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RECONFIGURING REGISTER AND SHARED
MEMORY USAGE IN THREAD ARRAYS

BACKGROUND

Field of the Various Embodiments

[0001] Various embodiments relate generally to parallel
processing compute architectures and, more specifically, to
reconfiguring register and shared memory usage in thread
arrays.

Description of the Related Art

[0002] A computing system generally includes, among
other things, one or more processing units, such as central
processing units (CPUs) and/or graphics processing units
(CPUs), and one or more memory systems. The GPU is
capable of executing a large number (e.g., hundreds or
thousands) of threads concurrently, where each thread is an
instance of a program. Correspondingly, the GPU includes
multiple processors, where each processor is configured to
process one or more thread groups. As used herein, a thread
group or warp refers to a group of threads concurrently
executing the same program on different input data, with
each thread of the group being assigned to a different
execution unit within a processor. A plurality of related
thread groups may be active (in different phases of execu-
tion) at the same time within a processor. This collection of
thread groups is referred to herein as a cooperative thread
array (CTA) or thread array. Warps and/or CTAs may further
be grouped into cooperative group arrays (CGAs), and
multiple CGAs may be grouped to execute an entire appli-
cation program. Such a group of multiple CGAs is referred
to herein as a grid or a kernel.

[0003] Each thread executing on a processor of the GPU
acquires resources to execute certain functions, referred to
herein as work, where the resources include registers, shared
memory, and/or the like. The thread uses registers to store
various values during mathematical calculations, to load
data from and store data to memory, and/or the like. The
thread uses shared memory to load data from and store data
to memory, to transfer data to and from other threads
executing within a warp, CTA, CGA, and/or grid, and/or the
like. Warps executing in a CTA or CGA can be subject to a
homogeneity restriction. With this homogeneity restriction,
at the time a CTA or CGA is launched, each warp acquires
the same amount of registers and shared memory used for
executing the functions specified by the threads included in
the warp. Warps executing in a CTA or CGA can further be
subject to a permanence restriction. With this permanence
restriction. The warps maintain the same amount of registers
and shared memory, referred to herein as the footprint of the
warp, until the CTA completes execution. These restrictions
can lead to several disadvantages.

[0004] A first disadvantage of the above restrictions is
that, in complex CTAs and CGAs, different concurrently
executing warps may be performing different functions that
have different resource requirements. Some warps may
execute various mathematical functions, such as matrix
multiplication, Fourier transforms, and/or the like. Such
warps executing mathematical functions typically utilize a
relatively large amount of registers and/or shared memory to
store the data needed to perform the mathematical functions
but need relatively few threads. Other warps may execute
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various data transfer functions to retrieve input data from
long term memory, such as global memory. These warps
executing data transfer functions may store the data in the
shared memory for use by the warps executing the math-
ematical functions and typically copy data from global
memory into staging buffers in shared memory. Warps
executing data transfer functions utilize a relatively small
amount of registers and/or shared memory to perform the
data transfer functions but need a relatively large number of
threads. Placing warps executing mathematical functions
and warps executing data transfer functions within the same
CTA or CGA allows the warps to take advantage of fast data
synchronization mechanisms that threads within a CTA or
CGA provide. However, because each warp acquires the
same number of registers and same amount of shared
memory, the warps executing data transfer functions acquire
the same large amount of registers and/or shared memory as
the warps executing mathematical functions, but do not
utilize all of the acquired resources.

[0005] A second disadvantage of the above restrictions is
that the resource requirements of warps in a CTA or CGA
may change over time. For example, a warp may execute
three consecutive functions, where the first function utilizes
a large amount of resources and a small number of threads,
a second function utilizes a small amount of resources and
a large number of threads, and a third function utilizes a
moderate amount of resources and a moderate number of
threads. The warp acquires the resources needed to execute
the first function, which requires the largest amount of
resources. Further, the warp is sized to accommodate the
largest number of threads utilized by the second function.
However, the resources are underutilized when the warp
executes the second function and the third function. Further,
the threads are underutilized when the warp executes the
first function and the third function.

[0006] A third disadvantage of the above restrictions is
that the resource requirements of warps in a CTA or CGA
may depend on the execution path of the warps. For
example, a warp may test for a condition and, based on the
condition, the warp may execute one of three execution
paths, where each of the three execution paths executes a
different function. The first execution path executes a first
function that utilizes a large amount of resources. The
second execution path executes a second function that
utilizes a small amount of resources. The third execution
path executes a third function utilizes a moderate amount of
resources. The warp acquires the resources needed to
execute the first function, which requires the largest amount
of resources. However, if the warp executes the second
execution path or the third execution path, the acquired
resources are underutilized when the warp executes the
second function or the third function.

[0007] One solution to at least the first disadvantage set
forth above is to separate different functions with different
resource requirements into different CTAs. For example, a
first warp within a first CTA could execute a first function
that utilizes a large amount of resources. The warp could
store the results of the first function in memory and then
complete. A second warp within a second CTA could
retrieve the results of the first function and execute a second
function that utilizes a small amount of resources. The warp
could store the results of the second function in memory and
then complete. A third warp within a third CTA could
retrieve the results of the first function and/or second func-
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tion and execute a third function that utilizes a moderate
amount of resources. The warp could store the results of the
third function in memory and then complete. Although this
approach utilizes resources more efficiently, the amount of
overhead time to launch each CTA, store the results, and
complete the CTA involves a process that takes time to
execute. This overhead time may be significant relative to
the time to execute the actual functions, resulting in
increased latency to execute the functions, thereby leading to
reduced performance. Further, in legacy architectures, in
order for these three CTAs to use different resources, these
three CTAs would need to be in different kernels. As a result,
launching the three kernels results in additional latency,
which is in addition to the latencies for launching CTAs
within a kernel. In addition, executing three separate kernels
results in latency related storing and loading data from
global memory.

[0008] As the foregoing illustrates, what is needed in the
art are more effective techniques for executing functions on
a processing unit with multiple threads of execution.

SUMMARY

[0009] Various embodiments of the present disclosure set
forth a computer-implemented method for launching com-
pute tasks on a processing unit. The method includes execut-
ing a first group of threads, wherein a resource is allocated
to the first group of threads being executed. The method
further includes receiving a request to modify an allocation
of the resource from the first group of threads while the first
group of threads is executing. The method further includes
modifying the allocation of the resource based on the
request. When executing the method, the first group of
threads continues execution after moditying the allocation.

[0010] Other embodiments include, without limitation, a
system that implements one or more aspects of the disclosed
techniques, and one or more computer readable media
including instructions for performing one or more aspects of
the disclosed techniques, as well as a method for performing
one or more aspects of the disclosed techniques.

[0011] At least one technical advantage of the disclosed
techniques relative to the prior art is that, with the disclosed
techniques, different thread groups executing within a thread
array can be configured with different allocations of
resources and can independently increase or decrease the
allocation of resources during execution. As a result,
resources can be more efficiently allocated to thread groups
relative to prior approaches. Further, because a producer
thread array can release resources to a consumer thread array
before the producer thread array completes execution, the
execution of the producer thread array and the consumer
thread array can overlap, resulting in further efficiencies.
These advantages represent one or more technological
improvements over prior art approaches.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] So that the manner in which the above recited
features of the various embodiments can be understood in
detail, a more particular description of the inventive con-
cepts, briefly summarized above, may be had by reference to
various embodiments, some of which are illustrated in the
appended drawings. It is to be noted, however, that the
appended drawings illustrate only typical embodiments of
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the inventive concepts and are therefore not to be considered
limiting of scope in any way, and that there are other equally
effective embodiments.

[0013] FIG. 1 is a block diagram of a computer system
configured to implement one or more aspects of the various
embodiments;

[0014] FIG. 2 is a block diagram of a parallel processing
unit (PPU) included in the accelerator processing subsystem
of FIG. 1, according to various embodiments;

[0015] FIG. 3 is a block diagram of a general processing
cluster (GPC) included in the parallel processing unit (PPU)
of FIG. 2, according to various embodiments;

[0016] FIG. 4 illustrates how a CTA executing on the PPU
of FIG. 2 can be reconfigured, according to various embodi-
ments;

[0017] FIG. 5 illustrates three CTAs executing consecu-
tively on the PPU of FIG. 2, according to various embodi-
ments;

[0018] FIG. 6 illustrates a reconfigurable CTA executing
on the PPU of FIG. 2, according to various embodiments;
[0019] FIG. 7 is a state diagram illustrating how warps
acquire and allocate resources on the PPU of FIG. 2,
according to various embodiments;

[0020] FIG. 8 illustrates how warps allocate and deallo-
cate registers during execution, according to various
embodiments;

[0021] FIGS. 9A-9B illustrate data structures for manag-
ing registers for a warp executing in a CTA, according to
various embodiments;

[0022] FIG. 10 illustrates a CTA free register pool for
managing registers for a CTA free register pool, according to
various embodiments;

[0023] FIGS. 11A-11B illustrate a shared memory linked
list for managing shared memory for a warp executing in a
CTA, according to various embodiments; and

[0024] FIG. 12 is a flow diagram of method steps for
utilizing resources on an accelerator, such as the PPU of
FIG. 2, according to various embodiments, according to
various embodiments.

DETAILED DESCRIPTION

[0025] In the following description, numerous specific
details are set forth to provide a more thorough understand-
ing of the various embodiments. However, it will be appar-
ent to one skilled in the art that the inventive concepts may
be practiced without one or more of these specific details.

System Overview

[0026] FIG.1 is a block diagram of'a computer system 100
configured to implement one or more aspects of the various
embodiments. As shown, computer system 100 includes,
without limitation, a central processing unit (CPU) 102 and
a system memory 104 coupled to an accelerator processing
subsystem 112 via a memory bridge 105 and a communi-
cation path 113. Memory bridge 105 is further coupled to an
1/O (input/output) bridge 107 via a communication path 106,
and 1/O bridge 107 is, in turn, coupled to a switch 116.

[0027] In operation, I/O bridge 107 is configured to
receive user input information from input devices 108, such
as a keyboard or a mouse, and forward the input information
to CPU 102 for processing via communication path 106 and
memory bridge 105. Switch 116 is configured to provide
connections between I/O bridge 107 and other components
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of the computer system 100, such as a network adapter 118
and various add-in cards 120 and 121.

[0028] As also shown, I/O bridge 107 is coupled to a
system disk 114 that may be configured to store content and
applications and data for use by CPU 102 and accelerator
processing subsystem 112. As a general matter, system disk
114 provides non-volatile storage for applications and data
and may include fixed or removable hard disk drives, flash
memory devices, and CD-ROM (compact disc read-only-
memory), DVD-ROM (digital versatile disc-ROM), Blu-
ray, HD-DVD (high definition DVD), or other magnetic,
optical, or solid state storage devices. Finally, although not
explicitly shown, other components, such as universal serial
bus or other port connections, compact disc drives, digital
versatile disc drives, film recording devices, and the like,
may be connected to I/O bridge 107 as well.

[0029] In various embodiments, memory bridge 105 may
be a Northbridge chip, and /O bridge 107 may be a
Southbridge chip. In addition, communication paths 106 and
113, as well as other communication paths within computer
system 100, may be implemented using any technically
suitable protocols, including, without limitation, AGP (Ac-
celerated Graphics Port), HyperTransport, or any other bus
or point-to-point communication protocol known in the art.

[0030] In some embodiments, accelerator processing sub-
system 112 comprises a graphics subsystem that delivers
pixels to a display device 110 that may be any conventional
cathode ray tube, liquid crystal display, light-emitting diode
display, or the like. In such embodiments, the accelerator
processing subsystem 112 incorporates circuitry optimized
for graphics and video processing, including, for example,
video output circuitry. As described in greater detail below
in FIG. 2, such circuitry may be incorporated across one or
more accelerators included within accelerator processing
subsystem 112. An accelerator includes any processing unit
that can execute instructions such as a central processing
unit (CPU), a parallel processing unit (PPU) of FIGS. 2-4,
a graphics processing unit (GPU), an intelligence processing
unit (IPU), neural processing unit (NAU), tensor processing
unit (TPU), neural network processor (NNP), a data pro-
cessing unit (DPU), a vision processing unit (VPU), an
application specific integrated circuit (ASIC), a field-pro-
grammable gate array (FPGA), and/or the like. In other
embodiments, the accelerator processing subsystem 112
incorporates circuitry optimized for general purpose and/or
compute processing. Again, such circuitry may be incorpo-
rated across one or more accelerators included within accel-
erator processing subsystem 112 that are configured to
perform such general purpose and/or compute operations. In
yet other embodiments, the one or more accelerators
included within accelerator processing subsystem 112 may
be configured to perform graphics processing, general pur-
pose processing, and compute processing operations. Sys-
tem memory 104 includes at least one device driver 103
configured to manage the processing operations of the one or
more accelerators within accelerator processing subsystem
112.

[0031] In various embodiments, accelerator processing
subsystem 112 may be integrated with one or more other the
other elements of FIG. 1 to form a single system. For
example, accelerator processing subsystem 112 may be
integrated with CPU 102 and other connection circuitry on
a single chip to form a system on chip (SoC).
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[0032] It will be appreciated that the system shown herein
is illustrative and that variations and modifications are
possible. The connection topology, including the number
and arrangement of bridges, the number of CPUs 102, and
the number of accelerator processing subsystems 112, may
be modified as desired. For example, in some embodiments,
system memory 104 could be connected to CPU 102 directly
rather than through memory bridge 105, and other devices
would communicate with system memory 104 via memory
bridge 105 and CPU 102. In other alternative topologies,
accelerator processing subsystem 112 may be connected to
/O bridge 107 or directly to CPU 102, rather than to
memory bridge 105. In still other embodiments, /O bridge
107 and memory bridge 105 may be integrated into a single
chip instead of existing as one or more discrete devices.
Lastly, in certain embodiments, one or more components
shown in FIG. 1 may not be present. For example, switch
116 could be eliminated, and network adapter 118 and add-in
cards 120, 121 would connect directly to /O bridge 107.

[0033] FIG. 2 is a block diagram of a parallel processing
unit (PPU) 202 included in the accelerator processing sub-
system 112 of FIG. 1, according to various embodiments.
Although FIG. 2 depicts one PPU 202, as indicated above,
accelerator processing subsystem 112 may include any num-
ber of PPUs 202. Further, the PPU 202 of FIG. 2 is one
example of an accelerator included in accelerator processing
subsystem 112 of FIG. 1. Alternative accelerators include,
without limitation, CPUs, GPUs, IPUs, NPUs, TPUs, NNPs,
DPUs, VPUs, ASICs, FPGAs, and/or the like. The tech-
niques disclosed in FIGS. 2-4 with respect to PPU 202 apply
equally to any type of accelerator(s) included within accel-
erator processing subsystem 112, in any combination. As
shown, PPU 202 is coupled to a local parallel processing
(PP) memory 204. PPU 202 and PP memory 204 may be
implemented using one or more integrated circuit devices,
such as programmable processors, application specific inte-
grated circuits (ASICs), or memory devices, or in any other
technically feasible fashion.

[0034] In some embodiments, PPU 202 comprises a
graphics processing unit (GPU) that may be configured to
implement a graphics rendering pipeline to perform various
operations related to generating pixel data based on graphics
data supplied by CPU 102 and/or system memory 104.
When processing graphics data, PP memory 204 can be used
as graphics memory that stores one or more conventional
frame buffers and, if needed, one or more other render
targets as well. Among other things, PP memory 204 may be
used to store and update pixel data and deliver final pixel
data or display frames to display device 110 for display. In
some embodiments, PPU 202 also may be configured for
general-purpose processing and compute operations.

[0035] In operation, CPU 102 is the master processor of
computer system 100, controlling and coordinating opera-
tions of other system components. In particular, CPU 102
issues commands that control the operation of PPU 202. In
some embodiments, CPU 102 writes a stream of commands
for PPU 202 to a data structure (not explicitly shown in
either FIG. 1 or FIG. 2) that may be located in system
memory 104, PP memory 204, or another storage location
accessible to both CPU 102 and PPU 202. A pointer to the
data structure is written to a pushbuffer to initiate processing
of the stream of commands in the data structure. The PPU
202 reads command streams from the pushbuffer and then
executes commands asynchronously relative to the opera-
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tion of CPU 102. In embodiments where multiple pushbuf-
fers are generated, execution priorities may be specified for
each pushbuffer by an application program via device driver
103 to control scheduling of the different pushbuffers.
[0036] As also shown, PPU 202 includes an /O (input/
output) unit 205 that communicates with the rest of com-
puter system 100 via the communication path 113 and
memory bridge 105. /O unit 205 generates packets (or other
signals) for transmission on communication path 113 and
also receives all incoming packets (or other signals) from
communication path 113, directing the incoming packets to
appropriate components of PPU 202. For example, com-
mands related to processing tasks may be directed to a host
interface 206, while commands related to memory opera-
tions (e.g., reading from or writing to PP memory 204) may
be directed to a crossbar unit 210. Host interface 206 reads
each pushbuffer and transmits the command stream stored in
the pushbuffer to a front end 212.

[0037] As mentioned above in conjunction with FIG. 1,
the connection of PPU 202 to the rest of computer system
100 may be varied. In some embodiments, accelerator
processing subsystem 112, which includes at least one PPU
202, is implemented as an add-in card that can be inserted
into an expansion slot of computer system 100. In other
embodiments, PPU 202 can be integrated on a single chip
with a bus bridge, such as memory bridge 105 or I/O bridge
107. Again, in still other embodiments, some or all of the
elements of PPU 202 may be included along with CPU 102
in a single integrated circuit or system of chip (SoC).
[0038] In operation, front end 212 transmits processing
tasks received from host interface 206 to a work distribution
unit (not shown) within task/work unit 207. The work
distribution unit receives pointers to processing tasks that
are encoded as task metadata (TMD) and stored in memory.
The pointers to TMDs are included in a command stream
that is stored as a pushbuffer and received by the front end
212 from the host interface 206. Processing tasks that may
be encoded as TMDs include indices associated with the
data to be processed as well as state parameters and com-
mands that define how the data is to be processed. For
example, the state parameters and commands could define
the program to be executed on the data. The task/work unit
207 receives tasks from the front end 212 and ensures that
GPCs 208 are configured to a valid state before the process-
ing task specified by each one of the TMDs is initiated. A
priority may be specified for each TMD that is used to
schedule the execution of the processing task. Processing
tasks also may be received from the processing cluster array
230. Optionally, the TMD may include a parameter that
controls whether the TMD is added to the head or the tail of
a list of processing tasks (or to a list of pointers to the
processing tasks), thereby providing another level of control
over execution priority.

[0039] PPU 202 advantageously implements a highly par-
allel processing architecture based on a processing cluster
array 230 that includes a set of C general processing clusters
(GPCs) 208, where C 1. Each GPC 208 is capable of
executing a large number (e.g., hundreds or thousands) of
threads concurrently, where each thread is an instance of a
program. In various applications, different GPCs 208 may be
allocated for processing different types of programs or for
performing different types of computations. The allocation
of GPCs 208 may vary depending on the workload arising
for each type of program or computation.
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[0040] Memory interface 214 includes a set of D of
partition units 215, where D 1. Each partition unit 215 is
coupled to one or more dynamic random access memories
(DRAMSs) 220 residing within PP memory 204. In one
embodiment, the number of partition units 215 equals the
number of DRAMs 220, and each partition unit 215 is
coupled to a different DRAM 220. In other embodiments,
the number of partition units 215 may be different than the
number of DRAMSs 220. Persons of ordinary skill in the art
will appreciate that a DRAM 220 may be replaced with any
other technically suitable storage device. In operation, vari-
ous render targets, such as texture maps and frame buffers,
may be stored across DRAMs 220, allowing partition units
215 to write portions of each render target in parallel to
efficiently use the available bandwidth of PP memory 204.

[0041] A given GPC 208 may process data to be written to
any of the DRAMs 220 within PP memory 204. Crossbar
unit 210 is configured to route the output of each GPC 208
to the input of any partition unit 215 or to any other GPC 208
for further processing. GPCs 208 communicate with
memory interface 214 via crossbar unit 210 to read from or
write to various DRAMs 220. In one embodiment, crossbar
unit 210 has a connection to I/O unit 205, in addition to a
connection to PP memory 204 via memory interface 214,
thereby enabling the processing cores within the different
GPCs 208 to communicate with system memory 104 or
other memory not local to PPU 202. In the embodiment of
FIG. 2, crossbar unit 210 is directly connected with 1/O unit
205. In various embodiments, crossbar unit 210 may use
virtual channels to separate traffic streams between the
GPCs 208 and partition units 215.

[0042] Again, GPCs 208 can be programmed to execute
processing tasks relating to a wide variety of applications,
including, without limitation, linear and nonlinear data
transforms, filtering of video and/or audio data, modeling
operations (e.g., applying laws of physics to determine
position, velocity, and other attributes of objects), image
rendering operations (e.g., tessellation shader, vertex shader,
geometry shader, and/or pixel/fragment shader programs),
general compute operations, etc. In operation, PPU 202 is
configured to transfer data from system memory 104 and/or
PP memory 204 to one or more on-chip memory units,
process the data, and write result data back to system
memory 104 and/or PP memory 204. The result data may
then be accessed by other system components, including
CPU 102, another PPU 202 within accelerator processing
subsystem 112, or another accelerator processing subsystem
112 within computer system 100.

[0043] As noted above, any number of PPUs 202 may be
included in an accelerator processing subsystem 112. For
example, multiple PPUs 202 may be provided on a single
add-in card, or multiple add-in cards may be connected to
communication path 113, or one or more of PPUs 202 may
be integrated into a bridge chip. PPUs 202 in a multi-PPU
system may be identical to or different from one another. For
example, different PPUs 202 might have different numbers
of processing cores and/or different amounts of PP memory
204. In implementations where multiple PPUs 202 are
present, those PPUs may be operated in parallel to process
data at a higher throughput than is possible with a single
PPU 202. Systems incorporating one or more PPUs 202 may
be implemented in a variety of configurations and form
factors, including, without limitation, desktops, laptops,
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handheld personal computers or other handheld devices,
servers, workstations, game consoles, embedded systems,
and the like.

[0044] FIG. 3 is a block diagram of a general processing
cluster (GPC) 208 included in the parallel processing unit
(PPU) 202 of FIG. 2, according to various embodiments. In
operation, GPC 208 may be configured to execute a large
number of threads in parallel to perform graphics, general
processing and/or compute operations. As used herein, a
thread refers to an instance of a particular program executing
on a particular set of input data. In some embodiments,
single-instruction, multiple-data (SIMD) instruction issue
techniques are used to support parallel execution of a large
number of threads without providing multiple independent
instruction units. In other embodiments, single-instruction,
multiple-thread (SIMT) techniques are used to support par-
allel execution of a large number of generally synchronized
threads, using a common instruction unit configured to issue
instructions to a set of processing engines within GPC 208.
Unlike a SIMD execution regime, where all processing
engines typically execute identical instructions, SIMT
execution allows different threads to more readily follow
divergent execution paths through a given program. Persons
of ordinary skill in the art will understand that a SIMD
processing regime represents a functional subset of a SIMT
processing regime.

[0045] Operation of GPC 208 is controlled via a pipeline
manager 305 that distributes processing tasks received from
a work distribution unit (not shown) within task/work unit
207 to one or more streaming multiprocessors (SMs) 310.
Pipeline manager 305 may also be configured to control a
work distribution crossbar 330 by specitying destinations for
processed data output by SMs 310.

[0046] In one embodiment, GPC 208 includes a set of M
of SMs 310, where M=z1. Also, each SM 310 includes a set
of functional execution units (not shown), such as execution
units and load-store units. Processing operations specific to
any of the functional execution units may be pipelined,
which enables a new instruction to be issued for execution
before a previous instruction has completed execution. Any
combination of functional execution units within a given SM
310 may be provided. In various embodiments, the func-
tional execution units may be configured to support a variety
of different operations including integer and floating point
arithmetic (e.g., addition and multiplication), comparison
operations, Boolean operations (e.g., AND, OR, XOR),
bit-shifting, and computation of various algebraic functions
(e.g., planar interpolation and trigonometric, exponential,
and logarithmic functions, etc.). Advantageously, the same
functional execution unit can be configured to perform
different operations.

[0047] In operation, each SM 310 is configured to process
one or more thread groups. As used herein, a thread group
or warp refers to a group of threads concurrently executing
the same program on different input data, with one thread of
the group being assigned to a different execution unit within
an SM 310. A thread group may include fewer threads than
the number of execution units within the SM 310, in which
case some of the execution may be idle during cycles when
that thread group is being processed. A thread group may
also include more threads than the number of execution units
within the SM 310, in which case processing may occur over
consecutive clock cycles. Since each SM 310 can support up
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to G thread groups concurrently, it follows that up to G*M
thread groups can be executing in GPC 208 at any given
time.

[0048] Additionally, a plurality of related thread groups
may be active (in different phases of execution) at the same
time within an SM 310. This collection of thread groups is
referred to herein as a cooperative thread array (CTA) or
thread array. The size of a particular CTA is equal to m*k,
where k is the number of concurrently executing threads in
a thread group, which is typically an integer multiple of the
number of execution units within the SM 310, and m is the
number of thread groups simultaneously active within the
SM 310. In various embodiments, a software application
written in the compute unified device architecture (CUDA)
programming language describes the behavior and operation
of threads executing on GPC 208, including any of the
above-described behaviors and operations. A given process-
ing task may be specified in a CUDA program such that the
SM 310 may be configured to perform and/or manage
general-purpose compute operations.

[0049] Although not shown in FIG. 3, each SM 310
contains a level one (L1) cache or uses space in a corre-
sponding .1 cache outside of the SM 310 to support, among
other things, load and store operations performed by the
execution units. Each SM 310 also has access to level two
(L2) caches (not shown) that are shared among all GPCs 208
in PPU 202. The .2 caches may be used to transfer data
between threads. Finally, SMs 310 also have access to
off-chip “global” memory, which may include PP memory
204 and/or system memory 104. It is to be understood that
any memory external to PPU 202 may be used as global
memory. Additionally, as shown in FIG. 3, a level one-point-
five (L1.5) cache 335 may be included within GPC 208 and
configured to receive and hold data requested from memory
via memory interface 214 by SM 310. Such data may
include, without limitation, instructions, uniform data, and
constant data. In embodiments having multiple SMs 310
within GPC 208, the SMs 310 may beneficially share
common instructions and data cached in 1.5 cache 335.

[0050] Each GPC 208 may have an associated memory
management unit (MMU) 320 that is configured to map
virtual addresses into physical addresses. In various embodi-
ments, MMU 320 may reside either within GPC 208 or
within the memory interface 214. The MMU 320 includes a
set of page table entries (PTEs) used to map a virtual address
to a physical address of a tile or memory page and optionally
a cache line index. The MMU 320 may include address
translation lookaside buffers (TLB) or caches that may
reside within SMs 310, within one or more L1 caches, or
within GPC 208.

[0051] In graphics and compute applications, GPC 208
may be configured such that each SM 310 is coupled to a
texture unit 315 for performing texture mapping operations,
such as determining texture sample positions, reading tex-
ture data, and filtering texture data.

[0052] In operation, each SM 310 transmits a processed
task to work distribution crossbar 330 in order to provide the
processed task to another GPC 208 for further processing or
to store the processed task in an [.2 cache (not shown),
parallel processing memory 204, or system memory 104 via
crossbar unit 210. In addition, a pre-raster operations
(preROP) unit 325 is configured to receive data from SM
310, direct data to one or more raster operations (ROP) units
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within partition units 215, perform optimizations for color
blending, organize pixel color data, and perform address
translations.

[0053] It will be appreciated that the core architecture
described herein is illustrative and that variations and modi-
fications are possible. Among other things, any number of
processing units, such as SMs 310, texture units 315, or
preROP units 325, may be included within GPC 208.
Further, as described above in conjunction with FIG. 2, PPU
202 may include any number of GPCs 208 that are config-
ured to be functionally similar to one another so that
execution behavior does not depend on which GPC 208
receives a particular processing task. Further, each GPC 208
operates independently of the other GPCs 208 in PPU 202
to execute tasks for one or more application programs. In
view of the foregoing, persons of ordinary skill in the art will
appreciate that the architecture described in FIGS. 1-3 in no
way limits the scope of the various embodiments of the
present disclosure.

[0054] Please note, as used herein, references to shared
memory may include any one or more technically feasible
memories, including, without limitation, a local memory
shared by one or more SMs 310, or a memory accessible via
the memory interface 214, such as a cache memory, parallel
processing memory 204, or system memory 104. Please also
note, as used herein, references to cache memory may
include any one or more technically feasible memories,
including, without limitation, an L1 cache, an L.1.5 cache,
and the [.2 caches.

Efficient Utilization of Resources on an Accelerator

[0055] Various embodiments include techniques for uti-
lizing resources on a processor or other accelerator. With the
disclosed techniques, different warps executing in the same
CTA or CGA are dynamically configurable to be allocated
different numbers of registers, as controlled by compiler
instructions in the application program. Portions of shared
memory are per CTA resources such that, during a recon-
figuration operation, shared memory can be deallocated
from an existing CTA and allocated to a new CTA in order
to all the new CTA to launch. The disclosed techniques allow
the application program to set up heterogenous warps in the
CTA or CGA. The disclosed techniques allow the applica-
tion program to increase the number of available registers
for warps in the same CTA, such as warps executing
mathematical functions. Similarly, the disclosed techniques
allow the application program to decrease the number of
available registers for certain other warps, such as warps in
the same CTA that are executing data transfer functions.
With the disclosed techniques, these two types of different
warps, that is, warps executing mathematical functions and
warps executing data transfer functions, can exist within the
same CTA.

[0056] In addition, with the disclosed techniques, warps
can proactively release registers and/or shared memory prior
to exiting the CTA. As a result, the system can launch other
CTAs from the same grid and/or other CTAs from indepen-
dent grids earlier than with prior approaches. For example,
a producer kernel that generates data for a consumer kernel
can release registers and/or shared memory prior to comple-
tion of the producer kernel. The producer kernel can release
the registers and/or shared memory at a point when the
producer kernel has a reduced need for these resources. The
consumer kernel can acquire the registers and/or shared
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memory from the producer kernel after the producer kernel
releases the resources and prior to completion of the pro-
ducer kernel. As a result, the system executes with increased
efficiency because the consumer kernel can launch and begin
execution concurrently with the producer kernel completing
execution, thereby reducing dependent kernel-to-kernel
latency.

[0057] FIG. 4 illustrates how a CTA 400 executing on the
PPU 202 of FIG. 2 can be reconfigured, according to various
embodiments. As shown, the CTA 400 is initially configured
as a CTA 410 with a specified number of threads and a
specified amount of resources, such as registers and/or
shared memory. For example, the CTA 410 could be con-
figured as 512 threads with 32 registers per thread. At a
certain point during execution of the CTA 410, the CTA 410
can be reconfigured into one or more other CTAs with a
different number of threads and/or registers per thread.
[0058] In one example, the CTA 410 could determine that
functions that are about to be executed would benefit from
executing on a CTAs 420 having more registers per thread.
Therefore, the CTA 410 could be reconfigured as a CTA 420
with fewer threads and more registers per thread, such as
256 threads with 64 registers per threads. The overall
register footprint has not changed because the original CTA
410 is allocated 512 threadsx32 registers per thread=16,384
registers, while the reconfigured CTA 420 is allocated 256
threadsx64 registers per thread=16,384 registers.

[0059] In another example, the CTA 410 could determine
that functions that are about to be executed would benefit
from executing on different CTAs 430 and 432 with different
numbers of registers per thread. Therefore, the CTA 410
could be reconfigured as two CTAs 430 and 432. The first
CTA 430 could be configured 256 threads with 48 registers
per thread, for a total of 12,288 registers. The second CTA
430 could be configured 256 threads with 16 registers per
thread, for a total of 4,096 registers. Again, the overall
register footprint has not changed because the original CTA
410 is allocated 16,384 registers while the combination of
CTAs 430 and 432 is allocated 12,288 registers+4,096
registers=16,384 registers.

[0060] As shown, the CTA 400 can be initially configured
as a CTA 410 with a specified number of threads and a
specified amount of resources and can be configured as a
single CTA 420 or as multiple CTAs 430 and 432 with any
number of threads and resources, so long as the overall
resource footprint of the CTA 400 does not change. The CTA
400 is reconfigurable as the CTA 400 executes, without
having to terminate the CTA 400 and launch one or more
new CTAs with different configurations. As a result, recon-
figuring the CTA 400 during execution reduces or eliminates
the time needed with prior approaches to terminate a CTA
having one configuration and launching one or more CTAs
with different configurations.

[0061] In some embodiments, a kernel can reconfigure a
CTA 400 based on the result of a dynamic condition check
that executes during the runtime of the kernel and generates
aresult. When the CTA 400 launches, the kernel initially and
conservatively selects a resource footprint that is sufficient
for the majority of the kernel execution time. The resource
footprint defines the amount of resources, such as registers
and shared memory, to allocate to the CTA 400. The CTA
400 acquires resources based on the selected resource foot-
print. During execution, the kernel performs a dynamic
condition check that generates a result in order to determine
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which branch from among a set of two or more branches to
execute. Each branch can consume a different amount of
resources and, therefore, can execute with a different
resource footprint. Further, the branch taken by the CTA 400
depends on runtime conditions that the compiler cannot
determine a priori. In some examples, a first branch con-
sumes a large resource footprint that is similar or identical
with the initial resource footprint. A second branch con-
sumes a medium resource footprint, and a third branch
consumes a small resource footprint. If the result generated
by the dynamic condition check indicates that the CTA 400
executes the first branch, then the resource allocation
remains the same. If the result generated by the dynamic
condition check indicates that the CTA 400 executes the
second branch or the third branch, then the resource foot-
print of the CTA 400 is reconfigured during runtime to
consume fewer resources. The freed resources are returned
to the free pool and are available for reuse by other CTAs
from same grid and/or CTAs from other independent grids.

[0062] FIG. 5 illustrates three CTAs 520, 522, and 524
executing consecutively on the PPU 202 of FIG. 2, accord-
ing to various embodiments. As shown, kernel A 510
launches a first CTA 520 with a specified configuration, such
as 512 threadsx32 registers per thread=16,384 registers. The
configuration for CTA 520 may be well suited for functions
that benefit from executing on a large number of threads
with a moderate number of registers per thread. Kernel A
510 loads input data from memory, such as shared memory.
Kernel A 510 then executes various functions, illustrated as
Compute A in FIG. 5. Kernel A 510 stores the output
resulting from executing the functions in shared memory.
Kernel A 510 then terminates and CTA 520 releases all
threads, registers, and other resources.

[0063] Kernel B 512 launches a second CTA 522 with a
specified configuration, such as 256 threadsx64 registers per
thread=16,384 registers. The configuration for CTA 522 may
be well suited for functions that benefit from executing on a
small number of threads with a large number of registers per
thread. Kernel B 512 loads input data from memory, such as
shared memory. This input data may be the output data
stored by kernel A 510. Kernel B 512 then executes various
functions, illustrated as Compute B in FIG. 5. Kernel B 512
stores the output resulting from executing the functions in
shared memory. Kernel B 512 then terminates and CTA 522
releases all threads, registers, and other resources.

[0064] Kernel C 514 launches a third CTA 524 with a
specified configuration, such as 384 threadsx16 registers per
thread=6,144 registers. The configuration for CTA 524 may
be well suited for functions that benefit from executing on a
moderate number of threads with a small number of registers
per thread. Kernel C 514 loads input data from memory,
such as shared memory. This input data may be the output
data stored by kernel B 512. Kernel C 514 then executes
various functions, illustrated as Compute C in FIG. 5. Kernel
C 514 stores the output resulting from executing the func-
tions in shared memory. Kernel C 514 then terminates and
CTA 524 releases all threads, registers, and other resources.

[0065] Executing kernels 510, 512, and 514 sequentially
efficiently utilizes registers and other resources. However,
the time overhead needed to store the output of one CTA and
terminate that CTA plus the time to launch the subsequent
CTA and load the input data for the subsequent CTA can be
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significant. Kernels 510, 512, and 514 can be merged into a
single reconfigurable CTA to reduce or eliminate this time
overhead.

[0066] FIG. 6 illustrates a reconfigurable CTA 600 execut-
ing on the PPU 202 of FIG. 2, according to various embodi-
ments. As shown, a combined kernel 610 launches a first
CTA 620 with a specified configuration, such as 512
threadsx32 registers per thread=16,384 registers. The con-
figuration for CTA 620 may be well suited for functions that
benefit from executing on a large number of threads with a
moderate number of registers per thread. Kernel 610 loads
input data from memory, such as shared memory. Kernel 610
then executes various functions, illustrated as Compute A in
FIG. 6. Kernel 610 determines that subsequent functions,
illustrated as Compute B in FIG. 6, benefit from executing
on a small number of threads with a large number of
registers per thread.

[0067] Kernel 610 executes a command to change the
configuration of CTA 600, such as 256 threadsx64 registers
per thread=16,384 registers. During reconfiguration, the
512-256=256 excess threads exit and/or are suspended.
Excess threads that are no longer needed to execute kernel
610 exit. Other kernels can then allocate the exited threads
to perform work via other CTAs. Threads that are not needed
to execute CTA 622 but are needed to execute subsequent
CTAs for kernel 610 are suspended. Suspended threads are
not available to other kernels for allocation. Kernel 610 may
exit some threads and suspend others. For example, kernel
610 may exit 128 of the 256 excess threads, so that the 128
excess threads may be allocated by other kernels. Kernel 610
may suspend 128 of the 256 excess threads, so that the 128
suspended threads are available for executing subsequent
CTAs, such as CTA 624. Both the exiting threads and the
suspended threads release their resources, such as registers,
shared memory, and/or the like, to the free pool. The
remaining 256 threads acquire 32 additional registers per
thread from the free pool for a total of 64 registers per
thread. The additional registers may be the registers released
by the exited and suspended threads from CTA 620. Addi-
tionally or alternatively, the additional threads may be any
other registers available from the free pool.

[0068] After reconfiguration, CTA 622 has a new configu-
ration, such as 256 threadsx64 registers per thread=16,384
registers. Kernel 610 executes functions, illustrated as Com-
pute B, on CTA 622. Kernel 610 determines that subsequent
functions, illustrated as Compute C in FIG. 6, benefit from
executing on moderate number of threads with a small
number of registers per thread.

[0069] Kernel 610 executes a command to change the
configuration of CTA 600, such as 384 threadsx16 registers
per thread=6,144 registers. During reconfiguration, the 128
suspended threads are activated for a total of 256+128=384
threads. If no suspended threads are available, kernel 610
acquires additional threads from the PPU 202. The 256
threads of CTA 622 each release 64—16=48 registers to the
free pool. The 128 suspended threads each acquire 16
registers from the free pool. The registers may be the
registers released by the 256 threads from CTA 622. Addi-
tionally or alternatively, the additional threads may be any
other registers available from the free pool.

[0070] After reconfiguration, CTA 624 has a new configu-
ration, such as 384 threadsx16 registers per thread=6,144
registers. Kernel 610 executes functions, illustrated as Com-
pute C, on CTA 624. Kernel 610 determines that no other
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functions remain for execution. Kernel 610 stores the output
resulting from executing the functions in shared memory.
Kernel 610 then terminates and CTA 624 releases all remain-
ing threads, registers, shared memory, and/or other
resources.

[0071] Executing kernel 610 with reconfigurable CTAs
efficiently utilizes registers and other resources. Further,
executing kernel 610 with reconfigurable CTAs reduces or
eliminates the time overhead of executing sequential CTAs,
as shown in FIG. 5.

[0072] FIG.7 is a state diagram 700 illustrating how warps
acquire and allocate resources on the PPU 202 of FIG. 2,
according to various embodiments. As shown, resources,
such as registers, transition among three states: free 710,
warp owned 712, and CTA pool owned 714. The CTA pool
owned 714 state is also referred to herein as a thread array
owned state.

[0073] Initially, resources are in the free 710 state. A
resource is free when the resource is not owned by a warp
(i.e., in the warp owned 712 state) or by the CTA pool (i.e.,
in the CTA pool owned 714 state). When a warp launches,
the warp acquires resources via an acquire 720 operation.
The acquired resources transition from the free 710 state to
the warp owned 712 state. When the warp completes, the
warp frees the resources via a release 722 operation. Further,
the warp may programmatically release resources via a
release 722 operation. In either case, the resources transition
from the warp owned 712 state to the free 710 state. When
the CTA completes, the CTA frees any resources in the CTA
pool via a release 724 operation. The resources transition
from the CTA pool owned 714 state to the free 710 state.
[0074] Resources in the warp owned 712 state are usable
by threads executing in the respective warp. Over time, a
warp may determine that fewer resources are needed than
are currently owned by the warp. In such cases, the warp
deallocates the excess resources via a deallocate operation
726. The excess resources transition from the warp owned
712 state to the CTA pool owned 714 state. If the warp
subsequently attempts to access a resource that has been
deallocated, an out-of-range error is triggered.

[0075] Over time, a warp may determine that more
resources are needed than are currently owned by the warp.
In such cases, the warp allocates the resources via an
allocate operation 728. The resources transition from the
CTA pool owned 714 state to the warp owned 712 state. If
the requested resources are not available in the CTA pool,
the warp stalls pending availability of the requested
resources.

[0076] The CTA pool maintains a set of available
resources for all warps executing in the CTA. Resources in
the CTA pool are unavailable for use by a warp until the
warp allocates the resources via an allocate operation 728.
When the CTA completes, the CTA frees any resources in
the CTA pool via a release 724 operation. The resources
transition from the CTA pool owned 714 state to the free 710
state.

[0077] FIG. 8 illustrates how warps allocate and deallo-
cate registers during execution, according to various
embodiments. As shown, two warps 810 and 820 are execut-
ing in a CTA. Warp 810 launches with an initial 16 registers
per thread at stage 812. Over time, warp 810 determines that
only 8 registers per thread are needed for subsequent func-
tions. Warp 810 deallocates 8 registers per thread at stage
814. After deallocation, warp 810 now has the remaining 8
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registers per thread at stage 816. The deallocated registers
are placed in the free registers 832 within the CTA pool 830.
[0078] Warp 820 launches with an initial 16 registers per
thread at stage 822. Over time, warp 820 determines that 24
registers per thread are needed for subsequent functions.
Warp 820 requests 8 registers per thread at stage 824 and
waits for the registers to be available in the free registers 832
of'the CTA pool. When the registers are available, warp 820
allocates the registers at stage 826. After allocation, warp
820 now has 24 registers per thread at stage 826. The
allocated registers are removed from the free registers 832
within the CTA pool 830.

[0079] Because of the CTA pool 830, warp 810 and warp
820 do not need to execute concurrently. In one example,
warp 810 executes and deallocates registers at stage 814
prior to warp 820 executing and requesting registers at stage
824. In such cases, registers deallocated by warp 810 remain
until requested by warp 820 or another warp in the CTA.
When warp 820 subsequently requests additional registers at
stage 824, and a sufficient number of free registers 832 are
in the CTA pool 830, then warp 820 immediately allocates
the registers from the CTA pool 830.

[0080] In another example, warp 820 executes and
requests registers at stage 824 prior to warp 810 executing
and deallocating registers at stage 814. In such cases, warp
820 stalls at stage 824 pending deallocation of registers by
warp 810 or another warp in the CTA. Registers deallocated
by warp 810 remain until requested by warp 820 or another
warp in the CTA. When warp 810 subsequently deallocates
registers at stage 814, then warp 820 unstalls and allocates
the registers from the CTA pool 830.

[0081] In general, data in registers allocated by warp 810
is indeterminate. Because warps in a CTA may execute in
any order, warp 820 does not know whether warp 810 is the
source of the registers allocated at stage 826, or whether
another warp is the source of the registers. In some embodi-
ments, source warps tag deallocated registers with an iden-
tifier (ID) when deallocating registers to the CTA pool 830.
The ID may identify the source warp and/or the destination
warp. Additionally or alternatively, the ID may be an arbi-
trary identifier known to both the source warp and the
destination warp. When the destination warp requests addi-
tional registers, the destination warp includes the ID in the
request. The destination warp waits until the registers with
the correct ID are available in the free registers 832 of the
CTA pool 830. When the registers with the correct ID are
available, the destination warp allocates those registers. As
a result, the data stored in the registers by the source warp
prior to deallocation remains in the registers when the
destination warp allocates the registers. In this manner,
registers tagged with such IDs may be employed to pass data
between source warps and destination warps.

[0082] Further, in some embodiments, consecutive depen-
dent CTAs may overlap execution. For example, two CTAs
may execute in three phases, prologue, main processing, and
epilogue. The prologue phase includes initial processing
data acquisition for the main processing. The main process-
ing phase executes various functions, such as mathematical
functions. After the main loop phase executes the functions
and generates output data, the epilogue phase stores the
output data in shared memory. In general, the epilogue phase
requires fewer registers and/or shared memory than the main
processing phase. Therefore, a first CTA can release registers
and/or shared memory after the main loop phase and before
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the epilogue phase. A second CTA that depends on the first
CTA can launch and begin executing the prologue phase,
including acquiring resources released by the first CTA.
When the second CTA reaches a point of dependency on
data generated by the first CTA, the second CTA stalls until
the dependency resolves. After the dependency resolves, and
the data from the first CTA is available, the second CTA
resumes execution. In this manner, execution of dependent
CTAs may overlap, thereby increasing performance.

[0083] FIGS. 9A-9B illustrate data structures for manag-
ing registers for a warp executing in a CTA, according to
various embodiments. As shown, the data structures include,
without limitation, a local register file 910, a register file
status table 920, and a local register file map 930. These data
structures are replicated for each warp executing in the CTA.
The local register file 910 includes 512 registers 914(0),
914(1), 914(2), 914(3), . . . 914(511). Each register 914 has
a physical address (paddr) 912 correspondingly numbered
from O to 511. Each register includes a four-byte (32-bit)
storage location for each of 32 threads 916(0), 916(1), . . .
916(31).

[0084] The status of the registers 914 in the local register
file 910 is tracked via a status parameter in a register file
status table 920. The registers 914 in the local register file
910 are allocated in 64 physical register blocks 922 of 8
registers per physical register block 922. These 64 physical
register blocks 922 are numbered from 0 to 63. Physical
register block 922(0) corresponds to registers 914(0)-914(7),
physical register block 922(1) corresponds to registers 914
(8)-914(15), physical register block 922(2) corresponds to
registers 914(16)-914(23), and so on. Physical register
blocks 922 that are currently acquired or allocated by the
warp are tagged with a status parameter indicating a busy
status. Physical register blocks 922 that are not currently
acquired or allocated by the warp are tagged with a free
status. As shown, physical register blocks 922(0), 922(2),
922(4), and 922(5) are tagged with a status parameter
indicating a busy status. Physical register blocks 922(1),
922(3), and 922(63) are tagged with a status parameter
indicating a free status.

[0085] Warps access registers 914 via a logical address
rather than a physical address. Each warp addresses the
registers 914 assigned to the warp starting at logical address
0 and proceeding consecutively, even if the physical
addresses of the registers 914 assigned to the warp do not
start at physical address 0 and/or are not contiguous in the
physical address 912 space of the local register file 910. The
logical address to physical address mapping is tracked via a
local register file map 930, wherein the logical addresses are
addressable by the threads in the warp. The local register file
map 930 includes one entry for each warp 932(0), 932(1), .
.. 932(15). Each warp may acquire and/or allocate up to 32
logical register blocks 936(0), 936(1), . . . 936(31) of 8
registers each, for a total of 256 registers, subject to the
availability of registers 914 in the local register file 910. The
maximum register number (max reg #) 934 for warp 932(0)
is 32, indicating that warp 932(0) has acquired and/or
allocated 32 registers per thread. The 32 registers are logi-
cally address from O to 31. Registers R0-R7 are in logical
register block 936(0), registers R8-R15 are in logical register
block 936(1), registers R16-R23 are in logical register block
936(2), and registers R24-R31 are in logical register block
936(3). Logical register block 936(0) for warp 932(0) is
mapped to physical register block 922(0), corresponding to
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registers 914 with physical addresses 912 from 0 to 7.
Logical register block 936(1) for warp 932(0) is mapped to
physical register block 922(2), corresponding to registers
914 with physical addresses 912 from 16 to 23. Logical
register block 936(2) for warp 932(0) is mapped to physical
register block 922(4), corresponding to registers 914 with
physical addresses 912 from 32 to 39. Logical register block
936(3) for warp 932(0) is mapped to physical register block
922(5), corresponding to registers 914 with physical
addresses 912 from 40 to 47.

[0086] To allocate or deallocate registers, a resource allo-
cator located in the PPU 202 updates the register file status
table 920 and local register file map 930 to reflect the
allocation or deallocation. For example, the resource allo-
cator can deallocate 16 of the 32 registers 914 for warp
932(0) by invalidating the physical register block numbers
for logical register block 936(2) and logical register block
936(3) in the local register file map 930. The resource
allocator changes the status parameter of physical register
block 922(4) and physical register block 922(5) from busy
to free. The resource allocator updates the maximum regis-
ters number 934 for warp 932(0) from 32 to 16. Subse-
quently, warp 932(0) can allocate 8 additional registers 914
by storing the physical register block number of the allo-
cated of physical register block 922 in logical register block
936(2). The resource allocator changes the status parameter
of the physical register block 922 from free to busy. The
resource allocator updates the maximum registers number
934 for warp 932(0) from 16 to 24.

[0087] FIG. 10 illustrates a CTA free register pool 1010
for managing registers for a CTA free register pool 1010,
according to various embodiments. As shown, the CTA free
register pool 1010 include one CTA entry 1014(0), 1014(1),
...1014(31) for each of 32 CTAs. Each CTA entry 1014(0),
1014(1), . . . 1014(31) corresponds to a CTA identifier (ID)
1012. The CTA free register pool 1010 tracks the number of
free register blocks 1018(0), 1018(1), . . . 1018(31) on a
CTA-by-CTA basis. The number of free register blocks for
each CTA is tracked via a register count (reg cnt) parameter
1016. Each CTA entry 1014(0) can have up to 32 free
register blocks 1018(0), 1018(1), . . . 1018(31) in the CTA
free register pool 1010. Initially, the free register blocks
1018(0), 1018(1), . . . 1018(31) are set to false for all CTA
entry 1014(0), 1014(1), . . . 1014(31), indicating that the
CTA free register pool 1010 has no free register blocks.

[0088] In some examples, the warp described in conjunc-
tion with FIGS. 9A-9B is executing in the CTA correspond-
ing to CTA entry 1014(0) with a CTA identifier 1012 of 0.
When the warp deallocates 16 registers, as a set of two
blocks of 8 registers, the resource allocator updates CTA
entry 1014(0) by setting free register blocks 1018(0), 1018
(1) to true, indicating that the CTA now has two free register
blocks 1018(0), 1018(1). Subsequently, when the warp allo-
cates 8 registers, the resource allocator updates CTA entry
1014(0) by setting free register block 1018(1) to false,
indicating that the CTA now has one free register block
1018(0).

[0089] FIGS. 11A-11B illustrate a shared memory linked
list 1100 for managing shared memory for a warp executing
in a CTA, according to various embodiments. As shown, the
shared memory linked list 1100 includes various entries,
referred to herein as nodes, that identify shared memory
blocks as busy or free. A status parameter of a shared
memory block is set to busy if the shared memory block is
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acquired by a CTA. The state of a busy shared memory block
is CTA owned. If a shared memory block is busy, then the
corresponding node includes the CTA ID, a pointer to the
beginning of the shared memory block, and a size parameter
indicating the size of the shared memory block.

[0090] A status parameter of a shared memory block is set
to if the shared memory block is not acquired by any CTA
or has been released by a CTA that previously acquired the
shared memory block. The state of a free shared memory
block is free. If a shared memory block is free, then the
corresponding node includes a pointer to the beginning of
the shared memory block and a size parameter indicating the
size of the shared memory block. The CTA ID of a free
shared memory block is invalid because no CTA currently
owns the shared memory block.

[0091] Initially, the entire shared memory is free, and can
be represented by a shared memory linked list 1100(0) with
a single node 1110(0). The node 1110(0) identifies the shared
memory block as free. The pointer in the node 1110(0) points
to the first address in shared memory and the size parameter
in the node 1110(0) indicates the size of the entire shared
memory. Over time, CTAs acquire portions of shared
memory and release portions of shared memory. In some
examples, the current shared memory linked list 1100(1) can
include a set of nodes 1120(0), 1120(1), 1120(2), 1120(3), .
.. 1120(»). Node 1120(0) is a busy node with CTA ID=0.
Node 1120(1) is a free node. Nodes 1120(2) and 1120(3) are
busy nodes with CTA ID=1 and CTA ID=2, respectively.
Other intermediate nodes (not shown) may be any combi-
nation of busy nodes and/or free nodes. Each node 1120 in
the shared memory linked list 1100(1) points to the next
consecutive node, and the last node 1120(») in the shared
memory linked list 1100(1) points to the first node 1120(0).
In this manner, the nodes form a circular linked list. The
number of nodes may increase and/or decrease over time as
the number of busy and free shared memory blocks
increases and/or decreases, respectively.

[0092] Nodes in the shared memory linked list 1100(1)
may be split and/or merged as CTAs acquire and release
shared memory blocks. In some examples, the CTA with
CTA ID=0 may release a portion of shared memory block
owned by the CTA. In so doing, the resource allocator splits
node 1120(0) into two nodes. The resource allocator replaces
node 1120(0) with a first node 1130(0) and adds a second
node 1130(1). The first node 1130(0) represents the retained
and busy portion of the shared memory block. The resource
allocator sets the pointer and size parameter in the first node
1130(0) based on the location and size of the retained portion
of the shared memory block. The second node 1130(1)
represents the released and free portion of the shared
memory block. The resource allocator sets the pointer and
size parameter in the second node 1130(1) based on the
location and size of the free portion of the shared memory
block. The new nodes 1130(0) and 1130(1) are shown in the
shared memory linked list 1100(2).

[0093] Subsequently, when the resource allocator is not
processing allocation and deallocation requests for CTAs,
the resource allocator may merge the consecutive free nodes
1130(1) and 1120(1) into a single free node 1140(0). The
resource allocator sets the pointer and size parameter in the
free node 1140(0) based on the location and total size of the
two free shared memory blocks. The merged node 1140(0)
is shown in the shared memory linked list 1100(3).
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[0094] Subsequently, the CTA with CTA ID=0 may
acquire additional shared memory. In so doing, the CTA may
acquire part or all of the free memory represented by node
1140(0). If the CTA acquires part of the free memory
represented by node 1140(0), then the resource allocator
updates the size parameter in node 1130(0) to reflect the sum
of the previous size of the busy shared memory block and
the acquired portion of the free memory block. The resource
manager updates the pointer and size parameter in node
1140(0) to reflect the new starting location and reduced size
of the free memory block.

[0095] If the CTA acquires all of the free memory repre-
sented by node 1140(0), then the resource allocator updates
the size parameter in node 1130(0) to reflect the sum of the
previous size of the busy shared memory block and the size
of the free memory block. The resource manager eliminates
node 1140(0) as shown in the shared memory linked list
1100(4).

[0096] It will be appreciated that the system shown herein
is illustrative and that variations and modifications are
possible. As described herein, registers are acquired, allo-
cated, deallocated, and released in blocks of 8 registers.
However, registers may be acquired, allocated, deallocated,
and released in blocks of any arbitrary size. Further, the
registers may be of any register size, number of registers,
and across any number of threads in a warp. Similarly,
shared memory may be acquired, allocated, deallocated, and
released in blocks of any arbitrary size. As described, the
techniques may be applied to warps executing in a CTA.
However, the techniques may also be applied to warps and
CTAs executing in a CGA, within the scope of the present
disclosure. Further, the early resource release techniques can
apply to any one or more critical resources in the system,
including registers, shared memory, and/or the like.

[0097] FIG. 12 is a flow diagram of method steps for
utilizing resources on an accelerator, such as the PPU 202 of
FIG. 2, according to various embodiments. Additionally or
alternatively, the method steps may be performed by one or
more alternative accelerators including, without limitation,
CPUs, GPUs, IPUs, NPUs, TPUs, NNPs, DPUs, VPUs,
ASICs, FPGAs, and/or the like, in any combination.
Although the method steps are described in conjunction with
the systems of FIGS. 1-11B, persons of ordinary skill in the
art will understand that any system configured to perform
the method steps, in any order, is within the scope of the
present disclosure.

[0098] As shown, a method 1200 begins at step 1202,
where a resource allocator included in the accelerator
launches a cooperative thread array (CTA) that includes
multiple warps. The resource allocator assigns resources to
the CTA, such as threads, registers, shared memory, and/or
the like. Each of the warps in the CTA acquire a portion of
threads, registers, shared memory, and/or other resources
based on the launch parameters that specify the number of
threads in each warp, the number of registers per warp, the
amount of shared memory per warp, and/or the like.
[0099] At step 1204, the resource allocator receives a
request to modify a resource allocation from the CTA. The
CTA transmits a request to the resource allocator to increase
a register allocation, decrease a register allocation, increase
a shared memory allocation, decrease a shared memory
allocation, and/or the like. During execution, the CTA may
execute multiple functions concurrently, consecutively, and/
or conditionally. In some examples, a first function may be
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well suited for a CTA that executes on a large number of
threads with a moderate number of registers per thread. A
second function may be well suited for a CTA that executes
on a small number of threads with a large number of
registers per thread. A third function may be well suited for
a CTA that executes on a moderate number of threads with
a small number of registers per thread, and so on. Accord-
ingly, the resource requirements of the CTA change during
execution.

[0100] At step 1206, the resource allocator determines
whether the request is to decrease an allocation or to increase
an allocation. If the resource allocator determines that the
request is to decrease an allocation, then the method pro-
ceeds to step 1208, where the resource allocator performs a
deallocate operation to deallocate the resource to a free pool.
[0101] To deallocate registers, the resource allocator
updates a register file status table and a local register file
map to reflect the deallocation. For example, the resource
allocator can deallocate a portion of the registers for a warp
by invalidating physical register block numbers for the
logical register blocks in the local register file map that
correspond to the deallocated registers. The resource allo-
cator warp changes the status parameter of corresponding
physical register blocks from busy to free. The resource
allocator updates the maximum registers number for the
warp to reflect the reduced number of registers owned by the
warp. The deallocated registers can now be allocated to the
same warp and/or other to warps in the CTA.

[0102] To deallocate or release a portion of the shared
memory owned by the CTA, the resource allocator modifies
one or more nodes in a shared memory linked list. The busy
nodes in the linked list include pointer and size values that
specify the location and size of busy shared memory blocks
that are owned by various CTAs. The free nodes in the
linked list include pointer and size values that specify the
location and size of free shared memory blocks that are not
owned by any CTAs.

[0103] The resource allocator replaces a node representing
the busy shared memory block owned by the CTA with a first
node and a second node. The first node represents the portion
of the shared memory block retained by the CTA and,
therefore, is busy. The resource allocator sets the pointer and
size in the first node based on the location and size of the
retained portion of the shared memory block. The second
node represents the released and free portion of the shared
memory block. The resource allocator sets the pointer and
size in the second node based on the location and size of the
free portion of the shared memory block.

[0104] The method 1200 then terminates. Alternatively,
the method 1200 proceeds to step 1204 to process additional
requests to modify resource allocations.

[0105] Returning to step 1206, if the resource allocator
determines that the request is to increase an allocation, then
the method proceeds to step 1210, where the resource
allocator performs an allocate operation to allocate the
resource from a free pool.

[0106] To allocate registers, the resource allocator updates
the register file status table and the local register file map to
reflect the allocation. For example, the resource allocator
can allocate additional registers for a warp by storing the
physical register block number of the allocated of physical
register block in one or more logical register blocks. The
resource allocator changes the status parameter of the physi-
cal register block from free to busy. The resource allocator
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updates the maximum registers number for the warp to
reflect the increased number of registers owned by the warp.
The newly allocated registers can no longer be allocated to
the other to warps in the CTA until deallocated by the warp.
[0107] To allocate or acquire an additional portion of the
shared memory, the resource allocator again modifies one or
more nodes in the shared memory linked list. The CTA may
acquire part or all of the free memory represented by a free
node that is consecutive to the busy node representing the
CTA. If the CTA acquires part of the free memory repre-
sented by the free node, then the resource allocator updates
the size in busy node to reflect the sum of the previous size
of the busy shared memory block and the acquired portion
of the free memory block. The resource manager updates the
pointer and size in the free node to reflect the new starting
location and reduced size of the free memory block. If the
CTA acquires all of the free memory represented by the free
node, then the resource allocator updates the size in the busy
node to reflect the sum of the previous size of the busy
shared memory block and the size of the free memory block.
The resource manager eliminates the free node.

[0108] The method 1200 then terminates. Alternatively,
the method 1200 proceeds to step 1204 to process additional
requests to modify resource allocations.

[0109] In sum, various embodiments include techniques
for utilizing resources on a processor or other accelerator.
With the disclosed techniques, different warps executing in
the same CTA or CGA are dynamically configurable to be
allocated different numbers of registers, as controlled by
compiler instructions in the application program. Further,
different warps executing in the same CTA or CGA are
dynamically configurable to be allocated different amounts
of shared memory. The disclosed techniques allow the
application program to set up heterogenous warps in the
CTA or CGA. The disclosed techniques allow the applica-
tion program to increase the number of available registers
for certain warps, such as warps executing mathematical
functions. Similarly, the disclosed techniques allow the
application program to decrease the number of available
registers for certain other warps, such as warps executing
data transfer functions.

[0110] In addition, with the disclosed techniques, warps
can proactively release registers and/or shared memory prior
to exiting the CTA. As a result, the system can launch other
CTAs from the same grid and/or other CTAs from indepen-
dent grids earlier than with prior approaches. For example,
a producer kernel that generates data for a consumer kernel
can release registers and/or shared memory prior to comple-
tion of the producer kernel. The producer kernel can release
the registers and/or shared memory at a point when the
producer kernel has a reduced need for these resources. The
consumer kernel can acquire the registers and/or shared
memory from the producer kernel after the producer kernel
releases the resources and prior to completion of the pro-
ducer kernel. As a result, the system executes with increased
efficiency because the consumer kernel can launch and begin
execution concurrently with the producer kernel completing
execution, thereby reducing dependent kernel-to-kernel
latency.

[0111] At least one technical advantage of the disclosed
techniques relative to the prior art is that, with the disclosed
techniques, different thread groups executing within a thread
array can be configured with different allocations of
resources and can independently increase or decrease the
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allocation of resources during execution. As a result,
resources can be more efficiently allocated to thread groups
relative to prior approaches. Further, because a producer
thread array can release resources to a consumer thread array
prior to completing execution of the producer thread array,
the execution of the producer thread array and the consumer
thread array can overlap, resulting in further efficiencies.
These advantages represent one or more technological
improvements over prior art approaches.

[0112] Any and all combinations of any of the claim
elements recited in any of the claims and/or any elements
described in this application, in any fashion, fall within the
contemplated scope of the present disclosure and protection.
[0113] The descriptions of the various embodiments have
been presented for purposes of illustration, but are not
intended to be exhaustive or limited to the embodiments
disclosed. Many modifications and variations will be appar-
ent to those of ordinary skill in the art without departing
from the scope and spirit of the described embodiments.
[0114] Aspects of the present embodiments may be
embodied as a system, method, or computer program prod-
uct. Accordingly, aspects of the present disclosure may take
the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident soft-
ware, micro-code, etc.) or an embodiment combining soft-
ware and hardware aspects that may all generally be referred
to herein as a “module” or “system.” Furthermore, aspects of
the present disclosure may take the form of a computer
program product embodied in one or more computer read-
able medium(s) having computer readable program code
embodied thereon.

[0115] Any combination of one or more computer read-
able medium(s) may be utilized. The computer readable
medium may be a computer readable signal medium or a
computer readable storage medium. A computer readable
storage medium may be, for example, but not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device, or any suitable
combination of the foregoing. More specific examples (a
non-exhaustive list) of the computer readable storage
medium would include the following: an electrical connec-
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any
tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

[0116] Aspects of the present disclosure are described
above with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer
program products according to embodiments of the disclo-
sure. It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
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execute via the processor of the computer or other program-
mable data processing apparatus, enable the implementation
of the functions/acts specified in the flowchart and/or block
diagram block or blocks. Such processors may be, without
limitation, general purpose processors, special-purpose pro-
cessors, application-specific processors, or field-program-
mable gate arrays.

[0117] The flowchart and block diagrams in the figures
illustrate the architecture, functionality, and operation of
possible implementations of systems, methods, and com-
puter program products according to various embodiments
of the present disclosure. In this regard, each block in the
flowchart or block diagrams may represent a module, seg-
ment, or portion of code, which comprises one or more
executable instructions for implementing the specified logi-
cal function(s). It should also be noted that, in some alter-
native implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in succession may, in fact, be executed
substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function-
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina-
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard-
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.

[0118] While the preceding is directed to embodiments of
the present disclosure, other and further embodiments of the
disclosure may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A computer-implemented method for launching com-
pute tasks on a processing unit, the method comprising:

launching a first group of threads, wherein one or more

resources included in a free pool are acquired by the
first group of threads; and

during execution of the first group of threads, changing an

allocation of the one or more resources acquired by the
first group of threads.

2. The computer-implemented method of claim 1, further
comprising launching a second group of threads, wherein
one or more resources included in the free pool are acquired
by the second group of threads.

3. The computer-implemented method of claim 2,
wherein the one or more resources acquired by the first
group of threads are different in size from the one or more
resources acquired by the second group of threads.

4. The computer-implemented method of claim 2,
wherein the first group of threads and a second group of
threads are included in a first thread array.

5. The computer-implemented method of claim 2,
wherein the first group of threads executes a first function,
and the second group of threads executes a second function
that is different from the first function.

6. The computer-implemented method of claim 2,
wherein the first group of threads executes a first program
that includes mathematical functions, and the second group
of threads executes a second program that includes data
transfer functions.
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7. The computer-implemented method of claim 1, further
comprising transitioning a state of the one or more resources
acquired by the first group of threads from a free state to a
warp owned state.

8. The computer-implemented method of claim 1, further
comprising, during execution of the first group of threads:

deallocating a first resource included in the one or more

resources acquired by the first group of threads; and
transitioning a state of the first resource from a warp
owned state to a thread array owned state.

9. The computer-implemented method of claim 8, further
comprising, during execution of the first group of threads:

allocating the first resource to a second group of threads;

and

transitioning a state of the first resource from the thread

array owned state to the warp owned state.

10. The computer-implemented method of claim 9,
wherein the first group of threads and the second group of
threads are included in a first thread array.

11. The computer-implemented method of claim 9,
wherein the first group of threads passes a value to the
second group of threads via the first resource.

12. The computer-implemented method of claim 1, fur-
ther comprising:

determining that the first group of threads has completed

execution; and

transitioning a state of the one or more resources acquired

by the first group of threads from a warp owned state
to a free state.

13. The computer-implemented method of claim 1, fur-
ther comprising, during execution of the first group of
threads:

changing a number of threads included in the first group

of threads; and

changing an allocation of the one or more resources

acquired by the first group of threads.

14. The computer-implemented method of claim 1,
wherein the free pool includes at least one of a set of
registers or a portion of a shared memory.

15. The computer-implemented method of claim 1, fur-
ther comprising, during execution of the first group of
threads:
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deallocating a first resource included in the one or more
resources acquired by the first group of threads from
the first group of threads; and

launching a second group of threads, wherein the first

resource is allocated to the second group of threads.

16. The computer-implemented method of claim 1, fur-
ther comprising:

executing a dynamic condition check to generate a result;

determining that the result indicates that the first group of

threads executes a first branch included in a plurality of
branches;

determining that resources for executing the first branch

are different from the one or more resources acquired
by the first group of threads; and

changing an allocation of the one or more resources

acquired by the first group of threads based on the
resources for executing the first branch.

17. A system, comprising:

a processor that executes one or more threads; and

a resource allocator that is coupled to a resource set,

wherein the resource allocator:

launches a first group of threads, wherein one or more
resources included in a free pool are acquired by the
first group of threads; and

during execution of the first group of threads, changing
an allocation of the one or more resources acquired
by the first group of threads.

18. The system of claim 17, wherein the resource allocator
further launches a second group of threads, wherein one or
more resources included in the free pool are acquired by the
second group of threads.

19. The system of claim 18, wherein the one or more
resources acquired by the first group of threads are different
in size from the one or more resources acquired by the
second group of threads.

20. The system of claim 17, wherein, during execution of
the first group of threads, the resource allocator further:

deallocates a first resource included in the one or more

resources acquired by the first group of threads from
the first group of threads; and

transitions a state of the first resource from a warp owned

state to a thread array owned state.

#* #* #* #* #*



