
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2015/0078398 A1

US 2015.0078398A1

MCKENNEY (43) Pub. Date: Mar. 19, 2015

(54) HASH PERTURBATION WITH QUEUE (52) U.S. Cl.
MANAGEMENT IN DATA COMMUNICATION CPC H04L 49/90 (2013.01); H04L 45/7453

(2013.01)
(71) Applicant: International Business Machines Corporation, Armonk, NY (US) USPC .. 370/417

(72) Inventor: PAUL EDWARD MCKENNEY,
Beaverton, OR (US) (57) ABSTRACT

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US) A method for hash perturbation with queue management in

data communication is provided. Using a first set of old
(21) Appl. No.: 14/099,310 queues corresponding to a first hash function, a set of data
(22) Filed: Dec. 6, 2013 packets corresponding to a set of session is queued. At a first

time, the first hash function is changed to a second hash
Related U.S. Application Data function. A second set of new queues is created correspond

(63) Continuation of application No. 14/029,098, filed on ing to the second hash function. A data packet is dequeued
Sep 17, 2013 pp sw- Yos from a first old queue in a set of old queues. A second data

p. 1 /, packet is selected from a second queue in the set of old
Publication Classification queues. A new hash value is computed for the second data

packet using the second hash function. The second data
(51) Int. Cl. packet is queued in a first new queue Such that the second

H04L 2/86 (2006.01) packet is in position to be delivered first from the first new
H04L 2/743 (2006.01) queue.

APPLICATION
105

SERVER 104

STORAGE
108

DEVICE 132

APPLICATION
133

CLIENT 11

CLENT 11

CLIENT 11

SERVER 106

Patent Application Publication Mar. 19, 2015 Sheet 1 of 8 US 2015/0078398 A1

s
2
O
H
e
O
-
n
n
C

S r

3

US 2015/0078398 A1 Mar. 19, 2015 Sheet 2 of 8 Patent Application Publication

557 Sng

Patent Application Publication Mar. 19, 2015 Sheet 3 of 8 US 2015/0078398 A1

g i

C O O c
CN CN CN N

d C s
w- X X X X w- X X X X w- X X X X

s

:
3.

S

O
L
k

1.
H
<
H
<

E.

f
2
O

f
CO

g

Patent Application Publication Mar. 19, 2015 Sheet 4 of 8 US 2015/0078398 A1

s e

s

3
05 st 5 () S. < z N
O L

S

ETTET OEC)

ETTE TÕECT

US 2015/0078398 A1 Mar. 19, 2015 Sheet 5 of 8

$ $OIGH

Patent Application Publication

US 2015/0078398 A1 Mar. 19, 2015 Sheet 6 of 8 Patent Application Publication

HO_LINAS0
LST W?CHO_LINAS 9 (OIGH

US 2015/0078398 A1

SEA

(JESCHVÍTTE

Mar. 19, 2015 Sheet 8 of 8

8 ’91),

Patent Application Publication

US 2015/0078398 A1

HASH PERTURBATION WITH QUEUE
MANAGEMENT IN DATA COMMUNICATION

0001. The present application is a continuation applica
tion of, and claims priority to, a U.S. patent application of the
same title, Ser. No. 14/029,098, Attorney Docket No.
AUS920130191 US1, which was filed on Sep. 17, 2013,
assigned to the same assignee, and incorporated herein by
reference in its entirety.

TECHNICAL FIELD

0002 The present invention relates generally to a method
for improving data communications. More particularly, the
present invention relates to a method for hash perturbation
with queue management in data communication.

BACKGROUND

0003. Several data processing systems and applications
can simultaneously use a data channel to send and receive
data to and from other data processing systems. A variety of
devices facilitates such data communication. A router and a
Switch are some examples of Such devices.
0004. A data communication device associates a particu
lar data transfer with a session. A session has several
attributes, including a session identifier. Within a data com
munication device, a session is uniquely associated with an
application or an instance thereof that is the recipient of the
data.

0005 Different applications exhibit different data com
munication behaviors. For example, Some applications
require continuous data transfers, others use data communi
cations sporadically, while some others use data communica
tions in bursts. The manner in which an application performs
data communications affects the application's performance.
For example, the increasing use of Internet by large numbers
of people using web services with frequent Small amounts of
data, for example, voice over IP (VOIP) or interactive video
teleconferencing, has resulted in poor data communication
performance in Such services. This poor performance mani
fests itself as undesirably long latencies, dropped packets,
and lower than acceptable bandwidth, resulting in poor qual
ity VOIP and video teleconferencing sessions.
0006 Furthermore, when applications of differing data
communication behaviors utilize a common channel through
a data communication device, they affect each others’ perfor
mance. For example, a video streaming application, which
uses significant and continuous data transfers, can cause slug
gish performance in an email application, which shares an
internet connection with the streaming application via a com
mon router. A malicious application can also attack a data
communication device by flooding the data communication
channel at the detriment of other applications that use the data
communication channel through the device.

SUMMARY

0007. The illustrative embodiments provide a method for
hash perturbation with queue management in data communi
cation. An embodiment queues, using a first set of queues
corresponding to a first hash function, a set of data packets
corresponding to a set of Session in a data processing envi
ronment, the first set of queues forming a set of old queues.
The embodiment changes, at a first time, the first hash func
tion to a second hash function. The embodiment creates a

Mar. 19, 2015

second set of queues corresponding to the second hash func
tion, the second set of queues forming a set of new queues.
The embodiment dequeues, from a first old queue in a set of
old queues, a data packet in the set of data packets. The
embodiment selects, from a second queue in the set of old
queues, a second data packet. The embodiment computes a
new hash value for the second data packet using the second
hash function. The embodiment queues the second data
packet in a first new queue from the set of new queues such
that the second packet is in position to be delivered first from
the first new queue.
0008 Another embodiment includes computer usable
code for queuing, using a first set of queues corresponding to
a first hash function, a set of data packets corresponding to a
set of session in a data processing environment, the first set of
queues forming a set of old queues. The embodiment further
includes computer usable code for changing, at a first time,
the first hash function to a second hash function. The embodi
ment further includes computer usable code for creating a
second set of queues corresponding to the second hash func
tion, the second set of queues forming a set of new queues.
The embodiment further includes computer usable code for
dequeuing, from a first old queue in a set of old queues, a data
packet in the set of data packets. The embodiment further
includes computer usable code for selecting, from a second
queue in the set of old queues, a second data packet. The
embodiment further includes computer usable code for com
puting a new hash value for the second data packet using the
second hash function. The embodiment further includes com
puter usable code for queuing the second data packet in a first
new queue from the set of new queues such that the second
packet is in position to be delivered first from the first new
queue.
0009. Another embodiment includes a storage device
including a storage medium, wherein the storage device
stores computer usable program code. The embodiment fur
ther includes a processor, wherein the processor executes the
computer usable program code. The embodiment further
includes computerusable code for queuing, using a first set of
queues corresponding to a first hash function, a set of data
packets corresponding to a set of session in a data processing
environment, the first set of queues forming a set of old
queues. The embodiment further includes computer usable
code for changing, at a first time, the first hash function to a
second hash function. The embodiment further includes com
puter usable code for creating a second set of queues corre
sponding to the second hash function, the second set of
queues forming a set of new queues. The embodiment further
includes computer usable code for dequeuing, from a first old
queue in a set of old queues, a data packet in the set of data
packets. The embodiment further includes computer usable
code for selecting, from a second queue in the set of old
queues, a second data packet. The embodiment further
includes computer usable code for computing a new hash
value for the second data packet using the second hash func
tion. The embodiment further includes computerusable code
for queuing the second data packet in a first new queue from
the set of new queues such that the second packet is in position
to be delivered first from the first new queue.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0010. The novel features believed characteristic of the
invention are set forth in the appended claims. The invention

US 2015/0078398 A1

itself, however, as well as a preferred mode of use, further
objectives and advantages thereof, will best be understood by
reference to the following detailed description of the illustra
tive embodiments when read in conjunction with the accom
panying drawings, wherein:
0011 FIG. 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented;
0012 FIG. 2 depicts a block diagram of a data processing
system in which illustrative embodiments may be imple
mented;
0013 FIG.3 depicts a block diagram of a packet queuing
process that can be improved using an illustrative embodi
ment,
0014 FIG. 4 depicts a block diagram of a packet re-queu
ing process that can be improved using an illustrative embodi
ment,
0015 FIG.5 depicts a configuration for hash perturbation
with queue management in data communication in accor
dance with an illustrative embodiment;
0016 FIG. 6 depicts a timeline for hash perturbation with
queue management in data communication in accordance
with an illustrative embodiment;
0017 FIG.7 depicts a flowchart of an example process for
hash perturbation with queue management in data communi
cation in accordance with an illustrative embodiment; and
0018 FIG. 8 depicts a flowchart of an example process for
determining whether and when to perturb the hash function in
accordance with an illustrative embodiment.

DETAILED DESCRIPTION

0019. An implementation, such as an application or firm
ware, in a data communication device presently manages the
data flow through the data communication device as fol
lows—the implementation receives data packets destined for
the different sessions that are being maintained via the device.
The implementation selects some attributes of each data
packet and generates a hash value by applying the hash func
tion to those attributes. The implementation then queues the
data packet in one of several queues according to the hash
value, for delivery to their respective sessions. Regardless of
whether a session is heavy user or a sporadic user of the data
communication channel, the data packets are queued for
delivery in this manner.
0020 Some solutions exist for attempting to solve the
performance issue associated with applications with different
data communication behaviors trying to use a common data
communication channel. For example, a controlled delay
(CoDel) algorithm is an active queue management algorithm
that seeks to limit the delay suffered by data packets for a
session.
0021 Codel operates in devices such as gateways,
switches, or routers. Codel selectively drops packets that
have resided in the device for greater than a threshold amount
of time. For example, in one implementation, the threshold is
defined to be a fraction, typically five percent, of the round
trip time for a data communication in the session. Round trip
times are often of the order of one hundred milliseconds for
long-haul connections. One approach selectively drops pack
ets from sessions that are attempting to flood the network
(referred to as "hog sessions) so that the delay in servicing
other sessions (referred to as “non-hog sessions) is reduced.
0022. A probabilistic packet dropping approach can also
drop packets assuming that a hog session can be expected to

Mar. 19, 2015

have more packets in the queue than any of the non-hog
sessions, and a random packet drop is more likely to affect the
hog than the non-hogs. In any case, these dropped packets
will typically cause the protocol, e.g., slow-start transmission
control protocol (TCP) to take congestion-control actions in
the session, thereby decreasing the sessions offered load, in
turn resulting in fair allocation of the data communication
channel resource and reducing queuing delays.
0023. If the device in question uses FIFO queuing, a hog
session will inflict delays on non-hog sessions. For example,
a session performing a large file transfer will unduly delay
packets belonging to a VOIP session.
0024 Fairness Queuing Codel (FQ Codel) is a presently
used method that attempts to solve this problem. FQ Codel
employs a stochastic fairness queuing (SFQ) method that
operates by maintaining queues in a manner that a higher than
threshold probability exists that the data packets for separate
sessions will be queued in separate queues, thereby prevent
ing hog sessions from delaying non-hog sessions.
(0025 Because FQ CoDel is a probabilistic method, it is
quite possible that packets of an unlucky non-hog session will
end up sharing a queue with packets of a hog session. Thus, a
probability exists that a non-hog session will, at Some point in
time, share in the hog session's high latency, in turn resulting
in poor performance in the non-hog session, which the pres
ently used FQ CoDel method unsuccessfully sought to avoid.
0026. The illustrative embodiments recognize that one
way of preventing Sucha problem from becoming along-term
problem is to periodically perturb, or change, the hash func
tion. However, the illustrative embodiments also recognize
that simply perturbing the hash function causes other prob
lems, such as disruptions in protocol congestion avoidance
mechanism. For example, assume that an old hash function
has been used to queue Some of the packets for a session.
Further assume that starting at a cutoff point in time a new
hash function is employed for queuing the Subsequently arriv
ing packets. The illustrative embodiments recognize a possi
bility that a packet from before the cutoff time (old packet)
that was queued using the old hash function will be farther
from the head in an queue according to the old hash value (old
queue) and another packet arriving after the cutoff time (new
packet) will get queued relatively nearer to the head in a queue
according to the new hash value (new queue).
0027. The illustrative embodiments recognize that a pos
sibility exists that the new packet will therefore be delivered
to the session before the old packet, causing the packets to be
out of sequence. The protocol congestion avoidance mecha
nism of the session will interpret the out of order packets as a
congestion condition that has resulted in missing packets, and
cause unnecessary data communication disruption, Such as
by retrying for one or more older packets.
0028. The out-of-order delivery of packets can be avoided
if all the packets in the old queues are delivered (all old queues
is drained) before beginning delivery of packets from the new
queues. However, the illustrative embodiments recognize that
waiting to deliver packets from the new queues until the old
queues are completely drained is also an ineffective solution
to avoid out of sequence delivery. For example, assume that a
packet for a non-hog session is queued with several packets
for a hog-Session in an old queue. The time delay between the
delivery of the non-hog session packet queued in the old
queue and another packet for the non-hog session queued in a
new queue can become unacceptable if the old queue has a

US 2015/0078398 A1

large number of packets for the hog-Session and take longer
than a threshold amount of time to drain.
0029. As another example, assume that a packet arrives for
a non-hog session just after the queue Switch is initiated. This
new non-hog session packet is therefore placed into a new
queue, which will be empty. However, despite having no
packets in front of it, this new packet must wait for all the hog
packets in the old queues, causing the delay in delivering
packets to the non-hog session. A last non-hog session packet
arriving on an old queue that is shared with a hog session also
sees almost the same penalty.
0030 Even if the packet for the non-hog session was
queued in a different queue than the packets of the hog
session, all old queues have to be drained before delivery from
the new queues can begin. Therefore, whether the different
session packets are queued using the same old queue or dif
ferent old queues, the delay between packets from old queues
and packets from new queues can still exceed a threshold in
the non-hog session. In either case, the protocol congestion
avoidance mechanism of the non-hog session will interpret
the delay as a congestion condition that has resulted in miss
ing packets, and cause unnecessary data communication dis
ruption.
0031 One prior art method simply rehashes all the packets
remaining on the old queues immediately at the time of the
hash-function switch. One problem with this prior art method
is that the method introduces significant latency or delays by
having to perform this all-at-once rehashing, and the problem
is exacerbated if a large number of packets remain in the old
queues at the time of the hash function Switch.
0032. Thus, the illustrative embodiments recognize that
simply perturbing or changing the hash function can intro
duce additional delays instead of curing existing delays.
Accordingly, the illustrative embodiments recognize that not
only are the presently available data packet queuing methods
in data communication insufficient for minimizing the cross
session affects on latency, but also that simply changing the
hash function is nota Sufficient remedy to reduce Such latency
problems.
0033. The illustrative embodiments used to describe the
invention generally address and solve the above-described
problems and other problems related to the latency problems
in the presently available data packet queuing methods in data
communication. The illustrative embodiments provide a
method for hash perturbation with queue management in data
communication.

0034. An embodiment selects a time window within
which a hash function can be changed. Another embodiment
selects a threshold time after which the hash function can be
changed. Another embodiment selects a time threshold
before which the hash function should not be changed,
another time threshold after which the hash function must be
changed, and duration between the two thresholds where the
hash function can be opportunistically changed if certain
conditions are met, Such as when the old queues are drained
below a threshold level.

0035 However and whenever the hash function is
changed, another embodiment further manipulates the data
packets in the old queues. In one example embodiment, the
embodiment dequeues (delivers) a packet from the head of an
old queue. The embodiment then rehashes a data packet from
the tail of the old queue and moves the rehashed data packet
to the head of a new queue selected based on the new hash
value.

Mar. 19, 2015

0036 Additionally, one embodiment sets a time threshold
at which the delivery of packets from the old queues is
stopped, rehashes and migrates the remaining data packets in
old queues to the corresponding new queues, and begins
delivery of packets from the new queues. The migration of
remaining packets from the old queues to the new queues
follows the rehashing and moving from the tail of the old
queue to the head of the new queue process described above.
0037. Many variations of this embodiment are possible
and are contemplated within the scope of the illustrative
embodiments. For example, one variant of the above embodi
ment keeps track of the longest old queue, and instead of
migrating the packet from the tail of the queue from which a
packet is dequeued, the variant embodiment migrates a
packet from the tail of the longest queue.
0038. One embodiment avoids migration as a quick and
dirty way of switching from old hash function and old hash
queues to a new hash function and new hash queues. For
example, the embodiment drops all remaining packets in the
old queue. Such as at the elapse of Some period, or if an old
queue is full. The time period can be measured, for example,
from the time the hash function switch was started, the time of
the first packet transmission following the time that the hash
function switch was started, the time that the first packet was
placed into a new queue, or other similar considerations.
0039. Such an embodiment is an extreme measure that
disturbs the affected sessions, but the embodiment prefers to
disturb the few sessions that share a hog session's queue to
delaying all the other sessions that are waiting in the new
queues. Another embodiment avoids having to drop existing
packets from old queues by dropping packets arriving at a
queue that is full beyond a threshold level.
0040. Operating in this example manner, an embodiment
reduces the time to drain the old queues before beginning
delivery from the new queues, reduces the delay between
packets for the same session that are split between in the old
queues and the new queues, and preserves the ordering of the
packets for each session. Such an operation of an embodiment
further improves the probability that even if the packets of a
non-hog session were queued with the packets of a hog
session in a common old queue, the shared queuing will last
only until the hash is perturbed and data packets are moved to
the new queues.
0041. The illustrative embodiments are described with
respect to certain data communication devices, data process
ing systems, environments, components, and applications
only as examples. Any specific manifestations of Such arti
facts are not intended to be limiting to the invention. Any
Suitable manifestation of the data communication devices,
data processing systems, environments, components, and
applications can be selected within the scope of the illustra
tive embodiments.
0042. Furthermore, the illustrative embodiments may be
implemented with respect to any type of data, data source, or
access to a data source over a data network. Any type of data
storage device may provide the data to an embodiment of the
invention, either locally at a data processing system or over a
data network, within the scope of the invention.
0043. The illustrative embodiments are described using
specific code, designs, architectures, protocols, layouts, sche
matics, and tools only as examples and are not limiting to the
illustrative embodiments. Furthermore, the illustrative
embodiments are described in Some instances using particu
lar software, tools, and data processing environments only as

US 2015/0078398 A1

an example for the clarity of the description. The illustrative
embodiments may be used in conjunction with other compa
rable or similarly purposed structures, systems, applications,
or architectures. An illustrative embodiment may be imple
mented in hardware, Software, or a combination thereof.
0044) The examples in this disclosure are used only for the
clarity of the description and are not limiting to the illustrative
embodiments. Additional data, operations, actions, tasks,
activities, and manipulations will be conceivable from this
disclosure and the same are contemplated within the scope of
the illustrative embodiments.
0045 Any advantages listed herein are only examples and
are not intended to be limiting to the illustrative embodi
ments. Additional or different advantages may be realized by
specific illustrative embodiments. Furthermore, a particular
illustrative embodiment may have some, all, or none of the
advantages listed above.
0046) With reference to the figures and in particular with
reference to FIGS. 1 and 2, these figures are example dia
grams of data processing environments in which illustrative
embodiments may be implemented. FIGS. 1 and 2 are only
examples and are not intended to assert or imply any limita
tion with regard to the environments in which different
embodiments may be implemented. A particular implemen
tation may make many modifications to the depicted environ
ments based on the following description.
0047 FIG. 1 depicts a block diagram of a network of data
processing systems in which illustrative embodiments may
be implemented. Data processing environment 100 is a net
work of computers in which the illustrative embodiments
may be implemented. Data processing environment 100
includes network 102. Network 102 is the medium used to
provide communications links between various devices and
computers connected together within data processing envi
ronment 100. Network 102 may include connections, such as
wire, wireless communication links, or fiber optic cables.
Server 104 and server 106 couple to network 102 along with
storage unit 108. Software applications may execute on any
computer in data processing environment 100.
0048. In addition, clients 110, 112, and 114 couple to
network 102. A data processing system, Such as server 104 or
106, or client 110, 112, or 114 may contain data and may have
Software applications or Software tools executing thereon.
0049. Only as an example, and without implying any limi
tation to Such architecture, FIG. 1 depicts certain components
that are useable in an embodiment. In one example configu
ration, device 132 is a data communication device, such as a
Switch, that facilitates data communications for applications
on servers 104,106, clients 112, 114, and 116, or a combina
tion thereof. Application 133 implements an embodiment to
operate within, or in conjunction with, device 132. Generally,
any Suitable device, data processing system, or a component
thereof, can operate as a facilitator of data communication
traffic between two data processing systems, and therefore
can also implement or use an embodiment without limitation.
For example, in another example configuration, where device
132 is absent from the depicted configuration, a component in
data processing system 104 can facilitate data communica
tions. In Such a configuration, application 105 implements an
embodiment. Generally, any data processing system, such as
client 114, can implement an embodiment in a comparable
manner within the scope of the illustrative embodiments,
0050 Servers 104 and 106, storage unit 108, and clients
110, 112, and 114 may couple to network 102 using wired

Mar. 19, 2015

connections, wireless communication protocols, or other
suitable data connectivity. Clients 110, 112, and 114 may be,
for example, personal computers or network computers.
0051. In the depicted example, server 104 may provide
data, such as boot files, operating system images, and appli
cations to clients 110, 112, and 114. Clients 110, 112, and 114
may be clients to server 104 in this example. Clients 110, 112,
114, or some combination thereof, may include their own
data, boot files, operating system images, and applications.
Data processing environment 100 may include additional
servers, clients, and other devices that are not shown.
0052. In the depicted example, data processing environ
ment 100 may be the Internet. Network 102 may represent a
collection of networks and gateways that use the Transmis
sion Control Protocol/Internet Protocol (TCP/IP) and other
protocols to communicate with one another. At the heart of
the Internet is a backbone of data communication links
between major nodes or host computers, including thousands
of commercial, governmental, educational, and other com
puter systems that route data and messages. Of course, data
processing environment 100 also may be implemented as a
number of different types of networks, such as for example,
an intranet, a local area network (LAN), or a wide area net
work (WAN). FIG. 1 is intended as an example, and not as an
architectural limitation for the different illustrative embodi
mentS.

0053 Among other uses, data processing environment
100 may be used for implementing a client-server environ
ment in which the illustrative embodiments may be imple
mented. A client-server environment enables Software appli
cations and data to be distributed across a network Such that
an application functions by using the interactivity between a
client data processing system and a server data processing
system. Data processing environment 100 may also employ a
service oriented architecture where interoperable software
components distributed across a network may be packaged
together as coherent business applications.
0054 With reference to FIG. 2, this figure depicts a block
diagram of a data processing system in which illustrative
embodiments may be implemented. Data processing system
200 is an example of a computer, such as server 104 or client
110 in FIG. 1, or another type of device in which computer
usable program code or instructions implementing the pro
cesses may be located for the illustrative embodiments.
0055 Data processing system 200 is also representative of
a device, such as device 132 in FIG. 1 in which computer
usable program code or instructions implementing the pro
cesses of the illustrative embodiments may be located for the
illustrative embodiments. Data processing system 200 is
described as a computer only as an example, without being
limited thereto. Implementations in the form of device 132 in
FIG. 1 may modify data processing system 200 and even
eliminate certain depicted components there from without
departing from the general description of the operations and
functions of data processing system 200 described herein.
0056. In the depicted example, data processing system 200
employs a hub architecture including North Bridge and
memory controller hub (NB/MCH)202 and South Bridge and
input/output (I/O) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are
coupled to North Bridge and memory controller hub (NB/
MCH) 202. Processing unit 206 may contain one or more
processors and may be implemented using one or more het
erogeneous processor systems. Processing unit 206 may be a

US 2015/0078398 A1

multi-core processor. Graphics processor 210 may be
coupled to NB/MCH 202 through an accelerated graphics
port (AGP) in certain implementations.
0057. In the depicted example, local area network (LAN)
adapter 212 is coupled to South Bridge and I/O controller hub
(SB/ICH) 204. Audio adapter 216, keyboard and mouse
adapter 220, modem 222, read only memory (ROM) 224,
universal serial bus (USB) and other ports 232, and PCI/PCIe
devices 234 are coupled to South Bridge and I/O controller
hub 204 through bus 238. Hard disk drive (HDD) or solid
state drive (SSD) 226 and CD-ROM 230 are coupled to South
Bridge and I/O controller hub 204 through bus 240. PCI/PCIe
devices 234 may include, for example, Ethernet adapters,
add-in cards, and PC cards for notebook computers. PCI uses
a card bus controller, while PCIe does not. ROM 224 may be,
for example, a flash binary input/output system (BIOS). Hard
disk drive 226 and CD-ROM 230 may use, for example, an
integrated drive electronics (IDE), serial advanced technol
ogy attachment (SATA) interface, or variants such as exter
nal-SATA (eSATA) and micro-SATA (mSATA). A super I/O
(SIO) device 236 may be coupled to South Bridge and I/O
controller hub (SB/ICH) 204 through bus 238.
0058 Memories, such as main memory 208, ROM 224, or
flash memory (not shown), are some examples of computer
usable storage devices. Hard disk drive or solid state drive
226, CD-ROM 230, and other similarly usable devices are
Some examples of computer usable storage devices including
a computer usable storage medium.
0059 An operating system runs on processing unit 206.
The operating system coordinates and provides control of
various components within data processing system 200 in
FIG. 2. The operating system may be a commercially avail
able operating system such as AIX(R) (AIX is a trademark of
International Business Machines Corporation in the United
States and other countries), Microsoft(R) Windows(R (Mi
crosoft and Windows are trademarks of Microsoft Corpora
tion in the United States and other countries), or LinuxOR)
(Linux is a trademark of Linus Torvalds in the United States
and other countries). An object oriented programming sys
tem, such as the JavaTM programming system, may run in
conjunction with the operating system and provides calls to
the operating system from JavaTM programs or applications
executing on data processing system 200 (Java and all Java
based trademarks and logos are trademarks or registered
trademarks of Oracle Corporation and/or its affiliates).
0060 Instructions for the operating system, the object
oriented programming system, and applications or programs,
such as application 105 in FIG. 1, are located on storage
devices, such as hard disk drive 226, and may be loaded into
at least one of one or more memories, such as main memory
208, for execution by processing unit 206. The processes of
the illustrative embodiments may be performed by processing
unit 206 using computer implemented instructions, which
may be located in a memory, such as, for example, main
memory 208, read only memory 224, or in one or more
peripheral devices.
0061 The hardware in FIGS. 1-2 may vary depending on
the implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIGS. 1-2.
In addition, the processes of the illustrative embodiments
may be applied to a multiprocessor data processing system.

Mar. 19, 2015

0062. In some illustrative examples, data processing sys
tem 200 may be a personal digital assistant (PDA), which is
generally configured with flash memory to provide non-vola
tile memory for storing operating system files and/or user
generated data. A bus system may comprise one or more
buses, such as a system bus, an I/O bus, and a PCI bus. Of
course, the bus system may be implemented using any type of
communications fabric or architecture that provides for a
transfer of data between different components or devices
attached to the fabric or architecture.
0063 A communications unit may include one or more
devices used to transmit and receive data, Such as a modem or
a network adapter. A memory may be, for example, main
memory 208 or a cache, such as the cache found in North
Bridge and memory controller hub 202. A processing unit
may include one or more processors or CPUs.
0064. The depicted examples in FIGS. 1-2 and above
described examples are not meant to imply architectural limi
tations. For example, data processing system 200 also may be
a tablet computer, laptop computer, or telephone device in
addition to taking the form of a PDA.
0065. With reference to FIG. 3, this figure depicts a block
diagram of a packet queuing process that can be improved
using an illustrative embodiment. As an example, configura
tion 300 can be implemented in device 132 or data processing
system 104 or 114 in FIG.1. In one embodiment, application
133 or 105, respectively, implements configuration 300 along
with a process (not shown) for hash perturbation with queue
management in data communication.
0.066 Data traffic 302 includes data packets for any num
ber of sessions, such as, for example, sessions 1 through n in
a data processing environment, such as data processing envi
ronment 100 in FIG. 1. Hash function 304 hashes certain
attributes of each data packet in data traffic 302, and generates
a hash value corresponding to the data packet.
0067 Configuration 300 maintains a queue for each hash
value. For example, Suppose that m different hash values are
seen at any given time in configuration 300. Accordingly,
configuration 300 maintains m different queues. All data
packets resulting in hash value H1 are queued in queue 306;
all data packets resulting in hash value H2 are queued in
queue 308; all data packets resulting in hash value H3 are
queued in queue 310; and so on up to hash value Hm and
queue 312 where all data packets resulting in hash value Hm
are queued in queue 312.
0068 Typically, each queue has a corresponding head
pointer that points to the head of the queue, and a tail pointer
that points to the tail of the queue. For example, just as queue
312 has head pointer 314 and tail pointer 316, each of queues
306, 308, and 310 also have head and tail pointers (not
shown.)
0069. Only as an example way to consistently describe the
embodiment, and without implying a limitation thereto,
assume that the packets are added to a queue, such as any of
queues 306–312 at the tail, and are removed, dequeued, or
delivered to a session from the head of the queue. An imple
mentation can similarly add a packet at the head of a queue
and deliver a packet from the tail of the queue with similar
consequences in any embodiment without departing the
scope of the illustrative embodiments.
0070) Ideally, a packet queuing method should separate
the packets belonging to different sessions into different
queues all the time. However, as the illustrative embodiments
recognize. Such a solution is not achievable without unaccept

US 2015/0078398 A1

able pre-processing cost, and therefore, the presently avail
able methods only provide a probabilistic approach to such
separation, achieving such separate queuing only sometimes.
0071. As described earlier, using a presently available
method, there exists a possibility where packets of different
sessions can become stored in a common queue. For example,
packets 1a, 1b, and 1c depicted in queue 308 belong to session
1 and share queue 308 with packets marked “x” that belong to
a hog-Session X. Packets 2a, 2b, 2c, and 2d belong to session
2 and occupy queue 310.
0072 A packet queuing method services each of the m
number of queues, such that none of the queues becomes
starved or stagnant. In other words, each queue receives ser
vicing, for example, in a round-robin fashion, so that packets
continue to be dequeued from each queue in existence. In
depicted configuration 300 and using a presently available
packet queuing method, session 1 will experience higher than
acceptable latency, because packets 1a, 1b, and 1c, will be
delivered as and when the interspaced several packets of
session X are delivered, each time queue 308 is serviced.
0073. With reference to FIG.4, this figure depicts a block
diagram of a packet re-queuing process that can be improved
using an illustrative embodiment. As an example, configura
tion 400 can be implemented in device 132 or data processing
system 104 in FIG.1. In one embodiment, application 133 or
105, respectively, implements configuration 400 along with a
process (not shown) for hash perturbation with queue man
agement in data communication.
0074 Data traffic 402 includes data packets for any num
ber of sessions, such as, for example, sessions 1 through n in
a data processing environment, such as data processing envi
ronment 100 in FIG. 1. Hash function 404 is a new hash
function, as different from hash function 304 in FIG.3, and is
used on data packets received at a packet queuing method
instead of hash function 304 after a cutoff time. Hash function
404 hashes certain attributes of each data packet in data traffic
402, and generates a hash value corresponding to the data
packet.
0075 Configuration 400 maintains a queue for each hash
value. For example, suppose that k different hash values are
seen at any given time in configuration 400. Accordingly,
configuration 400 maintainsk different queues. All data pack
ets resulting in hash value H1 are queued in new queue 406;
all data packets resulting in hash value H2 are queued in new
queue 408; and so on up to hash value Hkand new queue 410
where all data packets resulting in hash value Hk are queued
in new queue 410.
0076 Continuing from the above example of session 1, 2,
and X, assume that packet 2e in queue 410 is a new packet
arriving for session 2. Assuming new queue 410 is empty or
newly created when packet 2e is hashed, packet 2e occupies
the first slot in new queue 410. If new queue 410 were sparsely
populated at the time of queuing packet 2e, packet 2e would
occupy a slot near the head of new queue 410. Session 2
receives packet 2e when packet 2e reaches the head of new
queue 410, if not already there, and new queue 410 is
dequeued.
0077 Assume that after the hash function was changed to
changed hash function 404, Some remaining packets were
migrated from old queues 306–312 in FIG. 3 to new queues
406-410. Consequently, packets 1a, 1b, and 1c were also
migrated, and ended up in different queues. For example,
packet 1a is queued in new queue 408 and packets 1b and 1C
are queued in new queue 406. Furthermore, it is possible that

Mar. 19, 2015

when packet 1a was queued, new queue 408 was partially
occupied, whereas when packet 1b was queued, new queue
406 was empty. Consequently, packet 1b occupies an earlier
position in new queue 406 as compared to a position of packet
1a in new queue 408.
0078. When new queues 406 and 408 are serviced, packet
1b is dequeued from new queue 406 earlier than packet 1a is
dequeued from new queue 408. Therefore, session 1 receives
packet 1b before packet 1a, as shown in ordering 412, causing
an out of order condition to be detected in session 1—a cause
of an additional problem with presently available methods as
described earlier.
0079 An illustrative embodiment remedies the latency
problem without causing out of order packets, draining-re
lated delivery delays described earlier or other similar proto
col disruption problems. For example, an illustrative embodi
ment adds a process described herein to application 133 or
105 in FIG. 1 to operate in conjunction with configurations
300 and 400 for hash perturbation with queue management in
data communication.
0080. With reference to FIG. 5, this figure depicts a con
figuration for hash perturbation with queue management in
data communication in accordance with an illustrative
embodiment. Configuration500 comprises configuration 300
of FIG. 3 (partially shown for clarity), and configuration 400
of FIG. 4 (partially shown for clarity). Configuration 500 and
the process described using configuration 500 can be imple
mented in application 133 or 105 in FIG. 1.
0081 Assuming only as an example, and without imply
ing any limitation thereto, that an embodiment is imple
mented in application 133 in FIG. 1, the application performs
the described process after the hash function has been per
turbed or changed. Upon the change of the hash function both
old queues and new queues exist as shown in configuration
SOO.
I0082 Old queue 502 holds data packets that were queued
using the old hash function, such as hash function 304 in FIG.
3. Packets A, B, Y. and Z are example packets in old queue
SO2.

I0083 New queue 504 queues those data packets that arrive
after the change of hash function. Packet XW and XX are
examples of Such packets.
I0084. In accordance with one embodiment, when a packet
is dequeued from the head of old queue 502, the application
moves a packet from the tail of old queue 502 to the head of
new queue 504. For example, when packet A is dequeued
from old queue 502, the application moves packet Z to the
head of new queue 504. Subsequently, when packet B is
dequeued from old queue 502, the application moves packet
Y, which is now the last packet in old queue 502 owing to the
moving of packet Z earlier, to the head of new queue 504, to
wit, before the previously moved packet Z in new queue 504.
An embodiment is not limited to moving only one packet at a
time. For example, an embodiment can move multiple pack
ets from the tail of an old queue to the head of one or more new
queues in a similar manner without departing the scope of the
illustrative embodiments.
I0085. The application continues moving the packets from
old queue 502 (or another old queue, not shown) to new queue
504 (or another new queue, not shown) in this manner until all
the old queues are drained either by dequeuing the packets or
moving the packets to the new queues. This process of mov
ing the packets maintains the old packets relative positioning
among themselves and with respect to new packets that arrive

US 2015/0078398 A1

after the hash function is changed, avoiding the out of order
packet delivery problem in the presently available methods.
Furthermore, this process expedites the draining of the old
queues, because the old queues are effectively drained or
moved from both ends as opposed to only the head as in the
presently available methods. The faster draining of the old
queues according to this process also reduces the delay in
packet delivery as a result of hashperturbation as compared to
the delay in the presently available methods.
I0086. With reference to FIG. 6, this figure depicts a time
line for hash perturbation with queue management in data
communication in accordance with an illustrative embodi
ment. An application, such as application 133 or 105 in FIG.
1 can use timeline 602 for performing the hash perturbation
described with respect to FIGS. 4 and 5.
0087. For example, the application sets a time threshold
T1 from an initial hash function selection or a previous hash
function perturbation. Time threshold T1 can be selected in
any suitable manner, Such as a fixed period from the initial or
previous hash function selection, or a percentage, fraction, or
factor of the average roundtrip time of certain packets, or
other suitable methods.

0088. In one embodiment, the embodiment does not per
mit switching hash functions prior to T1 (“Do not switch'
side of Tl). Switching hash functions, although useful, has
computational overhead cost associated there with. There
fore, avoiding Switching the hash function too frequently,
Such as before T1 may be advantageous for striking a balance
between the cost of hash function perturbation and the benefit
thereof.

0089. In another embodiment, T1 further acts as a decision
point where the embodiment determines whether a hash per
turbation is needed or will be useful given the current state of
queues at time threshold T1. For example, even if hash per
turbations are timed a certain period apart, not all perturba
tions may be useful. For example, at a time when a particular
perturbation is permitted, the old queues may be less than a
threshold size each and none of the sessions may be reporting
unacceptable delays. Thus, the embodiment can safely omit
hash perturbation until later.
0090 The application can, under certain circumstances
also set a second time threshold T2. For example, while hash
perturbations are permissible after T1, they may become
mandatory in one embodiment after T2 (“Must switch' side
of T2). For example, as a security measure against malicious
attacks on the packet queues, a policy may require that the
hash function be changed after T2 has elapsed. Thus, effec
tively, according to an embodiment, hash perturbation
becomes permissible after T1 and mandatory after T2.
0091 An embodiment further extends the permissiveness
of hash perturbation. For example, while hash perturbation is
permitted between T1 and T2 (“Opportunistic switch
between T1 and T2), an embodiment uses agreedy or oppor
tunistic algorithm to find a time between T1 and T2 when hash
perturbation may cost less than a threshold amount of
resources. For example, the embodiment's opportunistic
algorithm may attempt to find a time between T1 and T2 when
hash perturbation may take less than a threshold amount of
time, less than a threshold number of processor cycles,
migrate less than a threshold number of packets from old
queues to new queues, use less than a threshold amount of
memory for the combination of old queues and new queues,
or other similarly purposed considerations.

Mar. 19, 2015

0092. In one embodiment, T1 and T2 are not used at all, or
are flexibly defined from one hash perturbation to the next.
For example, the embodiment changes a hash function not
according to any given timeline, but when the old queues have
been drained below a threshold size. In one embodiment, the
threshold limit on the drained size is zero, to wit, all old
queues has been completely drained and no packets remain in
any old queues, when the hashperturbation occurs. In another
embodiment the threshold limit on the drained size is a par
ticular size of queues or number of packets, to wit, the old
queues has been drained down to the threshold size, or the
number of packets remaining in the old queues is less than the
particular number of packets.
0093. The above example methods of selecting the timing
of hash perturbations are not exhaustive and intended to be
limiting on the illustrative embodiments. Those of ordinary
skill in the art will be able to conceive other methods for
timing or executing hash perturbations to achieve the effects
of an embodiment and the same are contemplated within the
scope of the illustrative embodiments.
(0094. With reference to FIG. 7, this figure depicts a flow
chart of an example process for hash perturbation with queue
management in data communication in accordance with an
illustrative embodiment. Process 700 can be implemented in
application 133 or 105 in FIG. 1, and can be operated to
perform the operation described with respect to FIG. 5.
0.095 The application begins process 700 by determining
that changing or Switchingahash function is permitted (block
702). The application selects an old queue, such as queue 502
in FIG. 5 (block 704). The application dequeues a packet from
the old queue (block 706). The application selects a packet
from the tail of the selected old queue (block 708).
0096. The application generates a new hash value for the
selected packet using the changed hash function (block 710).
The application selects a new queue. Such as queue 504 in
FIG. 5, for the selected packet according to the new hash
value (block 712). The application places the selected packet
at the head of the new queue (block 714).
0097. The application continues placing new arriving
packets according to their hash values at the tail of the new
queue and other new queues (block 716). The application
determines whetherall the old hash queues have been drained
below a threshold level (block 718). If one or more old queues
have not been drained below the threshold level (“No” path of
block 718), the application returns to block 704 in process
700.

0.098 Ifall old queues have been drained below the thresh
old level (“Yes” path of block 718), the application migrates
any remaining data packets from the old queues to the new
queues (block 720). The application begins dequeueing from
the new queues (block 722). The application ends process 700
thereafter. In one embodiment, the deqeueuing of block 722
can begin before all data packets have been moved or
migrated from the old queue to the new queues to further
reduce the session delays. In another embodiment, the
remaining packets in the old queues can be dropped and the
migration of block 720 can be omitted in any of the non
exhaustive example manners described with respect to FIG.
3

(0099. With reference to FIG. 8, this figure depicts a flow
chart of an example process for determining whether and
when to perturb the hash function in accordance with an
illustrative embodiment. Process 800 can be implemented in

US 2015/0078398 A1

application 133 or 105 in FIG. 1, and can be operated to
perform the operation described at block 702 in FIG. 7.
0100. The application begins process 800 by setting a
threshold time T1 before which hash function perturbation is
not permitted (block 802). The application determines
whether T1 has elapsed (block 804). If T 1 has not elapsed
(“No” path of block 804), the application returns process 800
to block 804, such as after a wait period. If T1 has elapsed
(“Yes” path of block 804), the application sets a threshold
time T2 by which the hash function must be switched (block
806).
0101 The application determines whether T2 has not yet
elapsed and the old queues have drained below a threshold
level (block 808). If T2 has not elapsed and the old queues
have not drained below the threshold level (path 1 of block
808), the application returns process 800 to block808, such as
after a wait period. If T2 has not yet elapsed and the old
queues have drained below the threshold level (path 2 of block
808), the application decides to proceed with the hash func
tion switch (block 810). If T2 has elapsed regardless of
whether the old queues have drained or not (path 3 of block
808), the application proceeds to block 810 as well. The
application ends process 800 thereafter.
0102. While the various embodiments are described with
respect to moving packets, those of ordinary skill in the art
will realize that other types of queued data can also be
manipulated in the manner of an embodiment to alleviate
similar problems with data communications. The movement
and migration of non-packeted data is contemplated within
the scope of the illustrative embodiments.
0103) Furthermore, the illustrative embodiments recog
nize that different packets can be of different sizes. An
embodiment can be modified to move an equivalent size of
data that is dequeued from an old queue, to a new queue.
When a dequeued packet is larger than a packet at the tail of
a queue, an embodiment can move more than one packet from
the tail of the old queue to the new queue within the scope of
the illustrative embodiments.
0104 Conversely, whenadequeued packet is smaller than
a packet at the tail of the old queue, an embodiment can
postpone moving the tail packet to the new queue until more
than one packets have been dequeued from the old queue.
Other modifications to the embodiment for similar consider
ations will be apparent from this disclosure to those of ordi
nary skill in the art and the same are contemplated within the
scope of the illustrative embodiments.
0105. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods, and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the

Mar. 19, 2015

specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0106 Thus, a computer implemented method is provided
in the illustrative embodiments for hash perturbation with
queue management in data communication. An embodiment
solves packet delivery delay problems due to probabilistic
circumstances in the presently available packet queuing
methods. An embodiment reduces the possibility of non-hog
sessions sharing the queues with hog-Session packets, timely
disrupts any inadvertent chance sharing of queues if they
happen, and expedites the packet delivery in an ordered man
ner after hash perturbation.
0107 As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method, or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable storage device(s)
or computer readable media having computer readable pro
gram code embodied thereon.
0108. Any combination of one or more computer readable
storage device(s) or computer readable media may be uti
lized. The computer readable medium may be a computer
readable storage medium. A computer readable storage
device may be, for example, but not limited to, an electronic,
magnetic, optical, electromagnetic, or semiconductor sys
tem, apparatus, or device, or any Suitable combination of the
foregoing. More specific examples (a non-exhaustive list) of
the computer readable storage device would include the fol
lowing: a portable computer diskette, a hard disk, a random
access memory (RAM), a read-only memory (ROM), an eras
able programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
device may be any tangible device or medium that can store a
program for use by or in connection with an instruction
execution system, apparatus, or device. The term "computer
readable storage device, or variations thereof, does not
encompass a signal propagation media Such as a copper cable,
optical fiber or wireless transmission media.
0109 Program code embodied on a computer readable
storage device or computer readable medium may be trans
mitted using any appropriate medium, including but not lim
ited to wireless, wireline, optical fiber cable, RF, etc., or any
Suitable combination of the foregoing.
0110 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer

US 2015/0078398 A1

through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).
0111 Aspects of the present invention are described
herein with reference to flowchart illustrations and/or block
diagrams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to one or more
processors of one or more general purpose computers, special
purpose computers, or other programmable data processing
apparatuses to produce a machine. Such that the instructions,
which execute via the one or more processors of the comput
ers or other programmable data processing apparatuses, cre
ate means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.
0112 These computer program instructions may also be
stored in one or more computer readable storage devices or
computer readable media that can direct one or more com
puters, one or more other programmable data processing
apparatuses, or one or more other devices to function in a
particular manner, such that the instructions stored in the one
or more computer readable storage devices or computer read
able medium produce an article of manufacture including
instructions which implement the function/act specified in the
flowchart and/or block diagram block or blocks.
0113. The computer program instructions may also be
loaded onto one or more computers, one or more other pro
grammable data processing apparatuses, or one or more other
devices to cause a series of operational steps to be performed
on the one or more computers, one or more other program
mable data processing apparatuses, or one or more other
devices to produce a computer implemented process Such that
the instructions which execute on the one or more computers,
one or more other programmable data processing appara
tuses, or one or more other devices provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
0114. The terminology used herein is for the purpose of
describing particular embodiments only and is not intended to
be limiting of the invention. As used herein, the singular
forms “a,” “an and “the are intended to include the plural
forms as well, unless the context clearly indicates otherwise.
It will be further understood that the terms “comprises” and/
or “comprising, when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
0115 The corresponding structures, materials, acts, and
equivalents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and

Mar. 19, 2015

described in order to best explain the principles of the inven
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.
What is claimed is:
1. A method for hash perturbation with queue management

in data communication, the method comprising:
queuing, using a first set of queues corresponding to a first

hash function, a set of data packets corresponding to a
set of Session in a data processing environment, the first
set of queues forming a set of old queues;

changing, at a first time, the first hash function to a second
hash function;

creating a second set of queues corresponding to the sec
ond hash function, the second set of queues forming a set
of new queues;

dequeuing, from a first old queue in a set of old queues, a
data packet in the set of data packets;

selecting, from a second queue in the set of old queues, a
second data packet;

computing a new hash value for the second data packet
using the second hash function; and

queuing the second data packet in a first new queue from
the set of new queues such that the second packet is in
position to be delivered first from the first new queue.

2. The method of claim 1, further comprising:
determining that data packet delivery from the set of old

queues has to be stopped and data packet delivery from
the set of new queues has to be initiated;

migrating, responsive to determining that a Subset of data
packets from the set of data packets remain queued in the
set of old queues, the subset of packets to the set of new
queues; and

beginning at a second time, data packet delivery, including
delivering the subset of data packets, from the set of new
queues.

3. The method of claim 2, wherein the migrating com
prises:

rehashing a data packet in the Subset of data packets using
the second hash function to generate a new hash value
corresponding to the data packet in the Subset of data
packets;

selecting, according to the new hash value corresponding
to the data packet in the Subset of data packets, a second
new queue from the set of new queues for the data packet
in the Subset of data packets; and

moving the data packet in the Subset of data packets from a
second old queue in the set of old queues to the second
new queue in the set of new queues, such that the data
packet in the Subset of data packets occupies a position
in the second new queue to be delivered first from the
second new queue.

4. The method of claim 2, further comprising:
determining whether a number of packets in the set of old

queues has reduced below a threshold number, wherein
the determining that the data packet delivery from the set
of new queues has to be initiated is responsive to the
number of packets in the set of old queues having
reduced below the threshold number.

5. The method of claim 1, wherein the second data packet
is positioned to be delivered last from the old queue.

US 2015/0078398 A1

6. The method of claim 1, wherein the second old queue is
same as the first old queue, and wherein the second data
packet is of a size different from a size of the data packet.

7. The method of claim 1, wherein the dequeueing com
prises:

Selecting the data packet due to the data packet being in a
position to be removed first from the first old queue; and

delivering the data packet to a session in the set of sessions,
the session corresponding to the data packet.

8. The method of claim 1, wherein the changing the hash
function comprises:

stopping hashing a new data packet arriving after the first
time using the first hash function; and

hashing the new data packet using the second hash func
tion.

9. The method of claim 8, further comprising:
queuing the new data packet in the first new queue from the

set of new queues by positioning the new data packet to
be delivered last from the first new queue, wherein the
first new queue is selected from the set of new queues
according to a hash value of the new data packet accord
ing to the second hash function.

10. The method of claim 1, wherein the queuing using the
old set of queues corresponding to the first hash function
comprises:

hashing a set of attributes of the data packet in the set of
data packets using the first hash function to generate a
hash value corresponding to the data packet;

Mar. 19, 2015

identifying the first old queue in the set of old queues that
queues data packets having the hash value; and

queuing the data packet in the first old queue.
11. The method of claim 1, further comprising:
preventing the changing the first hash function to the sec

ond hash function prior to the first time, and wherein the
changing the first hash function to a second hash func
tion is responsive to a cost of changing to the second
hash function being below a threshold cost at the first
time.

12. The method of claim 11, wherein the cost is a number
of data packets to move from the set of old queues to the set of
new queues.

13. The method of claim 1, further comprising:
determining that data packet delivery from the set of old

queues has to be stopped and data packet delivery from
the set of new queues has to be initiated;

dropping, responsive to determining that a Subset of data
packets from the set of data packets remain queued in the
set of old queues, the subset ofpackets from the set of old
queues; and

beginning at a second time, data packet delivery, including
delivering the subset of data packets, from the set of new
queues.

