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Fart of Transaction Table
time tid u_name
17 94  |Moses |
12 97 Anne |} Block 1
43 43 Benj, |;
5 129 | Mike| 82
1 2 John |} Block 2
84 28 Peter
55 | 34 Benj. |]

19 T8 T Jen | POKI
MSA minmax{t id)
mind_id) | max{t_id)
43 57 } SMA Block 1
2 29 } SMABlock2 T84
34 68 } SMA Block 3

Bloom{u_name}
01106101014 } Bloom Block 1
01110101104 } Bloom Block 2 «— 86
11110101001 } Bloom Block 3

<

SELECT * FROM transactions
WHERE time » 21 AND t id > 30 AND u_pame="Anng’

Step 1: No pruning
Read all Blocks [1, 1, 1]

h: 4

Step 2: Prune using SMA and {_jd » 29
Prunes second Block [1, 0, 1]

y

Step 3: Prune using Bloom and name = "Anng’
Prunes third Block [1, 0, 0

4

Step 4; Execute the scan, only read the first Block
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1
ADAPTIVE SPARSE INDEXING IN
CLOUD-BASED DATA WAREHOUSES

FIELD OF THE INVENTION

The present invention relates generally to data storage
systems, and particularly to methods and systems for adap-
tive indexing.

BACKGROUND OF THE INVENTION

Adaptive indexing techniques have been studied in the
context of database systems, as means for pruning database
tables before searching them in response to a query. Adap-
tive indexing has been considered as a solution for workload
profiles that fluctuate over time, and in environments in
which users have little knowledge regarding the workload
profile. Various adaptive indexing techniques are known in
the art.

For example, Chaudhuri and Narasayya describe an adap-
tive index selection tool in “AutoAdmin ‘What-if* Index
Analysis Utility,” ACM SIGMOD Record. 27, 2 (1998),
pages 367-378; and in “An Efficient, Cost-Driven Index
Selection Tool for Microsoft SQL Server,” VLDB, Vol. 97,
1997, pages 146-155.

Similar approaches have been suggested by Stonebraker
and Keller in “Embedding Expert Knowledge and Hypo-
thetical Data Bases into a Data Base System,” Proceedings
of the 1980 ACM SIGMOD international conference on
Management of data, pages 58-66; and by Valentin et al., in
“DB2 Advisor: An Optimizer Smart Enough to Recommend
Its Own Indexes,” Proceedings of the 16” IEEE Interna-
tional Conference on Data Engineering, 2000, pages 101-
110.

Ma et al. describe algorithms for recommending indexes,
in “Query-based Workload Forecasting for Self-Driving
Database Management Systems,” Proceedings of the 2018
International Conference on Management of Data, pages
631-645. An entirely different approach is described by
Idreos et. al., in “Database Cracking,” CIDR, Vol. 7, 2007,
pages 68-78.

In some known solutions, the indexes themselves are
adaptive. Such techniques have been described, for example,
by Ding et al., in “Tsunami: a learned multi-dimensional
index for correlated data and skewed workloads,” Proceed-
ings of the VLDB Endowment 14, 2 (2020), pages 74-86;
and by Nathan et al., in “Learning multi-dimensional
indexes,” Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, pages 985-1000.

SUMMARY OF THE INVENTION

An embodiment of the present invention that is described
herein provides a method for querying a data storage. The
method includes receiving queries for execution in the data
storage, and deriving from the queries one or more table-
scans over one or more tables of the data storage. Candidate
sparse indexes, for pruning the table-scans, are specified
based on the queries. Pruning-power measures, indicative of
an effectiveness of the candidate sparse indexes in pruning
the table-scans, are evaluated. One or more of the candidate
sparse indexes are converted into actual sparse indexes,
depending on the pruning-power measures. The queries are
executed by performing the table-scans, including pruning
the table-scans using the actual sparse indexes.

In some embodiments the method further includes, while
performing the table-scans, evaluating the pruning-power
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2

measures for one or more of the actual sparse indexes, and
dropping one or more of the actual indexes whose effec-
tiveness is below a specified pruning power.

In some embodiments, evaluating the pruning-power
measures includes simulating the candidate sparse indexes
while performing the table-scans. In an example embodi-
ment, the tables are divided into blocks of rows, and
evaluating the pruning-power measures includes, for a given
candidate sparse index, maintaining one or more of (i) a first
count indicative of a number of the blocks that were
accessed by the queries and in which the given candidate
sparse index could have been used for pruning, (ii) a second
count indicative of a number of the blocks that were
accessed by the queries but in which the given candidate
sparse index could not have been used for pruning, (iii) a
third count indicative of a number of the blocks that were
pruned in simulation of the given candidate sparse index,
and (iv) a fourth count indicative of a number of the blocks
that were not pruned in the simulation of the given candidate
sparse index.

In another embodiment, the tables are divided into blocks
of rows, and the method further includes deciding whether
to convert a candidate sparse index into an actual sparse
index, by (i) representing the blocks, over which the candi-
date sparse index are simulated, by respective random
variables, each random variable indicative of whether the
block would have been pruned by the candidate sparse
index, (ii) calculating a confidence interval of a sample mean
of the random variables, and (III) deciding to convert the
candidate sparse index into an actual sparse index if the
confidence interval is smaller than a threshold.

In yet another embodiment, receiving the queries, deriv-
ing the table-scans and simulating the candidate sparse
indexes are performed in multiple compute nodes, and the
method further includes synchronizing a metadata database
with simulation results produced by the multiple compute
nodes.

In a disclosed embodiment, specifying the candidate
sparse indexes includes specifying a candidate sparse index
over one or both of (i) one or more numerical columns of the
one or more tables, and (ii) one or more string columns of
the one or more tables. In an example embodiment, speci-
fying the candidate sparse indexes includes specifying a
candidate sparse index over a mathematical expression that
is defined over two or more numerical columns of the one or
more tables.

There is additionally provided, in accordance with an
embodiment of the present invention, a system for querying
a data storage. The system includes an interface and one or
more processors. The interface is configured for communi-
cating with the data storage. The one or more processors are
configured to receive queries for execution in the data
storage, to derive from the queries one or more table-scans
over one or more tables of the data storage, to specify, based
on the queries, candidate sparse indexes for pruning the
table-scans, to evaluate pruning-power measures, indicative
of an effectiveness of the candidate sparse indexes in prun-
ing the table-scans, to convert one or more of the candidate
sparse indexes into actual sparse indexes, depending on the
pruning-power measures, and to execute the queries by
performing the table-scans, including pruning the table-
scans using the actual sparse indexes.

There is further provided, in accordance with an embodi-
ment of the present invention, a computer software product,
the product including a tangible non-transitory computer-
readable medium in which program instructions are stored,
which instructions, when read by a processor, cause the
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processor to receive queries for execution in a data storage,
to derive from the queries one or more table-scans over one
or more tables of the data storage, to specify, based on the
queries, candidate sparse indexes for pruning the table-
scans, to evaluate pruning-power measures, indicative of an
effectiveness of the candidate sparse indexes in pruning the
table-scans, to convert one or more of the candidate sparse
indexes into actual sparse indexes, depending on the prun-
ing-power measures, and to execute the queries by perform-
ing the table-scans, including pruning the table-scans using
the actual sparse indexes.

The present invention will be more fully understood from
the following detailed description of the embodiments
thereof, taken together with the drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that schematically illustrates a
cloud-based data storage system that employs adaptive
sparse indexing, in accordance with an embodiment of the
present invention;

FIG. 2 is a diagram showing example sparse indexes used
in the system of FIG. 1, in accordance with an embodiment
of the present invention;

FIG. 3 is a flow chart that schematically illustrates a
method for adaptive creation of a sparse index, in accor-
dance with an embodiment of the present invention; and

FIG. 4 is a diagram that schematically illustrates a struc-
ture of a create proposal, and a process of updating the state
of a create proposal, in accordance with an embodiment of
the present invention.

DETAILED DESCRIPTION OF EMBODIMENTS
OVERVIEW

Embodiments of the present invention that are described
herein provide improved methods and systems for process-
ing queries in databases and other data storage systems.
More specifically, the disclosed embodiments provide tech-
niques for adaptively creating and discarding sparse indexes,
which are used for pruning table-scans performed in query
processing. The index creation and dropping processes are
adaptive, in the sense that they continually match the
indexes to the actual workload profile of the queries being
processed. The description that follows refers mainly to
database management systems (e.g., a cloud-based data
warehouse) as a non-limiting example use-case. The dis-
closed techniques are applicable, however, to any other
suitable type of data storage system.

In some embodiments, the data storage system comprises
one or more tables in which data is stored, each table
comprising one or more columns. Real-life systems typi-
cally comprise multiple tables, each comprising multiple
rows and columns. A query typically specifies a predicate
that is defined over one or more of the columns of one or
more of the tables. Processing of a query typically begins by
deriving one or more table-scans that need to be performed
in order to retrieve the requested data.

One of the most effective ways to improve the perfor-
mance of query processing is to prune the table-scans. In a
typical pruning process, a table is divided into blocks
horizontally (i.e., each block comprises a subset of the rows
of the table), and the blocks are indexed by sparse indexes.
During a table-scan, before scanning a given block, the
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4

predicate is first checked against the sparse index and a
decision is made whether the block needs to be scanned or
can be skipped.

One example of a sparse index consists of two values—
The minimum and maximum values of a given column in the
block. During a table-scan whose predicate specifies a range
of values for the column, the sparse index of each block can
be compared against the predicate, to decide whether the
block might contain values within the specified range. If the
answer is no, the block can be skipped (“pruned”). This kind
of index is sometimes referred to as an aggregator-type
index, or “Small Materialized Aggregate” (SMA). Another
example of a sparse index is a Bloom filter, as is well known
in the art. In some cases, aggregator-type indexes are pref-
erable for numerical columns, whereas Bloom filters are
preferred for columns of strings or other non-numerical
values. This choice, however, is not mandatory. Further
alternatively, the disclosed techniques can be used with any
other suitable type of sparse index.

In the present context, the term. “sparse index of a block”
refers to any suitable metadata, which is calculated over the
block and can be compared against a predicate, in order to
decide whether or not the block contains data that matches
the predicate. The sparse index of a block typically com-
prises some highly compressed statistics of the block’s data.
A sparse index may be permitted to have some probability
of false-positives (causing unnecessary scanning of blocks
that could have been skipped) but not false-negatives (which
would mean skipping blocks that contain data matching the
query). Depending on implementation, sparse indexes can
be stored alongside their respective blocks, together in some
central location, or in any other way. A sparse index is also
referred to herein as a “pruning index” or simply “index” for
brevity.

In some embodiments of the present invention, the data
storage system comprises one or more processors (also
referred to as “processing nodes” or simply “nodes”) that
process queries, and in particular carry out the disclosed
sparse indexing methods. For the sake of clarity, the descrip-
tion that follows will focus on a single table. In general,
however, the disclosed technique typically performed per
table over plurality of tables being scanned.

For a given table, the processor maintains a data structure
that is referred to as a “proposal registry.” The proposal
registry stores two types of proposals that are evaluated
continually, namely “create proposals” and “drop-propos-
als.” A create proposal references a candidate index that does
not currently exist but may be useful to create. A drop
proposal references an existing index, for continually evalu-
ating whether to retain or discard that index.

In each create proposal and drop proposal, the processor
aggregates actual execution statistics that are gathered over
a large number of actual table-scans. At some point, when
sufficient confidence has been gained for a given proposal,
the proposal triggers an action, i.e., creation of a new index
or dropping of an existing index.

Throughout the present disclosure, the term “actual
index” refers to an index that is currently in actual use. The
term “candidate index” refers to an index that is being
evaluated and, if found effective, may be created, i.e.,
converted into an actual index.

In some embodiments, the processor evaluates create
proposals by simulating the candidate indexes during actual
table-scans. The simulation evaluates the effectiveness (i.e.,
the pruning power) that the candidate index would achieve
if it were applied in the table-scan. In an example embodi-
ment, the processor chooses a certain create proposal (exist-
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ing or newly created), which references a certain candidate
index, to be evaluated during a certain table-scan. During the
table-scan, the processor simulates the operation of the
candidate index, thereby estimating the candidate index’s
potential pruning power. The simulation is typically per-
formed over only a small fraction of the data being scanned,
in order to minimize the computational overhead added to
the query processing.

The simulation results, referred to herein as pruning-
power measures, are fed-back and aggregated in the create
proposal. As noted above, when the candidate index of a
certain create proposal is found to achieve good pruning
power with sufficient confidence, the candidate index is
converted into an actual index.

In some embodiments, the system comprises multiple
processors (“nodes”), each maintaining its own local pro-
posal registry with create proposals and drop proposals. The
nodes occasionally (e.g., periodically, every predefined
number of table-scans, every predefined number of registry
updates, etc.) synchronize their proposal registries with a
central registry. In these embodiments, conversion of can-
didate indexes into actual indexes, and dropping of actual
indexes, are performed at the system level based on the
collective information from the multiple nodes.

The above-described processes, including evaluation of
create proposals and drop proposals by simulation of can-
didate indexes, and creation and dropping of actual indexes,
are performed on an on-going basis during normal operation
of the system, over actual queries and table-scans. In this
manner, the set of actual sparse indexes used in the system
is continually optimized to match the actual flow of queries
being performed. If and when the query profile changes over
time, the sparse indexes will adapt accordingly.

Moreover, the disclosed techniques construct the sparse
indexes (at least in part) during, and as part of, the table-
scanning stage, as opposed to preparatory stages such as
query optimization. The resulting indexes are therefore
accurately matched to the actual data and its distribution
across the table. At the same time, the disclosed techniques
incur only minimal computational overhead during query
processing. The disclosed techniques do not require any user
involvement, or user awareness, for maintaining sparse
indexes. Furthermore, the disclosed techniques do not neces-
sitate reordering or otherwise moving stored data.

System Description

FIG. 1 is a block diagram that schematically illustrates a
cloud-based data storage system 20 that employs adaptive
sparse indexing, in accordance with an embodiment of the
present invention. In the present example, system 20 is a
data management system, such as a cloud-based data ware-
house. System 20 comprises plurality of storage devices 24
(referred to collectively as “storage™), a plurality of process-
ing nodes 28, a metadata database (DB) 32, and optionally
a central controller 80. In one non-limiting example, meta-
data database 32 is implemented using FoundationDB, but
any other suitable database can be used in alternative
embodiments. In example embodiments, storage devices 24
and metadata database 32 may comprise Solid state disks
(SSDs) , and nodes 28 may comprise physical servers or
Virtual Machines (Vms). Alternatively, any other suitable
configuration can be used. Nodes 28 may store and retrieve
data in storage devices 24 over any suitable network or other
interface, and using any suitable protocol.

In some embodiments, each node 28 is independent in
processing queries. In other embodiments, a given query
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6

may be broken into multiple parts for processing by different
nodes 28. A given table-scan may also be divided into
multiple parts for processing by different nodes 28. As part
of query processing, each node 28 participates in carrying
out the adaptive indexing techniques disclosed herein.

Each node 28 comprises a local proposal registry 48, in
which the node maintains local create proposals 52 (pro-
posals to create new indexes) and local drop proposals 56
(proposals to drop existing indexes). Each node 28 adapts its
local create proposals and local drop proposals based on the
queries being processed in that node 28. Typically, a drop
proposal 56 is maintained for each actual index being used,
so that the effectiveness of every actual index is continually
evaluated.

Within a given node 28, adaptive sparse indexing is
performed by software modules referred to as a query
planner 64, a table scanner 44, an index generator 40 and an
index simulator 60. Table scanner 44 also performs conven-
tional table-scanning; the description herein puts more
emphasis on the functionality relating to adaptive indexing.

The flow of creating a new sparse index is described in
detail in FIG. 3 below. Briefly put, query planner 64 receives
a query for processing and creates an execution plan. The
execution plan comprises one or more table-scans for the
query. Each table-scan specifies (i) a table, (ii) a set of one
or more columns of the table, and (iii) a filter predicate that
is defined over the set of columns and needs to be applied to
every row. The result of a table scan typically comprises a
(possibly empty) set of rows of the table, which match the
filter predicate.

For at least some of the table-scans, node 28 may decide
to evaluate a certain create proposal 52 during the table-
scan. The create proposal references a candidate index that
has been generated by index generator 40. Once a create
proposal has been chosen for evaluation in a given table-
scan, table scanner 44 begins performing the table-scan (an
actual table-scan that retrieves data for serving the actual
query). As part of the table-scan, index simulator 60 simu-
lates the effectiveness that the candidate index would have
in pruning the table-scan, if it were used as an actual pruning
index. Index simulator 60 updates the create proposal in
question based on the simulation results.

The above flow is repeated over multiple table-scans
derived from multiple queries. As a result, proposal regis-
tries 48 in nodes 28 accumulate statistical information that
indicates which candidate indexes are effective in pruning
the table-scans derived from the actual queries being pro-
cessed in the system.

As seen in the figure, metadata database 32 comprises (i)
global create proposals 72, which are system-level aggre-
gates of local create proposals 52 from the various nodes 28,
and (ii) global drop proposals 76, which are system-level
aggregates of local drop proposals 56 from the various
nodes. Proposals 72 and 76 are typically stored in a serial-
ized format. As noted above, a drop proposal 76 is typically
maintained for each actual index being used, so that the
effectiveness of every actual index is continually evaluated.

Each node 28 occasionally updates the global create
proposals 72 and global drop proposals 76 according to the
respective local create proposals 52 and local drop proposals
56. Decisions to create new indexes and to drop indexes are
taken according the global create proposals 72 and global
drop proposals 76. This synchronization process is demon-
strated in FIG. 4 below.

In the present embodiment, the sparse indexes themselves
(both candidate indexes and actual indexes) are stored on
storage devices 24 alongside their respective tables. For this
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reason the indexes are not seen explicitly in the figure. In
alternative embodiments, however, candidate and/or actual
indexes can be stored in any other suitable way and/or in any
other suitable location, e.g., in metadata database 32 or in
main memory.

The configuration of system 20, and the configurations of
its various components such as nodes 28 and metadata
database 32, as shown in FIG. 1, are example configurations
that are depicted purely for the sake of conceptual clarity. In
alternative embodiments, any other suitable configurations
can be used. For example, the system may comprise only a
single node 28, in which case metadata database 32 may be
omitted. As another example, controller 80 may be omitted.

In various embodiments, the various components of sys-
tem 20 may be implemented using any suitable hardware,
using software, or using a combination of hardware and
software elements. In some embodiments, some or all of the
elements of system 20, e.g., the processors of nodes 28
and/or controller 80, may be implemented using program-
mable processors that are programmed in software to carry
out the functions described herein. The software may be
downloaded to the processors in electronic form, over a
network, for example, or it may, alternatively or addition-
ally, be provided and/or stored on non-transitory tangible
media, such as magnetic, optical, or electronic memory.

FIG. 2 is a diagram showing example sparse indexes that
can be used in system 20, in accordance with an embodiment
of the present invention. The example of FIG. 2 demon-
strates how table scanner 44 can prune a table-scan over a
transaction table 82 using an aggregator index 84 (“Small
Materialized Aggregate”—SMA, in the present example a
minimum-maximum aggregator) and a Bloom filter index
86.

In the present example, table 82 comprises three columns
(a numeric “time” column, a numeric “t_id” column, and a
string column denoted “u_name”). Table 82 is divided into
three blocks. Aggregator index 84 comprises three SMA
blocks. Each SMA block in index 84 gives the minimum and
maximum values of the “t_id” column in the corresponding
block of table 82. Bloom filter index 86 comprises three
Bloom blocks. Each Bloom block in index 86 is a Bloom
filter defined for the “u_name” column of the corresponding
block of table 82.

The bottom of FIG. 2 shows how a table-scan over table
82 can be pruned effectively using indexes 84 and 86. As
seen, the predicate in this example requests the transactions
(rows of table 82) in which time>32;, t_id>30, and
u_name=‘Anne’.

In Step 1, table scanner 44 checks for possible pruning
based on the condition “time>21". Since there is no index
defined over this column, no pruning is possible, and all
three blocks are read.

In Step 2, table scanner 44 checks for possible pruning
based on the condition “t_id>30 ”. Based on SMA index 84,
this condition enables the table scanner to prune the second
block of table 82.

In Step 3, table scanner 44 checks the remaining blocks of
table 82 for possible pruning based on the condition
“u_name=-‘Anne’”. Based on Bloom index 86, this condi-
tion enables the table scanner to prune the third block of
table 82.

In Step 4, the only block that was not pruned is the first
block of table 82. Thus, table scanner 44 reads only the first
block from storage devices 24, and scans it. As can be
appreciated, the pruning operation provides considerable
performance gain to the table-scan, and to processing of the
query in general.
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Adaptive Creation and Dropping of Sparse Indexes Based
on Actual Query Workflow

FIG. 3 is a flow chart that schematically illustrates a
method for adaptive creation of a sparse index in system 20,
in accordance with an embodiment of the present invention.
The left-hand side of the flow chart illustrates the process of
collecting statistics regarding the effectiveness (pruning
power) of various create proposals. This process is carried
out in parallel by the multiple nodes 28 of system 20, as part
of processing real-life queries during normal operation of
the system. The right-hand side of the flow chart illustrates
the process in which a node 28 synchronizes periodically to
metadata database 32, including possible creation of an
actual index.

In a given node 28, the method begins with query planner
64 selecting a query for processing, at a query selection
stage 90. At a table-scan definition stage 94, table scanner 44
derive a table-scan from the selected query, including speci-
fying a filter predicate and one or more columns for the
table-scan. At a create-proposal selection stage 98, table
scanner 44 chooses a create proposal that will be evaluated
as part of the table-scan.

For a given table-scan, table scanner 44 may either (i)
choose an existing create proposal 52 in proposal registry
48, (ii) create a new create proposal 52 and add it to proposal
registry 48, or (iii) decide that no create proposal will be
evaluated in the table-scan. Example techniques for select-
ing suitable create proposals for evaluation are given further
below. Assuming the decision is to evaluate a selected create
proposal (existing newly created), the method proceeds.

The selected create proposal 52 references (i.e., corre-
sponds to, or points to) a Certain candidate index whose
effectiveness is being evaluated by the create proposal. At an
index simulation stage 102 (which is performed during and
as part of the table-scan), index simulator 60 simulates the
effectiveness of the candidate index. In the simulation, index
simulator 60 estimates the pruning power that the candidate
index would have in pruning the blocks of the table being
scanned, if it were deployed as an actual index.

In some embodiments, index simulator 60 performs the
simulation over only a small fraction of the blocks that
participate in the table-scan. The size of the fraction is
chosen as a trade-off between simulation accuracy and
computational overhead. In an example embodiment, simu-
lator 60 performs the simulation over 0.1% of the blocks,
Alternatively, however, any other suitable fraction can be
used.

The simulation results obtained by simulator 60 are also
referred to herein as “pruning-power measures” of the
candidate index. In some embodiments, the simulation
results comprise four counter values, which are indicative of
the potential pruning power of the candidate index:

‘blocks_index_usable’—The number of blocks in which

the candidate index could have been used for pruning.

‘blocks_index_unusable’—The number of blocks in

which the candidate index could not have been used for
pruning.

‘blocks_pruned_simulation’—The number of blocks that

were pruned by the candidate index.

‘blocks_not_pruned_simulation’—The number of blocks

that were not pruned by the candidate index.

It is important to note that, in a given table-scan, table
scanner 44 updates a given create proposal 52 even if the
create proposal could not be used in the table-scan. In such
a case the table scanner updates the ‘blocks_index_unus-
able’ counter with the number of blocks that were read in the
table-scan. Table scanner 44 also typically updates every
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create proposal 52 that could have been used but was not
simulated, by updating the ‘blocks_index_usable’ counter
with the number of blocks that were read in the table-scan.
These updates are needed in order to estimate the pruning
power correctly.

At a proposal updating stage 106, index simulator 60
updates a state of the evaluated create proposal 52 in
proposal registry 48. When using the above-described coun-
ter mechanism, for example, each create proposal 52 in
registry 48 comprises a state having four counters. These
counters accumulate the counter values obtained from mul-
tiple simulations of the create proposal in multiple table-
scans. Thus, upon completing the simulation, at stage 106,
index simulator 60 increments each of the four counters of
the create proposal by the corresponding counter value
obtained in the simulation.

If the query selected at stage 90 warrants additional
table-scans, the method loops back to step 94 above. In other
words, stages 94-106 are performed for every table-scan
derived from the selected query. The process of stages
90-106 is repeated multiple times by nodes 28, over multiple
queries, during the normal operation of system 20. As a
result, proposal registries 48 of nodes 28 accumulate statis-
tically meaningful pruning-power measures of multiple dif-
ferent candidate indexes.

Occasionally, e.g., periodically, a given node 28 decides
to synchronize to metadata database 32, at a synchronization
stage 110. As part of the synchronization process, the node
updates the states of the various global create proposals 72
with the states of the local create proposals 52. An example
of this process is given in FIG. 4 below.

In some embodiments, the time interval between succes-
sive synchronizations depends on the activity load on the
node (e.g., on the update frequency of the node’s proposal
registries). For example, a node may trigger an update of the
metadata database after a predefined number of updates of
the local proposal registry. As a result, nodes That are highly
busy in processing queries (and therefore accumulate simu-
lation results relatively rapidly) will synchronize more often
than nodes that are idle. This mechanism reduces the com-
putation and communication overhead incurred by synchro-
nization.

After updating the state of a certain global create proposal
72, at an index creation checking stage 114, the node checks
whether the update pruning-power measures (e.g., counter
values) of the candidate index are worthy of creating a new
actual index. If the answer is positive, the node creates a new
actual index, at an index creation stage 122. At the same
time, the node typically also creates a drop proposal 76 for
the new actual index. If the answer at stage 114 is negative,
the node takes an alternative action, at an alternative stage
118. For example, the node may decide to suspend simula-
tions of the candidate index temporarily, or to drop the
candidate index altogether. Example criteria and actions are
given further below.

The method flow of FIG. 3 is an example flow that is
depicted purely for the sake of conceptual clarity. In alter-
native embodiments, any other suitable flow can be used.

FIG. 4 is a diagram that schematically illustrates a struc-
ture of a global create proposal 72, and a process of updating
the state of a global create proposal 72 with the state of a
local create proposal 52, in accordance with an embodiment
of the present invention. This process is typically performed
by a node 28 during its synchronization to metadata database
32 (e.g., at stage 110 of FIG. 3 above).

The left-hand side of FIG. 4 shows the structure of global
create proposal 72. In the present example, the candidate
index corresponding to the create proposal is a Bloom-filter
index, which is defined. over the “u_name” column of
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transaction table 82 (FIG. 2). The state of create proposal 72
comprises the four counters described above.

The right-hand side of FIG. 4 illustrates an example
process in which one of nodes 28 (denoted “Node 1” in the
figure) updates the state of the global create proposal (72)
with the counter values of the corresponding local instance
of'that create proposal (52). Both in the local create proposal
and in the global create proposal, the counter values on the
left are the values before synchronization, and the counter
values on the right (in parentheses) are the values after
synchronization. As seen, after incrementing the counter
values of the global create proposal, the node resets the
respective local counter values to zero.

Also seen in the present example are the local instances of
the create proposal in “Node 2” and “Node 3”. The counter
values in Node 2 are all zero, as they would be, for example,
immediately following synchronization to database 32. The
counter values in Node 3 have some interim values, as they
would be, for example, at some intermediate stage between
synchronizations. The local counters are typically reset to
zero on initialization, and following each synchronization to
the metadata database.

FIG. 4 refers to a sparse index created over a single string
column, in the present example ‘u_name’. Generally, the
disclosed technique can be applied to any other suitable type
and number of columns, or even to mathematical expres-
sions defined over columns. For example, a sparse index can
be created, simulated and used over the sum of two or more
numerical column (e.g., user_age+user_account_balance).

Additional Details, Variations and Embodiments
Choosing Create Proposals

In various embodiments, table scanner 44 in a given node
28 may use various techniques for (i) choosing which create
proposals are to be evaluated in general, and (ii) which
create proposal is to be simulated in a given table-scan.
Table scanner typically makes the latter decision in a dedi-
cated index analysis pass, which is performed before the
execution of a table-scan (see, for example stage 98 of FIG.
3 above). In an example embodiment, table scanner 44
chooses a create proposal for evaluation in a given table-
scan by carrying out an algorithm specified in the following
pseudo-code:

Data: Predicate for a table scan.
Result: A new or existing create proposal for evaluation.
proposal=¢;
for prop registry.create_proposals ( ) do
if predicate.can_use (prop) then
proposals.add(prop);

end
end
if !propasals.empty () then

if bernoulli.sample (0.9) then

return proposals.pick_uniform ()

end
end
used columns=predicate.get_used_columns ( );
for column € used_columns do

prop=build_new_proposal (column);

if predicate.can_use (prop) then

registry.reqister_propose (prop) ;
return prop;

end
end
return null;

The algorithm above is chosen purely by way of example.
In alternative embodiments, any other suitable algorithm can
be used. In accordance with the above example algorithm,



US 11,762,831 B2

11

table scanner 44 first queries proposal registry 48 of the table
in question, to find out which create proposals 52 exist.
Table scanner 44 then collects the set of existing create
proposals which might be useful, given the predicate used in
the table-scan. This process is typically performed by iter-
ating through the proposal registry. If the set of suitable
create proposals is non-empty, table scanner 44 ignores the
suitable proposals with a probability of 10%, or uniformly
chooses one of the suitable create proposals for evaluation.

If no suitable create proposal is found, or a suitable create
proposal was ignored in the previous iteration, table scanner
44 attempts to create a new create proposal 52. To this end,
table scanner 44 first retrieves the columns that are accessed
within the filter predicate of the table-scan. These columns
might be useful for a new candidate index. Table scanner 44
iterates over the columns, turns them into a create proposal,
and checks whether that index type might be useful given the
predicate. The first create proposal that is found potentially
useful is pushed into proposal registry 48 and is evaluated
within the table-scan. If no column resulted in a useful create
proposal, table scanner 44 does not evaluate any create
proposal in the table-scan.

When using the above algorithm, table scanner 44 may
use various techniques for deciding whether the predicate of
the table-scan can utilize a given create proposal 52 (this
decision is given as the return value of the can_use ()
function in the pseudo-code above). A predicate can utilize
a create proposal if the proposed candidate index might have
pruning power given the predicate. In other words, table
scanner 44 typically looks for candidate indexes that could
be used in the table-scan pruning pass if they existed.

For aggregator-type (“SMA”) indexes: Given a predicate
p, an SMA index on a column a can be used within the
pruning pass of a table-scan if p is of the form (aOPc) AND
D, wherein p denotes an arbitrary other predicate, ¢ is a
constant, and OPe{<, <, >, =, =}.

For Bloom-filter indexes: Given a predicate p, a Bloom
index on a column a can be used within the pruning pass of
a table-scan if p is of the form (a=AND p, wherein p denotes
an arbitrary other predicate and c is a constant.

In an embodiment, the formal definitions above specify
when a predicate allows an index to be used for pruning
within a table-scan. In the case of a Bloom filter, the indexed
column should be part of an equality condition with a
constant value. If this condition is satisfied, then the content
of the predicate p does not matter. It is always possible to
query the Bloom filters for the existence of the value a. If
that value does not exist, i.e., the Bloom filter returns false,
then the entire predicate cannot be satisfied on the corre-
sponding block.

Both SMA and Bloom indexes can be used on numeric
and string columns. However, SMA indexes are most com-
monly used on numeric columns while Bloom indexes are
most commonly used on string columns. Given the above
definitions, it can be seen that if a Bloom index might be
useful for a certain column, then an SMA index might be
useful as well. However, this does not mean that we expect
the SMA index to always possess more pruning power. For
example, for an unsorted, high cardinality column that is
mostly queried through equality predicates, Bloom filters
will typically provide far better pruning power.

While the above conditions are correct, they are not
exhaustive. In some embodiments, an actual predicate analy-
sis pass can make use of more complex predicate structures.

Reference is now made to the fall-through path in the
pseudo-code above. This path allows table-scanner 44 to
evaluate both an SMA index and a Bloom filter index on the
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same column. As seen above, any predicate which is useful
for a Bloom index is also useful for an SMA index. If the
fall-through path did not exist and an SMA index was being
evaluated already, a Bloom index would never be proposed.
The fall-through path enables table scanner 44 to propose
multiple different index types on the same column at any
given time.

Simulation of Candidate Indexes During
Table-Scans

In various embodiments, index simulator 60 in a given
node 28 may use various techniques for stimulating the
performance of a candidate index during a table-scan (see,
for example, stage 102 of FIG. 3 above).

In one possible embodiment, simulator 60 may actually
construct the index in question on the relevant data files
being accessed. The simulator can then check, for every
block, whether that block would be pruned by the newly
constructed index. This solution allows the simulator to
compute the fraction of blocks that could be pruned, thereby
estimating the pruning power. As can be appreciated, this
solution is costly in terms of computational overhead. On the
other hand, the resulting pruning power estimation is exact,
since the process is in fact a calculation and not a simulation
or estimation.

In another possible embodiment, a highly efficient yet
imprecise approach is to estimate the pruning power as the
fraction of tuples for which the predicate is true and that are
then passed on to the parent operator. In this approach, the
actual selectivity of the predicate is used as a proxy for the
expected pruning power of the index. This estimation is free,
in terms of computational overhead—It does not incur
additional runtime cost since the predicate needs to be
evaluated anyhow. However, for various reasons the selec-
tivity of the filter predicate in the table-scan may be a gross
over of the actual pruning power of an index.

In some embodiments, index simulator 60 uses a balanced
approach, which constructs and evaluates a candidate index
over only a small subset of the blocks being read in the
table-scan. The subset is chosen sufficiently small to incur
negligible performance overhead. At the same time, the
subset is chosen sufficiently large to provide a solid pruning
power estimate.

For each block in the chosen subset, index simulator 60
applies the candidate index to the block to retroactively
decide whether the index could have pruned the block.
Simulator 60 stores both the number of blocks which could
have been pruned, and the number of blocks that could not
have been pruned, as counters in the create proposal 52 of
the candidate index. The benefit of the latter approach is that,
for the blocks for which the index is constructed, the
estimation of pruning power is exact. At the same time, since
the index is constructed and evaluated only for a small
fraction of the blocks, scan performance remains high.

In an embodiment, the percentage of blocks in the subset
(i.e., for which a candidate index is constructed and simu-
lated) can be chosen using statistical inference. If the index
exists, the blocks being read during table-scans can be
modeled as independent and identically distributed (iid)
Bernoulli random variables. The outcome of each Bernoulli
trial indicates whether the respective block was pruned by
the index. If the index is simulated on n blocks during the
evaluation phase, simulator 60 obtains observations of lid
random variables X, X, . .. , X,~Bernoulli (p), wherein p
denotes the success probability of the index pruning a block,
which is the sought pruning power estimate.
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In an example implementation of the latter approach,
during the execution of a table-scan, simulator 60 simulates
a candidate index on a block with a probability of 0.1%. If
simulator 60 decides to simulate the index on a given block,
the simulator (possibly using index generator 40) constructs
the candidate index on the block and checks whether the
block would be pruned if the index had existed beforehand.
As explained above, the create proposal of the candidate
index comprises counters for both pruned and non-pruned
blocks during simulation. Simulator 60 updates the counters
based on the simulation result.

In many practical scenarios, it is sufficient to simulate the
index on a few hundred megabytes of data to estimate the
pruning power with high confidence. This quantity corre-
sponds to a few hundred gigabytes of table-scans, which is
considered a modest amount in cloud-based data ware-
houses.

Making Index Creation Decisions

As explained above (with reference to stages 110-122 of
FIG. 3 and to FIG. 4), nodes 28 occasionally synchronize
their local proposal registries 48 to metadata database 32. In
this manner, the global counters relating to each candidate
index are kept up-to-date based on the index simulations
performed on the various nodes.

In an embodiment, the decision whether to convert a
candidate index into an actual index can be performed by
any node 28, after it has updated the global counter values
of global create proposal 72 with the respective local counter
values of local create proposal 52. Following synchroniza-
tion, node 28 checks whether enough evidence was collected
to make a decision.

For example, the node may estimate the pruning power of
the simulations p, and approximate how much statistical
confidence it has in the estimate. Using the statistical infer-
ence notation above, pruning observations are represented as
iid random variables X, X, . . . , X,~Bernoulli(p) , wherein
X, corresponds to a respective block. The value of X; equals
“1” if and only if the block could have been pruned if an
index had existed. To estimate p, we utilize the sample mean.
We thus estimate p as

A 95% confidence interval can then be calculated using
the normal approximation of the binomial distribution. This
corresponds to piz-\/((f)-(l—f)))/n), wherein z denotes the
1-0.95/2 quantile of the standard normal distribution.

Node 28 proceeds to make a decision only in response to
the width of the confidence interval becoming less than 0.02
(i.e., 1% in either direction). If this is not the case, the
statistical evidence is considered. insufficient, and synchro-
nization proceeds without making any decision on creation
of an actual index.

If sufficient statistical evidence has been collected, node
28 convert the candidate index into an actual index. First, the
node estimates the real pruning power that is expected based
on p. In this estimate, node 28 also includes the queries in
which the candidate index could not have been used. Using
the counters in the state of global create proposal 72, node
28 can estimate the number of blocks that would have been
pruned as b,=f. blocks_index_usable. Node 28 also esti-
mates the number of blocks that would not have been pruned
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as b,=(1-P). blocks_index_usable+blocks_index_unusable.
Finally, node 28 estimates the real expected pruning power
as p=b/(b,+b,).

Based on this value of the real pruning power, In an
embodiment, node 28 is able to take one of the following
three decisions:
0<p<0.02: The candidate index has almost no pruning

power. Node 28 blocks further simulations of this index

(on all nodes) for a predefined period (e.g., three days) to

avoid wasting additional queries on simulating the create

proposal in question.
0.02<p<0.05: The candidate index has some pruning power,
but not enough to warrant construction of an actual index.

Node 28 resets all counters of the create proposal and

re-evaluates the candidate index based on new table-

scans. The underlying assumption is that the workload
may change in the future to favor this create proposal.
0.05<p<1: The candidate index has significant pruning
power. Node 28 decides to construct an actual index from
the candidate index. In practice, more than 5% speedup
can be expected on the average scan time of this table.

In some embodiments, node 28 makes the above deci-
sions using a dedicated state machine for the create proposal.
The state machine comprises a state enum, as well as a
timestamp containing the last state update. If the decision is
to create an actual index, the relevant create proposal is
deleted, a new schema version is created, and a drop
proposal is instantiated for the new index.

Making Index Drop Decisions

In some embodiments, nodes 28 decide to drop an actual
index by evaluating the actual pruning power of the index.
Since actual indexes are used for pruning of actual table-
scans, there is no need for simulation for estimating their
pruning power. In some embodiments, nodes 28 maintain
local drop proposals 56 and global drop proposals 76 for this
purpose. Once a significant amount of data was collected,
which shows that the pruning power of a certain actual index
dropped below a certain threshold level, the actual index is
dropped. The threshold level can be set, for example, to 25%
of the pruning power that would be required for creation of
that index.

Lazy Index Construction

In some embodiments, the actual indexes are embedded in
the stored data blocks or files in storage 24. In some
embodiments, once a decision to create a new actual index
is made, node 28 creates the index and updates the data files
a gradual (“lazy”) manner, without degrading query perfor-
mance.

For example, node 28 may detect that certain blocks do
not yet contain the index. For these blocks, node 28 performs
a full read. In this manner, an index can be built partially, and
performance can be improved gracefully as more of the
blocks are covered by the respective index.

When the decision to create an index is issued, a new
version of the table’s schema is written to metadata database
32. All nodes 28 of the respective customer are notified of
the changed schema and update their local schemas to reflect
the change. In this manner, new data which is ingested on
some of the nodes will from now on automatically contain
the new actual index.

In addition, in some embodiments, nodes 28 update
existing blocks to contain the new actual index. In this
manner, the new actual index is gradually applied to his-
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torical data, as well, and not only to newly ingested data.
Nodes 28 typically perform this updating process lazily in
the background. In one embodiment, a centralized process
can lazily queue index construction. tasks on nodes 28.
These tasks are only executed when the overall query
pressure is low and CPU resources are available. This
solution enables the system to use free CPU resources for
maintenance tasks without degrading query performance.
Alternatively, the system may comprise one or more dedi-

5

cated maintenance nodes which are responsible for execut- 10

ing background tasks, e.g., to improve the data layout or add
indexes.

Although the embodiments described herein mainly
address database management systems such as cloud-based
data warehouses, the methods and systems described herein
can also used in other applications, such as in streaming data
processing systems, data visualization systems, and dash-
boarding software, to name only a few examples.

It will thus be appreciated that the embodiments described
above are cited by way of example, and that the present
invention is not limited to what has been particularly shown
and described hereinabove. Rather, the scope of the present
invention includes both combinations and sub-combinations
of the various features described hereinabove, as well as
variations and modifications thereof which would occur to
persons skilled in the art upon reading the foregoing descrip-
tion and which are not disclosed in the prior art. Documents
incorporated by reference in the present patent application
are to be considered an integral part of the application except
that to the extent any terms are defined in these incorporated
documents in a manner that conflicts with the definitions
made explicitly or implicitly in the present specification,
only the definitions in the present specification should be
considered.

The invention claimed is:

1. A method for querying a data storage, the method
comprising:

receiving a workload of multiple queries for execution in

the data storage;

deriving from the multiple queries one or more table-

scans over one or more tables of the data storage;

for a given table among the one or more tables, specify-

ing, based on the multiple queries, candidate sparse
indexes for pruning the table-scans pertaining to the
given table;

evaluating pruning-power measures, each pruning-power

measure being indicative of an effectiveness of a
respective candidate sparse index in pruning the table-
scans pertaining to the given table, the effectiveness
being assessed over the multiple queries of the work-
load;

converting one or more of the candidate sparse indexes

into actual sparse indexes, depending on the pruning-
power measures; and

executing the queries by performing the table-scans,

including pruning the table-scans pertaining to the
given table using the actual sparse indexes.

2. The method according to claim 1, further comprising,
while performing the table-scans, evaluating the pruning-
power measures for one or more of the actual sparse indexes,
and dropping one or more of the actual indexes in response
to finding that the effectiveness of the one or more of the
actual indexes is below a specified pruning power.

3. The method according to claim 1, wherein evaluating
the pruning-power measures comprises simulating the can-
didate sparse indexes while performing the table-scans.

15

20

25

30

35

40

45

50

60

65

16

4. The method according to claim 3, wherein the tables are
divided into blocks of rows, and wherein evaluating the
pruning-power measures comprises, for a given candidate
sparse index, maintaining one or more of:
a first count, indicative of a number of the blocks that
were accessed by the queries and in which the given
candidate sparse index could have been used for prun-
ing;
a second count, indicative of a number of the blocks that
were accessed by the queries but in which the given
candidate sparse index could not have been used for
pruning;
a third count, indicative of a number of the blocks that
were pruned in simulation of the given candidate sparse
index; and
a fourth count, indicative of a number of the blocks that
were not pruned in the simulation of the given candi-
date sparse index.
5. The method according to claim 3, wherein the tables are
divided into blocks of rows, and comprising deciding
whether to convert a candidate sparse index into an actual
sparse index, by:
representing the blocks, over which the candidate sparse
index are simulated, by respective random variables,
each random variable indicative of whether the block
would have been pruned by the candidate sparse index;
calculating a confidence interval of a sample mean of the
random variables; and
deciding to convert the candidate sparse index into an
actual sparse index if the confidence interval is smaller
than a threshold.
6. The method according to claim 3, wherein receiving the
queries, deriving the table-scans and simulating the candi-
date sparse indexes are performed in multiple compute
nodes, and comprising synchronizing a metadata database
with simulation results produced by the multiple compute
nodes.
7. The method according to claim 1, wherein specifying
the candidate sparse indexes comprises specifying a candi-
date sparse index over one or both of (i) one or more
numerical columns of the given table, and (ii) one or more
string columns of the given table.
8. The method according to claim 1, wherein specifying
the candidate sparse indexes comprises specifying a candi-
date sparse index over a mathematical expression that is
defined over two or more numerical columns of the tables
given table.
9. A system for querying a data storage, the system
comprising:
an interface for communicating with the data storage; and
one or more processors, configured to:
receive a workload of multiple queries for execution in
the data storage;

derive from the multiple queries one or more table-
scans over one or more tables of the data storage;

for a given table among the one or more tables, specity,
based on the multiple queries, candidate sparse
indexes for pruning the table-scans pertaining to the
given table;

evaluate pruning-power measures, each pruning-power
measure being indicative of an effectiveness of a
respective candidate sparse index in pruning the
table-scans pertaining to the given table, the effec-
tiveness being assessed over the multiple queries of
the workload;
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convert one or more of the candidate sparse indexes
into actual sparse indexes, depending on the pruning-
power measures; and

execute the queries by performing the table-scans,
including pruning the table-scans pertaining to the
given table using the actual sparse indexes.

10. The system according to claim 9, wherein the one or
more processors are configured to, while performing the
table-scans, evaluate the pruning-power measures for one or
more of the actual sparse indexes, and drop one or more of
the actual indexes in response to finding that the effective-
ness of the one or more of the actual indexes is below a
specified pruning power.

11. The system according to claim 9, wherein the one or
more processors are configured to evaluate the pruning-
power measures by simulating the candidate sparse indexes
while performing the table-scans.

12. The system according to claim 11, wherein the tables
are divided into blocks of rows, and wherein the one or more
processors are configured to evaluate the pruning-power
measures by maintaining, for a given candidate sparse index,
one or more of:

a first count, indicative of a number of the blocks that
were accessed by the queries and in which the given
candidate sparse index could have been used for prun-
ing;

a second count, indicative of a number of the blocks that
were accessed by the queries but in which the given
candidate sparse index could not have been used for
pruning;

a third count, indicative of a number of the blocks that
were pruned in simulation of the given candidate sparse
index; and

a fourth count, indicative of a number of the blocks that
were not pruned in the simulation of the given candi-
date sparse index.

13. The system according to claim 11, wherein the tables
are divided into blocks of rows, and the one or more
processors are configured to decide whether to convert a
candidate sparse index into an actual sparse index, by:

representing the blocks, over which the candidate sparse
index are simulated, by respective random variables,
each random variable indicative of whether the block
would have been pruned by the candidate sparse index;
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calculating a confidence interval of a sample mean of the

random variables; and

deciding to convert the candidate sparse index into an

actual sparse index if the confidence interval is smaller
than a threshold.

14. The system according to claim 11, wherein the one or
more processors are multiple processors comprised in mul-
tiple compute nodes, and wherein the multiple processors
are configured to synchronize a metadata database with
simulation results produced in the multiple compute nodes.

15. The system according to claim 9, wherein the one or
more processors are configured to specify a candidate sparse
index over one or both of (i) one or more numerical columns
of'the given table, and (ii) one or more string columns of the
given table.

16. The system according to claim 9, wherein the one or
more processors are configured to specify a candidate sparse
index over a mathematical expression that is defined over
two or more numerical columns of the given table.

17. A computer software product, the product comprising
a tangible non-transitory computer-readable medium in
which program instructions are stored, which instructions,
when read by a processor, cause the processor to:

receive a workload of multiple queries for execution in a

data storage;

derive from the multiple queries one or more table-scans

over one or more tables of the data storage;

for a given table among the one or more tables, specify,

based on the multiple queries, candidate sparse indexes
for pruning the table-scans pertaining to the given
table;

evaluate pruning-power measures, each pruning-power

measure being indicative of an effectiveness of a
respective candidate sparse index in pruning the table-
scans pertaining to the given table, the effectiveness
being assessed over the multiple queries of the work-
load;

convert one or more of the candidate sparse indexes into

actual sparse indexes, depending on the pruning-power
measures; and

execute the queries by performing the table-scans, includ-

ing pruning the table-scans pertaining to the given table
using the actual sparse indexes.
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