a labeling protein) include a green fluorescent protein (GFP) derived from luminous jellyfish such as Aequorea victorea, its variants EGFP (enhancedhumanized GFP) and rsGFP (red-shift GFP), a yellow fluorescent protein (YFP), a cyan fluorescent protein (CFP), a blue fluorescent protein (BFP). GFP derived from Renilla reniformis and so on, and genes encoding these proteins can be used in the present invention. The above protein which emits fluorescence is preferably GFP or EGFP.

[0114] Likewise, examples of an enzyme protein which generates a luminophore or a chromophore upon enzymatic reaction include β -galactosidase, luciferase and so on. β -Galactosidase generates a blue chromophore from 5-bromo-4-chloro-3-indolyl- β -D-galactopyranoside (X-gal) upon enzymatic reaction. On the other hand, luciferase generates a luminophore upon enzymatic reaction with luciferin. Firefly luciferase, bacterial luciferase, *Renilla* luciferase and so on are known as members of luciferase, and those skilled in the art would be able to select an appropriate enzyme from known luciferase members.

[0115] Moreover, the promoter capable of regulating the expression of the above gene is not limited in any way as long as it is a suitable promoter compatible with the virus used for the expression of the above desired gene. Examples include, but are not limited to, CMV promoter, hTERT promoter, SV40 late promoter, MMTV LTR promoter, RSV LTR promoter, SR α promoter, β -actin promoter, PGK promoter, EF-1a promoter and so on. Preferably, CMV promoter or hTERT promoter can be used for this purpose.

[0116] The target sequence of miRNA to be integrated into the labeling cassette may be either the same or different from the target sequence of miRNA to be integrated into the replication cassette.

[0117] In the present invention, the target sequence of miRNA is placed within the untranslated region of the reporter gene, preferably downstream of this gene, whereby the reporter gene can be prevented from being expressed. Namely, in the present invention, the labeling cassette preferably comprises a promoter capable of regulating the reporter gene, the reporter gene and the target sequence of microRNA in this order. The target sequence of miRNA to be integrated into the labeling cassette is referred to as a "target sequence of a second microRNA" in order that it should be distinguished from the target sequence of miRNA to be contained in the replication cassette. Other explanations on miRNA are the same as described above.

[0118] In a preferred embodiment of the invention, the labeling cassette preferably comprises the sequence comprising four units of a target sequence of miR-142-3p. The sequence comprises the nucleotide sequence of SEQ ID NO: 52 or 55, or a variant thereof. The variant of the sequence comprising four units of a target sequence of miR-142-3p comprises the nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97%, 98%, or 99% identity to that of SEQ ID NO: 52 or 55.

[0119] In a preferred embodiment of the invention, examples of a replication cassette include a replication cassette comprising CMV promoter, EGFP gene and a target sequence of miR-142p. In a preferred embodiment of the invention, the replication cassette comprising CMV promoter, EGFP gene and a target sequence of miR-142p comprises the nucleotide sequence of SEQ ID NO: 54 or a variant thereof. The variant of the polynucleotide cassette comprises the nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97%, 98%, or 99% identity to that of SEQ ID NO: 54.

[0120] Details on how to obtain, purify and sequence the recombinant genes to be contained in the labeling cassette of the present invention are the same as described above for the replication cassette.

[0121] (3) Cell Death-Inducing Cassette

[0122] In yet another embodiment, the present invention relates to a recombinant adenovirus in which the above replication cassette is integrated into the E1 region of the adenovirus genome and a cell death-inducing cassette is integrated into the E3 region of the adenovirus genome. Such a cell death-inducing cassette comprises a gene encoding a cell death induction-related protein and a promoter capable of regulating the expression of the gene, and may further comprise a target sequence of microRNA.

[0123] The cell death-inducing cassette used in the recombinant adenovirus of the present invention comprises a gene encoding a cell death induction-related protein and a promoter capable of regulating the expression of the gene. Thus, for example, when the recombinant adenovirus of the present invention is infected into cancer cells, the virus grows specifically in the cancer cells to thereby increase the intracellular expression level of the cell death induction-related protein and induce cell death only in the cancer cells without damaging other normal cells.

[0124] Such a gene encoding a cell death induction-related protein is intended to mean a gene encoding a protein related to the induction of cell death in specific cells. Examples of a cell death induction-related protein include immunological proteins such as PA28. PA28 is a protein which activates intracellular proteasomes and which elicits immune reactions and also induces cell death when overexpressed. Moreover. TRAIL can also be exemplified as an apoptosis-inducing protein. TRAIL refers to a molecule which induces apoptotic cell death upon binding to its receptor on the cell surface.

[0125] Moreover, another example of the gene encoding a cell death induction-related protein is a tumor suppressor gene, which has the function of suppressing the growth of cancer cells. Examples of such a tumor suppressor gene include the following genes used in conventional gene therapy. SEQ ID NO (nucleotide sequence) and GenBank Accession No. are shown below for each gene.

[0126] p53 (SEQ ID NO: 29: Accession No. M14694): multiple types of cancer

[0127] p15 (SEQ ID NO: 30: Accession No. L36844): multiple types of cancer

[0128] p16 (SEQ ID NO: 31; Accession No. L27211): multiple types of cancer

[0129] APC (SEQ ID NO: 32; Accession No. M74088): colorectal cancer, gastric cancer, pancreatic cancer

[0130] BRCA-1 (SEQ ID NO: 33; Accession No. U14680): ovarian cancer, breast cancer

[0131] DPC-4 (SEQ ID NO: 34: Accession No. U44378): colorectal cancer, pancreatic cancer

[0132] FHIT (SEQ ID NO: 35: Accession No. NM 112012): gastric cancer, lung cancer, uterine cancer

[0133] p73 (SEQ ID NO: 36: Accession No. Y11416): neuroblastoma

[0134] PATCHED (SEQ ID NO: 37; Accession No. U59464): basal cell carcinoma

[0135] Rbp1110 (SEQ ID NO: 38; Accession No. M15400): lung cancer, osteosarcoma

[0136] DCC (SEQ ID NO: 39; Accession No. X76132): colorectal cancer

[0137] NF1 (SEQ ID NO: 40; Accession No. NM 000267): neurofibroma type 1

[0138] NF2 (SEQ ID NO: 41: Accession No. L11353): neurofibroma type 2

[0139] WT-1 (SEQ ID NO: 42; Accession No. NM 000378): Wilms tumor

[0140] The target sequence of miRNA to be contained in the cell death-inducing cassette may be either the same or different from the target sequence of miRNA to be integrated into the replication cassette. In the present invention, the target sequence of miRNA is placed within the untranslated region of the gene encoding a cell death induction-related protein, preferably downstream of this gene, whereby the cell death induction-related protein can be prevented from being expressed. Namely, in the present invention, the cell death-inducing cassette preferably comprises a promoter capable of regulating the gene encoding a cell death induction-related protein, the gene encoding a cell death induction-related protein and the target sequence of microRNA in this order. Other explanations on miRNA are the same as described above.

[0141] Details on how to obtain, purify and sequence the recombinant genes to be contained in the cell death-inducing cassette of the present invention are the same as described above for the replication cassette.

[0142] To determine whether or not cell death has been induced, morphological observation described below may be conducted for this purpose. Namely, once cells adhered onto the bottom surface of a culture vessel have been infected with the recombinant virus of the present invention and incubated for a given period, the cells will be rounded and detached from the bottom surface and then will float as shiny cells in the culture solution, as observed under an inverted microscope. At this stage, the cells have lost their vital mechanism and hence a determination can be made that cell death has been induced. Alternatively, cell death can also be confirmed with a commercially available kit for living cell assay which uses a tetrazolium salt (e.g., MTT, XTT).

[0143] (4) CD46-Binding Fiber Protein

[0144] In yet another embodiment, the recombinant adenovirus of the present invention may comprise a gene encoding a CD46-binding adenovirus fiber protein.

[0145] Adenovirus vectors which are now commonly used are prepared structurally based on adenovirus type 5 (or type 2) belonging to Subgroup C among 51 serotypes of human adenovirus. Although adenovirus type 5 is widely used because of its excellent gene transfer properties, adenovirus of this type has a problem of being difficult to infect cells with low expression of coxsackievirus and adenovirus receptor (CAR) because its infection is mediated by binding to CAR on target cells. In particular, CAR expression is reduced in highly malignant cancer cells which are highly invasive, metastatic and proliferative, and hence an adenovirus having the fiber protein of adenovirus type 5 may not infect such highly malignant cancer cells.

[0146] In contrast, CD46 is expressed on almost all cells except for erythrocytes in humans and is also expressed on highly malignant cancer cells. Thus, a recombinant adenovirus comprising a gene encoding a CD46-binding adenovirus fiber protein can also infect CAR-negative and highly malignant cancer cells. For example, adenovirus types 34 and 35 bind to CD46 as their receptor and thereby infect cells (Marko Marttila, et al., J. Virol. 2005, 79(22):14429-36). As described above, CD46 is expressed on almost all cells except for erythrocytes in humans, and hence adenovirus types 34 and 35 are able to infect a wide range of cells including CAR-negative cells. Moreover, the fiber of adenovirus consists of a knob region, a shaft region and a tail region, and adenovirus infects cells through binding of its fiber knob region to the receptor. Thus, at least the fiber knob region in the fiber protein is replaced from adenovirus type 5 origin to adenovirus type 34 or 35 origin, % hereby the virus will be able to infect CAR-negative cells via CD46.

[0147] Because of comprising a gene encoding a CD46binding adenovirus fiber protein, the recombinant adenovirus of the present invention is able to infect almost all cells except for erythrocytes and thus able to infect highly malignant CAR-negative cancer cells which are highly invasive, metastatic and proliferative. In the present invention, "CARnegative" cells are intended to mean cells where CAR expression is low or cells where CAR is not expressed at all. [0148] 57 serotypes have now been identified for human adenovirus, and these serotypes are classified into six groups, i.e., Groups A to F. Among them, adenovirus types belonging to Group B have been reported to bind to CD46. Adenovirus types belonging to Group B include adenovirus types 34 and 35, as well as adenovirus types 3, 7, 11, 16, 21 and 50, by way of example.

[0149] For use as a CD46-binding adenovirus fiber protein in the present invention, preferred is the fiber protein of adenovirus belonging to Group B, more preferred is the fiber protein of adenovirus type 3, 7, 34, 35, 11, 16, 21 or 50, and even more preferred is the fiber protein of adenovirus type 34 or 35.

[0150] The nucleotide sequence of a gene encoding the fiber protein of adenovirus type 34, 35, 3, 7, 11, 16, 21 or 50 is available from a known gene information database. e.g., the GenBank of NCBI (The National Center for Biotechnology Information). Moreover, in the present invention, the nucleotide sequence of a gene encoding the fiber protein of adenovirus type 34, 35, 3, 7, 11, 16, 21 or 50 includes not only the nucleotide sequence of each gene available from a

database as described above, but also nucleotide sequences which are hybridizable under stringent conditions with DNA consisting of a nucleotide sequence complementary to DNA consisting of each nucleotide sequence available from a database and which encode a protein with binding activity to CD46.

[0151] The binding activity to CD46 can be evaluated when a recombinant adenovirus having DNA comprising the nucleotide sequence is measured for its infectivity to CD46-expressing cells. The infectivity of such a recombinant adenovirus may be measured in a known manner, for example, by detecting GFP expressed by the virus infected into CD46-expressing cells under a fluorescence microscope or by flow cytometry, etc. Procedures and stringent conditions for hybridization are the same as described above.

[0152] The recombinant adenovirus of the present invention may comprise the entire or partial region of a CD46binding adenovirus fiber protein, such that at least the fiber knob region in the fiber protein binds to CD46. Namely, in the present invention, the CD46-binding adenovirus fiber protein may comprise at least the fiber knob region in the fiber protein of adenovirus belonging to Group B, more preferably at least the fiber knob region in the fiber protein of adenovirus of any type selected from the group consisting of type 34, type 35, type 3, type 7, type 11, type 16, type 21 and type 50, and even more preferably at least the fiber knob region in the fiber protein of adenovirus type 34 or 35. Moreover, the technical idea of the present invention is not limited to these fiber proteins as long as the intended protein binds to CD46, and it also covers various proteins capable of binding to CD46 as well as proteins having a motif capable of binding to CD46.

[0153] Alternatively, in the present invention, the CD46binding fiber protein may comprise a region consisting of the fiber knob region and the fiber shaft region in the fiber protein of adenovirus belonging to Group B, more preferably a region consisting of the fiber knob region and the fiber shaft region in the fiber protein of adenovirus of any type selected from the group consisting of type 34, type 35, type 3, type 7, type 11, type 16, type 21 and type 50, and even more preferably a region consisting of the fiber knob region and the fiber shaft region in the fiber protein of adenovirus type 34 or 35.

[0154] In the present invention, the CD46-binding fiber protein may comprise the fiber shaft region or the fiber tail region in the fiber protein of adenovirus of any type (e.g., type 2, type 5) other than the above types, as long as it comprises at least the fiber knob region in the fiber protein of adenovirus belonging to Group B.

[0155] Examples of such a fiber protein include, but are not limited to, fiber proteins which comprise a region consisting of not only the fiber knob region and the fiber shaft region in the fiber protein of adenovirus of any type selected from the group consisting of type 34, type 35, type 3, type 7, type 11, type 16, type 21 and type 50, but also the fiber tail region in the fiber protein of adenovirus type 5.

[0156] The nucleotide sequences of a gene encoding the fiber knob region in the fiber protein of adenovirus type 34, a gene encoding the fiber shaft region in the fiber protein of adenovirus type 34 and a gene encoding a region consisting of the fiber knob region and the fiber shaft region in the fiber protein of adenovirus type 34 are shown in SEQ ID NOs: 47, 48 and 49, respectively.

[0157] Likewise, the nucleotide sequence of a gene encoding a region consisting of not only the fiber knob region and the fiber shaft region in the fiber protein of adenovirus type 34, but also the fiber tail region in the fiber protein of adenovirus type 5 is shown in SEQ ID NO: 50. In the present invention, the nucleotide sequence of such a gene includes not only the nucleotide sequence shown in SEQ ID NO: 50, but also nucleotide sequences which are hybridizable under stringent conditions with DNA consisting of a nucleotide sequence complementary to DNA consisting of the nucleotide sequence shown in SEQ ID NO: 50 and which encode a protein with binding activity to CD46. Procedures for evaluation of the binding activity to CD46, procedures and stringent conditions for hybridization are the same as described above.

[0158] In a preferred embodiment of the invention, the gene encoding a CD46-binding adenovirus fiber protein comprises the nucleotide sequence of SEQ ID NO: 50 or a variant thereof. The variant of the gene encoding a CD46-binding adenovirus fiber protein comprises the nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97%, 98%, or 99% identity to the nucleotide sequence of SEQ ID NO: 50.

[0159] To prepare the recombinant adenovirus of the present invention, a polynucleotide comprising the replication cassette, the labeling cassette and/or the cell death-inducing cassette may be excised with appropriate restriction enzymes and inserted into an appropriate virus expression vector. A preferred virus expression vector is an adenovirus vector, more preferably an adenovirus type 5 vector, and particularly preferably an adenovirus type 5 vector which comprises a gene encoding a CD46-binding adenovirus fiber protein (e.g., the fiber protein of adenovirus type 34 or 35). [0160] As shown in Example 2 described later, GFP expression in blood cells was sufficiently suppressed in both cases where a miRNA target sequence was inserted downstream of the replication cassette and where a miRNA target sequence was inserted downstream of the labeling cassette, whereas GFP expression in blood cells was unexpectedly significantly suppressed in a case where miRNA target sequences were simultaneously inserted downstream of the replication cassette and downstream of the labeling cassette, respectively. This is a new finding in the present invention. [0161] In the present invention, the recombinant adenovirus may be obtained in the following manner, by way of example.

[0162] First, pHMCMV5 (Mizuguchi H. et al., Human Gene Therapy, 10: 2013-2017, 1999) is treated with restriction enzymes and a target sequence of miRNA is inserted to prepare a vector having the target sequence of miRNA. Next, pSh-hAIB comprising a construct of hTERT promoter-E1A-IRES-E1B (WO2006/036004) is treated with restriction enzymes and the resulting fragment comprising the hTERT promoter-E1A-IRES-E1B construct is inserted into the above vector having the target sequence of miRNA to obtain a vector comprising hTERT promoter-E1A-IRES-E1B-miRNA target sequence. On the other hand, pHMCM-VGFP-1 (pHMCMV5 comprising EGFP gene) is treated with restriction enzymes to obtain a fragment comprising CMV promoter and EGFP gene, and this fragment is inserted into the above vector having the target sequence of miRNA to obtain a vector comprising a construct of CMV-EGFP-miRNA target sequence. Then, the vector comprising hTERT promoter-E1A-IRES-E1B-miRNA target sequence and the vector comprising CMV-EGFP-miRNA target sequence are each treated with restriction enzymes and ligated together to obtain a vector in which hTERT promoter-E1A-IRES-E1B-miRNA target sequence is integrated into the E1-deficient region of the adenovirus genome and CMV-EGFP-miRNA target sequence is integrated into the E3-deficient region of the adenovirus genome. Alternatively, when a vector comprising a gene encoding a CD46-binding adenovirus fiber protein is used as a vector to be inserted with the DNA fragments comprising the respective constructs, it is possible to obtain a vector in which hTERT promoter-E1A-IRES-E1B-miRNA target sequence is integrated into the E1-deficient region of the adenovirus genome and CMV-EGFP-miRNA target sequence is integrated into the E3-deficient region of the adenovirus genome and which comprises a gene encoding a CD46-binding adenovirus fiber protein. Moreover, this vector may be linearized with a known restriction enzyme and then transfected into cultured cells (e.g., 293 cells) to thereby prepare an infectious recombinant adenovirus. It should be noted that those skilled in the art would be able to easily prepare all viruses falling within the present invention by making minor modifications to the above preparation procedures.

[0163] In a preferred embodiment of the invention, the recombinant adenovirus comprises a nucleotide sequence comprising:

[0164] a replication cassette comprising a polynucleotide comprising a human telomerase reverse transcriptase promoter, E1A gene, IRES sequence and E1B gene in this order, and a target sequence of a first microRNA, wherein the first microRNA is miR-142, and wherein the replication cassette is integrated into the E1 region of the adenovirus genome: **[0165]** a labeling cassette comprising a reporter gene, a promoter capable of regulating the expression of the reporter gene, and a target sequence of a second microRNA, wherein the second microRNA is miR-142, and wherein the labeling cassette is integrated into the E3 region of the adenovirus genome; and

[0166] a gene encoding a CD46-binding fiber protein comprising at least the fiber knob region in the fiber protein of adenovirus type 34 or 35, which is integrated into the adenovirus genome:

[0167] wherein the recombinant adenovirus comprises the nucleotide sequence of SEQ ID NO: 51 or a variant thereof. The variant comprises the nucleotide sequence having at least 90%, preferably at least 95%, more preferably at least 96%, and even more preferably at least 97%, 98%, or 99% identity to the nucleotide sequence of SEQ ID NO: 51.

3. REAGENT FOR CANCER CELL DETECTION OR REAGENT FOR CANCER DIAGNOSIS

[0168] As described above, the recombinant adenovirus of the present invention has the following features.

(i) This recombinant adenovirus infects almost all cells except for erythrocytes, and is also able to infect highly malignant CAR-negative cancer cells.

(ii) This recombinant adenovirus grows specifically in hTERT-expressing cancer cells and also increases the expression level of a reporter gene upon growth, whereby the production of a labeling protein, a chromophore or the like can be increased to detectable levels.

(iii) This recombinant adenovirus can prevent the occurrence of false positive results even when the virus infects normal cells having hTERT promoter activity, because miRNA expression prevents not only growth of the virus, but also expression of a reporter gene. In particular, because of comprising a target sequence of miRNA which is expressed specifically in blood cells, this recombinant adenovirus can prevent the occurrence of false positive results even when the virus infects normal blood cells having hTERT promoter activity, because expression of this miRNA prevents not only growth of the virus in blood cells but also expression of a reporter gene.

[0169] Thus, the recombinant adenovirus of the present invention can be used as a reagent for cancer cell detection or as a reagent for cancer diagnosis. In particular, because of having the above features, the recombinant virus of the present invention is extremely effective for detection of circulating tumor cells (CTCs) present in blood.

[0170] On the other hand, since 2004 when CTCs, which are cancer cells present in blood, were reported to serve as a prognostic factor for post-operative breast cancer patients in the New England Journal of Medicine (Cristofanilli M. et al., The New England Journal of Medicine, 2004, 781-791), CTCs have been measured as a biomarker in many clinical trials conducted in Europe and North America. Particularly in breast cancer, prostate cancer and skin cancer, CTCs have been proven to be an independent factor which determines the prognosis of these cancers. Moreover, in Europe, in the clinical trial in adjuvant setting of prostate cancer (SUC-CESS), the number of CTCs counted is added to the inclusion criteria and only patients in whom one or more cells have been detected are included. This trial is a largescale clinical trial including 2000 cases or more, and attention is being given to the results. Moreover, there is also a clinical trial in which an increase or decrease per se in CTCs is one of the clinical endpoints (MDV3100).

[0171] In recent years, the FDA in the United States has issued guidelines for approval and authorization of molecular-targeted anticancer agents, and hence the CTC test has become more important in cancer diagnosis. The guidelines issued by the FDA define that genetic changes in molecular targets in tumors should be tested before selection of molecular-targeted anticancer agents. When attempting to achieve the guidelines by conventional techniques, there arises a need for surgical biopsy from tumor tissues in patients to conduct genetic testing, which will impose a very strong burden on the patients. To solve this problem, efforts are now made to conduct genetic testing on CTCs collected from blood, and this strategy is referred to as "liquid biopsy" in contrast to the conventional "biopsy." Once this strategy has been achieved, genetic testing of tumor tissues can be conducted simply by blood collection and the burden on patients can be reduced greatly. For these reasons, the CTC test is receiving great attention as a highly useful testing technique in the clinical setting.

[0172] The CellSearch System of Veridex LLC is the only CTC detection device currently approved by the FDA, and most of the CTC detection methods used in clinical trials are accomplished by this CellSearch System. The CellSearch System is based on techniques to detect cancer cells with EpCAM antibody and cytokeratin antibody.

[0173] However, CTC detection techniques are designed to detect several to several tens of cells from among a billion of blood cells, and it is therefore very difficult to improve their sensitivity and accuracy. Thus, some problems are also pointed out in CTC detection methods based on the CellSearch System. For example, it is pointed out that cancer cells which are negative in the CTC test based on the CellSearch System are detected as being positive in another test, and that there are great differences in sensitivity and accuracy, depending on the cancer type (Allard W. J. et al., Clinical Cancer Research, 2004, 6897-6904). Moreover, the CellSearch System is also pointed out to have a problem of low CTC detection rate for lung cancer in the clinical setting (ibid).

[0174] Likewise, the CellSearch System is also pointed out to have a problem of reduced CTC detection rate because the expression of cell surface antigens including EpCAM is reduced in cancer cells having undergone epithelial-mesenchymal transition (EMT) (Anieta M. et. al., J Natl Cancer Inst, 101, 2009, 61-66, Janice Lu et. al., Int J Cancer, 126(3), 2010, 669-683).

[0175] Further, to conduct the above "liquid biopsy," additional steps are required for concentration and phenotyping or genotyping of CTCs, which require more sensitive and more accurate CTC detection techniques than simply counting the number of CTCs.

[0176] In contrast to this, because of having the above features (i) to (iii), the recombinant adenovirus of the present invention allows simple, highly sensitive and highly accurate detection of CTCs in blood without detection of leukocytes and other normal blood cells. Further, the reagent of the present invention allows detection of CTCs alive, so that the source organ of the detected CTCs can be identified upon analyzing surface antigens or the like present on the cell surface of the CTCs. Thus, the recombinant adenovirus of the present invention is useful for CTC detection and cancer diagnosis.

[0177] Moreover, the recombinant adenovirus or reagent for cancer cell detection of the present invention can be used to detect cancer cells having undergone EMT or mesenchymal-epithelial transition (MET). EMT is a phenomenon in which cancer cells lose their properties as epithelium and acquire features as mesenchymal lineage cells tending to migrate into surrounding tissues, and EMT is also involved in invasion and/or metastasis of cancer cells. On the other hand, mesenchymal-epithelial transition (MET) is a phenomenon in which mesenchymally derived cells acquire features as epithelium. As described above, it is difficult to detect cancer cells having undergone EMT by known techniques including the CellSerch System. In contrast, the present invention allows detection of cancer cells having undergone EMT or MET. The recombinant adenovirus of the present invention is therefore useful for cancer cell detection and for cancer diagnosis.

[0178] Further, the recombinant adenovirus of the present invention can also be used to detect drug-resistant cancer cells. Drugs intended in the present invention are those used for cancer chemotherapy. Examples of such drugs include, but are not limited to, adriamycin, carboplatin, cisplatin, 5-fluorouracil, mitomycin, bleomycin, doxorubicin, dauno-rubicin, methotrexate, paclitaxel, docetaxel and actinomycin D, etc. Moreover, the recombinant virus of the present invention can also be used to detect cancer stem cells. In the present invention, cancer stem cells refer to cells (stem cells) serving as the origin of cancer cells. Cancer stem cells also include those having drug resistance.

[0179] In the present invention, the type of cancer or tumor to be detected or diagnosed is not limited in any way, and cells of all cancer types can be used. Examples include

solid cancers or blood tumors, more specifically brain tumor, cervical cancer, esophageal cancer, tongue cancer, lung cancer, breast cancer, pancreatic cancer, gastric cancer, small intestinal cancer, duodenal cancer, colorectal cancer, bladder cancer, kidney cancer, liver cancer, prostate cancer, uterine cancer, uterine cervical cancer, ovarian cancer, thyroid cancer, gallbladder cancer, pharyngeal cancer, sarcoma, melanoma, leukemia, lymphoma and multiple myeloma (MM). Most (85% or more) of the cancer cells derived from human tissues show increased telomerase activity, and the present invention allows detection of such telomerase-expressing cancer cells in general.

[0180] Moreover, in the present invention, CTCs are not limited in any way as long as they are cancer cells present in blood, and they include not only cancer cells released from solid cancers, but also blood tumor cells such as leukemia cells and lymphoma cells as mentioned above. However, in cases where CTCs are blood tumor cells, the miRNA target sequence contained in the adenovirus of the present invention is preferably a target sequence of miRNA which is expressed specifically in normal blood cells.

[0181] To prepare the reagent of the present invention, the recombinant adenovirus may be treated, e.g., by freezing for easy handling and then used directly or mixed with known pharmaceutically acceptable carriers (e.g., excipients, extenders, binders, lubricants) and/or known additives (including buffering agents, isotonizing agents, chelating agents, coloring agents, preservatives, aromatics, flavorings, sweeteners).

4. METHOD FOR CANCER CELL DETECTION OR METHOD FOR CANCER DIAGNOSIS

[0182] Furthermore, the recombinant adenovirus of the present invention can be used for cancer cell detection or cancer diagnosis by contacting the same with cancer cells and detecting the fluorescence or color produced by the cancer cells.

[0183] In the present invention, the term "contact(ing)" is intended to mean that cancer cells and the recombinant adenovirus of the present invention are allowed to exist in the same reaction system, for example, by adding the recombinant adenovirus of the present invention to a sample containing cancer cells, by mixing cancer cells with the recombinant adenovirus, by culturing cancer cells in the presence of the recombinant adenovirus, or by infecting the recombinant adenovirus into cancer cells. Moreover, in the present invention, "fluorescence or color" is not limited in any way as long as it is light or color produced from a protein expressed from a reporter gene, and examples include fluorescence emitted from a labeling protein (e.g., GFP), light emitted from a luminophore generated by luciferase-mediated enzymatic reaction, blue color produced from a chromophore generated by enzymatic reaction between β -galactosidase and X-gal, etc.

[0184] Cancer cells for use in the method for cancer cell detection or in the method for cancer diagnosis may be derived from a biological sample taken from a subject. Such a biological sample taken from a subject is not limited in any way as long as it is a tissue suspected to contain cancer cells, and examples include blood, tumor tissue, lymphoid tissue and so on. Alternatively, cancer cells may be circulating tumor cells (CTCs) in blood, and explanations on CTCs are the same as described above.

[0185] Cancer cell detection and cancer diagnosis using the reagent of the present invention may be accomplished as follows, by way of example.

[0186] In cases where the biological sample taken from a subject is blood, the blood sample is treated by addition of an erythrocyte lysis reagent to remove erythrocytes and the remaining cell suspension is mixed in a test tube with the reagent of the present invention at a given ratio (0.01 to 1000 MOI (multiplicity of infection), preferably 0.1 to 100 MOI, more preferably 1 to 10 MOI). The test tube is allowed to stand or rotated for culture at room temperature or 37° C. for a given period of time (e.g., 4 to 96 hours, preferably 12 to 72 hours, more preferably 18 to 36 hours) to facilitate virus infection into cancer cells and virus growth. GFP fluorescence production in the cell fraction is quantitatively analyzed by flow cytomety. Alternatively, GFP-expressing cells are morphologically analyzed by being observed under a fluorescence microscope. This system allows highly sensitive detection of CTCs present in peripheral blood. This method can be used for detection of CTCs which are present in trace amounts in peripheral blood.

[0187] In cases where flow cytometry is used for CTC detection, CTCs may be detected by determining whether each cell is GFP-positive or GFP-negative, e.g., in accordance with the following criteria.

[0188] First, groups of cells in a sample which is not infected with any virus are analyzed to obtain a background fluorescence value. A threshold is set to the maximum fluorescence value. Subsequently, groups of cells in samples which have been infected with the virus of the present invention are analyzed and groups of cells in a sample showing a fluorescence value equal to or greater than the threshold are determined to be GFP-positive. In the case of using a blood sample taken from a subject, GFP-positive cells can be detected as CTCs. Further, these GFP-positive cells (CTCs) may be concentrated for phenotyping or genotyping.

[0189] In the present invention, examples of a subject include mammals such as humans, rabbits, guinea pigs, rats, mice, hamsters, cats, dogs, goats, pigs, sheep, cows, horses, monkeys and so on.

[0190] The amount of the reagent of the present invention to be used is selected as appropriate, depending on the state and amount of a biological sample to be used for detection and the type of detection method to be used, etc. For example, in the case of a blood sample, the reagent of the present invention can be used in an amount ranging from about 0.01 to 1000 MOI, preferably 0.1 to 100 MOI, and more preferably 1 to 10 MOI per 1 to 50 ml, preferably 3 to 25 ml, and more preferably 5 to 15 ml of the blood sample. MOI refers to the ratio between the amount of virus (infectious unit) and the number of cells when a given amount of virus particles, and is used as an index when viruses are infected into cells.

[0191] To infect the recombinant virus into cells, the following procedures may be used for this purpose. First, cells are seeded in a culture plate containing an appropriate culture medium and cultured at 37° C. in the presence of carbon dioxide gas. The culture medium is selected from DMEM, MEM, RPMI-1640 and others commonly used for animal cell culture, and may be supplemented with serum,

antibiotics, vitamins and so on, if necessary. The cultured cells are inoculated with a given amount of the virus, for example, at 0.1 to 10 MOI.

[0192] For confirmation of virus growth, the virus-infected cells are collected and treated to extract their DNA, followed by real-time PCR with primers targeting an appropriate gene possessed by the virus of the present invention, whereby virus growth can be quantitatively analyzed.

[0193] In cases where GFP gene is used as a reporter gene, labeled cells may be detected as follows: cells showing virus growth will emit a given fluorescence (e.g., a green fluorescence for GFP) upon irradiation with an excitation light, so that cancer cells can be visualized by the fluorescence. For example, when the virus-infected cells are observed under a fluorescence microscope, GFP fluorescence production can be seen in the cells. Moreover, to observe the virus-infected cells over time, GFP fluorescence production can be monitored over time with a CCD camera.

[0194] Moreover, the reagent of the present invention also allows real-time detection of cancer cells present in vivo. To label and detect cells in vivo in a real-time manner, the recombinant adenovirus of the present invention may be administered in vivo.

[0195] The reagent of the present invention may be applied directly to the affected area or may be introduced in vivo (into target cells or organs) in any known manner, e.g., by injection into vein, muscle, peritoneal cavity or subcutaneous tissue, inhalation from nasal cavity, oral cavity or lungs, oral administration, catheter-mediated intravascular administration and so on, as preferably exemplified by local injection into muscle, peritoneal cavity or elsewhere, injection into vein, etc.

[0196] When the reagent of the present invention is administered to a subject, the dose may be selected as appropriate, depending on the type of active ingredient, the route of administration, a target to be administered, the age, body weight, sex and/or symptoms of a patient, and other conditions. As a daily dose, the amount of the virus of the present invention serving as an active ingredient may usually be set to around 10^6 to 10^{11} PFU (plaque forming units), preferably around 10^9 to 10^{11} PFU, given once a day or in divided doses.

[0197] Real-time in vivo monitoring of fluorescence from cancer cells has the advantage of being used for in vivo diagnostic agents. This is useful for so-called navigation surgery and so on. Details on navigation surgery can be found in WO2006/036004.

[0198] Further, the reagent of the present invention is useful for detection of CTCs as a biomarker, and hence the reagent of the present invention can be used to determine prognosis.

[0199] For example, in cases where GFP is used as a labeling protein in the virus of the present invention, a biological sample taken from a cancer patient before being treated by any cancer therapy (e.g., chemotherapy, radiation therapy, surgical operation) and a biological sample taken at a time point after a certain period (e.g., 1 to 90 days) has passed from the treatment are each infected with the virus of the present invention. Next, GFP-positive cells contained in the sample taken before the treatment and GFP-positive cells contained in the sample taken at a certain time point after the treatment are compared for their number under the same conditions. As a result, if the number of GFP-positive cells after the treatment becomes smaller than the number of

GFP-positive cells before the treatment, a determination can be made that prognosis has been improved.

[0200] The present invention will be further described in more detail by way of the following illustrative examples, which are not intended to limit the scope of the invention.

Example 1

Preparation of Ad34 Fiber 142-3pT

[0201] (1) Preparation of pHMCMV5-miR-142-3pT pHMCMV5 (Mizuguchi H. et al., Human Gene Therapy, 10: 2013-2017, 1999) was treated with NotI/KpnI and the resulting fragment was ligated to a double-stranded oligo, which had been prepared by annealing the following synthetic oligo DNAs, to thereby prepare pHMCMV5-miR-142-3pT (pre).

miR-142-3pT-S1:

(SEQ ID NO: 43 5'-GGCC<u>TCCATAAAGTAGGAAACACTACA</u>CAGC<u>TCCATAAAGTAGGAA</u> <u>ACACTACATTAATTAAGCGGTAC-3'</u>,

each underline represents a miR-142-3p target sequence) miR-142-3pT-AS1:

(SEQ ID NO: 44 5'-CGCTTAATTAATGTAGTGTTTCCTACTTTATGGA GCTG<u>TGTAGTGTT</u> TCCTACTTTATGGA-3'.

each underline represents a miR-142-3p target sequence) [0202] Then, pHMCMV5-miR-142-3pT(pre) was treated with PacI/KpnI and the resulting fragment was ligated to a double-stranded oligo, which had been prepared by annealing the following synthetic oligo DNAs, to thereby obtain pHMCMV5-miR-142-3pT having 4 repeats of a miR-142-3p target sequence. miR-142-3pT-S2:

(SEQ ID NO: 45

5'-<u>TCCATAAAGTAGGAAACACTACA</u>GGAC<u>TCCATAAAGTAGGAAACA</u> <u>CTA</u>CAGTAC-3',

each underline represents a miR-142-3p target sequence)

(SEQ ID NO: 46 5'-<u>TGTAGTGTTTCCTACTTTATGGA</u>GTCC<u>TGTAGTGTTTCCTACTTTAT</u> GGAAT-3',

miR-142-3pT-AS2:

each underline represents a miR-142-3p target sequence) [0203] (2) Preparation of E1 Shuttle Plasmid pHM5-hAIB-miR-142-3pT

[0204] pSh-hAIB (WO2006/036004) was digested with I-CeuI/PmeI and the digested product was electrophoresed on an agarose gel. A band of approximately 4.5 kbp (hAIB cassette) was excised from the gel and treated with GENECLEAN II (Q-Biogene) to purify and collect a DNA fragment. The purified DNA fragment (hAIB cassette) was ligated to a fragment which had been obtained from pHM-CMV5-miR-142-3pT by being digested with NheI, treated with Klenow Fragment and further digested with I-CeuI, thereby obtaining pHM5-hAIB-miR-142-3pT having hTERT promoter, E1A gene. IRES (internal ribosomal entry site) sequence, E1B gene and a miR-142-3pT target sequence.

[0205] (3) Preparation of E3 Shuttle Plasmid pHM13CMV-EGFP-miR-142-3pT

[0206] pEGFP-NI (Clontech) was digested with ApaI and NotI, and the resulting digested product was inserted into the Apal/NotI site of pHMCMV5 to obtain pHMCMVGFP-1. pHMCMVGFP-1 was digested with PmeI/HindIII, and the digested product was electrophoresed on an agarose gel. A band of approximately 750 bp (EGFP) was excised from the gel and treated with GENECLEAN II to purify and collect a DNA fragment. The purified DNA fragment (EGFP) was ligated to a fragment which had been obtained from pBluescriptII KS+ by being digested with HindII/HindII, thereby preparing pBSKS-EGFP. pBSKS-EGFP was digested with ApaI/XbaI, and the digested product was electrophoresed on an agarose gel. A band of approximately 750 bp (EGFP) was excised from the gel and treated with GENECLEAN II to purify and collect a DNA fragment. The purified DNA fragment (EGFP) was ligated to a fragment which had been obtained from pHMCMV5-miR-142-3pT by being digested with ApaI/XbaI, thereby obtaining pHMCMV5-EGFP-miR-142-3pT. pHMCMV5-EGFP-miR-142-3pT was digested with BgIII, and the digested product was electrophoresed on an agarose gel. A band of approximately 2 kbp (CMV-EGFP-miR-142-3pT) was excised from the gel and treated with GENECLEAN II to purify and collect a DNA fragment. The purified DNA fragment (CMV-EGFP-miR-142-3pT) was ligated to a fragment which had been obtained from pHM13 (Mizuguchi et al., Biotechniques, 30: 1112-1116, 2001) by being digested with BamHI and treated with CIP (Alkaline Phosphatase, Calf Intest), thereby obtaining pHM13CMV-EGFP-miR-142-3pT.

[0207] (4) Preparation of pAdHM49-hAIB142-3pT-CG142-3pT

[0208] pAdHM49 (Mizuguchi et al, J. Controlled Release 110; 202-211, 2005) was treated with I-CeuI/PI-SceI and the resulting fragment was ligated to pHM5-hAIB-miR-142-3pT which had also been treated with I-CeuI/PI-SceI, thereby preparing pAdHM49-hAIB142-3pT in which hTERT promoter, E1A gene, IRES sequence, E1B gene and a miR-142-3pT target sequence were integrated into the E1-deficient region of the Ad vector. pAdHM49 is a recombinant adenovirus in which a region covering genes encoding the fiber knob and fiber shaft of the adenovirus type 5 fiber is replaced with a region covering genes encoding the fiber knob and fiber shaft of the adenovirus type 34 fiber, and hence pAdHM49 comprises the nucleotide sequence (SEQ ID NO: 49) of a gene encoding a region consisting of the fiber knob region and the fiber shaft region in the fiber protein of adenovirus type 34. The nucleotide sequence of a gene encoding the pAdHM49 fiber protein (i.e., the fiber knob region and fiber shaft region of the adenovirus type 34 fiber and the fiber tail region of the adenovirus type 5 fiber) is shown in SEQ ID NO: 50. In the nucleotide sequence shown in SEQ ID NO: 50, the nucleotide sequence of a gene encoding the fiber tail region of the adenovirus type 5 fiber is located at nucleotides 1 to 132, the nucleotide sequence of a gene encoding the fiber shaft region of the adenovirus type 34 fiber is located at nucleotides 133 to 402, and the nucleotide sequence of a gene encoding the fiber knob region of the adenovirus type 34 fiber is located at nucleotides 403 to 975. Namely, in the nucleotide sequence shown in SEQ ID NO: 50, the nucleotide sequence of a region derived from the adenovirus type 5 fiber is located at nucleotides 1 to 132, while the nucleotide sequence of a region derived from the adenovirus type 34 fiber is located at nucleotides 133 to 975.

[0209] Then, pAdHM49-hAIB142-3pT was digested with Csp45I and the resulting fragment was ligated to a fragment which had been obtained from pHM13CMV-EGFP-miR-142-3pT by being digested with ClaI, thereby obtaining pAdHM49-hAIB142-3pT-CG142-3pT in which hTERT promoter, E1A gene, IRES sequence, E1B gene and a miR-142-3pT target sequence were integrated into the E1-deficient region of the adenovirus vector and CMV promoter. EGFP and a miR-142-3pT target sequence were integrated into the E3-deficient region of the adenovirus vector, and which further comprised a gene encoding the fiber protein of adenovirus type 34.

[0210] (5) Preparation of Ad34 Fiber 142-3pT(E1,E3)

[0211] pAdHM49-hAIB142-3pT-CGI42-3pT was linearized by being cleaved with a restriction enzyme PacI whose recognition site was present at each end of the adenovirus genome therein, and the linearized product was transfected into 293 cells seeded in a 60 mm culture dish by using Lipofectamine 2000 (Invitrogen). After about 2 weeks, a recombinant adenovirus Ad34 fiber 142-3pT(E1,E3) was obtained (FIG. 1).

[0212] The Ad34 fiber 142-3pT(E1, E3) corresponds to the Adenovirus type 5; TelomeScan F35 strain, which was deposited on Feb. 6, 2014, with the American Type Culture Collection (ATCC®) (10801 University Boulevard, Manassas, Va., 20110), and was provided with the deposit Accession No. PTA-120968. Please note that the depository ATCC® is an International Depository Authority (IDA) under the Budapest Treaty located in the USA.

Example 2

Activity Measurement of Ad34 Fiber 142-3pT(E1,E3)

(1) Cells

[0213] HeLa (derived from human uterine cancer cells) and LN319 (derived from human glioma cells) were used as CAR-positive cells, while LNZ308 (derived from human glioma cells) and K562 (derived from human myelogenous leukemia cells) were used as CAR-negative cells. K562 cells are expressing miR-142-3p. DMEM (10% FCS, supplemented with antibiotics) was used for HeLa, LN319. LNZ308 and LN444 cells, while RPMI-1640 medium (10% FCS, supplemented with antibiotics) was used for K562 cells. These cells were cultured at 37° C. under saturated vapor pressure in the presence of 5% CO₂.

[0214] (2) Activity Measurement of Ad34 Fiber 142-3pT (E1,E3) by Flow Cytometry

[0215] Cells of each line were seeded in a 24-well plate at 5×10^4 cells/500 ul/well and treated with Ad34 fiber 142-3pT (E1,E3) at an MOI of 10. As a control, TelomeScan (i.e., a conditionally replicating adenovirus comprising hTERT promoter, E1A gene, IRES sequence and E1B gene integrated in this order into the E1-deficient site of adenovirus type 5 and comprising CMV promoter and GFP integrated in this order into the E3-deficient site of adenovirus type 5) was used. After culture for 24 hours, the cells were collected and

the number of GFP-positive cells was measured using a flow cytometer MACSQuant (Miltenyi Biotec).

[0216] The results obtained are shown in FIG. 2. In the specification and FIG. 2, "TelomeScan (Ad5 fiber)" repre-sents TelomeScan, while "Ad34 fiber" represents a recombinant adenovirus which comprises hTERT promoter, E1A gene, IRES sequence and $\rm E1\bar{B}$ gene integrated in this order into the E1-deficient site of the adenovirus genome and also comprises CMV promoter and GFP integrated in this order into the E3-deficient site of the adenovirus genome and which comprises a gene encoding a fiber protein derived from adenovirus type 34. Likewise, "Ad34 fiber 142-3pT (E1)" represents a recombinant adenovirus which further comprises a target sequence of miR-142-3p integrated into the E1-deficient region (downstream of the E1B gene) in the above Ad34 fiber, while "Ad34 fiber 142-3pT(E3)" represents a recombinant adenovirus which further comprises a target sequence of miR-142-3p integrated into the E3-deficient region (downstream of the GFP gene) in the above Ad34 fiber. Likewise, "Ad34 fiber 142-3pT(E1,E3)" represents a recombinant adenovirus which further comprises a target sequence of miR-142-3p integrated into each of the E1- and E3-deficient regions (downstream of the E1B gene and downstream of the GFP gene, respectively) in the above Ad34 fiber. Moreover, in FIG. 2 and the subsequent figures. "(containing GFP)" is intended to mean that the GFP gene is inserted into each viral genome.

[0217] As a result of activity measurement, when LNZ308, LN444 and K562, which are CAR-negative cells, were infected with TelomeScan (Ad5 fiber), no GFP-positive cell was detected (FIG. **2**, panels k, p and u). In contrast, when these cells were infected with Ad34 fiber, GFP-positive cells were detected (85.5% positive in LNZ308, 58.4% positive in LN444, and 63.7% positive in K562) (panels 1, q and v).

[0218] This result indicated that the recombinant adenovirus of the present invention having a gene encoding the fiber protein of adenovirus type 34 allowed significant detection of CAR-negative cells.

[0219] Further, in the case of K562 cells which are CARnegative and are expressing miR-142-3p, GFP-positive cells were 63.7% upon infection with Ad34 fiber (panel v), whereas GFP-positive cells were 12.2% upon infection with Ad34 fiber 142-3pT(E1) and 34.8% upon infection with Ad34 fiber 142-3pT(E3), and no GFP-positive cell was detected upon infection with Ad34 fiber 142-3pT(E1,E3) (panels w, x and y). Namely, the detection rate of K562 cells was significantly reduced when using an adenovirus comprising a target sequence of miR-142-3p integrated into either the E1- or E3-deficient region of the adenovirus genome, and K562 cells were no longer detected when using an adenovirus comprising a target sequence of miR-142-3p integrated into each of the E1- and E3-deficient regions.

[0220] This result indicated that the recombinant virus of the present invention comprising a target sequence of miR-142-3p did not detect highly miR-142-3p-expressing cells, such as normal blood cells.

[0221] Moreover, the above result was further investigated. When the case of infecting K562 cells with Ad34 fiber (panel v) was compared with the case of infecting the same cells with Ad34 fiber 142-3pT(E1) (panel w), the rate (%) of GFP-positive cells in the case of the infection with Ad34 fiber 142-3pT(E1) was decreased by 19% (12.2%/63.7%). This result shows an effect based on miR-142-3pT (target

sequence of miR-142-3p) integrated into the E1-deficient region. On the other hand, when the case of infecting K562 cells with Ad34 fiber (panel v) was compared with the case of infecting the same cells with Ad34 fiber 142-3pT(E3) (panel x), the rate (%) of GFP-positive cells in the case of the infection with Ad34 fiber 142-3pT (E3) was decreased by 54% (34.8%/63.7%). This result shows an effect based on miR-142-3pT integrated into the E3-deficient region. These results indicate that, in the case of using an adenovirus wherein miR-142-3pT has been integrated into both E1- and E3-deficient regions in this experiment, if the result obtained shows an additive effect based on two sequences of miR-142-3pT integrated into both E1- and E3-deficient regions, the rate (%) of GFP-positive cells would be expected to be about 10% (19%×54%).

[0222] However, contrary to the above expectation, in this Example, in the case (panel y) of infecting K562 cells with Ad34 fiber 142-3pT (E1, E3) wherein miR-142-3pT had been integrated into both E1- and E3-deficient regions, almost no GFP-positive cells were detected.

[0223] This fact indicates that, in the effects exerted by the present invention, the effect based on two sequences of miR-142-3pT integrated was not an additive effect but a synergistic effect.

[0224] As described herein above, CTC detection techniques are required to detect several to several tens of cells among a billion of blood cells, and therefore desired to have a high accuracy in the detection of CTC. In addition, in order to increase the CTC detection accuracy, the CTC detection techniques are desired to bring the number of cells detected as false positive boundlessly close to zero. In general, 1 µL of blood is known to contain thousands of white blood cells, and these white blood cells are desired not to be detected as false positive.

[0225] In the CTC detection techniques, even the presence of several false positive cells has a great influence on the determination of whether a subject has CTC.

[0226] As described above, in this Example, contrary to the expectation, in the case of infecting K562 cells with Ad34 fiber 142-3pT (E1, E3) wherein miR-142-3pT had been integrated into both E1- and E3-deficient regions, almost no GFP-positive cells were detected. This result shows unexpectedly remarkable effect according to the present invention.

Example 3

Detection of Cancer Cells in Blood Samples Using Ad34 Fiber 142-3pT(E1,E3)

[0227] 5×10^4 H1299 cells (CAR-positive) were suspended in 5 mL blood and erythrocytes were lysed to collect PBMCs. To these PBMCs, a virus was added in an amount of 1×10^9 , 1×10^{10} or 1×10^{11} VPs (virus particles) and infected at 37° C. for 24 hours while rotating with a rotator. The cells were collected and immunostained with anti-CD45 antibody, and GFP-positive cells were observed under a fluorescence microscope. CD45 is known to be a surface antigen of blood cell lineage cells except for erythrocytes and platelets. "GFP Positive Cancer cells (%)" found in the vertical axis of FIGS. **3** and **4** represents the "number of GFP-positive and CD45-negative cells (%) among GFPpositive cells."

[0228] As a result, many false positive cells (GFP-positive and CD45-positive cells) were observed upon infection with

that cancer cells were able to be specifically detected. **[0229]** Moreover, as a result of quantitative analysis on the detection specificity of H1299 cells, many false positive cells were detected in the case of TelomeScan (Ad5 fiber) upon virus infection at $1 \times 10^{\circ}$ VPs, whereas the detection specificity was 90% or higher and some samples showed 100% detection specificity in the case of Ad34 fiber 142-3pT(E1,E3) even when the amount of virus infection was increased (FIG. 3). Likewise, quantitative analysis was also performed on A549 cells (CAR-positive cells) in the same manner, indicating that the detection specificity was 100% upon virus infection at $1 \times 10^{\circ}$ VPs (FIG. 4). These results indicated that the recombinant virus of the present invention allowed specific detection of cancer cells contained in the PBMC fraction.

[0230] In view of the foregoing, the detection reagent and diagnostic reagent of the present invention were demonstrated to allow detection of highly malignant CAR-negative cancer cells and, on the other hand, to ensure no false positive detection of highly miR-142-3p-expressing normal blood cells (e.g., leukocytes), etc.; and hence they were shown to be very effective for detection of circulating tumor cells (CTCs) in blood.

Example 4

Activity Measurement of Ad34 Fiber 142-3pT(E1,E3) in Various Human Cancer Cell Lines

(1) Cells

[0231] The cancer cells used in this example were human non-small cell lung cancer-derived H1299 cells, human lung cancer-derived A549 cells, human breast cancer-derived MCF7 cells, human breast cancer-derived MDA-MB-231 cells, human bladder cancer-derived KK47 cells, human gastric cancer-derived MKN45 cells, human colorectal cancer-derived SW620, human liver cancer-derived Huh7 cells, human pancreatic cancer-derived Panel cells, human glioma-derived LN319 cells, human bladder cancer-derived T24 cells, human glioma-derived LNZ308 cells, and human glioma-derived LN444 cells.

(2) Activity Measurement of Ad34 Fiber 142-3pT(E1,E3) by Flow Cytometry

[0232] 5×10^4 cancer cells of each line were suspended in 500 µl medium, to which 100 µl of a conditionally replicating Ad suspension prepared at 5×10^5 or 5×10^6 pfu/ml was then added. The resulting mixture of the cells and the conditionally replicating Ad was seeded in a 24-well plate and cultured at 37° C. for 24 hours. The cells were collected and centrifuged at 1500 rpm for 5 minutes. After removal of the medium, the cells were suspended in 300 µl of 2% FCS-containing PBS and measured for GFP-positive rate using a flow cytometer (MACS Quant Analyzer. Miltenyi Biotec). The data obtained were analyzed by FCS multicolor data analysis software (Flowjo).

[0233] As a result, Ad34 fiber 142-3pT(E1,E3) was found to efficiently infect almost all cancer cells, and 60% or more of the cancer cells were GFP-positive. Particularly in the case of CAR-negative cells (T24, LNZ308, LN444), their GFP-positive rate was significantly improved when compared to conventionally used TelomeScan (FIG. **5**).

[0234] This result indicated that the recombinant virus of the present invention allowed efficient detection of not only CAR-positive cells but also CAR-negative cells.

Example 5

Detection of Cancer Cells Having Undergone Epithelial-Mesenchymal Transition (EMT)

[0235] Human pancreatic cancer PancI cells were cultured for 6 days in the presence of 10 ng/mL recombinant TGF- β 1 to thereby induce epithelial-mesenchymal transition (EMT). After induction of EMT, relative expression of mRNAs encoding E-cadherin, EpCAM, hTERT, N-cadherin, Slug and Snail was measured by real-time RT-PCR. In addition, CAR and CD46 expression in the Panc I cells was analyzed by flow cytometry. The virus of the present invention was infected into the cells in the same manner as shown in Example 4.

[0236] As a result, upon culture in a TGF-3-containing medium, the expression of EMT marker genes Slug, Snail and N-cadherin were increased, while the expression of epithelial markers E-cadherin and EpCAM was reduced, thus indicating that EMT has been induced (FIG. **6**A). Moreover, upon EMT induction, CAR expression was reduced whereas CD46 expression was not reduced at all (FIG. **6**B). Further, when conventionally used TelomeScan was used for PancI cells having undergone EMT only about 35% of these cells were GFP-positive, whereas almost 90% or more of the cells were GFP-positive in the case of Ad34 fiber 142-3pT(E1.E3) (FIG. **6**C).

[0237] These results indicated that the recombinant virus of the present invention allowed highly sensitive detection of cancer cells having undergone epithelial-mesenchymal transition (EMT).

Example 6

Detection of Cancer Stem Cells

[0238] MCF7 cells and MCF7-ADR cells (cancer cells resistant to the anticancer agent adriamycin) were each seeded in a 96-well plate at 1×10^3 cells/well, and on the following day, adriamycin was added thereto at 0.2, 1, 5, 25 or 125 µg/mL. After 24 hours from the addition of adriamycin, an alamarBlue® cell viability reagent was used to measure cell viability (value: mean±S.D. (n=6)).

[0239] MCF7 cells and MCF7-ADR cells were also analyzed by flow cytometry for expression of CAR, CD46, P-glycoprotein (MDR), CD24 and CD44. 5×10⁵ MCF7-ADR cells were suspended in 100 µl of 2% FCS-containing PBS, and FITC-labeled mouse anti-human CD24 antibody and PE-labeled mouse anti-human CD44 antibody were each added thereto in a volume of 1 µl, followed by reaction for 1 hour on ice under light-shielded conditions. After washing with 4 ml of 2% FCS-containing PBS, the suspension was centrifuged at 1500 rpm for 5 minutes to remove the supernatant by aspiration. The cells were suspended again in 100 µl of 2% FCS-containing PBS and subjected to a cell sorter (FACS Aria II cell sorter; BD Biosciences) to sort a CD24-negative and CD44-positive cell fraction. The data obtained were analyzed by FCS multi-color data analysis software (Flowjo). In human breast cancer cells, a fraction having the characteristics of CD24-negative and CD44-positive cells is known to be cancer stem cells (Al-Hajj M., et al., Proc Natl Acad Sci USA, 100; 3983-3988, (2003)). The virus of the present invention was infected into the cells in the same manner as shown in Example 4.

[0240] As a result, MCF7-ADR cells showed significantly high viability even in the presence of adriamycin when compared to MCF7 cells and hence were found to have drug resistance ability (FIG. 7A). MCF7-ADR cells were also found to highly express CAR and CD46 as in the case of MCF7 cells. Moreover, MCF7-ADR cells were also found to highly express MDR, which is a membrane protein responsible for drug elimination ability (FIG. 7B). Further, when Ad34 fiber 142-3pT(E1,E3) was infected into CD24-negative and CD44-positive cells among MCF-ADR cells, 80% or more of the cells were GFP-positive. In contrast, about 70% of the cells were GFP-positive in the case of conventionally used TelomeScan (FIG. 7C).

[0241] These results indicated that the recombinant virus of the present invention allowed detection of drug-resistant cancer cells. Moreover, it was also indicated that the recombinant virus of the present invention allowed detection of cancer stem cells.

Example 7

Detection of Cancer Cells in Blood Samples Using Ad34 Fiber 142-3pT(E1,E3)

[0242] H1299 cells or T24 cells were infected with a lentivirus vector expressing a red fluorescent protein (monomeric red fluorescent protein; RFP) at an MOI of 100 and cultured. To obtain cell clones, the cells were then seeded in a 96-well plate at 0.1 cells/well and cultured until colonies were formed. RFP-expressing cells were selected under a fluorescence microscope and subjected to extended culture, followed by flow cytometry to measure the intensity of RFP expression. Then, cells showing high intensity of RFP expression were identified as RFP-expressing cells.

[0243] Human peripheral blood mononuclear cells (hPB-MCs) obtained from 1.0 mL of human peripheral blood were suspended in 800 μ L of RPMI-1640 medium (10% FCS, supplemented with antibiotics). To the hPBMC suspension, cancer cells prepared at 1.0×10^5 or 5.0×10^{-5} cells/mL were added in a volume of 100 μ L (in FIG. **8**, "spiked cancer cells" represents the number of cancer cells added to the hPBMC suspension). Further, a conditionally replicating Ad suspension prepared at 2×10^8 pfu/mL was added in a volume of 100 μ L to give a total volume of 1 mL, followed by culture at 37° C. for 24 hours while slowly rotating with a rotator.

[0244] The cell suspension cultured for 24 hours after virus infection was centrifuged at $300 \times g$ for 5 minutes to remove the supernatant. A cell fixative was added in a volume of 200 µL and reacted at 4° C. under light-shielded conditions for 15 minutes. After addition of 1 mL PBS, the suspension was centrifuged at $300 \times g$ for 5 minutes to remove the supernatant. The cells were suspended in 2% FCS-containing PBS and measured for GFP-positive rate using a flow cytometer (MACS Quant Analyzer: Miltenyi Biotec). The data obtained were analyzed by FCS multicolor data analysis software (Flowjo).

[0245] In this study, cancer cells labeled with RFP (red fluorescent protein) were mixed into hPBMCs to examine whether the cancer cells in hPBMCs were able to be detected. As a result, in the case of CAR-positive cancer cells (H1299), TelomeScan (Ad5 fiber) and Ad34 fiber 142-3pT(E1,E3) were both able to detect 80% or more of the

cancer cells. On the other hand, in the case of CAR-negative cancer cells (T24), TelomeScan (Ad5 fiber) achieved very low detection efficiency (about 10% of the cells were detected as being GFP-positive), whereas Ad34 fiber 142-3pT(E1,E3) was able to detect 80% or more of the cancer cells (FIG. 8).

[0246] This result indicated that the recombinant adenovirus of the present invention allowed efficient detection of not only CAR-positive cancer cells but also CAR-negative cancer cells.

Example 8

Full Sequencing of Ad34 Fiber 142-3pT (E1,E3) Genome

[0247] In the present example, a full sequencing of Ad34 Fiber 142-3pT (E1,E3) genome was acquired by constructing a shotgun library using the Nextera XT DNA Library Preparation Kit and the Nextera XT Index kit (illumina, Inc.), followed by sequencing the clones using MiSeq System (illumina, Inc.) to provide 2,412,121 base pairs sequencing data.

Method

(1) Test Samples

[0248] In this Example, adenoviral genome DNA was prepared from the test article using a Qiagen viral DNA extraction method and final concentration was 8.1 ng/ μ L and the total amount was 10 μ L.

(2) Shotgun Library Construction and DNA Sequencing

(2-1) Tagment Genomic DNA and Amplify Libraries

[0249] One ng of purified Ad34 Fiber 142-3pT (E1,E3) was used for generating the library by applying the Nextera XT DNA Library Preparation Kit according to the manufacturer's instructions with the exception of using the primers of the Nextera XT Index kit. In brief, DNA sample was fragmented and tagged with adapter sequences by Nextera XT transposase and tagged with Index sequence.

(2-2) Clean Up Libraries

[0250] The resulting fragments were purified by using Agencourt AMPure XP beads (Beckman Coulter), separated by agarose gel electrophoresis and extracted from the gel in the range of 350-600 bases. The fragments were size-selected by a High Sensitivity DNA Chip on the Bioanalyzer 2100 (Agilent Technologies, Inc.) and quantified by Qubit 3.0 Fluorometer (Thermo Fisher Scientific, Inc.) before loading on the sequencing chip. The final concentration of the resulted library was 1.3 ng/ μ L and total amount was 10 μ L.

(2-3) Sequencing and Assembly

[0251] The resulted clean up library was denatured by 0.2N NaOH for 5 min. After denaturation, it was diluted into 12 pM by hybridization buffer before loading on the MiSeq chip. After 300-bp paired-end read sequencing on the MiSeq platform (Illumina), the data were base called and reads with the same barcode were collected and assigned to a sample on the sequencing instrument. The uncallable ends of the

MiSeq reads (B in input file) were automatically trimmed by the Sickle: sliding-window, adaptive, quality-based trimming tool for FastQ files (Version 1.33) software (Joshi N A, Fass J N (2011)) and Fastx tool kit (Ver 0.0.13). De novo assembly was performed as follows: the failed reads (Y in header information for the quality score) were removed by using Bayes hammer implemented, the resulted sequences were assembled at parameter k=21, 33, 55, 77, 99, 127 and repaired mismatches by SPAdes Genome Assembler (Ver 3.6.0) (J. Comp. Biol. 19(5) (2012): 455-77.). The assemble data was aligned to reference sequence by Bowtie2 (Ver 2.2.4).

Result

[0252] The assembly resulted in a contig length of 35,324 bp (SEQ ID NO: 51), in the range of 20,000-2000,000 reads. The sequences of genes or regulatory elements were aligned for the resulting full sequence of Ad34 Fiber 142-3pT (E1,E3).

[0253] The location thereof at SEQ ID NO: 51 as follows:

[0254] The human telomerase reverse transcriptase promoter starts at position 554 and ends at position 1008, therefore consisting of 455 nucleotides.

The E1A gene starts at position 1041 and ends at position 1939, therefore consisting of 899 nucleotides.

[0255] The E1B gene starts at position 2616 and ends at position 4438, therefore consisting of 1823 nucleotides.

[0256] The IRES sequence starts at position 1961 and ends at position 2581, therefore consisting of 621 nucleotides.

[0257] The first microRNA sequence (SEQ ID NO: 52) starts at position 4508 and ends at position 4612, therefore consisting of 105 nucleotides.

[0258] The second microRNA sequence (SEQ ID NO: 52) starts at position 30715 and ends at position 30819, therefore consisting of 105 nucleotides.

[0259] The cytomegalovirus (CMV) promoter starts at position 29,381 and ends at position 29,966, therefore consisting of 586 nucleotides.

[0260] The GFP gene starts at position 29.988 and ends at position 30,704, therefore consisting of 717 nucleotides.

[0261] The replication cassette (SEQ ID NO: 53) starts at position 554 and ends at position 4612, therefore consisting of 4059 nucleotides.

[0262] The labeling cassette (SEQ ID NO: 54) starts at position 29381 and ends at position 30819, therefore consisting of 1439 nucleotides.

[0263] The gene encoding a CD46-binding fiber protein (SEQ ID NO: 50) starts at position 31192 and ends at position 32166, therefore consisting of 975 nucleotides.

[0264] The sequence comprising four units of a target sequence of miR-142-3p was determined as follow:

each underline represents a single unit of a target sequence of miR-142-3p).

Example 9

Detection of Cancer Cells in Blood Samples Using Ad34 Fiber 142-3pT(E1,E3)

(1) Cells

[0265] H661 (derived from human lung cancer cells) was used as a CAR-positive cell without expression of miR-142-3p.

(2) Detection of Cancer Cells Infected with the Ad34 Fiber 142-3pT(E1,E3) Sequenced at Example 8 by Fluorescence Microscope Observation

[0266] One hundred of H661 cells were suspended in 7.5 mL blood and erythrocytes were lysed to collect PBMCs. To these PBMCs, a virus was added in an amount of 1×10^{9} VPs (virus particles) for Ad34 fiber 142-3pT(E1,E3) or 3×10^{6} for TelomeScan (Ad5 fiber) and infected at 37° C. for 24 hours while rotating with a rotator. The cells were collected and immunostained with anti-CD45 antibody, and GFP-positive cells were observed under a fluorescence microscope. CD45 is known to be a surface antigen of blood cell lineage cells except for erythrocytes and platelets. "GFP Positive Cancer cells (%)" found in the vertical axis of FIG. **9** represents the "number of GFP-positive and CD45-negative cells (%) among GFP-positive cells."

[0267] As a result, many false positive cells (GFP-positive and CD45-positive cells) were observed upon infection with TelomeScan (Ad5 fiber), whereas false positive cells were not observed upon infection with Ad34 fiber 142-3pT(E1, E3), so that cancer cells were able to be specifically detected. **[0268]** Moreover, as a result of quantitative analysis on the detection specificity of H661 cells, many false positive cells were detected in the case of TelomeScan (Ad5 fiber) upon virus infection at 3×10^6 VPs, whereas the detection specificity was showed 100% detection specificity in the case of Ad34 fiber 142-3pT(E1,E3) even when the amount of virus infection was increased (1×10^9 VPs) (FIG. **9**). These results indicated that the recombinant virus of the present invention allowed specific detection of cancer cells contained in the PBMC fraction.

Example 10

Activity Measurement of Ad34 Fiber 142-3pT(E1,E3)

(1) Cells

[0269] HeLa (derived from human uterine cancer cells) was used as a CAR-positive cell without expression of miR-142-3p, while K562 (derived from human myelogenous leukemia cells) was used as a CAR-negative cell expressing miR-142-3p. CD293 medium without phenol containing DMEM (10% FCS, supplemented with antibiotics) was used for HeLa cell, while RPMI-1640 medium (10% FCS, supplemented with antibiotics) was used for K562 cell. These cells were cultured at 37° C. under saturated vapor pressure in the presence of 5% CO_2 .

(2) Activity Measurement of Ad34 Fiber 142-3pT(E1,E3) Sequenced at Example 8 by Multi-Plate Reader

[0270] Cells of each line were seeded in a 12-well plate at 8×10^5 cells/well and treated with Ad34 fiber 142-3pT(E1, E3) at an MOI of 400. As a control, Ad34 fiber was used at an MOI of 150, which can produce the same intensity of GFP fluorescence using Ad34 fiber 142-3pT(E1,E3) at an

⁽SEQ ID NO: 52 5'-tccataaagtaggaaacactacacagc<u>tccataaagtaggaaacact</u> acattaat<u>tccataaagtaggaaacactacaggactccataaagtaggaa</u> acactaca-3'

MOI of 400 in HeLa cells. After culture for 24 hours, the cells were collected and lysed by GLO lysis buffer (Promega Corporation).

[0271] The fluorescence intensity of the lysate was measured using a multi-plate reader, PowerScan HT (DS Pharma Biomedical Co., Ltd.).

[0272] The results obtained are shown in FIG. **10**. In FIG. **10**, the fluorescence intensity of each cell infected with Ad34 fiber 142-3pT(E1,E3) was shown as a relative value against those of the cell infected with Ad34 fiber, assuming the latter was 100%.

[0273] As a result of activity measurement, when K1562 (miR-142-3p-negative cells) were infected with Ad34 fiber 142-3pT(E1,E3), the detected intensity of GFP fluorescence was very little (0.45%) as compared to those of Ad34 fiber (FIG. **10**).

Nov. 17, 2016

[0274] This result indicated that the recombinant virus of the present invention comprising a target sequence of miR-142-3p did not detect highly miR-142-3p-expressing cells, such as normal blood cells.

INDUSTRIAL APPLICABILITY

[0275] Reagents comprising the recombinant adenovirus of the present invention enable simple and highly sensitive detection of CAR-negative cancer cells without detection of normal blood cells (e.g., leukocytes).

SEQUENCE LISTING FREE TEXT

 [0276]
 SEQ ID NO: 4: synthetic DNA

 [0277]
 SEQ ID NOs: 5 to 26: synthetic RNA

 [0278]
 SEQ ID NOs: 27 to 28: synthetic DNA

 [0279]
 SEQ ID NOs: 43 to 46: synthetic DNA

 [0280]
 SEQ ID NOs: 50 to 55: synthetic DNA

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 55
<210> SEO ID NO 1
<211> LENGTH: 455
<212> TYPE: DNA
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 1
tggcccctcc ctcgggttac cccacagcct aggccgattc gacctctctc cgctggggcc
                                                                       60
ctcgctggcg tccctgcacc ctgggagcgc gagcggcgcg cgggcgggga agcgcgggcc
                                                                      120
agacccccgg gtccgcccgg agcagctgcg ctgtcggggc caggccgggc tcccagtgga
                                                                      180
ttcgcgggca cagacgccca ggaccgcgct ccccacgtgg cggagggact ggggacccgg
                                                                      240
gcaccogtoc tgcccottoa cottocagot cogootooto ogogoggaco cogocoogto
                                                                      300
ccgacccctc ccgggtcccc ggcccagccc cctccgggcc ctcccagccc ctccccttcc
                                                                      360
tttccgcggc cccgccctct cctcgcggcg cgagtttcag gcagcgctgc gtcctgctgc
                                                                      420
gcacgtggga agccctggcc ccggccaccc ccgcg
                                                                      455
<210> SEQ ID NO 2
<211> LENGTH: 899
<212> TYPE: DNA
<213> ORGANISM: Adenovirus
<400> SEQUENCE: 2
acaccgggac tgaaaatgag acatattatc tgccacggag gtgttattac cgaagaaatg
                                                                       60
                                                                      120
geogecagte ttttggacea getgategaa gaggtaetgg etgataatet tecaeeteet
agccattttg aaccacctac ccttcacgaa ctgtatgatt tagacgtgac ggcccccgaa
                                                                      180
gateceaacg aggaggeggt ttegeagatt ttteeegaet etgtaatgtt ggeggtgeag
                                                                      240
gaagggattg acttactcac ttttccgccg gcgcccggtt ctccggagcc gcctcacctt
                                                                      300
tecceggeage ecgageagee ggageagaga geettgggte eggtteetat geeaaacett
                                                                      360
gtaccggagg tgatcgatct tacctgccac gaggctggct ttccacccag tgacgacgag
                                                                      420
gatgaagagg gtgaggagtt tgtgttagat tatgtggagc accccgggca cggttgcagg
                                                                      480
tettgteatt ateaceggag gaataegggg gaeceagata ttatgtgtte getttgetat
                                                                      540
atgaggacct gtggcatgtt tgtctacagt cctgtgtctg aacctgagcc tgagcccgag
                                                                      600
```

	-continued	
ccagaaccgg agcctgcaag acctacccgc cg	teetaaaa tggegeetge tateetgaga	660
cgcccgacat cacctgtgtc tagagaatgc aa	tagtagta cggatagctg tgactccggt	720
ccttctaaca cacctcctga gatacacccg gt	ggtcccgc tgtgccccat taaaccagtt	780
geegtgagag ttggtgggeg tegeeagget gt	ggaatgta tcgaggactt gcttaacgag	840
cctgggcaac ctttggactt gagctgtaaa cg	ccccaggc cataaggtgt aaacctgtg	899
<210> SEQ ID NO 3 <211> LENGTH: 1823 <212> TYPE: DNA <213> ORGANISM: Adenovirus		
<400> SEQUENCE: 3		
ctgacctcat ggaggcttgg gagtgtttgg aa	gatttttc tgctgtgcgt aacttgctgg	60
aacagagete taacagtaee tettggtttt gg	aggtttet gtggggetea teecaggeaa	120
agttagtctg cagaattaag gaggattaca ag	tgggaatt tgaagagctt ttgaaatcct	180
gtggtgagct gtttgattct ttgaatctgg gt	caccaggc gcttttccaa gagaaggtca	240
tcaagacttt ggatttttcc acaccggggc gc	gctgcggc tgctgttgct tttttgagtt	300
ttataaagga taaatggagc gaagaaaccc at	ctgagcgg ggggtacctg ctggattttc	360
tggccatgca tctgtggaga gcggttgtga ga	cacaagaa tcgcctgcta ctgttgtctt	420
ccgtccgccc ggcgataata ccgacggagg ag	cagcagca gcagcaggag gaagccaggc	480
ggcggcggca ggagcagagc ccatggaacc cg	agageegg eetggaeeet egggaatgaa	540
tgttgtacag gtggctgaac tgtatccaga ac	tgagacgc attttgacaa ttacagagga	600
tgggcagggg ctaaaggggg taaagaggga gc	ggggggct tgtgaggcta cagaggaggc	660
taggaatcta gcttttagct taatgaccag ac	accgtcct gagtgtatta cttttcaaca	720
gatcaaggat aattgcgcta atgagcttga tc	tgctggcg cagaagtatt ccatagagca	780
getgaeeact taetggetge ageeagggga tg	attttgag gaggctatta gggtatatgc	840
aaaggtggca cttaggccag attgcaagta ca	agatcagc aaacttgtaa atatcaggaa	900
ttgttgctac atttctggga acggggccga gg	tggagata gatacggagg atagggtggc	960
ctttagatgt agcatgataa atatgtggcc gg	gggtgctt ggcatggacg gggtggttat :	1020
tatgaatgta aggtttactg gccccaattt ta	gcggtacg gttttcctgg ccaataccaa	1080
ccttatccta cacggtgtaa gcttctatgg gt	ttaacaat acctgtgtgg aagcctggac :	1140
cgatgtaagg gttcgggggct gtgcctttta ct	gctgctgg aaggggggtgg tgtgtcgccc	1200
caaaagcagg gcttcaatta agaaatgcct ct	ttgaaagg tgtaccttgg gtatcctgtc 🛛	1260
tgagggtaac teeagggtge geeacaatgt gg	cctccgac tgtggttgct tcatgctagt	1320
gaaaagcgtg gctgtgatta agcataacat gg	tatgtggc aactgcgagg acagggcctc	1380
tcagatgctg acctgctcgg acggcaactg tc	acctgctg aagaccattc acgtagccag	1440
ccactctcgc aaggcctggc cagtgtttga gc	ataacata ctgacccgct gttccttgca 🛛	1500
tttgggtaac aggaggggggg tgttcctacc tt	accaatgc aatttgagtc acactaagat :	1560
attgcttgag cccgagagca tgtccaaggt ga	acctgaac ggggtgtttg acatgaccat	1620
gaagatctgg aaggtgctga ggtacgatga ga		1680
tggcggtaaa catattagga accagcctgt ga		1740
- Jo- Joanna Cacacongga accagoorge ga		

-continued

-concinued	
cgatcacttg gtgctggcct gcacccgcgc tgagtttggc tctagcgatg aagatacaga	1800
ttgaggtact gaaatgtgtg ggc	1823
<210> SEQ ID NO 4 <211> LENGTH: 605 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA	
<400> SEQUENCE: 4	
tgcatctagg gcggccaatt ccgcccctct ccctcccccc cccctaacgt tactggccga	60
ageogettgg aataaggoog gtgtgogttt gtotatatgt gattttocac catattgoog	120
tettttggea atgtgaggge eeggaaacet ggeeetgtet tettgaegag eatteetagg	180
ggtettteee etetegeeaa aggaatgeaa ggtetgttga atgtegtgaa ggaageagtt	240
cctctggaag cttcttgaag acaaacaacg tctgtagcga ccctttgcag gcagcggaac	300
cccccacctg gcgacaggtg cctctgcggc caaaagccac gtgtataaga tacacctgca	360
aaggeggeae aaceecagtg ceaegttgtg agttggatag ttgtggaaag agteaaatgg	420
ctctcctcaa gcgtattcaa caaggggctg aaggatgccc agaaggtacc ccattgtatg	480
ggatetgate tggggeeteg gtgeacatge tttacatgtg tttagtegag gttaaaaaaa	540
cgtctaggcc ccccgaacca cggggacgtg gttttccttt gaaaaacacg atgataagct	600
tgcca	605
<210> SEQ ID NO 5 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 5	
uguaguguuu ccuacuuuau gga	23
<210> SEQ ID NO 6 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 6	
cauaaaguag aaagcacuac u	21
<210> SEQ ID NO 7 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 7	
uagcagcaca uaaugguuug ug	22
<210> SEQ ID NO 8 <211> LENGTH: 22 <212> TYPE: RNA	

<212> TYPE: RNA

	-continued
<213> ORGANISM: Artificial <220> FEATURE:	
<223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 8	
caggccauau ugugcugccu ca	22
<210> SEQ ID NO 9 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 9	
uagcagcacg uaaauauugg cg	22
<pre><210> SEQ ID NO 10 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA</pre>	
<400> SEQUENCE: 10	
ccaguauuaa cugugcugcu ga	22
<210> SEQ ID NO 11 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA <400> SEQUENCE: 11	
uagcuuauca gacugauguu ga	22
<pre><210> SEQ ID NO 12 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA <400> SEQUENCE: 12</pre>	
caacaccagu cgaugggcug u	21
<pre><210> SEQ ID NO 13 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA</pre>	
<400> SEQUENCE: 13	
ucguaccgug aguaauaaug cg	22
<210> SEQ ID NO 14 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA	

	00110111404
<400> SEQUENCE: 14	
cauuauuacu uuugguacgc g	21
<210> SEQ ID NO 15	
<211> LENGTH: 23	
<212> TYPE: RNA <213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 15	
aacauucaac gcugucggug agu	23
ALL CEO ID NO. 1C	
<210> SEQ ID NO 16 <211> LENGTH: 22	
<212> TYPE: RNA	
<213> ORGANISM: Artificial	
<220> FEATURE: <223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 16	
uqucaquuuq ucaaauaccc ca	22
J J	
<210> SEQ ID NO 17	
<211> LENGTH: 22	
<212> TYPE: RNA <213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 17	
cguguauuug acaagcugag uu	22
<210> SEQ ID NO 18	
<211> LENGTH: 22	
<212> TYPE: RNA <213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 18	
gaggguuggg uggaggcucu cc	22
<210> SEQ ID NO 19	
<211> LENGTH: 21 <212> TYPE: RNA	
<213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 19	
agggcccccc cucaauccug u	21
<210> SEQ ID NO 20	
<211> LENGTH: 24	
<212> TYPE: RNA <213> ORGANISM: Artificial	
<220> FEATURE:	
<223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 20	
ucccugagac ccuuuaaccu guga	24

<pre><210> SEQ ID NO 21 <211> LENGTH: 21 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA</pre>	
<400> SEQUENCE: 21	
ugagaugaag cacuguagcu c	21
<210> SEQ ID NO 22 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 22	
ggugcagugc ugcaucucug gu	22
<210> SEQ ID NO 23 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 23	
guccaguuuu cccaggaauc ccu	23
<pre><210> SEQ ID NO 24 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA</pre>	
<400> SEQUENCE: 24	
ggauuccugg aaauacuguu cu	22
<210> SEQ ID NO 25 <211> LENGTH: 23 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 25	
cccaguguuc agacuaccug uuc	23
<210> SEQ ID NO 26 <211> LENGTH: 22 <212> TYPE: RNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic RNA	
<400> SEQUENCE: 26	
ugagguagua gguuguauag uu	22
<210> SEQ ID NO 27 <211> LENGTH: 69 <212> TYPE: DNA	

<pre><213> ORGANISM: Artificial <220> FEATURE: <222> OTHER INFORMATION: sumthatic DNA</pre>	
<223> OTHER INFORMATION: synthetic DNA <400> SEQUENCE: 27	
geggeeteea taaagtagga aacactacac ageteeataa agtaggaaac actacattat	60
aageggtae	69
<210> SEQ ID NO 28 <211> LENGTH: 113 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA	
<400> SEQUENCE: 28	
ggcctccata aagtaggaaa cactacacag ctccataaag taggaaacac tacattaatt	60
ccataaagta ggaaacacta caccactcca taaagtagga aacactacag tac	113
<210> SEQ ID NO 29 <211> LENGTH: 1307 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 29	
accgtccagg gagcaggtag ctgctgggct ccgggggacac tttgcgttcg ggctgggagc	60
gtgettteea egaeggtgae aegetteeet ggattggeag eeagaetgee tteegggtea	120
ctgccatgga ggagccgcag tcagatecta gegtegagee eeetetgagt caggaaacat	180
tttcagacct atggaaacta cttcctgaaa acaacgttct gtcccccttg ccgtcccaag	240
caatggatga tttgatgctg tccccggacg atattgaaca atggttcact gaagacccag	300
gtccagatga ageteecaga atgeeagagg etgeteeeeg egtggeeeet geaceagega	360
ctectacace ggeggeeeet geaceageee ecteetggee eetgteatet tetgteeett	420
cccagaaaac ctaccagggc agctacggtt tccgtctggg cttcttgcat tctgggacag	480
ccaagtetgt gaettgeaeg taeteeetg eeeteaaeaa gatgttttge caaetggeea	540
agaeetgeee tgtgeagetg tgggttgatt ceacaeeeee geeeggeaee egegteegeg	600
ccatggccat ctacaagcag tcacagcaca tgacggaggt tgtgaggcgc tgcccccacc	660
atgagegetg etcagatage gatggtetgg ecceteetca geatettate egagtggaag	720
gaaatttgcg tgtggagtat ttggatgaca gaaacacttt tcgacatagt gtggtggtgc	780
cctatgagcc gcctgaggtt ggctctgact gtaccaccat ccactacaac tacatgtgta	840
acagtteetg catgggegge atgaacegga ggeecateet caccateate acaetggaag	900
actccagtgg taatctactg ggacggaaca gctttgaggt gcgtgtttgt gcctgtcctg	960
ggagagaccg gcgcacagag gaagagaatc tccgcaagaa aggggagcct caccacgagc	1020
tgcccccagg gagcactaag cgagcactgc ccaacaacac cagcteetet eeecagecaa	1080
agaagaaacc actggatgga gaatatttca cccttcagat ccgtgggcgt gagcgcttcg	1140
agatgttccg agagctgaat gaggccttgg aactcaagga tgcccaggct gggaaggagc	1200
caggggggag cagggeteae tecageeace tgaagteeaa aaagggteag tetaeeteee	1260
gccataaaaa actcatgttc aagacagaag ggcctgactc agactga	1307

<210> SEQ ID NO 30 <211> LENGTH: 837 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens		
<400> SEQUENCE: 30			
gaggactccg cgacggtccg	caccctgcgg ccagagcgg	: tttgageteg getgetteeg	60
cgctaggcgc tttttcccag	aagcaatcca ggcgcgccc	g ctggttcttg agcgccagga	120
aaagcccgga gctaacgacc	ggeegetegg caetgeaeg	g ggccccaagc cgcagaagaa	180
ggacgacggg agggtaatga	agetgageee aggteteeta	a ggaaggagag agtgcgccgg	240
agcagcgtgg gaaagaaggg	aagagtgtcg ttaagttta	c ggccaacggt ggattatccg	300
ggccgctgcg cgtctggggg	ctgcggaatg cgcgaggaga	a acaagggcat gcccagtggg	360
ggcggcagcg atgagggtct	ggccacgccg gcgcgggga	c tagtggagaa ggtgcgacac	420
teetgggaag eeggegegga	tcccaacgga gtcaaccgt	tcgggaggcg cgcgatccag	480
gtcatgatga tgggcagcgc	ccgcgtggcg gagctgctg	c tgctccacgg cgcggagccc	540
aactgegeag accetgeeac	tctcacccga ccggtgcate	g atgetgeeeg ggagggette	600
ctggacacgc tggtggtgct	gcaccgggcc ggggcgcgg	c tggacgtgcg cgatgcctgg	660
ggtcgtctgc ccgtggactt	ggccgaggag cggggccac	c gcgacgttgc agggtacctg	720
cgcacagcca cggggggactg	acgccaggtt ccccagccg	c ccacaacgac tttatttct	780
tacccaattt cccaccccca	cccacctaat tcgatgaag	y ctgccaacgg ggagcgg	837
<210> SEQ ID NO 31 <211> LENGTH: 987 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens		
<400> SEQUENCE: 31			
cggagaggggg gagaacagac	aacgggcggc ggggagcag	c atggageegg eggeggggag	60
cagcatggag ccttcggctg	actggctggc cacggccgc	g geeeggggte gggtagagga	120
ggtgcgggcg ctgctggagg	cgggggggggt gcccaacgca	a ccgaatagtt acggtcggag	180
gccgatccag gtcatgatga	tgggcagcgc ccgagtggc	g gagetgetge tgeteeaegg	240
cgcggagccc aactgcgccg	accccgccac tctcacccg	a cccgtgcacg acgctgcccg	300
ggagggcttc ctggacacgc	tggtggtgct gcaccgggc	c ggggcgcgggc tggacgtgcg	360
cgatgcctgg ggccgtctgc	ccgtggacct ggctgaggag	g ctgggccatc gcgatgtcgc	420
acggtacctg cgcgcggctg	cggggggggcac cagaggcag	aaccatgccc gcatagatgc	480
cgcggaaggt ccctcagaca	tccccgattg aaagaacca	g agaggetetg agaaaceteg	540
ggaaacttag atcatcagtc	accgaaggtc ctacagggc	c acaactgccc ccgccacaac	600
ccaccccgct ttcgtagttt	tcatttagaa aatagagct	ttaaaaatgt cctgcctttt	660
aacgtagata taagccttcc	cccactaccg taaatgtcca	a tttatatcat tttttatata	720
ttcttataaa aatgtaaaaa	agaaaaacac cgcttctgc	e ttttcactgt gttggagttt	780
tctggagtga gcactcacgc	cctaagcgca cattcatgte	g ggcatttett gegageeteg	840
cagcctccgg aagctgtcga	cttcatgaca agcattttg	gaactaggga agctcagggg	900
ggttactggc ttctcttgag	tcacactgct agcaaatgg	c agaaccaaag ctcaaataaa	960

		-continued		
aataaaataa ttttcattca	ttcactc		987	
210> SEQ ID NO 32 211> LENGTH: 8972 212> TYPE: DNA 213> ORGANISM: Homo s	apiens			
<400> SEQUENCE: 32				
gtccaagggt agccaaggat	ggctgcagct tcatatgatc	agttgttaaa gcaagttgag	60	
gcactgaaga tggagaactc	aaatcttcga caagagctag	aagataattc caatcatctt	120	
acaaaactgg aaactgaggc	atctaatatg aaggaagtac	ttaaacaact acaaggaagt	180	
attgaagatg aagctatggc	ttcttctgga cagattgatt	tattagagcg tcttaaagag	240	
cttaacttag atagcagtaa	tttccctgga gtaaaactgc	ggtcaaaaat gtccctccgt	300	
tottatggaa googggaagg	atctgtatca agccgttctg	gagagtgcag teetgtteet	360	
atgggttcat ttccaagaag	agggtttgta aatggaagca	gagaaagtac tggatattta	420	
gaagaacttg agaaagagag	gtcattgctt cttgctgatc	ttgacaaaga agaaaaggaa	480	
aaagactggt attacgctca	acttcagaat ctcactaaaa	gaatagatag tcttccttta	540	
actgaaaatt tttccttaca	aacagatatg accagaaggc	aattggaata tgaagcaagg	600	
caaatcagag ttgcgatgga	agaacaacta ggtacctgcc	aggatatgga aaaacgagca	660	
cagcgaagaa tagccagaat	tcagcaaatc gaaaaggaca	tacttcgtat acgacagctt	720	
ttacagtccc aagcaacaga	agcagagagg tcatctcaga	acaagcatga aaccggctca	780	
catgatgctg agcggcagaa	tgaaggtcaa ggagtgggag	aaatcaacat ggcaacttct	840	
ggtaatggtc agggttcaac	tacacgaatg gaccatgaaa	cagccagtgt tttgagttct	900	
agtagcacac actctgcacc	tcgaaggctg acaagtcatc	tgggaaccaa ggtggaaatg	960	
gtgtattcat tgttgtcaat (gcttggtact catgataagg	atgatatgtc gcgaactttg	1020	
ctagctatgt ctagctccca	agacagctgt atatccatgc	gacagtctgg atgtcttcct	1080	
ctcctcatcc agcttttaca	tggcaatgac aaagactctg	tattgttggg aaattcccgg	1140	
		acaacatcat tcactcacag	1200	
		atcttttgga acagatacgc	1260	
		aaccaggcat ggaccaggac	1320	
		ctgctgtgtg tgttctaatg		
		aactaggggg actacaggcc	1440	
		ttactaatga ccactacagt	1500 1560	
		tgacttttgg agatgtagcc		
		cacttgtggc ccaactaaaa	1620	
		tgaggaattt gtcttggcga	1680	
		gtgtgaaagc attgatggaa	1740	
		tattgagtgc cttatggaat	1800	
tgtcagcac attgcactga	gaataaagct gatatatgtg	ctgtagatgg tgcacttgca	1860	
tttttggttg gcactcttac	ttaccggagc cagacaaaca	ctttagccat tattgaaagt	1920	
ggaggtggga tattacggaa	tgtgtccagc ttgatagcta	caaatgagga ccacaggcaa	1980	

-continued	
atcctaagag agaacaactg tctacaaact ttattacaac acttaaaatc tcatagttt	g 2040
acaatagtca gtaatgcatg tggaactttg tggaatctct cagcaagaaa tcctaaaga	c 2100
caggaagcat tatgggacat gggggcagtt agcatgctca agaacctcat tcattcaaa	g 2160
cacaaaatga ttgctatggg aagtgctgca gctttaagga atctcatggc aaataggcc	et 2220
gegaagtaca aggatgecaa tattatgtet eetggeteaa gettgecate tetteatgt	t 2280
aggaaacaaa aagccctaga agcagaatta gatgctcagc acttatcaga aacttttga	uc 2340
aatatagaca atttaagtcc caaggcatct catcgtagta agcagagaca caagcaaag	rt 2400
ctctatggtg attatgtttt tgacaccaat cgacatgatg ataataggtc agacaattt	t 2460
aatactggca acatgactgt cctttcacca tatttgaata ctacagtgtt acccagctc	c 2520
tetteateaa gaggaagett agatagttet egttetgaaa aagatagaag tttggagag	a 2580
gaacgeggaa ttggtetagg caactaeeat eeageaacag aaaateeagg aaettette	a 2640
aagogaggtt tgcagatctc caccactgca gcccagattg ccaaagtcat ggaagaagt	g 2700
tcagccattc atacctctca ggaagacaga agttctgggt ctaccactga attacattg	t 2760
gtgacagatg agagaaatgc acttagaaga agctctgctg cccatacaca ttcaaacac	t 2820
tacaatttca ctaagtogga aaattcaaat aggacatgtt ctatgootta tgooaaatt	a 2880
gaatacaaga gatetteaaa tgatagttta aatagtgtea gtagtagtga tggttatgg	t 2940
aaaagaggtc aaatgaaacc ctcgattgaa tcctattctg aagatgatga aagtaagtt	t 3000
tgcagttatg gtcaataccc agccgaccta gcccataaaa tacatagtgc aaatcatat	g 3060
gatgataatg atggagaact agatacacca ataaattata gtottaaata ttoagatga	ng 3120
cagttgaact ctggaaggca aagtccttca cagaatgaaa gatgggcaag acccaaaca	ac 3180
ataatagaag atgaaataaa acaaagtgag caaagacaat caaggaatca aagtacaac	t 3240
tateetgttt ataetgagag eactgatgat aaacaeetea agtteeaaee acattttgg	a 3300
cagcaggaat gtgtttctcc atacaggtca cggggagcca atggttcaga aacaaatcg	a 3360
gtgggttcta atcatggaat taatcaaaat gtaagccagt ctttgtgtca agaagatga	ac 3420
tatgaagatg ataagcctac caattatagt gaacgttact ctgaagaaga acagcatga	a 3480
gaagaagaga gaccaacaaa ttatagcata aaatataatg aagagaaacg tcatgtgga	t 3540
cagoctattg attatagttt aaaatatgoo acagatatto ottoatoaca gaaacagto	a 3600
ttttcattct caaagagttc atctggacaa agcagtaaaa ccgaacatat gtcttcaag	JC 3660
agtgagaata cgtccacacc ttcatctaat gccaagaggc agaatcagct ccatccaag	jt 3720
tetgeacaga gtagaagtgg teageeteaa aaggetgeea ettgeaaagt ttettetat	t 3780
aaccaagaaa caatacagac ttattgtgta gaagatactc caatatgttt ttcaagatg	t 3840
agttcattat catctttgtc atcagctgaa gatgaaatag gatgtaatca gacgacaca	ig 3900
gaagcagatt ctgctaatac cctgcaaata gcagaaataa aagaaaagat tggaactag	IG 3960
tcagctgaag atcctgtgag cgaagttcca gcagtgtcac agcaccctag aaccaaatc	c 4020
agcagactgc agggttctag tttatcttca gaatcagcca ggcacaaagc tgttgaatt	t 4080
tetteaggag egaaatetee etceaaaagt ggtgeteaga eaceeaaaag teeacetga	a 4140
cactatgttc aggagacccc actcatgttt agcagatgta cttctgtcag ttcacttga	t 4200
agttttgaga gtcgttcgat tgccagctcc gttcagagtg aaccatgcag tggaatggt	a 4260

-concinded	
agtggcatta taagccccag tgatcttcca gatagccctg gacaaaccat gccaccaagc	4320
agaagtaaaa cacctccacc acctcctcaa acagctcaaa ccaagcgaga agtacctaaa	4380
aataaagcac ctactgctga aaagagagag agtggaccta agcaagctgc agtaaatgct	4440
gcagttcaga gggtccaggt tcttccagat gctgatactt tattacattt tgccacggaa	4500
agtactccag atggattttc ttgttcatcc agcctgagtg ctctgagcct cgatgagcca	4560
tttatacaga aagatgtgga attaagaata atgcctccag ttcaggaaaa tgacaatggg	4620
aatgaaacag aatcagagca gcctaaagaa tcaaatgaaa accaagagaa agaggcagaa	4680
aaaactattg attctgaaaa ggacctatta gatgattcag atgatgatga tattgaaata	4740
ctagaagaat gtattatttc tgccatgcca acaaagtcat cacgtaaagc aaaaaagcca	4800
geccagaetg etteaaaatt aceteeacet gtggeaagga aaceaagtea getgeetgtg	4860
tacaaacttc taccatcaca aaacaggttg caaccccaaa agcatgttag ttttacaccg	4920
ggggatgata tgccacgggt gtattgtgtt gaagggacac ctataaactt ttccacagct	4980
acatetetaa gtgatetaae aategaatee eeteeaatg agttagetge tggagaagga	5040
gttagaggag gagcacagtc aggtgaattt gaaaaacgag ataccattcc tacagaaggc	5100
agaagtacag atgaggetea aggaggaaaa aceteatetg taaceataee tgaattggat	5160
gacaataaag cagaggaagg tgatattett geagaatgea ttaattetge tatgeeeaaa	5220
gggaaaagtc acaagccttt ccgtgtgaaa aagataatgg accaggtcca gcaagcatct	5280
gcgtcgtctt ctgcacccaa caaaaatcag ttagatggta agaaaaagaa accaacttca	5340
ccagtaaaac ctataccaca aaatactgaa tataggacac gtgtaagaaa aaatgcagac	5400
tcaaaaaata atttaaatgc tgagagagtt ttctcagaca acaaagattc aaagaaacag	5460
aatttgaaaa ataattccaa ggacttcaat gataagctcc caaataatga agatagagtc	5520
agaggaagtt ttgcttttga ttcacctcat cattacacgc ctattgaagg aactccttac	5580
tgtttttcac gaaatgattc tttgagttct ctagattttg atgatgatga tgttgacctt	5640
tccagggaaa aggctgaatt aagaaaggca aaagaaaata aggaatcaga ggctaaagtt	5700
accagccaca cagaactaac ctccaaccaa caatcagcta ataagacaca agctattgca	5760
aagcagccaa taaatcgagg tcagcctaaa cccatacttc agaaacaatc cacttttccc	5820
cagtcatcca aagacatacc agacagaggg gcagcaactg atgaaaagtt acagaatttt	5880
gctattgaaa atactccagt ttgcttttct cataattcct ctctgagttc tctcagtgac	5940
attgaccaag aaaacaacaa taaagaaaat gaacctatca aagagactga gccccctgac	6000
tcacagggag aaccaagtaa acctcaagca tcaggctatg ctcctaaatc atttcatgtt	6060
gaagataccc cagtttgttt ctcaagaaac agttctctca gttctcttag tattgactct	6120
gaagatgacc tgttgcagga atgtataagc tccgcaatgc caaaaaagaa aaagccttca	6180
agactcaagg gtgataatga aaaacatagt cccagaaata tgggtggcat attaggtgaa	6240
gatetgaeae ttgatttgaa agatataeag agaeeagatt eagaaeatgg tetateeeet	6300
gattcagaaa attttgattg gaaagctatt caggaaggtg caaattccat agtaagtagt	6360
ttacatcaag ctgctgctgc tgcatgttta tctagacaag cttcgtctga ttcagattcc	6420
ateettteee tgaaateagg aatetetetg ggateaceat tteatettae acetgateaa	6480
	6540
Jaajaaaaa	

				-contir	nued	
acattggaaa	ctaaaaagat	agaatctgaa	agtaaaggaa	tcaaaggagg	aaaaaagtt	6600
tataaaagtt	tgattactgg	aaaagttcga	tctaattcag	aaatttcagg	ccaaatgaaa	6660
cagccccttc	aagcaaacat	gccttcaatc	tctcgaggca	ggacaatgat	tcatattcca	6720
ggagttcgaa	atageteete	aagtacaagt	cctgtttcta	aaaaaggccc	accccttaag	6780
actccagcct	ccaaaagccc	tagtgaaggt	caaacagcca	ccacttctcc	tagaggagcc	6840
aagccatctg	tgaaatcaga	attaagccct	gttgccaggc	agacatccca	aataggtggg	6900
tcaagtaaag	caccttctag	atcaggatct	agagattcga	ccccttcaag	acctgcccag	6960
caaccattaa	gtagacctat	acagtctcct	ggccgaaact	caatttcccc	tggtagaaat	7020
ggaataagtc	ctcctaacaa	attatctcaa	cttccaagga	catcatcccc	tagtactgct	7080
tcaactaagt	cctcaggttc	tggaaaaatg	tcatatacat	ctccaggtag	acagatgagc	7140
caacagaacc	ttaccaaaca	aacaggttta	tccaagaatg	ccagtagtat	tccaagaagt	7200
gagtetgeet	ccaaaggact	aaatcagatg	aataatggta	atggagccaa	taaaaaggta	7260
gaactttcta	gaatgtette	aactaaatca	agtggaagtg	aatctgatag	atcagaaaga	7320
cctgtattag	tacgccagtc	aactttcatc	aaagaagctc	caagcccaac	cttaagaaga	7380
aaattggagg	aatctgcttc	atttgaatct	ctttctccat	catctagacc	agcttctccc	7440
actaggtccc	aggcacaaac	tccagtttta	agtccttccc	ttcctgatat	gtctctatcc	7500
acacattcgt	ctgttcaggc	tggtggatgg	cgaaaactcc	cacctaatct	cagtcccact	7560
atagagtata	atgatggaag	accagcaaag	cgccatgata	ttgcacggtc	tcattctgaa	7620
agtccttcta	gacttccaat	caataggtca	ggaacctgga	aacgtgagca	cagcaaacat	7680
tcatcatccc	ttcctcgagt	aagcacttgg	agaagaactg	gaagttcatc	ttcaattctt	7740
tctgcttcat	cagaatccag	tgaaaaagca	aaaagtgagg	atgaaaaaca	tgtgaactct	7800
atttcaggaa	ccaaacaaag	taaagaaaac	caagtatccg	caaaaggaac	atggagaaaa	7860
ataaaagaaa	atgaattttc	tcccacaaat	agtacttctc	agaccgtttc	ctcaggtgct	7920
acaaatggtg	ctgaatcaaa	gactctaatt	tatcaaatgg	cacctgctgt	ttctaaaaca	7980
gaggatgttt	gggtgagaat	tgaggactgt	cccattaaca	atcctagatc	tggaagatct	8040
cccacaggta	atactccccc	ggtgattgac	agtgtttcag	aaaaggcaaa	tccaaacatt	8100
aaagattcaa	aagataatca	ggcaaaacaa	aatgtgggta	atggcagtgt	tcccatgcgt	8160
accgtgggtt	tggaaaatcg	cctgaactcc	tttattcagg	tggatgeeee	tgaccaaaaa	8220
ggaactgaga	taaaaccagg	acaaaataat	cctgtccctg	tatcagagac	taatgaaagt	8280
tctatagtgg	aacgtacccc	attcagttct	agcagctcaa	gcaaacacag	ttcacctagt	8340
gggactgttg	ctgccagagt	gactcctttt	aattacaacc	caagccctag	gaaaagcagc	8400
gcagatagca	cttcagctcg	gccatctcag	atcccaactc	cagtgaataa	caacacaaag	8460
aagcgagatt	ccaaaactga	cagcacagaa	tccagtggaa	cccaaagtcc	taagcgccat	8520
tctgggtctt	accttgtgac	atctgtttaa	aagagaggaa	gaatgaaact	aagaaaattc	8580
tatgttaatt	acaactgcta	tatagacatt	ttgtttcaaa	tgaaacttta	aaagactgaa	8640
aaattttgta	aataggtttg	attcttgtta	gagggttttt	gttctggaag	ccatatttga	8700
tagtatactt	tgtcttcact	ggtcttattt	tgggaggcac	tcttgatggt	taggaaaaaa	8760
atagtaaagc	caagtatgtt	tgtacagtat	gttttacatg	tatttaaagt	agcacccatc	8820

-continued	
ccaacttcct ttaattattg cttgtcttaa aataatgaac actacagata gaaaatatga	8880
tatattgctg ttatcaatca tttctagatt ataaactgac taaacttaca tcagggaaaa	8940
attggtattt atgcaaaaaa aaatgttttt gt	8972
<210> SEQ ID NO 33 <211> LENGTH: 5711 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 33	
agetegetga gaetteetgg acceegeace aggetgtggg gttteteaga taaetgggee	60
cctgcgctca ggaggccttc accctctgct ctgggtaaag ttcattggaa cagaaagaaa	120
tggatttatc tgctcttcgc gttgaagaag tacaaaatgt cattaatgct atgcagaaaa	180
tettagagtg teccatetgt etggagttga teaaggaace tgteteeaca aagtgtgace	240
acatattttg caaattttgc atgctgaaac ttctcaacca gaagaaaggg ccttcacagt	300
gtcctttatg taagaatgat ataaccaaaa ggagcctaca agaaagtacg agatttagtc	360
aacttgttga agagctattg aaaatcattt gtgcttttca gcttgacaca ggtttggagt	420
atgcaaacag ctataatttt gcaaaaaagg aaaataactc tcctgaacat ctaaaagatg	480
aagtttetat catecaaagt atgggetaca gaaacegtge caaaagaett etacagagtg	540
aacccgaaaa teetteettg caggaaacca gteteagtgt ceaactetet aacettggaa	600
ctgtgagaac tctgaggaca aagcagcgga tacaacctca aaagacgtct gtctacattg	660
aattgggatc tgattettet gaagataeeg ttaataagge aaettattge agtgtgggag	720
atcaagaatt gttacaaatc acccctcaag gaaccaggga tgaaatcagt ttggattctg	780
caaaaaaggc tgcttgtgaa ttttctgaga cggatgtaac aaatactgaa catcatcaac	840
ccagtaataa tgatttgaac accactgaga agcgtgcagc tgagaggcat ccagaaaagt	900
atcagggtag ttctgtttca aacttgcatg tggagccatg tggcacaaat actcatgcca	960
gctcattaca gcatgagaac agcagtttat tactcactaa agacagaatg aatgtagaaa	1020
aggetgaatt etgtaataaa ageaaacage etggettage aaggageeaa cataacagat	1080
gggctggaag taaggaaaca tgtaatgata ggcggactcc cagcacagaa aaaaaggtag	1140
atctgaatgc tgatcccctg tgtgagagaa aagaatggaa taagcagaaa ctgccatgct	1200
cagagaatcc tagagatact gaagatgttc cttggataac actaaatagc agcattcaga	1260
aagttaatga gtggttttcc agaagtgatg aactgttagg ttctgatgac tcacatgatg	1320
gggagtetga ateaaatgee aaagtagetg atgtattgga egttetaaat gaggtagatg	1380
aatattetgg ttetteagag aaaatagaet taetggeeag tgateeteat gaggetttaa	1440
tatgtaaaag tgaaagagtt cactccaaat cagtagagag taatattgaa gacaaaatat	1500
ttgggaaaac ctatcggaag aaggcaagcc tccccaactt aagccatgta actgaaaatc	1560
taattatagg agcatttgtt actgagccac agataataca agagcgtccc ctcacaaata	1620
aattaaagcg taaaaggaga cctacatcag gccttcatcc tgaggatttt atcaagaaag	1680
cagatttggc agttcaaaag actcctgaaa tgataaatca gggaactaac caaacggagc	1740
agaatggtca agtgatgaat attactaata gtggtcatga gaataaaaca aaaggtgatt	1800
ctattcagaa tgagaaaaat cctaacccaa tagaatcact cgaaaaagaa tctgctttca	1860

		-continued	
aaacgaaagc tgaacctata	a agcagcagta taagcaatat	ggaactcgaa ttaaatatcc	1920
acaattcaaa agcacctaaa	a aagaataggc tgaggaggaa	gtettetace aggeatatte	1980
atgcgcttga actagtagto	agtagaaatc taagcccacc	taattgtact gaattgcaaa	2040
ttgatagttg ttctagcagt	gaagagataa agaaaaaaaa	gtacaaccaa atgccagtca	2100
ggcacagcag aaacctacaa	a ctcatggaag gtaaagaacc	tgcaactgga gccaagaaga	2160
gtaacaagcc aaatgaacag	g acaagtaaaa gacatgacag	cgatactttc ccagagctga	2220
agttaacaaa tgcacctggt	: tcttttacta agtgttcaaa	taccagtgaa cttaaagaat	2280
ttgtcaatcc tagccttcca	a agagaagaaa aagaagagaa	actagaaaca gttaaagtgt	2340
ctaataatgc tgaagaccco	: aaagatctca tgttaagtgg	agaaagggtt ttgcaaactg	2400
aaagatctgt agagagtago	agtatttcat tggtacctgg	tactgattat ggcactcagg	2460
aaagtatete gttaetggaa	a gttagcactc tagggaaggc	aaaaacagaa ccaaataaat	2520
gtgtgagtca gtgtgcagca	a tttgaaaacc ccaagggact	aattcatggt tgttccaaag	2580
ataatagaaa tgacacagaa	a ggetttaagt atecattggg	acatgaagtt aaccacagtc	2640
gggaaacaag catagaaato	gaagaaagtg aacttgatgc	tcagtatttg cagaatacat	2700
tcaaggtttc aaagcgccag	g tcatttgctc cgttttcaaa	tccaggaaat gcagaagagg	2760
aatgtgcaac attctctgcc	: cactctgggt ccttaaagaa	acaaagtcca aaagtcactt	2820
ttgaatgtga acaaaaggaa	a gaaaatcaag gaaagaatga	gtctaatatc aagcctgtac	2880
agacagttaa tatcactgca	a ggettteetg tggttggtea	gaaagataag ccagttgata	2940
atgccaaatg tagtatcaaa	a ggaggeteta ggttttgtet	atcatctcag ttcagaggca	3000
acgaaactgg actcattact	: ccaaataaac atggactttt	acaaaaccca tatcgtatac	3060
caccactttt tcccatcaac	y tcatttgtta aaactaaatg	taagaaaaat ctgctagagg	3120
aaaactttga ggaacattca	a atgtcacctg aaagagaaat	gggaaatgag aacattccaa	3180
gtacagtgag cacaattago	: cgtaataaca ttagagaaaa	tgtttttaaa gaagccagct	3240
caagcaatat taatgaagta	a ggttccagta ctaatgaagt	gggctccagt attaatgaaa	3300
taggttccag tgatgaaaac	: attcaagcag aactaggtag	aaacagaggg ccaaaattga	3360
	g gttttgcaac ctgaggtcta		3420
	a ataaaaaagc aagaatatga		3480
	: ctgatttcag ataacttaga		3540
	gagacacctg atgacctgtt		3600
	a aatgacatta aggaaagttc		3660
	aggagteeta geeettteae		3720
	g aaattagagt cctcagaaga		3780
	a cacttgttat ttggtaaagt		3840
	: gctaccgagt gtctgtctaa		3900
tatcattgaa gaatagctta	a aatgactgca gtaaccaggt	aatattggca aaggcatctc	3960
aggaacatca ccttagtgag	gaaacaaaat gttctgctag	cttgttttct tcacagtgca	4020
gtgaattgga agacttgact	gcaaatacaa acacccagga	tcctttcttg attggttctt	4080
ccaaacaaat gaggcatcac	y tetgaaagee agggagttgg	tctgagtgac aaggaattgg	4140

-continued	
tttcagatga tgaagaaaga ggaacgggct tggaagaaaa taatcaagaa gagcaaagca	4200
tggattcaaa cttaggtgaa gcagcatctg ggtgtgagag tgaaacaagc gtctctgaag	4260
actgctcagg gctatcctct cagagtgaca ttttaaccac tcagcagagg gataccatgc	4320
aacataacct gataaagctc cagcaggaaa tggctgaact agaagctgtg ttagaacagc	4380
atgggagcca gccttctaac agctaccctt ccatcataag tgactcttct gcccttgagg	4440
acctgcgaaa tccagaacaa agcacatcag aaaaagcagt attaacttca cagaaaagta	4500
gtgaataccc tataagccag aatccagaag gcctttctgc tgacaagttt gaggtgtctg	4560
cagatagttc taccagtaaa aataaagaac caggagtgga aaggtcatcc ccttctaaat	4620
gcccatcatt agatgatagg tggtacatgc acagttgctc tgggagtctt cagaatagaa	4680
actacccatc tcaagaggag ctcattaagg ttgttgatgt ggaggagcaa cagctggaag	4740
agtetgggee acaegatttg aeggaaacat ettaettgee aaggeaagat etagagggaa	4800
ccccttacct ggaatctgga atcagcetet tetetgatga ceetgaatet gateettetg	4860
aagacagagc cccagagtca gctcgtgttg gcaacatacc atcttcaacc tctgcattga	4920
aagtteecca attgaaagtt geagaatetg eecagagtee agetgetget eatactaetg	4980
atactgctgg gtataatgca atggaagaaa gtgtgagcag ggagaagcca gaattgacag	5040
cttcaacaga aagggtcaac aaaagaatgt ccatggtggt gtctggcctg accccagaag	5100
aatttatget egtgtacaag tttgeeagaa aacaeeacat eaetttaaet aatetaatta	5160
ctgaagagac tactcatgtt gttatgaaaa cagatgctga gtttgtgtgt gaacggacac	5220
tgaaatattt tetaggaatt gegggaggaa aatgggtagt tagetattte tgggtgaeee	5280
agtctattaa agaaagaaaa atgctgaatg agcatgattt tgaagtcaga ggagatgtgg	5340
tcaatggaag aaaccaccaa ggtccaaagc gagcaagaga atcccaggac agaaagatct	5400
tcaggggggct agaaatctgt tgctatgggc ccttcaccaa catgcccaca gatcaactgg	5460
aatggatggt acagetgtgt ggtgettetg tggtgaagga gettteatea tteaceettg	5520
gcacaggtgt ccacccaatt gtggttgtgc agccagatgc ctggacagag gacaatggct	5580
tccatgcaat tgggcagatg tgtgaggcac ctgtggtgac ccgagagtgg gtgttggaca	5640
gtgtagcact ctaccagtgc caggagctgg acacctacct gataccccag atcccccaca	5700
gccactactg a	5711
<210> SEQ ID NO 34 <211> LENGTH: 2680 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 34	
ggttateetg aatacatgte taacaatttt eettgeaaeg ttagetgttg ttttteaetg	60
tttccaaagg atcaaaattg cttcagaaat tggagacata tttgatttaa aaggaaaaac	120
ttgaacaaat ggacaatatg totattacga atacaccaac aagtaatgat gootgtotga	180
gcattgtgca tagtttgatg tgccatagac aaggtggaga gagtgaaaca tttgcaaaaa	240
gagcaattga aagtttggta aagaagctga aggagaaaaa agatgaattg gattctttaa	300
taacagctat aactacaaat ggagctcatc ctagtaaatg tgttaccata cagagaacat	360
tggatgggag getteaggtg getggtegga aaggatttee teatgtgate tatgeeegte	420

-continued	
tctggaggtg gcctgatctt cacaaaaatg aactaaaaca tgttaaatat tgtcagtatg	480
cgtttgactt aaaatgtgat agtgtctgtg tgaatccata tcactacgaa cgagttgtat	540
cacctggaat tgatctctca ggattaacac tgcagagtaa tgctccatca agtatgatgg	600
tgaaggatga atatgtgcat gactttgagg gacagccatc gttgtccact gaaggacatt	660
caattcaaac catccagcat ccaccaagta atcgtgcatc gacagagaca tacagcaccc	. 720
cagetetgtt ageceeatet gagtetaatg etaecageae tgecaaettt eccaaeatte	: 780
ctgtggcttc cacaagtcag cctgccagta tactgggggg cagccatagt gaaggactgt	840
tgcagatagc atcagggcct cagccaggac agcagcagaa tggatttact ggtcagccag	900
ctacttacca tcataacagc actaccacct ggactggaag taggactgca ccatacacac	960
ctaatttgcc tcaccaccaa aacggccatc ttcagcacca cccgcctatg ccgccccatc	: 1020
ccggacatta ctggcctgtt cacaatgagc ttgcattcca gcctcccatt tccaatcatc	: 1080
ctgctcctga gtattggtgt tccattgctt actttgaaat ggatgttcag gtaggagaga	1140
catttaaggt teetteaage tgeeetattg ttactgttga tggataegtg gaeeettetg	1200
gaggagatcg cttttgtttg ggtcaactct ccaatgtcca caggacagaa gccattgaga	1260
gagcaaggtt gcacataggc aaaggtgtgc agttggaatg taaaggtgaa ggtgatgttt	1320
gggtcaggtg ccttagtgac cacgcggtct ttgtacagag ttactactta gacagagaag	1380
ctgggcgtgc acctggagat gctgttcata agatctaccc aagtgcatat ataaaggtct	1440
ttgatttgcg tcagtgtcat cgacagatgc agcagcaggc ggctactgca caagctgcag	1 1500
cagetgeeca ggeageagee gtggeaggaa acateeetgg eeeaggatea gtaggtggaa	1560
tageteeage tateagtetg teagetgetg etggaattgg tgttgatgae ettegteget	1620
tatgcatact caggatgagt tttgtgaaag gctggggacc ggattaccca agacagagca	1680
tcaaagaaac accttgctgg attgaaattc acttacaccg ggccctccag ctcctagacg	1 1740
aagtacttca taccatgccg attgcagacc cacaaccttt agactgaggt cttttaccgt	1800
tggggccctt aaccttatca ggatggtgga ctacaaaata caatcctgtt tataatctga	1860
agatatattt cacttttctt ctgctttatc ttttcataaa gggttgaaaa tgtgtttgct	1920
gccttgctcc tagcagacag aaactggatt aaaacaattt ttttttcctc ttcagaactt	1980
gtcaggcatg gctcagagct tgaagattag gagaaacaca ttcttattaa ttcttcacct	2040
gttatgtatg aaggaatcat tccagtgcta gaaaatttag ccctttaaaa cgtcttagag	3 2100
ccttttatct gcagaacatc gatatgtata tcattctaca gaataatcca gtattgctga	2160
ttttaaaggc agagaagttc tcaaagttaa ttcacctatg ttattttgtg tacaagttgt	2220
tattgttgaa catacttcaa aaataatgtg ccatgtgggt gagttaattt taccaagagt	2280
aactttactc tgtgtttaaa aatgaagtta ataatgtatt gtaatctttc atccaaaata	2340
ttttttgcaa gttatattag tgaagatggt ttcaattcag attgtcttgc aacttcagtt	2400
ttatttttgc caaggcaaaa aactcttaat ctgtgtgtat attgagaatc ccttaaaatt	2460
accagacaaa aaaatttaaa attacgtttg ttattcctag tggatgactg ttgatgaagt	2520
atacttttcc cctgttaaac agtagttgta ttcttctgta tttctaggca caaggttggt	2580
tgctaagaag cctataagag gaatttettt teetteatte atagggaaag gttttgtatt	2640
ttttaaaaca ctaaaagcag cgtcactcta cctaatgtct	2680

<400> SEQUENCE: 36 60 ggctgcgacg gctgcagagc gagctgccct cggaggccgg cgtggggaag atggcccagt 120 ccacegeeae eteccetgat gggggeaeea egtttgagea eetetggage tetetggaae 180 cagacagcac ctacttcgac cttccccagt caagccgggg gaataatgag gtggtgggcg 240 gaacggattc cagcatggac gtcttccacc tggagggcat gactacatct gtcatggccc 300 agttcaatct gctgagcagc accatggacc agatgagcag ccgcgcggcc tcggccagcc 360 cctacacccc agagcacgcc gccagcgtgc ccacccactc gccctacgca caacccagct 420 ccaccttcga caccatgtcg ccggcgcctg tcatcccctc caacaccgac taccccggac 480 cccaccactt tgaggtcact ttccagcagt ccagcacggc caagtcagcc acctggacgt 540 actecceget ettgaagaaa etetaetgee agategeeaa gacatgeeee atecagatea 600 aggtgtccac cccgccaccc ccaggcactg ccatccgggc catgcctgtt tacaagaaag 660

<210> SEQ ID NO 36 <211> LENGTH: 2234 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 35 teccegetet getetgteeg gteacaggae tttttgeeet etgtteeegg gteeeteagg 60 cggccaccca gtgggcacac tcccaggcgg cgctccggcc ccgcgctccc tccctctgcc 120 tttcattccc agetgtcaac atcetggaag etttgaaget caggaaagaa gagaaatcca 180 ctgagaacag tctgtaaagg tccgtagtgc tatctacatc cagacggtgg aagggagaga 240 aagagaaaga aggtatccta ggaatacctg cctgcttaga ccctctataa aagctctgtg 300 catcetgeea etgaggaete egaagaggta geagtettet gaaagaette aactgtgagg 360 420 acatgtcgtt cagatttggc caacatetea teaageeete tgtagtgttt eteaaaacag aactgtcctt cgctcttgtg aataggaaac ctgtggtacc aggacatgtc cttgtgtgcc 480 cgctgcggcc agtggagcgc ttccatgacc tgcgtcctga tgaagtggcc gatttgtttc 540 agacgaccca gagagtcggg acagtggtgg aaaaacattt ccatgggacc tctctcacct 600 tttccatgca ggatggcccc gaagccggac agactgtgaa gcacgttcac gtccatgttc 660 ttcccaggaa ggctggagac tttcacagga atgacagcat ctatgaggag ctccagaaac 720 atgacaagga ggactttcct gcctcttgga gatcagagga ggaaatggca gcagaagccg 780 cagetetgeg ggtetaettt cagtgacaca gatgttttte agateetgaa tteeageaaa 840 agagetattg ccaaccagtt tgaagaccgc cccccgcct ctccccaaga ggaactgaat 900 cagcatgaaa atgcagtttc ttcatctcac catcctgtat tcttcaacca gtgatccccc 960 acctcggtca ctccaactcc cttaaaatac ctagacctaa acggctcaga caggcagatt 1020 tgaggtttcc ccctgtctcc ttattcggca gccttatgat taaacttcct tctctgctgc 1080 aaaaaaaaa aaaaa 1095

-continued

<210> SEQ ID NO 35 <211> LENGTH: 1095

cggagcacgt gaccgacgtc gtgaaacgct gccccaacca cgagctcggg agggacttca	720
acgaaggaca gtctgctcca gccagccacc tcatccgcgt ggaaggcaat aatctctcgc	780
agtatgtgga tgaccctgtc accggcaggc agagcgtcgt ggtgccctat gagccaccac	840
aggtggggac ggaattcacc accateetgt acaaetteat gtgtaacage agetgtgtag	900
ggggcatgaa ccggcggccc atcctcatca tcatcaccct ggagatgcgg gatgggcagg	960
tgctgggccg ccggtccttt gagggccgca tctgcgcctg tcctggccgc gaccgaaaag	1020
ctgatgagga ccactaccgg gagcagcagg ccctgaacga gagctccgcc aagaacgggg	1080
ccgccagcaa gcgtgccttc aagcagagcc cccctgccgt ccccgccctt ggtgccggtg	1140
tgaagaagcg gcggcatgga gacgaggaca cgtactacct tcaggtgcga ggccgggaga	1200
actttgagat cctgatgaag ctgaaagaga gcctggagct gatggagttg gtgccgcagc	1260
cactggtgga ctcctatcgg cagcagcagc agctcctaca gaggccgagt cacctacagc	1320
ccccgtccta cgggccggtc ctctcgccca tgaacaaggt gcacggggggc atgaacaagc	1380
tgccctccgt caaccagctg gtgggccagc ctcccccgca cagttcggca gctacaccca	1440
acctggggcc cgtgggcccc gggatgctca acaaccatgg ccacgcagtg ccagccaacg	1500
gcgagatgag cagcagccac agcgcccagt ccatggtctc ggggtcccac tgcactccgc	1560
cacccccta ccacgccgac cccagcctcg tcagtttttt aacaggattg gggtgtccaa	1620
actgcatcga gtatttcacc tcccaagggt tacagagcat ttaccacctg cagaacctga	1680
ccattgagga cctggggggcc ctgaagatcc ccgagcagta ccgcatgacc atctggcggg	1740
geetgeagga eetgaageag ggeeaegaet acageaeege geageagetg eteegeteta	1800
gcaacgegge caccatetee ateggegget caggggaaet geagegeeag egggteatgg	1860
aggeogtgea etteogogtg egecacaeea teaceateee caacegegge ggeceaggeg	1920
geggeeetga egagtgggeg gaettegget tegaeetgee egaetgeaag geeegeaage	1980
ageccateaa ggaggagtte aeggaggeeg agateeaetg agggeetege etggetgeag	2040
cctgcgccac cgcccagaga cccaagctgc ctcccctctc cttcctgtgt gtccaaaact	2100
gcetcaggag gcaggacett egggetgtge eeggggaaag gcaaggteeg geecateeee	2160
aggcacetea caggeeeeag gaaaggeeea geeaeegaag eegeetgtgg acageetgag	2220
tcacctgcag aacc	2234
<210> SEQ ID NO 37 <211> LENGTH: 4344 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 37	
atggcctcgg ctggtaacgc cgccgagccc caggaccgcg gcggcggcgg cagcggctgt	60
atcggtgccc cgggacggcc ggctggaggc gggaggcgca gacggacggg ggggctgcgc	120
cgtgctgccg cgccggaccg ggactatctg caccggccca gctactgcga cgccgccttc	180
gctctggagc agatttccaa ggggaaggct actggccgga aagcgccact gtggctgaga	240
gcgaagtttc agagactctt atttaaactg ggttgttaca ttcaaaaaaa ctgcggcaag	300
ttettggttg tgggeeteet catatttggg geettegegg tgggattaaa ageagegaae	360
ctcgagacca acgtggagga gctgtgggtg gaagttggag gacgagtaag tcgtgaatta	420

				-0011011			
aattatactc	gccagaagat	tggagaagag	gctatgttta	atcctcaact	catgatacag	480	
acccctaaag	aagaaggtgc	taatgtcctg	accacagaag	cgctcctaca	acacctggac	540	
tcggcactcc	aggccagccg	tgtccatgta	tacatgtaca	acaggcagtg	gaaattggaa	600	
catttgtgtt	acaaatcagg	agagcttatc	acagaaacag	gttacatgga	tcagataata	660	
gaatatcttt	accettgttt	gattattaca	cctttggact	gcttctggga	agggggcgaaa	720	
ttacagtctg	ggacagcata	cctcctaggt	aaacctcctt	tgcggtggac	aaacttcgac	780	
cctttggaat	tcctggaaga	gttaaagaaa	ataaactatc	aagtggacag	ctgggaggaa	840	
atgctgaata	aggctgaggt	tggtcatggt	tacatggacc	gcccctgcct	caatccggcc	900	
gatccagact	gccccgccac	agcccccaac	aaaaattcaa	ccaaacctct	tgatatggcc	960	
cttgttttga	atggtggatg	tcatggctta	tccagaaagt	atatgcactg	gcaggaggag	1020	
ttgattgtgg	gtggcacagt	caagaacagc	actggaaaac	tcgtcagcgc	ccatgccctg	1080	
cagaccatgt	tccagttaat	gactcccaag	caaatgtacg	agcacttcaa	ggggtacgag	1140	
tatgtctcac	acatcaactg	gaacgaggac	aaagcggcag	ccatcctgga	ggcctggcag	1200	
aggacatatg	tggaggtggt	tcatcagagt	gtcgcacaga	actccactca	aaaggtgctt	1260	
tccttcacca	ccacgaccct	ggacgacatc	ctgaaatcct	tctctgacgt	cagtgtcatc	1320	
cgcgtggcca	gcggctactt	actcatgctc	gcctatgcct	gtctaaccat	gctgcgctgg	1380	
gactgctcca	agtcccaggg	tgccgtgggg	ctggctggcg	teetgetggt	tgcactgtca	1440	
gtggctgcag	gactgggcct	gtgctcattg	atcggaattt	cctttaacgc	tgcaacaact	1500	
caggttttgc	catttctcgc	tcttggtgtt	ggtgtggatg	atgtttttct	tctggcccac	1560	
gccttcagtg	aaacaggaca	gaataaaaga	atcccttttg	aggacaggac	cggggagtgc	1620	
ctgaagcgca	caggagccag	cgtggccctc	acgtccatca	gcaatgtcac	agccttcttc	1680	
atggccgcgt	taatcccaat	teccgetetg	cgggcgttct	ccctccaggc	agcggtagta	1740	
gtggtgttca	attttgccat	ggttetgete	atttttcctg	caatteteag	catggattta	1800	
tatcgacgcg	aggacaggag	actggatatt	ttetgetgtt	ttacaagccc	ctgcgtcagc	1860	
agagtgattc	aggttgaacc	tcaggcctac	accgacacac	acgacaatac	ccgctacagc	1920	
cccccacctc	cctacagcag	ccacagcttt	gcccatgaaa	cgcagattac	catgcagtcc	1980	
actgtccagc	tccgcacgga	gtacgacccc	cacacgcacg	tgtactacac	caccgctgag	2040	
ccgcgctccg	agatctctgt	gcagcccgtc	accgtgacac	aggacaccct	cagctgccag	2100	
agcccagaga	gcaccagete	cacaagggac	ctgctctccc	agtteteega	ctccagcctc	2160	
cactgcctcg	agcccccctg	tacgaagtgg	acactctcat	cttttgctga	gaagcactat	2220	
gctcctttcc	tcttgaaacc	aaaagccaag	gtagtggtga	tcttcctttt	tctgggcttg	2280	
ctgggggtca	gcctttatgg	caccacccga	gtgagagacg	ggctggacct	tacggacatt	2340	
gtacctcggg	aaaccagaga	atatgacttt	attgctgcac	aattcaaata	cttttctttc	2400	
tacaacatgt	atatagtcac	ccagaaagca	gactacccga	atatccagca	cttactttac	2460	
gacctacaca	ggagtttcag	taacgtgaag	tatgtcatgt	tggaagaaaa	caaacagctt	2520	
cccaaaatgt	ggetgeacta	cttcagagac	tggcttcagg	gacttcagga	tgcatttgac	2580	
agtgactggg	aaaccgggaa	aatcatgcca	aacaattaca	agaatggatc	agacgatgga	2640	
			ggcagccgcg			2700	
55-5-50		55-5	555-55		5	_ /	

-continued	
cagttgacta aacagcgtct ggtggatgca gatggcatca ttaatcccag cgctttctac	2760
atctacctga cggcttgggt cagcaacgac cccgtcgcgt atgctgcctc ccaggccaac	2820
atcoggocac acogaccaga atgggtocac gacaaagoog actacatgoo tgaaacaagg	2880
ctgagaatee eggeageaga geecategag tatgeecagt teeettteta eeteaaeggg	2940
ttgcgggaca cctcagactt tgtggaggca attgaaaaag taaggaccat ctgcagcaac	3000
tatacgagee tggggetgte cagttaceee aacggetace eetteetet etgggageag	3060
tacateggee teegecaetg getgetgetg tteateageg tggtgttgge etgeaeatte	3120
ctcgtgtgcg ctgtcttcct tctgaacccc tggacggccg ggatcattgt gatggtcctg	3180
gcgctgatga cggtcgagct gttcggcatg atgggcctca tcggaatcaa gctcagtgcc	3240
gtgcccgtgg tcatcctgat cgcttctgtt ggcataggag tggagttcac cgttcacgtt	3300
getttggeet ttetgaegge categgegae aagaaeegea gggetgtget tgeeetggag	3360
cacatgtttg cacccgtcct ggatggcgcc gtgtccactc tgctgggagt gctgatgctg	3420
gcgggatctg agttcgactt cattgtcagg tatttctttg ctgtgctggc gatcctcacc	3480
atcctcggcg ttctcaatgg gctggttttg cttcccgtgc ttttgtcttt ctttggacca	3540
tateetgagg tgtetecage caacggettg aacegeetge ceacaceete eeetgageea	3600
ccccccagcg tggtccgctt cgccatgccg cccggccaca cgcacagcgg gtctgattcc	3660
teegaetegg agtatagtte eeagaegaea gtgteaggee teagegagga getteggeae	3720
tacgaggccc agcagggcgc gggaggccct gcccaccaag tgatcgtgga agccacagaa	3780
aaccccgtct tcgcccactc cactgtggtc catcccgaat ccaggcatca cccaccctcg	3840
aacccgagac agcagcccca cctggactca gggtccctgc ctcccggacg gcaaggccag	3900
cageceegca gggaceeece cagagaagge ttgtggeeae eeettacag aeegegeaga	3960
gacgettttg aaatttetae tgaagggeat tetggeeeta geaataggge eegetgggge	4020
cctcgcgggg cccgttetea caaceetegg aaceeagegt ceaetgeeat gggeagetee	4080
gtgcccggct actgccagcc catcaccact gtgacggctt ctgcctccgt gactgtcgcc	4140
gtgcaccege egectgteee tgggeetggg eggaaceeee gaggggggaet etgeeeagge	4200
taccctgaga ctgaccacgg cctgtttgag gacccccacg tgcctttcca cgtccggtgt	4260
gagaggaggg attcgaaggt ggaagtcatt gagctgcagg acgtggaatg cgaggagagg	4320
ccccggggaa gcagctccaa ctga	4344
<210> SEQ ID NO 38 <211> LENGTH: 4740 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 38	
ttccggtttt tctcagggga cgttgaaatt atttttgtaa cgggagtcgg gagaggacgg	60
ggegtgeeee gegtgegege gegtegteet eeeeggeget eeteeaeage tegetggete	120
ccgccgcgga aaggcgtcat gccgcccaaa accccccgaa aaacggccgc caccgccgcc	180
getgeegeeg eggaaceece ggeacegeeg eegeegeece eteetgagga ggaeceagag	240
caggacagcg gcccggagga cctgcctctc gtcaggcttg agtttgaaga aacagaagaa	300
cctgatttta ctgcattatg tcagaaatta aagataccag atcatgtcag agagagagct	360

				-contir			
tggttaactt	gggagaaagt	ttcatctgtg	gatggagtat	tgggaggtta	tattcaaaag	420	
aaaaaggaac	tgtggggaat	ctgtatcttt	attgcacgag	ttgacctaga	tgagatgtcg	480	
ttcactttac	tgagctacag	aaaaacatac	gaaatcagtg	tccataaatt	ctttaactta	540	
ctaaaagaaa	ttgataccag	taccaaagtt	gataatgcta	tgtcaagact	gttgaagaag	600	
tatgatgtat	tgtttgcact	cttcagcaaa	ttggaaagga	catgtgaact	tatatatttg	660	
acacaaccca	gcagttcgat	atctactgaa	ataaattctg	cattggtgct	aaaagtttct	720	
tggatcacat	ttttattagc	taaaggggaa	gtattacaaa	tggaagatga	tctggtgatt	780	
tcatttcagt	taatgctatg	tgtccttgac	tatttatta	aactctcacc	tcccatgttg	840	
ctcaaagaac	catataaaac	agctgttata	cccattaatg	gttcacctcg	aacacccagg	900	
cgaggtcaga	acaggagtgc	acggatagca	aaacaactag	aaaatgatac	aagaattatt	960	
gaagttetet	gtaaagaaca	tgaatgtaat	atagatgagg	tgaaaaatgt	ttatttcaaa	1020	
aattttatac	cttttatgaa	ttctcttgga	cttgtaacat	ctaatggact	tccagaggtt	1080	
gaaaatcttt	ctaaacgata	cgaagaaatt	tatcttaaaa	ataaagatct	agatcgaaga	1140	
ttatttttgg	atcatgataa	aactcttcag	actgattcta	tagacagttt	tgaaacacag	1200	
agaacaccac	gaaaaagtaa	ccttgatgaa	gaggtgaata	taattcctcc	acacactcca	1260	
gttaggactg	ttatgaacac	tatccaacaa	ttaatgatga	ttttaaattc	tgcaagtgat	1320	
caaccttcag	aaaatctgat	ttcctatttt	aacaactgca	cagtgaatcc	aaaagaaagt	1380	
atactgaaaa	gagtgaagga	tataggatac	atctttaaag	agaaatttgc	taaagctgtg	1440	
ggacagggtt	gtgtcgaaat	tggatcacag	cgatacaaac	ttggagttcg	cttgtattac	1500	
cgagtaatgg	aatccatgct	taaatcagaa	gaagaacgat	tatccattca	aaattttagc	1560	
aaacttctga	atgacaacat	ttttcatatg	tctttattgg	cgtgcgctct	tgaggttgta	1620	
atggccacat	atagcagaag	tacatctcag	aatcttgatt	ctggaacaga	tttgtctttc	1680	
ccatggattc	tgaatgtgct	taatttaaaa	gcctttgatt	tttacaaagt	gatcgaaagt	1740	
tttatcaaag	cagaaggcaa	cttgacaaga	gaaatgataa	aacatttaga	acgatgtgaa	1800	
catcgaatca	tggaatccct	tgcatggctc	tcagattcac	ctttatttga	tcttattaaa	1860	
caatcaaagg	accgagaagg	accaactgat	caccttgaat	ctgcttgtcc	tcttaatctt	1920	
cctctccaga	ataatcacac	tgcagcagat	atgtatcttt	ctcctgtaag	atctccaaag	1980	
aaaaaaggtt	caactacgcg	tgtaaattct	actgcaaatg	cagagacaca	agcaacctca	2040	
gccttccaga	cccagaagcc	attgaaatct	acctctcttt	cactgtttta	taaaaagtg	2100	
tatcggctag	cctatctccg	gctaaataca	ctttgtgaac	gccttctgtc	tgagcaccca	2160	
gaattagaac	atatcatctg	gaccetttte	cagcacaccc	tgcagaatga	gtatgaactc	2220	
atgagagaca	ggcatttgga	ccaaattatg	atgtgttcca	tgtatggcat	atgcaaagtg	2280	
aagaatatag	accttaaatt	caaaatcatt	gtaacagcat	acaaggatct	tcctcatgct	2340	
gttcaggaga	cattcaaacg	tgttttgatc	aaagaagagg	agtatgattc	tattatagta	2400	
ttctataact	cggtcttcat	gcagagactg	aaaacaaata	ttttgcagta	tgcttccacc	2460	
aggcccccta	ccttgtcacc	aatacctcac	attcctcgaa	gcccttacaa	gtttcctagt	2520	
tcacccttac	ggatteetgg	agggaacatc	tatatttcac	ccctgaagag	tccatataaa	2580	
atttcagaag	gtctgccaac	accaacaaaa	atgactccaa	gatcaagaat	cttagtatca	2640	

-continued

attggtgaat	cattcgggac	ttctgagaag	ttccagaaaa	taaatcagat	ggtatgtaac	2700
agcgaccgtg	tgctcaaaag	aagtgctgaa	ggaagcaacc	ctcctaaacc	actgaaaaaa	2760
ctacgctttg	atattgaagg	atcagatgaa	gcagatggaa	gtaaacatct	cccaggagag	2820
tccaaatttc	agcagaaact	ggcagaaatg	acttctactc	gaacacgaat	gcaaaagcag	2880
aaaatgaatg	atagcatgga	tacctcaaac	aaggaagaga	aatgaggatc	tcaggacctt	2940
ggtggacact	gtgtacacct	ctggattcat	tgtctctcac	agatgtgact	gtataacttt	3000
cccaggttct	gtttatggcc	acatttaata	tcttcagctc	ttttgtgga	tataaaatgt	3060
gcagatgcaa	ttgtttgggt	gagtcctaag	ccacttgaaa	tgttagtcat	tgttatttat	3120
acaagattga	aaatcttgtg	taaatcctgc	catttaaaaa	gttgtagcag	attgtttcct	3180
cttccaaagt	aaaattgctg	tgctttatgg	atagtaagaa	tggccctaga	gtgggagtcc	3240
tgataaccca	ggcctgtctg	actactttgc	cttcttttgt	agcatatagg	tgatgtttgc	3300
tcttgttttt	attaatttat	atgtatattt	ttttaattta	acatgaacac	ccttagaaaa	3360
tgtgtcctat	ctatcttcca	aatgcaattt	gattgactgc	ccattcacca	aaattatcct	3420
gaactcttct	gcaaaaatgg	atattattag	aaattagaaa	aaaattacta	attttacaca	3480
ttagatttta	ttttactatt	ggaatctgat	atactgtgtg	cttgttttat	aaaattttgc	3540
ttttaattaa	ataaaagctg	gaagcaaagt	ataaccatat	gatactatca	tactactgaa	3600
acagatttca	tacctcagaa	tgtaaaagaa	cttactgatt	attttcttca	tccaacttat	3660
gtttttaaat	gaggattatt	gatagtactc	ttggttttta	taccattcag	atcactgaat	3720
ttataaagta	cccatctagt	acttgaaaaa	gtaaagtgtt	ctgccagatc	ttaggtatag	3780
aggaccctaa	cacagtatat	cccaagtgca	ctttctaatg	tttctgggtc	ctgaagaatt	3840
aagatacaaa	ttaattttac	tccataaaca	gactgttaat	tataggagcc	ttaatttttt	3900
tttcatagag	atttgtctaa	ttgcatctca	aaattattct	gccctcctta	atttgggaag	3960
gtttgtgttt	tctctggaat	ggtacatgtc	ttccatgtat	cttttgaact	ggcaattgtc	4020
tatttatctt	ttatttttt	aagtcagtat	ggtctaacac	tggcatgttc	aaagccacat	4080
tatttctagt	ccaaaattac	aagtaatcaa	gggtcattat	gggttaggca	ttaatgtttc	4140
tatctgattt	tgtgcaaaag	cttcaaatta	aaacagctgc	attagaaaaa	gaggegette	4200
tcccctcccc	tacacctaaa	ggtgtattta	aactatcttg	tgtgattaac	ttatttagag	4260
atgctgtaac	ttaaaatagg	ggatatttaa	ggtagcttca	gctagctttt	aggaaaatca	4320
ctttgtctaa	ctcagaatta	tttttaaaaa	gaaatctggt	cttgttagaa	aacaaaattt	4380
tattttgtgc	tcatttaagt	ttcaaactta	ctattttgac	agttatttg	ataacaatga	4440
cactagaaaa	cttgactcca	tttcatcatt	gtttctgcat	gaatatcata	caaatcagtt	4500
agtttttagg	tcaagggctt	actatttctg	ggtettttge	tactaagttc	acattagaat	4560
tagtgccaga	attttaggaa	cttcagagat	cgtgtattga	gatttcttaa	ataatgcttc	4620
agatattatt	gctttattgc	tttttgtat	tggttaaaac	tgtacattta	aaattgctat	4680
gttactattt	tctacaatta	atagtttgtc	tattttaaaa	taaattagtt	gttaagagtc	4740

<210> SEQ ID NO 39 <211> LENGTH: 4608 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUI	ENCE: 39					
atggagaata	gtcttagatg	tgtttgggta	cccaagctgg	cttttgtact	cttcggagct	60
tccttgctca	gcgcgcatct	tcaagtaacc	ggttttcaaa	ttaaagcttt	cacagcactg	120
cgcttcctct	cagaaccttc	tgatgccgtc	acaatgcggg	gaggaaatgt	cctcctcgac	180
tgctccgcgg	agtccgaccg	aggagttcca	gtgatcaagt	ggaagaaaga	tggcattcat	240
ctggccttgg	gaatggatga	aaggaagcag	caactttcaa	atgggtetet	gctgatacaa	300
aacatacttc	attccagaca	ccacaagcca	gatgagggac	tttaccaatg	tgaggcatct	360
ttaggagatt	ctggctcaat	tattagtcgg	acagcaaaag	ttgcagtagc	aggaccactg	420
aggttccttt	cacagacaga	atctgtcaca	gccttcatgg	gagacacagt	gctactcaag	480
tgtgaagtca	ttggggagcc	catgccaaca	atccactggc	agaagaacca	acaagacctg	540
actccaatcc	caggtgactc	ccgagtggtg	gtettgeeet	ctggagcatt	gcagatcagc	600
cgactccaac	cgggggacat	tggaatttac	cgatgctcag	ctcgaaatcc	agccagctca	660
agaacaggaa	atgaagcaga	agtcagaatt	ttatcagatc	caggactgca	tagacagctg	720
tattttctgc	aaagaccatc	caatgtagta	gccattgaag	gaaaagatgc	tgtcctggaa	780
tgttgtgttt	ctggctatcc	tccaccaagt	tttacctggt	tacgaggcga	ggaagtcatc	840
caactcaggt	ctaaaaagta	ttctttattg	ggtggaagca	acttgcttat	ctccaatgtg	900
acagatgatg	acagtggaat	gtatacctgt	gttgtcacat	ataaaaatga	gaatattagt	960
gcctctgcag	agctcacagt	cttggttccg	ccatggtttt	taaatcatcc	ttccaacctg	1020
tatgcctatg	aaagcatgga	tattgagttt	gaatgtacag	tctctggaaa	gcctgtgccc	1080
actgtgaatt	ggatgaagaa	tggagatgtg	gtcattccta	gtgattattt	tcagatagtg	1140
ggaggaagca	acttacggat	acttggggtg	gtgaagtcag	atgaaggctt	ttatcaatgt	1200
gtggctgaaa	atgaggctgg	aaatgcccag	accagtgcac	agctcattgt	ccctaagcct	1260
gcaatcccaa	gctccagtgt	cctcccttcg	gctcccagag	atgtggtccc	tgtcttggtt	1320
tccagccgat	ttgtccgtct	cagctggcgc	ccacctgcag	aagcgaaagg	gaacattcaa	1380
actttcacgg	tettttete	cagagaaggt	gacaacaggg	aacgagcatt	gaatacaaca	1440
cagcctgggt	cccttcagct	cactgtggga	aacctgaagc	cagaagccat	gtacaccttt	1500
cgagttgtgg	cttacaatga	atggggaccg	ggagagagtt	ctcaacccat	caaggtggcc	1560
acacagcctg	agttgcaagt	tccagggcca	gtagaaaacc	tgcaagctgt	atctacctca	1620
cctacctcaa	ttcttattac	ctgggaaccc	cctgcctatg	caaacggtcc	agtccaaggt	1680
tacagattgt	tctgcactga	ggtgtccaca	ggaaaagaac	agaatataga	ggttgatgga	1740
ctatcttata	aactggaagg	cctgaaaaaa	ttcaccgaat	atagtetteg	attettaget	1800
tataatcgct	atggtccggg	cgtctctact	gatgatataa	cagtggttac	actttctgac	1860
gtgccaagtg	ccccgcctca	gaacgtctcc	ctggaagtgg	tcaattcaag	aagtatcaaa	1920
gttagctggc	tgcctcctcc	atcaggaaca	caaaatggat	ttattaccgg	ctataaaatt	1980
cgacacagaa	agacgacccg	caggggtgag	atggaaacac	tggagccaaa	caacctctgg	2040
tacctattca	caggactgga	gaaaggaagt	cagtacagtt	tccaggtgtc	agccatgaca	2100
gtcaatggta	ctggaccacc	ttccaactgg	tatactgcag	agactccaga	gaatgatcta	2160
gatgaatctc	aagtteetga	tcaaccaagc	tctcttcatg	tgaggcccca	gactaactgc	2220

				-0011011	lueu	
atcatcatga	gttggactcc	tcccttgaac	ccaaacatcg	tggtgcgagg	ttatattatc	2280
ggttatggcg	ttgggagccc	ttacgctgag	acagtgcgtg	tggacagcaa	gcagcgatat	2340
tattccattg	agaggttaga	gtcaagttcc	cattatgtaa	tctccctaaa	agcttttaac	2400
aatgccggag	aaggagttcc	tctttatgaa	agtgccacca	ccaggtctat	aaccgatccc	2460
actgacccag	ttgattatta	tcctttgctt	gatgatttcc	ccacctcggt	cccagatctc	2520
tccaccccca	tgeteecace	agtaggtgta	caggctgtgg	ctcttaccca	tgatgctgtg	2580
agggtcagct	gggcagacaa	ctctgtccct	aagaaccaaa	agacgtctga	ggtgcgactt	2640
tacaccgtcc	ggtggagaac	cagettttet	gcaagtgcaa	aatacaagtc	agaagacaca	2700
acatctctaa	gttacacagc	aacaggcctc	aaaccaaaca	caatgtatga	attctcggtc	2760
atggtaacaa	aaaacagaag	gtccagtact	tggagcatga	ctgcacatgc	caccacgtat	2820
gaagcagccc	ccacctctgc	tcccaaggac	tttacagtca	ttactaggga	agggaagcct	2880
cgtgccgtca	ttgtgagttg	gcagcctccc	ttggaagcca	atgggaaaat	tactgcttac	2940
atcttatttt	ataccttgga	caagaacatc	ccaattgatg	actggattat	ggaaacaatc	3000
agtggtgata	ggcttactca	tcaaatcatg	gateteaace	ttgatactat	gtattacttt	3060
cgaattcaag	cacgaaattc	aaaaggagtg	gggccactct	ctgatcccat	cctcttcagg	3120
actctgaaag	tggaacaccc	tgacaaaatg	gctaatgacc	aaggtcgtca	tggagatgga	3180
ggttattggc	cagttgatac	taatttgatt	gatagaagca	ccctaaatga	gccgccaatt	3240
ggacaaatgc	accccccgca	tggcagtgtc	actcctcaga	agaacagcaa	cctgcttgtg	3300
atcattgtgg	tcaccgttgg	tgtcatcaca	gtgctggtag	tggtcatcgt	ggctgtgatt	3360
tgcacccgac	gctcttcagc	ccagcagaga	aagaaacggg	ccacccacag	tgctggcaaa	3420
aggaagggca	gccagaagga	cctccgaccc	cctgatcttt	ggatccatca	tgaagaaatg	3480
gagatgaaaa	atattgaaaa	gecatetgge	actgaccctg	caggaaggga	ctctcccatc	3540
caaagttgcc	aagaceteae	accagtcagc	cacagccagt	cagaaaccca	actgggaagc	3600
aaaagcacct	ctcattcagg	tcaagacact	gaggaagcag	ggagctctat	gtccactctg	3660
gagaggtcgc	tggctgcacg	ccgagccccc	cgggccaagc	tcatgattcc	catggatgcc	3720
cagtccaaca	atcctgctgt	cgtgagcgcc	atcccggtgc	caacgctaga	aagtgcccag	3780
tacccaggaa	tcctcccgtc	tcccacctgt	ggatatcccc	acccgcagtt	cactctccgg	3840
cctgtgccat	tcccaacact	ctcagtggac	cgaggtttcg	gagcaggaag	aagtcagtca	3900
gtgagtgaag	gaccaactac	ccaacaacca	cctatgctgc	ccccatctca	gcctgagcat	3960
tctagcagcg	aggaggcacc	aagcagaacc	atccccacag	cttgtgttcg	accaactcac	4020
ccactccgca	gctttgctaa	tcctttgcta	cctccaccaa	tgagtgcaat	agaaccgaaa	4080
gtcccttaca	caccactttt	gtctcagcca	gggcccactc	ttcctaagac	ccatgtgaaa	4140
acagcetece	ttgggttggc	tggaaaagca	agatcccctt	tgcttcctgt	gtctgtgcca	4200
acagcccctg	aagtgtctga	ggagagccac	aaaccaacag	aggattcagc	caatgtgtat	4260
gaacaggatg	atctgagtga	acaaatggca	agtttggaag	gactcatgaa	gcagcttaat	4320
gccatcacag	gctcagcctt	ttaacatgta	tttctgaatg	gatgaggtga	attttccggg	4380
aactttgcag	cataccaatt	acccataaac	agcacacctg	tgtccaagaa	ctctaaccag	4440
		accactcagt				4500
		0-		, , , ,	5 55	

ataagcatte ettettea aggeateag aattgteaa tgatgatta gagtteeta 4560 aacaaaagea aagatgeatt tteaetgeaa tgeeaagtt tagetgeet 4608 <2105 SEQ ID NO 40 <2115 UENETH: 855 <2125 TFF: DNA <2135 ORGANISM: Homo sapiens <4005 SEQUENCE: 40 ceccageette ettegeaage eettee ettegee ettegee ettegee ettegee ettegee ceccageettege tecceageet ettegeegee ettegeege gegagagge gegaeeeett 100 cecteogeet eggeggagga eatggegge gegaeageet 100 cecteogeet eggeggagga eatggegge gegaeageet 100 cecteogeet eggeggagga eatggeege gegaggagga ettggeege gegaeageett 100 cecteogeet eggeggagga eatggeege gegaggagga ettggeege easaggeege tggaatgget 240 ceaggeegtg gteageet tegeegage gegteeateet atteatatt eeaaateea 360 gtttettig gitataage geeteate tattitaag aatgitade ateatatt egaataea 360 gtttettig gitataage geeteate tattitaag aatgitade ateatagaat 420 attiggaga getgetgaa aaaattata teteteegge tiggataggat 480 ggaaaaatgi ettgetgge aacaaagga easagaaga tiggatagaat 480 gegaaaatgi ettgetgge accaaagga easagaga tiaaggaa eagaacaa 600 tgeagegaa etteggaat tegeetti tetteaeae tgeeggagg tiggeaaat 780 aaaacgate ettagaega easatgig taeaggaa ttaatggig tiggeaaat 780 aaaacgate ettagaaga eesattaa attaagee etaaggag tiggeaaat 960 tgaatgtag gteegaaa tegeaaat atteagee gitaaggaat taeegaga 900 attaacaaa etgiacega eesattaa atteagee gaaagget tiggeaaatt 960 tgaatgteg gitaeegaa eesattaa atteagee taaggaga tiggeeaata 960 tgaatgteg gatggittig eesaaag eesaagge gaaggat gagaaatt 100 aateatee etgaagaa eesaatta atteeagee taagaaga tegeegagta 100 aateatee etgaagaa aggeeat tiggaaagt ataceaga 200 aateatee etgaagaa agtattee gaagageat tiggaaagt 100 aateatee etgaagaa agtattee gaaagee tigaaagee 1100 gaaacaae atgaataga agtattee gaaagee tigaaagee tigdaaage 1100 gaaacaae atgaataga agtattee geaagee tigaatee tigteaaae 1200 aagtaetta ataatgg agataaet tigeatgee tigtaaae 1300 tgeaaggegag aggeegeba eagaageb tigaatee tigteaaae 1300 tgeaaggegag gaeegeba eagaageb tigaatee tigteaaae 1320 tgeaaggegag aggeegeba eagaagebe tigaatagee tieteaatee 1320 tgeaaggegg gaeetaag tigteegee tigteeteet titeg
2:10 - SRQ ID NO 40 (2:11) - ERNENT: 8959 (2:12) TFFE: DNA (2:13) - ORGANINS: Homo maplems (400> SEQUENCE: 40 coccaspecte ettgecaaeg coccettee ettecesgee caggeegeg geegaceet table etters in the e
<pre>clisterpt: 0000 clisterpt: 0000 clist</pre>
coccagoct citigocaacg coccettice eteteceet ecegetege getgaceece 60 cateceece cocgtgggaa caetgggag etgacaetea cagaceete ettgeceete 120 teoeteace cageetege ecegegeagga caetgeoege caeggeoege geceaceett 180 cocteegee coccegee geogggagga caetgeoege caeaggeoeg geceaceet 180 coctageeegg gitageeget tegacagae gettecaata aaaacagga ageagaaca 300 acataceaa gitageeget tegacagae gettecaata acaatagae ageagaaca 360 gitteettg gitataage goetecaae ggaaggeta ateatatt ceaataeaa 360 gitteettg gitataage goetecaae taettaag aatgitaaa atagagaat 420 aatteggagaa getgegeaa aaaattaa teeteeteag tigatatat tggataeae 480 ggaaaatg etgeeggaa aceaaagga caeaagaga tigatgaaa egageegge gaaceagea 600 tgeageegg etteegaaa teegeeatt teeteaga atgitagaa egageegg 540 caaacagtg etgeeggaa teegeeagga taeaagaga tagatgaaa egageegg 540 caaatgeege etteegaaa teegeeatt teeteace tgeeggaa gaaacagea 600 tgeageega etteegaaa teegeeatt teeteace tgeeggaag gaaacagaa 720 caatgeege etteegaa teegeeagg getteata taatgeegaa taacegga 720 caatgeege etteegaaa teegeeatt aeegatate aatgeegaat geegaaatt 780 aaaacagee etgaagaa cageatta attaaagee etaagaag tigeeaaatt 780 aaaacagae etgaagaa cageatta attaaage etaagaag tigeeaaatt 780 aaaacagae etgaacaga teegaaga teegaag tigeaaatt aeeagaag 900 attaacaaa etgaacaga teecaagaa taeeagaa tateeaaga ageegeett 960 tgactege gaegetteg etgaacagae tegaaageeat tegeacaga 1020 aateatee ettaeteg geegaaca aaceegaa aaceegaa taeeagaag eegeegteg 1100 aacatae atgaataag agtatte ggacageta egaaagee tigeeagat 1200 aagtaata atagaeag ageagetg etgaatage tegaatgee tigeeaage 1200 aagtaeta ataaategg aagaatae etgetetee tegetegaa 1120 iagagaaga ageagetg etgaataee tgeteaga geegeegge 1320 igeegaaggi gaetaetg itteatae agtaagee teeeaaga geegeagee 1320 igeegaagi gaeteatag itteatee agtaagee teeeaaga geegeagee 1320 igeegaagi gaetaetag etgetee gaatteee teeteaga geegeagee 1320 igeegaagi gaetaetag teeteaca itteeceaa teeteaga geegeageege 1320
catececae ecceptggaa caetggage etgeaecte caeggeegeg geceaect 120 teeeteece cageeteege teeeggee etgegeegge caeggeegeg geceaect 120 ceeteegee ceeeggee geegggagga caeggeegee caeggeege geceaect 180 eeeteegeeg geeggeege geegggagga caeggeege caeggeege geeaeace 300 acataceaa geeggeege tegaeggeeg getteeata aaaacaggae ageagaaca 300 getteett gettataage geeteeaa gaaagtet ateatatt ceaataeaa 360 getteett gettataage geeteeaa gaaagtea ategataeaa atagagaat 420 atteggaga geegeega aacaaagga caeaaggaa tagatgaaa cagatgeege t gegaaaatg etgeeggaa aaaattat eeeteeaa teeteeaa atagagaat 420 aatteggaga geegeega aacaaagga caeaagga tagatgaaa egatgeegg 540 caaacagtg etgeeggaa teegeeatt teeteaece tgeeggaag gaaaceagea 600 tgeageega etteeggaat eegeeatt teeteaece tgeeggaag gaaaceagea 600 tgeageega etteeggaat eegeeatt teeteaece tgeeggaag gaaaceagea 600 tgeageega etteeggaat eegeeatt teeteaece tgeeggaag gaaaceagea 600 caatgeegt ttaagaa tegeeatt teeteaeggaa ttaaetggat geeaaaatt 780 aaaacagte etgaagaa cageatta attaaage etaagagag tegeagat 720 caatgetgat geteagaa cageatta attaaage etaagagg tegeeagtt 840 ageagtata aataeceg aaaggeat teggaacg gaaggeeat 900 attaacaa etgaagaa cageatta attaaage caaagaag tegeeagt 900 attaacaa etgaacaga teecaaga tgaatgge gaaageeat 960 tgaatgeeg gaegette etgaagaa aaceeagaa tatecaaga ageeggett 900 attaacaa etgaataga agtettee ggaeagtee tgeaagtee tgeeagat 120 aateattee ettaett etgaatae caaagaag ataceeaga ataeceaga 2000 tgaagaaga ageegeeg eegaaagee tgeaatgee tegaagee tegeegeege 120 aateattee ettaetteg geeggaat etgaatgee gaaageee tegeeggeeg 120 aagtaata ataeatgga agataate tgeeagat etgaaagee etgeegeege 120 aagtaetta ataaatge getteettee etgeegaage eegaagee 1220 gettgatet aagaaceeg tettaae agaagee teteeaga geegeagee 1220 gettgatet aagaaceeg tettaae agataece teteeaga geegeagee 1220 gettgatet aagaaceege tettaae agataece teteeaga geegeagee 1220 gettgatet aagaaceege tettaeee agataece teteeaga geegeagee 1220 gaagaacae tetaagat geegeegeagaaceegeegeegeegeegeegeegeegeegeegeegeegeeg
teocteoset cagoeteoge teocogeet etteocogee etteocogee eaggeegeg geoeacett 180 ecctogeeg ecceeogge geggggggg eaggeegeg eaeggeegeg tegaatgggt 240 ecaggeegtg gteageeget tegaegaaea getteeaat aaaacaggae ageagaaeae 300 acataecaaa gteagtaetg ageacaaeaa ggaatgtet ateaatatt ecaaataea 360 gttteettg gttataageg geeteeaa aaaattata teeteetea ategagaag teggatgat 420 atteggaga getgeegaa aaaattata teeteetea tegataaa eagagga gaaceae 480 ggaaaaatgt ettgeeggee aaceaaagga eaeaatgag teggetgag gaaaceagea 600 tgeegeegga etteggaat eegeett teeteete tegetggaag gaaaceagea 600 tgeegeegaa etteggaat etgeeett teeteete teeteete gaaggaag teagetgat 980 eaaacagteg etteggaat eegeett teeteete teeteeteeteeteeteeteeteete
ccctccgccg ccccccggcc gcgggggggg catggcggg cacaggcgg tggaatgggt 240 ccaggccgtg gtcagccgt tcgacgagca gcttccata aaaacaggac agcagaacac 300 acataccaaa gtcagtactg agcacaaca ggaatgtct atcaattt ccaaatacaa 360 gtttctttg gttataageg gcctcactac tatttaaag aatgtaaca atatgagaat 420 atttggaga gctgctgaaa aaaattata tcctctcag ttgattata tggatacact 480 ggaaaaatgt cttgctgggc aaccaaagga cacaatgag ttagatgaa cgatgctgg 540 caaacagttg ctgccagaa tctgccattt tcttcacac tgccgtgaag gaaaccagca 600 tgcagctgaa cttcggaatt ctgccttg ggtttattt tctcacact gatgagat gaaaccagca 600 tgcagctgaa cttcggaat ctgcctgg ggtttatt tctccage tgcagtaag 720 caatgtagt gttcatgat tagaattgt acagtatac aatgggat tgcgcagat 780 aaaacagatc ctggaagaa cagcattaa attaaagc ctaaagag ttgcgcagt 840 agcagttata aatagcctg aaaaggaat ttggaatgg gaaagag tgcgcagt 840 agcagttata aatagcctg aaaaggaat ttggaatgg gaaagag tgcgcagt 840 agcagttata aatagcctg aaaaggaat tggaatgg gaaagag 120 aattaccaaa cgtaccaga tcccacaga tgaatggc gaagagt ggcacata 1020 aattatcaaaa ctgtaccaga tcccacaga tgaatggc gaaggt tggcaaat 400 tggaggag daggatgtt gccagaaa aaccagaa gcagcagtt ggcacataa 1020 aattatca atagactg gaagagat tggaagta caacggaa tatccaaga gcgggtgg 1140 tggaggagt aggcagta cagaaaggc tgcaatgc cgaaaggtc tggcagcag 1140 tggaggag agcagctg cagaaaggc tgcaattc cgcaaagg ctgcaac g1200 aagtactta atcaatgg aagtaattc ggcagtta cgaaaggc tgcaacag 1220 ggttgatct adgaacceg ttttaatc aagtaagca ttccaagag gcagcagc 1320 ggtggatct aagaacceg ttttaatc aagtaagca ttccaagag gcagcagc 1320 tgcagatgg gatcaaga tggcagcta tgcc tgctatg gcaatgtc agccacaga 1380 caaccaaca ttaagatc gcctggcca gaattcac tctacatt actatgtg 1440 gcaacacac ttaagat gccgcgcca gaattcaca tccacaga tgatggtgg ctaaggt 1440
ccaggcgtg gtaggcggt tcggagca gctccaata aaaacaggac agcagaacac 300 acataccaaa gtagtactg agcacaaca ggaatgtcta atcaatatt ccaaatacaa 360 gttttettg gttataageg geeteacta tatttaaag aatgtaaca atatgagaat 420 atttggagaa getgetgaa aaaattata teteeteag ttgatatat tggatacaa tatgagaat 420 ggaaaaatgt ettgetgge aacaaagga cacaatgaga ttagatgaa egatgetggt 540 caaacagttg etgeeagaa tetgeettt tetteacae tgtegtgaag gaaacagca 600 tgeagetgaa etteggaat etgeettt tetteacag gtgetggag gaaacagca 600 tgeagetgaa etteggaat etgeettt tetteacag gtacagga ttagatgaa egatgetggt 720 caatgtgat gteatgaa tagaatgt acagtatate aatgtggat gteagaaa 720 caatgtgat gteatgaa eageattta attaaagee etaaagaag ttgegeagtt 840 agcagttat atagaetgg aacaaggaa taggatgteg gaaggaat atecagga 900 atttacaaa etgtaccag teecaaga tegaatgg gaaggatg ggaaaatt atecagatg 900 atttacaaa etgtaccag teecaaga tgatatgge gaatgtgeg aaaagetat 960 tgaatgetg gatggtttg etgaaagea caaaegtaa geageagtt ggeeatae 1020 aatecatee ettatetg gteeagaa aateceggat atatecaag aegeggttgg 1080 tgaaaacaa atgaataaga agttattte ggaacgta egaaagete ttgetgegeea 1140 tggagagag aggeagta cagaaagge tgeaatgee tggtaaaat atecaaga 220 aateattee ettatetgg aagataete tgeeattgee tggteaaa tggtgegeea 1200 aagtaettae ateaatggg aagataete tgeeattgee tggteaaa 1220 aagtaettae ateaatggg aagataete tgeeattgee tggteaaa 1220 ggtgaatta ataageetg ttttaatee aagtaagee tggtaagg egagteagee 1320 tgeagagag aggeagetga cagaaagge tgeaattgee tggteaaa tggtaaage 1220 aagtaettae ateaatggg aagataaete tgteatttee ctaettgte agteeatggt 1260 ggttgatett agaaceeg ttttaatee aagtaagee tteeteagag geagteegee 1320 tgeagatgtg gatetatga ttgaetgeet tgtetttee tteeteagag geagteegee 1320 tgeagatgtg gatetatga ttgeetgeet tgtettetge tteetattee aeteatggeet 1440 gataaacaa ttaagatet geetggeta gaattaeet teeteatte aeteatgtgeet 1440 gataaatee teeteaga teeteece teeteattee aeteatggeet teetaattee aeteatgeet 1440
acataccaaa gtoagtactg agoacaacaa ggaatgtota atoaatattt ocaaatacaa 360 gttttottig gttataagog gootootao tattttaaag aatgttaaca atatgagaat 420 atttggagaa getgetgaaa aaaatttat tototocag tigattatat iggatacaot 480 ggaaaaatgt ottgetgggo aaccaaagga cacaatgaga tiagatgaaa ogatgetggt 540 caaacagtig otgocagaaa totgocattt tottocacoo tigogtgaag gaaaccagca 600 tigoagotgaa ottoggaat otgocatg gigtttattt tototoagot goaacaactt 660 caatgoagto tittagtogoa titotaccag gitacaaggaa tiaactigtt gitoagaaga 720 caatgtiga gitoatgata tagaatigtt acagtatato aatgiggatt gigcaaaatt 780 aaaacqacto otgaaggaa cagoatttaa attaaagoo otaaaggaag tigogoagtt 840 agoagtata aatagootgg aaaaggoat tiggaactgg gaagadgag tigogoagtt 840 agoagtata aatagootgg aaaaggoat tiggaactgg gaagadgag tigogoagt 900 atttacaaaa otgtaccaga toccacaga tiggaatgg gaagadgag tigogoagt 900 attacaaaa cigtaccaga toccacaga tiggaatgg gaagadgag tigogoagt 900 attacaaaa cigtaccaga toccacaga caaacgtaa goagoagtt ggocataca 1020 aatoattoo ottaotig gicoagaaa aaccaggaa taaccagga ataccagaa goigtiggi 1000 tigaagaagaa aggaagtig cigaaaggoa caaacgtaa goagoagtt ggocataca 1020 aatoattoo ottaotig gicoagaaa aatocaggaa tatocaaga aggiggiga 1140 tiggaggaagt aggaagetga cagaaagtgo tigoaattigoo tigotgoaaa tigoonagoo 1140 tiggaggaagt aggaagotga cagaaagtgo tigoaattigoo tigotgoaaa tigootaggo 1200 aagaactaa ataatagga agataacto tigotattic ciactigtig agtoaggi 1260 ggitgatott aagaaccigo tittaaco aagaagoa ticocaaga goagoagoo 1320 tigoagatgi gaatoaaga tigootgoo tigottotigo titootaa goootacaa 1380 caaccaacac titaagato gootgoota gaatcacot totacattic actatgigot 1440 ggaaattaa totoataga totoacaa tocgoata toccaaga goagoagoo 1320
gtttettig gitataageg geeteede tatttaaag aatgttaaca atatgagaat 420 attiggagaa getgetgaaa aaaattaa teteteede tigattatat tiggataeaet 480 ggaaaaatgt ettgetggge aaceaaagga cacaatgaga tiagatgaaa egatgetggt 540 caaacagtig etgeeagaaa tetgeeatti tetteeaeee tigegtgaag gaaaceagea 600 tigeagetgaa etteggaat etgeettig gittatti teeteeaga gaaaceagea 660 caatgeagte titagtegea titeteeag gittaeaggaa tiaaetgitt giteeagaaga 720 caatgetgat giteeatgata tagaattgi acagtatate aatgiggat gitgeaaaatt 780 aaaacgaete etgaaggaa eageattia attaaagee etaaagaag tigegeagati 840 ageagettaa aatageegg aaaaggeat tiggaacgg gaaagetga 900 atttaeaaaa etgaeeaga teeeacaga tiggaatgge gaaaggeagt 960 tigaetiggi gatgettig etgaaagea caacegtaa geageageti geeeacaa 1020 aateattee ettaetig giteeagaaa aateeagga ataecegga ataecegga 1080 tigaaaceaa atgaataaga agttatte ggaeagtea egaaagete tigetgeeaa 1020 aageartta ateaatggg aagataete tigeeatgee tigetgeeaa tigetgeee 1140 tiggaggag aggeeagea eagaaagte tigeeattee etgetgeeae 1140 tiggaggag aggeegga eagaagte tigeeattee etgetgeeae tigetgeee 1140 tiggaggagt aggeedga eagaagtee tigetettee etgetgeeae 1120 aagtaetta ateaatggg aggataete tigetettee etgetgeeae 1120 aagtaetta ateaatggg aggataete tigetettee etgetgeeae 1120 aagtaetta ateaatggg aggataete tigetettee etgetgeeae 1120 gitigatett aagaacetge tittaatee aagtaageea teeeaag geeggeegee 11260 gitigatett aagaacetge tittaatee aagtaageea teeeaag geegteagee 11260 gitigatett aagaacetge tittaatee aagtaageea teeeaag geegteagee 11260 gitigatett aagaacetge tittaatee aagtaageea teeeaag geeagteagee 11260 gaatgatet ateaatga tigaetgee tigttettee teeetag geegteagee 11320 tigeagatgi giteetaatga tigeetgee tigttettee teeeatte aetatgiget 1140
atttggagaa gctgctgaa aaaatttata teteteedag ttgattatat tggatacaet 480 ggaaaaatgt ettgetggge aaccaaagga eacaatgaga ttagatgaaa egatgetggt 540 caaacagttg etgeeagaaa tetgeeattt tetteacaee tgtegtgaag gaaaceagea 600 tgeagetgaa etteggaatt etgeetetg ggtttattt teteteaget geaacaaett 660 caatgeagte tttagtegea tttetaeeag gttaeaggaa ttaaetgttt gtteagaaga 720 caatgtagt gtteatgata tagaattgtt acagtatate aatgtggatt gtgeaaaatt 780 aaaaegaete etgaaggaaa cageattaa atttaaagee etaagaagg ttgegeagtt 840 ageagttata aatageetgg aaaaggeatt ttggaaegg gatgaaaatt ateeagatga 900 atttaeaaaa etgtaeeaga teeeagaa tageatgg gatgtagg gaagaagtatt 960 tgaettggt gatggtttg etgaaageae eaaaegtaa geageagttt ggeeeatea 1020 aateattee ettaettgt gteeagaa aateeagaa atteeeagaa aeagetggtgga 1080 tgaaaacaae atgaataaga agttattet ggacagtea egaaagete ttgetgegeea 1140 tggaggaagt aggeagetga cagaagtge tgeaattgee tgtgteaaae tgtgtaage 1200 aagtaetta eataatggg aagtaaete tgteeattge tgtgeeagaa 1220 ggttgatett aagaacege ttttaatee aagtaageea tteeteagag geagteeagee 1320 tgeagatgtg gategttg ttttaatee aagtaageea tteeteagag geagteeagee 1320 tgeagatgtg gatetaatga ttgaetgeet tgtteetige tteegtataa geeeteacaa 1380 caaecaacae tttaagated geetggeta gaatteeet tetaeattte aetatgtget 1440 ggataattee eteetaegaa teeteecaa tteegeattg gattggege etaagattga 1500
ggaaaatgt cttgetggge aaccaaagga cacaatgaga ttagatgaaa cgatgetggt 540 caaacagttg ctgeeagaaa tetgeeatt tetteacaee tgeegtgaag gaaaceagea 600 tgeagetgaa etteggaatt etgeetetgg ggtttattt tetteagat geaacaaett 660 caatgeagte tttagtegea tttetaecag gtaeaggaa ttaaetgttt gtteagaaga 720 caatgttgat gtteatgata tagaattgtt acagtatate aatgtggatt gtgeaaaatt 780 aaaaeegaete etgaaggaaa cageatttaa atttaaagee etaaaggaag ttgegeagtt 840 ageagttata aatageetgg aaaaggeatt ttggaaetgg gtagaaaaatt ateeagatga 900 atttaeaaaa etgtaeeaga tegeaaagte gaatgtgee gaatgtgeag aaaagetatt 960 tgaettggtg gatggtttg etgaaageae eaaegtaaa geageagttt ggeeaetae 1020 aateattee ettaettgt gteeagaaa aateeaggaa ataeeeagaag aegtggttga 1080 tgaaaaeae atgaataaga agttattee ggaeagtee tggteeaae tggetaage 1200 aagtaetta ataeatggg aagataaete tgteattgee tggteeaae tggteaage 1200 aagtaetta aasaeegge ttttaatee aagtaageea tteeeagg geageeagge 1320 tggaggaagt aggeagetga eagaaagtee tgeeattgee tgtgteaae tggteaagge 1320 tggaggagt gatetaatga ttgaetgeet gttettte etaeetgetge 1320 ggttgatet aagaaeetge ttttaatee aagtaageea tteeeagg geageeagee 1320 tgeagatgtg gatetaatga tgaetgeet tgttettge tteegataa geeedeaee 1380 caaeeeaeee tttaagaet geetggetea gaatteaeet tetaeatte aetatgtget 1440 ggtaaattee teeedea teteeeag teeestte gateggeege etaagatta
caaacagttg ctgccagaaa tctgccattt tcttcacacc tgtcgtgaag gaaaccagca 600 tgcagctgaa cttcggaatt ctgccctgg ggtttattt tctcccagct gcaacaactt 660 caatgcagte tttagtcgCa ttteaccag gttacaggaa ttaactgtt gttcagaaga 720 caatgttgat gttcatgata tagaattgt acagtatac aatgtggatt gtgcaaaatt 780 aaaacgacte etgaaggaaa cagcatttaa atttaaagee etaaagaagg ttgegeagtt 840 agcagttata aatageetgg aaaggeatt ttggaactgg gtagaaaatt atceagatga 900 atttacaaaa etgtaccaga teeccacagae tgatagget gaatgtgeag aaaggetat 960 tgacttggtg gatggtttg etgeaagae tgataggea gaatgtgeag aaaggetat 960 tgacttggtg gatggtttg etgeaagae etaaegaag tgegeagtt ggeeaetae 960 tgactagtag ageggttg etgeaagae aatecaggaa attaccaaga agegeggttg 1020 aatecattee ettaetetg gtecagaaa aatecaggaa attaceaag aegtggtga 1080 tggaagaaga aggeagetga eagaaagte tgeaatgee tgegeaaaa tgetagege 1200 aagtaetta acaattggg aagataaete tgteattte etaettgte agtecatggt 1260 ggttgatet aagaacede ttttaatee agtaageea tteteaagag geageteagee 1320 tgeagagtg gatetaatga tigaetgee tgtettetge tteegataa geegeagteagee 1320 tgeagatgtg gatetaatga tigaetgee tgtttettge tteegataa geegeagee 1320 tgeagatgtg gatetaatga tigaetgee tgtttettge tteegataa geegeagee 1320 tgeagatgtg gatetaatga tigaetgee tgtttettge tteegataa geegeagee 1320
tgcagctgaa cttcggaatt ctgcctctgg ggtttatt tctctcagct gcaacaactt 660 caatgcagtc tttagtcgca tttctaccag gttacaggaa ttaactgttt gttcagaaga 720 caatgttgat gttcatgata tagaattgtt acagtatatc aatgtggatt gtgcaaaatt 780 aaaacgactc ctgaaggaaa cagcatttaa atttaaagcc ctaaagaagg ttgcgcagtt 840 agcagttata aatagcctgg aaaaggcatt ttggaactgg gtagaaaatt atccagatga 900 atttacaaaa ctgtaccaga tcccacagac tgatatggct gaatgtgcag aaaagctatt 960 tgacttggtg gatggttttg ctgaaagcac caaacgtaaa gcagcagtt ggccactaca 1020 aatcattete ettaettg gtecagaaat aatecagga atatecaaga acgtggttga 1080 tggaagaagt aggcagctga cagaaagtge tgcaattgee tggtacaage tggtgtagaage 1140 tggaagaagt aggcagctga cagaaagtge tgcaattgee tggtecaaac tggtaaage 1200 aagtaettae ateaattggg aagataaete tgteattte etteetagg geagecage 1320 tgcaagtgtg gatetaatga ttgaetgeet tgttettge tttegtataa gecetcacaa 1380 caaccaacae tttaagate geetggetca gaattcacet tetacattte actatgtget 1440 ggtaaattea etcategaa teaccacaa tteegeattg gattggtgge ctaagatga
caatgcagtc tttagtcgca tttctaccag gttacaggaa ttaactgtt gttcagaaga 720 caatgttgat gttcatgata tagaattgtt acagtatate aatgtggatt gtgcaaaatt 780 aaaacgacte etgaaggaaa eageatttaa atttaaagee etaaagaagg ttgegeagtt 840 ageagttata aatageetgg aaaaggeatt ttggaactgg gtagaaaatt ateeagatg 900 atttacaaaa etgtaccaga teeeacagae tgatatgget gaatgtgeag aaaagetatt 960 tgaettggtg gatggtttg etgaaageae eaaeegtaaa geageagtt ggeeaetae 1020 aateattee ettaettgt gteeagaaat aateeaggat atateeaaag aegtggtga 1080 tggaagaae aggeagetga eagaaagtee tgeaatgee tggtaagee ttgetgegeea 1140 tggaaggaagt aggeagetga eagaagtge tgeaattgee tggtgeaae tggteage 1200 aagteettee ateaattggg aagataaete tgteetttee etteettee agteeaggt 1260 ggttgatett aagaacetge ttttaatee aagtaageea tteeteagag geegeteage 1320 tgeaagtgtg gatetaatga ttgeetgeet tgtteettge tttegataa geeeteaaa 1380 eaaeeeaeee tttaagatet geetggetea gaatteeeet tetaeattte aetatgtget 1440 ggtaaattee eteategaa teateeeaa teegeattg gattggtgge etaagattga 1500
caatgttgat gttcatgata tagaattgt acagtatat aatgtggatt gtgcaaaatt 780 aaaacgacte etgaaggaaa eageatttaa atttaaagee etaaagaagg ttgcgcagtt 840 ageagttata aatageetgg aaaaggeatt ttggaactgg gtagaaaatt ateeagatga 900 atttacaaaa etgtaeeaga teeeacagae tgatatgget gaatgtgeag aaaagetatt 960 tgaettggtg gatggtttg etgaaageae eaaaegtaaa geageagtt ggeeactaea 1020 aateattee ettaettg gteeagaaat aateeaggat atateeaag aegtggtga 1080 tggaagaaga aggeagetga eagaagtge tgeaattgee tggteeaaae tggetgaeage 1140 tggaggaagt aggeagetga eagaaagtge tgeeattgee tggteeaaae tggtgaaage 1200 aagtaettee ateaattggg aagataaete tgteattte ettee ettee tggteeaage 1200 aggttgatett aagaacetge ttttaatee aagtaageea tteeteaagg geegteeagee 1320 tgeaggatgt gatetaatga ttgeetgee tgtetetge tteegtataa geeeteaea 1380 ecaaceaacae ttaagatet geetggeeea gaatteeee teteaette ettee aetatgtgee 1440 ggtaaattee eteeteaga teateaeaa teegeettg gattggtgge etaagattga 1500
aaaacgacte etgaaggaaa cageattaa attaaagee etaaagaagg ttgegeagtt 840 ageagttata aatageetgg aaaaggeatt ttggaactgg gtagaaaatt ateeagatga 900 atttacaaaa etgtaecaga teeeacagae tgatatgget gaatgtgeag aaaagetatt 960 tgaettggtg gatggtttg etgaaageae caaaegtaaa geageagttt ggeeactaea 1020 aateattee ettatettgt gteeagaaat aateeaggat atateeaag aegtggttga 1080 tggaagaaea atgaataaga agttattee ggaeagtee tgeatatgee ttgetggeea 1140 tggaaggaagt aggeagetga eagaaagtge tgeaattgee tgtgteaaae tgtgtaaage 1200 aagtaettae ateaattggg aagataaete tgteatttee etaettgee agteeatggt 1260 ggttgatett aagaacetge ttttaatee aagtaageea tteeteagag geagteagee 1320 tgeagatgtg gatetaatga ttgeetgeet tgtteettge tteegtataa geeeteaga 1380 eaaecaaeae tttaagatet geetggeeta gaatteeet tetaeattte aetatgtget 1440 ggtaaattee eteagate tgeetgeeta gaatteeet tetaeattte aetatgtget 1440
agcagttata aatagcetgg aaaaggcatt ttggaactgg gtagaaaatt atceagatga 900 atttacaaaa etgtaecaga teecaagae tgatatgget gaatgtgeag aaaagetatt 960 tgaettggtg gatggtttg etgaaageae caaaegtaaa geageagttt ggeecaetaea 1020 aateattete ettaettgt gteeagaaat aateeaggat atateeaaag aegtggttga 1080 tggaagaaeaaa atgaataaga agttattee ggaeagteta eggaaagete ttgetggeea 1140 tggaaggaagt aggeagetga eagaaagtge tgeaattgee tgtgteaaae tgtgtaaage 1200 aagtaettae ateaattggg aagataaete tgteattte etaettgte agteeatggt 1260 ggttgatett aagaacetge ttttaatee aagtaageea tteteaagag geagteagee 1320 tgeagatgtg gatetaatga ttgaetgeet tgtteettge tteegtataa geeeteaea 1380 caaeceaaea ttaagatet geetggetea gaatteaeet tetaeatte aetatgget 1440 ggtaaattea eteeategaa teateaceaa tteegeattg gattggtgge etaagattga 1500
atttacaaaa ctgtaccaga teecacagae tgatatgget gaatgtgeag aaaagetat 960 tgaettggtg gatggtttg etgaaageae caaaegtaaa geageagtt ggeeaetaea 1020 aateattete ettatettgt gteeagaaat aateeaggat atateeaaag aegtggttga 1080 tgaaaaeaae atgaataaga agttattet ggaeagteta egaaaagete ttgetggeea 1140 tggaggaagt aggeagetga eagaaagtge tgeaattgee tgtgteaaae tgtgtaaage 1200 aagtaettae ateaattggg aagataaete tgteattte etaettgte agteeatgge 1260 ggttgatett aagaaeetge ttttaatee aagtaageea tteteaagag geagteagee 1320 tgeagatgtg gatetaatga ttgeetgeet tgtteetge tttegtataa geeeteaeaa 1380 eaaeeaaee tttaagatet geetggetea gaatteaeet tetaeatte aetatgtget 1440 ggtaaattee eteeteaga teateaceaa tteegeattg gattggtgge etaagattga 1500
tgacttggtg gatggtttg ctgaaagcac caaacgtaaa gcagcagttt ggccactaca 1020 aatcattete ettatettgt gtecagaaat aatecaggat atatecaaag acgtggttga 1080 tgaaaacaac atgaataaga agttattet ggacagteta egaaaagete ttgetggeca 1140 tggaggaagt aggcagetga cagaaagtge tgeaattgee tgtgteaaae tgtgtaaage 1200 aagtaettae ateaattggg aagataaete tgteattte etaettgte agteeatggt 1260 ggttgatett aagaacetge ttttaatee aagtaageea tteteaagag geagteagee 1320 tgeagatgtg gatetaatga ttgeetgeet tgtteettge tttegtataa geeeteacaa 1380 caaeceaaeae tttaagatet geetggetea gaatteaeet tetaeattte aetatgtget 1440 ggtaaattea eteeategaa teateaceaa tteegeattg gattggtgge etaagattga 1500
aatcattete ettatettigt gteeagaaat aateeaggat atateeaaag aegtggttga 1080 tgaaaacaac atgaataaga agttattet ggacagteta egaaaagete ttgetggeea 1140 tggagggaagt aggeagetga eagaaagtge tgeaattgee tgtgteaaae tgtgtaaage 1200 aagtaettae ateaattggg aagataaete tgteattte etaettgte agteeatggt 1260 ggttgatett aagaaeetge ttttaatee aagtaageea tteteaagag geagteagee 1320 tgeagatgtg gatetaatga ttgeetgeet tgtteetge tttegtataa geeeteaeaa 1380 eaaeeaaee tttaagatet geetggetea gaatteaeet tetaeatte aetatgtget 1440 ggtaaattea eteeategaa teateaceaa tteegeattg gattggtgge etaagattga 1500
tgaaaacaac atgaataaga agttatttet ggacagteta egaaaagete ttgetggeea 1140 tggaggaagt aggeagetga eagaaagtge tgeaattgee tgtgteaaae tgtgtaaage 1200 aagtaettae ateaattggg aagataaete tgteattte etaettgtte agteeatggt 1260 ggttgatett aagaaeetge tttttaatee aagtaageea tteteaagag geagteagee 1320 tgeagatgg gatetaatga ttgeetgeet tgtteettge tttegtataa geeeteacaa 1380 eaaeeeaaee tttaagatet geetggetea gaatteaeet tetaeattte aetatgtget 1440 ggtaaattea eteeategaa teateaceaa tteegeattg gattggtgge etaagattga 1500
tggaggaagt aggcagctga cagaaagtge tgcaattgee tgtgtcaaae tgtgtaaage 1200 aagtaettae ateaattggg aagataaete tgteattte etaettgte agteeatggt 1260 ggttgatett aagaaeetge tttttaatee aagtaageea tteeeaagag geagteagee 1320 tgeagatgtg gatetaatga ttgaetgeet tgtteettge tteegtataa geeeteaeaa 1380 caaeeaaee tttaagatet geetggetea gaatteaeet teetaeatte aetatgtget 1440 ggtaaattea eteeategaa teateaeeaa tteegeattg gattggtgge etaagattga 1500
aagtacttac atcaattggg aagataacte tgteattte etaettgtte agteeatggt 1260 ggttgatett aagaacetge tttttaatee aagtaageea tteteaagag geagteagee 1320 tgeagatgtg gatetaatga ttgaetgeet tgtteettge tttegtataa geeeteacaa 1380 caaceaacae tttaagatet geetggetea gaatteaeet tetaeatte aetatgtget 1440 ggtaaattea eteeategaa teateaceaa tteegeattg gattggtgge etaagattga 1500
ggttgatett aagaacetge tttttaatee aagtaageea tteteaagag geagteagee 1320 tgeagatgtg gatetaatga ttgaetgeet tgtttettge tttegtataa geeeteacaa 1380 caaceaacae tttaagatet geetggetea gaatteaeet tetaeatte aetatgtget 1440 ggtaaattea eteeategaa teateaceaa tteegeattg gattggtgge etaagattga 1500
tgcagatgtg gatctaatga ttgactgcct tgtttcttgc tttcgtataa gccctcacaa 1380 caaccaacac tttaagatct gcctggctca gaattcacct tctacatttc actatgtgct 1440 ggtaaattca ctccatcgaa tcatcaccaa ttccgcattg gattggtggc ctaagattga 1500
caaccaacac tttaagatct gcctggctca gaattcacct tctacatttc actatgtgct 1440 ggtaaattca ctccatcgaa tcatcaccaa ttccgcattg gattggtggc ctaagattga 1500
ggtaaattca ctccatcgaa tcatcaccaa ttccgcattg gattggtggc ctaagattga 1500
agtgcaaggt tgtggagcac acccagcaat acgaatggca ccgagtctta catttaaaga 1620
aaaagtaaca agcettaaat ttaaagaaaa acetacagae etggagacaa gaagetataa 1680
gtatettete tigtecatgg igaaactaat teatgeagat eeaaagetet igettigtaa 1740
ggttetteat eagttagata geattgattt gtggaateet gatgeteetg tagaaaeatt 1920

-cont	inued	
CONC	TITUCU	

				-contir	nued	
ttgggagatt	agctcacaaa	tgcttttta	catctgcaag	aaattaacta	gtcatcaaat	1980
gcttagtagc	acagaaattc	tcaagtggtt	gcgggaaata	ttgatctgca	ggaataaatt	2040
tcttcttaaa	aataagcagg	cagatagaag	ttcctgtcac	tttctccttt	tttacggggt	2100
aggatgtgat	attccttcta	gtggaaatac	cagtcaaatg	tccatggatc	atgaagaatt	2160
actacgtact	cctggagcct	ctctccggaa	gggaaaaggg	aactcctcta	tggatagtgc	2220
agcaggatgc	agcggaaccc	ccccaatttg	ccgacaagcc	cagaccaaac	tagaagtggc	2280
cctgtacatg	tttctgtgga	accctgacac	tgaagctgtt	ctggttgcca	tgtcctgttt	2340
ccgccacctc	tgtgaggaag	cagatatccg	gtgtggggtg	gatgaagtgt	cagtgcataa	2400
cctcttgccc	aactataaca	cattcatgga	gtttgcctct	gtcagcaata	tgatgtcaac	2460
aggaagagca	gcacttcaga	aaagagtgat	ggcactgctg	aggcgcattg	agcatcccac	2520
tgcaggaaac	actgaggctt	gggaagatac	acatgcaaaa	tgggaacaag	caacaaagct	2580
aatccttaac	tatccaaaag	ccaaaatgga	agatggccag	gctgctgaaa	gccttcacaa	2640
gaccattgtt	aagaggcgaa	tgtcccatgt	gagtggagga	ggatccatag	atttgtctga	2700
cacagactcc	ctacaggaat	ggatcaacat	gactggcttc	ctttgtgccc	ttggaggagt	2760
gtgcctccag	cagagaagca	attctggcct	ggcaacctat	agcccaccca	tgggtccagt	2820
cagtgaacgt	aagggttcta	tgatttcagt	gatgtcttca	gagggaaacg	cagatacacc	2880
tgtcagcaaa	tttatggatc	ggctgttgtc	cttaatggtg	tgtaaccatg	agaaagtggg	2940
acttcaaata	cggaccaatg	ttaaggatct	ggtgggtcta	gaattgagtc	ctgctctgta	3000
tccaatgcta	tttaacaaat	tgaagaatac	catcagcaag	ttttttgact	cccaaggaca	3060
ggttttattg	actgatacca	atactcaatt	tgtagaacaa	accatagcta	taatgaagaa	3120
cttgctagat	aatcatactg	aaggcagctc	tgaacatcta	gggcaagcta	gcattgaaac	3180
aatgatgtta	aatctggtca	ggtatgttcg	tgtgcttggg	aatatggtcc	atgcaattca	3240
aataaaaacg	aaactgtgtc	aattagttga	agtaatgatg	gcaaggagag	atgacctctc	3300
attttgccaa	gagatgaaat	ttaggaataa	gatggtagaa	tacctgacag	actgggttat	3360
gggaacatca	aaccaagcag	cagatgatga	tgtaaaatgt	cttacaagag	atttggacca	3420
ggcaagcatg	gaagcagtag	tttcacttct	agctggtctc	cctctgcagc	ctgaagaagg	3480
agatggtgtg	gaattgatgg	aagccaaatc	acagttattt	cttaaatact	tcacattatt	3540
tatgaacctt	ttgaatgact	gcagtgaagt	tgaagatgaa	agtgcgcaaa	caggtggcag	3600
gaaacgtggc	atgtctcgga	ggctggcatc	actgaggcac	tgtacggtcc	ttgcaatgtc	3660
aaacttactc	aatgccaacg	tagacagtgg	tctcatgcac	tccataggct	taggttacca	3720
caaggatete	cagacaagag	ctacatttat	ggaagttctg	acaaaaatcc	ttcaacaagg	3780
cacagaattt	gacacacttg	cagaaacagt	attggctgat	cggtttgaga	gattggtgga	3840
actggtcaca	atgatgggtg	atcaaggaga	actccctata	gcgatggctc	tggccaatgt	3900
ggttccttgt	tctcagtggg	atgaactagc	tcgagttctg	gttactctgt	ttgattctcg	3960
gcatttactc	taccaactgc	tctggaacat	gttttctaaa	gaagtagaat	tggcagactc	4020
catgcagact	ctcttccgag	gcaacagctt	ggccagtaaa	ataatgacat	tctgtttcaa	4080
ggtatatggt	gctacctatc	tacaaaaact	cctggatcct	ttattacgaa	ttgtgatcac	4140
atcctctgat	tggcaacatg	ttagctttga	agtggatcct	accaggttag	aaccatcaga	4200

				CONCIN	lucu	
gagcettgag	gaaaaccagc	ggaacctcct	tcagatgact	gaaaagttct	tccatgccat	4260
catcagttcc	tcctcagaat	tccccctca	acttcgaagt	gtgtgccact	gtttatacca	4320
ggtggttagc	cagcgtttcc	ctcagaacag	catcggtgca	gtaggaagtg	ccatgttcct	4380
cagatttatc	aatcctgcca	ttgtctcacc	gtatgaagca	gggattttag	ataaaaagcc	4440
accacctaga	atcgaaaggg	gcttgaagtt	aatgtcaaag	atacttcaga	gtattgccaa	4500
tcatgttctc	ttcacaaaag	aagaacatat	gcggcctttc	aatgattttg	tgaaaagcaa	4560
ctttgatgca	gcacgcaggt	ttttccttga	tatagcatct	gattgtccta	caagtgatgc	4620
agtaaatcat	agtctttcct	tcataagtga	cggcaatgtg	cttgctttac	atcgtctact	4680
ctggaacaat	caggagaaaa	ttgggcagta	tctttccagc	aacagggatc	ataaagctgt	4740
tggaagacga	ccttttgata	agatggcaac	acttcttgca	tacctgggtc	ctccagagca	4800
caaacctgtg	gcagatacac	actggtccag	ccttaacctt	accagttcaa	agtttgagga	4860
atttatgact	aggcatcagg	tacatgaaaa	agaagaattc	aaggctttga	aaacgttaag	4920
tattttctac	caagctggga	cttccaaagc	tgggaatcct	atttttatt	atgttgcacg	4980
gaggttcaaa	actggtcaaa	tcaatggtga	tttgctgata	taccatgtct	tactgacttt	5040
aaagccatat	tatgcaaagc	catatgaaat	tgtagtggac	cttacccata	ccgggcctag	5100
caatcgcttt	aaaacagact	ttctctctaa	gtggtttgtt	gtttttcctg	gctttgctta	5160
cgacaacgtc	tccgcagtct	atatctataa	ctgtaactcc	tgggtcaggg	agtacaccaa	5220
gtatcatgag	cggctgctga	ctggcctcaa	aggtagcaaa	aggettgttt	tcatagactg	5280
tcctgggaaa	ctggctgagc	acatagagca	tgaacaacag	aaactacctg	ctgccacctt	5340
ggctttagaa	gaggacctga	aggtattcca	caatgctctc	aagctagctc	acaaagacac	5400
caaagtttct	attaaagttg	gttctactgc	tgtccaagta	acttcagcag	agcgaacaaa	5460
agtcctaggg	caatcagtct	ttctaaatga	catttattat	gcttcggaaa	ttgaagaaat	5520
ctgcctagta	gatgagaacc	agttcacctt	aaccattgca	aaccagggca	cgccgctcac	5580
cttcatgcac	caggagtgtg	aagccattgt	ccagtctatc	attcatatcc	ggacccgctg	5640
ggaactgtca	cagcccgact	ctatccccca	acacaccaag	attcggccaa	aagatgtccc	5700
tgggacactg	ctcaatatcg	cattacttaa	tttaggcagt	tctgacccga	gtttacggtc	5760
agctgcctat	aatcttctgt	gtgccttaac	ttgtaccttt	aatttaaaaa	tcgagggcca	5820
gttactagag	acatcaggtt	tatgtatccc	tgccaacaac	accctcttta	ttgtctctat	5880
tagtaagaca	ctggcagcca	atgagccaca	cctcacgtta	gaatttttgg	aagagtgtat	5940
ttctggattt	agcaaatcta	gtattgaatt	gaaacacctt	tgtttggaat	acatgactcc	6000
atggctgtca	aatctagttc	gtttttgcaa	gcataatgat	gatgccaaac	gacaaagagt	6060
tactgctatt	cttgacaagc	tgataacaat	gaccatcaat	gaaaaacaga	tgtacccatc	6120
tattcaagca	aaaatatggg	gaagcettgg	gcagattaca	gatctgcttg	atgttgtact	6180
agacagtttc	atcaaaacca	gtgcaacagg	tggcttggga	tcaataaaag	ctgaggtgat	6240
ggcagatact	gctgtagctt	tggcttctgg	aaatgtgaaa	ttggtttcaa	gcaaggttat	6300
tggaaggatg	tgcaaaataa	ttgacaagac	atgcttatct	ccaactccta	ctttagaaca	6360
acatcttatg	tgggatgata	ttgctatttt	agcacgctac	atgctgatgc	tgtccttcaa	6420
caattccctt	gatgtggcag	ctcatcttcc	ctacctcttc	cacgttgtta	ctttcttagt	6480

-continued	
agccacaggt ccgctctccc ttagagcttc cacacatgga ctggtcatta atatcattca	6540
ctctctgtgt acttgttcac agcttcattt tagtgaagag accaagcaag ttttgagact	6600
cagtetgaca gagtteteat tacceaaatt ttaettgetg tttggeatta geaaagteaa	6660
gtcagetget gtcattgeet teegtteeag ttaeegggae aggteattet eteetggete	6720
ctatgagaga gagacttttg ctttgacatc cttggaaaca gtcacagaag ctttgttgga	6780
gatcatggag gcatgcatga gagatattcc aacgtgcaag tggctggacc agtggacaga	6840
actageteaa agatttgeat tecaatataa tecateeetg caaceaagag etettgttgt	6900
ctttgggtgt attagcaaac gagtgtctca tgggcagata aagcagataa tccgtattct	6960
tagcaaggca cttgagagtt gcttaaaagg acctgacact tacaacagtc aagttctgat	7020
agaagctaca gtaatagcac taaccaaatt acagccactt cttaataagg actcgcctct	7080
gcacaaagcc ctcttttggg tagctgtggc tgtgctgcag cttgatgagg tcaacttgta	7140
ttcagcaggt accgcacttc ttgaacaaaa cctgcatact ttagatagtc tccgtatatt	7200
caatgacaag agtccagagg aagtatttat ggcaatccgg aatcctctgg agtggcactg	7260
caagcaaatg gatcattttg ttggactcaa tttcaactct aactttaact ttgcattggt	7320
tggacacett ttaaaagggt acaggeatee tteacetget attgttgeaa gaacagteag	7380
aattttacat acactactaa ctctggttaa caaacacaga aattgtgaca aatttgaagt	7440
gaatacacag agcgtggcct acttagcagc tttacttaca gtgtctgaag aagttcgaag	7500
tcgctgcagc ctaaaacata gaaagtcact tcttcttact gatatttcaa tggaaaatgt	7560
teetatggat acatateeca tteateatgg tgaceettee tataggacae taaaggagae	7620
tcagccatgg teeteteeca aaggttetga aggataeett geageeaeet ateeaaetgt	7680
cggccagacc agtccccgag ccaggaaatc catgagcctg gacatggggc aaccttctca	7740
ggccaacact aagaagttgc ttggaacaag gaaaagtttt gatcacttga tatcagacac	7800
aaaggeteet aaaaggeaag aaatggaate agggateaca acaeeeeeca aaatgaggag	7860
agtagcagaa actgattatg aaatggaaac tcagaggatt tcctcatcac aacagcaccc	7920
acatttacgt aaagtttcag tgtctgaatc aaatgttctc ttggatgaag aagtacttac	7980
tgateegaag ateeaggege tgettettae tgttetaget acaetggtaa aatataeeae	8040
agatgagttt gatcaacgaa ttctttatga atacttagca gaggccagtg ttgtgtttcc	8100
caaagtettt eetgttgtge ataatttgtt ggaetetaag ateaacaeee tgttateatt	8160
gtgccaagat ccaaatttgt taaatccaat ccatggaatt gtgcagagtg tggtgtacca	8220
tgaagaatee ceaceacaat accaaacate ttaeetgeaa agttttggtt ttaatggett	8280
gtggcggttt gcaggaccgt tttcaaagca aacacaaatt ccagactatg ctgagcttat	8340
tgttaagttt cttgatgcct tgattgacac gtacctgcct ggaattgatg aagaaaccag	8400
tgaagaatee eteetgaete ceacatetee ttaeceteet geactgeaga geeagettag	8460
tatcactgcc aaccttaacc tttctaattc catgacctca cttgcaactt cccagcattc	8520
cccaggaatc gacaaggaga acgttgaact ctcccctacc actggccact gtaacagtgg	8580
acgaactogo caoggatoog caagocaagt goagaagoaa agaagogotg goagtttoaa	8640
acgtaatagc attaagaaga tcgtgtgaag cttgcttgct ttcttttta aaatcaactt	8700
aacatgggct cttcactagt gaccccttcc ctgtccttgc cctttcccccc catgttgtaa	8760

-continued	
tgctgcactt cctgttttat aatgaaccca tccggtttgc catgttgcca gatgatcaac	8820
tettegaage ettgeetaaa titaatgetg eetttettt aaettittt ettetaettt	8880
tggcgtgtat ctggtatatg taagtgttca gaacaactgc aaagaaagtg ggaggtcagg	8940
aaacttttaa ctgagaaat	8959
<210> SEQ ID NO 41 <211> LENGTH: 2257 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 41	
acggcagccg tcagggaccg tcccccaact cccctttccg ctcaggcagg gtcctcgcgg	60
cccatgctgg ccgctgggga cccgcgcagc ccagaccgtt cccgggccgg ccagccggca	120
ccatggtggc cctgaggcct gtgcagcaac tccagggggg ctaaagggct cagagtgcag	180
geegtgggge gegagggtee egggeetgag eeeegegeea tggeegggge eategettee	240
cgcatgagct tcagctctct caagaggaag caacccaaga cgttcaccgt gaggatcgtc	300
accatggacg ccgagatgga gttcaattgc gagatgaagt ggaaagggaa ggacctcttt	360
gatttggtgt gccggactct ggggctccga gaaacctggt tetttggact gcagtacaca	420
atcaaggaca cagtggcctg gctcaaaatg gacaagaagg tactggatca tgatgtttca	480
aaggaagaac cagtcacctt tcacttcttg gccaaatttt atcctgagaa tgctgaagag	540
gagctggttc aggagatcac acaacattta ttcttcttac aggtaaagaa gcagatttta	600
gatgaaaaga tctactgccc tcctgaggct tctgtgctcc tggcttctta cgccgtccag	660
gccaagtatg gtgactacga ccccagtgtt cacaagcggg gatttttggc ccaagaggaa	720
ttgcttccaa aaagggtaat aaatctgtat cagatgactc cggaaatgtg ggaggagaga	780
attactgctt ggtacgcaga gcaccgaggc cgagccaggg atgaagctga aatggaatat	840
ctgaagatag ctcaggacct ggagatgtac ggtgtgaact actttgcaat ccggaataaa	900
aagggcacag agetgetget tggagtggat geeetgggge tteacattta tgaeeetgag	960
aacagactga cccccaagat ctccttcccg tggaatgaaa tccgaaacat ctcgtacagt	1020
gacaaggagt ttactattaa accactggat aagaaaattg atgtcttcaa gtttaactcc	1080
tcaaagcttc gtgttaataa gctgattctc cagctatgta tcgggaacca tgatctattt	1140
atgaggagaa ggaaagccga ttctttggaa gttcagcaga tgaaagccca ggccagggag	1200
gagaaggeta gaaagcagat ggageggeag egeetegete gagagaagea gatgagggag	1260
gaggetgaac geaegaggga tgagttggag aggaggetge tgeagatgaa agaagaagea	1320
acaatggcca acgaagcact gatgcggtct gaggagacag ctgacctgtt ggctgaaaag	1380
gcccagatca ccgaggagga ggcaaaactt ctggcccaga aggccgcaga ggctgagcag	1440
gaaatgcagc gcatcaaggc cacagcgatt cgcacggagg aggagaagcg cctgatggag	1500
cagaaggtgc tggaagccga ggtgctggca ctgaagatgg ctgaggagtc agagaggagg	1560
gccaaagagg cagatcagct gaagcaggac ctgcaggaag cacgcgaggc ggagcgaaga	1620
gccaagcaga agctcctgga gattgccacc aagcccacgt acccgcccat gaacccaatt	1680
ccagcaccgt tgcctcctga cataccaagc ttcaacctca ttggtgacag cctgtctttc	1740
gacttcaaag atactgacat gaagcggctt tccatggaga tagagaaaga aaaagtggaa	1800

-cont	inued
-conc	Innea

			-contir	nued		
tacatggaaa agagcaagca	tctgcaggag	cagctcaatg	aactcaagac	agaaatcgag	1860	
gccttgaaac tgaaagagag	ggagacagct	ctggatattc	tgcacaatga	gaactccgac	1920	
aggggtggca gcagcaagca	caataccatt	aaaaagctca	ccttgcagag	cgccaagtcc	1980	
cgagtggcct tctttgaaga	gctctagcag	gtgacccagc	caccccagga	cctgccactt	2040	
ctcctgctac cgggaccgcg	ggatggacca	gatatcaaga	gagccatcca	tagggagctg	2100	
gctgggggtt tccgtgggag	ctccagaact	ttccccagct	gagtgaagag	cccagcccct	2160	
cttatgtgca attgccttga	actacgaccc	tgtagagatt	tctctcatgg	cgttctagtt	2220	
ctctgacctg agtctttgtt	ttaagaagta	tttgtct			2257	
<210> SEQ ID NO 42 <211> LENGTH: 2969 <212> TYPE: DNA <213> ORGANISM: Homo	sapiens					
<400> SEQUENCE: 42						
ccaggcagct ggggtaagga	gttcaaggca	gcgcccacac	ccggggggctc	tccgcaaccc	60	
gacegeetgt eegeteeeee	acttcccgcc	ctccctccca	cctactcatt	cacccaccca	120	
cccacccaga gccgggacgg	cageccagge	gcccgggccc	cgccgtctcc	tcgccgcgat	180	
cctggacttc ctcttgctgc	aggacccggc	ttccacgtgt	gtcccggagc	cggcgtctca	240	
gcacacgete egeteeggge	ctgggtgcct	acagcagcca	gagcagcagg	gagtccggga	300	
cccgggcggc atctgggcca	agttaggege	cgccgaggcc	agcgctgaac	gtctccaggg	360	
ccggaggagc cgcggggcgt	ccgggtctga	gccgcagcaa	atgggctccg	acgtgcggga	420	
cctgaacgcg ctgctgcccg	ccgtcccctc	cctgggtggc	ggcggcggct	gtgccctgcc	480	
tgtgagcggc gcggcgcagt	gggcgccggt	gctggacttt	gcgcccccgg	gcgcttcggc	540	
ttacgggtcg ttgggcggcc	ccgcgccgcc	accggctccg	ccgccacccc	cgccgccgcc	600	
geeteactee tteateaaac	aggagccgag	ctggggcggc	gcggagccgc	acgaggagca	660	
gtgcctgagc gccttcactg	tccacttttc	cggccagttc	actggcacag	ccggagcctg	720	
tegetaeggg ceetteggte	ctcctccgcc	cagccaggcg	tcatccggcc	aggccaggat	780	
gttteetaac gegeeetaee	tgcccagctg	cctcgagagc	cagcccgcta	ttcgcaatca	840	
gggttacagc acggtcacct	tcgacgggac	gcccagctac	ggtcacacgc	cctcgcacca	900	
tgcggcgcag ttccccaacc	actcattcaa	gcatgaggat	cccatgggcc	agcagggctc	960	
gctgggtgag cagcagtact	cggtgccgcc	cccggtctat	ggctgccaca	cccccaccga	1020	
cagetgeace ggeageeage	ctttgctgct	gaggacgccc	tacagcagtg	acaatttata	1080	
ccaaatgaca teecagette	aatgcatgac	ctggaatcag	atgaacttag	gagccacctt	1140	
aaagggccac agcacagggt	acgagagcga	taaccacaca	acgcccatcc	tctgcggagc	1200	
ccaatacaga atacacacgo	acggtgtctt	cagaggcatt	caggatgtgc	gacgtgtgcc	1260	
tggagtagcc ccgactcttg	tacggtcggc	atctgagacc	agtgagaaac	gccccttcat	1320	
gtgtgcttac ccaggctgca	ataagagata	ttttaagctg	tcccacttac	agatgcacag	1380	
caggaagcac actggtgaga	aaccatacca	gtgtgacttc	aaggactgtg	aacgaaggtt	1440	
ttctcgttca gaccagctca	aaagacacca	aaggagacat	acaggtgtga	aaccattcca	1500	
gtgtaaaact tgtcagcgaa	agttctcccg	gtccgaccac	ctgaagaccc	acaccaggac	1560	

-continued	
tcatacaggt gaaaagccct tcagctgtcg gtggccaagt tgtcagaaaa agtttgcccg	1620
gtcagatgaa ttagtccgcc atcacaacat gcatcagaga aacatgacca aactccagct	1680
ggcgctttga ggggtctccc tcggggaccg ttcagtgtcc caggcagcac agtgtgtgaa	1740
ctgctttcaa gtctgactct ccactcctcc tcactaaaaa ggaaacttca gttgatcttc	1800
ttcatccaac ttccaagaca agataccggt gcttctggaa actaccaggt gtgcctggaa	1860
gagttggtct ctgccctgcc tacttttagt tgactcacag gccctggaga agcagctaac	1920
aatgtctggt tagttaaaag cccattgcca tttggtgtgg attttctact gtaagaagag	1980
ccatagetga teatgteece etgaceette eettetttt ttatgetegt tttegetggg	2040
gatggaatta ttgtaccatt ttctatcatg gaatatttat aggccagggc atgtgtatgt	2100
gtctgctaat gtaaactttg tcatggtttc catttactaa cagcaacagc aagaaataaa	2160
tcagagagca aggcatcggg ggtgaatett gtetaacatt eeegaggtea geeaggetge	2220
taacctggaa agcaggatgt agttctgcca ggcaactttt aaagctcatg catttcaagc	2280
agctgaagaa aaaatcagaa ctaaccagta cctctgtata gaaatctaaa agaattttac	2340
cattcagtta attcaatgtg aacactggca cactgctctt aagaaactat gaagatctga	2400
gatttttttg tgtatgtttt tgactctttt gagtggtaat catatgtgtc tttatagatg	2460
tacatacete ettgeacaaa tggaggggaa tteattttea teaetgggag tgteettagt	2520
gtataaaaac catgctggta tatggcttca agttgtaaaa atgaaagtga ctttaaaaga	2580
aaatagggga tggtccagga tctccactga taagactgtt tttaagtaac ttaaggacct	2640
ttgggtctac aagtatatgt gaaaaaaatg agacttactg ggtgaggaaa tccattgttt	2700
aaagatggtc gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgttgt	2760
ttttaaggga gggaatttat tatttaccgt tgcttgaaat tactgtgtaa atatatgtct	2820
gataatgatt tgctctttga caactaaaat taggactgta taagtactag atgcatcact	2880
gggtgttgat cttacaagat attgatgata acacttaaaa ttgtaacctg catttttcac	2940
tttgctctca attaaagtct attcaaaag	2969
<210> SEQ ID NO 43 <211> LENGTH: 69 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA	
<400> SEQUENCE: 43	
ggcctccata aagtaggaaa cactacacag ctccataaag taggaaacac tacattaatt	60
aageggtae	69
<210> SEQ ID NO 44 <211> LENGTH: 61 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA	
<400> SEQUENCE: 44	
cgcttaatta atgtagtgtt tcctacttta tggagctgtg tagtgtttcc tactttatgg	60
a	61

-continued

<210> SEQ ID NO 45 <211> LENGTH: 54 <212> TYPE: DNA	
<213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA	
<400> SEQUENCE: 45	
tccataaagt aggaaacact acaggactcc ataaagtagg aaacactaca gtac	54
<210> SEQ ID NO 46 <211> LENGTH: 52 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA	
<400> SEQUENCE: 46	
tgtagtgttt cctactttat ggagtcctgt agtgtttcct actttatgga at	52
<210> SEQ ID NO 47 <211> LENGTH: 573 <212> TYPE: DNA <213> ORGANISM: Adenovirus	
<400> SEQUENCE: 47	
ttatggactg gaataaaccc tccacctaac tgtcaaattg tggaaaacac taatacaaat	60
gatggcaaac ttactttagt attagtaaaa aacggagggc ttgttaatgg ctacgtgtct	120
ctagttggtg tatcagacac tgtgaaccaa atgttcacac aaaagacagc aaacatccaa	180
ttaagattat attttgactc ttctggaaat ctattaactg atgaatcaga cttaaaaatt	240
ccacttaaaa ataaatcttc tacagcgacc agtgaaactg tagccagcag caaagccttt	300
atgccaagta ctacagctta tcccttcaac accactacta gggatagtga aaactacatt	360
catggaatat gttactacat gactagttat gatagaagtc tatttccctt gaacatttct	420
ataatgctaa acagccgtat gatttcttcc aatgttgcct atgccataca atttgaatgg	480
aatctaaatg caagtgaatc tccagaaagc aacatagcta cgctgaccac atcccccttt	540
ttetttett acattacaga agaegacaae taa	573
<210> SEQ ID NO 48 <211> LENGTH: 270 <212> TYPE: DNA <213> ORGANISM: Adenovirus	
<400> SEQUENCE: 48	
ggagttetta etettaagtg tttaaceeca etaacaacea eaggeggate tetaeageta	60
aaagtgggag ggggacttac agtggatgac actgatggta ccttacaaga aaacatacgt	120
gctacagcac ccattactaa aaataatcac tctgtagaac tatccattgg aaatggatta	180
gaaactcaaa acaataaact atgtgccaaa ttgggaaatg ggttaaaatt taacaacggt	240
gacatttgta taaaggatag tattaacacc	270
<210> SEQ ID NO 49	

<210> SEQ ID NO 49 <211> LENGTH: 843 <212> TYPE: DNA <213> ORGANISM: Adenovirus <400> SEQUENCE: 49

ggagttetta etettaagtg tttaaceeca etaacaacea eaggeggate tetaeageta	60
aaagtgggag ggggacttac agtggatgac actgatggta ccttacaaga aaacatacgt	120
gctacagcac ccattactaa aaataatcac tctgtagaac tatccattgg aaatggatta	180
gaaactcaaa acaataaact atgtgccaaa ttgggaaatg ggttaaaatt taacaacggt	240
gacatttgta taaaggatag tattaacacc ttatggactg gaataaaccc tccacctaac	300
tgtcaaattg tggaaaacac taatacaaat gatggcaaac ttactttagt attagtaaaa	360
aacggagggc ttgttaatgg ctacgtgtct ctagttggtg tatcagacac tgtgaaccaa	420
atgttcacac aaaagacagc aaacatccaa ttaagattat attttgactc ttctggaaat	480
ctattaactg atgaatcaga cttaaaaatt ccacttaaaa ataaatcttc tacagcgacc	540
agtgaaactg tagccagcag caaagccttt atgccaagta ctacagctta tcccttcaac	600
accactacta gggatagtga aaactacatt catggaatat gttactacat gactagttat	660
gatagaagtc tatttccctt gaacatttct ataatgctaa acagccgtat gatttcttcc	720
aatgttgcct atgccataca atttgaatgg aatctaaatg caagtgaatc tccagaaagc	780
aacatageta egetgaeeae ateeeett ttetttett aeattaeaga agaegaeaae	840
taa	843
<210> SEQ ID NO 50 <211> LENGTH: 975 <212> TYPE: DNA <213> ORGANISM: Artificial <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA	
<400> SEQUENCE: 50	
<400> SEQUENCE: 50 atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa	60
	60 120
atgaagegeg caagaeegte tgaagataee tteaaeeeeg tgtateeata tgaeaeggaa	
atgaagegeg caagaeegte tgaagataee tteaaeeeeg tgtateeata tgaeaeggaa aeeggteete caaetgtgee ttttettaet eeteeetttg tateeeeeaa tgggttteaa	120
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcctc caactgtgcc ttttcttact cctccctttg tatcccccaa tgggtttcaa gagagtcccc ctggagttct tactcttaag tgtttaaccc cactaacaac cacaggcgga	120 180
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcctc caactgtgcc ttttcttact cctccctttg tatcccccaa tgggtttcaa gagagtcccc ctggagttct tactcttaag tgtttaaccc cactaacaac cacaggcgga tctctacagc taaaagtggg agggggactt acagtggatg acactgatgg taccttacaa	120 180 240
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcctc caactgtgcc ttttcttact cctccctttg tatcccccaa tgggtttcaa gagagtcccc ctggagttct tactcttaag tgtttaaccc cactaacaac cacaggcgga tctctacagc taaaagtggg agggggactt acagtggatg acactgatgg taccttacaa gaaaacatac gtgctacagc acccattact aaaaataatc actctgtaga actatccatt	120 180 240 300
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcctc caactgtgcc ttttcttact cctcccttg tatccccaa tgggtttcaa gagagtcccc ctggagttct tactcttaag tgtttaaccc cactaacaac cacaggcgga tctctacagc taaaagtggg agggggactt acagtggatg acactgatgg taccttacaa gaaaacatac gtgctacagc acccattact aaaaataatc actctgtaga actatccatt ggaaatggat tagaaactca aaacaataaa ctatgtgcca aattgggaaa tgggttaaaa	120 180 240 300 360
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcete caactgtgee ttttettaet eeteecttg tatceecaa tgggttteaa gagagteece etggagttet taeteetaag tgtttaacee caetaacaae caeaggegga teteetaeage taaaagtggg agggggaett acagtggatg acaetgatgg taeettaeaa gaaaacatae gtgetaeage acceattaet aaaaataate aeteetgtaga aetateeatt ggaaatggat tagaaactea aaacaataaa etatgtgeea aattgggaaa tgggttaaaa tttaacaaeg gtgaeatttg tataaaggat agtattaaea eettatggae tggaataaae	120 180 240 300 360 420
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcctc caactgtgcc ttttcttact cctccctttg tatccccaa tgggtttcaa gagagtcccc ctggagttct tactcttaag tgtttaaccc cactaacaac cacaggcgga tctctacagc taaaagtggg agggggactt acagtggatg acactgatgg taccttacaa gaaaacatac gtgctacagc acccattact aaaaataatc actctgtaga actatccatt ggaaatggat tagaaactca aaacaataaa ctatgtgcca aattgggaaa tgggttaaaa ttttaacaacg gtgacatttg tataaaggat agtattaaca ccttatggac tggaataaac cctccaccta actgtcaaat tgtggaaaac actaatacaa atgatggcaa acttacttta	120 180 240 300 360 420 480
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcete caactgtgee ttttettaet eeteecttg tateeceaa tgggttteaa gagagteece etggagttet taetettaag tgtttaacee caetaacaae eacaggegga teteetaeage taaaagtggg agggggaett acagtggatg acaetgatgg taeettaeaa gaaaacatae gtgetaeage acceattaet aaaaataate aetetgtaga aetateeatt ggaaatggat tagaaactea aaacaataaa etatgtgeea aattgggaaa tgggttaaaa tttaacaaeg gtgaeattg tataaaggat agtattaaea eetatgggae tggaataaae eeteecae aetgteeaaa tgtggaaaae aetaateea atgatggeaa aettaetta gtattagtaa aaaacggagg gettgttaat ggetaegtgt etetagttgg tgtateagae	120 180 240 300 360 420 480 540
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcctc caactgtgcc ttttcttact cctccctttg tatccccaa tgggtttcaa gagagtcccc ctggagttct tactcttaag tgtttaaccc cactaacaac cacaggcgga tctctacagc taaaagtggg agggggactt acagtggatg acactgatgg taccttacaa gaaaacatac gtgctacagc acccattact aaaaataatc actctgtaga actatccatt ggaaatggat tagaaactca aaacaataaa ctatgtgcca aattgggaaa tgggttaaaa tttaacaacg gtgacatttg tataaaggat agtattaaca ccttatggac tggaataaac cctccaccta actgtcaaat tgtggaaaac actaatacaa atgatggcaa acttacttta gtattagtaa aaaacggagg gcttgttaat ggctacgtgt ctctagttgg tgtatcagac actgtgaacc aaatgttcac acaaaagaca gcaaacatcc aattaagatt atattttgac	120 180 240 300 360 420 480 540
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcete caactgtgee ttttettaet eeteecttg tateeecaa tgggttteaa gagagteece etggagttet taetettaag tgtttaacee caetaacaae caeaggegga tetetaeage taaaagtggg agggggaett acagtggatg acaetgatgg taeettaeaa gaaaacatae gtgetaeage acceattaet aaaaataate aetetgtaga aetateeatt ggaaatggat tagaaactea aaacaataaa etatgtgeea aattgggaaa tgggttaaaa tttaacaaeg gtgaeatttg tataaaggat agtattaaea eetatggae tggaataaae ceteeaceta aetgteaaat tgtggaaaae aetaateeaa atgatggeaa aettaeetta gtattagtaa aaaaeggagg gettgttaat ggetaegtgt eteetagtgg tgtateagae actgtgaace aaatgtteee acaaaagaea geaaacatee aattaagatt atattttgae tetteetggaa atetattaae tgatgaatea gaettaaaaa tteeaettaa aaataaatee	120 180 240 300 360 420 480 540 600
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcete caactgtgee ttttettaet eeteecttg tateeceaa tgggttteaa gagagteece etggagttet taetettaag tgtttaacee caetaacaae eacaggegga teteetaeage taaaagtggg agggggaett acagtggatg acaetgatgg taeettaeaa gaaaacatae gtgetaeage acceattaet aaaaataate actetgtaga actateeatt ggaaatggat tagaaactea aaacaataaa etatgtgeea aattgggaaa tgggttaaaa tttaacaaeg gtgacatttg tataaaggat agtattaaea eetatggae tggaataaae eeteeaaa actgteaaat tgtggaaaae actaateeaa atgatggeaa acttaetta gtattagtaa aaaaeggagg gettgttaat ggetaegtgt eteetagttg tgtateagae actgtggaace aaatgtteea eacaaagaea geaaacatee aattaagatt atattttgae tetteetggaa atetattaae tgatgaatea gaettaaaaa tteeeaettaa aaataaatee tetteetggaa atetattaae tgtageeage ageaaageet ttatgeeaag taetaeaget	120 180 240 300 360 420 480 540 600 660 720
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcctc caactgtgcc ttttcttact cctccctttg tatcccccaa tgggtttcaa gagagtcccc ctggagttct tactcttaag tgtttaaccc cactacaacc cacaggcgga tctctacagc taaaagtggg agggggactt acagtggatg acactgatgg taccttacaa gaaaacatac gtgctacagc acccattact aaaaataatc actctgtaga actatccatt ggaaatggat tagaaactca aaacaataaa ctatgtgcca aattgggaaa tgggttaaaa tttaacaacg gtgacatttg tataaaggat agtattaaca ccttatggac tggaataaac cctccaccta actgtcaaat tgtggaaaac actaatacaa atgatggcaa acttacttta gtattagtaa aaaacggagg gcttgttaat ggctacgtgt ctctagttgg tgtatcagac tcttctggaa atctattaac tgatgaatca gacatacaa ttccactta aaataatct tcttccggaa atctattaac tgatgaatca gacatacaa ttccacttaa aaataatct tctacagcga ccagtgaaac tgtagccagc agcaaagcct ttatgccaag tactacagct tatcccttca acaccactac tagggatagt gaaaactaca ttcatggaat atgttactac	120 180 240 300 420 480 540 600 660 720 780
atgaagcgcg caagaccgtc tgaagatacc ttcaaccccg tgtatccata tgacacggaa accggtcctc caactgtgcc ttttcttact cctccctttg tatccccaa tgggtttcaa gagagtcccc ctggagttct tactcttaag tgtttaaccc cactaacaac cacaggcgga tctctacagc taaaagtggg agggggactt acagtggatg acactgatgg taccttacaa gaaaacatac gtgctacage acccattact aaaaataatc actctgtaga actatccatt ggaaatggat tagaaactca aaacaataaa ctatgtgcca aattgggaaa tgggttaaaa tttaacaacg gtgacatttg tataaaggat agtattaaca ccttatggac tggaataaac cctccaccta actgtcaaat tgtggaaaac actaatacaa atgatggcaa acttacttta gtattagtaa aaaacggagg gcttgttaat ggctacgtgt ctctagttgg tgtatcagac actgtgaacc aaatgtcac acaaaagaca gcaaacatcc aattaagatt atattttgac tcttcctggaa atctattaac tgatgaatca gactaaaaa ttccacttaa aaataaatct tctacagcga ccagtgaaac tgtagccage agcaaagcct ttatgccaag tactacagct tatcccttca acaccactac tagggatagt gaaaactaca ttcatggaat atgttactac atgactagtt atgatagaag tctatttcc ttgaacattt ctataatgct aaacagccgt	120 180 240 300 420 480 540 600 660 720 780 840
atgaagcgcg caagaccgtc tgaagatac ttcaacccg tgtatccat tgacacggaa accggtcete caactgtgee ttttettaet eeteecttg tateeceaa tgggttteaa gagagteece etggagttet taetettaag tgtttaacee caetacaae caeaggegga tetetaeage taaaagtggg agggggaett acagtggatg acaetgatgg taeettaeaa gaaaacatae gtgetaeage acceattaet aaaaataate aetetgtaga aetateeatt ggaaatggat tagaaaetea aaacaataa etatgtgeea aattgggaaa tgggttaaaa tttaacaaeg gtgaeattg tataaaggat agtattaaea eetatggae tggaataaae eetee aetgteaaa tgtggaaaa actaeteta gtattagtaa aaaaeggagg gettgttaat ggetaegtgt eteetagge tgtateagae actgtggaae aatetattaae tgatgaatea gaetaaaaa tteeaettaa aaataatet tetteegaa atetattaae tgatgaatea gaetaaaaa tteeaettaa aaataaatet tetteegaa atetattaae tgatgaatea gaetaaaaa tteeaettaa aaataaatet tetteegaa atetattaae tgatgaatea gaetaaaaa tteeaettaa aaataaatet tetteegaa atetattaae tgatgaatea gaetaaaaa tteeaettaa aaataaatet tetaecagega ceagtgaaae tgtageeage ageaaageet ttatgeeaag taetaeeget tateeettea acaeccaetae tagggatagt gaaaaetaea tteeatggaat atgttaetae atgaetagtt atgatagaag tetatteee ttgaaeatte etataatget aaacageegt atgaetagtt atgatagaag tetatteee ttgaaeatte ggaatetaaa tgeaagtegaa	120 180 240 300 420 480 540 600 660 720 780 840 900

<400> SEQUENCE: 51 tatattattg atgatgoott attttggatt gaagocaata tgataatgag ggggtggagt 60 ttgtgaogtg gogogggggg tgggaacggg gogggtgaog tagtagtgt googaagtgt 120 gatgttgoaa gtgtggooga acacatgtaa gogacggatg tggcaaaagt gaogttttg 180 gtgtgoogog gtgtacacag gaagtgacaa ttttcgoog gttttaggog gatgttgtag 240 taaatttggg cgtaaccgag taagatttgg ocattttogo gggaaaactg aataagagga 300 agtgaaatct gaataattt gtgttactca tagogogtaa tottcagcat cgtaactata 360 acggtootaa ggtagogaaa gotcagatot occgatooc tatggtgoac totcagtaca 420 atctgottg atgooggaa aatttaagot acaacaaggo aaggottgat gttggaggto 480 gottgagtagt gogogagcaa aatttaagot acaacaaggo aaggottgac ggacaattot 540 agootcgacg ogttggoocc tocotcogggt tacccacag cotaggoogg gogoggggg googggggg googgggggg googgagggg googgagggg googgagggg googgaggg googgaggg googgaggg googgagggg googgagggg googgagggg foo ggaagoogg cocagaccoc ogggtcocce cggagcaget googcaggo googgaggg foo ggaagccgg cocagaccoc cgggtcocce tocccogg fooccacag foo ggaagoogg cocagaccoc cgggtcocce toccccacag fooccacag foo ggaagoogg cocagaccoc cgggtcocce cacagacce gooccacac foo ggaagcogg cocagaccoc cgggtcocce toccccacag fooccacag foo ggattcocag fooccacac coccoc foo foo foo foo gaagoogg cocagaccoc coccoc cggagcage foo foo gaagocgog cocagaccoc coccoc cggagcage foo foo gaagocgog cocagaccoc coccoc cggagcage foo foo gaagocgog cocagaccoc coccoc coccoc foo foo foo gaagocgog cocagaccoc coccoc cggagcage foo foo gaagocgog cocagaccoc coccoc coccoc foo foo foo gaagocgog cocagaccoc coccoc coccoc foo foo foo <td< th=""></td<>
ttgtgacgtg gcgcggggcg tgggaacggg gcgggtgacg tagtagtgtg gcggaagtgt120gatgttgcaa gtgtggcgga acacatgtaa gcgacggatg tggcaaaagt gacgttttg180gtgtgcgccg gtgtacacag gaagtgacaa ttttcgcgcg gttttaggcg gatgttgtag240taaatttggg cgtaaccgag taagatttgg ccatttcgc gggaaaactg aataagagga300agtgaaatct gaataattt gtgttactca tagcgcgtaa tctctagcat cgtaactata360accggtcctaa ggtagcgaaa gctcagatc cccgatcccc tatggtgcac tctcagtaca420atctgctctg atgccgata gttaagccag tatctgctcc ctgcttgtgt gttggaggtc480gctgagtagt gcgcgagcaa aatttaagct acaacaaggc aaggcttgac cgacaattct540agcetcgacg cgttggcccc tcectcgggt tacccacag cctaggccga ttcgacctct600ctccgctggg gccctgctg gcgtccctgc accctggag cgcgagcgg ggccaggccg660ggaaagcgcgg cccagacccc cgggtccgc cggagcagc gcgcgggggg ggccaggcg720ggctcccagt ggattcgcgg gcacagacgc ccaggaccg gctccccacg tggcggaggg780
gatgttgcaagtgtggcggaacacatgtaagcgacggatgtggcaaaagtgacgtttttg180gtgtgcgccggtgtacacaggaagtgacaattttcgcgcggtttaggcggatgttgtag240taaatttgggcgtaccgagtaagtttggccattttcgcgggaaaactgaataagagga300agtgaaatctgaataattttgtgttactcatagcgcgtaatctctagcatcgtaactata360acggtcctaaggtagcgaaagctcagatctcccgatcccctatggtgcgca420atctgctctgatgccgcatagttaagccagtatctgctccctgatggaggtc480gctgagtagtgcgcgagcaaaatttaagctacaacaaggcaaggcttgac540agcctcgacgcgttggcccctcccccacgccgaggcgg660ctcgctggggcctcdgctggcgtccctgcaccctgggag660ggaagcgcggcccagacccccgggtccgcccggagcagcg720ggctcccagtggattcgcgggcacagacgcgccccacgtggcggaggggattcgcgggcacagacgcccaggaccg720ggctcccagtggattcgcggccaggacgcgcccacg780
gtgtgcgccggtgtacacaggaagtgacaattttcgcgcggttttaggcggatgttgtag240taaatttgggcgtaaccgagtaagatttggccattttcgcgggaaaactgaataagagga300agtgaaatctgaataattttgtgttactcatagcgcgtaatctctagcatcgtaactata360acggtcctaaggtagcgaaagctcagatctcccgatccctatggtgcactctcagtaca420atctgctctgatgccgcatagttaagccagtatctgctccctgctggtggtggggggggggggggg480gctgagtagtgcgcgagcaaaatttaagctacaacaaggcaaggcttgac540agcctcgacgcgttggcccctccctcgggttaccccacagcctaggccga660ctccgctggggccctcgctggcgtccctgcaccetgggaggcgcgggggggggggggg660ggaagcgcggcccagacccccgggtccgcccggagcagcg720ggctcccagtggattcgcgggcacagacgcccaggaccg780
taaatttggg cgtaaccgag taagatttgg ccattttcgc gggaaaactg aataagagga300agtgaaatct gaataattt gtgttactca tagcgcgtaa tototagcat cgtaactata360acggtootaa ggtagcgaaa gotoagatot cocgatocoo tatggtgcac totoagtaca420atotgototg atgocgcata gttaagocag tatotgotoo ctgottgtg gttggaggto480gotgagtagt gogcgagcaa aatttaagot acaacaaggo aaggottgac cgacaattot540agootcgacg ogttggocco toootcgggt taccoccacag cotaggocga ttogacott600ctoogotggg gccctogotg gogtocotgo accotgggag cgcgagcgg gogcgggogg660ggaagoogg cocagaccoo cgggtcogco cggagcagc gcgcgggogg gogcaggcgg720ggotoccagt ggattogogg gcacagacgo ccaggacogo gotocccacg tggcggaggg780
agtgaaatct gaataatttt gtgttactca tagogogtaa tototagoat ogtaactata 360 acggtootaa ggtagogaaa gotoagatot occgatocoo tatggtgoac totoagtaca 420 atotgototg atgoogoata gttaagooag tatotgotoo otgottgtgt gttggaggto 480 gotgagtagt gogogagcaa aatttaagot acaacaaggo aaggottgao ogacaattot 540 agootogaog ogttggocoo toootogggt taccocacag ootaggooga ttogacotot 600 otoogotggg gocotogotg gogtocotgo accotgggag ogogagogg gogogggogg 660 ggaagogogg cocagaccoo ogggtoogoo oggagoagot gogotgoogg ggoogggogg 720 ggotoccagt ggattogogg goacagaogo coaggacogo gotococacg tggoggaggg 780
acggtcctaa ggtagcgaaa gctcagatct cccgatcccc tatggtgcac tctcagtaca420atctgctctg atgccgcata gttaagccag tatctgctcc ctgcttgtgt gttggaggtc480gctgagtagt gcgcgagcaa aatttaagct acaacaaggc aaggcttgac cgacaattct540agcctcgacg cgttggcccc tccctcgggt taccccacag cctaggccga ttcgacctct600ctccgctggg gccctcgctg gcgtccctgc accctgggag cgcgagcgg ggcgggggg660ggaagcgcgg cccagacccc cgggtccgcc cggagcagct gcgctgtcgg ggccaggccg720ggctcccagt ggattcgcgg gcacagacgc ccaggaccgc gctccccacg tggcggaggg780
atctgctctg atgccgcata gttaagccag tatctgctcc ctgcttgtgt gttggaggtc480gctgagtagt gcgcgagcaa aatttaagct acaacaaggc aaggcttgac cgacaattct540agcctcgacg cgttggcccc tccctcgggt taccccacag cctaggccga ttcgacctct600ctccgctggg gccctcgctg gcgtccctgc accctgggag cgcgagcggc gcgcggggcgg660ggaagcgcgg cccagacccc cgggtccgcc cggagcagct gcgctgtcgg ggccaggccg720ggctcccagt ggattcgcgg gcacagacgc ccaggaccgc gctccccacg tggcggaggg780
gctgagtagt gcgcgagcaa aatttaagct acaacaaggc aaggcttgac cgacaattct540agcctcgacg cgttggcccc tccctcgggt taccccacag cctaggccga ttcgacctct600ctccgctggg gccctcgctg gcgtccctgc accctgggag cgcgagcggc gcgcggggcgg660ggaagcgcgg cccagacccc cgggtccgcc cggagcagct gcgctgtcgg ggccaggccg720ggctcccagt ggattcgcgg gcacagacgc ccaggaccgc gctccccacg tggcggaggg780
agcetegaeg egttggeece teeetegggt taceeeaaag eetaggeegg teegagegge 660 ggaagegegg eecagaeeee egggteegee eggageaget gegetgtegg ggeeaggeeg 720 ggeteeeagt ggattegegg geacagaege eeaggaeege geteeeeag tggeggaggg 780
ctccgctggg gccctcgctg gcgtccctgc accctgggag cgcgagcggc gcgcggggcgg 660 ggaagcgcgg cccagacccc cgggtccgcc cggagcagct gcgctgtcgg ggccaggccg 720 ggctcccagt ggattcgcgg gcacagacgc ccaggaccgc gctccccacg tggcggaggg 780
ggaagegegg eccagaeeee egggteegee eggageaget gegetgtegg ggeeaggeeg 720 ggeteeeagt ggattegegg geacagaege ecaggaeege geteeeeaeg tggeggaggg 780
ggeteecagt ggattegegg geacagaege ecaggaeege geteeceaeg tggeggaggg 780
actggggace cgggcaeeeg teetgeeeet teacetteea geteegeete eteegegegg 840
acceegeeee gteeegaeee eteeegggte eeeggeeeag eeeeteegg geeeteeeag 900
cccctcccct tcctttccgc ggccccgccc tctcctcgcg gcgcgagttt caggcagcgc 960
tgcgtcctgc tgcgcacgtg ggaagccctg gccccggcca cccccgcgat agatctcgag 1020
aattcacgcg aattcggctt acaccgggac tgaaaatgag acatattatc tgccacggag 1080
gtgttattac cgaagaaatg gccgccagtc ttttggacca gctgatcgaa gaggtactgg 1140
ctgataatct tccacctcct agccattttg aaccacctac ccttcacgaa ctgtatgatt 1200
tagacgtgac ggcccccgaa gatcccaacg aggaggcggt ttcgcagatt tttccccgact 1260
ctgtaatgtt ggcggtgcag gaagggattg acttactcac ttttccgccg gcgcccggtt 1320
ctccggagcc gcctcacctt tcccggcagc ccgagcagcc ggagcagaga gccttgggtc 1380
cggtttetat gecaaacett gtaceggagg tgategatet taeetgecae gaggetgget 1440
ttccacccag tgacgacgag gatgaagagg gtgaggagtt tgtgttagat tatgtggagc 1500
accccgggca cggttgcagg tcttgtcatt atcaccggag gaatacgggg gacccagata 1560
ttatgtgttc gctttgctat atgaggacct gtggcatgtt tgtctacagt cctgtgtctg 1620
aacctgagcc tgagcccgag ccagaaccgg agcctgcaag acctacccgc cgtcctaaaa 1680
tggegeetge tateetgaga egeeegacat cacetgtgte tagagaatge aatagtagta 1740
cggatagetg tgaeteeggt eettetaaca caeeteetga gatacaeeeg gtggteeege 1800
tgtgccccat taaaccagtt gccgtgagag ttggtgggcg tcgccaggct gtggaatgta 1860
tcgaggactt gcttaacgag cctgggcaac ctttggactt gagctgtaaa cgccccaggc 1920
cataaggtgt aaacctgtga agccgaattc gcgtcgagca tgcatctagg gcggccaatt 1980

-continued	
cogecectet cecececee esteteete cecececee taacgttaet ggeegaagee	2040
gcttggaata aggeeggtgt gegtttgtet atatgttatt tteeaceata ttgeegtett	2100
ttggcaatgt gagggcccgg aaacctggcc ctgtcttctt gacgagcatt cctaggggtc	2160
tttcccctct cgccaaagga atgcaaggtc tgttgaatgt cgtgaaggaa gcagttcctc	2220
tggaagette ttgaagacaa acaaegtetg tagegaeeet ttgeaggeag eggaaeeeee	2280
cacctggcga caggtgcctc tgcggccaaa agccacgtgt ataagataca cctgcaaagg	2340
cggcacaacc ccagtgccac gttgtgagtt ggatagttgt ggaaagagtc aaatggctct	2400
cctcaagcgt attcaacaag gggctgaagg atgcccagaa ggtaccccat tgtatgggat	2460
ctgatctggg gcctcggtgc acatgcttta catgtgttta gtcgaggtta aaaaaacgtc	2520
taggcccccc gaaccacggg gacgtggttt tcctttgaaa aacacgatga taagcttgcc	2580
acaacccggg atcctctaga gtcgaaattc ggcttctgac ctcatggagg cttgggagtg	2640
tttggaagat ttttctgctg tgcgtaactt gctggaacag agctctaaca gtacctcttg	2700
gttttggagg tttctgtggg gctcatccca ggcaaagtta gtctgcagaa ttaaggagga	2760
ttacaagtgg gaatttgaag agcttttgaa atcctgtggt gagctgtttg attctttgaa	2820
tctgggtcac caggcgcttt tccaagagaa ggtcatcaag actttggatt tttccacacc	2880
ggggcgcgct gcggctgctg ttgcttttt gagttttata aaggataaat ggagcgaaga	2940
aacccatctg agcggggggt acctgctgga ttttctggcc atgcatctgt ggagagcggt	3000
tgtgagacac aagaatcgcc tgctactgtt gtcttccgtc cgcccggcga taataccgac	3060
ggaggagcag cagcagcagc aggaggaagc caggcggcgg cggcaggagc agagcccatg	3120
gaacccgaga gccggcctgg accctcggga atgaatgttg tacaggtggc tgaactgtat	3180
ccagaactga gacgcatttt gacaattaca gaggatgggc aggggctaaa gggggtaaag	3240
agggagcggg gggcttgtga ggctacagag gaggctagga atctagcttt tagcttaatg	3300
accagacacc gtcctgagtg tattactttt caacagatca aggataattg cgctaatgag	3360
cttgatctgc tggcgcagaa gtattccata gagcagctga ccacttactg gctgcagcca	3420
ggggatgatt ttgaggaggc tattagggta tatgcaaagg tggcacttag gccagattgc	3480
aagtacaaga tcagcaaact tgtaaatatc aggaattgtt gctacatctc tgggaacggg	3540
gccgaggtgg agatagatac ggaggatagg gtggccttta gatgtagcat gataaatatg	3600
tggccggggg tgcttggcat ggacggggtg gttattatga atgtaaggtt tactggcccc	3660
aattttagcg gtacggtttt cctggccaat accaacctta tcctacacgg tgtaagcttc	3720
tatgggttta acaatacetg tgtggaagee tggaeegatg taagggtteg gggetgtgee	3780
ttttactgct gctggaaggg ggtggtgtgt cgccccaaaa gcagggcttc aattaagaaa	3840
tgeetetttg aaaggtgtac ettgggtate etgtetgagg gtaaeteeag ggtgegeeae	3900
aatgtggcct ccgactgtgg ttgcttcatg ctagtgaaaa gcgtggctgt gattaagcat	3960
aacatggtat gtggcaactg cgaggacagg gcctctcaga tgctgacctg ctcggacggc	4020
aactgtcacc tgctgaagac cattcacgta gccagccact ctcgcaaggc ctggccagtg	4080
tttgagcata acatactgac ccgctgttcc ttgcatttgg gtaacaggag gggggtgttc	4140
ctaccttacc aatgcaattt gagtcacact aagatattgc ttgagcccga gagcatgtcc	4200
aaggtgaacc tgaacggggt gtttgacatg accatgaaga tctggaaggt gctgaggtac	4260

-continued	
gatgagaccc gcaccaggtg cagaccctgc gagtgtggcg gtaaacatat taggaaccag	4320
cctgtgatgc tggatgtgac cgaggagctg aggcccgatc acttggtgct ggcctgcacc	4380
cgcgctgagt ttggctctag cgatgaagat acagattgag gtactgaaat atgtgggcaa	4440
gccgaatttc gacccgggcg gcctagcgtt tctagcgttt aaacgggccc tctagactcg	4500
agcggcctcc ataaagtagg aaacactaca cagctccata aagtaggaaa cactacatta	4560
attecataaa gtaggaaaca etacaggaet eeataaagta ggaaacaeta cagtaecaag	4620
cttaagttta aaccgctgat tagcctcgac tgtgccttct agttgccagc catctgttgt	4680
ttgeccetee eccgtgeett eettgaeeet ggaaggtgee acteeeaetg teettteeta	4740
ataaaatgag gaaattgcat cgcattgtct gagtaggtgt cattctattc tggggggtgg	4800
ggtggggcag gacagcaagg gggaggattg ggaagacaat agcaggcatg ctggggatgc	4860
ggtgggctct atggcttctg aggcggaaag aaccagcaga tctgcagatc tgaattcatc	4920
tatgtcgggt gcggagaaag aggtaatgaa atggcatcga ctcgaagatc tgggcgtggt	4980
taagggtggg aaagaatata taaggtgggg gtottatgta gttttgtato tgttttgcag	5040
cageegeege egecatgage accaactegt ttgatggaag cattgtgage teatatttga	5100
caacgcgcat gcccccatgg gccggggtgc gtcagaatgt gatgggctcc agcattgatg	5160
gtcgccccgt cctgcccgca aactctacta ccttgaccta cgagaccgtg tctggaacgc	5220
cgttggagac tgcagcetec geegeegett cageegetge ageeaeegee egegggattg	5280
tgactgactt tgettteetg agecegettg caageagtge agetteeegt teateegeee	5340
gcgatgacaa gttgacggct cttttggcac aattggattc tttgacccgg gaacttaatg	5400
tegtttetea geagetgttg gatetgegee ageaggttte tgeeetgaag getteeteee	5460
ctcccaatgc ggtttaaaac ataaataaaa aaccagactc tgtttggatt tggatcaagc	5520
aagtgtettg etgtetttat ttaggggttt tgegegegeg gtaggeeegg gaecageggt	5580
ctcggtcgtt gagggtcctg tgtattttt ccaggacgtg gtaaaggtga ctctggatgt	5640
tcagatacat gggcataagc ccgtctctgg ggtggaggta gcaccactgc agagcttcat	5700
gctgcggggt ggtgttgtag atgatccagt cgtagcagga gcgctgggcg tggtgcctaa	5760
aaatgtettt cagtageaag etgattgeea ggggeaggee ettggtgtaa gtgtttaeaa	5820
agcggttaag ctgggatggg tgcatacgtg gggatatgag atgcatcttg gactgtattt	5880
ttaggttggc tatgttccca gccatatccc tccggggatt catgttgtgc agaaccacca	5940
gcacagtgta teeggtgeae ttgggaaatt tgteatgtag ettagaagga aatgegtgga	6000
agaacttgga gacgcccttg tgacctccaa gattttccat gcattcgtcc ataatgatgg	6060
caatgggccc acgggcggcg gcctgggcga agatatttct gggatcacta acgtcatagt	6120
tgtgttccag gatgagatcg tcataggcca tttttacaaa gcgcgggcgg agggtgccag	6180
actgeggtat aatggtteea teeggeeeag gggegtagtt acceteaeag atttgeattt	6240
cccacgcttt gagttcagat gggggggatca tgtctacctg cggggggatg aagaaaacgg	6300
tttccggggt aggggagatc agctgggaag aaagcaggtt cctgagcagc tgcgacttac	6360
cgcagccggt gggcccgtaa atcacaccta ttaccggctg caactggtag ttaagagagc	6420
tgcagctgcc gtcatccctg agcaggggggg ccacttcgtt aagcatgtcc ctgactcgca	6480
tgttttccct gaccaaatcc gccagaaggc gctcgccgcc cagcgatagc agttcttgca	6540

				-001011	luea	
aggaagcaaa	gtttttcaac	ggtttgagac	cgtccgccgt	aggcatgctt	ttgagcgttt	6600
gaccaagcag	ttccaggcgg	tcccacagct	cggtcacctg	ctctacggca	tctcgatcca	6660
gcatatctcc	tcgtttcgcg	ggttggggcg	gctttcgctg	tacggcagta	gtcggtgctc	6720
gtccagacgg	gccagggtca	tgtctttcca	cgggcgcagg	gtcctcgtca	gcgtagtctg	6780
ggtcacggtg	aaggggtgcg	ctccgggctg	cgcgctggcc	agggtgcgct	tgaggctggt	6840
cctgctggtg	ctgaagcgct	gccggtcttc	gccctgcgcg	tcggccaggt	agcatttgac	6900
catggtgtca	tagtccagcc	cctccgcggc	gtggcccttg	gcgcgcagct	tgcccttgga	6960
ggaggegeeg	cacgagggggc	agtgcagact	tttgagggcg	tagagcttgg	gcgcgagaaa	7020
taccgattcc	ggggagtagg	catccgcgcc	gcaggccccg	cagacggtct	cgcattccac	7080
gagccaggtg	agctctggcc	gttcgggggtc	aaaaaccagg	tttcccccat	gctttttgat	7140
gcgtttctta	cctctggttt	ccatgagccg	gtgtccacgc	tcggtgacga	aaaggctgtc	7200
cgtgtccccg	tatacagact	tgagaggcct	gtcctcgagc	ggtgttccgc	ggtcctcctc	7260
gtatagaaac	tcggaccact	ctgagacaaa	ggctcgcgtc	caggccagca	cgaaggaggc	7320
taagtgggag	gggtagcggt	cgttgtccac	tagggggtcc	actcgctcca	gggtgtgaag	7380
acacatgtcg	ccctcttcgg	catcaaggaa	ggtgattggt	ttgtaggtgt	aggccacgtg	7440
accgggtgtt	cctgaagggg	ggctataaaa	gggggtgggg	gcgcgttcgt	cctcactctc	7500
ttccgcatcg	ctgtctgcga	gggccagctg	ttggggtgag	tactccctct	gaaaagcggg	7560
catgacttct	gcgctaagat	tgtcagtttc	caaaaacgag	gaggatttga	tattcacctg	7620
gcccgcggtg	atgcctttga	gggtggccgc	atccatctgg	tcagaaaaga	caatctttt	7680
gttgtcaagc	ttggtggcaa	acgacccgta	gagggcgttg	gacagcaact	tggcgatgga	7740
gcgcagggtt	tggtttttgt	cgcgatcggc	gcgctccttg	gccgcgatgt	ttagctgcac	7800
gtattcgcgc	gcaacgcacc	gccattcggg	aaagacggtg	gtgcgctcgt	cgggcaccag	7860
gtgcacgcgc	caaccgcggt	tgtgcagggt	gacaaggtca	acgctggtgg	ctacctctcc	7920
gcgtaggcgc	tcgttggtcc	agcagaggcg	gccgcccttg	cgcgagcaga	atggcggtag	7980
ggggtctagc	tgcgtctcgt	ccgggggggtc	tgcgtccacg	gtaaagaccc	cgggcagcag	8040
gcgcgcgtcg	aagtagtcta	tcttgcatcc	ttgcaagtct	agegeetget	gccatgcgcg	8100
ggcggcaagc	gcgcgctcgt	atgggttgag	tgggggaccc	catggcatgg	ggtgggtgag	8160
cgcggaggcg	tacatgccgc	aaatgtcgta	aacgtagagg	ggctctctga	gtattccaag	8220
atatgtaggg	tagcatcttc	caccgcggat	gctggcgcgc	acgtaatcgt	atagttcgtg	8280
cgagggagcg	aggaggtcgg	gaccgaggtt	gctacgggcg	ggctgctctg	ctcggaagac	8340
tatctgcctg	aagatggcat	gtgagttgga	tgatatggtt	ggacgctgga	agacgttgaa	8400
gctggcgtct	gtgagaccta	ccgcgtcacg	cacgaaggag	gcgtaggagt	cgcgcagctt	8460
gttgaccagc	tcggcggtga	cctgcacgtc	tagggcgcag	tagtccaggg	tttccttgat	8520
gatgtcatac	ttatcctgtc	ccttttttt	ccacageteg	cggttgagga	caaactcttc	8580
gcggtctttc	cagtactctt	ggatcggaaa	cccgtcggcc	tccgaacggt	aagagcctag	8640
catgtagaac	tggttgacgg	cctggtaggc	gcagcatccc	ttttctacgg	gtagcgcgta	8700
tgcctgcgcg	gccttccgga	gcgaggtgtg	ggtgagcgca	aaggtgtccc	tgaccatgac	8760
tttgaggtac	tggtatttga	agtcagtgtc	gtcgcatccg	ccctgctccc	agagcaaaaa	8820
	2		5			

				-contir	iuea		
gtccgtgcgc	tttttggaac	gcggatttgg	cagggcgaag	gtgacatcgt	tgaagagtat	8880	
ctttcccgcg	cgaggcataa	agttgcgtgt	gatgcggaag	ggtcccggca	cctcggaacg	8940	
gttgttaatt	acctgggcgg	cgagcacgat	ctcgtcaaag	ccgttgatgt	tgtggcccac	9000	
aatgtaaagt	tccaagaagc	gcgggatgcc	cttgatggaa	ggcaatttt	taagttcctc	9060	
gtaggtgagc	tcttcagggg	agctgagccc	gtgctctgaa	agggcccagt	ctgcaagatg	9120	
agggttggaa	gcgacgaatg	agctccacag	gtcacgggcc	attagcattt	gcaggtggtc	9180	
gcgaaaggtc	ctaaactggc	gacctatggc	cattttttct	ggggtgatgc	agtagaaggt	9240	
aagcgggtct	tgttcccagc	ggtcccatcc	aaggttcgcg	gctaggtctc	gcgcggcagt	9300	
cactagaggc	tcatctccgc	cgaacttcat	gaccagcatg	aagggcacga	gctgcttccc	9360	
aaaggccccc	atccaagtat	aggtetetae	atcgtaggtg	acaaagagac	gctcggtgcg	9420	
aggatgcgag	ccgatcggga	agaactggat	ctcccgccac	caattggagg	agtggctatt	9480	
gatgtggtga	aagtagaagt	ccctgcgacg	ggccgaacac	tcgtgctggc	ttttgtaaaa	9540	
acgtgcgcag	tactggcagc	ggtgcacggg	ctgtacatcc	tgcacgaggt	tgacctgacg	9600	
accgcgcaca	aggaagcaga	gtgggaattt	gagcccctcg	cctggcgggt	ttggctggtg	9660	
gtcttctact	tcggctgctt	gtccttgacc	gtctggctgc	tcgaggggag	ttacggtgga	9720	
tcggaccacc	acgccgcgcg	agcccaaagt	ccagatgtcc	gcgcgcggcg	gtcggagctt	9780	
gatgacaaca	tcgcgcagat	gggagctgtc	catggtctgg	ageteeegeg	gcgtcaggtc	9840	
aggcgggagc	tcctgcaggt	ttacctcgca	tagacgggtc	agggcgcggg	ctagatccag	9900	
gtgataccta	atttccaggg	gctggttggt	ggcggcgtcg	atggcttgca	agaggccgca	9960	
tccccgcggc	gcgactacgg	taccgcgcgg	cgggcggtgg	gccgcggggg	tgtccttgga	10020	
tgatgcatct	aaaagcggtg	acgcgggcga	gcccccggag	gtaggggggg	ctccggaccc	10080	
gccgggagag	ggggcagggg	cacgtcggcg	ccgcgcgcgg	gcaggagctg	gtgctgcgcg	10140	
cgtaggttgc	tggcgaacgc	gacgacgcgg	cggttgatct	cctgaatctg	gcgcctctgc	10200	
gtgaagacga	cgggcccggt	gagettgaae	ctgaaagaga	gttcgacaga	atcaatttcg	10260	
gtgtcgttga	cggcggcctg	gcgcaaaatc	tcctgcacgt	ctcctgagtt	gtcttgatag	10320	
gcgatctcgg	ccatgaactg	ctcgatctct	tcctcctgga	gatctccgcg	tccggctcgc	10380	
tccacggtgg	cggcgaggtc	gttggaaatg	cgggccatga	gctgcgagaa	ggcgttgagg	10440	
cctccctcgt	tccagacgcg	gctgtagacc	acgccccctt	cggcatcgcg	ggcgcgcatg	10500	
accacctgcg	cgagattgag	ctccacgtgc	cgggcgaaga	cggcgtagtt	tcgcaggcgc	10560	
tgaaagaggt	agttgagggt	ggtggcggtg	tgttctgcca	cgaagaagta	cataacccag	10620	
cgtcgcaacg	tggattcgtt	gatatccccc	aaggcctcaa	ggcgctccat	ggcctcgtag	10680	
aagtccacgg	cgaagttgaa	aaactgggag	ttgcgcgccg	acacggttaa	ctcctcctcc	10740	
agaagacgga	tgagctcggc	gacagtgtcg	cgcacctcgc	gctcaaaggc	tacaggggcc	10800	
tcttcttctt	cttcaatctc	ctcttccata	agggcctccc	cttcttcttc	ttctggcggc	10860	
ggtgggggag	gggggacacg	gcggcgacga	cggcgcaccg	ggaggcggtc	gacaaagcgc	10920	
tcgatcatct	ccccgcggcg	acggcgcatg	gtctcggtga	cggcgcggcc	gttctcgcgg	10980	
gggcgcagtt	ggaagacgcc	gcccgtcatg	tcccggttat	gggttggcgg	ggggctgcca	11040	
tgcggcaggg	atacggcgct	aacgatgcat	ctcaacaatt	gttgtgtagg	tactccgccg	11100	

-continued

				-contir	nued	
ccgagggacc	tgagcgagtc	cgcatcgacc	ggatcggaaa	acctctcgag	aaaggcgtct	11160
aaccagtcac	agtcgcaagg	taggctgagc	accgtggcgg	gcggcagcgg	gcggcggtcg	11220
gggttgtttc	tggcggaggt	gctgctgatg	atgtaattaa	agtaggcggt	cttgagacgg	11280
cggatggtcg	acagaagcac	catgtccttg	ggtccggcct	gctgaatgcg	caggcggtcg	11340
gccatgcccc	aggcttcgtt	ttgacatcgg	cgcaggtctt	tgtagtagtc	ttgcatgagc	11400
ctttctaccg	gcacttcttc	ttctccttcc	tcttgtcctg	catctcttgc	atctatcgct	11460
gcggcggcgg	cggagtttgg	ccgtaggtgg	cgccctcttc	ctcccatgcg	tgtgaccccg	11520
aagcccctca	tcggctgaag	cagggctagg	tcggcgacaa	cgcgctcggc	taatatggcc	11580
tgctgcacct	gcgtgagggt	agactggaag	tcatccatgt	ccacaaagcg	gtggtatgcg	11640
cccgtgttga	tggtgtaagt	gcagttggcc	ataacggacc	agttaacggt	ctggtgaccc	11700
ggctgcgaga	gctcggtgta	cctgagacgc	gagtaagccc	tcgagtcaaa	tacgtagtcg	11760
ttgcaagtcc	gcaccaggta	ctggtatccc	accaaaaagt	gcggcggcgg	ctggcggtag	11820
aggggccagc	gtagggtggc	cggggctccg	ggggcgagat	cttccaacat	aaggcgatga	11880
tatccgtaga	tgtacctgga	catccaggtg	atgccggcgg	cggtggtgga	ggcgcgcgga	11940
aagtcgcgga	cgcggttcca	gatgttgcgc	agcggcaaaa	agtgctccat	ggtcgggacg	12000
ctctggccgg	tcaggcgcgc	gcaatcgttg	acgctctagc	gtgcaaaagg	agagcctgta	12060
agcgggcact	cttccgtggt	ctggtggata	aattcgcaag	ggtatcatgg	cggacgaccg	12120
gggttcgagc	cccgtatccg	gccgtccgcc	gtgatccatg	cggttaccgc	ccgcgtgtcg	12180
aacccaggtg	tgcgacgtca	gacaacgggg	gagtgctcct	tttggcttcc	ttccaggcgc	12240
ggcggctgct	gcgctagctt	ttttggccac	tggccgcgcg	cagcgtaagc	ggttaggctg	12300
gaaagcgaaa	gcattaagtg	gctcgctccc	tgtagccgga	gggttattt	ccaagggttg	12360
agtcgcggga	cccccggttc	gagtctcgga	ccggccggac	tgcggcgaac	gggggtttgc	12420
ctccccgtca	tgcaagaccc	cgcttgcaaa	ttcctccgga	aacagggacg	agcccctttt	12480
ttgcttttcc	cagatgcatc	cggtgctgcg	gcagatgcgc	ccccctcctc	agcagcggca	12540
agagcaagag	cagcggcaga	catgcagggc	accctcccct	cctcctaccg	cgtcaggagg	12600
ggcgacatcc	gcggttgacg	cggcagcaga	tggtgattac	gaacccccgc	ggcgccgggc	12660
ccggcactac	ctggacttgg	aggagggggga	gggcctggcg	cggctaggag	cgccctctcc	12720
tgagcggcac	ccaagggtgc	agctgaagcg	tgatacgcgt	gaggcgtacg	tgccgcggca	12780
gaacctgttt	cgcgaccgcg	agggagagga	gcccgaggag	atgcgggatc	gaaagttcca	12840
cgcagggcgc	gagctgcggc	atggcctgaa	tcgcgagcgg	ttgctgcgcg	aggaggactt	12900
tgagcccgac	gcgcgaaccg	ggattagtcc	cgcgcgcgca	cacgtggcgg	ccgccgacct	12960
ggtaaccgca	tacgagcaga	cggtgaacca	ggagattaac	tttcaaaaaa	gctttaacaa	13020
ccacgtgcgt	acgcttgtgg	cgcgcgagga	ggtggctata	ggactgatgc	atctgtggga	13080
ctttgtaagc	gcgctggagc	aaaacccaaa	tagcaagccg	ctcatggcgc	agctgttcct	13140
tatagtgcag	cacagcaggg	acaacgaggc	attcagggat	gcgctgctaa	acatagtaga	13200
gcccgagggc	cgctggctgc	tcgatttgat	aaacatcctg	cagagcatag	tggtgcagga	13260
		acaaggtggc				13320
		tataccatac				13380
	J J Ju				55-55	

				0011011	ruou	
gatcgagggg	ttctacatgc	gcatggcgct	gaaggtgctt	accttgagcg	acgacctggg	13440
cgtttatcgc	aacgagcgca	tccacaaggc	cgtgagcgtg	agccggcggc	gcgagctcag	13500
cgaccgcgag	ctgatgcaca	gcctgcaaag	ggccctggct	ggcacgggca	gcggcgatag	13560
agaggccgag	tcctactttg	acgcggggcgc	tgacctgcgc	tgggccccaa	gccgacgcgc	13620
cctggaggca	gctggggccg	gacctgggct	ggcggtggca	cccgcgcgcg	ctggcaacgt	13680
cggcggcgtg	gaggaatatg	acgaggacga	tgagtacgag	ccagaggacg	gcgagtacta	13740
agcggtgatg	tttctgatca	gatgatgcaa	gacgcaacgg	acccggcggt	gcgggcggcg	13800
ctgcagagcc	agccgtccgg	ccttaactcc	acggacgact	ggcgccaggt	catggaccgc	13860
atcatgtcgc	tgactgcgcg	caatcctgac	gcgttccggc	agcagccgca	ggccaaccgg	13920
ctctccgcaa	ttctggaagc	ggtggtcccg	gcgcgcgcaa	accccacgca	cgagaaggtg	13980
ctggcgatcg	taaacgcgct	ggccgaaaac	agggccatcc	ggcccgacga	ggccggcctg	14040
gtctacgacg	cgctgcttca	gcgcgtggct	cgttacaaca	gcggcaacgt	gcagaccaac	14100
ctggaccggc	tggtggggga	tgtgcgcgag	geegtggege	agcgtgagcg	cgcgcagcag	14160
cagggcaacc	tgggctccat	ggttgcacta	aacgccttcc	tgagtacaca	gcccgccaac	14220
gtgccgcggg	gacaggagga	ctacaccaac	tttgtgagcg	cactgcggct	aatggtgact	14280
gagacaccgc	aaagtgaggt	gtaccagtct	gggccagact	atttttcca	gaccagtaga	14340
caaggeetge	agaccgtaaa	cctgagccag	gctttcaaaa	acttgcaggg	gctgtggggg	14400
gtgegggete	ccacaggcga	ccgcgcgacc	gtgtctagct	tgctgacgcc	caactcgcgc	14460
ctgttgctgc	tgctaatagc	gcccttcacg	gacagtggca	gcgtgtcccg	ggacacatac	14520
ctaggtcact	tgctgacact	gtaccgcgag	gccataggtc	aggcgcatgt	ggacgagcat	14580
actttccagg	agattacaag	tgtcagccgc	gcgctggggc	aggaggacac	gggcagcctg	14640
gaggcaaccc	taaactacct	gctgaccaac	cggcggcaga	agatcccctc	gttgcacagt	14700
ttaaacagcg	aggaggagcg	cattttgcgc	tacgtgcagc	agagcgtgag	ccttaacctg	14760
atgcgcgacg	gggtaacgcc	cagcgtggcg	ctggacatga	ccgcgcgcaa	catggaaccg	14820
ggcatgtatg	cctcaaaccg	gccgtttatc	aaccgcctaa	tggactactt	gcatcgcgcg	14880
gccgccgtga	accccgagta	tttcaccaat	gccatcttga	acccgcactg	gctaccgccc	14940
cctggtttct	acaccggggg	attcgaggtg	cccgagggta	acgatggatt	cctctgggac	15000
gacatagacg	acagcgtgtt	ttccccgcaa	ccgcagaccc	tgctagagtt	gcaacagcgc	15060
gagcaggcag	aggcggcgct	gcgaaaggaa	agcttccgca	ggccaagcag	cttgtccgat	15120
ctaggcgctg	cggccccgcg	gtcagatgct	agtagcccat	ttccaagctt	gatagggtct	15180
cttaccagca	ctcgcaccac	ccgcccgcgc	ctgctgggcg	aggaggagta	cctaaacaac	15240
tcgctgctgc	agccgcagcg	cgaaaaaaac	ctgcctccgg	catttcccaa	caacgggata	15300
gagagcctag	tggacaagat	gagtagatgg	aagacgtacg	cgcaggagca	cagggacgtg	15360
ccaggcccgc	gcccgcccac	ccgtcgtcaa	aggcacgacc	gtcagcgggg	tctggtgtgg	15420
gaggacgatg	actcggcaga	cgacagcagc	gtcctggatt	tgggagggag	tggcaacccg	15480
tttgcgcacc	ttcgccccag	gctggggaga	atgttttaaa	aaaaaaaaaa	gcatgatgca	15540
aaataaaaaa	ctcaccaagg	ccatggcacc	gagcgttggt	tttcttgtat	tccccttagt	15600
			cctcctccct			15660
	55-55-550	5			5-55-5-50	

geggegeeag tggeggegge getgggttet ceettegatg eteceetgga eeegeegttt 15720	
gtgcctccgc ggtacctgcg gcctaccggg gggagaaaca gcatccgtta ctctgagttg 15780	
gcacccctat tcgacaccac ccgtgtgtac ctggtggaca acaagtcaac ggatgtggca 15840	
teeetgaaet accagaaega eeacageaae tttetgaeea eggteattea aaacaatgae 15900	
tacageeegg gggaggeaag cacacagaee ateaatettg aegaeeggte geaetgggge 15960	
ggcgacctga aaaccateet geataceaae atgeeaaatg tgaaegagtt eatgtttaee 16020	
aataagttta aggegegggt gatggtgteg egettgeeta etaaggacaa teaggtggag 16080	
ctgaaatacg agtgggtgga gttcacgctg cccgagggca actactccga gaccatgacc 16140	
atagacetta tgaacaaege gategtggag eactaettga aagtgggeag acagaaeggg 16200	
gttetggaaa gegacategg ggtaaagttt gacaeeegea aetteagaet ggggtttgae 16260	
cccgtcactg gtcttgtcat gcctggggta tatacaaacg aagccttcca tccagacate 16320	
attttgctgc caggatgcgg ggtggacttc acccacagcc gcctgagcaa cttgttgggc 16380	
atccgcaagc ggcaaccott ccaggagggo tttaggatca ootacgatga totggagggt 16440	
ggtaacattc ccgcactgtt ggatgtggac gcctaccagg cgagcttgaa agatgacacc 16500	
gaacagggcg ggggtggcgc aggcggcagc aacagcagtg gcagcggcgc ggaagagaac 16560	
tccaacgegg cageegegge aatgeageeg gtggaggaea tgaaegatea tgeeattege 16620	
ggcgacacct ttgccacacg ggctgaggag aagcgcgctg aggccgaagc agcggccgaa 16680	
gctgccgccc ccgctgcgca acccgaggtc gagaagcctc agaagaaacc ggtgatcaaa 16740	
cccctgacag aggacagcaa gaaacgcagt tacaacctaa taagcaatga cagcaccttc 16800	
acccagtacc gcagctggta ccttgcatac aactacggcg accctcagac cggaatccgc 16860	
tcatggaccc tgctttgcac tcctgacgta acctgcggct cggagcaggt ctactggtcg 16920	
ttgccagaca tgatgcaaga ccccgtgacc ttccgctcca cgcgccagat cagcaacttt 16980	
ccggtggtgg gcgccgagct gttgcccgtg cactccaaga gcttctacaa cgaccaggcc 17040	
gtctactccc aactcatccg ccagtttacc tctctgaccc acgtgttcaa tcgctttccc 17100	
gagaaccaga ttttggcgcg cccgccagcc cccaccatca ccaccgtcag tgaaaacgtt 17160	
cetgetetea cagateaegg gaegetaeeg etgegeaaea geateggagg agteeagega 17220	
gtgaccatta ctgacgccag acgccgcacc tgcccctacg tttacaaggc cctgggcata 17280	
gtetegeege gegteetate gageegeaet tittgageaa geatgteeat eettatateg 17340	
cccagcaata acacaggetg gggeetgege tteecaagea agatgtttgg eggggeeaag 17400	
aagegeteeg accaacaeee agtgegegtg egegggeaet aeegegegee etggggegeg 17460	
cacaaacgcg geegeaetgg gegeaeeaee gtegatgaeg ceategaege ggtggtggag 17520	
gaggegegea actaeaegee caegeegeea ceagtgteea eagtggaege ggeeatteag 17580	
accgtggtgc gcggagcccg gcgctatgct aaaatgaaga gacggcggag gcgcgtagca 17640	
cgtcgccacc gccgccgacc cggcactgcc gcccaacgcg cggcggcggc cctgcttaac 17700	
cgcgcacgtc gcaccggccg acgggcggcc atgcgggccg ctcgaaggct ggccgcgggt 17760	
attgtcactg tgccccccag gtccaggcga cgagcggccg ccgcagcagc cgcggccatt 17820	
agtgctatga ctcagggtcg caggggcaac gtgtattggg tgcgcgactc ggttagcggc 17880	
ctgcgcgtgc ccgtgcgcac ccgccccccg cgcaactaga ttgcaagaaa aaactactta 17940	

				-contir	nued	
gactcgtact	gttgtatgta	tccagcggcg	gcggcgcgca	acgaagctat	gtccaagcgc	18000
aaaatcaaag	aagagatgct	ccaggtcatc	gcgccggaga	tctatggccc	cccgaagaag	18060
gaagagcagg	attacaagcc	ccgaaagcta	aagcgggtca	aaaagaaaaa	gaaagatgat	18120
gatgatgaac	ttgacgacga	ggtggaactg	ctgcacgcta	ccgcgcccag	gcgacgggta	18180
cagtggaaag	gtcgacgcgt	aaaacgtgtt	ttgcgacccg	gcaccaccgt	agtctttacg	18240
cccggtgagc	gctccacccg	cacctacaag	cgcgtgtatg	atgaggtgta	cggcgacgag	18300
gacctgcttg	agcaggccaa	cgagcgcctc	ggggagtttg	cctacggaaa	gcggcataag	18360
gacatgctgg	cgttgccgct	ggacgagggc	aacccaacac	ctagcctaaa	gcccgtaaca	18420
ctgcagcagg	tgctgcccgc	gcttgcaccg	tccgaagaaa	agcgcggcct	aaagcgcgag	18480
tctggtgact	tggcacccac	cgtgcagctg	atggtaccca	agcgccagcg	actggaagat	18540
gtcttggaaa	aaatgaccgt	ggaacctggg	ctggagcccg	aggtccgcgt	gcggccaatc	18600
aagcaggtgg	cgccgggact	gggcgtgcag	accgtggacg	ttcagatacc	cactaccagt	18660
agcaccagta	ttgccaccgc	cacagagggc	atggagacac	aaacgtcccc	ggttgcctca	18720
gcggtggcgg	atgccgcggt	gcaggcggtc	gctgcggccg	cgtccaagac	ctctacggag	18780
gtgcaaacgg	acccgtggat	gtttcgcgtt	tcagcccccc	ggcgcccgcg	ccgttcgagg	18840
aagtacggcg	ccgccagcgc	gctactgccc	gaatatgccc	tacatccttc	cattgcgcct	18900
acccccggct	atcgtggcta	cacctaccgc	cccagaagac	gagcaactac	ccgacgccga	18960
accaccactg	gaacccgccg	ccgccgtcgc	cgtcgccagc	ccgtgctggc	cccgatttcc	19020
gtgcgcaggg	tggctcgcga	aggaggcagg	accctggtgc	tgccaacagc	gcgctaccac	19080
cccagcatcg	tttaaaagcc	ggtctttgtg	gttcttgcag	atatggccct	cacctgccgc	19140
ctccgtttcc	cggtgccggg	attccgagga	agaatgcacc	gtaggagggg	catggccggc	19200
cacggcctga	cgggcggcat	gcgtcgtgcg	caccaccggc	ggcggcgcgc	gtcgcaccgt	19260
cgcatgcgcg	gcggtatcct	gcccctcctt	attccactga	tcgccgcggc	gattggcgcc	19320
gtgcccggaa	ttgcatccgt	ggccttgcag	gcgcagagac	actgattaaa	aacaagttgc	19380
atgtggaaaa	atcaaaataa	aaagtctgga	ctctcacgct	cgcttggtcc	tgtaactatt	19440
ttgtagaatg	gaagacatca	actttgcgtc	tctggccccg	cgacacggct	cgcgcccgtt	19500
catgggaaac	tggcaagata	tcggcaccag	caatatgagc	ggtggcgcct	tcagctgggg	19560
ctcgctgtgg	agcggcatta	aaaatttcgg	ttccaccgtt	aagaactatg	gcagcaaggc	19620
ctggaacagc	agcacaggcc	agatgctgag	ggataagttg	aaagagcaaa	atttccaaca	19680
aaaggtggta	gatggcctgg	cctctggcat	tagcggggtg	gtggacctgg	ccaaccaggc	19740
agtgcaaaat	aagattaaca	gtaagcttga	tccccgccct	cccgtagagg	agcetecace	19800
ggccgtggag	acagtgtctc	cagaggggggg	tggcgaaaag	cgtccgcgcc	ccgacaggga	19860
agaaactctg	gtgacgcaaa	tagacgagcc	tccctcgtac	gaggaggcac	taaagcaagg	19920
cctgcccacc	acccgtccca	tcgcgcccat	ggctaccgga	gtgctgggcc	agcacacacc	19980
cgtaacgctg	gacctgcctc	cccccgccga	cacccagcag	aaacctgtgc	tgccaggccc	20040
gaccgccgtt	gttgtaaccc	gtcctagccg	cgcgtccctg	cgccgcgccg	ccagcggtcc	20100
gegategttg	cggcccgtag	ccagtggcaa	ctggcaaagc	acactgaaca	gcatcgtggg	20160
		agegeegaeg				20220
	- and cooliga		geeceega	- agecuacyc	2222222929	

tgtcatgtat	gcgtccatgt	cgccgccaga	ggagctgctg	agccgccgcg	cgcccgcttt	20280	
ccaagatggc	taccccttcg	atgatgccgc	agtggtctta	catgcacatc	tcgggccagg	20340	
acgcctcgga	gtacctgagc	cccgggctgg	tgcagtttgc	ccgcgccacc	gagacgtact	20400	
tcagcctgaa	taacaagttt	agaaacccca	cggtggcgcc	tacgcacgac	gtgaccacag	20460	
accggtccca	gcgtttgacg	ctgcggttca	tccctgtgga	ccgtgaggat	actgcgtact	20520	
cgtacaaggc	gcggttcacc	ctagctgtgg	gtgataaccg	tgtgctggac	atggcttcca	20580	
cgtactttga	catccgcggc	gtgctggaca	ggggccctac	ttttaageee	tactctggca	20640	
ctgcctacaa	cgccctggct	cccaagggtg	ccccaaatcc	ttgcgaatgg	gatgaagctg	20700	
ctactgctct	tgaaataaac	ctagaagaag	aggacgatga	caacgaagac	gaagtagacg	20760	
agcaagctga	gcagcaaaaa	actcacgtat	ttgggcaggc	gccttattct	ggtataaata	20820	
ttacaaagga	gggtattcaa	ataggtgtcg	aaggtcaaac	acctaaatat	gccgataaaa	20880	
catttcaacc	tgaacctcaa	ataggagaat	ctcagtggta	cgaaacagaa	attaatcatg	20940	
cagctgggag	agtcctaaaa	aagactaccc	caatgaaacc	atgttacggt	tcatatgcaa	21000	
aacccacaaa	tgaaaatgga	gggcaaggca	ttcttgtaaa	gcaacaaaat	ggaaagctag	21060	
aaagtcaagt	ggaaatgcaa	tttttctcaa	ctactgaggc	agccgcaggc	aatggtgata	21120	
acttgactcc	taaagtggta	ttgtacagtg	aagatgtaga	tatagaaacc	ccagacactc	21180	
atatttctta	catgcccact	attaaggaag	gtaactcacg	agaactaatg	ggccaacaat	21240	
ctatgcccaa	caggcctaat	tacattgett	ttagggacaa	ttttattggt	ctaatgtatt	21300	
acaacagcac	gggtaatatg	ggtgttctgg	cgggccaagc	atcgcagttg	aatgctgttg	21360	
tagatttgca	agacagaaac	acagagcttt	cataccagct	tttgcttgat	tccattggtg	21420	
atagaaccag	gtacttttct	atgtggaatc	aggctgttga	cagctatgat	ccagatgtta	21480	
gaattattga	aaatcatgga	actgaagatg	aacttccaaa	ttactgcttt	ccactgggag	21540	
gtgtgattaa	tacagagact	cttaccaagg	taaaacctaa	aacaggtcag	gaaaatggat	21600	
gggaaaaaga	tgctacagaa	ttttcagata	aaaatgaaat	aagagttgga	aataattttg	21660	
ccatggaaat	caatctaaat	gccaacctgt	ggagaaattt	cctgtactcc	aacatagcgc	21720	
tgtatttgcc	cgacaagcta	aagtacagtc	cttccaacgt	aaaaatttct	gataacccaa	21780	
acacctacga	ctacatgaac	aagcgagtgg	tggctcccgg	gctagtggac	tgctacatta	21840	
accttggagc	acgctggtcc	cttgactata	tggacaacgt	caacccattt	aaccaccacc	21900	
gcaatgctgg	cctgcgctac	cgctcaatgt	tgctgggcaa	tggtcgctat	gtgcccttcc	21960	
acatccaggt	gcctcagaag	ttctttgcca	ttaaaaacct	ccttctcctg	ccgggctcat	22020	
acacctacga	gtggaacttc	aggaaggatg	ttaacatggt	tctgcagagc	tccctaggaa	22080	
atgacctaag	ggttgacgga	gccagcatta	agtttgatag	catttgcctt	tacgccacct	22140	
tcttccccat	ggcccacaac	accgcctcca	cgcttgaggc	catgcttaga	aacgacacca	22200	
acgaccagtc	ctttaacgac	tatctctccg	ccgccaacat	gctctaccct	atacccgcca	22260	
acgctaccaa	cgtgcccata	tccatcccct	cccgcaactg	ggcggctttc	cgcggctggg	22320	
ccttcacgcg	ccttaagact	aaggaaaccc	catcactggg	ctcgggctac	gacccttatt	22380	
acacctactc	tggctctata	ccctacctag	atggaacctt	ttacctcaac	cacaccttta	22440	
agaaggtggc	cattaccttt	gactcttctg	tcagctggcc	tggcaatgac	cgcctgctta	22500	

cccccaacga	gtttgaaatt	aagcgctcag	ttgacgggga	gggttacaac	gttgcccagt	22560
gtaacatgac	caaagactgg	ttcctggtac	aaatgctagc	taactataac	attggctacc	22620
agggcttcta	tatcccagag	agctacaagg	accgcatgta	ctccttcttt	agaaacttcc	22680
agcccatgag	ccgtcaggtg	gtggatgata	ctaaatacaa	ggactaccaa	caggtgggca	22740
tcctacacca	acacaacaac	tctggatttg	ttggctacct	tgcccccacc	atgcgcgaag	22800
gacaggccta	ccctgctaac	ttcccctatc	cgcttatagg	caagaccgca	gttgacagca	22860
ttacccagaa	aaagtttctt	tgcgatcgca	ccctttggcg	catcccattc	tccagtaact	22920
ttatgtccat	gggcgcactc	acagacctgg	gccaaaacct	tctctacgcc	aactccgccc	22980
acgcgctaga	catgactttt	gaggtggatc	ccatggacga	gcccaccctt	ctttatgttt	23040
tgtttgaagt	ctttgacgtg	gtccgtgtgc	accagccgca	ccgcggcgtc	atcgaaaccg	23100
tgtacctgcg	cacgcccttc	tcggccggca	acgccacaac	ataaagaagc	aagcaacatc	23160
aacaacagct	gccgccatgg	gctccagtga	gcaggaactg	aaagccattg	tcaaagatct	23220
tggttgtggg	ccatatttt	tgggcaccta	tgacaagcgc	tttccaggct	ttgtttctcc	23280
acacaagctc	gcctgcgcca	tagtcaatac	ggccggtcgc	gagactgggg	gcgtacactg	23340
gatggccttt	gcctggaacc	cgcactcaaa	aacatgctac	ctctttgagc	cctttggctt	23400
ttctgaccag	cgactcaagc	aggtttacca	gtttgagtac	gagtcactcc	tgcgccgtag	23460
cgccattgct	tcttcccccg	accgctgtat	aacgctggaa	aagtccaccc	aaagcgtaca	23520
ggggcccaac	tcggccgcct	gtggactatt	ctgctgcatg	tttctccacg	cctttgccaa	23580
ctggccccaa	actcccatgg	atcacaaccc	caccatgaac	cttattaccg	gggtacccaa	23640
ctccatgctc	aacagtcccc	aggtacagcc	caccctgcgt	cgcaaccagg	aacagctcta	23700
cagcttcctg	gagcgccact	cgccctactt	ccgcagccac	agtgcgcaga	ttaggagcgc	23760
cacttctttt	tgtcacttga	aaaacatgta	aaaataatgt	actagagaca	ctttcaataa	23820
aggcaaatgc	ttttatttgt	acactctcgg	gtgattattt	acccccaccc	ttgccgtctg	23880
cgccgtttaa	aaatcaaagg	ggttctgccg	cgcatcgcta	tgcgccactg	gcagggacac	23940
gttgcgatac	tggtgtttag	tgctccactt	aaactcaggc	acaaccatcc	gcggcagctc	24000
ggtgaagttt	tcactccaca	ggctgcgcac	catcaccaac	gcgtttagca	ggtcgggcgc	24060
cgatatcttg	aagtcgcagt	tggggcctcc	gccctgcgcg	cgcgagttgc	gatacacagg	24120
gttgcagcac	tggaacacta	tcagcgccgg	gtggtgcacg	ctggccagca	cgctcttgtc	24180
ggagatcaga	tccgcgtcca	ggtcctccgc	gttgctcagg	gcgaacggag	tcaactttgg	24240
tagctgcctt	cccaaaaagg	gcgcgtgccc	aggctttgag	ttgcactcgc	accgtagtgg	24300
catcaaaagg	tgaccgtgcc	cggtctgggc	gttaggatac	agcgcctgca	taaaagcctt	24360
gatctgctta	aaagccacct	gagcctttgc	gccttcagag	aagaacatgc	cgcaagactt	24420
gccggaaaac	tgattggccg	gacaggccgc	gtcgtgcacg	cagcaccttg	cgtcggtgtt	24480
ggagatctgc	accacatttc	ggccccaccg	gttcttcacg	atcttggcct	tgctagactg	24540
ctccttcagc	gcgcgctgcc	cgttttcgct	cgtcacatcc	atttcaatca	cgtgctcctt	24600
atttatcata	atgcttccgt	gtagacactt	aagctcgcct	tcgatctcag	cgcagcggtg	24660
		tgggetegtg				24720
		gccccatcat				24780
	- 904994400	Jesseacout	- go ca ca aag	2000090090	- 22 - 244 99 -	

64

cagetgeaac	ccgcggtgct	cctcgttcag	ccaggtcttg	catacggccg	ccagagette	24840
cacttggtca	ggcagtagtt	tgaagttcgc	ctttagatcg	ttatccacgt	ggtacttgtc	24900
catcagcgcg	cgcgcagcct	ccatgccctt	ctcccacgca	gacacgatcg	gcacactcag	24960
cgggttcatc	accgtaattt	cactttccgc	ttegetggge	tetteetett	cctcttgcgt	25020
ccgcatacca	cgcgccactg	ggtcgtcttc	attcagccgc	cgcactgtgc	gcttacctcc	25080
tttgccatgc	ttgattagca	ccggtgggtt	gctgaaaccc	accatttgta	gcgccacatc	25140
ttctctttct	teetegetgt	ccacgattac	ctctggtgat	ggcgggcgct	cgggcttggg	25200
agaagggcgc	ttettttet	tettgggege	aatggccaaa	tccgccgccg	aggtcgatgg	25260
ccgcggggctg	ggtgtgcgcg	gcaccagcgc	gtcttgtgat	gagtetteet	cgtcctcgga	25320
ctcgatacgc	cgcctcatcc	gctttttgg	gggcgcccgg	ggaggcggcg	gcgacggggga	25380
cggggacgac	acgtcctcca	tggttggggg	acgtcgcgcc	gcaccgcgtc	cgcgctcggg	25440
ggtggtttcg	cgctgctcct	cttcccgact	ggccatttcc	ttctcctata	ggcagaaaaa	25500
gatcatggag	tcagtcgaga	agaaggacag	cctaaccgcc	ccctctgagt	tcgccaccac	25560
cgcctccacc	gatgccgcca	acgcgcctac	caccttcccc	gtcgaggcac	ccccgcttga	25620
ggaggaggaa	gtgattatcg	agcaggaccc	aggttttgta	agcgaagacg	acgaggaccg	25680
ctcagtacca	acagaggata	aaaagcaaga	ccaggacaac	gcagaggcaa	acgaggaaca	25740
agtcgggcgg	ggggacgaaa	ggcatggcga	ctacctagat	gtgggagacg	acgtgctgtt	25800
gaagcatctg	cagcgccagt	gcgccattat	ctgcgacgcg	ttgcaagagc	gcagcgatgt	25860
gcccctcgcc	atagcggatg	tcagccttgc	ctacgaacgc	cacctattct	caccgcgcgt	25920
accccccaaa	cgccaagaaa	acggcacatg	cgagcccaac	ccgcgcctca	acttctaccc	25980
cgtatttgcc	gtgccagagg	tgcttgccac	ctatcacatc	tttttccaaa	actgcaagat	26040
acccctatcc	tgccgtgcca	accgcagccg	agcggacaag	cagctggcct	tgcggcaggg	26100
cgctgtcata	cctgatatcg	cctcgctcaa	cgaagtgcca	aaaatctttg	agggtcttgg	26160
acgcgacgag	aagcgcgcgg	caaacgctct	gcaacaggaa	aacagcgaaa	atgaaagtca	26220
ctctggagtg	ttggtggaac	tcgagggtga	caacgcgcgc	ctagccgtac	taaaacgcag	26280
catcgaggtc	acccactttg	cctacccggc	acttaaccta	ccccccaagg	tcatgagcac	26340
agtcatgagt	gagetgateg	tgcgccgtgc	gcagcccctg	gagagggatg	caaatttgca	26400
agaacaaaca	gaggagggcc	tacccgcagt	tggcgacgag	cagctagcgc	gctggcttca	26460
aacgcgcgag	cctgccgact	tggaggagcg	acgcaaacta	atgatggccg	cagtgctcgt	26520
taccgtggag	cttgagtgca	tgcagcggtt	ctttgctgac	ccggagatgc	agcgcaagct	26580
agaggaaaca	ttgcactaca	cctttcgaca	gggctacgta	cgccaggcct	gcaagatctc	26640
caacgtggag	ctctgcaacc	tggtctccta	ccttggaatt	ttgcacgaaa	accgccttgg	26700
gcaaaacgtg	cttcattcca	cgctcaaggg	cgaggcgcgc	cgcgactacg	tccgcgactg	26760
cgtttactta	tttctatgct	acacctggca	gacggccatg	ggcgtttggc	agcagtgctt	26820
ggaggagtgc	aacctcaagg	agctgcagaa	actgctaaag	caaaacttga	aggacctatg	26880
gacggccttc	aacgagcgct	ccgtggccgc	gcacctggcg	gacatcattt	tccccgaacg	26940
cctgcttaaa	accctgcaac	agggtctgcc	agacttcacc	agtcaaagca	tgttgcagaa	27000
ctttaggaac	tttatcctag	agcgctcagg	aatcttgccc	gccacctgct	gtgcacttcc	27060

-cont	inued
00110	TITUCU

				-contir	nued	
tagcgacttt	gtgcccatta	agtaccgcga	atgccctccg	ccgctttggg	gccactgcta	27120
ccttctgcag	ctagccaact	accttgccta	ccactctgac	ataatggaag	acgtgagcgg	27180
tgacggtcta	ctggagtgtc	actgtcgctg	caacctatgc	accccgcacc	gctccctggt	27240
ttgcaattcg	cagctgctta	acgaaagtca	aattatcggt	acctttgagc	tgcagggtcc	27300
ctcgcctgac	gaaaagtccg	cggctccggg	gttgaaactc	actccgggggc	tgtggacgtc	27360
ggcttacctt	cgcaaatttg	tacctgagga	ctaccacgcc	cacgagatta	ggttctacga	27420
agaccaatcc	cgcccgccta	atgcggagct	taccgcctgc	gtcattaccc	agggccacat	27480
tcttggccaa	ttgcaagcca	tcaacaaagc	ccgccaagag	tttctgctac	gaaagggacg	27540
gggggtttac	ttggaccccc	agtccggcga	ggagctcaac	ccaatccccc	cgccgccgca	27600
gccctatcag	cagcagccgc	gggcccttgc	ttcccaggat	ggcacccaaa	aagaagctgc	27660
agctgccgcc	gccacccacg	gacgaggagg	aatactggga	cagtcaggca	gaggaggttt	27720
tggacgagga	ggaggaggac	atgatggaag	actgggagag	cctagacgag	gaagcttccg	27780
aggtcgaaga	ggtgtcagac	gaaacaccgt	caccctcggt	cgcattcccc	tcgccggcgc	27840
cccagaaatc	ggcaaccggt	tccagcatgg	ctacaacctc	cgctcctcag	gcgccgccgg	27900
cactgcccgt	tcgccgaccc	aaccgtagat	gggacaccac	tggaaccagg	gccggtaagt	27960
ccaagcagcc	gccgccgtta	gcccaagagc	aacaacagcg	ccaaggctac	cgctcatggc	28020
gcgggcacaa	gaacgccata	gttgcttgct	tgcaagactg	tgggggcaac	atctccttcg	28080
cccgccgctt	tcttctctac	catcacggcg	tggcetteee	ccgtaacatc	ctgcattact	28140
accgtcatct	ctacagccca	tactgcaccg	gcggcagcgg	cagcaacagc	agcggccaca	28200
cagaagcaaa	ggcgaccgga	tagcaagact	ctgacaaagc	ccaagaaatc	cacagcggcg	28260
gcagcagcag	gaggaggagc	gctgcgtctg	gcgcccaacg	aacccgtatc	gacccgcgag	28320
cttagaaaca	ggatttttcc	cactctgtat	gctatatttc	aacagagcag	gggccaagaa	28380
caagagctga	aaataaaaaa	caggtctctg	cgatccctca	cccgcagctg	cctgtatcac	28440
aaaagcgaag	atcagetteg	gcgcacgctg	gaagacgcgg	aggetetett	cagtaaatac	28500
tgcgcgctga	ctcttaagga	ctagtttcgc	gccctttctc	aaatttaagc	gcgaaaacta	28560
cgtcatctcc	agcggccaca	cccggcgcca	gcacctgttg	tcagcgccat	tatgagcaag	28620
gaaattccca	cgccctacat	gtggagttac	cagccacaaa	tgggacttgc	ggctggagct	28680
gcccaagact	actcaacccg	aataaactac	atgagcgcgg	gaccccacat	gatatcccgg	28740
gtcaacggaa	tacgcgccca	ccgaaaccga	attctcctgg	aacaggcggc	tattaccacc	28800
acacctcgta	ataaccttaa	tccccgtagt	tggcccgctg	ccctggtgta	ccaggaaagt	28860
cccgctccca	ccactgtggt	acttcccaga	gacgcccagg	ccgaagttca	gatgactaac	28920
tcaggggggg	agcttgcggg	cggctttcgt	cacagggtgc	ggtcgcccgg	gcagggtata	28980
actcacctga	caatcagagg	gcgaggtatt	cagctcaacg	acgagtcggt	gageteeteg	29040
cttggtctcc	gtccggacgg	gacatttcag	atcggcggcg	ccggccgctc	ttcattcacg	29100
cctcgtcagg	caatcctaac	tctgcagacc	tcgtcctctg	agccgcgctc	tggaggcatt	29160
ggaactctgc	aatttattga	ggagtttgtg	ccatcggtct	actttaaccc	cttctcggga	29220
cctcccggcc	actatccgga	tcaatttatt	cctaactttg	acgcggtaaa	ggactcggcg	29280
		aatatgactc				29340
5 555	5	J 2-		5	55-	

					ruou	
tttcgcgaag	ggcccgagct	cggtacccgg	ggatctgcat	tagttattaa	tagtaatcaa	29400
ttacgggggtc	attagttcat	agcccatata	tggagttccg	cgttacataa	cttacggtaa	29460
atggcccgcc	tggctgaccg	cccaacgacc	cccgcccatt	gacgtcaata	atgacgtatg	29520
ttcccatagt	aacgccaata	gggactttcc	attgacgtca	atgggtggag	tatttacggt	29580
aaactgccca	cttggcagta	catcaagtgt	atcatatgcc	aagtacgccc	cctattgacg	29640
tcaatgacgg	taaatggccc	gcctggcatt	atgcccagta	catgacctta	tgggactttc	29700
ctacttggca	gtacatctac	gtattagtca	tcgctattac	catggtgatg	cggttttggc	29760
agtacatcaa	tgggcgtgga	tagcggtttg	actcacgggg	atttccaagt	ctccacccca	29820
ttgacgtcaa	tgggagtttg	ttttggcacc	aaaatcaacg	ggactttcca	aaatgtcgta	29880
acaactccgc	cccattgacg	caaatgggcg	gtaggcgtgt	acggtgggag	gtctatataa	29940
gcagagctgg	tttagtgaac	cgtcagatcc	gctagccggt	cgccaccatg	gtgagcaagg	30000
gcgaggagct	gttcaccggg	gtggtgccca	tcctggtcga	gctggacggc	gacgtaaacg	30060
gccacaagtt	cagcgtgtcc	ggcgagggcg	agggcgatgc	cacctacggc	aagctgaccc	30120
tgaagttcat	ctgcaccacc	ggcaagctgc	ccgtgccctg	gcccaccctc	gtgaccaccc	30180
tgacctacgg	cgtgcagtgc	ttcagccgct	accccgacca	catgaagcag	cacgacttct	30240
tcaagtccgc	catgcccgaa	ggctacgtcc	aggagcgcac	catcttcttc	aaggacgacg	30300
gcaactacaa	gacccgcgcc	gaggtgaagt	tcgagggcga	caccctggtg	aaccgcatcg	30360
agctgaaggg	catcgacttc	aaggaggacg	gcaacatcct	ggggcacaag	ctggagtaca	30420
actacaacag	ccacaacgtc	tatatcatgg	ccgacaagca	gaagaacggc	atcaaggtga	30480
acttcaagat	ccgccacaac	atcgaggacg	gcagcgtgca	gctcgccgac	cactaccagc	30540
agaacacccc	catcggcgac	ggeeeegtge	tgctgcccga	caaccactac	ctgagcaccc	30600
agtccgccct	gagcaaagac	cccaacgaga	agcgcgatca	catggtcctg	ctggagttcg	30660
tgaccgccgc	cgggatcact	ctcggcatgg	acgagctgta	caagtaaagc	ggcctccata	30720
aagtaggaaa	cactacacag	ctccataaag	taggaaacac	tacattaatt	ccataaagta	30780
ggaaacacta	caggactcca	taaagtagga	aacactacat	ctagatcata	atcagccata	30840
ccacatttgt	agaggtttta	cttgctttaa	aaaacctccc	acacctcccc	ctgaacctga	30900
aacataaaat	gaatgcaatt	gttgttgtta	acttgtttat	tgcagcttat	aatggttaca	30960
aataaagcaa	tagcatcaca	aatttcacaa	ataaagcatt	tttttcactg	cattctagtt	31020
gtggtttgtc	caaactcatc	aatgtatctt	aagcttggta	ccgagctcgg	atcatccagc	31080
acagtggcgg	ccgctcgacc	tgcaggcatg	gcggccgcat	cgaaatcgcg	atataacagg	31140
gtaatattaa	gttcctgtcc	atccgcaccc	actatcttca	tgttgttgca	gatgaagcgc	31200
gcaagaccgt	ctgaagatac	cttcaacccc	gtgtatccat	atgacacgga	aaccggtcct	31260
ccaactgtgc	cttttcttac	tcctcccttt	gtatccccca	atgggtttca	agagagtccc	31320
cctggagttc	ttactcttaa	gtgtttaacc	ccactaacaa	ccacaggcgg	atctctacag	31380
ctaaaagtgg	gagggggact	tacagtggat	gacactgatg	gtaccttaca	agaaaacata	31440
cgtgctacag	cacccattac	taaaaataat	cactctgtag	aactatccat	tggaaatgga	31500
ttagaaactc	aaaacaataa	actatgtgcc	aaattgggaa	atgggttaaa	atttaacaac	31560
ggtgacattt	gtataaagga	tagtattaac	accttatgga	ctggaataaa	ccctccacct	31620
	00-	-	55**			

				0011011	Idea	
aactgtcaaa	ttgtggaaaa	cactaataca	aatgatggca	aacttacttt	agtattagta	31680
aaaaacggag	ggcttgttaa	tggctacgtg	tctctagttg	gtgtatcaga	cactgtgaac	31740
caaatgttca	cacaaaagac	agcaaacatc	caattaagat	tatattttga	ctcttctgga	31800
aatctattaa	ctgatgaatc	agacttaaaa	attccactta	aaaataaatc	ttctacagcg	31860
accagtgaaa	ctgtagccag	cagcaaagcc	tttatgccaa	gtactacagc	ttatcccttc	31920
aacaccacta	ctagggatag	tgaaaactac	attcatggaa	tatgttacta	catgactagt	31980
tatgatagaa	gtctatttcc	cttgaacatt	tctataatgc	taaacagccg	tatgatttct	32040
tccaatgttg	cctatgccat	acaatttgaa	tggaatctaa	atgcaagtga	atctccagaa	32100
agcaacatag	ctacgctgac	cacatccccc	tttttttt	cttacattac	agaagacgac	32160
aactaaaatg	aattcagaat	cgtttgtgtt	atgtttcaac	gtgtttattt	ttcaattgca	32220
gaaaatttca	agtcatttt	cattcagtag	tatagcccca	ccaccacata	gcttatacag	32280
atcaccgtac	cttaatcaaa	ctcacagaac	cctagtattc	aacctgccac	ctccctccca	32340
acacacagag	tacacagtcc	tttctccccg	gctggcctta	aaaagcatca	tatcatgggt	32400
aacagacata	ttcttaggtg	ttatattcca	cacggtttcc	tgtcgagcca	aacgctcatc	32460
agtgatatta	ataaactccc	cgggcagctc	acttaagttc	atgtcgctgt	ccagctgctg	32520
agccacaggc	tgctgtccaa	cttgcggttg	cttaacgggc	ggcgaaggag	aagtccacgc	32580
ctacatgggg	gtagagtcat	aatcgtgcat	caggataggg	cggtggtgct	gcagcagcgc	32640
gcgaataaac	tgctgccgcc	gccgctccgt	cctgcaggaa	tacaacatgg	cagtggtctc	32700
ctcagcgatg	attcgcaccg	cccgcagcat	aaggcgcctt	gtcctccggg	cacagcagcg	32760
caccctgatc	tcacttaaat	cagcacagta	actgcagcac	agcaccacaa	tattgttcaa	32820
aatcccacag	tgcaaggcgc	tgtatccaaa	gctcatggcg	gggaccacag	aacccacgtg	32880
gccatcatac	cacaagcgca	ggtagattaa	gtggcgaccc	ctcataaaca	cgctggacat	32940
aaacattacc	tcttttggca	tgttgtaatt	caccacctcc	cggtaccata	taaacctctg	33000
attaaacatg	gcgccatcca	ccaccatcct	aaaccagctg	gccaaaacct	gcccgccggc	33060
tatacactgc	agggaaccgg	gactggaaca	atgacagtgg	agagcccagg	actcgtaacc	33120
atggatcatc	atgctcgtca	tgatatcaat	gttggcacaa	cacaggcaca	cgtgcataca	33180
cttcctcagg	attacaagct	cctcccgcgt	tagaaccata	tcccagggaa	caacccattc	33240
ctgaatcagc	gtaaatccca	cactgcaggg	aagacctcgc	acgtaactca	cgttgtgcat	33300
tgtcaaagtg	ttacattcgg	gcagcagcgg	atgatcctcc	agtatggtag	cgcgggtttc	33360
tgtctcaaaa	ggaggtagac	gatccctact	gtacggagtg	cgccgagaca	accgagatcg	33420
tgttggtcgt	agtgtcatgc	caaatggaac	gccggacgta	gtcatatttc	ctgaagcaaa	33480
accaggtgcg	ggcgtgacaa	acagatctgc	gtctccggtc	tcgccgctta	gatcgctctg	33540
tgtagtagtt	gtagtatatc	cactctctca	aagcatccag	gcgccccctg	gcttcgggtt	33600
ctatgtaaac	tccttcatgc	gccgctgccc	tgataacatc	caccaccgca	gaataagcca	33660
cacccagcca	acctacacat	tcgttctgcg	agtcacacac	gggaggagcg	ggaagagctg	33720
gaagaaccat	gttttttt	ttattccaaa	agattatcca	aaacctcaaa	atgaagatct	33780
attaagtgaa	cgcgctcccc	tccggtggcg	tggtcaaact	ctacagccaa	agaacagata	33840
atggcatttg	taagatgttg	cacaatggct	tccaaaaggc	aaacggccct	cacgtccaag	33900

tggacgtaaa ggctaaaccc ttcagggtga atctcctcta taaacattcc agcaccttca	33960
accatgeeca aataattete atetegeeae etteteaata tatetetaag caaateeega	34020
atattaagtc cggccattgt aaaaatctgc tccagagcgc cctccacctt cagcctcaag	34080
cagcgaatca tgattgcaaa aattcaggtt cctcacagac ctgtataaga ttcaaaagcg	34140
gaacattaac aaaaataccg cgatcccgta ggtcccttcg cagggccagc tgaacataat	34200
cgtgcaggtc tgcacggacc agcgcggcca cttccccgcc aggaaccatg acaaaagaac	34260
ccacactgat tatgacacgc atactcggag ctatgctaac cagcgtagcc ccgatgtaag	34320
cttgttgcat gggcggcgat ataaaatgca aggtgctgct caaaaaatca ggcaaagcct	34380
cgcgcaaaaa agaaagcaca tcgtagtcat gctcatgcag ataaaggcag gtaagctccg	34440
gaaccaccac agaaaaagac accatttttc tctcaaacat gtctgcgggt ttctgcataa	34500
acacaaaata aaataacaaa aaaacattta aacattagaa gcctgtctta caacaggaaa	34560
aacaaccctt ataagcataa gacggactac ggccatgccg gcgtgaccgt aaaaaaactg	34620
gtcaccgtga ttaaaaagca ccaccgacag ctcctcggtc atgtccggag tcataatgta	34680
agactoggta aacacatoag gttgattoac atoggtoagt gotaaaaago gacogaaata	34740
gcccggggga atacataccc gcaggcgtag agacaacatt acagccccca taggaggtat	34800
aacaaaatta ataggagaga aaaacacata aacacctgaa aaaccctcct gcctaggcaa	34860
aatagcaccc tcccgctcca gaacaacata cagcgcttcc acagcggcag ccataacagt	34920
cageettace agtaaaaaag aaaacetatt aaaaaaacae caetegacae ggeaecaget	34980
caatcagtca cagtgtaaaa aagggccaag tgcagagcga gtatatatag gactaaaaaa	35040
tgacgtaacg gttaaagtcc acaaaaaaca cccagaaaac cgcacgcgaa cctacgccca	35100
gaaacgaaag ccaaaaaacc cacaacttcc tcaaatcgtc acttccgttt tcccacgtta	35160
cgtcacttcc cattttaaga aaactacaat tcccaacacc tctagagaca agttactccg	35220
coctaaaacc tacgtcaccc gccccgttcc cacgccccgc gccacgtcac aaactccacc	35280
ccctcattat catattggct tcaatccaaa ataaggtata ttat	35324
<210> SEQ ID NO 52 <211> LENGTH: 105 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA	
<400> SEQUENCE: 52	
tccataaagt aggaaacact acacagctcc ataaagtagg aaacactaca ttaattccat	60
aaagtaggaa acactacagg actccataaa gtaggaaaca ctaca	105
<210> SEQ ID NO 53 <211> LENGTH: 4059 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA	
<400> SEQUENCE: 53	
tggcccctcc ctcgggttac cccacagect aggccgatte gaeetetete egetggggee	60
ctcgctggcg tccctgcacc ctgggagcgc gagcggcgcg cgggcggggga agcgcggccc	120

cont	

				-contir	nued			
agacccccgg	gtccgcccgg	agcagctgcg	ctgtcggggc	caggccgggc	tcccagtgga	180		
ttcgcgggca	cagacgccca	ggaccgcgct	ccccacgtgg	cggagggact	ggggacccgg	240		
gcacccgtcc	tgccccttca	ccttccagct	ccgcctcctc	cgcgcggacc	ccgccccgtc	300		
ccgacccctc	ccgggtcccc	ggcccagccc	cctccgggcc	ctcccagccc	ctccccttcc	360		
tttccgcggc	cccgccctct	cctcgcggcg	cgagtttcag	gcagcgctgc	gtcctgctgc	420		
gcacgtggga	agccctggcc	ccggccaccc	ccgcgataga	tctcgagaat	tcacgcgaat	480		
tcggcttaca	ccgggactga	aaatgagaca	tattatctgc	cacggaggtg	ttattaccga	540		
agaaatggcc	gccagtcttt	tggaccagct	gatcgaagag	gtactggctg	ataatcttcc	600		
acctcctagc	cattttgaac	cacctaccct	tcacgaactg	tatgatttag	acgtgacggc	660		
ccccgaagat	cccaacgagg	aggcggtttc	gcagatttt	cccgactctg	taatgttggc	720		
ggtgcaggaa	gggattgact	tactcacttt	tccgccggcg	cccggttctc	cggagccgcc	780		
tcacctttcc	cggcagcccg	agcagccgga	gcagagagcc	ttgggtccgg	tttctatgcc	840		
aaaccttgta	ccggaggtga	tcgatcttac	ctgccacgag	gctggctttc	cacccagtga	900		
cgacgaggat	gaagagggtg	aggagtttgt	gttagattat	gtggagcacc	ccgggcacgg	960		
ttgcaggtct	tgtcattatc	accggaggaa	tacggggggac	ccagatatta	tgtgttcgct	1020		
ttgctatatg	aggacctgtg	gcatgtttgt	ctacagtcct	gtgtctgaac	ctgagcctga	1080		
gcccgagcca	gaaccggagc	ctgcaagacc	tacccgccgt	cctaaaatgg	cgcctgctat	1140		
cctgagacgc	ccgacatcac	ctgtgtctag	agaatgcaat	agtagtacgg	atagctgtga	1200		
ctccggtcct	tctaacacac	ctcctgagat	acacccggtg	gtcccgctgt	gccccattaa	1260		
accagttgcc	gtgagagttg	gtgggcgtcg	ccaggctgtg	gaatgtatcg	aggacttgct	1320		
taacgagcct	gggcaacctt	tggacttgag	ctgtaaacgc	cccaggccat	aaggtgtaaa	1380		
cctgtgaagc	cgaattcgcg	tcgagcatgc	atctagggcg	gccaattccg	cccctctccc	1440		
cccccccct	ctccctcccc	cccccctaa	cgttactggc	cgaagccgct	tggaataagg	1500		
ccggtgtgcg	tttgtctata	tgttattttc	caccatattg	ccgtctttg	gcaatgtgag	1560		
ggcccggaaa	cctggccctg	tcttcttgac	gagcattcct	aggggtcttt	cccctctcgc	1620		
caaaggaatg	caaggtctgt	tgaatgtcgt	gaaggaagca	gttcctctgg	aagcttcttg	1680		
aagacaaaca	acgtctgtag	cgaccctttg	caggcagcgg	aaccccccac	ctggcgacag	1740		
gtgcctctgc	ggccaaaagc	cacgtgtata	agatacacct	gcaaaggcgg	cacaacccca	1800		
gtgccacgtt	gtgagttgga	tagttgtgga	aagagtcaaa	tggctctcct	caagcgtatt	1860		
caacaagggg	ctgaaggatg	cccagaaggt	accccattgt	atgggatctg	atctggggcc	1920		
tcggtgcaca	tgctttacat	gtgtttagtc	gaggttaaaa	aaacgtctag	gccccccgaa	1980		
ccacgggggac	gtggttttcc	tttgaaaaac	acgatgataa	gcttgccaca	acccgggatc	2040		
ctctagagtc	gaaattcggc	ttctgacctc	atggaggett	gggagtgttt	ggaagatttt	2100		
tctgctgtgc	gtaacttgct	ggaacagagc	tctaacagta	cctcttggtt	ttggaggttt	2160		
ctgtggggct	catcccaggc	aaagttagtc	tgcagaatta	aggaggatta	caagtgggaa	2220		
tttgaagagc	ttttgaaatc	ctgtggtgag	ctgtttgatt	ctttgaatct	gggtcaccag	2280		
gcgcttttcc	aagagaaggt	catcaagact	ttggattttt	ccacaccggg	gcgcgctgcg	2340		
		ttttataaag				2400		
5 5 - 5 - 5			5	5 5 5 5 5	- 5 - 5 -			

-continued								
ggggggtacc tgctggattt tctggccatg catctgtgga gagcggttgt gagacacaag	2460							
aatcgcctgc tactgttgtc ttccgtccgc ccggcgataa taccgacgga ggagcagcag	2520							
cagcagcagg aggaagccag gcggcggcgg caggagcaga gcccatggaa cccgagagcc	2580							
ggcctggacc ctcgggaatg aatgttgtac aggtggctga actgtatcca gaactgagac	2640							
gcattttgac aattacagag gatgggcagg ggctaaaggg ggtaaagagg gagcgggggg	2700							
cttgtgaggc tacagaggag gctaggaatc tagcttttag cttaatgacc agacaccgtc	2760							
ctgagtgtat tacttttcaa cagatcaagg ataattgcgc taatgagctt gatctgctgg	2820							
cgcagaagta ttccatagag cagctgacca cttactggct gcagccaggg gatgattttg	2880							
aggaggctat tagggtatat gcaaaggtgg cacttaggcc agattgcaag tacaagatca	2940							
gcaaacttgt aaatatcagg aattgttgct acatctctgg gaacgggggcc gaggtggaga	3000							
tagatacgga ggatagggtg gcctttagat gtagcatgat aaatatgtgg ccgggggtgc	3060							
ttggcatgga cggggtggtt attatgaatg taaggtttac tggccccaat tttagcggta	3120							
cggttttcct ggccaatacc aaccttatcc tacacggtgt aagcttctat gggtttaaca	3180							
atacetgtgt ggaageetgg acegatgtaa gggttegggg etgtgeettt taetgetget	3240							
ggaagggggt ggtgtgtcgc cccaaaagca gggcttcaat taagaaatgc ctctttgaaa	3300							
ggtgtacett gggtateetg tetgagggta acteeagggt gegeeacaat gtggeeteeg	3360							
actgtggttg cttcatgcta gtgaaaagcg tggctgtgat taagcataac atggtatgtg	3420							
gcaactgcga ggacagggcc tetcagatge tgacetgete ggaeggeaae tgteaeetge	3480							
tgaagaccat teacgtagee agecaetete geaaggeetg geeagtgttt gageataaca	3540							
tactgacccg ctgttccttg catttgggta acaggagggg ggtgttccta ccttaccaat	3600							
gcaatttgag tcacactaag atattgcttg agcccgagag catgtccaag gtgaacctga	3660							
acggggtgtt tgacatgacc atgaagatct ggaaggtgct gaggtacgat gagacccgca	3720							
ccaggtgcag accctgcgag tgtggcggta aacatattag gaaccagcct gtgatgctgg	3780							
atgtgaccga ggagctgagg cccgatcact tggtgctggc ctgcacccgc gctgagtttg	3840							
gctctagcga tgaagataca gattgaggta ctgaaatatg tgggcaagcc gaatttcgac	3900							
ccgggcggcc tagcgtttct agcgtttaaa cgggccctct agactcgagc ggcctccata	3960							
aagtaggaaa cactacacag ctccataaag taggaaacac tacattaatt ccataaagta	4020							
ggaaacacta caggactcca taaagtagga aacactaca	4059							
<210> SEQ ID NO 54 <211> LENGTH: 1439 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA <400> SEQUENCE: 54								
tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata tggagttccg	60							
cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc cccgcccatt	120							
gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc attgacgtca	180							
atqqqtqqaq tatttacqqt aaactqccca cttqqcaqta catcaaqtqt atcatatqcc	240							
	300							
aagtacgeee eetattgaeg teaatgaegg taaatggeee geetggeatt atgeeeagta	300							

			-
- ~ ~	-nt	1 10 1	ued
		TTT.	ucu

catgacetta tgggaettte etaettggea gtaeatetae gtattagtea tegetattae	360		
catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg actcacgggg	420		
atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc aaaatcaacg	480		
ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg gtaggcgtgt	540		
acggtgggag gtctatataa gcagagctgg tttagtgaac cgtcagatcc gctagccggt	600		
cgccaccatg gtgagcaagg gcgaggagct gttcaccggg gtggtgccca tcctggtcga	660		
gctggacggc gacgtaaacg gccacaagtt cagcgtgtcc ggcgagggcg agggcgatgc	720		
cacctacggc aagetgacec tgaagtteat etgeaceace ggeaagetge eegtgeeetg	780		
geceacete gtgaceacee tgacetaegg egtgeagtge tteageeget acceegacea	840		
catgaagcag cacgacttct tcaagtccgc catgcccgaa ggctacgtcc aggagcgcac	900		
catcttcttc aaggacgacg gcaactacaa gacccgcgcc gaggtgaagt tcgagggcga	960		
caccctggtg aaccgcatcg agctgaaggg catcgacttc aaggaggacg gcaacatcct	1020		
ggggcacaag ctggagtaca actacaacag ccacaacgtc tatatcatgg ccgacaagca	1080		
gaagaacggc atcaaggtga acttcaagat ccgccacaac atcgaggacg gcagcgtgca	1140		
gctcgccgac cactaccagc agaacacccc catcggcgac ggccccgtgc tgctgcccga	1200		
caaccactac ctgagcaccc agtccgccct gagcaaagac cccaacgaga agcgcgatca	1260		
catggtcctg ctggagttcg tgaccgccgc cgggatcact ctcggcatgg acgagctgta	1320		
caagtaaagc ggcctccata aagtaggaaa cactacacag ctccataaag taggaaacac	1380		
tacattaatt ccataaagta ggaaacacta caggactcca taaagtagga aacactaca	1439		
<210> SEQ ID NO 55 <211> LENGTH: 105 <212> TYPE: DNA <212> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: synthetic DNA <400> SEQUENCE: 55			
tccataaagt aggaaacact acacagctcc ataaagtagg aaacactaca ttaattccat	60		
aaagtaggaa acactacacc actccataaa gtaggaaaca ctaca	105		

1. A recombinant adenovirus, which comprises:

- a replication cassette comprising a polynucleotide comprising a human telomerase reverse transcriptase promoter, E1A gene, IRES sequence and E1B gene in this order, and a target sequence of a first microRNA, wherein the first microRNA is miR-142 and the target sequence comprises a nucleotide sequence having at least 98% identity to the nucleotide sequence consisting of SEQ ID NO: 52, and wherein the replication cassette is integrated into the E1 region of the adenovirus genome;
- a labeling cassette comprising a reporter gene, a promoter capable of regulating the expression of the reporter gene, and a target sequence of a second microRNA, wherein the second microRNA is miR-142 and the target sequence comprises a nucleotide sequence having at least 98% identity to the nucleotide sequence consisting of SEQ ID NO: 52, and wherein the labeling cassette is integrated into the E3 region of the adenovirus genome; and
- a gene encoding a CD46-binding fiber protein comprising at least the fiber knob region in the fiber protein of adenovirus type 34 or 35, which comprises a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 50 and is integrated into the adenovirus genome.

2. The recombinant adenovirus according to claim 1, wherein the reporter gene is a gene encoding a protein which emits fluorescence or a gene encoding an enzyme protein which generates a luminophore or a chromophore upon enzymatic reaction.

3. The recombinant adenovirus according to claim **1**, wherein the promoter capable of regulating the expression of the reporter gene is a human telomerase reverse transcriptase promoter or cytomegalovirus promoter.

4. The recombinant adenovirus according to claim **1**, wherein the replication cassette comprises a nucleotide sequence having at least 99%0 identity to the nucleotide sequence consisting of SEQ ID NO: 53.

5. The recombinant adenovirus according to claim **1**, wherein the labeling cassette comprises a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 54.

6. A recombinant adenovirus, which comprises:

- a replication cassette comprising a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 53 and is integrated into the E1 region of the adenovirus genome;
- a labeling cassette comprising a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 54 and is integrated into the E3 region of the adenovirus genome; and
- a gene encoding a CD46-binding fiber protein comprising a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 50 and is integrated into the adenovirus genome.

7. A recombinant adenovirus, which comprises a nucleotide sequence having at least 99% identity to the nucleotide sequence consisting of SEQ ID NO: 51.

* * * * *