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(57) Abstract: A sensor is provided, comprising: a first sensing element that is arranged to generate, at least in part, a first signal; a
second sensing element that is arranged to generate, at least in part, a second signal; and a neural network circuit that is configured to

output an adjusted signal based on the first signal and the second signal.
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METHOD AND APPARATUS FOR TRIMMING SENSOR OUTPUT USING
A NEURAL NETWORK ENGINE

BACKGROUND

[0001] Neural networks are data processing systems including connected nodes that are
loosely modeled on the anatomy of the cerebral cortex area of the brain. A neural network
can be trained to perform various tasks relating to pattern recognition. Neural networks are

widely used in artificial general intelligence, computer vision, and robotics.

SUMMARY

[0002] According to aspects of the disclosure, a sensor is provided, comprising: a first
sensing element that is arranged to generate, at least in part, a first signal; a second sensing
element that is arranged to generate, at least in part, a second signal, the second signal being
indicative of an environmental condition that affects a sensitivity of the first sensing
element; and a neural network circuit that is configured to adjust a gain of the first signal
based on the second signal, the gain of the first signal being adjusted to compensate for
variations in the sensitivity of the first sensing element that are caused by the environmental
condition.

[0003] In an embodiment, the environmental condition includes at least one of
temperature, humidity, and stress.

[0004] In an embodiment, the first sensing element includes at least one of a magnetic-
field-sensing element, a pressure-sensing element, and a light-sensing element.

[0005] In an embodiment, the neural network circuit is configured to generate an
adjustment coefficient based on the second signal, the adjustment coefficient being
multiplied by the first signal to generate a gain-adjusted signal.

[0006] In an embodiment, the neural network circuit is configured to generate a gain-
adjusted signal directly.

[0007] In an embodiment, the neural network circuit is configured to evaluate a neural
network having a plurality of hidden nodes, any of the hidden nodes corresponding to an
affine function having the form of: Z = W =V, + B, where W is a weight associated with

the hidden node, V> is a sample of the second signal, and B is a bias associated with the
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hidden node.
[0008] In an embodiment, the neural network circuit is configured to evaluate a neural

network having a plurality of hidden nodes, any of the hidden nodes corresponding to an
) ) V. ) )
affine function having the form of: Z = [W; W,] [Vl] + B, where W1 is a weight
2

associated with the hidden node, W is a weight associated with the hidden node, Vi is a
sample of the first signal, V is a sample of the second signal, and B is a bias associated with
the hidden node.

[0009] In an embodiment, the neural network circuit is configured to evaluate a plurality
of activation functions in a sequence, each of the activation functions corresponding to a
different hidden node of a neural network.

[0010] In an embodiment, the neural network circuit includes a Coordinate Rotational
Digital Computer (CORDIC) module that is arranged to sequentially evaluate the activation
functions.

[0011] In an embodiment, the neural network circuit includes an addition unit and a
lookup table that is arranged to output the respective value of any of the plurality of
activation functions in a same clock cycle with the addition unit evaluating an affine
function that corresponds to the same hidden node as the activation function.

[0012] According to aspects of the disclosure, a sensor is provided, comprising: a first
sensing element that is arranged to generate, at least in part, a first signal; a second sensing
element that is arranged to generate, at least in part, a second signal, the second signal being
indicative of an environmental condition that affects a sensitivity of the first sensing
element; and a processing circuitry including a neural network circuit and a multiplication
unit, the neural network circuit being configured to generate an adjustment coefficient based
on the second signal, and the multiplication unit being configured to generate a gain-
adjusted signal by multiplying the first signal by the adjustment coefficient.

[0013] In an embodiment, the environmental condition includes at least one of
temperature, humidity, and stress, and the first sensing element includes at least one of a
magnetic-field-sensing element, a pressure-sensing element, and a light-sensing element.
[0014] In an embodiment, the neural network circuit is configured to evaluate a neural
network having a plurality of hidden nodes, any of the hidden nodes corresponding to an
affine function having the form of: Z = W * V, + B, where W is a weight corresponding to

the hidden node, V» is a sample of the second signal, and B is a bias corresponding to the
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hidden node.

[0015] In an embodiment, the neural network circuit is configured to evaluate a neural
network having a plurality of hidden nodes, any of the hidden nodes corresponding to a
respective affine function and a respective activation function, the respective activation
function having the form of: A = tanh (Z), where A is a value of the respective activation
function and Z is a value of the respective affine function.

[0016] In an embodiment, the neural network circuit is configured to evaluate a neural
network having a plurality of hidden nodes and an output node, wherein each of hidden
nodes corresponds to a respective affine function and a respective first activation function,
and the output node corresponds to a second activation function having the form of: C =
Y. U; = A;, where C is the adjustment coefficient, U; is a weight associated with the i-th
hidden node in the plurality, A;j is a value of the respective first activation function that
corresponds to the i-th hidden node in the plurality.

[0017] According to aspects of the disclosure, a sensor is provided, comprising: a first
sensing element that is arranged to generate, at least in part, a first signal; a second sensing
element that is arranged to generate, at least in part, a second signal; and a processing
circuitry including a neural network circuit and a multiplication unit, the neural network
circuit being configured to generate an adjustment coefficient based on the second signal,
and the multiplication unit being configured to generate a gain-adjusted signal by
multiplying the first signal by the adjustment coefficient, wherein the neural network circuit
is configured to evaluate a neural network having a plurality of hidden nodes, any of the
hidden nodes corresponding to an affine function having the form of: Z =W *V, + B,
where W 1s a weight corresponding to the hidden node, V> is a sample of the second signal,
and B is a bias corresponding to the hidden node.

[0018] In an embodiment, any of the hidden nodes corresponds to a respective first
activation function and a respective affine function, the respective first activation function
having the form of: A = tanh (Z), where A is the value of the first activation function and
Z is the value of the respective affine function.

[0019] In an embodiment, the neural network includes an output node, the output node
corresponding to a second activation function having the form of: C = }; U; = A;, where C
is the adjustment coefficient, U; is a weight associated with the i-th hidden node in the
plurality, and Aj is a value of the respective first activation function that corresponds to the

i-th hidden node in the plurality.
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[0020] In an embodiment, the second signal being indicative of an environmental
condition that affects a sensitivity of the first sensing element.

[0021] In an embodiment, the first sensing element includes at least one of a magnetic-
field-sensing element, a pressure-sensing element, and a light-sensing element.

[0022] According to aspects of the disclosure, a sensor is provided, comprising: a first
sensing element that is arranged to generate, at least in part, a first signal; a second sensing
element that is arranged to generate, at least in part, a second signal; and a neural network
circuit that is configured to output an adjusted signal based on the first signal and the second
signal.

[0023] In an embodiment, the neural network circuit is configured to evaluate a neural

network having a plurality of hidden nodes, any of the hidden nodes corresponding to an
) ) V. ) )
affine function having the form of: Z == [W; W,] [Vl] + B, where W1 1s a weight
2

associated with the hidden node, W is a weight associated with the hidden node, Vi is a
sample of the first signal, V is a sample of the second signal, and B is a bias associated with
the hidden node.

[0024] In an embodiment, the neural network circuit is configured to evaluate a neural
network having a plurality of hidden nodes, any of the hidden nodes corresponding to a
respective affine function and a respective activation function, the respective activation
function having the form of: A = tanh (Z), where A is a value of the respective activation
function and Z is a value of the respective affine function.

[0025] In an embodiment, the neural network circuit is configured to evaluate a neural
network having a plurality of hidden nodes and an output node, wherein each of hidden
nodes corresponds to a respective affine function and a respective first activation function,
and the output node corresponds to a second activation function having the form of: V,,,, =
Y. U; = A;, where Vou is the gain-adjusted signal that is output by the neural network circuit,
Ui is a weight associated with the i-th hidden node in the plurality, A; is a value of the
respective first activation function that corresponds to the i-th hidden node in the plurality.
[0026] In an embodiment, the neural network circuit is configured to evaluate a neural
network having a plurality of hidden nodes, each of the hidden nodes corresponding to a
different one of a plurality of activation functions, the neural network circuit includes a
plurality of registers, each of the plurality of registers being arranged to store a value of a

different one of the plurality of activation functions, and the neural network is arranged to



WO 2022/055618 PCT/US2021/042499

sequentially calculate respective values of the plurality of activation functions and store the
respective values in the plurality of registers.

[0027] In an embodiment, the neural network circuit is configured to evaluate a plurality
of activation functions in a sequence, each of the activation functions corresponding to a
different hidden node of a neural network, and the neural network circuit includes an
addition unit and a lookup table that is arranged to output the respective value of any of the
plurality of activation functions in a same clock cycle with the addition unit evaluating an
affine function that corresponds to a same hidden node as the activation function.

[0028] In an embodiment, the second signal is indicative of an environmental condition
that affects a sensitivity of the first sensing element, and the neural network circuit is
arranged to compensate for variations in the sensitivity of the first sensing element that are
caused by the environmental condition.

[0029] In an embodiment, the environmental condition includes at least one of
temperature, humidity, and stress, and the first sensing element includes at least one of a
magnetic-field-sensing element, a pressure-sensing element, and a light-sensing element.
[0030] In an embodiment, the first sensing element includes a giant magnetoresistance
(GMR) element and the second sensing element includes a temperature-sensing element.
[0031] In an embodiment, the first sensing element includes a magnetic-field-sensing
element and the second sensing element includes a temperature-sensing element.

[0032] According to aspects of the disclosure, a sensor is provided, comprising: a first
sensing element that is arranged to generate, at least in part, a first signal; a second sensing
element that is arranged to generate, at least in part, a second signal; and a neural network
circuit that is configured to adjust the first signal based on the second signal, wherein the
neural network circuit is configured to evaluate a neural network having a plurality of hidden

nodes, any of the hidden nodes corresponding to an affine function having the form of: Z =
Wy, W] [Vl] + B, where W1 is a weight associated with the hidden node, W is a weight
2

associated with the hidden node, V1 is a sample of the first signal, V; is a sample of the
second signal, and B is a bias associated with the hidden node

[0033] In an embodiment, any of the hidden nodes further includes a respective first
activation function having the form of: A = tanh (Z), where A is a value of the respective
first activation function and Z is a value of the hidden node’s corresponding affine function.

[0034] In an embodiment, the neural network includes an output node, the output node
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including a second activation function having the form of: V,,,; = Y,; U; = A;, where Vou is
an adjusted signal that is output by the neural network circuit, Uj is a weight associated with
the i-th hidden node in the plurality, A; is a value of the respective first activation function
that corresponds to the i-th hidden node in the plurality.

[0035] In an embodiment, the second signal is indicative of an environmental condition
that affects a sensitivity of the first sensing element, and the neural network circuit is
arranged to compensate for variations in the sensitivity of the first sensing element that are
caused by the environmental condition.

[0036] In an embodiment, the environmental condition includes at least one of
temperature, humidity, and stress, and the first sensing element includes at least one of a
magnetic-field-sensing element, a pressure-sensing element, and a light-sensing element.
[0037] According to aspects of the disclosure, a sensor is provided, comprising: a first
sensing element that is arranged to generate, at least in part, a first signal; a second sensing
element that is arranged to generate, at least in part, a second signal, the second signal being
indicative of an environmental condition; and a neural network circuit that is configured to
adjust the first signal based on the second signal, wherein the neural network circuit is
configured to correct the first signal for changes in a sensitivity of the first sensing element
that are caused by the environmental condition.

[0038] In an embodiment, the environmental condition includes at least one of
temperature, humidity, and stress.

[0039] In an embodiment, the first sensing element includes a Giant Magnetoresistance
(GMR) element, and the second sensing element includes a temperature-sensing element.
[0040] In an embodiment, the neural network circuit is configured to evaluate a neural

network having a plurality of hidden nodes, any of the hidden nodes corresponding to an
: : V. : .
affine function having the form of: Z =[W; W,] [Vl] + B, where W1 is a weight
2

associated with the hidden node, W is a weight associated with the hidden node, Vi is a
sample of the first signal, V is a sample of the second signal, and B is a bias associated with
the hidden node.

[0041] In an embodiment, the neural network circuit is configured to evaluate a neural
network having a plurality of hidden nodes, any of the hidden nodes corresponding to a
respective affine function and a respective activation function, the respective activation

function having the form of: A = tanh (Z), where A is a value of the respective activation
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function and Z is a value of the respective affine function.

[0042] According to aspects of the disclosure, an apparatus is provided, comprising: a
neural network circuit that is configured to receive a first signal from a first sensing element
and output an adjusted signal based on the first signal.

[0043] In an embodiment, the first sensing element is integrated into the apparatus or
is separate from the apparatus.

[0044] In an embodiment, the neural network circuit is configured to evaluate a neural
network having a plurality of hidden nodes, any of the hidden nodes corresponding to a
respective affine function having the form of: Z = WV, +B where W is a weight associated
with the hidden node, V1 is a sample of the first signal, and B is a bias associated with the
hidden node.

[0045] In an embodiment, the neural network circuit is configured to evaluate a neural
network having a plurality of hidden nodes, any of the hidden nodes corresponding to a
respective affine function and a respective activation function, the respective activation
function having the form of: A = tanh (Z) where A is a value of the respective activation

function and Z is a value of the respective affine function.

[0046] In an embodiment, the first sensing element includes a magnetic field sensing
element.
[0047] In an embodiment, the neural network circuit is configured to bring the first

signal within a desired range.

[0048] In an embodiment, the neural network circuit is configured to bring the first
signal within a desired linear range.

[0049] In an embodiment, the neural network circuit is further configured to receive a
second signal from a second sensing element, and the adjusted signal is generated further
based on the second signal.

[0050] In an embodiment, the second sensing element is integrated into the apparatus or
is separate from the apparatus.

[0051] In an embodiment, the neural network circuit is configured to evaluate a neural

network having a plurality of hidden nodes, any of the hidden nodes corresponding to a
) ) ) V. ) )
respective affine function having the form of: Z = [W; W] [Vl] + B where W is a weight
2

associated with the hidden node, W is a weight associated with the hidden node, Vi is a

sample of the first signal, V is a sample of the second signal, and B is a bias associated with



WO 2022/055618 PCT/US2021/042499

the hidden node.

[0052] In an embodiment, the second signal is indicative of an environmental condition
that affects a sensitivity of the first sensing element, and the neural network circuit is
arranged to compensate for variations in the sensitivity of the first sensing element that are

caused by the environmental condition.

BRIEF DESCRIPTION OF THE DRAWINGS

[0053] Other aspects, features, and advantages of the claimed invention will become
more fully apparent from the following detailed description, the appended claims, and the
accompanying drawings in which like reference numerals identify similar or identical
elements. Reference numerals that are introduced in the specification in association with a
drawing figure may be repeated in one or more subsequent figures without additional

description in the specification in order to provide context for other features.

[0054] FIG. 1A is a diagram of an example of a sensor, according to aspects of the
disclosure;
[0055] FIG. 1B is a diagram illustrating the operation of a neural network circuit that is

part of the sensor of FIG. 1A, according to aspects of the disclosure;

[0056] FIG. 2A is a diagram of an example of a neural network that is implemented by
the neural network circuit of FIG. 1B, according to aspects of the disclosure;

[0057] FIG. 2B is a diagram showing the neural network of FIG. 2A in further detail,
according to aspects of the disclosure;

[0058] FIG. 3Ais a diagram illustrating the neural network circuit of FIG. 1B, according
to aspects of the disclosure;

[0059] FIG. 3B is a diagram of an example of an evaluator that is part of the neural
network circuit of FIG. 3A, according to aspects of the disclosure;

[0060] FIG. 3C is a diagram of an example of a calculation circuit that is part of the
evaluator of FIG. 3B, according to aspects of the disclosure.

[0061] FIG. 4 is a flowchart of an example of a process, according to aspects of the
disclosure;

[0062] FIG. 5A 1s a flowchart of an example of a process, according to aspects of the
disclosure;

[0063] FIG. 5B is a flowchart of an example of a process, according to aspects of the

disclosure;
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[0064] FIG. 6A is a diagram of an example of a sensor, according to aspects of the
disclosure;
[0065] FIG. 6B is a diagram illustrating the operation of a neural network circuit that is

part of the sensor of FIG. 6A, according to aspects of the disclosure;

[0066] FIG. 7A is a diagram of an example of a neural network that is implemented by
the neural network circuit of FIG. 6B, according to aspects of the disclosure;

[0067] FIG. 7B is a diagram showing the neural network of FIG. 7A in further detail,
according to aspects of the disclosure;

[0068] FIG. 8A is a diagram illustrating the neural network circuit of FIG. 6B, according
to aspects of the disclosure;

[0069] FIG. 8B is a diagram of an example of an evaluator that is part of the neural
network circuit of FIG. 3A, according to aspects of the disclosure;

[0070] FIG. 9A 1s a flowchart of an example of a process, according to aspects of the
disclosure;

[0071] FIG. 9B is a flowchart of an example of a process, according to aspects of the
disclosure;

[0072] FIG. 9C is a flowchart of an example of a process, according to aspects of the
disclosure;

[0073] FIG. 9D is a flowchart of an example of a process, according to aspects of the
disclosure;

[0074] FIG. 10 is a diagram of an example of a system for training the neural network
of FIG. 7A;

[0075] FIG. 11 is a diagram of an example a sensor, according to aspects of the
disclosure;

DETAILED DESCRIPTION

[0076] FIG. 1A is a diagram of an example of a sensor 100, according to aspects of the
disclosure. The sensor 100 may include a magnetic field sensor (e.g., an angle sensor, a
current sensor, efc.), a pressure sensor, an optical sensor, a chemical sensor, and/or any other
suitable type of sensor. The sensor 100 may include a sensing element 110 and a sensing
element 120. The sensing element 110 is arranged to generate a voltage signal Vi and the
sensing element 120 is arranged to generate a voltage signal V,. The sensing element 110
may include any suitable type of sensing element, such as a magnetic-field-sensing element,

a pressure-sensing element, a light-sensing element (e.g., a photodiode), and/or any other

9.
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suitable type of sensing element. The sensing element 120 may include any suitable type
of sensing element, such as a temperature-sensing element, a stress-sensing element, a
humidity-sensing element.

[0077] The sensor 100 may further include a processing circuitry 130 that includes a
neural network circuit 140. The neural network circuit 140 may be arranged to adjust the
gain of the signal Vi based on the signal V,. More particularly, the sensing element 120
may be arranged to measure a condition of the environment of the sensing element 110 that
affects the sensitivity of the sensing element 110, such as temperature, stress, humidity, efc.
The neural network circuit 140 may adjust the gain of the signal V; (based on the signal V>)
to correct for variations in the sensitivity of the sensing element 110 that are caused by
changes in the environmental condition. For example, in some implementations, the sensing
element 110 may be a magnetic-field-sensing element (e.g., a Hall element, a giant
magnetoresistance (GMR) element, a tunnel magnetoresistance (TMR) element, an
anisotropic magnetoresistance (AMR) element, a magnetic tunnel junction (MTJ) element,
efc.), and the sensing element 120 may be a temperature-sensing element (e.g., a thermistor),
efc. In such implementations, the neural network circuit 140 may adjust the gain of the
signal V1 (which is generated by the sensing element 110) to compensate for variations in
the sensitivity of the sensing element 110 that occur with changes in the temperature of the
sensing element 110.

[0078] According to aspects of the disclosure, the sensing element 110 may include one
or more transducers (e.g., one or more Hall plates, one or more GMR elements, efc). For
example, in some implementations, the sensing element 110 may include a bridge circuit
(e.g., a half-bridge or full-bridge circuit). Although FIG. 1A depicts the sensing element
110 as being directly connected to the processing circuitry 130, it will be understood that,
in some implementations, there may be other circuitry interposed between the processing
circuitry 130 and the sensing element 110. By way of example, such circuitry may include
one or more of an amplifier, a modulator circuit, a filter circuit, efc. The signal Vi may
include any suitable type of signal that is generated at least in part by the sensing element
110. For example, the signal V1 may be one that is generated directly by the sensing element
110. As another example, the signal Vi may be a signal generated by other circuitry that is
interposed between the sensing element 110 and the processing circuitry 130, based on a
signal provided by the sensing element 110.

[0079] According to aspects of the disclosure, the sensing element 120 may include one

-10-
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or more transducers (e.g., one or more temperature sensors, efc.) Additionally or
alternatively, in some implementations, the sensing element 120 may include a bridge circuit
(e.g., a half-bridge or a full-bridge circuit, efc.). Although FIG. 1B depicts the sensing
element 120 as being directly connected to the processing circuitry 130, it will be understood
that, in some implementations, there may be other circuitry interposed between the
processing circuitry 130 and the sensing element 120. By way of example, such circuitry
may include one or more of an amplifier, a modulator circuit, a filter circuit, efc. The signal
V> may include any suitable type of signal that is generated at least in part by the sensing
element 120. For example, the signal V, may be one that is generated directly by the sensing
element 120. As another example, the signal V; may be a signal generated by other circuitry
that is interposed between the sensing element 120 and the processing circuitry 130, based
on a signal provided by the sensing element 120.

[0080] FIG. 1B shows the operation of the neural network circuit 140 in further detail.
The neural network circuit 140 may receive the signal V, and generate an adjustment
coefficient C based on the signal V,. Afterwards, the neural network circuit 140 may
provide the adjustment coefficient C to a multiplication element 150, which is also part of
the processing circuitry 130. The multiplication element 150 may multiply the signal Vi by
the adjustment coefficient C and generate a gain-adjusted signal Vou as a result. According
to the present example, the signal Vo is output directly from the sensor 100. However, it
will be understood that alternative implementations are possible in which further processing
is performed on the signal Vou before the signal Vou is output from the sensor 100.

[0081] Stated succinctly, the sensing element 110 may be arranged to generate the signal
V1, which is indicative of the level of a specific stimulus, such as magnetic field density,
magnetic field direction, light intensity, light color, efc. The sensing element 120 may be
arranged to generate the signal V; that is indicative of an environmental condition that
affects the sensitivity of the sensing element 110, such as temperature, humidity, stress,
and/or any other condition. The neural network circuit 140 may be arranged to adjust the
gain of the signal Vi to compensate (or correct) for changes in the sensitivity of the sensing
element 110 that are caused by the environmental condition. As noted above, the neural
network circuit 140 may, at least in part, adjust the gain of the signal Vi to produce a gain-
adjusted signal Vou. The neural network circuit 140, in other words, may dynamically
calibrate the signal output from the sensing element 110 based on cotemporaneous

measurements of an environmental condition (obtained from the sensing element 120) in

-11-
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order to bring the signal in conformance with a given signal processing framework.

[0082] FIGS. 2A-B show a neural network 200, which is implemented by the neural
network circuit 140. The neural network 200 may receive, as input, a value V» and output
the adjustment coefficient C. The adjustment coefficient C may be used to adjust the gain
of the signal Vi (see FIGS. 1A-B). The value V; may include a digitized sample of the
signal V2. As used throughout the disclosure, the terms “value V,» and “signal V,” are used
interchangeably. Similarly, as used throughout the disclosure, the terms “value V1” and
“signal V1” are also used interchangeably.

[0083] The neural network 200 may include a hidden layer 201 and an output layer 203.
The hidden layer 201 may include neurons 202, the 204, and 206 and the output layer 203
may include a neuron 208. The neuron 202 may include an affine function 202A and an
activation function 202B. The neuron 204 may include an affine function 204A and an
activation function 204B. And the neuron 206 may include an affine function 206A and an
activation function 206B. The neuron 208 may include an activation function 208A.
Although in the example of FIG. 2A, the hidden layer 201 includes three neurons, it will be
understood that the present disclosure is not limited to any number of neurons being present
in the hidden layer 201. Throughout the present application, the terms “neuron” and “node”
are used interchangeably.

[0084] According to the example of FIGS. 2A-B, the affine function 202A may generate
a value Z1 by multiplying a weight W1 by the value V; and adding a bias coefficient B; to
the resulting product. The activation function 202B may generate an activation value A; by
calculating the hyperbolic tangent of the value Z1. The affine function 204A may generate
a value Z, by multiplying a weight W, by the value V; and adding a bias coefficient B, to
the resulting product. The activation function 204B may generate an activation value A, by
calculating the hyperbolic tangent of the value Z,. The affine function 206A may generate
a value Z3 by multiplying a weight W3 by the value V; and adding a bias coefficient B; to
the resulting product. The activation function 206B may generate an activation value As by
calculating the hyperbolic tangent of the value Zs;. The activation function 208A may
calculate the adjustment coefficient C by multiplying the activation values A1, Az, and A
by respective weights Ui, U, and Us, and summing up the resulting products. Although in
the example of FIG. 2B, the activation function 208A is defined as C = U1A1+UA2+UsA3,
it will be understood that in some implementations, the activation function 208A can be

generalized as C = ),; U; * A;.
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[0085] According to the present example, the weights W1, W», and W3 are different
from one another, however it will be understood that the present disclosure is not limited
thereto. According to the present example, the bias coefficients B1, B2, and Bs are different
from one another, however it will be understood that the present disclosure is not limited
thereto. According to the present example, the weights Ui, Us, and Us are different from
one another, however it will be understood that the present disclosure is not limited thereto.
According to the present example, each of the weights W1, W,, W3, each of the weights Uj,
U, and Us, and each of the bias coefficients Bi, B, and Bs is a real number. According to
the present example, the neural network 200 is trained by using a supervised learning
algorithm. However, it will be understood that the present disclosure is not limited to any
specific method for training the neural network 200. An example of a process for training
the neural network 200 is discussed further below with respect to FIG. 10.

[0086] FIG. 3A is a diagram illustrating an example of one possible implementation of
the neural network circuit 140. According to the example of FIG. 3A, the neural network
circuit 140 may include a control circuitry 310, a multiplexer, a calculation module 320, a
calculation module 330, a register 322, a register 324, and a register 326.

[0087] The multiplexer 312 may include a 3x1 multiplexer. The multiplexer 312 may
receive the values Z1, Z,, and Zs at its input. The value Z1, Z3, and Z3 may be calculated by
evaluating the affine functions 202A, 204A, and 206A, respectively (see FIG. 2B). The
values Z1, Z,, and Z3 may be stored in registers 314, 316, and 318, respectively by the control
circuitry 310 and/or other circuitry (not shown).

[0088] In operation, the multiplexer 312 may receive a selection signal 341 from the
control circuitry 310, which causes the multiplexer 312 to provide (on signal line 347) a
selected one of the values Zi1, Z», and Zs3 to the calculation module 320. The calculation
module 320 may include any suitable type of electronic circuitry that is arranged to evaluate
the activation functions 202B, 204B, and 206B and calculate the activation values A1, A,
and As, respectively (shown in FIG. 2B). In other words, the calculation module 320 may
be configured to calculate the hyperbolic tangent of any of the values Z1, Z», and Z3, which
is provided to the calculation module 320 by the multiplexer 312. The values Z1, Z», and Z3
may be provided to the calculation module 320 in sequence. And similarly, the values Aj,
A, and A3 may be calculated in sequence. After they are calculated, the values A1, Az, and
A3 may be stored in registers 322, 324, and 326, respectively.

[0089] The calculation module 330 may include any suitable type of electronic circuitry
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that 1s arranged to evaluate the active function 208A (shown in FIG. 2B). In operation, the
calculation module 330 may receive the active values A1, Az, and As, from registers 322,
324, and 326, and calculate the adjustment coefficient C. Afterwards, the calculation
module 330 may output the adjustment coefficient C, as shown.

[0090] An example of a process that is performed by the neural network circuit 140 is
now described in further detail. The process begins by the control circuitry 310 setting the
selection signal 341 to a first value, which causes the multiplexer 312 to provide the value
Z to the calculation module 320. Next, the control circuitry 310 enables the calculation
module 320 (via the signal 339), and the calculation module 320 calculates the value of A;
based on the value Z1 and outputs the value of A; on signal line 343. Next, the calculation
module 320 sets the signal 345 to a first value (e.g., a logic-high value), which tells the
control circuitry 310 that the value A1 has been calculated and is ready to be stored in the
register 322. In response to detecting that the signal 345 is set to the first value, the control
circuitry 310 sets the signal 333 to a first value (e.g., a logic-high value), while keeping the
signals 335 and 337 at a second value (e.g., a logic-low value). As a result of setting the
signal 333 to the first value, the value A is stored in register 322.

[0091] Next, the control circuitry 310 sets the selection signal 341 to a second value,
which causes the multiplexer 312 to provide the value Z; to the calculation module 320.
Next, the control circuitry 310 enables the calculation module 320 (via the signal 339), and
the calculation module 320 calculates the value of A, based on the value Z, and outputs the
value of Az on signal line 343. Next, the calculation module 320 sets the signal 345 to a
first value (e.g., a logic-high value), which tells the control circuitry 310 that the value A
has been calculated and is ready to be stored in the register 324. In response to detecting
that the signal 345 has been set to the first value, the control circuitry 310 may set the signal
335 to a first value (e.g., a logic-high value), while keeping the signals 333 and 337 at a
second value (e.g., a logic-low value). As a result of setting the signal 335 to the first value,
the value As is stored in register 324.

[0092] Next, the control circuitry 310 sets the selection signal 341 to a third value, which
causes the multiplexer 312 to provide the value Zs to the calculation module 320. Next, the
control circuitry 310 enables the calculation module 320 (via the signal 339), and the
calculation module 320 calculates the value of As based on the value Z3 and outputs the
value of As on signal line 343. Next, the calculation module 320 sets the signal 345 to a

first value (e.g., a logic-high value), which tells the control circuitry 310 that the value A
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has been calculated and is ready to be stored in the register 326. In response to detecting
that the signal 345 is set to the first value, the control circuitry 310 sets the signal 337 to a
first value (e.g., alogic-high value), while keeping the signals 333 and 335 at a second value
(e.g., alogic-low value). As aresult of setting the signal 337 to the first value, the value As
is stored in register 326.

[0093] And finally, the control circuitry 310 sets the signal 331 to a logic high value,
which causes the calculation module 330 to retrieve the values A1, A,, and Az from registers
322,324, and 326, respectively, and calculate the adjustment coefficient C. As noted above,
the adjustment coefficient may be calculated by evaluating the active function 208A, which
is discussed above with respect to FIG. 2B.

[0094] FIG. 3B is a diagram of the calculation module 320, in accordance with one
particular implementation. As illustrated, the calculation module 320 may include a
calculation circuit 352 and a divider 354. The calculation circuit 352 may include any
suitable type of electronic circuitry that is arranged to receive (on signal line 347) a value Z
(e.g., one of the values Z1, Z», and Z3) and calculate the hyperbolic cosine of Z (i.e., cosh(Z))
and the hyperbolic sine of Z (i.e., sinh(Z)). The calculation unit 352 may provide the values
of sinh(Z) and cosh(Z) on lines 355 and 357, respectively. The divider 354 may include any
suitable type of electronic circuitry that is configured to receive the values of sinh(Z) and
cosh(Z), which are calculated by the calculation circuit 352, and calculate the value of the
hyperbolic tangent of Z (i.e., tanh(Z)) by dividing the received values. Afterwards, the
divider 354 may output the value of tanh(Z) on signal line 343 and set the value of the signal
345 to the first value (e.g., a logic-high value).

[0095] FIG. 3C is a diagram of the calculation circuit 352, in accordance with one
particular implementation. The calculation circuit 352 uses the Coordinate Rotational
Digital Computer (CORDIC) algorithm with an extended convergence range. The
algorithm is described in Hu, Xiaobo et. al, “Expanding the range of convergence of the
CORDIC algorithm,” IEEE Transactions on Computers 1 (1991): 13-21, which is herein

incorporated by reference. The algorithm is described by Equations 1-12, below:

Fori > O:

Xip1 = X+ 6270y, (Eq. 1)
Vi1 = Yi+ 827 x; (Eq. 2)
Ziy1= Z;— 0; arctanh(Z_i) (Eq. 3)
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Fori < O:

Xipp = X+ 8;(1 =27y, (Eq. 4)
Yirr = yi+ §;(1-2"2) x; (Eq. 5)
Ziy1 = 2 — S arctanh(1 — 2172) (Eq. 6)
X, = Ky (xocosh(zy) + yosinh(zy)) (Eq. 7)
Yn = Kn (Yocosh(zy) + xosinh(zo)) (Eq. 8)
Kn = ([T-—yv1 -1 —272) (T, V1 — 272) (Eq. 9)
i=-m..,—2,-1,012 ..,n—1 (Eq. 10)

_ -1 lf Zj <0
0 = { 1ifz =0 (Eq. 12)

where m is an integer, n is an integer, and Z can be any of the values Z1, Z», and Zs,
which are calculated by evaluating affine functions, 202A, 204A, and 206A, respectively.
(See FIG. 2B).

[0096] The calculation circuit 352 may include a negative lookup table 374 and a
positive lookup table 378. The negative lookup table 374 may include any suitable type of
electronic circuitry that is arranged to implement a lookup table that maps different negative
counter values 1 to corresponding values of arctanh(l - Zi"z). The positive lookup table
378 may include any suitable type of electronic circuit that is arranged to operate a lookup
table that maps different positive counter values i to corresponding values of arctanh(27).
Together, the negative lookup table 374 and the positive lookup table 378 may map each of
the values for i, which are specified by Equation 10 above, to corresponding values of
arctanh(1 — 2172) or arctanh(27"), respectively.

[0097] The calculation circuit 352 may include a negative counter 372 and a positive
counter 376. The negative counter 372 may include any suitable type of electronic circuitry
that is configured to provide the negative lookup table 374 and a series of negative counter
values — i.e., the value of a counter 1 that are less than 0. The positive counter 376 may
include any suitable type of electronic circuitry that is configured to provide the negative

lookup table 374 and a series of positive counter values —i.e., the values of the counter i that
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are greater than or equal to 0. The positive counter 376 may begin providing the series of
positive counter values 1 to the positive lookup table 378 after the negative counter 372 has
finished providing the series of negative counter values to the positive lookup table 378.
Together, the negative counter 372 and the positive counter 376 may provide (to the negative
lookup table 374 and the positive lookup table 378, respectively) the values of the set that
is specified by Equation 10 above.

[0098] For each negative counter value 1, the CORDIC module 362 may receive, from
the negative lookup table 374, the value of arctanh(l - Zi"z). For each positive counter
value i, the CORDIC module 362 may receive, from the negative lookup table 374, the value
of arctanh(27"). For each received value of arctanh(1— 2"%) and arctanh(27%), the
CORDIC module may iteratively evaluate any of Equations 1-12 to calculate the value of
zi, cosh(zi), and sinh(z;). At the end of each iteration, the CORDIC module 362 may store
the calculated values of zi, cosh(zi), and sinh(z;) into the memory 364 for use in the next
iteration (e.g., see Equations 1-6). After the last iteration is completed, the driving logic
368 may enable the register 380, thereby causing the value of cosh(zi) that is calculated at
the last iteration to be stored in the register 380. After the last iteration is completed, the
driving logic 368 may enable the register 382, thereby causing the value of sinh(z;) that is
calculated at the last iteration to be stored in the register 382.

[0099] The value of cosh(zi), which is calculated at the last iteration may be a close
approximation of cosh(Z), and the value of sinh(z;), which is calculated at the last iteration
may be a close approximation sinh(Z). It will be recalled that the value of Z is received by
the calculation circuit 352 (as input), from the multiplexer 312, and it may be the result of
any of the affine functions 202A, 204A, and 206A, which are discussed above with respect
to FIG. 2B. After the values of cosh(zi) and sinh(zi) are stored in registers 380 and 382,
respectively, the driving logic 368 may set the signal 353 to a first value (e.g. a logic-high
value). As noted above, after the value of the signal 353 is set to the first value, the divider
354 may retrieve the values that are stored in the registers 380 and 382, respectively, and
calculate the value of tanh(Z). Furthermore, after the values stored in registers 380 and 382
are retrieved, the driving logic 368 may set the signal 353 to a second value (e.g., a logic-
low value).

[00100] FIG. 4 is a flowchart of an example of a process 400 that is performed by the
calculation circuit 352.

[00101] At step 402, the calculation circuit 352 receives a value Z from the multiplexer
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312. Asnoted above, the value Z may be calculated by evaluating any of the affine functions
202A, 204A, and 206A, which are discussed above with respect to FIG. 2. At step 404, the
calculation circuit 352 calculates the values of zm, cosh(zm), and sinh(zn), and stores the
values of zm, cosh(zm), and sinh(zm) in the memory 364. The value of zn may be equal to
the value of Z (e.g., see Equation 11), and the values of cosh(zm) and sinh(zn) may be
calculated in accordance with any of Equations 1-12, which are discussed above with respect
to FIG. 3C. As noted above, m is the lower bound of the range of the counter i, which is
defined by Equation 10. At step 406, the calculation circuit 352 iteratively calculates the
values of zi, cosh(zi), and sinh(z;) for M+1 <1 < -1. The values of zi, cosh(zi), and sinh(z;)
are calculated in accordance with Equations 4-6, which are discussed above with respect to
FIG. 3C. The manner in which step 406 is executed is discussed in further detail with respect
to FIG. SA. At step 408, the calculation circuit 352 iteratively calculates the values z;,
cosh(zi), and sinh(z;) for 0 <1 <n, after which the values of cosh(z,), and sinh(z,) are output
to the divider 354. The values of z;, cosh(zi), and sinh(z;) are calculated in accordance with
Equations 1-3, which are discussed above with respect to FIG. 3C. As noted above, n may
be the upper bound of the range for the counter i, which is specified by Equation 10. The
manner in which step 408 is executed is discussed in further detail with respect to FIG. 5B.
[00102] FIG. 5A is a flowchart of an example of a process SO0A for calculating cosh(z),
and sinh(z;) for M+1 <1 < -1, as specified by step 406 of the process 400. At step 502, the
negative counter 372 sets the value of counter i to -M. As noted above -M is the lower
bound of the range for counter i. At step 504, the negative counter 372 increments the value
of counter i by one. At step 506, the driving logic 368 determines if the value of counter i
is equal to 0. If the value of counter i is equal to 0, the process SO0A returns to step 408.
Otherwise, if the value of counter 1 is less than O, the process proceeds to step 508. At step
508, the negative counter 372 provides the value of counter 1 to the negative lookup table
374. At step 510, the negative lookup table 374 provides the value of arctan(1-202) to the
CORDIC module 362. At step 512, the CORDIC module 362 retrieves the values of z-1,
cosh(zi-1), and sinh(zi-1) from the memory 364. At step 514, the CORDIC module 362
calculates the values of zi, cosh(zi), and sinh(z;) based on the value of arctan(1-2¢?) and the
values of zi-1, cosh(zi-1), and sinh(zi-1). In some implementations, the values of z;, cosh(z),
and sinh(zi) may be calculated based on Equations 4-6, which are discussed above with
respect to FIG. 3C. After the values of z;, cosh(zi), and sinh(z) are calculated, they are
stored in the memory 364.
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[00103] FIG. 5B is a flowchart of an example of a process S00B for calculating cosh(z;),
and sinh(z) for 0 <1 < N, as specified by step 408 of the process 400A. At step 516, the
positive counter 376 sets the value of counter i to -1. At step 518, the positive counter 376
increments the value of counter 1 by one. At step 520, the driving logic 368 determines if
the value of counter i is less than (N+1). If the value of counter i is less than (N+1), the
process S00B proceeds to step 522. Otherwise, if the value of counter i is greater than (N+1),
the process SO0B proceeds to step 530. At step 522, the positive counter 376 provides the
value of counter i to the positive lookup table 378. At step 524, the positive lookup table
378 provides the value of arctan(1-2) to the CORDIC module 362. At step 526, the
CORDIC module 362 retrieves the values of zi-1, cosh(zi-1), and sinh(zi-1) from the memory
364. At step 528, the CORDIC module 362 calculates the values of zi, cosh(z;), and sinh(zi)
based on the value of arctan(1-2%) and the values of zi-1, cosh(zi-1), and sinh(zi-1). In some
implementations, the values of z, cosh(z), and sinh(z)) may be calculated based on
Equations 1-3, which are discussed above with respect to FIG. 3C. After the values of z;,
cosh(z), and sinh(zi) are calculated, they are stored in the memory 364. At step 530, the
values of cosh(za) and sinh(zn) are stored in the registers 380 and 382 (e.g., by the driving
logic 368), and the signal 353 is set to a first value (e.g. a logic-high value).

[00104] FIG. 6A is a diagram of an example of a sensor 600, according to aspects of the
disclosure. The sensor 600 may include a magnetic field sensor (e.g., an angle sensor, a
current sensor, efc.), a pressure sensor, a chemical sensor, an optical sensor, a chemical
sensor, and/or any other suitable type of sensor. The sensor 600 may include a sensing
element 610 and a sensing element 620. The sensing element 610 may be arranged to
generate a signal Vi and the sensing element 620 may be arranged to generate a signal V.
The sensing element 610 may include any suitable type of sensing element, such as a
magnetic-field-sensing element, a pressure-sensing element, a light-sensing element (e.g., a
photodiode), and/or any other suitable type of sensing element. The sensing element 620
may include any suitable type of sensing element, such as a temperature-sensing element, a
stress-sensing element, a humidity-sensing element.

[00105] The sensor 600 may further include a processing circuitry 630 that includes a
neural network circuit 640. The neural network circuit 640 may be arranged to adjust the
gain and/or offset of the signal Vi based on the signal V2. More particularly, the sensing
element 620 may be arranged to measure a condition of the environment of the sensing

element 610 that affects the sensitivity of the sensing element 610, such as temperature,
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stress, humidity, efc. And the neural network circuit 640 may adjust the gain and/or offset
of the signal V1 (based on the signal V3) to correct for variations in the sensitivity of the
sensing element 610 that are caused by changes in the environmental condition. For
example, in some implementations, the sensing element 610 may be a magnetic-field-
sensing element (e.g., a Hall element, a giant magnetoresistance (GMR) element, a tunnel
magnetoresistance (TMR) element, an anisotropic magnetoresistance (AMR) element, a
magnetic tunnel junction (MTJ) element, efc.) , and the sensing element 620 may be a
temperature-sensing element (e.g., a thermistor), efc. In such implementations, the neural
network circuit 640 may adjust the gain and/or offset of the signal Vi (which is generated
by the sensing element 610) to compensate for variations in the sensitivity of the sensing
element 610 that occur in response to changes in the temperature of the sensing element
610.

[00106]  According to aspects of the disclosure, the sensing element 610 may include one
or more transducers (e.g., one or more Hall plates, one or more GMR elements, efc). For
example, in some implementations, the sensing element 610 may include a bridge circuit
(e.g., a half-bridge or full-bridge circuit). Although FIG. 6A depicts the sensing element
610 as being directly connected to the processing circuitry 630, it will be understood that,
in some implementations, there may be other circuitry interposed between the processing
circuitry 630 and the sensing element 610. By way of example, such circuitry may include
one or more of an amplifier, a modulator circuit, a filter circuit, efc. The signal Vi may
include any suitable type of signal that is generated at least in part by the sensing element
610. For example, the signal V| may be one that is generated directly by the sensing element
610. As another example, the signal Vi may be a signal generated by other circuitry that is
interposed between the sensing element 610 and the processing circuitry 630, based on a
signal provided by the sensing element 610.

[00107]  According to aspects of the disclosure, the sensing element 620 may include one
or more transducers (e.g., one or more temperature sensors, efc.) Additionally or
alternatively, in some implementations, the sensing element 620 may include a bridge circuit
(e.g., a half-bridge or a full-bridge circuit, efc.). Although FIG. 1B depicts the sensing
element 620 as being directly connected to the processing circuitry 630, it will be understood
that, in some implementations, there may be other circuitry interposed between the
processing circuitry 630 and the sensing element 620. By way of example, such circuitry

may include one or more of an amplifier, a modulator circuit, a filter circuit, efc. The signal
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V> may include any suitable type of signal that is generated at least in part by the sensing
element 620. For example, the signal V, may be one that is generated directly by the sensing
element 620. As another example, the signal V; may be a signal generated by other circuitry
that is interposed between the sensing element 620 and the processing circuitry 630, based

on a signal provided by the sensing element 620.
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[00108] FIG. 6B shows the operation of the neural network circuit 640 in further detail.
The neural network circuit 640 may receive the signals Vi and V> as inputs, and generate
an adjusted signal Vou as output. In some respects, the relationship between the signal Vi
and the signal V, may be described by Equation 13 below:
Vouwe = F*V; + 0 (Eq. 13)

, where F is a factor by which the gain of the signal Vi is adjusted by the neural network
circuit 640 and O is an offset by which the signal Vi is adjusted by the neural network circuit
640. Unlike the neural network circuit 140, which outputs an adjustment coefficient C that
is subsequently used to generate a gain-adjusted signal, the neural network circuit 640
outputs an adjusted signal Vou directly . According to the present example, the signal Vou
is output directly from the sensor 600. However, it will be understood that alternative
implementations are possible in which further processing is performed on the signal Vou
before the signal Vou 1s output from the sensor 600. As can be readily appreciated, the
coefficients F and O are not determined explicitly by the neural network circuit 640. In this
regard it will be understood, that Equation 13 merely describes the relationship between the
input and output of the neural network circuit 640, rather than specific calculations that are
performed by the neural network circuit 640. According to the example of FIG. 6B, the
neural network circuit 640 adjusts both the gain and offset of the signal Vi however,
alternative implementations are possible in which the neural network circuit adjusts only the
gain of the signal V1. According to the example of FIG. 6B, the neural network circuit 640
adjusts both the gain and offset of the signal Vi however, alternative implementations are
possible in which the neural network circuit adjusts only the offset of the signal V.

[00109]  Stated succinctly, the sensing element 610 may be arranged generate the signal
V1, which is indicative of the level of a specific stimulus, such as magnetic field density,
magnetic field direction, light intensity, light color, efc. The sensing element 620 may be
arranged to generate the signal V; that is indicative of an environmental condition that
affects the sensitivity of the sensing element 610, such as temperature, humidity, stress,
and/or any other condition. The neural network circuit 640 may be arranged to adjust the
gain and/or offset of the signal Vi to compensate (or correct) for changes in the sensitivity
of the sensing element 610 that are caused by the environmental condition. As noted above,
the neural network circuit 640 may, at least in part, adjust the gain and/or offset of the signal
V1 to produce an adjusted signal Vou. The neural network circuit 640, in other words, may

dynamically calibrate the signal output from the sensing element 610 based on
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cotemporaneous measurements of an environmental condition (obtained from the sensing
element 620) in order to bring the signal in conformance with a given signal processing
framework.

[00110] FIGS. 7A-B show a neural network 700, which is implemented by the neural
network circuit 640, in further detail. As illustrated, the neural network 700 may receive,
as input, a vector [V1, V2] and output a value Vou that is generated based on the vector [V,
V:]. The value V| of the input vector may include a digitized sample of the signal V1. The
value V; of the input vector may include a digitized sample of the signal V2. As used
throughout the disclosure, the terms “value Vi~ and “signal V;” are used interchangeably.
Similarly, as used throughout the disclosure, the terms “value V,” and “signal V,” are also
used interchangeably.

[00111]  As illustrated, the neural network 700 may include a hidden layer 701 and an
output layer 703. The hidden layer 701 may include neurons 702, 704, 706, and 708, and
the output layer 703 may include a neuron 710. The neuron 702 may include an affine
function 702A and an activation function 702B. The neuron 704 may include an affine
function 704A and an activation function 704B. The neuron 706 may include an affine
function 706A and an activation function 706B. The neuron 708 may include an affine
function 708A and an activation function 708B. And the 710 may include an activation
function 710A. Although the hidden layer 701 includes four neurons in the example of
FIGS. 7A-B, it will be understood that the present disclosure is not limited to any specific
number of hidden neurons being present in the hidden layer 701.

[00112]  The affine function 702A may generate a value Z1 by multiplying a weight vector
[W11, Wi2] by the vector [V1, V2] and adding a bias coefficient B, to the resulting product.
The activation function 702B may generate an activation value A by calculating the
hyperbolic tangent of the value Z;. The affine function 704A may generate a value Z, by
multiplying a weight vector [W2,1, W2 2] by the vector [V1, V2] and adding a bias coefficient
B> to the resulting product. The activation function 704B may generate an activation value
A, by calculating the hyperbolic tangent of the value Z,. The affine function 706 A may
generate a value Z; by multiplying a weight vector [W3,1, W32] by the vector [V, V2] and
adding a bias coefficient Bs to the resulting product. The activation function 706B may
generate an activation value As by calculating the hyperbolic tangent of the value Z3. The
affine function 708 A may generate a value Z4 by multiplying a weight vector [Wa41, W4 2]
by the vector [Vi, V2] and adding a bias coefficient B4 to the resulting product. The
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activation function 708B may generate an activation value A4 by calculating the hyperbolic
tangent of the value Zs. The activation function 710A may calculate the value Vou by
multiplying the activation values A1, Az, Az, A4 by respective weights Ui, Uz, Us, and U,
and summing up the resulting products. Although in the example of FIG. 7B the activation
function 710A is defined as Vout = UiA1+U2A»+Us As+UsAy, it will be understood that in
some implementations, the activation function 710A can be generalized as Vyyr =
2iUi %A,

[00113]  According to the present example, the weight vectors [Wi 1, Wi2], [W2.1, W22],
[W3.1, W3], and [W4,1, W42] are different from one another, however it will be understood
that the present disclosure is not limited thereto. According to the present example, the bias
coefficients B1, By, B3, B, are different from one another, however it will be understood that
the present disclosure is not limited thereto. According to the present example, the weights
Ui, Uy, Us, and Uy are different from one another, however it will be understood that the
present disclosure is not limited thereto. According to the present example, each of the
weights W11, Wiz, Wa 1, Wao, Wi, Wso, Wa i, Wi, each of the weights Uy, U, Us, Us,
and each of the bias coefficients Bi, B2, B3, and B is a real number. According to the
present example, the neural network 700 is trained by using a supervised learning algorithm.
However, it will be understood that the present disclosure is not limited to any specific
method for training the neural network 700. An example of a process for training the neural
network 700 is discussed further below with respect to FIG. 10.

[00114]  Although in the example of FIG. 7, the neural network 700 is configured to adjust
the signal Vi based on one other signal (i.e., V) it will be understood that alternative
implementations are possible in which the neural network 700 is configured to adjust the
signal V1 based on more than one other signal. In such implementations, the affine function
of each of the hidden nodes may be equal to the sum of the weighted value of signal Vi and
a weighted value of each of the other signals that are used to adjust the signal Vi (e.g.,
Z=W1*V1,#W2*V+ W2 V2, + W2V, '+ +B, where W2, W', and W’ are different
weights, V2, V2°, V' are signals used to adjust the signalVi, and B is a bias value) As
noted above, any of the weights may be equal to 1 or have a value that is different from 1.
As noted above, B may be equal to zero or have a value that is different from zero. The
present disclosure is not limited to any specific number of other signals being used to adjust
the signal V1.

[00115] FIG. 8A is a diagram illustrating an example of one possible implementation of
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the neural network circuit 640, according to aspects of the disclosure. As illustrated, the
neural network circuit 640 may include input ports 802, a switching circuit 804, a
computation unit 806, a control circuitry 808, neural node registers 810-816, normalized
data registers 818-820, and an internal port register 822.

[00116]  The input ports 802 may include ports for receiving data. The received data may
include data that is provided as input to the neural network 700 and/or data that is generated
internally by the neural network circuit 640 over the course of evaluating the neural network
700. The data that is received at the input ports 802 may include the vector [Vi, V2].
Additionally or alternatively, in some implementations, the data that is received at the input
ports 802 may include any of the weight vectors [W1 1, Wi2], [W2.1, W22], [W3.1, W3], and
[W41, W42], which are discussed above with respect to FIG. 7B. Additionally or
alternatively, in some implementations, the data that is received at the input ports 802 may
include any of the weights U1, U2, U3, and U4, which are discussed above with respect to
FIG. 7B. Additionally or alternatively, in some implementations the data that is received at
the input ports 802 may include any of the bias coefficients B1, B2, B3, and B4, which are
discussed above with respect to FIG. 7B. Additionally or alternatively, in some
implementations the data that is received at the input ports 802 may include any of the
coefficients K1 and K2, which are discussed further below with respect to FIG. 9B.
Although not shown in FIG. 8A, each of the input ports may be associated with a respective
register where the data that is being input via that port is stored prior to that data being routed
to the computation unit 806 (by the switching circuit 804).

[00117]  The switching circuit 804 may include one or more multiplexers for routing data
that is received on any of the input ports 802 (and/or the value that is stored in the internal
port register 822) to the computation unit 806. In operation, the switching circuit 804 may
be arranged to receive a selection signal SEL from the control circuitry 808 and route one
or more of the values that are received at the input ports 802 to the computation unit 806
(and/or the value that is stored in the internal port register 822) based on the selection signal
SEL. For example, if the selection signal SEL has a first value, the switching circuit 804
may provide a first subset of the values received at the input ports 802 to the computation
unit 806, and if the selection signal SEL has a second value, the switching circuit 804 may
provide a second subset of the values received at the input ports 802 to the computation unit
806.

[00118]  The computation unit 806 may include electronic circuitry that is arranged to
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perform the calculations necessary for evaluating the neural network 700 (shown in FIG.
7B). The computation unit 806 may be arranged to receive, from the control circuitry 808,
a SWITCH signal, a MULT EN signal, an ADD EN signal, and an OUT_EN signal. The
SWITCH signal may include a SWITCH 1 signal, a SWITCH_2 signal, a SWITCH_3
signal, a SWITCH_4 signal, and a SWITCH_ 5 signal. As illustrated in FIG. 8B, each of
the SWITCH 1 signal, the SWITCH 2 signal, the SWITCH 3 signal, the SWITCH 4
signal, and the SWITCH_ 5 signal may be arranged to control a different switching circuit
that is part of the computation unit 806. The ADD EN signal may be arranged to enable an
addition unit 870 (shown in FIG. 8B) that is part of the computation unit 806. And the
MULT EN signal may be arranged to enable a multiplication unit that is part of the
multiplication unit 864.

[00119]  In operation, the computation unit 806 may evaluate the neural network 700
(shown in FIGS. 7A-B) by performing a series of calculations and storing the final result in
the calculations in the neural node register 810. The final result of the calculations may be
the value Vou, which is discussed above with respect to FIGS. 6A-7B. After the value Vou
is stored in the neural node register 810, the control circuitry 808 may cause a switching
circuit 807 (e.g., a multiplexer) to output the value Vou by setting the OUT_EN signal to a
first value (e.g., a logic-high value).

[00120] The control circuitry 808 may include electronic circuitry that is arranged to
implement a finite state machine for controlling the operation of the computation unit 806
by providing a series of control vectors to the switching circuit 804, the computation unit
806, and the registers 810-812. Each control vector in the series may correspond to a
different state of the finite state machine. Each control vector may include a different set of
values for the signals SEL, SWITCH 1, SWITCH 2, SWITCH 3, SWITCH 4,
SWITCH 5, and MULT EN, ADD EN, MULT EN, OUT EN, EN 1, EN 2, EN 3,
EN 4, EN 5, EN 6, and EN 7. In some implementations, the control circuitry 808 may
cause the computation unit 806 to perform any of the steps discussed below with respect to
FIGS. 9A-9B by providing corresponding control vectors to the computation unit 806.
[00121]  The neural node register 810 may include an input port and an output port that
are coupled to the switching circuitry 804, and it may be configured to receive an enable
signal EN 1 from the control circuitry 808. In operation, the neural node register 810 may
output the value that is stored in the neural node register 810 via the output port of the neural

node register 810. When the enable signal EN 1 is set to a first value (e.g., a logic high
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value), the neural node register 810 may store the value that is applied at the input port of
the neural node register 810.

[00122]  The neural node register 812 may include an input port and an output port that
are coupled to the switching circuitry 804, and it may be configured to receive an enable
signal EN_2 from the control circuitry 808. In operation, the neural node register 812 may
output the value that is stored in the neural node register 812 via the output port of the neural
node register 812. When the enable signal EN 2 is set to a first value (e.g., a logic high
value), the neural node register 812 may store the value that is applied at an input port 842
of the neural node register 812.

[00123]  The neural node register 814 may include an input port and an output port that
are coupled to the switching circuitry 804, and it may be configured to receive an enable
signal EN 3 from the control circuitry 808. In operation, the neural node register 814 may
output the value that is stored in the neural node register 814 via the output port of the neural
node register 814. When the enable signal EN 3 is set to a first value (e.g., a logic high
value), the neural node register 814 may store the value that is applied at the input port of
the neural node register 814.

[00124]  The neural node register 816 may include an input port and an output port, and
it may be configured to receive an enable signal EN 4 from the control circuitry 808. In
operation, the neural node register 816 may output the value that is stored in the neural node
register 816 via the output port 851. When the enable signal EN 4 is set to a first value
(e.g., alogic high value), the neural node register 816 may store the value that is applied at
the input port 844 of the neural node register 816.

[00125] The normalized data register 818 may include an input port and an output port
that are coupled to the switching circuitry 804, and it may be configured to receive an enable
signal EN 5 from the control circuitry 808. In operation, the normalized data register 818
may output the value that is stored in the normalized data register 818 via the output port of
the normalized data register 818. When the enable signal EN 5 is set to a first value (e.g.,
a logic high value), the normalized data register 818 may store the value that is applied at
the input port of the normalized data register 818.

[00126] The normalized data register 820 may include an input port and an output port
that are coupled to the switching circuitry 804, and it may be configured to receive an enable
signal EN 6 from the control circuitry 808. In operation, the normalized data register 820

may output the value that is stored in the normalized data register 820 via the output port of
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the normalized data register 820. When the enable signal EN_6 is set to a first value (e.g.,
a logic high value), the normalized data register 820 may store the value that is applied at
the input port of the normalized data register 820.

[00127]  The internal port register 822 may include an input port and an output port that
are coupled to the switching circuitry 804, and it may be configured to receive an enable
signal EN 7 from the control circuitry 808. In operation, the internal port register 822 may
output the value that is stored in the internal port register 822 via the output port of the
internal port register. When the enable signal EN 7 is set to a first value (e.g., a logic high
value), the internal port register 822 may store the value that is applied at the input port of
the internal port register 822. As illustrated in FIG. 8A, the output port of the internal port
register 822 may be also coupled to the switching circuit 804, thus allowing the value stored
in the internal port register 822 to be cycled back into the calculations that are being
performed by the computation unit 806

[00128] FIG. 8B shows the computation unit 806 in further detail. As illustrated, the
computation unit 806 may include a multiplication unit 864, an addition unit 870, and a
lookup table 874 that are connected to one another via a switching circuit 862, a switching
circuit 866, a switching circuit 868, a switching circuit 872, and a switching circuit 876.
[00129] The switching circuit 862 may include one or more multiplexers that are
configured to route to the input ports of the multiplication unit 864: (i) any value that is
output on the output ports of the registers 810-822 (which is received via the switching
circuitry 804), (i1) the value that is output from the addition unit 870, and/or (iii) any other
values that are output from the switching circuit 804. The multiplication unit 864 may
multiply any values that are provided to it by the switching circuit 862 and output the
resulting product to the switching circuit 866. The switching circuit 866 may provide the
resulting product to the switching circuit 868 and/or the switching circuit 804 for storage in
any of the registers 810-822. As illustrated, the values that are provided at the input ports
of the multiplication unit 864 are selected by the signal SWITCH 1 and the destination
where the output of the multiplication unit 864 is routed is selected by the signal
SWITCH_ 2.

[00130] The switching circuit 868 may include one or more multiplexers that are
configured to route to the input ports of the addition unit 870: (i) any value that is output
from the switching circuit 804 (e.g., any value that is stored in any of the registers 810-822),
and (i1) the value that is output from the multiplication unit 864. The addition unit 870 may
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add any values that are provided to it by the switching circuit 868 and output the resulting
sum to the switching circuit 872. The switching circuit 872 may provide the resulting sum
to the lookup table 874, the switching circuit 876 and/or the switching circuit 804 for storage
in any of the registers 810-822. As illustrated, the values that are provided at the input ports
of the addition unit 870 are selected by the signal SWITCH_3 and the destination where the
output of the multiplication unit 864 is routed is selected by the signal SWITCH 4.

[00131]  The lookup table 874 may include a lookup table that maps each of a plurality of
input values to the hyperbolic tangent for that value. In operation, the lookup table 874 may
receive a value X that is output from the addition unit 870 and output the value for tanh(X’),
where X’ is equal to X or within a predetermined distance from X. As is discussed further
below with respect to FIG. 9, the lookup table 874 may be arranged to calculate the
activation functions of neurons 702-708 of the neural network 700 (see FIG. 7B). As is
discussed further below, the lookup table 874 may generate the value of the activation
function of any of the neurons 702-710 of the neural network 700 in the same clock cycle
with the addition unit 870 performing the last calculation for evaluating that node’s
respective affine function.

[00132]  The switching circuit 876 may be arranged to receive: (i) the value that is output
from the lookup table 874 and (ii) the value that is output from the addition unit 870. The
switching circuit 876 may be further arranged to output one of the received values on the
input ports 841-847 of registers 810-822 (via the switching circuit 804). The value that is
output from the switching circuit 876 is selected by the signal SWITCH 5. If the signal
SWITCH 5 has a first value, the value output from the lookup table 874 may be stored in
one of the registers 810-816. Otherwise, if the signal SWITCH_5 has a second value (e.g.,
a logic-low value), the value output from the addition unit may be stored in any of registers
810-822.

[00133] FIG. 9A is a flowchart of an example of a process 900A that is performed by the
neural network circuit 640, according to aspects of the disclosure. In some respects, the
process 900A is advantageous because it can be executed with high efficiency by the neural
network circuit 640. As is discussed further below, the process 900A can be completed in
twenty-three (23) clock cycles.

[00134] At step 902, the neural network circuit 640 receives the input vector [Vi, Va].
[00135] At step 904, the control circuitry 808 causes the computation unit 806 to

normalize the values V1 and V; and store the normalized values Vi and V; in the normalized
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data registers 818 and 820. The normalized values Vi and V; form the input vector Vi and
V, are subsequently used by the neural network circuit 640 to evaluate the affine functions
702A-708A, which are discussed above with respect to FIGS. 7A-B. The manner in which
step 904 is performed is discussed further below with respect to FIG. 9B. According to the
example of FIGS. 8A-9D, step 904 can be executed in two (2) clock cycles.

[00136] At step 906, the control circuitry 808 causes the computation unit 806 to evaluate
the neuron 702 and store the value A1 (which corresponds to the neuron 702) in the neural
node register 810. In particular, the control circuitry 808 causes the switching circuit 804
to provide the weight vector [W1,1, W12] and the bias coefficient B to the computation unit
806, while also causing the computation unit 806 to calculate the value A; based on the
weight vector [W1,1, W1 2] and the bias coefficient B;. The value A1 may be calculated based
on the functions 702A and 702B, which are discussed above with respect to FIG. 7B. In
some implementations, the value A1 may be calculated in accordance with the process 900C,
which is discussed above with respect to FIG. 9C. According to the example of FIGS. 8A-
9D, step 904 can be executed in three (3) clock cycles.

[00137] At step 908, the control circuitry 808 causes the computation unit 806 to evaluate
the neuron 704 and store the value A (which corresponds to the neuron 704) in the neural
node register 812. In particular, the control circuitry 808 causes the switching circuit 804
to provide the weight vector [W2,1, W2 2] and the bias coefficient B, to the computation unit
806, while also causing the computation unit 806 to calculate the value Az based on the
weight vector [W2,1, W2 2] and the bias coefficient B,. The value A, may be calculated based
on the functions 704A and 704B, which are discussed above with respect to FIG. 7B. In
some implementations, the value A» may be calculated in accordance with the process 900C,
which is discussed above with respect to FIG. 9C. According to the example of FIGS. 8A-
9D, step 904 can be executed in three (3) clock cycles.

[00138] At step 910, the control circuitry 808 causes the computation unit 806 to evaluate
the neuron 706 and store the value A; (which corresponds to the neuron 706) in the neural
node register 814. In particular, the control circuitry 808 causes the switching circuit 804
to provide the weight vector [W3,1, W3] and the bias coefficient B3 to the computation unit
806, while also causing the computation unit 806 to calculate the value A; based on the
weight vector [W3,1, W3 2] and the bias coefficient B;. The value Az may be calculated based
on the functions 706A and 706B, which are discussed above with respect to FIG. 7B. In

some implementations, the value A3 may be calculated in accordance with the process 900C,
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which is discussed above with respect to FIG. 9C. According to the example of FIGS. 8A-
9D, step 904 can be executed in three (3) clock cycles.

[00139] At step 912, the control circuitry 808 causes the computation unit 806 to evaluate
the neuron 708 and store the value A4 (which corresponds to the neuron 708) in the neural
node register 816. In particular, the control circuitry 808 causes the switching circuit 804
to provide the weight vector [W4,1, W4 ] and the bias coefficient B4 to the computation unit
806, while also causing the computation unit 806 to calculate the value A4 based on the
weight vector [W4,1, W4 2] and the bias coefficient Bs. The value A4 may be calculated based
on the functions 708 A and 708B, which are discussed above with respect to FIG. 7B. In
some implementations, the value A4 may be calculated in accordance with the process 900C,
which is discussed above with respect to FIG. 9C. According to the example of FIGS. 8A-
9D, step 904 can be executed in three (3) clock cycles.

[00140] At step 914, the control circuitry 808 causes the computation unit 806 to evaluate
the neuron 710 and store the value Vou in the neural node register 810. After the value Vou
is stored, the control circuitry 808 causes the switching circuit 807 to output the value Vou
from the neural network circuit 640. According to the example of FIGS. 8A-9D, step 914
can be executed in five (5) clock cycles.

[00141] FIG. 9B is a flowchart of an example of a process 900B for normalizing the
values V1 and V>, as specified by step 904 of the process 900A. According to the example

of FIG. 9B, the normalization is performed in accordance with Equation 14 below:

y = H—min(ymax - ymin) + Ymin (14)

Xmax— Xmin

, where x is the input feature (e.g. one of the raw values Vi and V3 that are obtained from
the sensing elements 610 and 620, x,,;, and x,,,,, are the minimum and maximum absolute
value of x respectively, y is the normalized value of the input feature, y,,;, and V4, 15 the
max and min values of the range to which the input feature is being scaled. According to
the present example, V,in = —1 and Y0 = 1. According the example of FIG. 9B, the
raw values Vi and V2 have the same maxima and minima (e.g., Xmin and Xmax, €fc.).
However, it will be understood that alternative implementations are possible when the
values V1 and V; have different maxima and minima (e.g., Xmin and Xmax, efc.). At step 922,
the control circuitry 808 causes the switching circuit 804 to provide coefficients K1 and K2
to the computation unit 806. According to the present example, the coefficients K1 and K2

are defined as follows:
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K1 = Ymax—Ymin (15)

Xmax—Xmin

K2 = Ymin (16)

[00142] At step 924, the control circuitry 808 causes the computation unit 806 to subtract
the value xmin from the value Vi. The control circuitry 808 further causes the computation
unit 806 to multiply the resulting difference by the coefficient K1, and store the resulting
product in the internal port register 822.

[00143] At step 926, the control circuitry 808 causes the computation unit 806 to add the
coefficient K2 to the value that is stored in the internal port register 822 and store the
resulting sum in the normalized data register 818. Under the nomenclature of the present
disclosure, the resulting sum that is stored in the normalized data register 818 is the
normalized value V.

[00144] At step 928, the control circuitry 808 causes the computation unit 806 to subtract
the value xmin from the value V,. The control circuitry 808 further causes the computation
unit 806 to multiply the resulting difference by the coefficient K1 and store the resulting
product in the internal port register 822.

[00145] At step 930, the control circuitry 808 causes the computation unit 806 to add the
coefficient K2 to the value that is stored in the internal port register 822 and store the
resulting sum in the normalized data register 818. Under the nomenclature of the present
disclosure, the resulting sum that is stored in the normalized data register 818 is the
normalized value V.

[00146] FIG. 9C is a flowchart of an example of a process 900C for evaluating any of the
neurons 702, 704, 706, and 708 of the neural network 700, as specified by steps 906-912 of
the process 900A. The process 900C is arranged to evaluate the respective affine and
activation functions of any of the neurons 702, 704, 706, and 708. In some respects, the

operation performed by the process 900 can be described by Equation 17 below:

A:tanh([%ﬂ IV, V,]+B]) (Eq 17)

where [W1, W2] is a weight vector that is provided to the computation unit 806 by the
control circuitry 808 (and/or the switching circuit 804), B is a bias coefficient that is
provided to the computation unit 806 by the control circuitry 808 (and/or the switching
circuit 804), V1 is the normalized value stored in the normalized data register 818, and V>

is the normalized value stored in the normalized data register 820. As can be readily
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appreciated, Equation 17 is a combined representation of the combined affine and activation

functions of any of the neurons 702-710.

[00147] At step 942, the control circuitry 808 causes the computation unit 806 to store
the value of ‘0’ in the internal port register 822. At step 944, the control circuitry 808 causes
the switching circuit 804 to provide the weight W to the computation unit 806. The control
circuitry 808 further causes the computation unit 806 to multiply the value V| by the weight
Wi1. The control circuitry 808 further causes the computation unit 806 to add the resulting
product to the value that is currently present in the internal port register 822 (e.g., ‘0’), and
store the resulting sum in the internal port register 822. At step 946, the control circuitry
808 causes the switching circuit 804 to provide the weight W to the computation unit 806.
The control circuitry 808 further causes the computation unit to multiply the value V; by
the weight W». The control circuitry 808 further causes the computation unit 806 to add the
resulting product to the value that is currently present in the internal port register 822 (e.g.,
the value calculated at step 944), and store the resulting sum in the internal port register 822.
At step 948, the control circuitry 808 causes the switching circuit 804 to provide the bias
coefficient B to the computation unit 806. The control circuitry 808 further causes the
computation unit 806 to add the bias coefficient B to the value that is currently stored in the
internal port register 822 (e.g., the value calculated at step 946) to calculate a value Z. The
control circuitry 808 further causes the computation unit 806 to calculate the value of
tanh(Z) and store the value of tanh(Z) in one of the neural node registers 810-816,

[00148] FIG. 9D is a flowchart of an example of a process 900D for calculating the value
Vout as specified by step 914 of the process 900A.

[00149] At step 950, control circuitry 808 causes the computation unit 806 to store the
value of ‘0’ in the internal port register 822.

[00150] At step 952, the control circuitry 808 causes the switching circuit 804 to provide
the weight U; to the computation unit 806. The control circuitry 808 further causes the
computation unit 806 to multiply the weight Ui by the value A; that is stored in the neural
node register 810 and add the resulting product to the value that is currently stored in the
internal port register 822 (e.g., ‘0’), after which the resultant sum is stored in the internal
port register 822,

[00151] At step 954, the control circuitry 808 causes the switching circuit 804 to provide
the weight U, to the computation unit 806. The control circuitry 808 further causes the
computation unit 806 to multiply the weight U, by the value A; that is stored in the neural
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node register 812 and add the resulting product to the value that is currently stored in the
internal port register 822 (e.g., “A1*U1’), after which the resultant sum is stored in the
internal port register 822.

[00152] At step 956, the control circuitry 808 causes the switching circuit 804 to provide
the weight Us; to the computation unit 806. The control circuitry 808 further causes the
computation unit 806 to multiply the weight Us by the value As that is stored in the neural
node register 814 and add the resulting product to the value that is currently stored in the
internal port register 822 (e.g., ‘A1*U1+A,*Uy’), after which the resultant sum is stored in
the internal port register 822.

[00153] At step 958, the control circuitry 808 causes the switching circuit 804 to provide
the weight U, to the computation unit 806. The control circuitry 808 further causes the
computation unit 806 to multiply the weight Uy by the value A4 that is stored in the neural
node register 816 and add the resulting product to the value that is currently stored in the
internal port register 822 (e.g., ‘A1*Ui+Ax*Uy+A3*Us’), after which the resultant sum is
stored in the neural node register 810. As can be readily appreciated, the sum that is
calculated at step 958 is the value Vou.

[00154] At step 960, the control circuitry 808 causes the switching circuit 807 to output
the value Vou that is stored in the neural node register 810.

[00155]  FIG. 10 is a diagram of an example of a system 1000 for training the neural
network 700, according to aspects of the disclosure. The system 1000 is arranged to execute
a supervised learning algorithm for training the neural network 700. As used herein,
“training the neural network” refers to a process by which values for the weight vectors
[Wi1, Wiz, [Wa1, Waz], [Ws.1, W3], and [Wa41, Wa2].

[00156]  Asillustrated, the system 1000 may include a power supply 1010, a temperature
chamber 1020, a multimeter 1030, a SIMULINK module 1040, and an FPGA 1050.
According to the example of FIG. 10, the sensing element 610 may be placed inside the
temperature chamber 1020. The power supply 1010 may be arranged to generate a current
1001. Furthermore, the power supply 1010 may be arranged to provide a signal 1002 to the
SIMULINK module 1040, which indicates the level of the current 1001. The sensing
element 610 may be placed inside the temperature chamber 1020. The sensing element 610
may be arranged to measure the level of the current 1001 and output a voltage signal 1003
that indicates the measured level. The temperature chamber 1020 may be arranged to vary

the temperature that is incident on the sensing element 610. The temperature chamber 1020
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may be arranged to provide, to the SIMULINK module 1040, a digital signal 1005 that
indicates the temperature that is being applied to the sensing element 610. In some
implementations, the temperature chamber 1020 and the power supply 1010 may be
arranged to sweep the ambient temperature of the sensing element from -40C to 150C for
different input currents. The multimeter 1030 may be arranged to receive the voltage signal
1003 that is output from the sensing element 610, measure the level of the voltage signal,
and provide, to SIMULINK module 1040, a digital signal 1007 that indicates the level of
the voltage signal 1003. The SIMULINK module 1040 may be configured to provide to the
FPGA 1050 a set of input features 1009. The input features may include weight vectors
[Wi1, Wial, [W21, Wazl, [Ws1, Ws2], and [Wa1, W42] and an input vector [Vi, Va].
According to the present example, the value Vi indicates the temperature that is being
applied to the sensing element 610 by the temperature chamber 1020, and the value V;
indicates the level of the signal 1003 (that is output from the sensing element 610). The
FPGA 1050 may be configured to implement the neural network circuit 640 (see FIGS. 8A-
B). The FPGA 1050 may evaluate the neural network 700 based on the input features 1009
and generate an adjusted voltage signal Vou as a result. The adjusted voltage signal Vou
may indicate the level of the current 1001, as measured by the sensing element 610. The
SIMULINK module 1040 may determine a distance between the measured level of the
current 1001 and the actual level of the current 1001. Based on the distance, the SIMULINK
module 1040 may generate an updated set of weight vectors [W11, Wi2], [W2.1, Wa2], [W3 1,
W3], and [W41, Way], and provide the updated weight vectors to the FPGA 1050 along
with a new input vector [V1, V2]. Afterwards, the signal Vou may again be compared to the
actual level of the current 1001, and the same cycle is repeated until the distance between
the measured level of the current 1001 (as indicated by the signal Vou) and the actual level
of the current 1001 has fallen below a predetermined threshold.

[00157]  Although in the example of FIG. 10 the system 1000 is used to train the neural
network 700, alternative implementations are possible in which the system 1000 is used to
train the neural network 200 instead. In such implementations, the FPGA 1050 may be
configured to implement the neural network circuit 140, and the input features 1009 may
include only weight coefficients and values for the temperature inside the temperature
chamber 1020. Furthermore, FIG. 10 is provided as an example only. In this regard, it will
be understood the present disclosure is not limited to any specific method and/or algorithm

for training the neural networks 200 and 700. According to the example of FIG. 10, the
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sensing element 610 is a GMR element. However, it will be understood that the present
disclosure is not limited to the sensing element 610 being a GMR element and/or a magnetic-
field-sensing element. As can be readily appreciated, the SIMULINK module 1040 may
include a computer (e.g., a desktop, a laptop, a special purpose computer, efc.) that is
configured to execute MATHLAB SIMULINK TM.

[00158]  FIG. 11 is a diagram of an example of a sensor 1100, according to aspects of the
disclosure. The sensor 1100 may include a magnetic field sensor (e.g., an angle sensor, a
current sensor, efc.), a pressure sensor, an optical sensor, a chemical sensor, and/or any other
suitable type of sensor. The sensor 1100 may include a sensing element 1110 and a sensing
element 120. The sensing element 1110 is arranged to generate a voltage signal Vi. The
sensing element 1110 may include any suitable type of sensing element, such as a magnetic-
field-sensing element, a pressure-sensing element, a light-sensing element (e.g., a
photodiode), and/or any other suitable type of sensing element. The sensing element 1110
may be the same or similar to the sensing element 110, which is discussed above with respect
to FIG. 1A.

[00159]  The sensor 1100 may further include a processing circuitry 1130 that includes a
neural network circuit 1140. The neural network circuit 1140 may be arranged to adjust the
gain and/or offset of the signal Vi. For example, in some implementations, the sensing
element 1110 may be a magnetic-field-sensing element (e.g., a Hall element, a giant
magnetoresistance (GMR) element, a tunnel magnetoresistance (TMR) element, an
anisotropic magnetoresistance (AMR) element, a magnetic tunnel junction (MTJ) element,
efc.), and the sensing element 120 may be a temperature-sensing element (e.g., a thermistor),
efc. In such implementations, the neural network circuit 1140 may adjust the gain of the
signal Vi to bring the signal Vi into a desired range or a desired linear range.

[00160]  The neural network circuit 1140 may implement a neural network. The neural
network may include a plurality of hidden nodes and at least one output node. In some
implementations, each of the hidden nodes may have an affine function having the form of
Z=W*V 1B, where W is a weight corresponding to the hidden node, Vi is a sample
corresponding to the signal Vi, and B is a bias with the hidden node. B may be equal to zero
or different from zero. W may be equal to 1 or different to one. In some implementations,
each (oOr at least two) of the hidden nodes may have a different weight W (or bias B).
Furthermore, in some implementations, each of the hidden nodes may have an activation

function having the form of A=TANH(Z), where Z is the value of the node’s respective
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affine function. And still furthermore, in some implementations, the output node may have
an activation function having the form of C = ) AiUi, where Zi is the value of the i-th
node’s activation function and Ui is a weight corresponding to the i-th node. In some
implementations, the neural network may be trained by using the method discussed above
with respect to FIG. 10, which is discussed above.

[00161] Reference herein to “one embodiment” or “an embodiment” means that a
particular feature, structure, or characteristic described in connection with the embodiment
can be included in at least one embodiment of the claimed subject matter. The appearances
of the phrase "in one embodiment" in various places in the specification are not necessarily
all referring to the same embodiment, nor are separate or alternative embodiments
necessarily mutually exclusive of other embodiments. The same applies to the term
“implementation.” Although FIGS. 1B, 6A, and 11 show neural network circuits as being
integrated with sensing elements in the same sensor, alternative implementations are
possible in which any of the neural network circuits discussed throughout the disclosure is
separate of any sensing elements that provide signals to that neural network circuit.

[00162]  Asused in this application, the word “exemplary” is used herein to mean serving
as an example, instance, or illustration. Any aspect or design described herein as
“exemplary” is not necessarily to be construed as preferred or advantageous over other
aspects or designs. Rather, use of the word exemplary is intended to present concepts in a
concrete fashion.

[00163]  Additionally, the term “or” is intended to mean an inclusive “or” rather than an
exclusive “or”. That is, unless specified otherwise, or clear from context, “X employs A or
B” is intended to mean any of the natural inclusive permutations. That is, if X employs A;
X employs B; or X employs both A and B, then “X employs A or B” is satistied under any
of the foregoing instances. In addition, the articles “a” and “an” as used in this application
and the appended claims should generally be construed to mean “one or more” unless
specified otherwise or clear from context to be directed to a singular form.

[00164] To the extent directional terms are used in the specification and claims (e.g.,
upper, lower, parallel, perpendicular, etc.), these terms are merely intended to assist in
describing and claiming the invention and are not intended to limit the claims in any way.
Such terms, do not require exactness (e.g., exact perpendicularity or exact parallelism, etc.),
but instead it is intended that normal tolerances and ranges apply. Similarly, unless

explicitly stated otherwise, each numerical value and range should be interpreted as being
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approximate as if the word “about”, “substantially” or “approximately” preceded the value

of the value or range.
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[00165] Moreover, the terms “system,” “component, model”
or the like are generally intended to refer to a computer-related entity, either hardware, a
combination of hardware and software, software, or software in execution. For example, a
component may be, but is not limited to being, a process running on a processor, a processor,
an object, an executable, a thread of execution, a program, and/or a computer. By way of
illustration, both an application running on a controller and the controller can be a
component. One or more components may reside within a process and/or thread of
execution and a component may be localized on one computer and/or distributed between
two or more computers.

[00166]  Although the subject matter described herein may be described in the context of
illustrative implementations to process one or more computing application
features/operations for a computing application having user-interactive components the
subject matter is not limited to these particular embodiments. Rather, the techniques
described herein can be applied to any suitable type of user-interactive component execution
management methods, systems, platforms, and/or apparatus.

[00167] While the exemplary embodiments have been described with respect to
processes of circuits, including possible implementation as a single integrated circuit, a
multi-chip module, a single card, or a multi-card circuit pack, the described embodiments
are not so limited. As would be apparent to one skilled in the art, various functions of circuit
elements may also be implemented as processing blocks in a software program. Such
software may be employed in, for example, a digital signal processor, micro-controller, or
general-purpose computer.

[00168] Some embodiments might be implemented in the form of methods and
apparatuses for practicing those methods. Described embodiments might also be
implemented in the form of program code embodied in tangible media, such as magnetic
recording media, optical recording media, solid-state memory, floppy diskettes, CD-ROMs,
hard drives, or any other machine-readable storage medium, wherein, when the program
code is loaded into and executed by a machine, such as a computer, the machine becomes
an apparatus for practicing the claimed invention. Described embodiments might also be
implemented in the form of program code, for example, whether stored in a storage medium,

loaded into and/or executed by a machine, or transmitted over some transmission medium
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or carrier, such as over electrical wiring or cabling, through fiber optics, or via
electromagnetic radiation, wherein, when the program code is loaded into and executed by
amachine, such as a computer, the machine becomes an apparatus for practicing the claimed
invention. When implemented on a general-purpose processor, the program code segments
combine with the processor to provide a unique device that operates analogously to specific
logic circuits. Described embodiments might also be implemented in the form of a bitstream
or other sequence of signal values electrically or optically transmitted through a medium,
stored magnetic-field variations in a magnetic recording medium, etc., generated using a
method and/or an apparatus of the claimed invention.

[00169] It should be understood that the steps of the exemplary methods set forth herein
are not necessarily required to be performed in the order described, and the order of the steps
of such methods should be understood to be merely exemplary. Likewise, additional steps
may be included in such methods, and certain steps may be omitted or combined, in methods

consistent with various embodiments.

29 CC 29 CC

[00170]  Also, for purposes of this description, the terms “couple,” “coupling,” “coupled,”

2

“connect,” “connecting,” or “connected” refer to any manner known in the art or later
developed in which energy is allowed to be transferred between two or more elements, and
the interposition of one or more additional elements is contemplated, although not required.
Conversely, the terms “directly coupled,” “directly connected,” etc., imply the absence of
such additional elements.

[00171]  Asused herein in reference to an element and a standard, the term “compatible”
means that the element communicates with other elements in a manner wholly or partially
specified by the standard, and would be recognized by other elements as sufficiently capable
of communicating with the other elements in the manner specified by the standard. The
compatible element does not need to operate internally in a manner specified by the
standard.

[00172] It will be further understood that various changes in the details, materials, and
arrangements of the parts which have been described and illustrated in order to explain the

nature of the claimed invention might be made by those skilled in the art without departing

from the scope of the following claims.
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CLAIMS

1. A sensor, comprising:

a first sensing element that is arranged to generate, at least in part, a first signal;

a second sensing element that is arranged to generate, at least in part, a second
signal; and

a neural network circuit that is configured to output an adjusted signal based on the

first signal and the second signal.

2. The sensor of claim 1, wherein the neural network circuit is configured to
evaluate a neural network having a plurality of hidden nodes, any of the hidden nodes

corresponding to a respective affine function having the form of:

Vi

Z =W W] v,

]+B

where W1 1s a weight associated with the hidden node, W is a weight associated
with the hidden node, Vi is a sample of the first signal, V> is a sample of the second

signal, and B is a bias associated with the hidden node.

3. The sensor of claim 1, wherein the neural network circuit is configured to
evaluate a neural network having a plurality of hidden nodes, any of the hidden nodes
corresponding to a respective affine function and a respective activation function, the
respective activation function having the form of:

A = tanh (£)
where A is a value of the respective activation function and Z is a value of the

respective affine function.

4. The sensor of claim 1, wherein the neural network circuit is configured to
evaluate a neural network having a plurality of hidden nodes and an output node, wherein
each of hidden nodes corresponds to a respective affine function and a respective first

activation function, and the output node corresponds to a second activation function

Voue = ) Ups Ay
il
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where Vou is the adjusted signal that is output by the neural network circuit, Ui is a
weight associated with the i-th hidden node in the plurality, A; is a value of the respective

first activation function that corresponds to the i-th hidden node in the plurality.

5. The sensor of claim 1, wherein:

the neural network circuit is configured to evaluate a neural network having a
plurality of hidden nodes, each of the hidden nodes corresponding to a different one of a
plurality of activation functions,

the neural network circuit includes a plurality of registers, each of the plurality of
registers being arranged to store a value of a different one of the plurality of activation
functions, and

the neural network is arranged to sequentially calculate respective values of the

plurality of activation functions and store the respective values in the plurality of registers.

6. The sensor of claim 1, wherein:

the neural network circuit is configured to evaluate a plurality of activation
functions in a sequence, each of the activation functions corresponding to a different
hidden node of a neural network, and

the neural network circuit includes an addition unit and a lookup table that is
arranged to output the respective value of any of the plurality of activation functions in a
same clock cycle with the addition unit evaluating an affine function that corresponds to a

same hidden node as the activation function.

7. The sensor of claim 1, wherein:

the second signal is indicative of an environmental condition that affects a
sensitivity of the first sensing element, and

the neural network circuit is arranged to compensate for variations in the

sensitivity of the first sensing element that are caused by the environmental condition.

8. The sensor of claim 7, wherein:
the environmental condition includes at least one of temperature, humidity, and

stress, and
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the first sensing element includes at least one of a magnetic field sensing element,

a pressure sensing element, a light sensing element, and a chemical sensing element.

9. The sensor of claim 1, wherein the first sensing element includes a giant
magnetoresistance (GMR) element and the second sensing element includes a temperature

sensing element.

10. The sensor of claim 1, wherein the first sensing element includes a magnetic
field sensing element and the second sensing element includes a temperature sensing

element.

11. A sensor, comprising:

a first sensing element that is arranged to generate, at least in part, a first signal;

a second sensing element that is arranged to generate, at least in part, a second
signal; and

a neural network circuit that is configured to adjust the first signal based on the
second signal,

wherein the neural network circuit is configured to evaluate a neural network
having a plurality of hidden nodes, any of the hidden nodes corresponding to an affine

function having the form of:

Vi

Z =W W] v,

|+B
where W1 1s a weight associated with the hidden node, W is a weight associated

with the hidden node, Vi is a sample of the first signal, V> is a sample of the second

signal, and B is a bias associated with the hidden node

12. The sensor of claim 11, wherein any of the hidden nodes further includes a
respective first activation function having the form of’
A = tanh (£)
where A is a value of the respective first activation function and Z is a value of the

hidden node’s corresponding affine function.
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13. The sensor of claim 12, wherein the neural network includes an output node,

the output node including a second activation function having the form of:

Voue = ) Ups Ay
il

where Vou is a adjusted signal that is output by the neural network circuit, Ui is a
weight associated with the i-th hidden node in the plurality, A; is a value of the respective

first activation function that corresponds to the i-th hidden node in the plurality.

14. The sensor of claim 11, wherein:

the second signal is indicative of an environmental condition that affects a
sensitivity of the first sensing element, and

the neural network circuit is arranged to compensate for variations in the

sensitivity of the first sensing element that are caused by the environmental condition.

15. The sensor of claim 14, wherein:

the environmental condition includes at least one of temperature, humidity, and
stress, and

the first sensing element includes at least one of a magnetic field sensing element,

a pressure sensing element, a light sensing element, and a chemical sensing element.

16. A sensor, comprising:

a first sensing element that is arranged to generate, at least in part, a first signal;

a second sensing element that is arranged to generate, at least in part, a second
signal, the second signal being indicative of an environmental condition; and

a neural network circuit that is configured to adjust the first signal based on the
second signal,

wherein the neural network circuit is configured to correct the first signal for
changes in a sensitivity of the first sensing element that are caused by the environmental

condition.

17. The sensor of claim 16, wherein the environmental condition includes at least

one of temperature, humidity, and stress.
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18. The sensor of claim 16, wherein the first sensing element includes a Giant
Magnetoresistance (GMR) element, and the second sensing element includes a

temperature sensing element.

19. The sensor of claim 16, wherein the neural network circuit is configured to
evaluate a neural network having a plurality of hidden nodes, any of the hidden nodes

corresponding to an affine function having the form of:

Vi

Z =W W] v,

]+B

where W1 1s a weight associated with the hidden node, W is a weight associated
with the hidden node, Vi is a sample of the first signal, V> is a sample of the second

signal, and B is a bias associated with the hidden node.

20. The sensor of claim 16, wherein the neural network circuit is configured to
evaluate a neural network having a plurality of hidden nodes, any of the hidden nodes
corresponding to a respective affine function and a respective activation function, the
respective activation function having the form of:

A = tanh (£)
where A is a value of the respective activation function and Z is a value of the

respective affine function.

21. An apparatus, comprising:
a neural network circuit that is configured to receive a first signal from a first

sensing element and output an adjusted signal based on the first signal.

22. The apparatus of claim 21, wherein the first sensing element is integrated into

the apparatus or is separate from the apparatus.
23. The apparatus of claim 21, wherein the neural network circuit is configured to

evaluate a neural network having a plurality of hidden nodes, any of the hidden nodes

corresponding to a respective affine function having the form of:
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Z =WV;+B
where W is a weight associated with the hidden node, V1 is a sample of the first

signal, and B is a bias associated with the hidden node..

24. The apparatus of claim 21, wherein the neural network circuit is configured to
evaluate a neural network having a plurality of hidden nodes, any of the hidden nodes
corresponding to a respective affine function and a respective activation function, the
respective activation function having the form of:

A = tanh (£)
where A is a value of the respective activation function and Z is a value of the

respective affine function.

25. The apparatus of claim 21, wherein the first sensing element includes a

magnetic field sensing element.

26. The apparatus of claim 21, wherein the neural network circuit is configured to

bring the first signal within a desired range.

27. The apparatus of claim 21, wherein the neural network circuit is configured to

bring the first signal within a desired linear range.

28. The apparatus of claim 21, wherein:
the neural network circuit is further configured to receive a second signal from a
second sensing element, and

the adjusted signal is generated further based on the second signal.

29. The apparatus of claim 28, wherein the second sensing element is integrated

into the apparatus or is separate from the apparatus.

30. The apparatus of claim 28, wherein the neural network circuit is configured to
evaluate a neural network having a plurality of hidden nodes, any of the hidden nodes

corresponding to a respective affine function having the form of:

Vi

Z =W W] v,

]+B
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where W1 1s a weight associated with the hidden node, W is a weight associated
with the hidden node, Vi is a sample of the first signal, V> is a sample of the second

signal, and B is a bias associated with the hidden node.

31. The apparatus of claim 28, wherein:

the second signal is indicative of an environmental condition that affects a
sensitivity of the first sensing element, and

the neural network circuit is arranged to compensate for variations in the

sensitivity of the first sensing element that are caused by the environmental condition.
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¥

PROVIDE WEIGHTS Uy, Us, Us, AND Uy TO THE COMPUTATION UNIT AND CAUSE THE 514
COMPUTATION UNIT 808 TO: {A) CALCULATE THE VALUE Vour BASED ON THE VALUES As-
Aq, AND (B} STORE THE VALUE Vour IN NEURAL NODE REGISTER 812
[EXPANDED IN FIG. 80/
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(__START

PROVIDE COEFFICIENTS K1 AND K2 TO THE COMPUTATION UNIT 806

032

v

CAUSE THE COMPUTATION UNIT 808 TO SUBTRACT A VALUE Xuw FROM AVALUE V,,
MULTIPLY THE RESULTING DIFFERENCE BY THE COEFFICIENT K1, AND STORE THE
RESULTING PRODUCT IN THE INTERNAL PORT REGISTER 822

524

v

ADD THE COEFFICIENT K2 TO THE VALUE THAT {8 STORED IN THE INTERNAL PORT
REGISTER 822 AND STORE THE RESULTING SUM IN THE NORMALIZED DATA REGISTER 818

928

¥

CAUSE THE COMPUTATION UNIT 806 TO SUBTRACT A VALUE Xum FROM AVALUE V,,
MULTIPLY THE RESULTING DIFFERENCE BY THE COEFFICIENT K1, AND STORE THE
RESULTING PRODUCT IN THE INTERNAL PORT REGISTER 822

828

v

ADD THE COEFFICIENT K2 TO THE VALUE THAT IS STORED IN THE INTERNAL PORT
REGISTER 822 AND STORE THE RESULTING SUM IN THE NORMALIZED DATAREGISTER 820

830

FIG. 9B
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STORE 0N THE INTERNAL PORT REGISTER 822 942

¥

PROVIDE A WEIGHT W, TO THE COMPUTATION UNIT 806 AND CAUSE THE COMPUTATION
UNIT 806 TO: MULTIPLY THE WEIGHT W BY THE NORMALIZED VALUE V,, ADD THE VALUE
STORED N INTERNAL PORT REGISTER 822 TO THE RESULTING PRODUCT, AND STORE |94
THE RESULTING SUM IN THE INTERNAL PORT REGISTER 822

v

PROVIDE A WEIGHT W2 TO THE COMPUTATION UNIT 806 AND CAUSE THE COMPUTATION
UNIT 806 TO: MULTIPLY TO WEIGHT W2 BY THE NORMALIZED VALUE Vs, ADD THE VALUE
STORED IN INTERNAL PORT REGISTER 822 TO THE RESULTING PRODUCT, AND STORE 946

THE RESULTING SUM IN THE INTERNAL PORT REGISTER 822

v

PROVIDE A BIAS VALUE TO THE COMPUTATION UNIT 806 AND CAUSE THE

COMPUTATION UNIT 806 TO: PRODUCE AVALUE Z BY ADDING A BIAS VALUEBTO THE | 048

VALUE STORED IN THE INTERNAL PORT REGISTER 822, EVALUATE TANH{Z), AND STORE
THE VALUE OF TANH(Z} IN A CORRESPONDING NEURAL NODE REGISTER

FIG. 9C
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S000

STORE 0 IN THE INTERNAL PORT REGISTER 827 850

:

PROVIDE AWEIGHT U, TO THE COMPUTATION UNIT 806, AND CAUSE THE
COMPUTATION UNIT 808 TO: MULTIPLY A WEIGHT U, BY AVALUE OF A, THAT IS STORED
IN THE WORKING REGISTER 810, ADD THE RESULTING PRODUCT TO THE VALUE THAT I8 1852

CURRENTLY STORED IN THE INTERNAL PORT REGISTER 822, AND STORE THE
RESULTING PRODUCT IN THE INTERNAL PORT REGISTER 822

v

1 PROVIDE A WEIGHT U TO THE COMPUTATION UNIT 808, AND CAUSE THE COMPUTATION
UNIT 806 TO: MULTIPLY AWEIGHT Uz BY AVALUE OF A; THAT IS STORED IN THE
WORKING REGISTER 812, ADD THE RESULTING PRODUCT TO THE VALUE THATIs (o854
CURRENTLY STORED IN THE INTERNAL PORT REGISTER 822, AND STORE THE
RESULTING PRODUCT IN THE INTERNAL PORT REGISTER 822

v

PROVIDE A WEIGHT Us TO THE COMPUTATION UNIT 808, AND CAUSE THE COMPUTATION
UNIT 806 TO: MULTIPLY A WEIGHT U BY AVALUE OF A; THAT IS STORED IN THE
WORKING REGISTER 814, ADD THE RESULTING PRODUCT TO THE VALUE THAT IS 936
CURRENTLY STORED IN THE INTERNAL PORT REGISTER 822, AND STORE THE
RESULTING PRODUCT IN THE INTERNAL PORT REGISTER 822

!

PROVIDE AWEIGHT Uy TO THE COMPUTATION UNIT 808, AND CAUSE THE COMPUTATION
UNIT 806 TO: MULTIPLY A WEIGHT U, BY AVALUE OF A« THAT IS STORED IN THE
WORKING REGISTER 816, ADD THE RESULTING PRODUCT TO THE VALUE THATIg (4958
CURRENTLY STORED IN THE INTERNAL PORT REGISTER 822, AND STORE THE
RESULTING PRODUCT IN THE WORKING REGISTER 812

!

QUTPUT THE VALUE THAT IS CURRENTLY STORED IN THE WORKING REGISTER 812 L9360

FIG. 9D
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