
US007679400B2

(12) United States Patent
Deeley

US 7,679,400 B2
Mar. 16, 2010

(10) Patent N0.:
(45) Date of Patent:

(54) SYSTEM AND METHOD FOR LOCAL
GENERATION OF PROGRAMMING DATA IN
A PROGRAMMABLE DEVICE

(75) Inventor: Simon Deeley, Bristol (GB)

(73)

(*)

Assignee: Panasonic Corporation, Osaka (JP)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21)

(22)

Appl. N0.: 12/123,670

Filed: May 20, 2008

(65) Prior Publication Data

Us 2008/0290895 A1 Nov. 27, 2008

(30)
May 22, 2007

(51)

(52)
(58)

Foreign Application Priority Data

(EP) 07108690

Int. Cl.
H03K 19/173 (2006.01)
US. Cl. 326/38; 326/47

Field of Classi?cation Search 326/37i4l,

326/47, 101, 10
See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,899,067 A
6,530,071 B1 3/2003
6,874,108 B1 3/2005
7,145,344 B2* 12/2006
7,180,324 B2* 2/2007

2/1990 S0 et al.
Guccione et al.
Abramovici et al.
Mark et al. 324/525

Chan et al. 326/10

7,251,804 B1 * 7/2007 Trimberger 716/16

2001/0024467 A1 9/2001 Eto
2006/0268989 A1 11/2006 Kadono et al.
2007/0028197 A1 2/2007 Santoso et al.
2008/0031445 A1 2/2008 Lee et al.

FOREIGN PATENT DOCUMENTS

EP 0351983
WO 02/27928

1/1990
4/2002

* cited by examiner

Primary Examinerilames Cho
(74) Attorney, A gent, 0r Firm4Greenblum & Bernstein PLC

(57) ABSTRACT

An apparatus for and method of programming a program
mable logic device, the programmable logic device compris
ing a plurality of serially connected programmable logic
regions. The method comprises the steps of receiving initial
programming data for programming the plurality of serially
connected programmable logic regions and receiving trans
formation data related to the presence and location of at least
one faulty serially connected programmable logic region. The
method also comprises the steps of generating bypass pro
gramming data Which, in use, renders a serially connected
programmable logic region logically invisible and generating
effective programming data by incorporating, using informa
tion found in the transformation data, the bypass program
ming data into the initial programming data. Finally, the
method comprises the step of programming the program
mable logic device using the effective programming data such
that the at least one faulty serially connected programmable
logic region is programmed With the bypass programming
data.

6 Claims, 5 Drawing Sheets

Input transformation Input
(in Programming Data

1 10 \ Programming
Interface

Effective
"Programming Data

111\ A

ll2 \ X

ll3\ B

114\ Y
01119 alqe um 01,1

115\ C

Input

Effective

US. Patent Mar. 16, 2010 Sheet 1 015 US 7,679,400 B2

100

' 1113a

ALU

‘ (logic)

E135 I535 E1351
ALU ALU ALU

(logic) (logic)

EEG m
ALU ALU
(logic) ' (logic)

EBB E135
ALU ALU ALU
(logic) _ (logic) (logic)

m m
ALU ALU ALU

('09 ic)

104< m .m m
i ' ‘ ALU

% ' (logic)

PROGRAMMING INTERFACE

1 02<

103< E1511
ALU
(logic)

FIGURE1

US. Patent Mar. 16, 2010 Sheet 2 of5 US 7,679,400 B2

‘I
0

Q“ =

I 4

103

104

FIGURE 2

US. Patent Mar. 16, 2010 Sheet 3 of5 US 7,679,400 B2

Input transform ation
data

Input
Programming Data

105 ' Programming 100
Interface

lEffective Programming Da a

101--—> A w

102—> B 5,5,‘
34?

103-» X

104—> c g

A

Input <A XB XC >

.Effective (A XB XX XC >
P
t

FIGURE 3

US. Patent Mar. 16, 2010 Sheet 4 of5 US 7,679,400 B2

Input
Programming Data datal

ogramming
Interface

7 Effactive

rogramming Data

Input transformation

110 \ Pr

wanna-5555a E25
112

113

X6) Input A X3

A XX XB XY X6) Effective

FIGURE 4

US. Patent Mar. 16, 2010 Sheet 5 of5 US 7,679,400 B2

1 05
Input Control I Input
Transformation Programming

\ Data Data

1 O7

1 O6 , ‘ \

Finite State k Default Prg. 108
Machin6 Data Generator

v 1

——\J

Control Effective
Pro gramm ing

v v Data

FIGURE 5

US 7,679,400 B2
1

SYSTEM AND METHOD FOR LOCAL
GENERATION OF PROGRAMMING DATA IN

A PROGRAMMABLE DEVICE

The present invention relates to a system and method for
the local generation of programming data in a programmable
logic device.

During the manufacturing of semiconductor devices, pro
cess errors may render parts of a circuit unusable. In order to
address this problem, initial manufacturing techniques
involved testing the ?nished circuits and discarding defective
ones. Then, to improve on this Wasteful practice, various
methods of fault-tolerance Were introduced into manufactur
ing processes.

Typically, methods of providing fault-tolerance in pro
grammable logic devices comprise the steps of determining
the required functional circuit siZe and adding an extra sec
tion, the redundant part being used to replace any defective
parts after manufacture. Although fault-tolerance adds to the
siZe and cost of each device, the number of devices Which can
be used (the yield) is increased to an extent Which sees an
overall reduction in the average cost of each usable device.
Some fault-tolerant systems have a programming interface

for each repeated region of the programmable device. Infor
mation about the location of the fault is used to redirect
programming data from a faulty region to another. HoWever,
these solutions require extra dedicated circuitry to redirect the
programming data. This additional routing circuitry further
increases the siZe and cost of the programmable device, driv
ing up the cost of each usable device.

In order to overcome this problem, fault-tolerant methods
Were developed Which involve creating programming data
tailored to Work around various faults. Using Computer
Aided Design (CAD) softWare, an original program is altered
in order to create a series of different programs, each one of
Which is design to avoid at least one area of the programmable
logic device. Once a device is manufactured, it is tested to
determine the presence and location of any fault. Based on the
results of these tests, one of the altered programs is then
chosen to program the device. Accordingly, it is possible to
avoid the use of almo st any faulty area of the device. HoWever,
this method not only requires the pre-programming of several
altered programs, it also necessitates a complex manufactur
ing infrastructure in order to support the making of this kind
of choice during the manufacturing process.

Thus, there exists a clear need to provide a method of
providing fault-tolerance in a programmable logic device that
does not require the addition of dedicated routing circuitry.
Moreover, there is also a need for a method of providing
fault-tolerance in a programmable logic device Which does
not require the creation of several versions of programming
data and Which does not require the utilisation of a complex
manufacturing infrastructure.

In order to solve the problems associated With the prior art,
the present invention provides a method of programming a
programmable logic device, the programmable logic device
comprising a plurality of serially connected programmable
logic regions, the method comprises the steps of:

receiving initial programming data for programming the
plurality of serially connected programmable logic regions;

receiving transformation data related to the presence and
location of at least one faulty serially connected program
mable logic region;

generating bypass programming data Which, in use, ren
ders a serially connected programmable logic region logi
cally invisible;

20

25

30

35

40

45

50

55

60

65

2
generating effective programming data by incorporating,

using information found in the transformation data, the
bypass programming data into the initial programming data;

programming the programmable logic device using the
effective programming data such that the at least one faulty
serially connected programmable logic region is pro
grammed With the bypass programming data.

Preferably, the step of generating the effective program
ming data further comprises the steps of:

determining, using the transformation data, a speci?c point
Where the bypass programming data should be incorporated
into the initial programming data, the speci?c point being
related to the physical location of the faulty serially connected
programmable logic region; and

inserting the bypass programming data into the initial pro
gramming data at the speci?c point.

The step of inserting the bypass programming data into the
initial programming data may further comprise the steps of:

halting the reception of the initial programming data until
the bypass data has been inserted into the initial programming
data; and

resuming the reception of the initial programming data.
The step of inserting the bypass programming data into the

initial programming data may further comprise the steps of:
storing incoming initial programming data into memory

means until the bypass data has been inserted into the initial
programming data; and

reading the initial programming data Which Was stored in
the memory means.

The present invention further provide an apparatus for
programming a programmable logic device, the program
mable logic device comprising a plurality of serially con
nected programmable logic regions, the apparatus comprises:

initial programming data receiving means arranged to
receive initial programming data for programming the plu
rality of serially connected programmable logic regions;

transformation data receiving means arranged to receive
transformation data related to the presence and location of at
least one faulty serially connected programmable logic
region;

bypass programming data generating means arranged to
generate bypass programming data Which, in use, renders a
serially connected programmable logic region logically
invisible;

effective programming data generating means arranged to
generate effective programming data by incorporating, using
information found in the transformation data, the bypass pro
gramming data into the initial programming data;
programming the programmable logic device using the

effective programming data such that the at least one faulty
serially connected programmable logic region is pro
grammed With the bypass programming data.

Preferably, the effective programming data generating means
further comprises:

determining means arranged to determine, using the trans
formation data, a speci?c point Where the bypass program
ming data should be incorporated into the initial program
ming data, the speci?c point being related to the physical
location of the faulty serially connected programmable logic
region; and

inserting means arranged to insert the bypass programming
data into the initial programming data at the speci?c point.

US 7,679,400 B2
3

The inserting means may further comprise:
halting means arranged to halt the reception of the initial

programming data until the bypass data has been inserted into
the initial programming data; and

resuming means arranges to resume the reception of the
initial programming data.

The inserting means may further comprise:
storing means arranged to store the incoming initial pro

gramming data into memory means until the bypass data has
been inserted into the initial programming data; and

reading means arranged to read the initial programming
data Which Was stored in memory means.
As Will be appreciated, the present invention provides sev

eral advantages. For example, the present invention dimin
ishes the programming and hardWare overhead associated
With fault-tolerance, thereby diminishing manufacturing cost
and complexity. Also, the present invention provides a system
and method of programming a programmable logic device
Which hides the existence of fault-tolerance from the CAD
softWare generating the initial programming data. Moreover,
the fault-tolerance provided by the method and system of the
present invention is also hidden from the user, thus improving
ease of use.

An example of the present invention Will noW be described
With reference to the accompanying draWings, in Which:

FIG. 1 is a diagram representing the programmable logic
architecture of a device for use With the method of the present
invention;

FIG. 2 is a diagram representing a more detailed vieW of the
logic architecture of the device of FIG. 1;

FIG. 3 is a high-level diagram of the system in accordance
With one example of the present invention;

FIG. 4 is a high-level diagram of the system in accordance
With one example of the present invention; and

FIG. 5 is a more detailed diagram representing the pro
gramming interface of the systems of FIGS. 3 and 4.
A typical programmable logic device is programmed With

a bitmap of data stored in memory distributed throughout the
device. For each programmable element of the device, there is
associated data stored in speci?c memory elements. The pro
gram memory in most programmable devices is populated
With data in such a Way as to enable the entire programmable
device acts as one large memory (i.e. each element has an
address that uniquely identi?es it amongst all elements).
When a device is to be programmed, an address and some

data are presented to the device’ s programming interface. The
programming interface then sends the data to the addressed
element While all other elements remain inactive.
Some emerging programmable logic architectures com

prise repeating strips of identical blocks. FIG. 1 shoWs an
example of such an architecture. The programmable logic
device 100 ofFIG. 1 comprises a series ofstrips 101, 102,103
and 104. Each strip 101, 102, 103 and 104 can be linked
together. Accordingly, strips can be stacked in order to build
larger coherent arrays.

Each strip has a series of available routing resources Which
serve to connect the strips to each other. The available routing
resources of a strip surrounded by tWo other strips can be
programmed to a bypass mode by passing the connections
input from a ?rst adjacent strip to those output to a second
adjacent strip, thereby rendering the middle strip logically
invisible.

FIG. 2 shoWs a more detailed vieW of the routing resource
of FIG. 1. The routing is shoWn as implemented using mul
tiplexers. HoWever, other implementations such as pass- gates
or transmission-gates are possible. As shoWn in FIG. 2, the

20

25

30

35

40

45

50

55

60

65

4
routing netWork is repeated such that there are direct paths
betWeen the inputs and outputs of each strip. For example, the
dotted line in FIG. 2 shoWs hoW one input of strip 103 can be
directly connected to the output of strip 103. Thus, the output
of strip 102 can effectively be directly connected to the input
of strip 104.

Accordingly, for programmable logic devices having an
architecture based on repeated strips of logic blocks, it is
possible to implement fault-tolerance by adding an extra strip
to the device. Then, if a fault is detected in a strip, the faulty
strip can be programmed With a con?guration that con?gures
its inputs to be directly connected to its outputs, thereby
rendering it logically invisible.
NoW, With reference to FIG. 3, a detailed description of one

example of the present invention Will noW be described.
Again, as Was the case in FIG. 1, the user programmable logic
device 100 comprises four strips (or regions) 101, 102, 103
and 104.

In this example, three programming blocks A, B and C are
to be programmed into the programmable logic device 100.
First the programming data for the programmable device is
created using Computer Aided Design (CAD) softWare. The
CAD softWare behaves as if it Was programming a device
containing only three regions and so generates data for only
three regions. This programming data is then stored in order
to subsequently be sent to the programming interface circuit
105.
At the time of manufacturing, the results of tests carried out

on the device are encoded and stored in memory so that they
can also be sent to the programming interface circuit 105 at
the time of programming. This information is contained in the
input transformation data referred to in FIG. 3. In this
example, region 103 is found to be faulty. Accordingly, the
programming block C for that region Will need to be moved to
region 104. Moreover, the strip containing the faulty element
must be programmed With a bypass con?guration.

To do this, the programming interface circuit 105, in accor
dance With one example of the present invention, receives
both programming data and transformation data. The pro
gramming interface circuit 105 then automatically alters the
programming data in response to information about the loca
tion of the fault in the programmable device. The information
relating to the location of the fault is contained in the trans
formation data. Depending on the exact architecture of the
strip, the actual bypass con?guration may be relatively simple
to generate. If this is the case, the programming interface
circuit 105 Will be relatively small. For example, if the
required con?guration merely requires the generation of a
plurality of Zeros, then the programming interface circuit 105
could merely comprise a counter and a multiplexer Which
Would insert Zeroes into the programming data for the correct
number of con?guration cycles.

In the example of FIG. 4, blocks A, B and C are to be
programmed into a programmable logic device. HoWever, in
this example, there are tWo faulty regions 112, 114. As in the
previous example, the programming data for the program
mable device is created using ComputerAided Design (CAD)
softWare. The CAD softWare behaves as if it Was program
ming a device containing only three regions and so generates
data for only three regions. This programming data is then
stored in order to subsequently be sent to the programming
interface circuit 110.
As With the previous example, at time of manufacturing,

the results of tests carried out on the device are encoded and
stored in memory so that they can also be sent to the program
ming interface circuit 110 at the time of programming. In this
example, regions 112 and 114 are found to be faulty. Accord

US 7,679,400 B2
5

ingly, programming block B for Which Was originally meant
for region 112 Will need to be moved to region 113 and
programming block C Which Was originally meant for region
113 Will need to be moved to region 115. Moreover, the each
strip containing faulty elements must be programmed With a
bypass con?guration.

In order to do this, the programming interface circuit 110,
in accordance With one example of the present invention,
receives both programming data and transformation data. The
programming interface circuit 110 then automatically alters
the programming data in response to information about the
location of the faults in the programmable device. As With the
previous example, the information relating to the locations of
the faults is contained in the transformation data. The genera
tion of the default con?guration data can be performed as in
the example of FIG. 3.

In the case Where no faults are found, the programming
interface circuit 10-5, 110 of the present invention Will assign
the last regions as faulty in the transformation data. Accord
ingly, the ?rst blocks in the device Will be programmed With
the programming data and the last blocks Will be logically
invisible.

NoW, With reference to FIG. 5, a detailed description of the
programming interface circuit 105 in accordance With
another example of the invention Will noW be described. As
With the earlier example, at the time of programming, the
circuit 105 receives the programming data and the transfor
mation data. As a result of the transformation data identifying
region 103 as being faulty, the circuit 105 must send default
programming data to the programmable logic device at the
appropriate time in order to create the effective programming
data.

In this example, the programming interface 105 comprises
a Finite State Machine (FSM) 106 Which monitors control
signals coming from the external interface and the program
mable device 100. The FSM 106 determines the appropriate
time for inserting default programming data and controls the
data insertion operation. The FSM 106 also generates output
control signals to the external and programmable device
interfaces.

One method Which could be used by the FSM 106 to
determine When to insert the default programming data Would
be count the number of con?guration data elements Which
have been sent to the array. If it takes Y data elements to
con?gure each strip and the Nth strip is defective, the default
programming data should be inserted after Y><N data ele
ments have been transferred. As Will be appreciated by the
skilled reader, other methods of determining When to insert
default con?guration data are also possible. For example,
there may be special code Words or tags in the programming
data Which identify When the programming of a strip is com
plete. In this case, the FSM 106 could be programmed to
recognise and count the code Words to determine When to
insert the default programming data.

In the above embodiments, once the FSM 106 determines
that it is the appropriate time to insert the default program
ming data, it sWitches the output of multiplexer 108 betWeen
the input programming data and the internally generated
default programming data generated by the default pro gram
ming data generator 107. Once the default programming data
is sent, the output of multiplexer 108 is sWitched back to the
input programming data and the subsequent regions are pro
grammed. As can be seen from FIG. 3, the result of the above
operations is that, although the programming data Which Was
input into the programming interface contains information to
program regions 101, 102 and 103, the effective program

20

25

35

40

45

50

55

60

65

6
ming data contains enough information to program four
regions 101, 102, 103 and 104.

Depending on the architecture of the system in Which the
programmable device is embedded, the operation and imple
mentation of the programming interface may be varied. For
example, if the programming data is sent from a local cache
memory, then the programming interface Will pause reading
the memory (i.e. using the control signal shoWn in FIG. 3)
While it generates the data. Alternatively, if the programming
data is being sent by some other entity in the system and
cannot be stopped, then the programming interface circuit
105 may comprise a First-In-First-Out buffer (not shoWn)
Within Which it Will store the incoming programming data
While inserting generated data into the effective programming
data.

The invention claimed is:
1 . A method of pro gramming a programmable logic device,

the programmable logic device comprising a plurality of seri
ally connected programmable logic regions, the method com
prising:

receiving initial programming data for programming the
plurality of serially connected programmable logic
regions;

receiving transformation data related to the presence and
location of at least one faulty serially connected pro
grammable logic region;

generating bypass programming data Which, in use, ren
ders a serially connected programmable logic region
logically invisible;

generating effective programming data by incorporating,
using information found in the transformation data, the
bypass programming data into the initial programming
data;

programming the programmable logic device using the
effective programming data such that the at least one
faulty serially connected programmable logic region is
programmed With the bypass programming data,

Wherein generating the effective programming data com
prises:

determining, using the transformation data, a speci?c point
Where the bypass programming data should be incorpo
rated into the initial programming data, the speci?c point
being related to the physical location of the faulty seri
ally connected programmable logic region; and

inserting the bypass programming data into the initial pro
gramming data at the speci?c point.

2. The method of claim 1, Wherein inserting the bypass
programming data into the initial programming data further
comprises:

halting the reception of the initial programming data until
the bypass data has been inserted into the initial pro
gramming data; and

resuming the reception of the initial programming data.
3. The method of claim 1, Wherein inserting the bypass

programming data into the initial programming data further
comprises:

storing incoming initial programming data into memory
until the bypass data has been inserted into the initial
programming data; and

reading the initial programming data Which Was stored in
the memory.

4. An apparatus for programming a programmable logic
device, the programmable logic device comprising a plurality
of serially connected programmable logic regions, the appa
ratus comprising:

US 7,679,400 B2
7

an initial programming data receiver Which receives initial
programming data for programming the plurality of seri
ally connected programmable logic regions;

a transformation data receiver Which receives transforma
tion data related to the presence and location of at least
one faulty serially connected programmable logic
region;

a bypass programming data generator Which generates
bypass programming data Which, in use, renders a seri
ally connected programmable logic region logically
invisible;

an effective programming data generator Which generates
effective programming data by incorporating, using
information found in the transformation data, the bypass
programming data into the initial programming data;

a programmer Which programs the programmable logic
device using the effective programming data such that
the at least one faulty serially connected programmable
logic region is programmed With the bypass program
ming data,

Wherein the effective programming data generator com
pnses:

8
a determiner Which determines, using the transformation

data, a speci?c point Where the bypass programming
data should be incorporated into the initial programming
data, the speci?c point being related to the physical
location of the faulty serially connected programmable
logic region; and

an inserter Which inserts the bypass programming data into
the initial programming data at the speci?c point.

5. The apparatus of claim 4, Wherein the inserter com
10 prises:

a halter Which halts the reception of the initial program
ming data until the bypass data has been inserted into the
initial programming data; and

a resumer Which resumes resume the reception of the initial
programming data.

6. The apparatus of claim 4, Wherein the inserter com
prises:

a storer Which stores the incoming initial programming
data into memory until the bypass data has been inserted
into the initial programming data; and

a reader Which reads the initial programming data Which
Was stored in the memory.

* * * * *

