
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0181238 A1

Sumrall

US 2014O181238A1

(43) Pub. Date: Jun. 26, 2014

(54)

(71)

(72)

(73)

(21)

(22)

ACCESS AND CONTROL OF
MAINFRAME-BASED DATAN
NON-MANFRAME FORMAT

Applicant: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Inventor: Anthony C. Sumrall, San Jose, CA
(US)

Assignee: International Business Machines
Corporation, Armonk, NY (US)

Appl. No.: 13/726,842

Filed: Dec. 26, 2012

100

N

HOST OS

DATA ACCESS
MANAGER

SECURITY
ENGINE

STORAGE STORAGE
DEVICE DEVICE
DATASETS DATASETS

132a, 132

STORAGE
DEVICE
DATASETS

Publication Classification

(51) Int. Cl.
G06F 5/73 (2006.01)

(52) U.S. Cl.
CPC G06F 15/17331 (2013.01)
USPC .. 709/216

(57) ABSTRACT
A mechanism is provided for providing access to mainframe
based data in a non-mainframe format. A host computer sys
tem receives a request from a client system to mounta dataset
on a data storage device controlled by the host computer
system as a data Volume on the client system. The host system
verifies the client systems authority to mount the requested
dataset. The dataset is mounted as the data Volume on the
client system. The dataset, after mounting, behaves as native
to the client system. Subsequent input/output (I/O) requests
associated with the mounted dataset are processed by the host
computer system.

110

CLIENT OS 12

DATA ACCESS

132

Patent Application Publication

100

HOST OS

DATA ACCESS
MANAGER

SECURITY
ENGINE

STORAGE
DEVICE
DATASETS

132

102

104

106

108

Jun. 26, 2014 Sheet 1 of 4 US 2014/O181238A1

CLIENT OS

DATA ACCESS
DRIVER

IOI

STORAGE
DEVICE
DATASETS

132

STORAGE
DEVICE
DATASETS

132C

FIG. 1

10

I 2

II6

120

CLIENT OS 122

DATA ACCESS
DRIVER 114)

26

Patent Application Publication Jun. 26, 2014 Sheet 2 of 4 US 2014/O181238A1

201

WOLUME

SYS1PARMLIB IO
USER1.JCLCNTL

CLIENTOO.WINDOWSVOLD
USER2TEST.COB 210

CLIENTO1.LINUXHOME

132,

FIG. 2

Patent Application Publication Jun. 26, 2014 Sheet 3 of 4 US 2014/O181238A1

-El ACCESSMANAGER-106 - an ACCESSDRIVER-114a
SEND MOUNT 302

ACCESSREQUEST
304

PROCESS MOUNT
ACCESSREQUEST

IDENTIFY THE 305
DATASET THAT NEEDS
TO BE MOUNTED 310

SEND MOUNT
REQUEST DENIED

MESSAGE

PROCESS MOUNT
REQUEST DENIED

MESSAGE MOUNT
REQUEST
VALID

PROCESS MOUNT 316
CONFIRMATION

MESSAGE

MOUNTIDENTIFIED
DATASETASADATA
voy. THE RECEIVED

I/O REQUESTASSOCIATED

SEND MOUNT
CONFIRMATION

WITH THE MOUNTED DATA

320

VOLUME

YES
SEND/OREQUEST
TODATA ACCESS

MANAGER
3.18

RECEIVED
I/O REQUEST

VALID 322

SEND/OREQUEST PROCESSI/O E. EG REQUEST 323
DENIED MESSAGE

PERFORMI/O 324
OPERATION

SENDI/O
CONFIRMATION

MESSAGE

PROCESS I/O
CONFIRMATION

MESSAGE
328

FIG. 3

US 2014/O181238A1 Jun. 26, 2014 Sheet 4 of 4 Patent Application Publication

988

az IºaII

938 038

N?

US 2014/0181238 A1

ACCESS AND CONTROL OF
MLANFRAME-BASED DATAN
NON-MANFRAME FORMAT

BACKGROUND

0001. The disclosure relates generally to computer sys
tems, and more specifically to execution of operations. Such
as I/O (input/output) operations, for one computer architec
ture on another computer architecture.
0002 An IBM System ZR computer is a product line of
large computer servers or mainframes based on the Z/Archi
tecture(R) provided by International Business Machines Cor
poration (IBM(R) of Armonk, N.Y. IBM System Z(R) comput
ers can utilize a derivative of the Multiple Virtual Storage
(MVS) operating system, which is a robust mainframe oper
ating system utilized by many generations of IBM(R) main
frame computers. Derivatives of the MVSTM operating sys
tem can include the OS/390R) operating system and IBM
z/OS(R) (IBM System ZR), z/Architecture(R), IBM(R), OS/390R
and IBM z/OS(R) are registered trademarks of International
Business Machines Corporation, located in Armonk, N.Y.).
0003. There are numerous heterogeneous operating envi
ronments for jobs, applications or other processes. Typically,
each of these operating environments include different, and
often incompatible, combinations of hardware, operating sys
tem, and application Software. For example, in addition to a
mainframe computer utilizing Z/OS operating system, the
heterogeneous system may include computers running Vari
ous operating systems such as UNIX, Windows, Linux, and
the like. Significant amounts of data may be spread across
multiple computer systems. This means that in Such hetero
geneous operating environments there are multiple mecha
nisms for managing access and for maintaining/restoring dis
tributed data. Therefore, it would be desirable to provide a
more efficient method of accessing and/or maintaining data.
Preferably, such method should have minimal impact on the
operation of the heterogeneous operating environments.

SUMMARY

0004. In one aspect, a method for providing access to
mainframe-based data in a non-mainframe format is pro
vided. The method comprises receiving, at a host computer
system, a first request from a client system. The first request
includes a request to mount a dataset on a data storage device
controlled by the host computer system as a data Volume on
the client system. The method further comprises, in response
to receiving the request to mount the dataset, the host system
Verifying the client system's authority to mount the requested
dataset. The method further comprises mounting the dataset
as the data Volume on the client system. The dataset, after
mounting, behaves as native to the client system. The method
further comprises processing Subsequent I/O requests asso
ciated with the mounted dataset.
0005. In another aspect, a computer program product for
providing access to mainframe-based data in a non-main
frame format is provided. The computer program product
comprises one or more computer-readable tangible storage
devices and a plurality of program instructions stored on at
least one of the one or more computer-readable tangible stor
age devices for execution by at least one of one or more
processors. The plurality of program instructions comprises
program instructions to receive, at a host computer system, a
first request from a client system. The first request comprises

Jun. 26, 2014

a request to mount a dataset on a data storage device con
trolled by the host computer system as a data Volume on the
client system. The plurality of program instructions further
comprises program instructions to Verify the client systems
authority to mount the requested dataset. The plurality of
program instructions further comprises program instructions
to mount the dataset as the data volume. The dataset after
mounting behaves as native to the client system. The plurality
of program instructions further comprises program instruc
tions to process a second request from the client system. The
second request comprises an I/O request associated with the
mounted dataset.
0006. In yet another aspect, a computer system for provid
ing access to mainframe-based data in a non-mainframe for
mat is provided. The computer system comprises one or more
processors, one or more computer-readable tangible storage
devices, and a plurality of program instructions stored on at
least one of the one or more storage devices for execution by
at least one of the one or more processors. The plurality of
program instructions comprises program instructions to
receive, at a host computer system, a first request from a client
system. The first request comprises a request to mount a
dataset on a data storage device controlled by the host com
puter system as a data Volume on the client system. The
plurality of program instructions further comprises program
instructions to verify the client system's authority to mount
the requested dataset. The plurality of program instructions
further comprises program instructions to mount the dataset
as the data Volume. The dataset after mounting behaves as
native to the client system. The plurality of program instruc
tions further comprises program instructions to process a
second request from the client system. The second request
comprises an I/O request associated with the mounted
dataset.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

0007 FIG. 1 is an illustration of a distributed data process
ing environment in which an embodiment of the present
invention can be implemented.
0008 FIG. 2 is a block diagram representation of mount
ing a dataset on a data storage device controlled by a host
computer system as a data Volume on a client system in
accordance with an embodiment of the present invention.
0009 FIG. 3 illustrates steps performed by the data access
manager program running on a host computer system and the
data access driver program running on a client system to
provide access to a dataset on the data storage device con
trolled by the host computer system, according to an embodi
ment of the present invention.
0010 FIG. 4 is a block diagram of internal and external
components of each of the client computers of FIG. 1.

DETAILED DESCRIPTION

0011 Embodiments of the present invention will now be
described with reference to the figures. Embodiments of the
present invention apply equally to all forms of large computer
servers including mainframes. However, focus is directed to
IBM System Z(R) computers by means of example and expla
nation in the description of embodiments of the present inven
tion.
0012. As used herein, the term “operating system” refers
to a set of Supervisory routines for controlling the operating of

US 2014/0181238 A1

a computing system, including one or more of the following
major functions: task management, storage management,
input/output management, and data management. An “appli
cation program’, as used herein, refers to a program writtento
do a user's work, usually in a high-level language, and is
loaded into main storage and executed under the Supervision
of the operating system's task manager. As used herein, the
term “volume' refers to a certain portion of data, together
with at least a portion of its data carrier (such as a drum, a disk
pack, a disk storage module, and the like) that can be conve
niently handled as a unit. It should be noted that the term
“volume includes any type or form of physical, logical, or
virtualized volume.
0013 Among other things, operating systems manage the
use by application programs of various system resources Such
as data files (i.e. datasets), executable program files, hardware
resources such as processors and memory, and the like. Oper
ating systems use file systems to organize data and program
files so that they may be accessed by applications. In a hier
archical file system, files are logically contained in directo
ries, each of which may be either a root directory or a subdi
rectory contained in a parent directory. In general, each
directory may contain Zero or more Subdirectories and Zero or
more files.
0014. However, in a distributed data processing environ
ments, such as the environment depicted in FIG. 1, there may
be a plurality of homogeneous data storage devices that may
be physically located on different computer systems and may
be controlled by different operating systems. Thus, to fully
specify one of the files, a user would have to identify not only
the location of the file within its file system (using, for
example, a path name), but also the file system (using, for
example, a drive letter) as well. To avoid this need to specify
a file system, most of the contemporary operating systems
employ a concept known as mounting, in which an entire first
file system may be placed (or “mounted') with its hierarchi
cal tree structure intact, for example, in a directory of a second
file system, so that all files can be referenced from within a
single file system.
0015 The mount operation would typically be initiated by
a script or program that runs during the start up of the oper
ating system or by a system administrator entering, for
example, a command (e.g., mount command) from a key
board of an operator console or one of the client computer
systems described below in conjunction with FIG. 1. To
reverse the mount operation, the process of shutting down the
computer system, the administrator or the user would enter,
for example, another command (e.g. unmount command)
0016 To summarize, in the context of various embodi
ments of the present invention, mounting a first file system on
a first computer system logically associates it with a second
computer system so that it can be referenced by the second
computer system. The term “mount operation', as used
generically herein, refers to this operation, as well as any
other operation that changes the logical association of a first
file system on a first computer system with a second computer
system.
0017. In one general embodiment, a distributed data pro
cessing environment may include a data storage device hav
ing data stored therein. A host computer system is in commu
nication with the data storage device. The host computer
system has resident thereon a controlling operating system.
The distributed data processing environment may further
include one or more client computer systems in communica

Jun. 26, 2014

tion with the host computer system. Each of the client com
puter systems may have resident thereon a client operating
system, which may be different from the host computer sys
tem's operating system. According to an embodiment of the
present invention, a Volume on the data storage device may be
under logical control of the operating system running on the
host computer system. The Volume on the data storage device
may contain a plurality of datasets.
0018. According to an embodiment of the present inven
tion, one or more of the plurality of datasets on the data
storage device may be mounted as an entire data Volume on
the client system. The dataset, after mounting, behaves as
native to the client system. For example, the dataset may store
data in a format native to the client system. Advantageously,
the host computer system's data access security mechanism
may control access to the mounted Volume on the client
system. Furthermore, various embodiments of the present
invention facilitate optimized method of maintaining hetero
geneous data without having any significant impact on the
operation of the heterogeneous distributed data processing
environment. In other words, the heterogeneous distributed
data processing system presented herein is an integration of
data storage resources, such that the resources, although het
erogeneous, are federated and logically integrated by a single
point of control under a single administrative and manage
ment model (e.g., the model of the Z/Enterprise SystemTM
offered by International Business Machines Corporation,
Armonk, N.Y.).
0019 FIG. 1 is an illustration of a distributed data process
ing environment in which an embodiment of the present
invention can be implemented. FIG. 1 shows one example of
an operating environment applicable to various embodiments
of the present invention and is not intended to imply any
limitation with regard to the environments in which different
embodiments may be implemented. Many modifications to
the depicted environments may be made.
0020. In one embodiment, a distributed data processing
system 100 may include a network 101, a host computer
system 102, client computers 110 and 120 coupled to the host
computer system 102 via the network 101, and a plurality of
storage devices 130a,b,c coupled, for example, to the network
101 or directly to the host computer system 102. The host
computer system 102 may comprise a large computer server,
such as an IBM(R) System ZR mainframe computer (offered
by International Business Machines Corporation, Armonk,
N.Y.), operating according to the IBM(R) Z/Architecture,
although the present embodiment can be implemented in
other forms of large computer servers. The host computer
system 102 may be optimized to host large-scale transaction,
and mission critical applications. It may include, for instance,
one or more processors (CPUs), which may execute a host
operating system 104. Such as the Z/OSR operating system
offered by International Business Machines Corporation. The
host computer system 102, in one embodiment, runs a data
access manager program 106 that manages data stored on the
storage devices 130a,b,c and access thereto. The host com
puter system 102 may also run a security engine 108 that
manages the security of the data. The data access manager
106 and the security engine 108 are discussed in greater detail
below.

0021 Network 101 represents a worldwide collection of
networks and gateways to communicate with one another.
Network 101 can be, for example, an intranet, a local area
network (LAN), a wide area network (WAN), a wireless local

US 2014/0181238 A1

area network (WLAN), a synchronous optical network (SO
NET), and the like. Network 101 may include communica
tion connections, such as wire, wireless communication
links, or fiber optic cables.
0022. In an embodiment of the present invention, the host
computer system 102 may be connected, for example via the
network 101, to a plurality of large scale storage devices
130a-c, such as direct access storage devices (DASD) located
externally to the host computer system 102. In an alternative
embodiment, the plurality of DASDs 130a-c may be directly
connected to the host computer system 102 according to a
protocol such as Enterprise Systems Connection (ESCON).
Fiber Connectivity (FICON), Small Computer System Inter
face (SCSI), and the like. Mainframe files or "datasets 132a
c., for example under Z/OSR operating system, are allocated
space on DASD devices 130a-c in one or more contiguous
groups of tracks.
0023. Additionally, DASD devices 130a-cused under, for
example, z/OSR operating system may contain a VTOC (Vol
ume Table of Contents) (shown in FIG. 2), and optionally a
VTOCIX (VTOC Index) and VVDS (VSAM Volume Data
Set). VSAM stands for virtual storage access method.
0024. In the depicted example, client computers 110 and
120 may be, for example, a netbook, laptop computer, tablet
computer, desktop computer, or any type of computing
devices capable of executing Software in accordance with the
embodiments described herein. In various embodiments of
the present invention, client computers 110 and 120 may have
resident thereon any of various operating Systems, such as
Windows, Mac OS, Linux, Unix, and the like. For example,
the client computer 110 may be running Windows operating
system 112 while the client computer 120 may be running
Linux operating system 122. Client computers 118 and 120
may contain user interfaces (UIs) 116 and 126, respectively.
UIs 116 and 126 can be, for example, graphical user interface
(GUI) or web user interfaces (WUI).
0025. In addition, client computers 110 and 120 may have
various applications installed on or available to each com
puter. For example, an application can be an email client, web
browser, web application, and the like. Applications running
on client computers 110 and 120 may include, for example,
data access driver programs 114a and 114b, respectively. In
an embodiment of the present invention, the data access driver
programs 114a and 114b may be configured to communicate
with the data access manager 106 running on the host com
puter system 102. The data access driver programs 114a, b
and the data access manager program 106 may collectively
manage application data and access thereto. The data access
manager 106 and the data access drivers 114a, b are discussed
in greater detail below.
0026. As will be discussed with reference to FIG. 4, the
client computer 110 includes internal components 800a and
external components 900a and client computer 120 includes
internal components 800b and external components 900b.
For simplicity purposes, only two client computers 110 and
120 are shown in FIG. 1, although in other embodiments,
distributed data processing system 100 can include additional
client computers.
0027 FIG. 2 is a block diagram representation of mount
ing a dataset which resides on a data storage device controlled
by the host computer system as a data Volume on the client
system in accordance with an embodiment of the present
invention. One exemplary volume 201 that may be contained
within one DASD, such as the DASD 130a, is shown in FIG.

Jun. 26, 2014

2. It will be understood that the volume 201 shown could be
any type or form of physical, logical, or virtualized Volume
residing on a magnetic disk, magnetic cylinder media, optical
disk media or similar direct access storage media. In one
embodiment of the present invention, the volume 201 may
contain a Subset of the data being used by the host computer
system 102, as well as one or more client computer systems,
for example, client systems 110 and 120. Data contained on
the volume 201 may be distributed between multiple data sets
132a as described below. It should be noted that if the volume
201 is implemented as a virtualized volume, the datasets
contained on the Volume 201 may span across multiple physi
cal data storage devices.
0028. Entries related to a dataset in a particular volume
stored on a storage device, whether the volume is VSAM or
non-VSAM are maintained by the host operating system 104
in a volume table of contents, such as a VTOC 202 stored
within the volume 201. Each VTOC entry 232-240 includes
vital information about the format and location of the corre
sponding dataset in the volume. For a dataset in a VSAM
Volume, an entry of additional vital information may be main
tained in a VSAM Volume DataSet (VVDS) and stored with
the volume. To access a non-VSAM dataset, the information
in the VTOC entry 232-240 is required. To access a VSAM
dataset, the information in the VVDS is required. For illus
trative purposes only, assume that the Volume 201 contains
only non-VSAM datasets.
0029. As shown in FIG. 2, one of the entries in the VTOC
202, more specifically entry 232 may contain vital informa
tion about a configuration file such as the SYS1. PARMLIB
containing system variables and other configuration param
eters. Among the vital information included in the entry 232
may be a pointer to the location 204 of the dataset in the
Volume 201. Some dataset entries in the VTOC 202, such as
entries 234 and 238, may contain information about data used
by two or more jobs running on the host computer system 102.
for example, USER1.JCL.CNTL and USER2.TEST.COB,
respectively. It should be noted that different users of the host
computer system 102 may have different security credentials
to access any particular dataset.
0030. According to an embodiment of the present inven
tion, the data access manager program 106 and the data access
driver programs 114a–b may enable mounting a dataset which
resides on a volume, such as the volume 201 shown in FIG.2,
of a data storage device controlled by the host computer
system, Such as the host computer system 102, as a data
Volume on the client system, Such as client systems 110 and
120. For example, as discussed in greater detail below, the
data access driver program 114a running on the client system
110 under control of Windows operating system 112 may
send a request to the data access manager 106 to mount a
particular dataset on the volume 201 as a data volume, for
instance data volume “D:\' 210 on the client system 110. In
accordance with an embodiment of the present invention, in
response to receiving Such mount request, the data access
manager program 106 may verify that the client system 110
has authority (permission) to access the requested dataset. If
the client system 110 has authority to access the requested
dataset, the data access manager program 106 may grant Such
request. As a result, the data access manager program 106
may associate a dataset storing location 206 pointed to by the
“CLIENT00.WINDOWS.VOLD entry 236 with the logical
volume “D:\' 210 on the client system 110. This association
is depicted by the arrow 250.

US 2014/0181238 A1

0031. In an embodiment of the present invention, to keep
track of information needed to manage multiple logical asso
ciations, the data access manager program 106 may maintain,
for example, virtualization information. Specific form and
amount of virtualization information may be implementation
dependent. By way of example and not limitation, virtualiza
tion information may reside in a virtualization table main
tained by the data access manager program 106. In Such
implementation, the data access manager program 106 may
logically associate a mounted dataset with the corresponding
data Volume on a client system by updating a corresponding
entry in the virtualization table.
0032 For example, in the process of mounting the dataset,
the data access manager program 106 may update the corre
sponding virtualization table entry with information Such as,
but not limited to, the assignment, the current or last opera
tion, the time that the last request was received/processed. For
example, the virtualization table entry may indicate that the
dataset “CLIENT00. WINDOW.S.VOLD is assigned to the
client 110, the last operation was “mount,” and the last request
was processed at a particular time on a particular day. It
should be noted that once mounted, the exemplary volume
“D:\' 210 may behave as native to the client system 110. In
other words, the mounted volume 210 may be, for example,
formatted by the client operating system 112 running on the
client system 110. In addition, any application running under
control of the client operating system 122 on the client system
100 may access the “CLIENT00.WINDOWS.VOLD”
dataset, known to the client system 100 as volume “D:\' 210,
granted that the application has appropriate level of authority.
0033. On the other hand, the dataset “CLIENT00. WIN
DOWS.VOLD may also be manipulated by an application
running on the host computer system 102. For example, a
backup job running on the host computer 102 may access the
“CLIENT00.WINDOWS.VOLD dataset in order to backup
or restore data stored therein, granted the backup job has
sufficient authority level. The mechanism described above
advantageously facilitates integration of heterogeneous data
storage resources by a single point of control under a single
administrative and management model.
0034. In a similar manner, as shown in FIG. 2, a dataset
storing location 208 pointed to by the “CLIENT01. LINUX.
HOME entry 240 may be associated with the volume
"/home 220 on the client system 120 having a different
operating system 122 (i.e. Linux) installed and running
thereon. This association is depicted by the arrow 252.
Accordingly, the data access manager program 106 may
update a corresponding virtualization table entry with infor
mation about the assignment to the client system 120 of the
dataset “CLIENTO1.LINUX.HOME'. Once mounted, the
exemplary volume “/home 220 may behave as native to the
client system 120.
0035 FIG.3 illustrates steps performed by the data access
manager program running on a host computer system and the
data access driver program running on a client system to
provide access to a dataset on the data storage device con
trolled by the host computer system, according to an embodi
ment of the present invention. For the sake of simplicity of
illustration only steps performed by data access driver pro
gram 114a running on one of the client systems (i.e. client
system 110) and the data access manager program 106 run
ning on the host system are shown in FIG. 3 and described

Jun. 26, 2014

below. However, similar steps may be performed by any other
data access driver program running on any other client sys
tem

0036. The data access manager program 106 and the data
access client program 114a may communicate using one of
many different communication protocols (e.g., TCP or UDP).
In a preferred embodiment, a secure communication protocol
(e.g., SSL) may be employed for all communication between
the data access manager program 106 and the data access
client program 114a. In an embodiment of the present inven
tion, the client operating system 112 may load the data access
driver program 114a, for example, during a system startup
procedure. Similarly, during startup, initialization, or at any
other appropriate time, a job manager running on the host
computer system 102 may load the data access manager pro
gram 106 into a memory. Once both data access manager 106
and data access driver 114a are running they may perform a
handshake communication, in accordance with an embodi
ment of the present invention.
0037 According to an exemplary embodiment, at 302, in
response to receiving a mount command, a data access driver,
Such as the data access driver program 114a running on the
client system 110 may senda mount request to the data access
manager 106 for a user specified Volume. Such as Volume
“D:\' 210 on the client system 110, to be logically associated
with a dataset on the host computer system 102. In an embodi
ment of the present invention, the mount request may be sent
in the form of specialized packets. By way of example and not
limitation, the following parameters may be utilized in the
specialized packets: request, token, client Volume ID, client
ID and the like.

0038. At 304, the data access manager 106 may process
the received request. For example, the data access manager
106 may parse the parameters included in the specialized
packets. In an embodiment of the present invention, a request
parameter may include, for example, request identification
information indicating that the received request is a mount
request. In addition, the data access driver program 114a may
include authentication information (i.e., password, access
code, and the like) in the request parameter when sending a
mount request (at 302). The data access manager program
106 may use the authentication information when connecting
to a security engine, as described below. In a preferred
embodiment, the authentication information may be
encrypted or otherwise obfuscated. Next, the data access
manager 106, at 305, may identify the dataset that needs to be
mounted based on the received parameter values included in
the mount access request.
0039. In one embodiment of the present invention, the data
access manager program 106 may identify the dataset to be
mounted based on the received token parameter value
included in the received mount request. It should be noted that
the value of the token parameter may be implementation
dependent. For example, the value of the token may be
selected at implementation and/or configuration time based
on a desired level of security. In one embodiment, the token
parameter may represent a dataset name that client system
110 attempts to mount. In an alternative embodiment, the
token parameter may represent a predetermined value that
could be associated with the actual dataset name by the data
access manager 106. In such embodiment, the data access
manager 106, in response to receiving and parsing the token
value may use, for example, a lookup table loaded into
memory of the host computer system 102 to determine a

US 2014/0181238 A1

corresponding dataset name. The lookup table may contain a
mapping of a plurality of predetermined values to a plurality
of dataset names being managed by the data access manager
106. It should be noted that information about available token
values may be exchanged between the data access manager
106 and the data access driver program 114a during, for
example, handshake communication.
0040. In yet another alternative embodiment, the data
access driver program 114a, instead of specifying a token
value, may use a client volume ID parameter. The client
Volume ID parameter may be used by the data access manager
106 to determine which dataset to use. It should be noted that
if the data access driver program 114a includes both the token
and client Volume ID values, the data access manager 106
may either ignore the client volume ID value and use only
token value or the data access manager 106 may use the client
Volume ID value to validate the association between the token
value and the determined dataset name.

0041 At 306, the data access manager 106 may determine
whether the received mount request is valid. In one embodi
ment of the present invention, the data access manager 106
may validate the mount request with the security engine. For
example, one of the most commonly used security engines for
mainframe computers is the Resource Access Control Facil
ity (RACF) provided by International Business Machines
Corporation (IBM). The RACF employs controlling software
on a mainframe computer associated with a RACF database.
The RACF not only controls access to the data storage
devices, but also controls the level or amount of access
allowed to a user. Typically, in the RACF security engine, a
unique RACF user identifier is assigned to each user. Each
RACF user identifier has a unique password to verify the
identity of the user requesting access to the mainframe com
puting System.
0042. The RACF enables organizations to define individu
als and groups who use the system that the RACF protects.
For example, a group may be defined that encompasses a
collection of individuals having common needs and require
ments. The RACF also enables a system administrator to
define authority levels for a user or a group of users. The
authority levels control what a user or member of a group can
do on the system. The RACF also protects the systems
resources, protecting an organizations information stored on
the system by controlling which users have authority to
access a system resource, Such as a data Volume or a dataset.
0043. The RACF stores all information about users,
groups and resources in user, group and resource profiles. A
profile is a record of RACF information that has been defined
by a security administrator. A user profile provides user
attributes that describe the system-wide and group-wide
access privileges to protected resources for a user. Similarly,
a group profile defines the authority that a user who is a
member of the group has to access resources belonging to the
group. A resource profile defines the type of authority a user
needs to access a specific resource. A resource profile may
contain an access list as well as a default level of access
authority for the resources the profile protects. An access list
identifies the access authorities of specific users and groups,
while the default level of access authority applies to any user
not specifically included in the access list. While an exem
plary RACF engine is discussed and depicted for purposes of
illustration throughout, the security engine may be any
known security engine in the art.

Jun. 26, 2014

0044) Referring back to FIG. 3, in an embodiment of the
present invention, at 306, the data access manager 106 may
generate and send a security command (i.e., RACF com
mand) to the security engine 108. The security command may
include, for example, an access list identifying access
authorities of specific users and/or groups that need to access
the dataset requested to be mounted. In an embodiment of the
present invention, the access list may be passed to the data
access manager 106 by the data access driver program 114a
as, for example, a client ID parameter included in the mount
request.
0045. If the security engine 108 determines that the
requesting user (or user group) has no authority to access
(mount) the requested dataset (decision 306, no branch), then
the data access manager 106, at 308, may send a response to
the data access driver program 114a indicating that the mount
request has been denied due to, for example, insufficient
privileges. In response to receiving the mount request denied
communication message, at 310, the data access driver pro
gram 114a, may process Such message and may, for example,
display a corresponding error message on the user console, by
employing for example, a UI 116. If, on the other hand, the
security engine 108 determines that the requesting user (or
user group) has sufficient authority level to access (mount) the
requested dataset (decision 306, yes branch), then the data
access manager 106, at 314, may mount the identified dataset
as a data volume on the client system 110.
0046. In one embodiment of the present invention, the data
access manager 106 may, for example, update virtualization
information logically associating the dataset location 206
pointed to by the “CLIENT00.WINDOWS.VOLD entry
236 with the volume “D:\” on the client system 110. In an
embodiment, this association may be represented by an entry
in the virtualization table.

0047. In an embodiment of the present invention, if the
virtualization information update was successfully per
formed, the data access manager program 106, at 315, may
send a mount confirmation message to the data access driver
program 114a indicating that the mount operation has been
performed. In response to receiving the mount confirmation
message, at 316, the data access driver program 114a may
process the confirmation message. For example, the data
access driver program 114a may selectively grant access to
the mounted volume “D:\' to various applications and/or
users of the client system 110. As previously indicated, even
though the mounted volume, such as the volume “D:\' 210,
may be logically associated with the dataset on the host sys
tem 102, it may functionally behave as native to the client
system 110. At least in some embodiments, the mounted
volume “D:\” 210 may be a bootable volume.
0048. According to an embodiment of the present inven
tion, Subsequently to processing the mount confirmation mes
sage, the data access driver program 114a may start monitor
ing the I/O requests to the mounted volume 210. If the data
access driver program 114a determines that the received I/O
request is not associated with the mounted volume 210 (deci
sion 317, no branch), then the data access driver program
114a may disregard Such request and continue the monitoring
process. If, on the other hand, the data access driver program
114a determines that the received I/O request has the
mounted volume 210 as either the source or target of the data
access operation (decision 317, yes branch), then the data
access driver program 114a, at 318, may forward the I/O
request to the data access manager program 106. In an

US 2014/0181238 A1

embodiment of the present invention, the forwarded I/O
request may include information identifying the type of the
request (for example, read, write, seek, and the like) among
other information needed for the data access manager 106 to
carry out the request (for example, byte offset in the volume
or from the start or end or current position to seek to, data to
be written, length, and the like).
0049. In response to receiving the I/O request from the
data access driver program 114a, at 320, the data access
manager program 106 may determine whether the received
I/O request is valid. In one embodiment of the present inven
tion, the data access manager 106 may validate the I/O request
with the security engine 108. Depending on a particular secu
rity configuration, the data access manager 106 in concert
with the security engine 108 may determine whether the
particular user (i.e. application running on the client system
120) trying to access data on the mounted volume 210 has
Sufficient authority for Such operation. If the security engine
108 determines that the user does not have the required
authority (decision320, no branch), the data access manager
program 106, at 322, may send, for example, an I/O request
denied message back to the data access driver program 114a.
In response to receiving Such message, at 323, the data access
driver program 114a may process the message accordingly.
For example, the data access driver program 114a may send a
corresponding error code to the application requesting to
perform the I/O operation.
0050. On the other hand, if the security engine 108 deter
mines that the user does have sufficient authority (decision
320, yes branch), the data access manager program 106 may
perform, at 324, the requested I/O operation. In other words,
at 324, the data access manager program 106 may access data
in the mounted dataset logically associated with the mounted
volume 210 on the client system 110 and carry out the request
operation. At the completion of the operation the data access
manager program 106, at 326, may send an I/O request con
firmation message indicting a status (i.e. Success or failure) of
the carried out I/O operation. In response to receiving the I/O
request confirmation message, the data access driver program
114a, at 328, may process the received I/O request confirma
tion message. In an embodiment of the present invention,
processing the I/O request confirmation may include for
warding the status of the requested I/O operation to the
requesting application on the client system 110.
0051. As will be appreciated by one skilled in the art,
aspects of the present invention may be embodied as a system,
method or computer program product. Accordingly, aspects
of the present invention may take the form of an entirely
hardware embodiment, an entirely software embodiment (in
cluding firmware, resident Software, micro-code, etc.) or an
embodiment combining software and hardware aspects that
may all generally be referred to herein as a “circuit,” “mod
ule' or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s) hav
ing computer readable program code embodied thereon.
0052 Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a computer
readable storage medium. A computer readable storage
medium may be, for example, but not limited to, an elec
tronic, magnetic, optical, electromagnetic, infrared, or semi
conductor System, apparatus, or device, or any Suitable com
bination of the foregoing. More specific examples (a non

Jun. 26, 2014

exhaustive list) of the computer readable storage medium
would include the following: an electrical connection having
one or more wires, a portable computer diskette, a hard disk,
a random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), an optical fiber, a portable com
pact disc read-only memory (CD-ROM), an optical storage
device, a magnetic storage device, or any suitable combina
tion of the foregoing. In the context of this document, a
computer readable storage medium may be any tangible
medium that can contain, or store a program for use by or in
connection with an instruction execution system, apparatus,
or device.
0053 A computer readable signal medium may include a
propagated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag
netic, optical, or any Suitable combination thereof. A com
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.
0054 Program code embodied on a computer readable
medium may be transmitted using any appropriate medium,
including but not limited to wireless, wireline, optical fiber
cable, RF, etc., or any Suitable combination of the foregoing.
0055 Computer program code for carrying out operations
for aspects of the present invention may be written in any
combination of one or more programming languages, includ
ing an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user's computing device, partly on the
user's computing device, as a stand-alone software package,
partly on the user's computing device and partly on a remote
computing device or entirely on the remote computing device
or server computer. In the latter scenario, the remote comput
ing device may be connected to the user's computing device
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computing device (for example,
through the Internet using an Internet Service Provider).
0056 Aspects of the present invention are described above
with reference to flowchart illustrations and/or block dia
grams of methods, apparatus (systems) and computer pro
gram products according to embodiments of the invention. It
will be understood that each block of the flowchart illustra
tions and/or block diagrams, and combinations of blocks in
the flowchart illustrations and/or block diagrams, can be
implemented by computer program instructions. These com
puter program instructions may be provided to a processor of
a general purpose computer, special purpose computer,
mobile device or other programmable data processing appa
ratus to produce a machine, such that the instructions, which
execute via the processor of the computing device or other
programmable data processing apparatus, create means for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.
0057 These computer program instructions may also be
stored in a computer readable medium that can direct a com
puting device, other programmable data processing appara

US 2014/0181238 A1

tus, or other devices to function in a particular manner. Such
that the instructions stored in the computer readable medium
produce an article of manufacture including instructions
which implement the function/act specified in the flowchart
and/or block diagram block or blocks.
0058. The computer program instructions may also be
loaded onto a computing device, other programmable data
processing apparatus, or other devices to cause a series of
operational steps to be performed on the computing device,
other programmable apparatus or other devices to produce a
computer implemented process such that the instructions
which execute on the computer or other programmable appa
ratus provide processes for implementing the functions/acts
specified in the flowchart and/or block diagram block or
blocks.

0059 Referring now to FIG.4, a block diagram of internal
and external components of each of the client computers of
FIG. 1, computers 110 and 120, include respective sets of
internal components 800a, b and external components 900a,
b. Each of the sets of internal components 800a, b includes
one or more processors 820, one or more computer-readable
RAMs 822 and one or more computer-readable ROMs 824 on
one or more buses 826, one or more client operating systems
112, 122 and one or more computer-readable tangible storage
devices 830. The one or more operating systems 112, 122 are
stored on one or more of the computer-readable tangible
storage devices 830 for execution by one or more of the
processors 820 via one or more of the RAMs 822 (which
typically include cache memory). Data access driver program
114a may be stored on one or more of the computer-readable
tangible storage devices 830 of internal components 800a for
execution by one or more of the processors 820 of internal
components 800a via one or more of the RAMs 822 of inter
nal components 800a. Data access driver program 114b may
be stored on one or more of the computer-readable tangible
storage devices 830 of internal components 800b for execu
tion by one or more of the processors 820 of internal compo
nents 800b via one or more of the RAMS 822 of internal
components 800b. In the embodiment illustrated in FIG. 4.
each of the computer-readable tangible storage devices 830 is
a magnetic disk storage device of an internal hard drive.
Alternatively, each of the computer-readable tangible storage
devices 830 is a semiconductor storage device such as ROM
824, EPROM, flash memory or any other computer-readable
tangible storage device that can store a computer program and
digital information.
0060 Each set of internal components 800a, b also
includes a R/W drive or interface 832 to read from and write
to one or more portable computer-readable tangible storage
devices 936 Such as a CD-ROM, DVD, memory stick, mag
netic tape, magnetic disk, optical disk or semiconductor Stor
age device. Data access driver program 114a, b can be stored
on one or more of the portable computer-readable tangible
storage devices 936 of external components 900a, b read via
R/W drive or interface 832 of internal components 800a, band
loaded into one or more computer-readable tangible storage
devices 830 of internal components 800a, b.
0061 Each set of internal components 800a, b also
includes a network adapter or interface 836 such as a TCP/IP
adapter card. Data access driver program 114a, b can be
downloaded to computers 110 and 120 from an external com
puter via a network (for example, the Internet, a local area
network or other, wide area network) and network adapter or
interface 836 of internal components 800a, b. The network

Jun. 26, 2014

may comprise copper wires, optical fibers, wireless transmis
Sion, routers, firewalls, Switches, gateway computers and/or
edge servers.
0062 Each of the sets of external components 900a, b
includes a computer display monitor 920, a keyboard 930,
and a computer mouse 934. Each set of internal components
800a, b also includes device drivers 840 to interface to com
puter display monitor 920, keyboard 930 and computer
mouse 934. The device drivers 840, R/W drive or interface
832 and network adapter or interface 836 comprise hardware
and Software (stored in one or more computer-readable tan
gible storage devices 830 and/or one or more computer-read
able ROMs 824).
0063 Data access manager program 106 and data access
driver program 114a, b can be written in various programming
languages including low-level, high-level, object-oriented or
non object-oriented languages. Alternatively, the functions of
data access manager program 106 and data access driver
program 114a, b can be implemented in whole or in part by
computer circuits and other hardware (not shown).
0064. The flowchart and block diagrams in the Figures
illustrate the architecture, functionality, and operation of pos
sible implementations of systems, methods and computer
program products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por
tion of code, which comprises one or more executable
instructions for implementing the specified logical function
(s). It should also be noted that, in some alternative imple
mentations, the functions noted in the block may occur out of
the order noted in the figures. For example, two blocks shown
in Succession may, in fact, be executed Substantially concur
rently, or the blocks may sometimes be executed in the reverse
order, depending upon the functionality involved. It will also
be noted that each block of the block diagrams and/or flow
chart illustration, and combinations of blocks in the block
diagrams and/or flowchart illustration, can be implemented
by special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur
pose hardware and computer instructions.
0065. The description above has been presented for illus
tration purposes only. It is not intended to be an exhaustive
description of the possible embodiments. One of ordinary
skill in the art will understand that other combinations and
embodiments are possible.
What is claimed is:

1. A method for providing access to mainframe-based data
in a non-mainframe format, the method comprising:

receiving, at a host computer system, a first request from a
client system, the first request comprising a request to
mount a dataset on a data storage device controlled by
the host computer system as a data Volume on the client
system;

verifying the client system's authority to mount the
requested dataset;

mounting the dataset as the data Volume, the dataset after
mounting behaving as native to the client system; and

processing a second request from the client system, the
second request comprising an input/output (I/O) request
associated with the mounted dataset.

2. The method of claim 1, wherein the host computer
system runs a first operating system and the client system runs
a second operating system.

US 2014/0181238 A1

3. The method of claim 1, wherein processing the second
request further comprises verifying, by the host computer
system, that a user of the client system requesting to perform
an I/O operation has sufficient authority level.

4. The method of claim 1, wherein mounting the dataset as
the data Volume further comprises updating a virtualization
table entry associating the dataset with the data Volume.

5. The method of claim 1, wherein the first request includes
a parameter indicating a dataset name.

6. The method of claim 1, wherein the first request includes
a parameter indicating a predetermined value that may be
mapped by the host computer system to a specific dataset.

7. The method of claim 1, wherein the mounted dataset
resides on a Volume among datasets storing data in different
formats.

8. The method of claim 1, wherein the data volume on the
client system comprises a bootable Volume.

9. A computer program product for providing access to
mainframe-based data in a non-mainframe format, the com
puter program product comprising one or more computer
readable tangible storage devices and a plurality of program
instructions stored on at least one of the one or more com
puter-readable tangible storage devices, the plurality of pro
gram instructions comprising:

program instructions to receive, at a host computer system,
a first request from a client system, the first request
comprising a request to mounta dataset on a data storage
device controlled by the host computer system as a data
Volume on the client system;

program instructions to Verify the client system's authority
to mount the requested dataset;

program instructions to mount the dataset as the data Vol
ume, the dataset after mounting behaving as native to the
client system; and

program instructions to process a second request from the
client system, the second request comprising an input/
output (I/O) request associated with the mounted
dataset.

10. The computer program product of claim 9, wherein the
host computer system runs a first operating system and the
client system runs a second operating system.

11. The computer program product of claim 9, wherein the
program instructions to process the second request further
comprise program instructions to Verify, by the host computer
system, that a user of the client system requesting to perform
an I/O operation has sufficient authority level.

12. The computer program product of claim 9, wherein the
program instructions to mount the dataset as the data Volume
further comprise program instructions to update a virtualiza
tion table entry associating the dataset with the data Volume.

13. The computer program product of claim 9, wherein the
first request includes a parameter indicating a dataset name.

Jun. 26, 2014

14. The computer program product of claim 9, wherein the
first request includes a parameter indicating a predetermined
value that may be mapped by the host computer system to a
specific dataset.

15. The computer program product of claim 9, wherein the
mounted dataset resides on a Volume among datasets storing
data in different formats.

16. The computer program product of claim 9, wherein the
data Volume on the client system comprises a bootable Vol
le.

17. A computer system for providing access to mainframe
based data in a non-mainframe format, the computer system
comprising one or more processors, one or more computer
readable tangible storage devices, and a plurality of program
instructions stored on at least one of the one or more storage
devices for execution by at least one of the one or more
processors, the plurality of program instructions comprising:

program instructions to receive, at a host computer system,
a first request from a client system, the first request
comprising a request to mounta dataset on a data storage
device controlled by the host computer system as a data
Volume on the client system;

program instructions to Verify the client systems authority
to mount the requested dataset;

program instructions to mount the dataset as the data Vol
ume, the dataset after mounting behaving as native to the
client system; and

program instructions to process a second request from the
client system, the second request comprising an input/
output (I/O) request associated with the mounted
dataset.

18. The computer system of claim 17, wherein the host
computer system runs a first operating system and the client
system runs a second operating system.

19. The computer system of claim 17, wherein the program
instructions to process the second request further comprise
program instructions to verify, by the host computer system,
that a user of the client system requesting to perform an I/O
operation has sufficient authority level.

20. The computer system of claim 17, wherein the program
instructions to mount the dataset as the data Volume further
comprise program instructions to update a virtualization table
entry associating the dataset with the data Volume.

21. The computer system of claim 17, wherein the first
request includes a parameter indicating a dataset name.

22. The computer system of claim 17, wherein the first
request includes a parameter indicating a predetermined
value that may be mapped by the host computer system to a
specific dataset.

23. The computer system of claim 17, wherein the mounted
dataset resides on a Volume among datasets storing data in
different formats.

24. The computer system of claim 17, wherein the data
Volume on the client system comprises a bootable Volume.

k k k k k

