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SYSTEMS AND METHODS FOR DESIGNING
AUGMENTED RANDOMIZED TRIALS

FIELD OF THE INVENTION

[0001] The present invention generally relates to supple-
menting data for analysis and, more specifically, to using
generative models to supplement data for analysis.

BACKGROUND

[0002] Randomized Controlled Trials (RCTs) are com-
monly used to assess the safety and efficacy of new treat-
ments, such as drugs and medical devices. In an RCT, a
group of subjects with particular characteristics are ran-
domly assigned to one or more experimental groups receiv-
ing new treatments or to a control group receiving a com-
parative treatment (e.g., a placebo), and the outcomes from
these groups are compared in order to assess the safety and
efficacy of the new treatments. It is expensive, time con-
suming and, in some cases, unethical to recruit human
subjects to participate in RCTs.

SUMMARY OF THE INVENTION

[0003] Systems and methods for designing random control
trials in accordance with embodiments of the invention are
illustrated. One embodiment includes a method for design-
ing a target random control trial. The method includes steps
for generating a set of prognostic scores for a set of samples.
The set of prognostic scores includes prognostic scores at
each of several points in time for each sample. The method
includes assessing discrimination and bias metrics for the set
of generative models based on a set of outcomes for the set
of samples that includes outcomes at each of several points
in time for each sample. The method includes determining a
set of target trial parameters for a randomized control trial
(RCT) based on the assessed discrimination and bias met-
rics, generating result data using the set of generative
models, and determining treatment effects for the RCT using
the generated result data. In a further embodiment, the set of
prognostic scores are generated based on subjects from a
control arm of another trial.

[0004] Instill another embodiment, assessing the discrimi-
nation and bias metrics includes a Pearson correlation.
[0005] In a still further embodiment, the result data
includes panel data from subjects of the RCT and the
generated result data includes predicted panel data for a set
of one or more digital subjects, wherein the panel data
describes the observed values of multiple characteristics at
multiple discrete timepoints.

[0006] In yet another embodiment, the predicted panel
data for the set of digital subjects is generated based on
population statistics of the RCT, and the generated result
data is used to supplement control arm data of the RCT data.
[0007] In a yet further embodiment, the predicted panel
data for the set of digital subjects is generated based on
individual characteristics of the subjects of the RCT.
[0008] In another additional embodiment, determining the
treatment effects includes comparing the predicted panel
data based on characteristics of a particular subject with the
panel data for the particular subject from the RCT data.
[0009] In a further additional embodiment, determining
the set of target trial parameters includes minimizing a total
number of samples for the target random control trial.
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[0010] In another embodiment again, determining the set
of target trial parameters includes minimizing a number of
samples for the control arm of the target random control
trial.

[0011] In a further embodiment again, determining the set
of target trial parameters includes minimizing a number of
samples for the treatment arm of the target random control
trial.

[0012] One embodiment includes a non-transitory
machine readable medium containing processor instructions
for designing a target random control trial, where execution
of the instructions by a processor causes the processor to
perform a process that comprises generating a set of prog-
nostic scores for a set of samples, wherein the set of
prognostic scores includes prognostic scores at each of
several points in time for each sample of the set of samples,
assessing discrimination and bias metrics for the set of
generative models based on a set of outcomes for the set of
samples, wherein the set of outcomes includes outcomes at
each of several points in time for each sample of the set of
samples, determining a set of target trial parameters for a
randomized control trial (RCT) based on the assessed dis-
crimination and bias metrics, generating result data using the
set of generative models, and determining treatment effects
for the RCT using the generated result data.

[0013] Additional embodiments and features are set forth
in part in the description that follows, and in part will
become apparent to those skilled in the art upon examination
of the specification or may be learned by the practice of the
invention. A further understanding of the nature and advan-
tages of the present invention may be realized by reference
to the remaining portions of the specification and the draw-
ings, which forms a part of this disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] The description and claims will be more fully
understood with reference to the following figures and data
graphs, which are presented as exemplary embodiments of
the invention and should not be construed as a complete
recitation of the scope of the invention.

[0015] FIG. 1 illustrates examples of uses for generative
models in the analysis of clinical trials in accordance with
various embodiments of the invention.

[0016] FIG. 2 conceptually illustrates an example of a
process for designing a random control trial with prognostic
effect estimation.

[0017] FIG. 3 conceptually illustrates an example of a
process for determining treatment effects of a RCT in
accordance with an embodiment of the invention.

[0018] FIG. 4 illustrates an example of generative models
for clinical trial panel data in accordance with an embodi-
ment of the invention.

[0019] FIG. 5 illustrates an example of using generative
models to estimate treatment effects in accordance with an
embodiment of the invention.

[0020] FIG. 6 illustrates an example of borrowing infor-
mation from digital subjects to estimate treatment effects in
accordance with an embodiment of the invention.

[0021] FIG. 7 illustrates an example of borrowing infor-
mation from digital twins to estimate treatment effects in
accordance with an embodiment of the invention.

[0022] FIG. 8 illustrates an example of using generalized
linear models and digital twins estimate treatment effects in
accordance with an embodiment of the invention.
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[0023] FIG. 9 illustrates an example of using a generative
model to measure individual treatment responses in accor-
dance with an embodiment of the invention.

[0024] FIG. 10 illustrates an example of estimating treat-
ment effects with individual treatment responses in accor-
dance with an embodiment of the invention.

[0025] FIG. 11 illustrates an example of a treatment analy-
sis system that determines treatment effects in accordance
with some embodiments of the invention.

[0026] FIG. 12 illustrates an example of a treatment analy-
sis element that executes instructions to perform processes
that determine treatment effects in accordance with various
embodiments of the invention.

[0027] FIG. 13 illustrates an example of a treatment analy-
sis application for determining treatment effects in accor-
dance with an embodiment of the invention.

DETAILED DESCRIPTION

[0028] Randomized controlled trials (RCTs) for specific
indications (i.e., therapeutic areas) have many common
elements from one study to the next. In particular, studies
collect many of the same fields at baseline (pre-treatment)
and collect many of the same outcomes, usually at a com-
mon cadence (i.e., visit schedule). The datasets containing
the data from these similar RCTs and other supplementary
data (e.g., observational studies, summary data from the
literature) may then be combined into a single data montage
which is suitable for building deep learning models.
[0029] Systems and methods in accordance with some
embodiments of the invention can determine treatment
effects for a randomized control trial (RCT) using data
sampled from a generative model, design RCTs, and/or
determine decision rules for treatments. Data sampled from
generative models in accordance with some embodiments of
the invention may be referred to as ‘digital subjects’ through-
out this description. In many embodiments, digital subjects
can be generated to match given statistics of the treatment
groups at the beginning of the study. Digital subjects in
accordance with numerous embodiments of the invention
can be generated for each subject in a study and the
generated digital subjects can be used as digital twins for a
counterfactual analysis. [n various embodiments, generative
models can be used to compute a measure of response that
is individual to each patient and this response can be used to
assess the effect of the treatment. Systems and methods in
accordance with several embodiments of the invention can
correct for bias that may be introduced by incorporating
generated digital subject data.

[0030] In certain embodiments, processes in accordance
with a number of embodiments of the invention can improve
RCT design by reducing the number of subjects required for
different arms of the RCT. Processes in accordance with
some embodiments of the invention can improve the ability
of a system to accurately determine treatment effects from a
RCT by increasing the statistical power of the trial. In many
embodiments, the process of conducting a RCT can be
improved from the design through the analysis and treatment
decisions.

[0031] Examples of uses for generative models in the
analysis of clinical trials in accordance with various embodi-
ments of the invention are illustrated in FIG. 1. The first
example 115 illustrates that generative models, digital sub-
jects, or digital twins can be used to increase the statistical
power of traditional randomized controlled trials. In the
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second example 120, generated data is used to decrease the
number of subjects required to be enrolled in the control
group of a randomized controlled trial. The third example
125 shows that generated can be used as the external
comparator arm of a single-arm trial.

[0032] In an RCT, a group of subjects with particular
characteristics are randomly assigned to one or more experi-
mental groups receiving new treatments or to a control
group receiving a comparative treatment (e.g., a placebo),
and the outcomes from these groups can be compared in
order to assess the safety and efficacy of the new treatments.
Without loss of generality, an RCT can be assumed to
include i=1, . . . , N human subjects. These subjects are often
randomly assigned to a control group or to a treatment group
such that the probability of being assigned to the treatment
group is the same for each subject regardless of any unob-
served characteristics. The assignment of subject i to a group
is represented by an indicator variable w,. For example, in a
study with two groups w,=0 if subject i is assigned to the
control group and w=1 if subject i is assigned to the
treatment group. The number of subjects assigned to the
treatment group is N,=X, w; and the number of subjects
assigned to the control group is N =N-N,.

[0033] In various embodiments, each subject i in an RCT
can be described by a vector x; (t) of variables x,() at time
t. In this description, the notation X =={X,(t)},_,” denotes
the panel of data from subject i and x,, ; to denote the vector
of data taken at time zero. An RCT is often concerned with
estimating how a treatment affects an outcome y=f (X,). The
function f, describes the combination of variables being
used to assess the outcome of the treatment. Variables in
accordance with a number of embodiments of the invention
can include (but is not limited to) simple endpoints based on
the value of a single variable at the end of the study,
composite scores constructed from the characteristics of a
patient at the end of the study, and/or time-dependent
outcomes such as rates of range or survival times, among
others. Approaches in accordance with various embodiments
of the invention as described herein can be applied to
analyze the effect of treatments on one or more outcomes
(such as (but not limited to) those related to the efficacy and
safety of the treatment).

[0034] Each subject has two potential outcomes. If the
subject were to be assigned to the control group w;=0, then
v 9 would be the observed potential outcome. By contrast,
if the subject were to be assigned to receive treatment w,=1,
then v " would be the observed potential outcome. In
practice, a subject can only be assigned to one of the
treatment arms such that the observed outcome is Y =y,”
(1-w)+w,y%. Potential outcomes in accordance with many
embodiments of the invention can include various measure-
ments, such as, but not limited to conditional average
treatment effect:

7(x0) = E[Y |w =1, xo] = E[Y |w =0, xo] 68}
and/or the average treatment effect

7= E[1(xo)] = E[Y |w=1]-E[Y|w=0]. )
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Processes in accordance with several embodiments of the
invention can estimate these quantities with high accuracy
and precision and/or can determine decision rules for declar-
ing treatments to be effective that have low error rates.
[0035] It can be expensive, time consuming and, in some
cases, unethical to recruit human subjects to participate in
RCTs. As a result, a number of methods have been devel-
oped for using external control arms to reduce the number of
subjects required for an RCT. These methods typically fall
into two buckets referred to as ‘historical borrowing’ or
‘external control’.

[0036] Historical borrowing refers to incorporating data
from the control arms of previously completed trials into the
analysis of a new trial. Typically, historical borrowing
applies Bayesian methods using prior distributions derived
from the historical dataset. Such methods can be used to
increase the power of a randomized controlled trial, to
decrease the size of the control arm, or even to replace the
control arm with the historical data itself (i.e., an external
control arm'). Some examples of external control arms
include control arms from previously completed clinical
trials (also called historical control arms), patient registries,
and data collected from patients undergoing routine care
(called real world data). Use of these external control arms
can have serious drawbacks if the population or design of the
current RCT differs from the population or design of the
external data sources.

[0037] It has recently become possible to apply machine
learning methods to create simulated subject records. In
addition to data from the RCT, generative models in accor-
dance with several embodiments of the invention can link
the baseline characteristics x, and the control potential
outcome Y through a joint probability distribution pg (7',
X,) and a conditional probability distribution pg (O)I)j(o), in
which 6, and 6, are the parameters of the jointcand condi-
tional distributions, respectively. Note that a model of the
joint distribution will also provide a model of the conditional
distribution, but the converse is not true.

[0038] In several embodiments, simulated subject records
can be sampled from probabilistic generative models that
can be trained on various data, such as (but not limited to)
one or more of historical, registry, and/or real world data.
Such models can allow one to extrapolate to new patient
populations and study designs.

[0039] In some embodiments, generative models may
create data in a specialized format—either directly or indi-
rectly—such as the Study Data Tabulation Model (SDTM)
to facilitate seamless integration into standard workflows. In
a variety of embodiments, generating entire panels of data
can be attractive because many of the trial outcomes (such
as primary, secondary, and exploratory endpoints as well as
safety information) can be analyzed in a parsimonious way
using a single generative model. For simplicity, the notation
p(y, Xo) will be used instead of p(X) in this description, with
the understanding that the former can always be obtained
from the latter by generating a panel of data X and then
computing a specific outcome y=f(X) from the panel.
[0040] Systems and methods in accordance with numer-
ous embodiments of the invention can provide various
approaches for incorporating data from a probabilistic gen-
erative model into the analysis of an RCT. In numerous
embodiments, such methods can be viewed as borrowing
from a model, as opposed to directly borrowing from a
historical dataset. As generative models, from which data
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can be borrowed, may be biased (for example, due to
incorrect modeling assumptions), systems and methods in
accordance with a number of embodiments of the invention
can account for these potential biases in the analysis of an
RCT. Generative models in accordance with various
embodiments of the invention can provide control over the
characteristics of each simulated subject at the beginning of
the study. For example, processes in accordance with vari-
ous embodiments of the invention can create one or more
digital twins for each human subject in the study. Processes
in accordance with certain embodiments of the invention can
incorporate digital twins to increase statistical power and
can provide more individualized information than traditional
study designs, such as study designs that borrow population
level information or that use nearest neighbor matches to
patients in historical or real world databases.

Designing Randomized Trials

[0041] Systems and methods in accordance with many
embodiments of the invention can provide increased statis-
tical power compared to trial designs that do not incorporate
generative (or prognostic) models. In certain embodiments,
design trials with generative models can be designed to
optimize for certain characteristics (e.g., sample size, power,
etc.) while maintaining certain desired constraints, such as
(but not limited to) a predefined desired power to detect a
particular effect size.

[0042] An example of a process for designing a random
control trial with prognostic effect estimation in accordance
with an embodiment of the invention is conceptually illus-
trated in FIG. 2. Process 200 computes (205) a correlation
between prognostic scores (or digital twins) and observed
outcomes. In various embodiments, prognostic scores can be
generated based on subjects from control arms of other
trials. In a variety of embodiments, correlations between
prognostic scores can include correlations between a vector
of outcomes for each sample and prognostic scores gener-
ated for the sample. Correlations in accordance with numer-
ous embodiments of the invention can be computed based on
an average difference between observed and predicted out-
comes. In many embodiments, observed outcomes can come
from control arms of other trials.

[0043] In a variety of embodiments, correlations can
include discrimination metrics (e.g., Pearson correlations)
and/or bias metrics. Correlations for repeated measure out-
comes in accordance with many embodiments of the inven-
tion can be outcome-specific and time-specific.

[0044] Process 200 computes (210) a variance of the
observed outcomes. Variances in accordance with various
embodiments of the invention can indicate the unexplained
variance between the observed outcomes and the prognostic
scores. In a variety of embodiments, variances can be
computed based on correlations (e.g., discrimination and/or
bias metrics) between prognostic scores and outcomes over
a range of timepoints.

[0045] Process 200 estimates (215) a correlation and a
variance for a new RCT. Estimated correlations and/or
variances in accordance with a variety of embodiments of
the invention can be based on the correlations and variances
for the observed outcomes. In certain embodiments, esti-
mated correlations can be higher than the computed corre-
lations while estimated variances are lower than the com-
puted variances. Processes in accordance with some
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embodiments of the invention can compute estimated vari-
ances based on the computed correlation and/or variance.
[0046] Process 200 determines (220) target trial param-
eters based on the estimated correlation and variance. Target
trial parameters in accordance with a number of embodi-
ments of the invention can include (but are not limited to)
sample size, control arm size, and/or treatment arm size.
[0047] While specific processes for designing random
trials are described above, any of a variety of processes can
be utilized to design trials as appropriate to the requirements
of specific applications. In certain embodiments, steps may
be executed or performed in any order or sequence not
limited to the order and sequence shown and described. In
a number of embodiments, some of the above steps may be
executed or performed substantially simultaneously where
appropriate or in parallel to reduce latency and processing
times. In some embodiments, one or more of the above steps
may be omitted.

[0048] Designing randomized trials using treatment effect
estimators with frequentist and Bayesian approaches in
accordance with some embodiments of the invention are
described in greater detail below.

Designing Randomized Trials Using Treatment Effect
Estimators

[0049] The design of a randomized trial to estimate the
effect of a new intervention on a given outcome can depend
on various constraints, such as (but not limited to) the effect
size one wishes to reliably detect, the power to detect that
effect size, and/or the desired control of the type-I error rate.
Of course, there may also be other considerations such as
time and cost, and one may be interested in more than one
particular outcome. Although many of the examples
described herein are directed to optimizing for a single
outcome, one skilled in the art will recognize that similar
systems and methods can be used to optimize across mul-
tiple outcomes without departing from this invention.
[0050] Treatment effect estimators (or PROCOVA) in
accordance with many embodiments of the invention pre-
sume a working model Y=B+p, W+p,M+e where Y, W, and
M are a subject’s outcome, treatment status, and prognostic
score, respectively and € is a noise term. This model can be
fit via ordinary least-squares and the value of 3, can be taken
as the point estimate of the treatment effect, [§,. This
estimate is unbiased given treatment randomization without
any assumptions about the veracity of the working linear
model. Similarly, the assumption-free asymptotic sampling
variance v> = V[f,] of this estimate is given by:

, 05 01 nom (PoU'o Plﬂ'l)z 3
21, Pl (P  P1TLEE

ny +m m oy

9 1oy (Poﬂ'o Pla'l)([)oﬂ'o Plﬂ'l)

no +m n no no ny

in which p,=CY,, [M]/\/ V. IM] V[Y, ](Y, denote poten-

tial outcomes under treatment w=1 and control w=0), ¢, *=
V[Y,.]. ng and n, are the number of enrolled control and

treated subjects.

[0051] An effect estimate can be declared to be “statisti-

cally significant” at level o if a p<o where p=2(1-®(j3,/v))

is the two-sided p-value and ¢ denotes the CDF of the
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standard normal density. The probability that p<a when, in
reality, the treatment effect is 3, is given by

Power = & ((I)’l(a/z) 4 B ) L ® (@71(01/2) B &) )

v v

To power a trial to a given level (e.g. 80%) one must first
estimate values for 6,,> and p,, using prior data (discussed
below) or expert opinion. The power formula (4) can then be
composed with the variance formula (3) with 6, and p,,
fixed at their estimates 6, %, and G,,. The resulting function
returns power for any values of n, and n,.

[0052] The goal of a sample size calculation in the design
of a clinical trial that uses PROCOVA can be to estimate n,,
and n, required to achieve the required power. However, one
needs an additional constraint such as (but not limited to) a
chosen randomization ratio ny/n;, or minimizing the total
trial size ng+n,. In this example, the randomization ratio is
pre-specified, but the same principles can be easily applied
to other situations.

[0053] Innumerous embodiments, processes for designing
a trial can be based on a generative (or prognostic) model.
Prognostic models in accordance with many embodiments
of the invention can be trained (e.g., based on a prior trial)
or pre-trained. Processes can then estimate the variances,
6,,” and correlations, p,, of the control arm of the trial. One
method for obtaining these estimates is to use historical data,
such as data from the placebo control arms of previous trials
performed on similar populations. In numerous embodi-

ments, estimates can be based on a vector Y=[Y"; ... Y',.]
of outcomes for these subjects, gathered during the trials,
and their corresponding prognostic scores M'=[M', ... M',.],

calculated with the prognostic model from each subject’s
vector of baseline covariates X, i.e. M'=m(X",).

[0054] In some embodiments, control-arm marginal out-
come variance G, can be estimated with the usual estimator,

A2 1 ’ 7\2
Gh= 2 6T

where Y' is the sample average. The correlation p, between
M' and Y' can be estimated by p=X(Y'~ Y)(M'-M'V/
\/E(Y'i—Y')zE(M'i—M')Z, the usual sample correlation coef-
ficient. These values may be inflated (for a) or deflated (for
Po) in order to provide more conservative estimates of
power.

[0055] In certain embodiments, an inflation parameter A,
for the variance and a deflation parameter ,, for the corre-
lation can be applied to sample size calculation. Inflation and
deflation parameters can be used to account for the prog-
nostic model. Define the target effect size ,”, the signifi-
cance threshold a, the desired power level {, fraction of
subjects to be randomized to the active arm 7, and dropout
rate d. Define v,>1 and A,€[0,1] for w=0,1. Define the
variance of the potential outcome under active treatment w
in the planned trial as szﬁoza so that a large v,, inflates the
estimated variance. Similarly, define the correlation between
the potential outcome and the prognostic model under active
treatment w as A, Py, so that a small A, deflates the estimated
correlation. Then n could be minimized using a numerical
optimization algorithm (such as a binary search) such that
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=Dy Gp (1-TAgYotTh Y1y, and B=pyGo(TAGYHI-TOX,Y1,.
The minimum sample size can be estiamted to be

[0056] Unlike the variances and correlations for a control
arm, the corresponding values for the treatment arm can
rarely be estimated from data because treatment-arm data for
the experimental treatment is likely to be scarce or unavail-
able. In many embodiments, processes can assume G,°=G,>
and py=p;, the latter of which holds exactly if the effect of
treatment is constant across the population. It may also be
prudent (and conservative) to assume a slightly higher value
for 6,7 and a slightly smaller value for p, relative to their
control-arm counterparts.

[0057] With the four parameters G,° and p,, specified,
Equation 4 can be computationally optimized over n, and n,
in the desired randomization ratio ny/n; until the minimum
values of n, and n, are found such that the output power
meets or exceeds the desired value (e.g., with a numerical

optimization scheme).

[0058] In many cases, a trial will aim to assess the effect
of the intervention on many different outcomes. Processes in
accordance with several embodiments of the invention can
use multiple prognostic models (e.g., one to predict each
outcome of interest) and/or a multivariate prognostic model.
Depending on the variances of the outcomes, and the accu-
racy with which they can be predicted, sample size calcu-
lations on the various outcomes of interest may suggest
different required sample sizes. In this case, one could
simply choose the smallest sample size that meets the
minimum required statistical power on each of the outcomes
of interest.

Designing Randomized Trials using Bayesian Treatment
Effect Estimators

[0059] Bayesian PROCOVA is a generalization of PRO-
COVA that incorporates additional information about the
parameters of the (generalized) linear model. Although an
example is described with reference to a joint Normal
Inverse-Gamma prior distribution, one skilled in the art will
recognize that similar processes may utilize various other
choices for prior distributions for these parameters without
departing from the invention.

[0060] In this example, Bayesian PROCOVA specifies a
joint Normal Inverse-Gamma prior distribution for the
unknown parameters:
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o? ~Inverse — Gamma(e, €) (6)
Bo Ao o0 M
—[/31]~N 0,]0 1/e 0
a
B2 0 0 1/

Here, € is set to an arbitrary small number (e.g., 107" to
encode diffuse prior distributions over 6%, §,/G, and B,/c. In
certain embodiments, an informative prior can be placed
over the ratio By/G to express the belief that If/cI1<Ag.
Values for A, in accordance with a variety of embodiments
of the invention may be elicited by reviewing the predictive
performance of the prognostic model on historical trials.

—

[0061] In this formulation, 6¢° is the residual variance that
isn’t explained by the prognostic model. That is, the notation
in this section can be linked to the previous through the
relation 6°=6,,*(1-p,. ) for w=0,1, which assumes that the
unexplained variance is the same in the control and treat-
ment groups.

[0062] There are many potential methods to elicit A from
historical data. In one example, previous clinical trials with
similar inclusion criteria to the target trial can be identified.
For instance, if the target trial includes only patients with
baseline scores on a given diagnostic test that lie within a
specified range, past trials where at least P % (e.g., P=90%)
of subjects have baseline scores within that range can be
assembled. These past trials can be enumerated as j=1, . . .
, m. Then for each past trial, j, in the reference set, the pairs
(Y,;, M,;) can be extracted across all control subjects, i.
Define N; as the sample size for each past trial, and set E=f,,
io; where:

JY ®
Bos= V;Z (Y- M)

. 1 A N2 (©)]
3= F]Z (Yiy = M- Bo )

[0063] Finally, choose:

10

inwhichF,, * denotes the cumulative distribution function of
a X, random variable, and ye(0,1) is chosen to reflect
quantile of the distribution. For example, setting y=0.025
ensures that it’s likely that |B,/GI<A.

[0064] Under the linear model used for PROCOVA, B, can
be identified as the treatment effect. It has a Student-t
posterior distribution, whose parameters depend on the
observed trial data. In numerous embodiments, Bayesian
PROCOVA can use a posterior probability-based decision
rule to conclude that an effect is “statistically significant” at
level o if the posterior assigns probability exceeding (1-ov/
2) to either one of the following events: 3,<0 or §,>0.
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[0065] The power of this particular Bayesian decision rule
can be given by:

Power:([)[([)’l(oz/Z) Hufy (12_”)50 ]
V n)L (1- )+1

@[cp (a/2)\/

in which n=ny+n, is the total sample size, p=n;/n is the
proportion of subjects assigned to the new intervention, and

)

1-pps

T
R 1)] - m/7]

a2 +1 (12)
n(n)sz(l -+ p) ’

1
N e

r+A —p)(n)tz + 1)2 (14)
N np(n)tz(l -+ 1)2 '

i =

13

~

[0066] The goal of a sample size calculation in the design
of a clinical trial that uses Bayesian PROCOVA is to
estimate n, and n, required to achieve the required power.
However, one needs an additional constraint such as a
chosen randomization ratio ny/n;, or minimizing the total
trial size ny+n,. For this example, the randomization ratio is
pre-specified, but the same principles can be easily applied
to other situations.

[0067] To perform the sample size calculation, processes
in accordance with many embodiments of the invention can
estimate the true values of B, and 6>, as well as a pre-
specified power to detect a given effect size ;. In principle,
both B, and 67 can be estimated from the performance of the
prognostic model on historical data. Specifically, 3, may be
the average difference between the observed and predicted
outcomes, and 6°=6(1—p,?) is the unexplained variance. In
many cases, however, processes may set B,=0 when per-
forming a sample size calculation. Finally, given values for
B3, and 6* and the elicited prior distribution, a numerical
optimization process can be used to compute the minimum
n, and n, that offer the desired power, subject to a desired
constraint on the randomization ratio.

Designing Randomized Trials using Repeated Measures
[0068] Generative models in accordance with a number of
embodiments of the invention can provide a complete pre-
diction of the multivariate distribution of future outcomes
covering the time horizon of an RCT given a complete or
partial set of baseline data as inputs. Incorporating the
capabilities and outputs of these models at the RCT design
and/or analysis stage respectively can yield RCTs that are
more statistically powerful and which can therefore be
smaller and faster to complete. In certain embodiments,
RCTs can be designed using repeated measures.

[0069] LetX,,, where i=1 to I study subjects and b=1 to B
baseline variables of interest, represent the value of the bth
baseline variable of interest in the ith study subject. Let Y,
represent the value of the kth outcome of interest in the ith
study subject at a time point t where t=0 is concurrent with
the baseline measurements and t>0 is a post-baseline out-
come.
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[0070] Given a complete or partial set of X,, and Y,
generative models in accordance with a variety of embodi-
ments of the invention can output samples from the multi-
variate distribution of Y,,, where t>0. Prognostic scores for
each outcome and each time point may be computed as
M, =E[Y;,Y,, Y,,] in accordance with certain embodi-
ments of the invention. In some embodiments, prognostic
scores and/or other information from the full multivariate
distribution may be used for clinical trial planning and
analysis.

[0071] For the purposes of trial planning, processes in
accordance with several embodiments of the invention can
begin with model evaluation. Using data not included in the
model training set, the discrimination and/or bias of the
model may be assessed. These assessments can be outcome-
specific and/or time-specific. As before, let Y, represent the
value of the kth outcome of interest in the ith study subject
at a time point t where t>0 is a post-baseline outcome.
Discrimination metrics in accordance with several embodi-
ments of the invention can include the Pearson correlation
P,, between Y,, and M,,, for a given k and a given t.
Additional functions of Y,,, and M,,, may be used to com-
pute bias metrics.

[0072] The power to detect a treatment difference in a
randomized trial in accordance with a number of embodi-
ments of the invention is a function of the variance of the
treatment effect. For studies with repeated measures out-
comes using a traditional study design, the variance of the
treatment effect is approximately G /(ng(1=do)H+G >/
(n,(1—d,)) where n, and n, are the baseline control group
and treatment group sample sizes respectively, d, and d, are
the control group and treatment group dropout rates through
time T respectively and Gy, and 6, 2 are respectively the
control group and treatment group variances of outcome k at
time T, where T is the primary timepoint of interest for the
primary analysis of the clinical trial.

[0073] In several embodiments, designs may use genera-
tive model outputs and model evaluation results in a smaller
variance of approximately (Go*/(ng(1-dg)+o,%/(n,(1-d,)))
(1-p,;2)- This formula can be used for frequentist methods
with tight type [ error control, and can be a critical input for
sample size and power formulae, such as those described
throughout this specification. In several embodiments,
evaluating the formula with and without the value of the
generative model output included allows one to compute the
attainable sample size reduction or power gain. In many
embodiments, even greater sample size reductions can be
achieved with Bayesian designs incorporating both correla-
tion and bias metrics from the model evaluation stage.
[0074] The traditional repeated measures model for a
given outcome, k, has the form Y, ,,=BoHBxl1+€; Where [
is an indicator for being randomized to treatment and €, is
the residual error where the covariance between €, and €,
is zero when i=j and potentially non-zero according to some
prespecified structure when i=j.

[0075] Incorporating the output of a generative model to
the analysis based on a study designed to have greater
power, repeated measures models in accordance with a
variety of embodiments of the invention can be expanded as
Yikt=B0kt=BiktII+B2ktgf (M;i» t €[0, o])+€,,. Gains in power
are similar where f (M,,,) is set to M;,, or M, 1.

[0076] Both the traditional trial design and the enhanced
trial design are conservative if d, and d, are large and the
within patient correlations are high; however, such designs
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are very rare, as high dropout rates result in generalizability
challenges. Thus, processes in accordance with numerous
embodiments of the invention are robust to the broad range
of dropout patterns and correlation structures that occur in
actual practice. In many embodiments, reparameterization
of this model to allow f3,_, to represent bias provides the
general setup for a Bayesian approach to the analysis
consistent with greater power increases. Reparameterization
of this model to allow f3,,, to represent bias provides the
general setup for a Bayesian approach to the analysis
consistent with greater power increases.

Determining Treatment Effects

[0077] An example of a process for determining treatment
effects of a RCT is conceptually illustrated in FIG. 3.
Process 300 receives (305) RCT data. RCT data can include
panel data collected from subjects of a RCT. RCT data in
accordance with a variety of embodiments of the invention
can be divided into control and treatment arms based on
whether subjects received a treatment. In many embodi-
ments, RCT data can be supplemented with generated sub-
ject data. Generated subject data in accordance with a
number of embodiments of the invention can include (but is
not limited to) digital subject data and/or digital twin data.

[0078] In several embodiments, processes can receive
historical data that can be used to pre-train generative
models and/or to determine a prior distribution for Bayesian
analyses. Historical data in accordance with numerous
embodiments of the invention can include (but is not limited
to) control arms from historical control arms, patient regis-
tries, electronic health records, and/or real world data. In
several embodiments, historical data can include data where
measurements for a set of variables are taken at multiple
points in time for each patient.

[0079] Process 300 generates (310) digital subject data
over time using generative models. Generative models in
accordance with certain embodiments of the invention can
be trained to generate potential outcome data based on
characteristics of an individual and/or a population. Digital
subject data in accordance with several embodiments of the
invention can include (but is not limited to) panel data,
outcome data, etc. In a variety of embodiments, digital
subject data can include predicted measurements at multiple
points in time. Digital subject data in accordance with
various embodiments of the invention can predict the pro-
gression of various variables of interest for a given subject
over a period of time. In numerous embodiments, generative
models can be trained directly on a specific outcome p(ylx,).
For example, if a goal of using the generative model is to
increase the statistical power for the primary analysis of a
randomized controlled trial then it may be sufficient (but not
necessary) to only use a model of p(ylx,).

[0080] Alternatively, or conjunctively, generative models
trained to generate panel data that can be used in the analysis
of a clinical trial. Data for a subject in a clinical trial is
typically a panel; that is, it describes the observed values of
multiple characteristics at multiple discrete timepoints (e.g.
visits to the clinical trial site). For example, if a goal of using
the generative model is to reduce the number of subjects in
the control group of the trial, or as an external comparator
for a single arm trial, then generated panel data in accor-
dance with many embodiments of the invention can be used
to perform many or all of the analyses of the trial.
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[0081] In several embodiments, generative models can
include (but are not limited to) traditional statistical models,
generative adversarial networks, recurrent neural networks,
Gaussian processes, autoencoders, autoregressive models,
variational autoencoders, and/or other types of probabilistic
generative models. For example, processes in accordance
with several embodiments of the invention can use sequen-
tial models such as (but not limited to) a Conditional
Restricted Boltzmann Machine for the full joint distribution
of the panel data, p(X), from which any outcome can be
computed.

[0082] An example of generative models for clinical trial
panel data in accordance with an embodiment of the inven-
tion is illustrated in FIG. 4. Generating panel data in
accordance with a variety of embodiments of the invention
can enable one to borrow information from the generative
model for various analyses in the clinical trial (e.g., primary,
secondary, and exploratory endpoints as well as safety
information), not just one specific outcome. In addition,
digital subjects drawn from the generative model can be of
the same form as data obtained from actual subjects in the
trial.

[0083] Referring back to FIG. 3, process 300 determines
(315) treatment effects over time for the RCT using the
generated digital subject data. Generative models in accor-
dance with many embodiments of the invention can be
incorporated into the analysis of an RCT in a variety of
different ways for various applications. In many embodi-
ments, generative models can be used to estimate treatment
effect by training separate generative models based on data
from the control and treatment arms. Processes in accor-
dance with many embodiments of the invention can use
generative models to generate digital subjects to supplement
a control arm in an RCT. In certain embodiments, processes
can use generative models to generate digital twins for
individuals in the control and/or treatment arms. Generative
models in accordance with numerous embodiments of the
invention used to define individualized responses to treat-
ment. In a variety of embodiments, treatment effects can be
determined at each of several points in time to evaluate an
RCT over a period of time. Various methods for determining
treatment effects in accordance with various embodiments of
the invention are described in greater detail herein.

[0084] In several embodiments, treatment effects can be
determined by fitting generalized linear models (GLMs) to
the generated digital subject data and/or the RCT data. In a
number of embodiments, multilevel GL.Ms can be set up so
that the parameters (e.g., the treatment effect) can be esti-
mated through maximum likelihood or Bayesian
approaches. In a frequentist approach, one can test the null
hypothesis 3,=0, whereas the Bayesian approach may focus
on the posterior probability Prob(f,=0! data, prior).

[0085] While specific processes for determining treatment
effects in an RCT are described above, any of a variety of
processes can be utilized to determine treatment effects as
appropriate to the requirements of specific applications. In
certain embodiments, steps may be executed or performed in
any order or sequence not limited to the order and sequence
shown and described. In a number of embodiments, some of
the above steps may be executed or performed substantially
simultaneously where appropriate or in parallel to reduce
latency and processing times. In some embodiments, one or
more of the above steps may be omitted.
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Estimating the Treatment Effect Using Generative Models

[0086] In many embodiments, processes can estimate
treatment effects by training two new generative models: a
treatment model using the data from the treatment group,
pej](y(l), Xo/W;), and a control model using the data from the
control group, pejo(y(o), XolWg). In a variety of embodiments,
full panels of data from an RCT can be used to train
generative models to create panels of generated data. Such
processes can allow for the analysis of many outcomes
(including (but not limited to) primary, secondary, and
exploratory efficacy endpoints as well as safety information)
by comparing the trained treatment models against trained
control models. For simplicity, the notation p(Y, x,) will be
used instead of p(X), with the understanding that the former
can always be obtained from the latter by generating a panel
of data X and then computing a specific outcome y=f (X)
from the panel.

[0087] In one embodiment, generative models for the
control condition (e.g., a Conditional Restricted Boltzmann
Machine) can be trained on historical data from previously
completed clinical trials. Then, two new generative models
for the control and treatment groups can be obtained by
solving minimization problems:

r;}in {—Z(l —wi)log pg; (¥, xo | wo) + XD (pa, » pej)}
o | 5

fglifl{—zwi log pg;, (%, xo; [ wp) + 0D (Poy > Pej)}
1 i

in which A, and A, are prior parameters that describe how
well pre-trained generative models describe the outcomes in
the two arms of the RCT, and D(-,-) is a measure of the
difference between two generative models such as (but not
limited to) the Kullback-Leibler divergence. For example,
the new generative models may also be Conditional
Restricted Boltzmann Machines.

[0088] The estimate for the treatment effect can then be
computed as

. (15)
T=fdydxypgjl (y,xIW1)—fdydxypgjo(y,xIWo)-

In several embodiments, treatment effects can be computed
by drawing samples from the control and treatment models
and comparing the distributions of the samples. Processes in
accordance with some embodiments of the invention can
further tune the computation of treatment effects by adjust-
ing for the uncertainty in treatment effect estimates. In
several embodiments, the uncertainty in treatment effect
estimates (\,) can be obtained using a bootstrap by repeat-
edly resampling the data from the RCT (with replacement),
training the updated generative models, and computing an
estimate for the treatment effect; the uncertainty is the
standard deviation of these estimates. In a number of
embodiments, point estimates for the treatment effect and
the estimate for its uncertainty can be used to perform a
hypothesis test in order to create a decision rule.

[0089] In numerous embodiments, processes can begin
with a distribution 11(0,) for the parameters of the generative
model (e.g., obtained from a Bayesian analysis of historical
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data). Then, posterior distributions for 6,, and 8, can be
estimated by applying Bayes rule,

log (010) = constant + Z(l - w,v)pgj0 (Y:, x; | wo) + Ao log 7 (65) (16)

logﬂ(ﬁjl) = constant + ZWipgjl ¥y, x; [ wi) + A log 7 (6).

In certain embodiments, point estimates for the treatment
effect can be calculated as the mean of the posterior distri-
bution

an

2= [avasdos p Ox Lol - [y asdosyymy, O worn(o)

where the uncertainty is the variance of the posterior distri-
bution,

18
527:fdydxd011yzpejl O, x| win(8s,) - o

fdy dxd@;oyngjo . x| wo)ﬂ(ﬁjl) -4

As above, point estimates for the treatment effect and
estimates for their uncertainty can be used to perform a
hypothesis test in order to create a decision rule in accor-
dance with certain embodiments of the invention. Processes
in accordance with a variety of embodiments of the inven-
tion can train conditional generative models pej](y(l)lxo, w;)
and pejo(y(o, IXg, Wg), as opposed to (or in conjunction with)
joint generative models, in order to estimate treatment
effects that are conditioned on the baseline covariates X,.

[0090] It can be difficult to determine the operating char-
acteristics of a decision rule based on these methods. Spe-
cifically, extensive simulations can be required in order to
estimate the type-I error rate (i.e., the probability that an
ineffective treatment would be declared to be effective) and
the type-II error rate (i.e., the probability that an effective
treatment would be declared ineffective). Well-characterized
operating characteristics are required for many applications
of RCTs and, as a result, this approach is often impractical.
Generative models that rely on modern machine learning
techniques are typically computationally expensive to train.
As a result, using the bootstrap or Bayesian methods to
obtain uncertainties required to formulate reasonable deci-
sion rules can be quite challenging.

[0091] Anexample of using generative models to estimate
treatment effects in accordance with an embodiment of the
invention is illustrated in FIG. 5. In the first stage 505, an
untrained generative model of the control condition is
trained using historical data, such as (but not limited to), data
from previously completed clinical trials, electronic health
records, and/or other studies. In the second stage 510, a
patient population is randomly divided into a control group
and a treatment group as part of a randomized controlled
trial. Patients from the population can be randomized into
the control and treatment groups with unequal randomiza-
tion in accordance with a variety of embodiments of the
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invention. In this example, two new generative models are
trained: one for the control group and one for the treatment
group. In certain embodiments, control and treatment gen-
erative models can be based on a pre-trained generative
model but can be additionally trained to reflect new infor-
mation from the RCT. Outputs from the control and gen-
erative models can then be compared to compute the treat-
ment effects. In several embodiments, Bayesian methods
and/or the bootstrap may be used to estimate uncertainties in
the treatment effects and decision rules based on p-values
and/or posterior probabilities may be applied.

Borrowing Information from Digital Subjects

[0092] The defining characteristic of a generative model is
that one can draw new samples from the model. In several
embodiments, each sample from the generative model is a
digital subject. Processes in accordance with several
embodiments of the invention can draw an initial sample of
digital subjects (Y, Xo, J~P(Y;» Xg,) for i=1, . . . M’ such that
the moments of the synthetic population match various
moments of the actual population in the RCT. Let D({(Y;, Xq,
)}M=1) be a measure of agreement between the moments
computed from the digital subject data and the moments
computed from the actual population such that the goal is
D Xo. 9}:—1™)=0. Processes to generate an initial popu-
lation in accordance with many embodiments of the inven-
tion can choose some i at random and generate a new sample
(Vi X'o, )~P(Y, Xo). Processes can replace digital subject i
with the sample if doing so decreases D({(Y;, Xq_ ;) }:—™)- For
generative models that use a Markov Chain (e.g., Deep
Boltzmann Machines) to generate samples, processes in
accordance with a number of embodiments of the invention
can compute new samples by taking a one or more steps
starting at sample i.

[0093] Define a variable s,=0 if a given subject is an actual
subject from the RCT, and s=1 if the subject is a digital
subject drawn from the generative model. Data from the
subjects in the RCT can be represented as (Y, X ,, W;, 5,=0).
Likewise, M samples (Y;, Xq ; w,=0, si=1)~p9j (72, x) can
be generated using the generative model and N <M of the
samples can be selected based on the inclusion criteria of the
RCT or to match some of the characteristics of the study
population, such as (but not limited to) the means and
standard deviations of some chosen variables at time zero.
[0094] Systems and methods in accordance with certain
embodiments of the invention can incorporate digital sub-
jects into an estimate for the treatment effect by fitting a
generalized linear model (GLM) given, in its most general
form

gEyD=a+ [bo + ijxo,,vj] Wi + [co + chxo,,vj)s,v + Zd]xo’ij 19
J J J
in which g(-) is a link function. For example, g(u)=p
corresponds to a linear regression and g(u)=log(p/(1—p))
corresponds to logistic regression. In various embodiments,
this framework can also include Cox proportional hazards
models used for survival analysis as a special case. [n many
embodiments, some of these coefficients may be set to zero
to create simpler models.
[0095] In the example of equation 19, the terms involving
the b coefficients represent the treatment effect, which may
depend on the baseline covariates x,. The terms involving
the c coefficients represent potential bias in the generative
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model, which may depend on the baseline covariates x,. The
terms involving the d coefficients represent potential base-
line differences between the treatment and control groups in
the trial. The model can be fit using any of a variety of
method for fitting GLMs.

[0096] In some embodiments, uncertainties in the coeffi-
cients can be estimated analytically. Alternatively, or con-
junctively, uncertainties in accordance with numerous
embodiments of the invention can be estimated using a
bootstrap by repeatedly resampling the data (with replace-
ment) and re-fitting the model. Uncertainties in accordance
with many embodiments of the invention can be computed
as the standard deviations of the coefficients computed by
such resampling procedures. Point estimates for the treat-
ment effect and estimates for their uncertainty can be used
to perform a hypothesis test in order to create a decision rule
in accordance with many embodiments of the invention.

[0097] In theory, a perfect generative model will have no
bias, with c,=0 for all j so that the indicator variable s,, has
no effect. However, machine learning models may not
generalize perfectly to data outside of the training set.
Typically, the generalization performance of a model is
measured by holding out some data from the model training
phase so that the held-out data can be used to test the
performance of the model. For example, suppose that there
are one or more control arms from historical clinical trials in
addition to the generative model. Then, the c coefficients can
be estimated in accordance with numerous embodiments of
the invention by fitting a reduced GLM on the historical
control arm data,

gED=a+ [co + chxo,y] i 0)

J

[0098] This can be particularly useful in a Bayesian frame-
work, in which a distribution m(a,c) can be estimated for
these coefficients using the historical data, where the data-
driven prior distribution can be used in a Bayesian analysis
(e.g.. in Equation 19) in the RCT. Essentially, processes in
accordance with some embodiments of the invention can use
historical data to determine how well the generative model
is likely to generalize to new populations, and then apply
this information to the analysis of the RCT. In the limit that
n(c)-0(c—0), then the digital subjects become substitutable
for the actual control subjects in the RCT. As a result, the
better the generative model, the fewer control subjects
required in the RCT. In certain embodiments, similar
approaches could be used to include prior information on
any coefficients that are active when w,=0, including the d
coefficients for potential baseline differences between the
treatment and control groups.

[0099] In certain embodiments, simpler models may be
created by setting some of the parameters to zero. To
understand the effect of the c coefficients, a simple case with
linear link functions, no interactions, and setting all d
coefficients to zero is described. In this simple case, the
GLM above becomes a simple linear regression

Vi = a+ bow; +cos; + €. 21
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In addition, suppose a prior distribution that can be
expressed by adding the following penalty to the log-
likelihood function,

A 22
penalty(co) = f, @

in which A controls the degree of belief in the quality of the
generative model. As mentioned previously, the parameters
of the prior distribution could be estimated from historical
data and/or specified through some other means. One skilled
in the art will recognize that this is not the only choice of
prior distribution or means to incorporate prior information,
but this provides an example simple enough for analysis to
illustrate the properties of processes in accordance with
various embodiments of the invention.

[0100] In many embodiments, point estimates and uncer-
tainties of the treatment effect can be estimated using a
Laplace approximation of the resulting posterior distribu-
tion. In practice, various methods including (but not limited
to) exact integration, Markov Chain Monte Carlo calcula-
tions, and/or variational approximations could be used to
obtain a posterior distribution. Using the Laplace approxi-
mation (i.e., a series expansion about the maximum of the
posterior distribution), it is possible to derive an estimate for
the covariance matrix of the posterior distribution of the
parameters a, by, and c,, which can be given by

1 A+N5 —(A+N5) —NS
Poe———— | (A+ Ny) NNs+ AN +Np) Ns
AN + ANy + NNy —
+ Al + AVs —Ng Ne N+ Ng - Ny

(A + Ng)Np

and the point estimate, which can be given by

NrEly;|wi =1, =0]+NcE[y; |[w; =0, 5, =0] +
NsE[y; |wi = 0,5 =1]
NrEly: |Wi =1,5=0]
NsEly: |Wi =0,5=1]

I~

=7

o O
=M1

[0101] In the limit that A—0, point estimate f)o:E[Yinl:l,
s,=0] E[y,/w=0, s,=0] and uncertainty

5 N
o« .
by NrNc

This is the usual frequentist estimate for the treatment effect.
Notice that the information from the digital subjects has
been completely disregarded because A=0 expresses the
prior belief that the model used to generate the digital
subjects is likely to be of poor quality. By contrast, consider
the limit A—eo that expresses the prior belief that the digital
subjects generated from the model are statistically indistin-
guishable from actual control subjects. In this case, the point

(Nc +Ns)E[y; |wi=1,8=0]-
b NCE[)’i|WiZO,SiZO]—NSE[)’i|Wi:0, s; = 0]
0= Ne + Ng
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and uncertainty

5 N+ Ng
a, « ———————.
by Np(N¢ + Ng)

That is, this treats the digital subject data as if it is exactly
substitutable for actual control subject data. Intermediate
values of A borrow intermediate amounts of information
from the digital control subjects.

[0102] By using Bayesian methods to incorporate digital
subject data into a clinical trial, as in the previous example,
it is possible to increase the statistical power of the trial
and/or to reduce the number of actual subjects required for
the control group. If the model used to create the digital
subjects can be shown to be accurate by estimating the
parameters of the prior distribution using historical data,
then it can be possible to create and design trials with
attractive operating characteristics (i.e., low type-I and type-
II error rates) that do not require large numbers of actual
subjects. Operating characteristics in accordance with vari-
ous embodiments of the invention can be characterized
through analytical calculations and/or computer simulations.
[0103] An example of borrowing information from digital
subjects to estimate treatment effects in accordance with an
embodiment of the invention is illustrated in FIG. 6. In the
first stage 605, a generative model of the control condition
is trained using historical data, such as (but not limited to)
data from previously completed clinical trials, electronic
health records, or other studies. In the second stage 610, if
the analysis to be performed is Bayesian, predictions from
the generative model are compared to historical data that
were not used to train the model in order to obtain a prior
distribution capturing how well the predictions generalize to
new populations. A frequentist analysis can skip the second
stage 610. In third stage 615, a randomized controlled trial
is conducted (potentially with unequal randomization). The
generative model is used to create digital subjects, and all of
the data are incorporated into a statistical analysis (including
the prior from step 610 if the analysis is Bayesian) to
estimate the treatment effects. Bayesian methods, analytical
calculations, or the bootstrap may be used to estimate
uncertainties in the treatment effects, and decision rules
based on p-values or posterior probabilities may be applied.
Borrowing Information from Digital Twins

[0104] Some methods estimate treatment effects using
GLMs while adjusting for covariates. For example, one may
perform a regression of the final outcome in the trial against
the treatment indicator and a measure of disease severity at
the start of the trial. As long as the covariate was measured
before the treatment was assigned in a randomized con-
trolled trial, then adjusting for the covariate will not bias the
estimate for the treatment effect in a frequentist analysis.
When using covariate adjustment, the statistical power is a
function of the correlation between the outcome and the
covariate being adjusted for; the larger the correlation, the
higher the power.

[0105] In theory, the covariate that is most correlated with
the outcome that one could obtain is an accurate prediction
of the outcome. Therefore, another method to incorporate
generative models into RCTs in accordance with a variety of
embodiments of the invention is to use generative models to
predict outcomes and to adjust for the predicted outcomes in
a GLM for estimating the treatment effect. Let E, [v,] and
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Var [y,] denote the expected value and variance of the
outcome predicted for subject i by the generative model,
respectively. Depending on the type of generative model,
these moments may be computable analytically or, more
generally, by drawing samples from the generative model
p(YiXo, ;) and computing Monte Carlo estimates of the
moments in accordance with a number of embodiments of
the invention. The number of samples used to compute the
Monte Carlo estimates can be a parameter selected by the
researcher. As above, processes in accordance with several
embodiments of the invention can use generative models
that generate panel data so that a single generative model
may be used for analyses of many outcomes in a given trial
(e.g., primary, secondary, and exploratory endpoints as well
as safety information). In a number of embodiments, rather
than predictions for a given outcome, predictions of multiple
outcomes derived from a generative model may all be
included in a GLM for a particular outcome. Samples drawn
from the generative models in accordance with several
embodiments of the invention can be conditioned on the
characteristics of a subject at the start of the trial, also
referred to as digital twins of that subject.

[0106] In many embodiments, digital twins can be incor-
porated into an RCT in order to estimate the treatment effect
by fitting a GLM of the form

J

(60+ZC]X0g]g(E i + > iy + (20+Z xog] wig(Ep i)
7

J J

gED=a+ (bo + ijxo,ij)wi + 23)

in which g(-) is a link function. For example, g(u)=p
corresponds to a linear regression and g(u)=log(p/(1—p))
corresponds to logistic regression. This framework in accor-
dance with numerous embodiments of the invention can also
include Cox proportional hazards models used for survival
analysis as a special case. In many embodiments, some of
these coefficients may be set to zero to create simpler
models. One skilled in the art will recognize that it is trivial
to include other predictions from the generative model as
covariates if desired.

[0107] The above equation can be generalized to various
applications and implementations. The terms involving the b
coefficients represent the treatment effect, which may
depend on the baseline covariates x,. The terms involving
the c coefficients represent potential bias in the generative
model, which may depend on the baseline covariates x,,. The
terms involving the d coefficients represent potential base-
line differences between the treatment and control groups in
the trial. The terms involving the z coefficients reflect that
the relationship between the predicted and observed out-
comes may be affected by the treatment. The model can be
fit using any of a variety of methods for fitting GLMs. In a
number of embodiments, uncertainties in the coefficients can
be estimated analytically. Alternatively, or conjunctively,
processes in accordance with many embodiments of the
invention can estimate uncertainties using a bootstrap by
repeatedly resampling the data (with replacement) and re-
fitting the model; the uncertainties can be the standard
deviations of the coefficients computed by this resampling
procedure. In some embodiments, point estimates for the
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treatment effect and estimates for their uncertainty can be
used to perform a hypothesis test in order to create a decision
rule.

[0108] In some embodiments, variances of the outcomes
can be modeled through another GLM that adjusts for the
variance of the outcome that is predicted by the generative
model. For example, variances in accordance with many
embodiments of the invention can be modeled as follows

G(Varly) = o+ [ﬁo + Zﬁjxo,g] Wi+ ()’0 D jxo,g] Gvar, [y + 29

J J

Z(ijij + [{0 + Z{jxo,ij) w; G(Var,[y;])
7 7

in which G(-) is a link function that is appropriate for the
variance. For example, G(94%)=log(G?) can be used for a
continuous outcome. In many embodiments, some of these
coefficients may be set to zero to create simpler models. One
skilled in the art will recognize that other predictions from
the generative model can be included as covariates if
desired.

[0109] Well-trained generative models in accordance with
certain embodiments of the invention will have g(E[Y;])=g
(E,[v:D) and G(Var[y,])=G(Var,[y,]) by construction. There-
fore, prior knowledge about the coefficients in the GLMs can
be used to improve the estimation of the treatment effect.
However, machine learning models may not generalize
perfectly to data outside of the training set. Typically, the
generalization performance of a model is measured by
holding out some data from the model training phase so that
the held-out data can be used to test the performance of the
model. For example, suppose that there are one or more
control arms from historical clinical trials in addition to the
generative model. Then, the c coefficients in accordance
with various embodiments of the invention can be estimated
by fitting a reduced GLM on the historical control arm data,

gEy)=a+ (co + Z ¢;xo, ,]] g(Ep i) (25)
i

for the mean or

G(Varly]) = a + (70 DN jxo,g) G(Var,[3]), 26
7

for the variance. This is particularly useful in a Bayesian
framework, in which a distribution m(a,c) or m(a,y) can be
estimated for these coefficients using the historical data,
where the data-driven prior distribution can be used in a
Bayesian analysis of the RCT. Essentially, this uses the
historical data to determine how well the generative model
is likely to generalize to new populations, and then applies
this information to the analysis of the RCT. In the limit that
7(a,c)—0(0—0)d(c—1), then digital twins in accordance with
a variety of embodiments of the invention can become
substitutable for actual control subjects in the RCT. As a
result, the better the generative model, the fewer control
subjects required in the RCT. In some embodiments, similar
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approaches could be used to include prior information on
any coefficients that are active when w,=0, including the d
coefficients.

[0110] Examples of workflows for frequentist and Bayes-
ian analyses of clinical trials that incorporate digital twins to
estimate treatment effects in accordance with various
embodiments of the invention are described below. For a
frequentist case for a continuous endpoint, consider a simple
example

Ely:] = a+bow; + coE, ] @n

Var[y] = o2 (28)

assuming no interactions and homoscedastic errors. One
skilled in the art will recognize how this can be applied to
the more general case captured by Equation 23 and Equation
24. In numerous embodiments, simple analyses can lead to
results that are more easily interpreted. This model implies
a normal likelihood,

yi~ N(a + bow; + coEp[yil, U’z) 29

such that the model can be fit (e.g., by maximum likelihood).
There are two situations to consider: (1) the design of the
trial has already been determined by some method prior to
incorporating the digital twins such that the digital twins can
be used to increase the statistical power of the trial, or (2) the
trial needs to be designed so that it incorporates digital twins
to achieve an efficient design with sufficient power. In the
case of a continuous endpoint, the statistical power of the
trial will depend on the correlation between v, and E [v,],
which can be estimated from historical data, and is a
function of the magnitude of the treatment effect. In a variety
of embodiments, analytical formulas can be derived in this
special case. Alternatively, or conjunctively, computer simu-
lations can be utilized in the general case.

[0111] Once the trial is designed, patients are enrolled and
followed until their outcome is measured. In some cases,
patients may not be able to finish the trial and various
methods (such as Last Observation Carried Forward) need to
be applied in order to impute outcomes for the patients who
have not finished the trial, as in most clinical trials. In a
number of embodiments, GLLMs can be fit to the data} from
the trial to obtain point estimates by and uncertainties &, for
the treatment effect. The ratio by/s,, follows a Student’s
t-distribution which can be used to compute a p-value p, and
the null-hypothesis that there is no treatment effect can be
rejected if p, <A in which A is the desired control of the
type-I error rate. This approach is guaranteed to control the
type-I error rate, whereas the realized power will be related
to the out-of-sample correlation of ¥; and E_[,] and the true
effect size.

[0112] In the Bayesian case for a continuous endpoint with
homoscedastic errors, assume a simple analysis,

Ely:] = a+bow; + coE, ] (G0

Var[y] = o2 31
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In certain embodiments, the simple analysis can lead to
results that are more easily interpreted. This model implies
a normal likelihood,

yi ~ Nla+bows + coEp 1], o), G2)

but processes in accordance with various embodiments of
the invention can use a Bayesian approach to fit it instead of
the method of maximum likelihood. In particular, with
historical data representing the condition w;=0 that was not
used to train the generative model, processes in accordance
with many embodiments of the invention can fit the model,

Elyi] = a+cofply] (33

Var[y/] = 0. (34)

to the historical data in order to derive prior distributions for
the analysis of the RCT. To do so, pick a prior distribution
To(a, ¢4, 6°) such as (but not limited to) a Normal-Inverse-
Gamma prior or another appropriate prior distribution. As
there are no data to inform the parameters of the prior before
analyzing the historical data, processes in accordance with
several embodiments of the invention can use a diffuse or
default prior. In numerous embodiments, Bayesian updates
to the prior distribution can be computed from the historical
data to derive a new distribution 7 (a, cq, 6%, in which the
subscript H can be used to denote that this distribution was
obtained from historical data. Processes in accordance with
numerous embodiments of the invention can then specify a
prior distribution ®y(b,) for the treatment effect. This could
also be derived from data in accordance with many embodi-
ments of the invention if it’s available, or a diffuse or default
prior could be used. The full prior distribution is now m(a,
Cgr 07)o(by). In various embodiments, such distributions
can be used compute the expected sample size in order to
design the trial, as in a typical Bayesian trial design. Once
the trial is designed, patients can be enrolled and followed
until their outcome is measured. [n some cases, patients may
not be able to finish the trial and various methods (such as
Last Observation Carried Forward) can be applied in order
to impute outcomes for the patients who have not finished
the trial, as in most clinical trials.

[0113] In numerous embodiments, GLMs can be fit to
obtain a posterior distribution T,,{a, by, ¢, 67) for the
parameters. A point estimate for the treatment effect can be
computed by, for example, f)o:fda db, dcg d6?bT,{a, b,
cg G7); though, other Bayesian point estimates could be
computed as well. In several embodiments, the posterior
probability that the treatment effect is greater than zero can
also be computed as Prob(b,>0)=lda db, dc, d6%b, Tper (a,
bg, o %), in which 0(-) is a logic function that returns one
if the argument is true and zero otherwise. As in a typical
Bayesian analysis, the treatment can be declared effective if
Prob(b,>0) exceeds a pre-specified threshold in accordance
with a number of embodiments of the invention.
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[0114] There are two limits to the Bayesian analysis that
can be informative. First, in the limit of a flat prior distri-
bution T, (a, ¢, 67)My(by) o<1, then the point estimate and
uncertainty for the treatment effect will converge to give the
same results as the maximum likelihood method described
previously. Thus, if the generalizability of the digital twin
model to the population in the RCT is questionable then the
Bayesian analysis will end up being very similar to the
frequentist analysis. In contrast to the method used to
estimate a treatment effect in a trial including digital sub-
jects, including digital twins in the analysis still leads to a
gain in power as long as v, is correlated with E[Y,]. The other
instructive limit is T (2, ¢ 6°)R(by) < (0—=0)d(co—1). In
this limit, the point estimate for the treatment effect con-
verges to by=N,"" X, (Y~E,[v.])w,. That is, in some embodi-
ments, the estimate for the treatment effect can be obtained
by taking the average of the difference between observed
and predicted outcomes for the patients who received the
treatment w,=1. Notice that this latter prior distribution can
lead to a situation in which the data from the patients who
received the control treatment w,=0 can be ignored. Pro-
cesses in accordance with various embodiments of the
invention can run trials without a concurrent control arm.
[0115] There are advantages and disadvantages to the
frequentist and Bayesian methods that are captured through
these simple examples. The frequentist approach to includ-
ing digital twins in the analysis of an RCT leads to an
increase in statistical power while controlling the type-I
error rate. If desired, it’s also possible to use the theoretical
increase in statistical power to decrease the number of
subjects required for the concurrent control arm, although
this cannot be reduced to zero concurrent control subjects.
The Bayesian approach borrows more information about the
generalizability of the model used to create the digital twins
(e.g., from an analysis of historical data) and, as a result, can
increase the power much more than the frequentist approach.
In addition, the use of Bayesian methods in accordance with
numerous embodiments of the invention can enable one to
decrease the size of the concurrent control arm even further.
However, the increase in power/decrease in required sample
size can come at the cost of an uncontrolled type-I error rate.
Therefore, processes in accordance with many embodiments
of the invention can perform computer simulations of the
Bayesian analysis to estimate the type-I error rate so that the
operating characteristics of the trial can be described.
[0116] As afinal example, it is helpful to consider a simple
case in which a GLM is also used for the variance. For
example, consider the model

Ely:] = a+bow; + coE, ] (35)

logVar[yi] = @+ Byw; +yolog, Var[y], (36)
which likelihood

1~ N{a +bows + coE, [y, & TF0rrrots?arpbily, 37

[0117] Models in accordance with a number of embodi-
ments of the invention can allow for heteroscedasticity in
which the variance of the outcome is correlated with the
variance predicted by the digital twin model, and in which
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the variance may be affected by the treatment. In several
embodiments, a system of GLMs can be fit (e.g., using
maximum likelihood, Bayesian approaches, etc.), as was the
case for the simpler model. One skilled in the art will clearly
recognize that one could also include the interaction or other
terms in order to model more complex relationships if
necessary. In addition, one skilled in the art will also
recognize that including interactions can lead to estimates of
conditional average treatment effects in addition to average
treatment effects.

[0118] An example of borrowing information from digital
twins to estimate treatment effects in accordance with an
embodiment of the invention is illustrated in FIG. 7. In the
first part 705, a generative model of the control condition is
trained using historical data from previously completed
clinical trials, electronic health records, or other studies. In
the second part 710, if the analysis to be performed is
Bayesian, predictions from the generative model are com-
pared to historical data that were not used to train the model
in order to obtain a prior distribution capturing how well the
predictions generalize to new populations. A frequentist
analysis does not need to obtain a prior distribution. In the
third part 715, a randomized controlled trial is conducted
(potentially with unequal randomization), digital twins are
generated for each subject in the trial, and all of the data are
incorporated into a statistical analysis (including the prior
from step 710 if the analysis is Bayesian) to estimate the
treatment effects. Bayesian methods, analytical calculations,
or the bootstrap may be used to estimate uncertainties in the
treatment effects, and decision rules based on p-values or
posterior probabilities may be applied.

[0119] An example of using generalized linear models and
digital twins estimate treatment effects in accordance with
an embodiment of the invention is illustrated in FIG. 8. This
drawing illustrates the concept using a simple analysis of a
continuous outcome. The x-axis represents the prediction for
the outcome from the digital twins, and the y-axis represents
the observed outcome of the subjects in the RCT. A linear
model is fit to the data from the RCT, adjusting for the
outcome predicted from the digital twins. If no interactions
are included, then two parallel lines are fit to the data: one
to the control group and one to the treatment group. The
distance between these lines is an estimate for the treatment
effect. Both frequentist and Bayesian methods may be used
to analyze the generalized linear model.

Using Generative Models to Define Response and Estimate
Treatment Effects

[0120] In the previous sections, a response is defined in the
units of the outcome, Y. For example, an analysis with a
survival outcome would produce a treatment effect with the
units of time. For example, one may find that the treatment
improves survival by 6 months, on average. This is typically
useful for aiding interpretation of the treatment effect. How-
ever, defining the treatment effect in terms of its natural units
may mask important characteristics of the treatment in a
population that is heterogeneous. That is, it may be benefi-
cial to measure treatment effects in different ways in order
to understand how specific individuals respond to a treat-
ment.

[0121] In numerous embodiments, generative models can
be used to define individualized responses to treatment. In
particular, consider the tail probability of a continuous
outcome
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o 38
pf:f dy p(y | xo0,) G8
s
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which defines the probability of observing an outcome
greater than or equal to 7y, under a generative model of the
control condition. That is, there is probability p, that subject
i would have an outcome better than v, if they had received
the control. Note that this example assumes that larger v, is
better, but it is trivial to consider the opposite case by
changing the lower limit of integration to —eo and the upper
limit to ;. In several embodiments, p, can be computed using
a Monte Carlo estimate by creating N digital twins with
Y~p(Y Ix;) for j=1, . . ., N and approximating

1
pi= Nzi@)()}j = ;)

in which 6() is a logical function equal to one if the
argument is true and zero otherwise.

[0122] An example of using a generative model to mea-
sure individual treatment responses in accordance with an
embodiment of the invention is illustrated in FIG. 9. A
generative model can be used to compute a tail-area prob-
ability for the observed response. This describes how likely
it would be for the patient to demonstrate a better response
under the control condition than what was observed in the
trial.

[0123] In the case of a single subject, p, can be interpreted
as a measure of evidence against the null hypothesis that the
data were drawn from the generative model. Consider the
case of a subject in the control arm with w,=0. There are two
reasons why a small p, may be observed in this case: first, it
may simply be due to random chance; second, it may
indicate that the generative model of the control condition is
biased. This could reflect an improperly trained model or a
mismatch between the training data and the concurrent
control arm of the RCT. Suppose, however, that p, is
generally large for those subject with w=0. Then, this
indicates that the generative model of the control condition
is consistent with the data from the concurrent control arm
of the RCT. In this case, if a subject with w,=1 has a small
p; then this could result from either random chance or a
response to the treatment.

[0124] The intuition described above suggests two addi-
tional uses of generative models of the control condition in
the analysis of RCT. First, a generative model can be used
to measure the discrepancy between a concurrent control
arm in an RCT and its expected behavior from historical
data. For example, the average surprise 5—X, (1-w,)log p; is
a measure of this discrepancy. A large surprise §_ either
indicates a problem with the generative model or a problem
with the control group. There are many other ways to
combine the p, for the control group into a score to measure
discrepancy. Although this analysis cannot definitively
determine the cause of the discrepancy, it can flag potential
problems that may merit further investigation by clinical
trial sponsors or regulatory authorities.

[0125] Processes in accordance with numerous embodi-
ments of the invention can fit a linear model to the data from
the RCT using p; as the measure of response in order to
estimate a treatment effect. Processes in accordance with a
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variety of embodiments of the invention can use a normal-
izing transform to define the response as ®~'(p,) and fit the
linear model

o lpy=a+ [bo + ijxo,,vj] Wi + Zdjx,vj + & (39
7 7

in which @~'(-) can be the inverse cumulative distribution
function of the standard normal distribution. The parameter
o accounts for the bias of the generative model. As described
in other sections, an informative prior for o can be derived
from a regression against historical data in accordance with
certain embodiments of the invention. In this case, a=E[($™
1(p,)] will be equal to 0 if the generative model is unbiased.
In several embodiments, analyses can proceed as described
throughout for the frequentist and Bayesian cases with this
redefined response. The resulting estimate for the treatment
effect has the advantage of being individualized by con-
struction, it describes how much better a particular patient
responded compared to their distribution of predicted out-
comes under the control condition. However, this also has a
disadvantage of being impossible to interpret without refer-
ring to the generative model. Nevertheless, such approaches
may be particularly useful for treatments with heterogenous
effects.

[0126] An example of estimating treatment effects with
individual treatment responses in accordance with an
embodiment of the invention is illustrated in FIG. 10. In part
1005, a generative model of the control condition is trained
using historical data from previously completed clinical
trials, electronic health records, or other studies. In part
1010, if the analysis to be performed is Bayesian, predic-
tions from the generative model are compared to historical
data that were not used to train the model in order to obtain
a prior distribution capturing how well the predictions
generalize to new populations. A frequentist analysis can
skip part 1010. In part 1015, a randomized controlled trial is
conducted (potentially with unequal randomization), the
generative model is used to define responses for each subject
based on transformed tail-area probabilities, and all of the
data are incorporated into a statistical analysis (including the
prior from step 1010 if the analysis is Bayesian) to estimate
the treatment effects. Bayesian methods, analytical calcula-
tions, or the bootstrap may be used to estimate uncertainties
in the treatment effects, and decision rules based on p-values
or posterior probabilities may be applied.

Systems for Determining Treatment Effects

Treatment Analysis System

[0127] An example of a treatment analysis system that
determines treatment effects in accordance with some
embodiments of the invention is illustrated in FIG. 11.
Network 1100 includes a communications network 1160.
The communications network 1160 is a network such as the
Internet that allows devices connected to the network 1160
to communicate with other connected devices. Server sys-
tems 1110, 1140, and 1170 are connected to the network
1160. Each of the server systems 1110, 1140, and 1170 is a
group of one or more servers communicatively connected to
one another via internal networks that execute processes that
provide cloud services to users over the network 1160. One
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skilled in the art will recognize that a treatment analysis
system may exclude certain components and/or include
other components that are omitted for brevity without
departing from this invention.

[0128] For purposes of this discussion, cloud services are
one or more applications that are executed by one or more
server systems to provide data and/or executable applica-
tions to devices over a network. The server systems 1110,
1140, and 1170 are shown each having three servers in the
internal network. However, the server systems 1110, 1140
and 1170 may include any number of servers and any
additional number of server systems may be connected to
the network 1160 to provide cloud services. In accordance
with various embodiments of this invention, treatment
analysis systems in accordance with various embodiments of
the invention may be provided by a process being executed
on a single server system and/or a group of server systems
communicating over network 1160.

[0129] Users may use personal devices 1180 and 1120 that
connect to the network 1160 to perform processes that
determine treatment effects in accordance with various
embodiments of the invention. In the shown embodiment,
the personal devices 1180 are shown as desktop computers
that are connected via a conventional “wired” connection to
the network 1160. However, the personal device 1180 may
be a desktop computer, a laptop computer, a smart televi-
sion, an entertainment gaming console, or any other device
that connects to the network 1160 via a “wired” connection.
The mobile device 1120 connects to network 1160 using a
wireless connection. A wireless connection is a connection
that uses Radio Frequency (RF) signals, Infrared signals, or
any other form of wireless signaling to connect to the
network 1160. In FIG. 11, the mobile device 1120 is a mobile
telephone. However, mobile device 1120 may be a mobile
phone, Personal Digital Assistant (PDA), a tablet, a smart-
phone, or any other type of device that connects to network
1160 via wireless connection without departing from this
invention.

[0130] As can readily be appreciated the specific comput-
ing system used to determine treatment effects is largely
dependent upon the requirements of a given application and
should not be considered as limited to any specific comput-
ing system(s) implementation.

Treatment Analysis Element

[0131] An example of a treatment analysis element that
executes instructions to perform processes that determine
treatment effects in accordance with various embodiments of
the invention is illustrated in FIG. 12. Treatment analysis
elements in accordance with many embodiments of the
invention can include (but are not limited to) one or more of
mobile devices, cloud services, and/or computers. Treatment
analysis element 1200 includes processor 1205, peripherals
1210, network interface 1215, and memory 1220. One
skilled in the art will recognize that a treatment analysis
element may exclude certain components and/or include
other components that are omitted for brevity without
departing from this invention.

[0132] The processor 1205 can include (but is not limited
t0) a processor, microprocessor, controller, or a combination
of processors, microprocessor, and/or controllers that per-
forms instructions stored in the memory 1220 to manipulate
data stored in the memory. Processor instructions can con-
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figure the processor 1205 to perform processes in accor-
dance with certain embodiments of the invention.

[0133] Peripherals 1210 can include any of a variety of
components for capturing data, such as (but not limited to)
cameras, displays, and/or sensors. In a variety of embodi-
ments, peripherals can be used to gather inputs and/or
provide outputs. Treatment analysis element 1200 can utilize
network interface 1215 to transmit and receive data over a
network based upon the instructions performed by processor
1205. Peripherals and/or network interfaces in accordance
with many embodiments of the invention can be used to
gather data that can be used to determine treatment effects.
[0134] Memory 1220 includes a treatment analysis appli-
cation 1225, historical data 1230, RCT data 1235, and model
data 1240. Treatment analysis applications in accordance
with several embodiments of the invention can be used to
determine treatment effects of an RCT, to design an RCT,
and/or determine decision rules for treatments.

[0135] Historical data in accordance with many embodi-
ments of the invention can be used to pre-train generative
models to generate potential outcomes for digital subjects
and/or digital twins. In numerous embodiments, historical
data can include (but is not limited to) control arms from
historical control arms, patient registries, electronic health
records, and/or real world data. In many embodiments,
predictions from the generative model can be compared to
historical data that were not used to train the model in order
to obtain a prior distribution capturing how well the predic-
tions generalize to new populations.

[0136] Insome embodiments, RCT data can include panel
data collected from subjects of a RCT. RCT data in accor-
dance with a variety of embodiments of the invention can be
divided into control and treatment arms based on whether
subjects received a treatment. In many embodiments, RCT
data can be supplemented with generated subject data.
Generated subject data in accordance with a number of
embodiments of the invention can include (but is not limited
to) digital subject data and/or digital twin data.

[0137] In several embodiments, model data can store
various parameters and/or weights for generative models.
Model data in accordance with many embodiments of the
invention can include data for models trained on historical
data and/or trained on RCT data. In several embodiments,
pre-trained models can be updated based on RCT data to
generate digital subjects.

[0138] Although a specific example of a treatment analysis
element 1200 is illustrated in this figure, any of a variety of
treatment analysis elements can be utilized to perform
processes for determining treatment effects similar to those
described herein as appropriate to the requirements of spe-
cific applications in accordance with embodiments of the
invention.

Treatment Analysis Application

[0139] An example of a treatment analysis application for
determining treatment effects in accordance with an embodi-
ment of the invention is illustrated in FIG. 13. Treatment
analysis application 1300 includes digital subject generator
1305, treatment effect engine 1310, and output engine 1315.
One skilled in the art will recognize that a treatment analysis
application may exclude certain components and/or include
other components that are omitted for brevity without
departing from this invention.
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[0140] Digital subject generators in accordance with vari-
ous embodiments of the invention can include generative
models that can generate digital subject and/or digital twin
data. Generative models in accordance with certain embodi-
ments of the invention can be trained to generate potential
outcome data based on characteristics of an individual
and/or a population. Digital subject data in accordance with
several embodiments of the invention can include (but is not
limited to) panel data, outcome data, etc. In several embodi-
ments, generative models can include (but are not limited to)
traditional statistical models, generative adversarial net-
works, recurrent neural networks, Gaussian processes, auto-
encoders, autoregressive models, variational autoencoders,
and/or other types of probabilistic generative models.

[0141] In various embodiments, treatment effect engines
can be used to determine treatment effects based on gener-
ated digital subject data and/or data from a RCT. In some
embodiments, treatment effect engines can use digital sub-
ject data from digital subject generators to determine a
treatment effect in a variety of different applications, such as,
but not limited to, comparing separate generative models
based on data from the control and treatment arms of a RCT,
supplementing a control arm in an RCT, comparing pre-
dicted potential control outcomes with actual treatment
outcomes, etc. Treatment effects engines in accordance with
some embodiments of the invention can be used to deter-
mine individualized responses to treatment. In certain
embodiments, treatment effect engines can determine biases
of generative models of the digital subject generator and
incorporate the biases (or corrections for the biases) in the
treatment effect analyses.

[0142] Output engines in accordance with several embodi-
ments of the invention can provide a variety of outputs to a
user, including (but not limited to) decision rules, treatment
effects, generative model biases, recommended RCT
designs, etc. In numerous embodiments, output engines can
provide feedback when the results of generative models of
a digital subject generator diverge from the RCT population.
For example, output engines in accordance with certain
embodiments of the invention can provide a notification
when a difference between generated control outcomes for
digital twins of subjects from a control arm and their actual
control outcomes exceeds a threshold.

[0143] Although a specific example of a treatment analysis
application is illustrated in this figure, any of a variety of
Treatment analysis applications can be utilized to perform
processes for determining treatment effects similar to those
described herein as appropriate to the requirements of spe-
cific applications in accordance with embodiments of the
invention.

[0144] Although specific methods of determining treat-
ment effects are discussed above, many different methods of
treatment analysis can be implemented in accordance with
many different embodiments of the invention. It is therefore
to be understood that the present invention may be practiced
in ways other than specifically described, without departing
from the scope and spirit of the present invention. Thus,
embodiments of the present invention should be considered
in all respects as illustrative and not restrictive. Accordingly,
the scope of the invention should be determined not by the
embodiments illustrated, but by the appended claims and
their equivalents.
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1. A method for designing a target random control trial,
the method comprising:

generating a set of prognostic scores for a set of samples,

wherein the set of prognostic scores comprises prog-
nostic scores at each of a plurality of points in time for
each sample of the set of samples;

assessing metrics for a set of generative models based on

a set of outcomes for the set of samples;
determining a set of target trial parameters for a random-
ized control trial (RCT) based on the assessed metrics;
generating result data using the set of generative models;
and

determining treatment effects for the RCT using the

generated result data.

2. The method of claim 1, wherein the set of prognostic
scores are generated based on subjects from a control arm of
another trial.

3. The method of claim 1, wherein assessing the metrics
comprise a correlation.

4. The method of claim 1, wherein the result data com-
prises panel data from subjects of the RCT and the generated
result data comprises predicted panel data for a set of one or
more digital subjects, wherein the panel data describes the
observed values of multiple characteristics at multiple dis-
crete timepoints.

5. The method of claim 4, wherein:

the predicted panel data for the set of digital subjects is

generated based on population statistics of the RCT;
and

the generated result data is used to supplement control

arm data of the RCT data.

6. The method of claim 4, wherein the predicted panel
data for the set of digital subjects is generated based on
individual characteristics of the subjects of the RCT.

7. The method of claim 6, wherein determining the
treatment effects comprises comparing the predicted panel
data based on characteristics of a particular subject with the
panel data for the particular subject from the RCT data.

8. The method of claim 1, wherein determining the set of
target trial parameters comprises minimizing a total number
of samples for the target random control trial.

9. The method of claim 1, wherein determining the set of
target trial parameters comprises minimizing a number of
samples for the control arm of the target random control
trial.

10. The method of claim 1, wherein determining the set of
target trial parameters comprises minimizing a number of
samples for the treatment arm of the target random control
trial.

11. A non-transitory machine readable medium containing
processor instructions for designing a target random control
trial, where execution of the instructions by a processor
causes the processor to perform a process that comprises:

generating a set of prognostic scores for a set of samples,

wherein the set of prognostic scores comprises prog-
nostic scores at each of a plurality of points in time for
each sample of the set of samples;
assessing metrics for a set of generative models based on
a set of outcomes for the set of samples;

determining a set of target trial parameters for a random-
ized control trial (RCT) based on the assessed bias
metrics;

generating result data using the set of generative models;

and
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determining treatment effects for the RCT using the

generated result data.

12. The non-transitory machine readable medium of claim
11, wherein the set of prognostic scores are generated based
on subjects from a control arm of another trial.

13. The non-transitory machine readable medium of claim
11, wherein assessing the metrics comprise a correlation.

14. The non-transitory machine readable medium of claim
11, wherein the result data comprises panel data from
subjects of the RCT and the generated result data comprises
predicted panel data for a set of one or more digital subjects,
wherein the panel data describes the observed values of
multiple characteristics at multiple discrete timepoints.

15. The non-transitory machine readable medium of claim
14, wherein:

the predicted panel data for the set of digital subjects is

generated based on population statistics of the RCT;
and

the generated result data is used to supplement control
arm data of the RCT data.
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16. The non-transitory machine readable medium of claim
14, wherein the predicted panel data for the set of digital
subjects is generated based on individual characteristics of
the subjects of the RCT.

17. The non-transitory machine readable medium of claim
16, wherein determining the treatment effects comprises
comparing the predicted panel data based on characteristics
of a particular subject with the panel data for the particular
subject from the RCT data.

18. The non-transitory machine readable medium of claim
11, wherein determining the set of target trial parameters
comprises minimizing a total number of samples for the
target random control trial.

19. The non-transitory machine readable medium of claim
11, wherein determining the set of target trial parameters
comprises minimizing a number of samples for the control
arm of the target random control trial.

20. The non-transitory machine readable medium of claim
11, wherein determining the set of target trial parameters
comprises minimizing a number of samples for the treatment
arm of the target random control trial.
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