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(57) Abstract: An austenitic Ni-base alloy includes, in weight percent: 2.5 to 4.75 Al; 13 to 21 Cr; 20 to 40 Fe; 2 to 5 total of at least
one element selected from the group consisting of Nb and Ta; 0.25 to 4.5 Ti; 0.09t0 1.5 Si; 0t0 0.5 V; 0 t0 2 Mn; 0 to 3 Cu; 0 to 2
of Mo and W; 0 to 1 of Zr and Hf; 0 to 0.15 Y; 0.01 to 0.45 C; 0.005 to 0.1 B; 0 to 0.05 P; less than 0.06 N; and balance Ni (38 to
46 Ni). The weight percent Ni is greater than the weight percent Fe. An external continuous scale comprises alumina. A stable phase
FCC austenitic matrix microstructure is essentially delta-ferrite-free, and contains one or more carbides and coherent precipitates of '

and exhibits creep rupture life of at least 100 h at 900 °C and 50 MPa.
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LOW-COST, HIGH-STRENGTH, CAST CREEP-RESISTANT ALUMINA-FORMING
ALLOYS FOR HEAT-EXCHANGERS, SUPERCRITICAL CO2 SYSTEMS AND
INDUSTRIAL APPLICATIONS

CROSS-REFERENCE TO RELATED APPLICATIONS.

[0001] This application claims priority to U.S. Patent Application No. 17/162,890
filed on January 29, 2021, the entire disclosure of which is incorporated herein by

reference.

STATEMENT REGARDING FEDERALLY SPONSORED
RESEARCH AND DEVELOPMENT

[0002] This invention was made with government support under Contract No. DE-
AC05-000R22725 awarded by the U.S. Department of Energy. The government has

certain rights in this invention.

FIELD OF THE INVENTION

[0003] The present invention relates to cast alumina-forming alloys, and more
particularly to high-strength, high temperature creep-resistant and corrosion-resistant

alloys.
BACKGROUND OF THE INVENTION

[0004] Common austenitic stainless steels contain a maximum by weight percent of
0.15% carbon, a minimum of 16% chromium and sufficient nickel and/or manganese to
retain a face centered-cubic (FCC) austenitic crystal structure at cryogenic
temperatures through the melting point of the alloy. Austenitic stainless steels are non-
magnetic non-heat-treatable steels that are usually annealed and cold worked.
Common austenitic stainless steels are widely used in power generating applications;
however, they are becoming increasingly less desirable as the industry moves toward

higher thermal efficiencies. Higher operating temperatures in power generation result in
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reduced emissions and increased efficiencies. Conventional austenitic stainless steels
currently offer good creep strength and environmental resistance up to 600-700 °C.
However, in order to meet emission and efficiency goals of the next generation of power

plants structural alloys will be needed to increase operating temperatures by 50-100 °C.

[0005] Austenitic stainless steels for high temperature use rely on Cr203 scales for
oxidation protection. These scales grow relatively quickly. Conventional high-
temperature stainless steels rely on chromium-oxide (chromia, Cr203) surface layers for
protection from high-temperature oxidation. However, compromised oxidation
resistance of chromia in the presence of aggressive species such as water vapor,
carbon, sulfur, and the like typically encountered in energy production and process
environments necessitates a reduction in operating temperature to achieve component
durability targets. This temperature reduction reduces process efficiency and increases

environmental emissions.

[0006] High nickel austenitic stainless steels and nickel based superalloys can meet
the required property targets, but their costs for construction of power plants are
prohibitive due to the high cost of nickel. Creep failure of common austenitic stainless

steels such as types 316, 321, and 347 has limited the use of these.

[0007] A new class of austenitic stainless steels has been recently developed to be
more oxidation resistant at higher temperature — these are the alumina-forming
austenitic (AFA) stainless steels. These alloys are described in Yamamoto et al. U.S.
Patent No. 7754305, Brady et al U. S. Patent No. 7744813, and Brady et al U. S. Patent
No. 7754144, Muralidharan U. S. Patent No. 8,431,072, and Yamamoto U. S. Patent

No. 8,815,146, the disclosures of which are hereby incorporated fully by reference.

[0008] Alumina-forming austenitic (AFA) stainless steels are a new class of high-
temperature (600-900°C; 1112-1652°F) structural alloy steels with a wide range of
energy production, chemical/petrochemical, and process industry applications. These
steels combine the relatively low cost, excellent formability, weldability, and good high-
temperature creep strength (resistance to sagging over time) of state-of-the-art

advanced austenitic stainless steels with fundamentally superior high-temperature
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oxidation (corrosion) resistance due to their ability to form protective aluminum oxide

(alumina, Al203) surface layers.

[0009] Alumina grows at a rate 1 to 2 orders of magnitude lower than chromia and is
also significantly more thermodynamically stable in oxygen, which results in its
fundamentally superior high-temperature oxidation resistance. A further, key advantage
of alumina over chromia is its greater stability in the presence of water vapor. Water
vapor is encountered in most high-temperature industrial environments, ranging, for
example, from gas turbines, combustion, and fossil-fired steam plants to solid oxide fuel
cells. With both oxygen and water vapor present, volatile chromium oxy-hydroxide
species can form and significantly reduce oxidation lifetime, necessitating significantly
lower operating temperatures. This results in reduced process efficiency and increased

emissions.

[0010] Many applications require complicated component shapes best achieved by
casting (engine and turbine components). Casting can also result in lower cost tube

production methods for chemical/petrochemical and power generation applications.

[0011] There is interest in the development of low-cost, high-strength, creep-resistant,
oxidation resistant alloys for a variety of industrial and energy system applications in the
750 °C- 900 °C temperature range. Traditionally high-strength, creep resistant alloys are
Ni-based and contain 60-70 wt. % Ni + Co contents thus resulting in relatively high cost.
For example, alloys such as Haynes®282® and IN 740®H are being considered for use
in Advanced Ultra-supercritical steam and Supercritical CO:2 applications, particularly for
use in the 750°C-800°C. These are typically considered “wrought” alloys. Table 1 shows
typical compositions of these alloys. It can also be seen from this table that these alloys
are relatively high in Cr and are designed to obtain their oxidation resistance through

the formation of chromia-scales. These alloys also contain Al and Ti and obtain their
strength primarily through the formation of coherent, intermetallic y' precipitates of the

type Nis (Al,X) where X can be Nb, Ti and other elements. The primary drawback of
these alloys is that they are expensive due to the relatively high levels of Ni +Co and as

explained later have inferior oxidation resistance compared to alumina-forming alloys.
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[0012] Table 1. State-of-the-art High-Strength, Creep-Resistant Being Considered
for Energy System Applications in the 750°C-800°C.

Alloy Ni Co Cr Fe w Mn Mo Nb Al Ti Si Cc

Current Technology (wrought)

Haynes®282 57.52 | 10.2 19.06 (0.77 | 0.04 | 0.08 | 825 | 0.03 | 1.83 | 2.07 | 0.06 | 0.06

IN®740H 49.32 | 2019 | 24.97 | 0.2 0 029 (035 (151 [1.58 | 143 | 0.08 | 0.02

[0013] Other applications may demand cast alloys for use in the temperature range up
to about 900 °C in applications such as furnace tubes, furnace rolls, and petrochemical
applications. One example of this class of materials is Cast HP-Nb type alloy of the
composition. These alloys contain about 35 wt. % Ni and about 25 wt. % Cr with up to
~0.45 wt. % carbon. These obtain their creep resistance through the formation of
carbides. They also obtain their oxidation resistance through the formation of chromia

scales.

Table 2. Nominal Compositions of State-of-the-art Cast Chromia-forming Alloy

Alloy Fe Ni Cr Al Nb Si Mo w Cc
HP-Nb Balance | 35 25 0 1.0 1.0 0 0 0.45
35Cr- Bal. 45 35 0 1.0 1.0 - - 0.45
45Ni

[0014] Most conventional alloys utilize chromia (Cr203) scales for oxidation protection,
whereas alumina (Al203) scales offer the potential for order-of-magnitude greater
oxidation resistance, as well as enhanced thermodynamic stability and durability in

environments containing aggressive oxidizing species such as H20, C, and S.

[0015] The inherently slower oxide growth rate of alumina-forming alloys is significantly
advantageous in heat exchanger applications, where thin-walled components or
ligaments are frequently encountered, and oxidation-driven metal consumption can be a
life-limiting factor. The temperature above which alumina-formers are favored over
chromia formers depends on component thickness, component lifetime, and exposure

gases. For example, oxidation of chromia-forming alloys is greatly accelerated in the
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presence of combustion gases containing water vapor due to Cr oxy-hydroxide
volatilization. Under these condition, alumina-formers become of interest above ~650-
700 °C. In sCO2 without appreciable H20 or S impurities, or in air, alumina formers
become of interest above ~750-800 °C. The drawback is that alumina-forming alloys are
more challenging to achieve strength and ductility due to interference of strengthening
mechanisms by Al, particularly as the high levels of Al typically needed to form Al203
tend to stabilize both weak BCC phases and brittle, albeit strong, intermetallic phases.

Aluminum additions also interfere with N-based strengthening approaches.

SUMMARY OF THE INVENTION
[0016] An austenitic Ni-base alloy, comprising, in weight percent:
25t04.75Al;
13t0 21 Cr;
20to 40 Fe;
2.0 to 5.0 total of at least one element selected from the group consisting of Nb and Ta;
0.25t04.5Ti;
0.09t0 1.5 Si;
0to 0.5V,
Oto2 Mn;
0to 3 Cu;
0 to 2 of at least one element selected from the group consisting of Mo and W,
0 to 1 of at least one element selected from the group consisting of Zr and Hf;
0t 0.15Y;
0.01 to 0.45 C;
0.005 to 0.1 B;

0t0 0.05 P,
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less than 0.06 N; and
Ni balance (38 to 47 Ni);

wherein the weight percent Ni is greater than the weight percent Fe, wherein said alloy
forms an external continuous scale comprising alumina and has a stable phase FCC

austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-
free, and contains one or more carbides and coherent precipitates of y' and exhibits a

creep rupture lifetime of at least 100 h at 900 °C and 50 MPa.

[0017] An austenitic Ni-base alloy, consisting essentially of, in weight percent:
25t04.75Al;

13t0 21 Cr;

20to 40 Fe;

2.0 to 5.0 total of at least one element selected from the group consisting of Nb and Ta;
0.25t04.5Ti;

0.09t0 1.5 Si;

0to 0.5V,

Oto2 Mn;

0to 3 Cu;

0 to 2 of at least one element selected from the group consisting of Mo and W,
0 to 1 of at least one element selected from the group consisting of Zr and Hf;
0t 0.15Y;

0.01t0 0.2 C;

0.005 to 0.1 B;

0to 0.05P;

less than 0.06 N; and

Ni balance (38 to 47 Ni);
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wherein the weight percent Ni is greater than the weight percent Fe, wherein said alloy
forms an external continuous scale comprising alumina and has a stable phase FCC

austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-
free, and contains one or more carbides and coherent precipitates of ¥’ and exhibits a

creep rupture lifetime of at least 200 h at 900 °C and 50 MPa.

[0018] An austenitic Ni-base alloy, comprising, in weight percent:

3.0t0 4.00 Al ;

14 to 20 Cr;

23 to 35 Fe;

2.0 to 5.0 total of at least one element selected from the group consisting of Nb and Ta;
0.25t03.5Ti;

0.09to0 0.5 Si;

0to 0.5V,

Oto2 Mn;

0to 3 Cu;

0 to 2 of at least one element selected from the group consisting of Mo and W,
0 to 1 of at least one element selected from the group consisting of Zr and Hf;
0t 0.15Y;

0.01t0 0.2 C;

0.005 to 0.1 B;

0to 0.05P;

less than 0.06 N; and

Ni balance (38 to 47 Ni);

wherein the weight percent Ni is greater than the weight percent Fe, wherein said alloy

forms an external continuous scale comprising alumina and has a stable phase FCC
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austenitic matrix microstructure, said austenitic matrix being essentially delta-ferrite-
free, and contains one or more carbides and coherent precipitates of y' and exhibits a

creep rupture lifetime of at least 500 h at 900 °C and 50 MPa.
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BRIEF DESCRIPTION OF THE DRAWINGS

[0019] There are shown in the drawings embodiments that are presently preferred it
being understood that the invention is not limited to the arrangements and

instrumentalities shown, wherein:

[0020] Figure 1 shows a calculated equilibrium phase diagram for alloy 9-1.
[0021] Figure 2 shows a calculated equilibrium phase diagram for alloy 9-2.
[0022] Figure 3 shows a calculated equilibrium phase diagram for alloy 9-3.
[0023] Figure 4 shows a calculated equilibrium phase diagram for alloy 9-4.
[0024] Figure 5 shows a calculated equilibrium phase diagram for alloy 9-5.
[0025] Figure 6 shows a calculated equilibrium phase diagram for alloy 9-6.
[0026] Figure 7 shows a calculated equilibrium phase diagram for alloy 9-7.
[0027] Figure 8 shows a calculated equilibrium phase diagram for alloy 9-8.
[0028] Figure 9 shows a calculated equilibrium phase diagram for alloy 9-9.
[0029] Figure 10 shows a calculated equilibrium phase diagram for alloy 9-10.
[0030] Figure 11 shows a calculated equilibrium phase diagram for alloy 9-11.
[0031] Figure 12 shows a calculated equilibrium phase diagram for alloy 9-12.
[0032] Figure 13 shows a calculated equilibrium phase diagram for alloy 9-13.
[0033] Figure 14 shows a calculated equilibrium phase diagram for alloy 9-14.
[0034] Figure 15 shows a calculated equilibrium phase diagram for alloy 9-15.
[0035] Figure 16 shows a calculated equilibrium phase diagram for alloy 9-16.
[0036] Figure 17 shows a calculated equilibrium phase diagram for alloy 9-17.
[0037] Figure 18 shows a calculated equilibrium phase diagram for alloy 9-18.
[0038] Figure 19 shows a calculated equilibrium phase diagram for alloy 9-19.

[0039] Figure 20 shows a calculated equilibrium phase diagram for alloy 9-20.
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[0040] Figure 21 shows a calculated equilibrium phase diagram for alloy 9-21.
[0041] Figure 22 shows a calculated equilibrium phase diagram for alloy 9-22.
[0042] Figure 23 shows a calculated equilibrium phase diagram for alloy 9-23.
[0043] Figure 24 shows a calculated equilibrium phase diagram for alloy 9-24.
[0044] Figure 25 shows a calculated equilibrium phase diagram for alloy 9-25.
[0045] Figure 26 shows a calculated equilibrium phase diagram for alloy 9-26.
[0046] Figure 27 shows a calculated equilibrium phase diagram for alloy 9-27.
[0047] Figure 28 shows a calculated equilibrium phase diagram for alloy 9-28.
[0048] Figure 29 shows a calculated equilibrium phase diagram for alloy 9-29.
[0049] Figure 30 shows a calculated equilibrium phase diagram for alloy 9-30.
[0050] Figure 31 shows a calculated equilibrium phase diagram for alloy 9-31.
[0051] Figure 32 shows a calculated equilibrium phase diagram for alloy 9-32.
[0052] Figure 33 shows a calculated equilibrium phase diagram for alloy 9-33.
[0053] Figure 34 shows a calculated equilibrium phase diagram for alloy 9-34.
[0054] Figure 35 shows a calculated equilibrium phase diagram for alloy 9-35.
[0055] Figure 36 shows a calculated equilibrium phase diagram for alloy 9-36.
[0056] Figure 37 shows a calculated equilibrium phase diagram for alloy 9-37.

[0057] Figure 38 shows the creep-rupture life of the alloys tested at 900 °C and 50
MPa, plotted as a function of the differential amounts between the strengthening phase

and the detrimental phases.

[0058] Figure 39 shows the mass change (mg/cm?) in the reference and invention
alloys exposed in air + 10% water vapor environment with 500 h-cycles, plotted as a
function of Ti+Zr atomic fraction (Eq. 1) for 2,000 h at 900 °C

[0059] Figure 40 shows the mass gain after the 500, 1000, and 1500 hour exposure to
sCO2 750°C and 300 bar obtained from 500 hour exposure cycles.

10
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DETAILED DESCRIPTION OF THE INVENTION

[0060] Alumina-forming austenitic (AFA) stainless steels are a class of structural steel
alloys which comprise aluminum (Al) at a weight percentage sufficient to form protective
aluminum oxide (alumina, Al203) surface layers. The external continuous scale
comprising alumina does not form at an Al level below about 2 weight percent. At an Al
level higher than about 3 to 5 weight percent, the exact transition dependent on level of
austenite stabilizing additions such as Ni (e.g. higher Ni can tolerate more Al), a
significant bcc phase is formed in the alloy, which compromises the high temperature
properties of the alloy such as creep strength. The external alumina scale is continuous
at the alloy/scale interface and though Al20s3 rich the scale can contain some Mn, Cr, Fe
and/or other metal additives such that the growth kinetics of the Al rich oxide scale is

within the range of that for known alumina scale.

[0061] Nitrogen is found in some conventional Cr20s-forming grades of austenitic alloys
up to about 0.5 wt. % to enhance the strength of the alloy. The nitrogen levels in AFA
alloys must be kept as low as possible to avoid detrimental reaction with the Al and
achieve alloys which display oxidation resistance and high creep strength at high
temperatures. Although processing will generally result in some uptake of N in the
alloy, it is necessary to keep the level of N at less than about 0.06 wt %, or less than
0.03 wt %, for the inventive alloy. When N is present, the Al forms internal nitrides,
which can compromise the formation of the alumina scale needed for the desired

oxidation resistance as well as a good creep resistance.

[0062] The addition of Ti and/or V is common to virtually all high-temperature austenitic
stainless steels and related alloys to obtain high temperature creep strength, via
precipitation of carbide and related phases. However, the addition of Ti and V shifts the
oxidation behavior (possibly by increasing oxygen permeability) in the alloy such that Al
is internally oxidized, requiring much higher levels of Al to form an external Al203 scale
in the presence of Ti and V. At such high levels, the high temperature strength
properties of the resulting alloy are compromised by stabilization of the weak bcc Fe
phase. The alloys of this invention are carefully designed to balance oxidation behavior

with high temperature strength by using increased Nb, Ni, and/or Cr levels along with

11
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Zr, Hf, or Y to offset the detrimental impacts on oxidation of Ti and/or V as is done in the

current invention.

[0063] Additions of Nb or Ta are necessary for alumina-scale formation. Too much Nb
or Ta will negatively affect creep properties by promoting 8-Fe and brittle second

phases.

[0064] Within the allowable ranges of elements, particularly those of Al, Cr, Ni, Fe, Mn,
Mo and, when present Co, W, and Cu, the levels of the elements are adjusted relative
to their respective concentrations to achieve a stable fcc austenite phase matrix. The
appropriate relative levels of these elements for a composition is readily determined or
checked by comparison with commercially available databases or by computational
thermodynamic models with the aid of programs such as Thermo-Calc m(Thermo-Calc
Software, Solna, Sweden). In the casting of AFA steels, the partitioning of elements
during solidification determines composition control. Non-equilibrium phases formed

during solidification will modify the type and amount of strengthening phases.

[0065] Additionally, up to 3 weight percent Co, up to 3 weight percent Cu, and up to 1
weight percent W can be present in the alloy as desired to enhance specific properties
of the alloy. Rare earth and reactive elements, such as Y, La, Ce, Hf, Zr, and the like,
at a combined level of up to 1 weight percent can be included in the alloy composition
as desired to enhance specific properties of the alloy. Other elements can be present

as unavoidable impurities at a combined level of less than 1 weight percent.

[0066] The invention provides a new class of alumina-forming austenitic (AFA) Fe-
based superalloy, which uses y'-NisAl phase to achieve creep strength. Coherent
precipitates of y'-NizAl and related phases are well established as the basis for
strengthening of Ni-base superalloys, which are among the strongest known classes of
heat-resistant alloys. The use of y’-NisAl in AFA offers the potential for greater creep
strengthening and the opportunity to precipitate-harden the AFA alloys for improved

high-temperature tensile strength.

[0067] Tolerance to nitrogen can be achieved by addition of more nitrogen active alloy

additions than Al. Based on thermodynamic assessment, Hf, Ti, and Zr can be used to

12
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selectively getter N away from Al. The additions of Hf and Zr generally also offers
further benefits for oxidation resistance via the well-known reactive element effect, at
levels up to 1 wt.%. Higher levels can result in internal oxidation and degraded oxidation
resistance. Studies of AFA alloys have indicated degradation in oxidation resistance of
AFA alloys with Ti and, especially, V additions or impurities, and has indicated limiting
these additions to no more than 0.3 wt.% total, unless compensated by increased No,
Ni, and/or Cr levels along with Zr, Hf, Y additions as is done in the current invention.
Assuming stoichiometric TiN formation, with 0.3 wt.% Ti up to around 0.07 wt.% N is
possible, which is sufficient to manage and tolerate the N impurities encountered in air
casting. A complication is that Ti will also react with C (as will Nb). Therefore, some

combination of Hf or Zr and Ti is desirable to manage and tolerate N effectively.

[0068] An austenitic Ni-base alloy can comprise, consist essentially of, or consist of, in

weight percent:

25t04.75A!;

13t0 21 Cr;

20to 40 Fe;

2.0 to 5.0 total of at least one element selected from the group consisting of Nb and Ta;
0.25t04.5Ti;

0.09to0 1.5 Si;

0to 0.5V,

Oto2 Mn;

0to 3 Cu;

0 to 2 of at least one element selected from the group consisting of Mo and W,
0 to 1 of at least one element selected from the group consisting of Zr and Hf;
0t 0.15Y;

0.01 to 0.45 C;

0.005 to 0.1 B;

13
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0to 0.05P;
less than 0.06 N; and
Ni balance (38 to 47 Ni).

The weight percent Ni is greater than the weight percent Fe. The alloy forms an
external continuous scale comprising alumina and has a stable phase FCC austenitic
matrix microstructure. The austenitic matrix is essentially delta-ferrite-free, and contains
one or more carbides and coherent precipitates of y' and exhibits a creep rupture

lifetime of at least 100 h at 900 °C and 50 MPa. The alloy can include at least one

selected from the group consisting of coherent precipitates of y'-NizAl and carbides.

[0069] The L12 phase at 900 °C can be from 8.72 to 46.77 wt. %. The L12 phase at 900
°Ccanbe 8.72, 9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, or 46.77 wt. %.
The L12 phase at 900 °C can be within a range of any high value and low value selected

from these values.

[0070] The MC phase at 900 °C is from 0.36 to 3.36 wt. %. The MC phase at 900 °C
can be 0.36, 0.50, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.75, 3.0, 3.25, or 3.36 wt.
%. The MC phase at 900 °C can be within a range of any high value and low value

selected from these values.

[0071] The Sigma + G-phase +BCC-Cr phase at 900 °C is from 0 to 12.96 wt. %. The
Sigma + G-phase +BCC-Cr phase at 900 °C can be 0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5,
1.75,2.0,2.25, 25,275, 3.0,3.25,3.5,3.75,4.0, 425,45, 475, 5.0, 5.25,5.5,5.75,
6.0,6.25,6.5,6.75,7.0,7.25,7.5,7.75, 8.0, 8.25, 8.5, 8.75, 9.0, 9.25, 9.5, 9.75, 10,
10.25, 10.5, 10.75, 11.0, 11.25, 11.5, 11.75, 12.0, 12.25, 12.5, 12.75, or 12.96 wt. %.
The Sigma + G-phase +BCC-Cr phase at 900 °C can be within a range of any high

value and low value selected from these values.

[0072] The L12 + MC — detrimental phases at 900 °C is from 12.07 to 35.93 wt. %. The
L12 + MC — detrimental phases at 900 °C can be 12.07, 13, 14, 15, 16, 17, 18, 19, 20,
21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 0or 35.93 wt. %. The L12+ MC -
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detrimental phases at 900 °C can be within a range of any high value and low value

selected from these values.

[0073] The mass change after 2000 h at 900 °C is from -5 to 5 mg/cm?. The mass
change after 2000 h at 900 °C can be -5.0, -4.75, -4.55, -4.25, -4.0, -3.75, -3.5, -3.25, -
3.0,-2.75, 25, 225, 2.0, -1.75, -1.5, -1.25, -1.0, -0.75, -0.5, -0.25, 0, 0.25, 0.5, 0.75,
1.0,1.25,1.5,1.75,2.0, 225,25, 275, 3.0, 3.25, 3.5,3.75, 4.0, 4.25, 4.5, or 4.55, 4.75,
5.0 mg/cm?. The mass change after 2000 h at 900 °C can be within a range of any high

value and low value selected from these values.

[0074] The Ti + Zr atomic ratio is from 0.046 to 0.231. The Ti + Zr atomic ratio can be
0.046, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18,
0.19,0.2,0.21, 0.22, or 0.231. The Ti + Zr atomic ratio can be within a range of any high

value and low value selected from these values.

[0075] The Al in weight percent can be from 2.5 to 4.75 wt. %. The Al in weight % can
be25,626,27,28,29,30,31,32,33,34,35,36,3.7,38,39,4.0,41,42,43,
44, 45 46,4.7or4.75wt.% Al. The weight % of Al can be within a range of any high

value and low value selected from these values.

[0076] The Cr in weight percent can be from 13 to 21 wt. %. The Cr in weight % can
be 13, 13.5, 14, 14.5, 15, 15.5, 16, 16.5, 17, 17.5, 18, 18.5, 19, 19.5, 20, 20.5, or 21 wt.
% Cr. The weight % of Cr can be within a range of any high value and low value

selected from these values.

[0077] The Fe in weight percent can be from 20 to 40 wt. %. The Fe in weight % can
be 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 wt.
% Fe. The weight % of Fe can be within a range of any high value and low value

selected from these values.

[0078] The Nb + Ta in total weight percent can be from 2 to 5 wt. %. The Nb and Ta in
weight %o canbe 2,2.2,2.4, 26,28, 3,3.2,34,36,3.8,4,42, 44,46,48, 5wt. %
Nb or Ta. The weight % of Nb and/or Ta can be within a range of any high value and

low value selected from these values.

15



WO 2022/165176 PCT/US2022/014315

[0079] The Ti in weight percent can be from 0.25 to 4.5 wt. %. The Ti in weight % can
be 0.25, 0.5, 0.75,1,1.25,1.5,1.75, 2, 2.25,2.5,2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, or 4.5
wt. % Ti. The weight % of Ti can be within a range of any high value and low value

selected from these values.

[0080] The Si in weight percent can be from 0.09 to 1.5 wt. %. The Si in weight % can
be 0.09,0.1,0.2,0.3,0.4,0.5,06,0.7,08,09,1,1.1,1.2, 1.3, 14, or 1.5 wt. % Si.
The weight % of Si can be within a range of any high value and low value selected from

these values.

[0081] The V in weigh percent can be from 0 to 0.5 wt. %. The V in weight % can be 0,
0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15,
0.16,0.17,0.18,0.19, 0.2, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31,
0.32,0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46,
0.47,0.48, 0.49 or 0.5 wt. % V. The weight % V can be within a range of any high value

and low value selected from these values.

[0082] The Mn in weight percent can be from 0 to 2 wt. %. The Mn in weight % can be
0,01,02,03,04,05,06,07,08,09,1,11,12,13,14,15,16,1.7,1.8,190r2
wt % Mn. The weight % Mn can be within a range of any high value and low value

selected from these values.

[0083] The Cu in weight percent can be from 0 to 3 wt. %. The Cu in weight % can be
0,01,02,03,04,05,06,07,08,09,1,11,12,13,14,15/16,1.7,1.8,1.9, 2,
21,22,23,24,25,26,2.7,2.8, 2.9 or 3wt. % Cu. The weight % Cu can be within a

range of any high value and low value selected from these values.

[0084] The Mo + W in weight percent can be from 0 to 2 wt. %. The Mo and/or Win
weight % canbe 0,0.1,0.2,0.3,0.4,0.5,0.6,0.7,08,09,1,1.1,1.2,1.3,1.4, 1.5, 1.6,
1.7,1.8, 1.9 or 2 wt. % Mo and/or W. The weight % Mo + W can be within a range of

any high value and low value selected from these values.

[0085] The Zr + Hf in weight percent can be from 0 to 1 wt. %. The Zr and/or Hf in
weight % can be 0, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32,
0.34,0.36, 0.38, 0.4, 0.42, 0.44, 0.46, 0.48, 0.5, 0.52, 0.54, 0.56, 0.58, 0.6, 0.62, 0.64,
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0.66, 0.68, 0.7, 0.72, 0.74, 0.76, 0.78, 0.8, 0.82, 0.84, 0.86, 0.88, 0.9, 0.92, 0.94, 0.96,
0.98 or 1 wt. % Zr and/or Hf. The weight % Zr + Hf can be within a range of any high

value and low value selected from these values.

[0086] The Y in weight percent can be from 0 to 0.15wt. %. The Y in weight % can be
0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14 or 0.15
Y %. The weight % Y can be within a range of any high value and low value selected

from these values.

[0087] The C in weight percent can be from 0.01 to 0.45 wt. %. The C in weight % can
be 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.125, 0.15, 0.175, 0.2,
0.225, 0.25. 0.275, 0.3, 0.325, 0.35, 0.375, 0.4, 0.425, 0.45 wt. % C. The weight % of C

can be within a range of any high value and low value selected from these values.

[0088] The B in weight percent can be from 0.005 to 0.1 wt. %. The B in weight % can
be 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09
or 0.1 wt. % B. The weight % B can be within a range of any high value and low value

selected from these values.

[0089] The P in weight percent can be from 0 to 0.05 wt. %. The P in weight % can be
0, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.011, 0.012, 0.013, 0.014, 0.015, 0.016,
0.017, 0.018, 0.019, 0.02, 0.021, 0.022, 0.023, 0.024, 0.025, 0.026, 0.027, 0.028, 0.029,
0.03, 0.031, 0.032, 0.033, 0.034, 0.035, 0.036, 0.037, 0.038, 0.039, 0.04, 0.041, 0.042,
0.043, 0.044, 0.045, 0.046, 0.047, 0.048, 0.049 or 0.05 wt. % P. The weight % P can

be within a range of any high value and low value selected from these values.

[0090] The N in weight percent can be from 0 to less than 0.06 wt. %. The N in weight
% can be 0, 0.002, 0.004, 0.006, 0.008, 0.01, 0.012, 0.014, 0.016, 0.018, 0.02, 0.022,
0.024, 0.026, 0.028, 0.03, 0.032, 0.034, 0.036, 0.038, 0.04, 0.042, 0.044, 0.046, 0.048,
0.05, 0.052, 0.054, 0.056, 0.058 or 0.059 wt. % N. The weight % N can be within a

range of any high value and low value selected from these values.

[0091] The Ni in weight percent can be from 38 to 47 wt. %. The Ni in weight % can be
38, 38.5, 39, 39.5, 40, 40.5, 41, 41.5, 42, 42.5, 43, 43.5, 44, 44.5, 45, 45.5, 46, 46.5, or
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47 wt. % Ni. The weight % Ni can be within a range of any high value and low value

selected from these values.

[0092] Reference alloys 9-1 to 9-9 and invention alloys 9-10 to 9-37 were prepared.

The compositions of these alloys are reported in Table 3:

Table 3. Analyzed alloy compositions of the reference and invention alloys

Composition, wt%
Alloy ID
Ni | Al | Cr|Fe | Hf [Mo | Nb| Si | Ti | W[ Y | Zr| B C
Reference alloys (<35.5 wt.% Ni)
Alloy 9-1 |34.99| 3.52 (14.74(41.03 3.10(0.15|2.05 0.31 |0.008| 0.100
Alloy 9-2 |35.01|3.48 (14.66|41.16 3.11|0.16 | 2.04 0.31 |0.009| 0.060
Alloy 9-3 35 |3.99 |13.70(41.50 2.02(0.16 | 3.56 0.008| 0.060
Alloy 9-4 |35.03| 3.55 (14.63(41.04| 0.16 3.01|0.14 | 2.01 0.03 | 0.28 |0.006| 0.110
Alloy 9-5 |35.03| 3.55 (14.68|41.08 3.04 | 0.16 | 2.02 0.03 | 0.29 |0.006| 0.110
Alloy 9-6 |34.99| 3.52 (14.64(41.07| 0.16 3.00|0.15|2.01 0.11|0.29 |0.006| 0.060
Alloy 9-7 |34.93| 3.55 (14.57|41.37 3.02|0.15|2.02 0.04 | 0.29 |0.007| 0.060
Alloy 9-8 |35.06| 4.06 (13.64(41.26| 0.16 2.01(0.14 | 3.59 0.02 0.007| 0.060
Alloy 9-9 |35.05(4.02 (13.64|41.56 1.97 | 0.15(3.53 0.02 0.007| 0.060
Invention alloys (>39.5 wt.% Ni)
Alloy 9-10 |40.35| 3.59 (14.26(34.71 3.93(0.18|2.46 0.47 |0.011| 0.040
Alloy 9-11 |40.11| 3.26 (20.08|31.17| 0.12 3.03|0.15]1.93 0.03 0.007| 0.110
Alloy 9-12 |40.06| 3.28 (18.21(33.14| 0.12 2.98(0.16 | 1.90 0.03 0.006| 0.110
Alloy 9-13 |44.37| 4.01 (20.03|25.10| 0.17 2.31|0.77 | 3.07 0.07 | 0.00 |0.013| 0.090
Alloy 9-14 |39.8 | 4.01 |13.89(35.86 2.02|0.14 [4.22 0.007| 0.060
Alloy 9-15 |44.46| 3.26 (20.26(27.53 3.01(0.17|0.85 0.04 | 0.30 |0.009| 0.110
Alloy 9-16 |46.25| 3.30 (17.86(27.21 2.96 | 0.131.96 0.06 | 0.11 |0.010| 0.110
Alloy 9-17 |44.23| 3.99 (20.09(24.57| 0.15| 0.54 | 2.26 | 0.16 | 3.04 | 0.55 | 0.06 | 0.30 (0.010| 0.050
Alloy 9-18 |43.82| 3.46 |18.45(29.50 3.19|0.130.89 0.10 | 0.33 |0.010| 0.120
Alloy 9-19 |44.35| 3.55 (18.42(28.08 0.533.040.12|0.98 |0.61(0.08|0.10 |0.012| 0.100
Alloy 9-20 |44.31| 3.81 (16.79(24.07| 0.16 | 0.61 | 4.63 | 0.24 | 4.20 | 0.36 | 0.06 | 0.68 (0.005| 0.080
Alloy 9-21 |39.97| 3.49 |14.77(36.04 3.10|0.15|2.05 0.31 |0.008| 0.110
Alloy 9-22 |44.49| 3.57 (20.14(24.31| 0.12 | 0.36 | 3.18 | 0.10 | 2.98 | 0.36 | 0.06 | 0.21 [0.009| 0.110
Alloy 9-23 | 44.3 | 3.54 |18.49(28.67 3.05|0.11 | 1.50 0.08 | 0.11 |0.013| 0.110
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Alloy 9-24 |44.26| 3.60 (20.18|26.00| 0.12 3.1910.15|2.02 0.06 | 0.31 |0.005| 0.110
Alloy 9-25 |45.16( 3.33 {15.19|31.02 295|011 (1.97 0.050.11 |0.007| 0.110
Alloy 9-26 |45.21|3.52 |15.80|30.14 2971012 (1.98 0.050.10 |0.005| 0.110
Alloy 9-27 |44.82( 3.53 |18.30|28.88 3.05|0.12|0.98 0.06 | 0.11 |0.012| 0.110
Alloy 9-28 |44.54(3.77 |19.51|23.35/0.17 | 0.56 | 4.15| 0.19 | 2.58 | 0.36 | 0.07 | 0.63 |0.005| 0.120
Alloy 9-29 |44.73|3.55 (18.07|27.48| 0.13 3.25|0.16 | 2.11 0.05 | 0.36 |0.005| 0.110
Alloy 9-30 |43.99(3.34 |18.07|25.93|0.21 | 0.64 | 4.04 | 0.18 | 2.50 | 0.40 | 0.11 | 0.48 |0.005| 0.110
Alloy 9-31 |45.12| 3.60 |16.50|28.43 3.560.13|2.29 0.07 | 0.14 |0.018| 0.110
Alloy 9-32 |44.82( 3.02 |16.78|28.79 048 2.05|0.13|3.10 | 0.54 | 0.06 | 0.10 |0.023| 0.060
Alloy 9-33 |45.42( 3.59 |14.35|29.92 366|017 |2.36 0.41 |0.010| 0.110
Alloy 9-34 |44.99( 3.00 |14.64|30.72 0.49|2.04|0.16 | 3.07 | 0.52 0.30 |0.008| 0.060
Alloy 9-35 |44.94(3.38 |15.92|29.21 048294)0.11 |1.97 |0.48|0.05|0.11 |0.007| 0.410
Alloy 9-36 |45.12( 3.48 |15.09|30.55 2.92)0.09|1.98 0.04 | 0.33 |0.007| 0.400
Alloy 9-37 |45.33| 3.43 |15.80|29.86 2.93)0.11 | 1.96 0.050.11 |0.006| 0.410

[0093] The creep rupture-life at 900 °C and 50 MPa, calculated amounts of the second-

phases at 900 °C, the mass changes after oxidation testing, and the Ti+Zr atomic

fraction of the reference alloys 9-1 to 9-9 and invention alloys 9-10 to 9-37 are

presented in Table 4:

Table 4. Creep rupture-life at 900 °C and 50 MPa, calculated amounts of the

second-phases at 900 °C, the mass changes after oxidation testing, and the Ti+Zr

atomic fraction

Calculated phases (900°C), wt.%
Rupture life, h Sigma + L1+ MC Mass change, Ti+Zr
Alloy ID (900°C, L1 MC G-phase q tz' tal mg/cm2 atomic
50Mpa) 2 + | e:me” | 2kh at 900°C) ratio*

BCc-cr| Pnases

Reference Alloys (<35.5 wt. % Ni)

Alloy 9-1 20.7 7.67 0.94 0.00 8.61 -7.60 0.124
Alloy 9-2 12.8 7.52 0.54 0.00 8.06 -11.22 0.126
Alloy 9-3 27.4 1222 | 0.48 0.00 12.69 0.68 0.204
Alloy 9-4 9.6 7.63 1.12 0.00 8.75 3.18 0.122
Alloy 9-5 9.3 7.49 1.04 0.00 8.53 2.51 0.123
Alloy 9-6 7.5 7.61 0.62 0.00 8.23 2.94 0.123
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Alloy 9-7 10.2 710 | 0.55 | 0.00 7.65 1.31 0.125
Alloy 9-8 22.9 12.26 | 0.58 | 0.00 12.84 2.00 0.205
Alloy 9-9 13.5 1213 | 048 | 0.00 12.61 1.35 0.203
Invention Alloys (>39.5 wt. % Ni)

Alloy 9-10 99.7 21.34 | 0.36 | 0.05 2165 -3.60 0.150
Alloy 9-11 130.1 19.54 | 1.11 5.00 15.64 0.38 0.086
Alloy 9-12 143 .4 1755 | 1.11 0.70 17.97 0.43 0.092
Alloy 9-13 179.9 27.05 | 0.82 | 12.96 14.91 0.62 0.133
Alloy 9-14 219.7 20.01 | 047 | 0.00 20.48 1.00 0.231
Alloy 9-15 228.0 13.08 | 1.07 | 0.67 13.48 0.69 0.046
Alloy 9-16 260.6 2152 | 1.03 | 0.00 22.55 0.40 0.099
Alloy 9-17 284.8 3529 | 052 | 11.92 23.89 455 0.138
Alloy 9-18 204.3 1312 | 1.17 | 0.00 14.29 0.68 0.053
Alloy 9-19 357.2 1428 | 0.98 | 0.00 15.26 0.57 0.052
Alloy 9-20 373.2 46.77 | 0.81 | 11.65 35.93 1.61 0.200
Alloy 9-21 382.7 1718 | 1.06 | 0.00 18.24 -4.55 0.124
Alloy 9-22 396.7 3420 | 1.07 | 10.31 24.96 3.96 0.130
Alloy 9-23 400.7 1813 | 1.06 | 0.01 19.17 0.55 0.075
Alloy 9-24 406.4 2664 | 1.10 | 6.60 21.14 2.08 0.095
Alloy 9-25 436.5 19.23 | 1.03 | 0.00 20.26 0.58 0.113
Alloy 9-26 4423 2062 | 1.03 | 0.00 2165 0.61 0.109
Alloy 9-27 509.6 13.48 | 1.07 | 0.00 14.55 0.45 0.052
Alloy 9-28 514.8 38.48 | 121 | 12.69 27.00 2.78 0.123
Alloy 9-29 534.7 26.24 | 110 | 2.54 24.80 -1.89 0.109
Alloy 9-30 628.2 3286 | 1.14 | 868 25.31 -0.64 0.125
Alloy 9-31 772.7 2669 | 1.05 | 0.00 27.74 0.42 0.119
Alloy 9-32|  1000.0 2575 | 0.53 | 0.08 26.20 2.51 0.158
Alloy 9-33| 18725 2756 | 1.05 | 0.00 28.61 -3.91 0.142
Alloy 9-34|  2446.5 2510 | 0.56 | 0.00 25.66 1.04 0.179
Alloy 9-35 158.0 872 | 3.35 | 0.00 12.07 1.00 0.102
Alloy 9-36 163.4 994 | 336 | 0.00 13.30 0.89 0.112
Alloy 9-37 178.2 9.10 | 3.36 | 0.00 12.46 0.96 0.102

*T+Zr atomic ratio =
(Ti/47.867+Zr/91.224)/(Ti/47.867+2Zr/91.224+Nb/92.906+Hf/178.49+Y/88.906+C/12.011+Cr/51.966),

where each element needs to input mass percent.
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[0094] Figures 1-37 show calculated equilibrium phase diagrams for alloys 9-1 to 9-37,
respectively. Figure 38 presents the creep-rupture lives of the alloys tested at 900 °C
and 50 MPa, plotted as a function of the differential amounts between the strengthening
phase and the detrimental phases. Figure 38 represents experimentally obtained
creep-rupture lives of the reference and invention alloys tested at 900 °C and 50 MPa,
plotted as a function of the differential amounts between the strengthening “L12 phase
and MC carbides” and the detrimental phases including Sigma, BCC-Cr, and G-phase.
The amounts of phases were calculated by a thermodynamic software (JMatPro v.9 -
Sente Software, Surrey Research Park, United Kingdom) with the chemical
compositions listed in Table 3. The creep-rupture life monotonically increases with the
differential amounts of the phases. It requires more than 13 wt.% of the differential
amounts to reach the target above 100h creep rupture-life at 900 °C and 50 MPa and
more than 25.0 wt, % and less than 29.0 wt. % to reach the target above 500h creep
rupture-life at 900 °C and 50 MPa. Although Ni contents also provide a clear difference
in creep rupture-lives between the reference alloys with <35.5 wt.% Ni and the invention
alloys with >39.5 wt.% Ni. Figure 38 indicates that the balance of the strengthening
phase (L12in the present case) and the detrimental phases provided a major
contribution in improving creep performance. Therefore, the invention provides the

calculated phases for achieving the requirement creep rupture-life.

[0095] Table 5 represents the mass changes of the reference and invention alloys
exposed in air + 10% water vapor environment with 500 h-cycles as a function of cycles
for a total of 2000 hours.

Table 5. Mass changes of the reference and invention alloys exposed in air + 10%

water vapor environment with 500 h-cycles as a function of cycles for a total of 2000

hours.
Alloy ID | s500h | 1000h | 1500h | 2000 h
Reference Alloys (<35.5 wt. % Ni)

45Ni-35Cr -5.814 -6.489 -10.434 -12.728
Alloy 9-1 2.110 2.480 -2.180 -7.600
Alloy 9-2 2.190 2.400 -5.480 -11.220
Alloy 9-3 0.390 0.510 0.630 0.680
Alloy 9-4 1.810 2.620 3.030 3.180
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Alloy 9-5 1.690 2.460 2.720 2.510
Alloy 9-6 1.510 2.130 2.540 2.940
Alloy 9-7 1.680 2.470 2.310 1.310
Alloy 9-8 1.660 2.190 2.320 2.000
Alloy 9-9 0.880 1.190 1.360 1.350
Invention Alloys (>39.5 wt. % Ni)
Alloy 9-10 1.670 2.300 -0.340 -3.600
Alloy 9-11 0.250 0.330 0.350 0.380
Alloy 9-12 0.270 0.350 0.390 0.430
Alloy 9-13 0.480 0.559 0.639 0.620
Alloy 9-14 0.580 0.790 0.970 1.000
Alloy 9-15 0.440 0.580 0.630 0.690
Alloy 9-16 0.616 0.424 0.376 0.396
Alloy 9-17 2.210 3.077 3.840 4.550
Alloy 9-18 0.470 0.600 0.620 0.680
Alloy 9-19 0.360 0.451 0.513 0.565
Alloy 9-20 1.502 2.205 2.287 1.610
Alloy 9-21 2.000 2.540 -1.700 -4.550
Alloy 9-22 1.690 2.708 3.320 3.960
Alloy 9-23 0.433 0.482 0.512 0.554
Alloy 9-24 1.570 2.157 2.431 2.080
Alloy 9-25 0.419 0.401 0.475 0.578
Alloy 9-26 0.463 0.445 0.518 0.612
Alloy 9-27 0.360 0.434 0.434 0.450
Alloy 9-28 1.398 2.615 3.062 2.780
Alloy 9-29 1.932 2.433 1.985 -1.890
Alloy 9-30 1.490 1.814 1.370 -0.640
Alloy 9-31 0.640 0.619 0.471 0.416
Alloy 9-32 1.840 2.268 2.480 2.511
Alloy 9-33 1.600 2.240 -0.290 -3.910
Alloy 9-34 2.010 2.700 3.172 1.043
Alloy 9-35 0.575 0.575 0.780 0.965
Alloy 9-36 1.558 1.450 1.355 0.891
Alloy 9-37 0.590 0.590 0.853 0.996

[0096] Figure 39 is a representation of the mass changes in the reference and
invention alloys exposed in air + 10% water vapor environment with 500 h-cycles,
plotted as a function of Ti+Zr atomic fraction (Eq. 1) for 2,000 h at 900 °C.

[0097] The oxidation resistances can be quantified by the mass changes of the alloys
after exposure in oxidizing environments. The smaller mass changes the better

oxidation resistance. Figures 39 illustrates the mass changes of the alloys after
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exposure in air + 10% water vapor at 900 °C for total 2000h plotted as a function of
Ti+Zr atomic fraction relative to the total amount of the reactive elements (Ti, Zr, Nb, Hf,

andY), C, and Cr, represented in Eq. 1.

Ti Zr Ti Zr Nb Hf Y c

i+ . . - + +
Ti+Zr atomic fraction (47.867 91.224)/(47.867 91.224 + 92.906 + 178.49 88.906 12.011

Cr

To5a)" [Eq.1]

where the mass percent of each element needs to be input for calculation.

[0098] Excess amounts of Ti and Zr are known to deteriorate the oxidation resistance
at elevated temperatures. The mass changes vs. Ti+Zr atomic fraction displays a clear
boundary showing the upper limit of the atomic fraction to avoid the significant mass
gain or mass loss (equivalent to the loss of oxidation resistance); the fraction should be
below 0.120 for 900 °C exposure. Note that the tested environment is very aggressive
condition compared to industrial steam environments, so that the limited mass changes

in the tested conditions indicate high oxidation resistance.

[0099] Figure 40 shows the mass gain after the 500, 1000, and 1500 hour exposure to
sCO2 750°C and 300 bar obtained from 500 hour exposure cycles with lower mass gain
indicating better performance of the alloy. Note the better performance of Alloys 9-31
and Alloy 9-33 compared to Alloy 9-34.

[0100] The invention as shown in the drawings and described in detail herein disclose
arrangements of elements of particular construction and configuration for illustrating
preferred embodiments of structure and method of operation of the present invention. It
is to be understood however, that elements of different construction and configuration
and other arrangements thereof, other than those illustrated and described may be
employed in accordance with the spirit of the invention, and such changes, alternations
and modifications as would occur to those skilled in the art are considered to be within
the scope of this invention as broadly defined in the appended claims. In addition, it is
to be understood that the phraseology and terminology employed herein are for the

purpose of description and should not be regarded as limiting.
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CLAIMS
We claim:
1. An austenitic Ni-base alloy, comprising, in weight percent:
25t04.75Al;
13t0 21 Cr;
20to 40 Fe;
2.0 to 5.0 total of at least one element selected from the group consisting of Nb and
Ta:;
0.25t04.5Ti;
0.09to0 1.5 Si;
0to 0.5V,
Oto2 Mn;
0to 3 Cu;
0 to 2 of at least one element selected from the group consisting of Mo and W,
0 to 1 of at least one element selected from the group consisting of Zr and Hf;
0t 0.15Y;
0.01 to 0.45 C;
0.005 to 0.1 B;
0to 0.05P;
less than 0.06 N; and
Ni balance (38 to 47 Ni);
wherein the weight percent Ni is greater than the weight percent Fe, wherein
said alloy forms an external continuous scale comprising alumina and has a stable

phase FCC austenitic matrix microstructure, said austenitic matrix being essentially
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delta-ferrite-free, and contains one or more carbides and coherent precipitates of '

and exhibits a creep rupture lifetime of at least 100 h at 900 °C and 50 MPa.

The alloy of claim 1, wherein the alloy comprises at least one selected from the
group consisting of coherent precipitates of y'-NizAl and carbides.

The alloy of claim 1, wherein the L12 phase at 900 °C is from 8.72 to 46.77 wt. %.
The alloy of claim 1, wherein the MC phase at 900 °C is from 0.36 to 3.36 wt. %.
The alloy of claim 1, wherein the Sigma + G-phase +BCC-Cr phase at 900 °C is
from O to 12.96 wt. %.

The alloy of claim 1, wherein the L12 + MC — detrimental phases at 900 °C is from
13 to 36 wt. %.

The alloy of claim 1, wherein the L12 + MC — detrimental phases at 900 °C is from
22 to 36 wt. %.

The alloy of claim 1, wherein the L12 + MC — detrimental phases at 900 °C is from
24 to 36 wt. %

The alloy of claim 1 wherein the mass change after 2000 h at 900 °C is from

-5 to 5 mg/cm?.

The alloy of claim 1 wherein the mass change after 2000 h at 900 °C is from

-3 to 3 mg/cm?.

The alloy of claim 1 wherein the mass change after 2000 h at 900 °C is from

-2 to 2 mg/cm?.

The alloy of claim 1, wherein the Ti + Zr atomic ratio is from 0.046 to 0.231.

An austenitic Ni-base alloy, consisting essentially of, in weight percent:

25t04.75Al,
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13t0 21 Cr;
20to 40 Fe;
2.0 to 5.0 total of at least one element selected from the group consisting of Nb and
Ta:;
0.25t04.5Ti;
0.09to0 1.5 Si;
0to 0.5V,
Oto2 Mn;
0to 3 Cu;
0 to 2 of at least one element selected from the group consisting of Mo and W,
0 to 1 of at least one element selected from the group consisting of Zr and Hf;
0t 0.15Y;
0.01t0 0.2 C;
0.005 to 0.1 B;
0to 0.05P;
less than 0.06 N; and
Ni balance (38 to 47 Ni);
wherein the weight percent Ni is greater than the weight percent Fe, wherein

said alloy forms an external continuous scale comprising alumina and has a stable

phase FCC austenitic matrix microstructure, said austenitic matrix being essentially
delta-ferrite-free, and contains one or more carbides and coherent precipitates of '

and exhibits a creep rupture lifetime of at least 200 h at 900 °C and 50 MPa.

14. An austenitic Ni-base alloy, comprising, in weight percent:
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3.0t04.00 Al ;
14 to 20 Cr;
23 to 35 Fe;
2.0 to 5.0 total of at least one element selected from the group consisting of Nb and
Ta:;
0.25t03.5Ti;
0.09t0 0.5 Si;
0to 0.5V,
Oto2 Mn;
0to 3 Cu;
0 to 2 of at least one element selected from the group consisting of Mo and W,
0 to 1 of at least one element selected from the group consisting of Zr and Hf;
0t 0.15Y;
0.01t0 0.2 C;
0.005 to 0.1 B;
0to 0.05P;
less than 0.06 N; and
Ni balance (38 to 47 Ni);
wherein the weight percent Ni is greater than the weight percent Fe, wherein

said alloy forms an external continuous scale comprising alumina and has a stable

phase FCC austenitic matrix microstructure, said austenitic matrix being essentially
delta-ferrite-free, and contains one or more carbides and coherent precipitates of '

and exhibits a creep rupture lifetime of at least 500 h at 900 °C and 50 MPa.
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