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ABSTRACT

Disclosed herein is an improved few-shot detector which
utilizes a dynamic semantic network which takes as input a
language feature and generates trainable parameters for a
visual network. The visual network takes a visual feature as
input and generates a classification and localization of an
object.
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NOVEL CLASSES (FEW}

PERSON CAN INTERACT WITH BICYCLE.

BICYCLE LOOKS SIMILAR TO MBIKE.
BICYCLE CAN CARRY A BOTTLE.

FIG. 2

SEMANTIC RELATIONS:

BASE CLASSES (MANY)
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SYSTEM AND METHOD FOR IMPROVED
FEW-SHOT OBJECT DETECTION USING A
DYNAMIC SEMANTIC NETWORK

RELATED APPLICATIONS

[0001] This application is a continuation-in-part of U.S.
patent application Ser. No. 17/408,674, filed Aug. 23, 2021.
In addition, this application claims the benefit of U.S.
Provisional Patent Application No. 63/147,782, filed Feb.
10, 2021. The contents of these applications are incorporated
herein in their entireties.

BACKGROUND

[0002] Deep learning algorithms typically require a large
amount of annotated data to achieve superior performance.
To acquire enough annotated data, one common way is by
collecting abundant samples from the real world and paying
annotators to generate ground-truth labels. However, even if
all the data samples are well annotated, a problem still exists
regarding few-shot learning. Because long-tail distribution
is an inherent characteristic of the real world, there always
exist some rare cases that have just a few samples available,
for example, rare animals, un-common road conditions, etc.
In other words, because of the few number of samples
available for some classes, the situation is not able to be
remedied by simply spending more money on annotation of
existing samples.

[0003] Infew-shot object detection (FSOD), there are base
classes in which sufficient objects have been annotated with
bounding boxes, and novel classes in which very few
annotated objects are available. The novel class set does not
share common classes with the base class set. Few-shot
detectors are expected to learn from limited data in novel
classes with the aid of abundant data in base classes and to
be able to detect novel objects in a held-out testing set. To
achieve this, most prior art few-shot detection methods
adopt ideas from meta-learning and metric learning for
few-shot recognition and apply them to conventional detec-
tion frameworks (e.g., Faster R-CNN, YOLO).

[0004] Although prior art FSOD methods have improved
the base-line considerably, data scarcity is still a bottleneck
that hurts the detector’s generalization from a few samples.
In other words, the performance is very sensitive to the
number of both explicit and implicit shots and drops dras-
tically as data becomes limited. The explicit shots refer to
the available labeled objects from the novel classes. For
example, the 1-shot performance of some FSOD methods is
less than half of the 5-shot or 10-shot performance, as shown
in FIG. 1.

[0005] FIG. 1 is a graph showing FSOD performance
(mAP50) on VOC Novel Set 1 at for different shot numbers.
Solid lines (original) indicate the pre-trained model used for
initializing the detector backbone trained on the original
ImageNet dataset. Dashed lines (rm-nov) indicate classes in
Novel Set 1 which have been removed from the ImageNet
dataset for the pretrained backbone model. The invention is
more stable to the variation of explicit shots (x-axis) and
implicit shots (original vs. rm-nov).

[0006] Interms of implicit shots, initializing the backbone
network with a model that has been pre-trained on a large-
scale image classification dataset is a common practice for
training an object detector. However, the classification data-
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set typically contains many implicit shots of object classes
overlapped with the novel classes.

[0007] As such, the detector can have early access to novel
classes and encode their knowledge in the parameters of the
backbone. Removing those implicit shots from the pre-
trained dataset also has a negative impact on the perfor-
mance, as shown in FIG. 1. The variation of explicit and
implicit shots could potentially lead to system failure when
dealing with extreme cases in the real world.

[0008] The reason for shot sensitivity could be due to
exclusive dependence on the visual information. Novel
objects are learned through images only and the learning is
independent between classes. As a result, visual information
becomes limited as image data becomes scarce.

SUMMARY OF THE INVENTION

[0009] The key insight in this invention is that the seman-
tic relation between base and novel classes remains constant
regardless of the data availability of novel classes. For
example, in FIG. 2, “bicycle” is the novel class. If the prior
knowledge that the novel class “bicycle” looks similar to
“motorbike”, can have an interaction with a “person”, and
can carry a “bottle” is known, it will be easier to learn the
concept “bicycle” rather than relying solely on a few images
of a bicycle. Such explicit relation reasoning is even more
crucial when visual information is hard to access.

[0010] The disclosed invention introduces semantic rela-
tions to few-shot detection. In natural language processing,
semantic concepts are represented by word embeddings
from language models. Explicit relationships are represented
by knowledge graphs.

[0011] The disclosed invention comprises a Semantic
Relation Reasoning Few-Shot Detector (SRR-FSD), which
incorporates the semantic relation for FSOD. The SRR-FRD
learns novel objects from both visual information and the
semantic relation in an end-to-end style. Specifically, a
semantic space is constructed using word embeddings.
Guided by the word embeddings of the classes, the detector
is trained to project the objects from the visual space to the
semantic space and to align their image representations with
the corresponding class embeddings.

[0012] Directly applying these concepts to few-shot detec-
tors leads to non-trivial practical problems (i.e., the domain
gap between vision and language, and the heuristic defini-
tion of knowledge graph for classes in FSOD datasets). To
address these problems, instead of pre-defining a dynamic
relation graph based on heuristics, the invention learns a
dynamic relation graph driven by the image data. Then, the
learned graph is used to perform relation reasoning and to
augment the raw embeddings, resulting in a reduced domain
gap.

[0013] With the help of the semantic relation reasoning,
SRR-FSD demonstrates the shot-stable property in two
aspects, as shown in FIG. 1. In the common few-shot
settings (solid lines), SRR-FSD achieves competitive per-
formance at higher shots and significantly better perfor-
mance at lower shots compared to prior art few-shot detec-
tors. In a more realistic setting (dashed lines) where implicit
shots of novel concepts are removed from the classification
dataset for the pretrained model, SRR-FSD steadily main-
tains the performance while some prior art methods have
results degraded by a large margin due to the loss of implicit
shots.
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[0014] The novelty of the invention is the use of semantic
relation reasoning for the few-shot detection task. The
SRR-FSD achieves stable performance with respect to shot
variation and outperforms prior art FSOD methods under
several existing settings, especially when the novel class
data is extremely limited. Even when implicit shots of novel
classes are removed from the classification dataset for the
pretrained model, SRR-FSD maintains a steadier perfor-
mance compared to prior art methods.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] FIG. 1 is a graph showing a comparison of FSOD
performance (mAP50) for various few-shot detectors versus
the improved few-shot detector if the disclosed herein.
[0016] FIG. 2 is a graphic representation showing how
semantic information can be used to learn novel classes.
[0017] FIG. 3 is a block diagram of the semantically-
enhanced few-shot object detector disclosed herein.

[0018] FIG. 4 is a block diagram of the relation reasoning
module used to provide the semantic component of the
improved few-shot detector disclosed herein.

[0019] FIG. 5 is a block diagram showing a second
embodiment of the invention in contrast with a block
diagram of a conventional approach.

DETAILED DESCRIPTION

[0020] To understand SRR-FSD, it will first be useful to
start with an explanation of prior art few-shot object detec-
tion. Thereafter, the building of the SRR-FSD comprises
integrating semantic relations with the visual information in
a Faster R-CNN and allowing it to perform relation reason-
ing in the semantic space. A two-phase training process is
disclosed.

[0021] The conventional object detection problem has a
base class set C, in which there are many instances, and a
base dataset D, with abundant images. D, consists of a set
of annotated images {(x,,y,)} where x, is the image and y, is
the annotation of labels from C, and bounding boxes for
objects in x,. For the few-shot object detection problem, in
addition to C, and D,, it also has a novel class set C, and a
novel dataset D,,, with C,NC,=0. In D,,, objects have labels
belong to C,, and the number of objects for each class is k for
k-shot detection. A few-shot detector is expected to learn
from D, and to quickly generalize to D,, with a small k such
that it can detect all objects in a held-out testing set with
object classes in C,UC,,. It is assumed that all classes in
C,UC,, have semantically meaningful names, so the corre-
sponding semantic embeddings can be retrieved.

[0022] A typical few-shot detector has two training
phases. The first phase is the base training phase where the
detector is trained on D, similarly to conventional object
detectors. Then in the second phase, it is further fine-tuned
on D,UD,,. To avoid the dominance of objects from D,, a
small subset is sampled from D,, such that the training set
is balanced concerning the number of objects per class. As
the total number of classes is increased by the size of C,, in
the second phase, more class-specific parameters are
inserted in the detector and trained to be responsible for the
detection of novel objects. The class-specific parameters are
usually in the box classification and localization layers at the
very end of the network.

[0023] An overview of SRR-FSD is illustrated in FIG. 3.
A semantic space is built from the word embeddings of all
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corresponding classes in the dataset and is augmented
through a relation reasoning module. Visual features are
learned to be projected into the augmented space 310. (“®”
is the dot product; “FC” is a fully-connected layer; and “P”
is a learnable projection matrix).

[0024] Semantic Space Projection—The SRR-FSD detec-
tor disclosed herein is built on top of Faster R-CNN, a prior
art two-stage general object detector. In the second-stage of
Faster R-CNN, a feature vector 302 is extracted for each
region proposal and forwarded to a classification subnet 304
and a regression subnet 306. In the classification subnet, the
feature vector is transformed into a d-dimensional vector
vER? through fully-connected layers. Then v is multiplied
by a learnable weight matrix WER™ to output a probability
distribution as in Eq. (1).

p=softmax(W,+b) (€8]

where:

[0025] N is the number of classes; and

[0026] bERY is a learnable bias vector.
[0027] The probability distribution is used as the classifi-
cation output of the detector. It represents the object’s
classification scores by a vector with a length equal to the
number of classes.
[0028] To learn objects from both the visual information
and the semantic relation, a semantic space 308 is first
constructed and the visual feature v is projected into this
semantic space. Specifically, the semantic space is repre-
sented using a set of d_-dimensional word embeddings
W,ER™ corresponding to the N object classes (including
the background classes). The detector is trained to learn a
linear projection PER%* in the classification subnet such
that v is expected to align with its class’ word embedding
after projection. Mathematically, the prediction of the prob-
ability distribution is derived from Eq. (1) as:

p=softmax(W P +b) 2)

[0029] During training, W, is fixed and the learnable
variable is P. A benefit is that the generalization to novel
objects involves no new parameters in P. W, 308 can simply
be expanded with embeddings of the novel classes. The b is
retained to model the category imbalance in the detection
dataset.

[0030] Reducing the Domain Gap Between Vision and
Language—W,_, 308 encodes the knowledge of semantic
concepts from natural language. While it is applicable in
zero-shot learning, it will introduce the bias of the domain
gap between vision and language to the FSOD task. Unlike
zero-shot learning where unseen classes have no support
from images, the few-shot detector can rely on both the
images and the embeddings to learn novel objects. When
there are very few images to rely on, the knowledge from
embeddings can guide the detector towards a decent solu-
tion. However, when more images are available, the knowl-
edge from the embeddings may be misleading due to the
domain gap, resulting in a suboptimal solution. Therefore,
there is a need to augment the semantic embeddings to
reduce the domain gap. Leveraging the explicit relationship
between classes is effective for embedding augmentation,
leading to implementation of a dynamic relation graph.
[0031] Relation Reasoning—FIG. 4 shows the network
architecture of the relation reasoning module 402 for learn-
ing the relation graph G. (“®” is the dot product; and “e” is
the element-wise addition). The semantic space projection
learns to align the concepts from the visual space with the
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semantic space 308. However, each class is still treated
independently and there is no knowledge propagation
among classes. Therefore, a knowledge graph is introduced
to model their relationships. The knowledge graph G is an
NxN adjacency matrix representing the connection strength
for every neighboring class pairs. G is involved in classifi-
cation via a graph convolution operation. Mathematically,
the updated probability prediction is given as:

p=softmax(GW P +b) 3)

[0032] In zero-shot or few-shot recognition algorithms,
knowledge graph G is predefined base on heuristics. It is
usually constructed from a database of common sense
knowledge rules by sampling a sub-graph through the rule
paths such that semantically related classes have strong
connections. For example, classes from the ImageNet data-
set have a knowledge graph sampled from the WordNet.
However, classes in FSOD datasets are not highly seman-
tically related, nor do they form a hierarchical structure like
the ImageNet classes. The only applicable heuristics are
based on object co-occurrence. Although the statistics of the
co-occurrence are straightforward to compute, the co-occur-
rence is not necessarily equivalent to the semantic relation.
[0033] Instead of predefining a knowledge graph based on
heuristics, the disclosed invention learns a dynamic relation
graph driven by the data to model the relation reasoning
between classes. The data-driven graph is also responsible
for reducing the domain gap between vision and language
because it is trained with image inputs. Inspired by the
concept of the transformer, the dynamic relation graph G is
implemented with a self-attention architecture as shown in
FIG. 4.

[0034] The original word embeddings W, 308 are trans-
formed by three linear layers: f 404, g 406 and h 408, and
a self-attention matrix is computed from the outputs of f and
g. The self-attention matrix is multiplied with the output of
h followed by another linear layer 1 410. A residual connec-
tion adds the output of 1 410 with the original W, 308.
Another advantage of learning the dynamic relation graph G
is that it can easily adapt to new classes. Because the graph
is not fixed and is generated on the fly from the word
embeddings 308, it is not necessary to redefine a new
dynamic relation graph G and retrain the detector. Corre-
sponding embeddings for new classes can simply be inserted
and the detector fine-tuned.

[0035] Decoupled Fine-Tuning—In the second fine-tuning
phase, only the last few layers of SRR-FSD are unfrozen.
For the classification subnet, the parameters in the relation
reasoning module and the projection matrix P are fine-tuned.
For the localization subnet, it is not dependent on the word
embeddings but shares features with the classification sub-
net. The learning of localization on novel objects can
interfere with the classification subnet via the shared fea-
tures, leading to many false positives. Decoupling the shared
fully-connected layers between the two subnets can effec-
tively make each subnet learn better features for its task. In
other words, the classification subnet and the localization
subnet have individual fully-connected layers and they are
fine-tuned independently.

[0036] In one embodiment, SRR-FSD is implemented
based on Faster R-CNN with ResNet-101 and a Feature
Pyramid Network as the backbone using the MMDetection
framework. All models are trained with Stochastic Gradient
Descent (SGD) and a batch size of 16. For the word
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embeddings, the [.2-normalized 300-dimensional Word2Vec
vectors from the language model trained on large unanno-
tated texts like Wikipedia are used. In the relation reasoning
module, we reduce the dimension of word embed-dings to
32 which is empirically selected. In the first base training
phase, we set the learning rate, the momentum, and the
weight decay to 0.02, 0.9, and 0.0001, respectively. In the
second fine-tuning phase, the learning rate is reduced to
0.001 unless otherwise mentioned. The input image is
sampled by first randomly choosing between the base set
and the novel set with a 50% probability and then randomly
selecting an image from the chosen set.

[0037] The training of the few-shot detector usually
involves initializing the backbone network with a model
pretrained on large-scale object classification datasets such
as ImageNet. The set of object classes in ImageNet (i.e., C,)
is highly overlapped with the novel class set C, in the
existing settings. This means that the pretrained model can
get early access to large amounts of object samples, (i.e.,
implicit shots), from novel classes and encode their knowl-
edge in the parameters before it is further trained for the
detection task. Even the pretrained model is optimized for
the recognition task. The extracted features still have a big
impact on the detection of novel objects, as shown in FIG.
1. However, some rare classes may have highly limited or
valuable data in the real world such that pretraining a
classification network on it is not realistic.

[0038] Therefore, a more realistic setting for FSOD, which
extends the existing settings may be used. In addition to
C,NC,=0, an additional requirement is that C,NC,=0. To
achieve this, the novel classes are systematically and hier-
archically removed from C,. For each class in C,, its
corresponding synset is found in ImageNet and its full
hyponym (the synset of the whole subtree starting from that
synset) is obtained using the ImageNet API. The images of
this synset and its full hyponym are removed from the
pretrained dataset. The classification model is trained on a
dataset with no novel objects.

[0039] Semantic Space Projection Guides Shot-Stable
Learning—The baseline Faster R-CNN can already achieve
satisfying results at S-shot and 10-shot. However, at 1-shot
and 2-shot, performance starts to degrade due to exclusive
dependence on images. The semantic space projection, on
the other hand, makes the learning more stable to the
variation of shot numbers. The space projection guided by
the semantic embeddings is learned well enough in the base
training phase so it can be quickly adapted to novel classes
with a few instances. A major boost occurs at lower shot
conditions compared to the baseline. However, the raw
semantic embeddings limit the performance at higher shot
conditions. The performance at 5-shot and 10-shot drops
below the baseline. This verifies the domain gap between
vision and language. At lower shots, there is not much visual
information to rely on, so the language information can
guide the detector to a decent solution. But, when more
images are available, the visual information becomes more
precise than the language information starts to be mislead-
ing. Therefore, the word embeddings are refined to reduce
the domain gap.

[0040] Relation Reasoning Promotes Adaptive Knowl-
edge Propagation—The relation reasoning module 402
explicitly learns dynamic relation graph G that builds direct
connections between base classes and novel classes. The
detector can learn the novel objects using the knowledge of
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base objects besides the visual information. Additionally, the
relation reasoning module 402 also functions as a refinement
to the raw word embeddings with a data-driven relation
graph. Because relation graph G is updated with image
inputs, the refinement tends to adapt the word embeddings
for the vision domain. Applying relation reasoning improves
the detection accuracy of novel objects under different shot
conditions.

[0041] Decoupled Fine-Tuning (DF) Reduces False Posi-
tives—Most of the false positives are due to misclassifica-
tion into similar categories. With DF, the classification
subnet can be trained independently from the localization
subnet to learn better features specifically for classification.
[0042] Second Embodiment Using Dynamic Semantic
Networks—In a second embodiment of the invention, a
dynamic semantic network is used to simultaneously tackle
few-shot classification and few-shot localization in a unified
and coherent way. The dynamic semantic network leverages
cross-domain knowledge about model parameter generation
from semantic concepts in natural language. There exists a
generic and class-agnostic transformation from the semantic
concepts to models for detecting the corresponding visual
objects. Such a transformation could be effectively modeled
by the dynamic semantic network. Specifically, the second
embodiment automatically learns the transformation with a
deep dynamic network conditioned on the semantic word
embeddings. The method also learns a dynamic relation
graph to allow explicit knowledge propagation between the
semantic concepts. The method greatly facilitates object
detection in the small sample size regime on a broad range
of object detection benchmarks.

[0043] The second embodiment leverages cross-domain
knowledge about model parameter generation from seman-
tic concepts in natural language. In conventional
approaches, FSOD learns exclusively from visual informa-
tion, as illustrated in FIG. 5(a). A visual feature v 502 is
input to a network f 504 parameterized by trainable 6 to
predict the output y 506. A loss function 508 then compares
the output with the ground truth and computes the gradient,
which is back-propagated to update 0. Mathematically, the
output is represented as follows:

y=fv;0) (©)]

[0044] In the second embodiment of the invention, instead
of training 6, 6 is generated from a dynamic semantic
network g 510, parameterized by trainable ¢, as shown in
FIG. 5(b). The network g 510 takes in a language feature 1
512 (e.g., a word embedding) representing the semantic
representation of a class and outputs a class-specific param-
eter for the visual network. Specifically:

y=fv:g:9) )]

[0045] The visual network f 514 receives gradients 518
from loss function 516 and computes partial derivatives
using chain rules, and then backpropagates the gradients 520
to the dynamic semantic network 510, where they are used
to update the trainable parameters ¢ of dynamic semantic
network 510.

[0046] This approach can be applied to both the classifi-
cation and the localization subnets in the few-shot detector,
thus simultaneously tackling few-shot classification and
few-shot localization in a unified and coherent manner. With
the cross-domain knowledge from natural language, this
approach provides great performance in the small sample
size regime of few-shot detection.
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[0047] The dynamic semantic network g of the second
embodiment is a generalization of the relation graph G of the
previous embodiment. The relation graph G is implemented
with a self-attention module, wherein the attention map is
computed using the projections of the same input vector. The
dynamic semantic network g, on the other hand, can be any
network with learnable parameters. Note that relation graph
G is only generating weights for classification, but dynamic
network g generates any class-specific weights for both
classification and localization in the detection network.
[0048] In conclusion, disclosed herein is semantic relation
reasoning for few-shot object detection. The invention
explicitly integrates semantic relations between base and
novel classes with the available visual information, which
assists in improved learning of the novel classes, especially
when the novel class data is extremely limited. The semantic
relation reasoning is applied to the standard two-stage Faster
R-CNN and demonstrates robust few-shot performance
against the variation of shot numbers. Compared to prior-art
methods, SRR-FSD achieves state-of-the-art results on sev-
eral few-shot detection settings, as well as a more realistic
setting where novel concepts encoded in the pretrained
backbone model are eliminated. The key components of
SRR-FSD (i.e., semantic space projection and relation rea-
soning), can be straightforwardly applied to the classifica-
tion subnet of other few-shot detectors.

[0049] As would be realized by one of skill in the art, the
disclosed methods described herein can be implemented by
a system comprising a processor and memory, storing soft-
ware that, when executed by the processor, performs the
functions comprising the method.

[0050] As would further be realized by one of skill in the
art, many variations on implementations discussed herein
which fall within the scope of the invention are possible.
Moreover, it is to be understood that the features of the
various embodiments described herein were not mutually
exclusive and can exist in various combinations and permu-
tations, even if such combinations or permutations were not
made express herein, without departing from the spirit and
scope of the invention. Accordingly, specific methods and
systems disclosed herein are not to be taken as limitations on
the invention but as an illustration thereof. The scope of the
invention is defined by the claims which follow.

1. A few-shot object detector comprising:

a visual network with trainable parameters producing an

output based on an input of a visual feature; and

a dynamic semantic network with trainable parameters

producing the trainable parameters for the visual net-
work based on input of a language feature.

2. The few-shot detector of claim 1 wherein the language
feature input to the dynamic semantic network represents a
language representation of a class for which the visual
network is trained to detect.

3. The few shot detector of claim 2 further comprising a
loss function generating a gradient for backpropagating to
the visual network.

4. The few shot detector of claim 3 wherein the visual
network backpropagates the gradients to the dynamic
semantic network.

5. The few shot detector of claim 4 wherein the visual
network computes partial derivatives of the gradients using
chain rules before backpropagating the gradients to the
dynamic semantic network.
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6. The few shot detector of claim 5 wherein the dynamic
semantic network uses the gradient received from the visual
network to update the trainable parameters of the dynamic
semantic network.

7. The few shot detector of claim 6 wherein the visual
network comprises a classification sub-network and a local-
ization sub-network.

8. The few shot detector of claim 7 wherein the dynamic
semantic network updates trainable parameters of both the
classification sub-network and the localization sub-network.

9. The few shot detector of claim 1 wherein the visual
network is trained on a dataset comprising may instances of
base class objects and few instances of novel class objects.

10. A system comprising:

a processor; and

memory, storing software that, when executed by the

processor, implements the few-shot detector of claim 1.
11. A method comprising:
training a visual network with trainable parameters to
produce an output based on an input of a visual feature;
and
training a dynamic semantic network with trainable
parameters to produce the trainable parameters for the
visual network based on an input of a language feature.

12. The method of claim 11 wherein the language feature
input to the dynamic semantic network represents a lan-
guage representation of a class for which the visual network
is trained to detect.
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13. The method of claim 12 wherein the visual network:

receives backpropagated gradients from a loss function.

14. The method of claim 13 wherein the visual network:

backpropagates the gradients to the dynamic semantic

network.

15. The method of claim 14 wherein the visual network:

computes partial derivatives of the gradients using chain

rules before backpropagating the gradients to the
dynamic semantic network.

16. The method of claim 15 wherein the dynamic seman-
tic network:

uses the gradients received from the visual network to

update the trainable parameters of the dynamic seman-
tic network.

17. The method of claim 16 wherein the visual network
comprises a classification sub-network and a localization
sub-network.

18. The method of claim 7 wherein the dynamic semantic
network:

generates the trainable parameters of both the classifica-

tion sub-network and the localization sub-network.

19. The method of claim 11 wherein the visual network is
trained on a dataset comprising may instances of base class
objects and few instances of novel class objects.

20. A system comprising:

a processor; and

memory, storing software that, when executed by the

processor, performs the method of claim 11.
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