
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2014/0229432 A1

VOSShall et al.

US 20140229432A1

(43) Pub. Date: Aug. 14, 2014

(54)

(71)

(72)

(73)

(21)

(22)

(63)

SYSTEMAND METHOD FOR PROVIDING
HGHAVAILABILITY DATA

Applicant: Amazon Technologies, Inc., Reno, NV
(US)

Inventors: Peter S. Vosshall, Bainbridge Island,
WA (US); Swaminathan
Sivasubramanian, Seattle, WA (US);
Giuseppe deCandia, Seattle, WA (US);
Deniz Hastorun, Seattle, WA (US);
Avinash Lakshman, Mercer Island, WA
(US); Alex Pilchin, Seattle, WA (US);
Ivan D. Rosero, Seattle, WA (US)

Assignee: Amazon Technologies, Inc., Reno, NV
(US)

Appl. No.: 14/257,757

Filed: Apr. 21, 2014

Related U.S. Application Data
Continuation of application No. 13/084,495, filed on
Apr. 11, 2011, now Pat. No. 8,706,688, which is a

102

User Computer

User Computer

Communication Network

Network Interface

Other Services

continuation of application No. 1 1/508,129, filed on
Aug. 22, 2006, now Pat. No. 7.925,624, which is a
continuation-in-part of application No. 1 1/394,648,
filed on Mar. 31, 2006, now Pat. No. 7,707,136.

Publication Classification

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC G06F 17/30371 (2013.01)
USPC ... 707/610; 707/690

(57) ABSTRACT

An embodiment relates to a computer-implemented data pro
cessing system and method for storing a data set at a plurality
of data centers. The data centers and hosts within the data
centers may, for example, be organized according to a multi
tiered ring arrangement. A hashing arrangement may be used
to implement the ring arrangement to select the data centers
and hosts where the writing and reading of the data sets
occurs. Version histories may also be written and read at the
hosts and may be used to evaluate causal relationships
between the data sets after the reading occurs.

100

A1

Network Services System

DataSet Service

DataSet
Storage System

US 2014/0229432 A1 Aug. 14, 2014 Sheet 1 of 20 Patent Application Publication

Ja?nduI00 Jasm Je?nduJOO Jesm

US 2014/0229432 A1 Aug. 14, 2014 Sheet 2 of 20 Patent Application Publication

Patent Application Publication Aug. 14, 2014 Sheet 3 of 20 US 2014/0229432 A1

S.-----
DataSet Service

130 FG. 3 | v
Datase senice host

114 134

Data Set Read/Write Requests
130

Datase service Hosts Client Process
DataSet ReadWrite Responses

130

Data Set Service Host S Data Set Version
Reconciliation Logic

150
Receive Write Request

152 Write Data at Multiple
Hosts Based on
Preference Lists

154

E" FIG. 4

Patent Application Publication Aug. 14, 2014 Sheet 4 of 20 US 2014/0229432 A1

: Receive Read Request F G 5

Read Data from
Multiple Hosts

Transmit Data to Client
Application

Receive Multiple Data F G 6
Sets

ReConcile Data Sets

Transmit ReConciled
DataSet for Writing

Patent Application Publication Aug. 14, 2014 Sheet 5 of 20 US 2014/0229432 A1

-

184

2127

FIG. 8

Patent Application Publication Aug. 14, 2014 Sheet 6 of 20 US 2014/0229432 A1

2127

FIG. 9

Patent Application Publication Aug. 14, 2014 Sheet 7 of 20 US 2014/0229432 A1

F.G. 1 O

Preference List FIG 11
P(k) = {A, B, D, E, C)

P(k2) = {B, D, E, C, A)

190

Patent Application Publication Aug. 14, 2014 Sheet 8 of 20 US 2014/0229432 A1

F.G. 12

Patent Application Publication Aug. 14, 2014 Sheet 9 of 20 US 2014/0229432 A1

134 134
Client Process 1 Client Process

54
Results:

Write(k) Success/Failure
W

O V 150 O

C A (Coordinator) A (Coordinator)
Write(k)

B
Return Results

Write(k1, V1) Retum Results
C

FIG. 13A F.G. 13B

Patent Application Publication Aug. 14, 2014 Sheet 10 of 20 US 2014/0229432 A1

134
Client Process

(Coordinator) A (Coordinator)

Handoff(k)

Write(k1, V1)

FIG. 14A FIG. 14B

Patent Application Publication

Client Process

FIG. 15A

(Coordinator)

Aug. 14, 2014 Sheet 11 of 20 US 2014/0229432 A1

134
Cient Process

Return Results 162
(One or more 1
versions of k1) \

(Coordinator)

Return
Results

Return
Results

Patent Application Publication Aug. 14, 2014 Sheet 12 of 20 US 2014/0229432 A1

400

402 Update DataSet Version
Using Host A to

COOrdinate

04 404

N> V, (A, 2)

/ \ 406 Update Data
406 Wa (A, 2); V4 (A, 2); 408 Set Version

(B, 1)) (C, 1)) Using Host B to

412
Vs (A, 3);

(B, 1);
(C, 1)

Coordinate

412 Update DataSet Version
Using Host A and Merge

with Data Versions 3 and 4

FG 16

Start
(Empty Data Set)

Update DataSet Version
Using Host A to

Coordinate

(Client Process Receives
and Reconciles Data Sets)

Update Data
Set Version

Using Host D to
Coordinate

US 2014/0229432 A1 Aug. 14, 2014 Sheet 13 of 20 Patent Application Publication

US 2014/0229432 A1 Aug. 14, 2014 Sheet 14 of 20 Patent Application Publication

Z

Patent Application Publication Aug. 14, 2014 Sheet 15 of 20 US 2014/0229432 A1

602 Establish Connection with User
Computer

604
Redirect Connection

606
Receive Data Access Request

608

610

Access Data Set
Locally

DataSet Stored
Locally?

612 Determine Data Centers on
Preference List

614 Transmit Access Request to Data
Centers

616
Receive Read Response

618
Compare Version Histories

620 Refresh Data at Data Centers On
Preference List

FIG. 20

US 2014/0229432 A1

W

Aug. 14, 2014 Sheet 16 of 20

Z09 sulfieg

Patent Application Publication

US 2014/0229432 A1 Aug. 14, 2014 Sheet 17 of 20 Patent Application Publication

US 2014/0229432 A1 Aug. 14, 2014 Sheet 18 of 20 Patent Application Publication

Patent Application Publication Aug. 14, 2014 Sheet 19 of 20 US 2014/0229432 A1

Ya
o

l

g

3

Patent Application Publication Aug. 14, 2014 Sheet 20 of 20 US 2014/0229432 A1

US 2014/0229432 A1

SYSTEMAND METHOD FOR PROVIDING
HGHAVAILABILITY DATA

CROSS-REFERENCE TO RELATED
APPLICATIONS

0001. This application is a continuation-in-part of U.S.
Ser. No. 1 1/394,648, entitled “System and Method for Pro
viding High Availability Data filed Mar. 31, 2006, hereby
incorporated by reference.

BACKGROUND

0002 Enterprise computing environments often need to
access data relating to a particular business application. In
order to avoid a single point of failure, data is often stored at
multiple hosts at different locations (e.g., different locations
within a given data center, different data centers, and so on).
Thus, for example, if a particular data set becomes unavail
able from one host (e.g., due to host failure, due to a network
partition or other network failure, and so on), a client process
may access the data at another host. The individual hosts may
not be highly available, but the combination of the individual
hosts provides a more highly available solution.
0003. When storing the same data at multiple locations, a
problem that is encountered is maintaining consistency
between the various copies of the data. The state of the data set
as it exists at one host may not be consistent with the State of
the data set as it exists at the other host. For example, ifa client
process has made changes to a data set at one host, and the
data set then becomes unavailable from that host, the changes
that have been made in the copy of the data set at that host may
be lost, at least temporarily. A recent version of the data set
may be obtained from another host. However, if the client
process starts operating on the data set from the other host, a
further problem arises in that two versions of the data set may
potentially be created, each with changes that are not reflected
in the other data set.
0004. Accordingly, an on-going need exists for systems
and methods that are capable of providing highly available
data. It should be appreciated that, although certain features
and advantages are discussed, the teachings herein may also
be applied to achieve systems and methods that do not nec
essarily achieve any of these features and advantages.

SUMMARY

0005. An embodiment relates to a computer-implemented
data processing method comprising storing a data set at hosts
within a plurality of data centers. The data centers and hosts
within the data centers may, for example, be organized
according to a multi-tiered ring arrangement. In an embodi
ment, a hashing arrangement is used to implement the ring
arrangement to select the data centers and hosts where the
writing and reading of the data sets occurs. In another
embodiment, version histories are also written and read at the
hosts and are used to evaluate causal relationships between
the data sets after the reading occurs.
0006. It should be understood that the detailed description
and specific examples, while indicating preferred embodi
ments of the present invention, are given by way of illustra
tion and not limitation. Many modifications and changes
within the scope of the present invention may be made with
out departing from the spirit thereof, and the invention
includes all Such modifications.

Aug. 14, 2014

BRIEF DESCRIPTION OF THE DRAWINGS

0007 FIG. 1 is a block diagram of a data processing sys
tem according an embodiment.
0008 FIG. 2 is a block diagram of another data processing
system according an embodiment.
0009 FIG. 3 is a block diagram showing a data set service
of FIG. 1 in greater detail according to an embodiment.
0010 FIG. 4 is a flowchart of a write operation imple
mented by the system of FIG. 1 according to an embodiment.
0011 FIG. 5 is a flowchart of a read operation imple
mented by the system of FIG. 1 according to an embodiment.
0012 FIG. 6 is a flowchart of a data reconciliation and
update operation implemented by the system of FIG. 1
according to an embodiment.
0013 FIG. 7 is a diagram of a hash operation used in
connection with data replication and load balancing in the
system of FIG. 1 according to an embodiment.
0014 FIG. 8 is another diagram of the hash operation
shown in FIG. 7 according to an embodiment.
0015 FIG. 9 is a diagram showing incremental scalability
features of the system of FIG. 1 according to an embodiment.
0016 FIG. 10 is a diagram of a data replication arrange
ment used in the system of FIG. 1 according to an embodi
ment.

0017 FIG. 11 is a diagram of a host preference list used in
the system of FIG. 1 according to an embodiment.
0018 FIG. 12 is a diagram of a load balancing arrange
ment used in the system of FIG. 1 according to an embodi
ment.

(0019 FIGS. 13A-13B are flowcharts of a write operation
implemented by the system of FIG. 1 according to an embodi
ment.

(0020 FIGS. 14A-14B are flowcharts of a write operation
including a hand-off operation implemented by the system of
FIG. 1 according to an embodiment.
(0021 FIGS. 15A-15B are flowcharts of a read operation
implemented by the system of FIG. 1 according to an embodi
ment.

0022 FIG. 16 is a flowchart of a data versioning arrange
ment used in the system of FIG. 1 according to an embodi
ment.

0023 FIG. 17 is a block diagram showing a data set ser
vice of FIG. 1 in greater detail according to an embodiment.
0024 FIG. 18 is a diagram of a hash operation used in
connection with data replication and load balancing in the
system of FIG. 17 according to an embodiment.
0025 FIG. 19 is a diagram of a data center and host pref
erence lists used in the system of FIG. 17 according to an
embodiment.
0026 FIG. 20 is a flowchart of an access operation imple
mented by the system of FIG. 17 according to an embodi
ment.

0027 FIGS. 21-24 are diagrams showing aspects of the
access operation of FIG. 20 in greater detail according to an
embodiment.
0028 FIG.25 is a message filter used in the system of FIG.
17 according to an embodiment.

DETAILED DESCRIPTION

I. System Architecture
0029 Referring to FIG. 1, a data processing system 100
according to an embodiment is shown. Data processing sys

US 2014/0229432 A1

tem 100 includes user computers 102, communication net
work 104, and a network services system 106. User comput
ers 102 may access network services system 106 via
communication network 104. Network services system 106
includes network interface 110, a data set service 112, and
one or more other services 114. The network interface 110
receives data from and provides data to the user via commu
nication network 104. For example, the network interface 110
may provide the users computers 102 with access to data sets
maintained by the data set service 112 as well as to other data
generated and/or maintained by the other services 114.
0030 Data set service includes a data storage system 118
which may store the data sets. The data states may change
over time based on user interaction and/or based on other
changes in system 106. Herein, the term “data set' refers to
any data that may change over time. For example, each data
set may include one or more items that may be added,
removed, and/or modified from the data set. Data storage
system 118 is configured to store information in a highly
available manner so that, in the event of a system fault (e.g.
host failure, network failure, and so on), the data sets remain
available with a high level of consistency, as discussed below.
In an embodiment, the data storage system 118 is imple
mented using a Berkeley database transaction data storage
system.
0031 Referring now also to FIG. 2, FIG. 2 provides
another example of a data processing system 100. In the
example of FIG. 2, network services system 106 is a merchant
website system 116 and the network interface 110 is a net
work shopping interface 120. Merchant website system 116
may, for example, be implemented in a distributed computing
environment comprising thousands of hosts or more. Mer
chant website system 116 may provide a merchant website
(e.g., an on-line retail website) accessible to a user operating
a user computer 102 to shop for items (e.g., goods, services,
Subscriptions, etc.). In such an embodiment, network shop
ping interface 120 may provide users with graphical and/or
text data on the website to facilitate the display and/or sale of
items. The data provided to users may include item informa
tion Such as pricing, dimensions, availability, items currently
selected for purchase, and so on. Merchant shopping interface
120 may also be configured to receive data from user, Such as
data indicating items the user is interested in, data needed to
complete a transaction, and so forth.
0032. In the example of FIG. 2, data set service 112 is
shown to be a shopping cart data service 122 that maintains
lists of items selected for purchase or possible purchase by
users of the website. In Such an example, each data set may be
a shopping cart related to a specific customer. The data set
may include item identification information for items in the
shopping cart, item information for items that a user may have
selected but not yet purchased, quantity information of items
in the shopping cart, and so on. The shopping cart data service
122 may be accessed through a shopping cart service 124.
which may comprise other business logic associated with
shopping carts. The website system 116 may publish web
pages for users of the website that include all or a portion of
the data set, e.g., a webpage showing all or a portion of a
user's shopping cart. In other example embodiments, the data
sets may comprise other data that may be collected by website
system 116, based on the interaction of a user, or for the
convenience of the visitor or to facilitate operation of the
website. For example, the data set service 112 may also
maintain data sets relating to specific entities (e.g., data sets

Aug. 14, 2014

relating to different users of a website, different sessions on
the website, different transactions conducted on the website,
different items offered by the website, different categories of
items offered by the website, different advertisements pub
lished on the website, different pages of the website, and so
on). As will also be appreciated, although FIG. 2 shows a
website system, the data processing system 100 may be used
in other applications.
0033 Referring again to FIG. 1, data set service 112 may
be used both in connection with local processes and remote
processes. In the context of remote processes, read and write
requests for data set service 112 may be received from a
remote process by way of communication network 104. For
example, the network services system 106 may offer services
that are accessible to remote processes through an application
programming interface (API) across the Internet. Such ser
Vice requests may be made by third parties, for example, to
assist in the operation of their own data processing systems.
0034 Referring now to FIGS. 3-6, construction and opera
tion of the data set service 112 is shown in greater detail. As
shown in FIG. 3, the data set service 112 may comprise a
plurality of hosts 130. Herein, the term “plurality” means two
or more. For example, the data set service 112 may comprise
tens, hundreds, or thousands of hosts 130 or more. In an
embodiment, each host 130 is functionally equivalent (e.g.,
executes the same code, or executes related versions of the
same code). Each host 130 may include stored program logic
configured to perform the operations described in FIGS. 3-16,
below. As will be described below, the data set storage system
118 may be distributed across the hosts 130, such that each
host 130 stores a portion of the data sets. Each host 130 stores
a subset of the data (of the key-value pairs) and the system
attempts to maintain N replicas of each data set (where N is a
positive integer representing the replication factor or the
number of times to replicate the data set). The value N is
configurable and affects both the durability, availability and
consistency of data. If there are S physical hosts in the system,
then the overall system 106 comprises SN physical hosts
(although the smaller S, the lower the total system availabil
ity), and each host 130 stores approximately N/S of the data
sets. Alternatively, if heterogeneous hosts 130 are used, then
each host 130 stores a number of data sets which is propor
tional to the weight of the respective host 130 weight in the
system 106. The weight of each host 130 may be determined
based on the resources of each host 130. For example, the
weight of each host 130 may be determined based on the
relative power of each host 130 (e.g., as determined based on
processing capacity, storage capacity, and/or network capac
ity), such that more powerful hosts 130 may store more data
sets. The value of N may also be made configurable on a per
data set or per data type basis, for example, to permit avail
ability/durability to be configured on a per data set or per data
type basis.
0035. As shown in FIG. 4, to store data received from a
client process 134 (e.g., one of the services 114), the data set
service 112 receives a write request from the client process
134 (step 150) and then responds by writing the data at mul
tiple hosts 130 (step 152). (For purposes of this application,
the term "client process' refers to any program logic that may
request data sets from any other program logic, e.g., herein,
from the data set service 112.) In an embodiment, the data is
written at multiple hosts 130 based on preference lists, as
described below. After the data is written, a response is sent to
the client process 134 confirming that the write operation has

US 2014/0229432 A1

been performed (step 154). Exemplary write operations are
described in greater detail in connection with FIGS. 7-12;
FIGS. 13 A-13B, and FIGS. 14A-14B.
0036. As shown in FIG. 5, to provide data to a client
process 134, the data set service 112 receives a read request
from the client process 134 (step 160) and then responds by
reading the data at multiple hosts 130 (step 162). After the
data is read, a response is sent to the client process 134
confirming that the read operation has been performed and
including the requested data (step 164). Exemplary read
operations are described in greater detail in connection with
FIGS. 15A-1SB.

0037. With regard to FIG. 6, when all relevant network
connections and hosts 130 are healthy (e.g., available and
responsive), the hosts 130 involved in the read operation
typically provide consistent data. However, when one or more
of the network connections or hosts 130 is troubled or failed,
the hosts 130 may provide different versions of the same data
set. Thus, as shown in FIG. 6, after the data sets are received
at the client process (step 170), the data sets may be recon
ciled (step 172). The reconciled data set may then be trans
mitted to the data service 112 for storage (step 174). As
described in greater detail below, the existence of inconsistent
versions of the same data set may be detected using a data
versioning arrangement. The data versioning arrangement
may also be used by version reconciliation logic 136 (pro
vided as part of or in connection with client process 134, as
shown in FIG. 3) to reconcile the inconsistent versions. An
example data Versioning arrangement is described in greater
detail below in connection with FIG. 16.

II. Coordination of Read/Write Operations

0038 A. Partitioning Data Sets Over Hosts
0039 Referring to FIGS. 7-8, in an embodiment, data set
service 112 includes a mechanism to partition data sets over
hosts 130 in system 106. In an embodiment, described below,
a consistent hashing arrangement may be used to store data
sets such that data is spread relatively evenly over the hosts
130. In other embodiments, other data partitioning arrange
ments may be used.
0040. Referring first to FIG. 7, in an embodiment, in order
to access the data stored by the data set service 112 (e.g., via
a read operation or a write operation), client processes trans
mit data requests that include a key for the data set to which
each request refers. For example, in the context of a shopping
cart application, the key may be generated based on the user
ID of the user to whom the shopping cart is related (e.g., the
user ID may be used as the key). The keys may be any data
value that is associated with a data set and that is suitable for
use as an input to a hash function. As shown in FIG. 7, the key
is applied to hash function 182 which in turn generates a hash
value has a function of the key. In an embodiment, the hash
function 182 achieves an approximately uniform spread of
hash values over a hash range. In the illustrated embodiment,
the hash values are shown to be spread over the hash range {0,
2''}, however, any number of hash values, or effectively any
size hash range, may be used.
0041. Upon becoming active participants in the data set
service 112, each host 130 is assigned a set of positions over
the hash range. For purposes of explanation, it is assumed in
the remainder of the discussion herein that there are five hosts
130 which implement the data set service 112, shown as host
A, host B, host C, host D and host E. It will be appreciated

Aug. 14, 2014

that, in practice, data set service 112 may be implemented by
tens, hundreds, or thousands of hosts 130 or more.
0042. Referring to FIG. 8, FIG. 8 shows the manner in
which responsibility for a read operation or a write operation
is assigned to a particular host 130 based on a hash value.
Each host 130 is responsible for read/write operations in
connection with hash values extending from its own position
in the hash range to the position of the previous host 130. For
example, if hosts A, B, C, D and E are positioned at hash
values h. h. h. h4, and hs, respectively, then host B is
responsible for the range of hash values h<hsh, host C is
responsible for the range of hash values highsh, and so on.
The assignment of responsibility "wraps around for host A,
that is, host A is responsible for the range of hash values
hs<hs2' and 0<hsh. In operation, for example, data sets
with keysk and k are assigned to hosts 130 by hashing the
keys k and k to yield their position on ring 184, and then
walking ring 184 clockwise to find the first host 130 with a
position larger than the hashed key of the data set. In the case
of key k, the first host with a larger position, which the
corresponding data set is assigned to, is host A. In the case of
key k, the first host with a larger position, which the corre
sponding data set is assigned to, is host B.
0043. The arrangement shown in FIGS. 7-8 results in each
host 130 being responsible for the region of the ring 184
between it and its predecessor host 130 on the ring 184. For
example, host B is responsible for the portion of the ring 184
between it and host A. If a host 130 enters or leaves, it only
affects the responsibilities of its immediate successor on the
ring 184; all other hosts 130 are unaffected. This is shown in
FIG. 9, in which the addition of a host F impacts the respon
sibilities of its immediate successor on the ring 184, host B.
but not the responsibilities of other hosts 130, such as host A.
Thus, individual hosts 130 may be added or removed without
a total remapping of the partitioning of data sets to hosts 130,
thereby promoting incremental scalability.
0044) 1. Data Replication
0045 Referring now to FIGS. 10-11, the hashing arrange
ment of FIGS. 7-8 may be used to support data replication. In
FIG. 10, rather than the data set being assigned merely to the
immediate successor host 130 on the ring 184, the data set is
assigned to the first N successor hosts 130. As described
below, data set service 112 may operate to ensure that there
are N replicas of the data among the hosts 130, and each host
130 is responsible for the region of the ring 184 between itself
and its Nth predecessor.
0046. As shown in FIG. 1, in such an arrangement, each
key has a preference list 190 of hosts 130, which is the order
that each of the hosts 130 is first encountered while moving
clockwise around the ring 184 from the hash value generated
based on the key. The preference list 190 represents the pre
ferred order of hosts 130 used for accessing (e.g., reading or
writing) a data set. When all hosts 130 are healthy, the top N
hosts in the preference list 190 store the data set. If a particular
host 130 happens to fail, or if there is a network partition, the
data set may temporarily be stored at a host 130 that is lower
ranked in the preference list 190. If multiple hosts 130 fail,
then the data set may be stored at multiple lower ranked hosts
130 in the preference list 190. With N=3, a client process 134
accessing a data set associated with key k reads or writes to
hosts A, B, and D (and then E and then C, if any earlier hosts
are unavailable) in that order, as can be seen by moving
clockwise around ring 184 from the position of key k. A
client process 134 accessing a data set associated with key k.

US 2014/0229432 A1

reads or writes to hosts B, D, E, (and then C and then A, if any
earlier hosts are unavailable) in that order, as can be seen by
moving clockwise around ring 184 from the hash position of
key k. As indicated above, the value N is a configurable
value; thus, more hosts 130 may be added to system 106 to
permit more replication of data sets. Accordingly, the level of
availability of data sets is configurable and may be made as
high as desired using the appropriate number of hosts 130.
0047. When all hosts 130 are available, successive opera
tions on the same data set access the same set of N hosts, and
are therefore consistent (i.e. an operation accesses the same
data that was read/written by the previous operation on the
same key). When there are network or host failures, succes
sive operations to the same data set may access different sets
of hosts 130; however, the operations may still be consistent
as long as there is some overlap in the sets of hosts that are
accessed. For example, a first operation on key k may access
hosts A, B, and D. Later, if host B is unavailable, a second
operation on k may access hosts A, D, and E. Thus, by
accessing available hosts 130 that are highest in the prefer
ence list 190, minor changes in the availability of hosts from
operation to operation do not negatively affect consistency
because Subsequent accesses may involve overlapping hosts.
The availability of at least N hosts must change during two
successive operations in order for there to be no overlap
between the host sets (resulting in an inconsistency). As indi
cated above, the value N is a configurable value; accordingly,
a probabilistic guarantee of consistency is configurable and
may be made as high as desired. This includes probabilistic
guarantees of both global consistency (the system response
reflects the absolute latest change made to the data) and
Subjective consistency (the system's response reflects the
latest changes made by the client making the current request).
0048. In an embodiment, client operations on data sets
may be serviced at multiple locations (e.g., servers). Further
more, Successive operations on the same data set may be
serviced by different servers. In an embodiment, in order to
access the hosts 130 that store a given data set, a server stores
information regarding the host positions in the hash space (in
order to compute the preference list 190) as well as the avail
ability of hosts 130 (in order to select the Navailable hosts
that are highest in the preference list 190). In the presence of
network or host failures, different servers may store different
information regarding the availability of hosts. In the pres
ence of hosts joining or leaving the system, different servers
may store different information regarding the set positions in
the hash space. For example, server X may not be aware that
host A has joined the data set service 112. Hence, in servicing
an operation on a data set with key k, server X may access
hosts B, D, and E. Another serverY may already be aware of
both host A and the hash positions of host A. Based on this
information, when servicing a Subsequent operation on key
k, serverY may access hosts A, B, and D. Thus, by accessing
available hosts 130 that are highest in the preference list 190,
the probability of accessing at least one host during write and
read operations is increased. Accordingly, minor differences
in information regarding host availability and hash positions
from server to server do not negatively impact consistency
during Successive operations. As indicated above, this proba
bilistic guarantee of consistency is determined by the value of
N

0049. In an embodiment, the preference list 190 may be
implemented by way of operation of hashing function 182
(e.g., without being separately stored). In another embodi

Aug. 14, 2014

ment, the preference list 190 may be stored. As will be appre
ciated, other factors may be taken into account when con
structing the preference list 190. The preference list 190 may
be manually or automatically constructed to take into account
such factors. For example, in order to further improve avail
ability and durability, preference list 190 may be constructed
so as to include hosts 130 in the same preference list 190
which have a relatively low probability of correlated failure.
For example, if system 100 is distributed over multiple net
works, there may be sets of hosts 130 that are unlikely to fail
together. Hence, system 100 can maximize availability and
durability by choosing the N hosts for the N replicas of a data
set such that they have low correlated failures. Likewise, low
failure correlation may also exist where hosts 130 are running
on different hardware, using different program logic imple
mentations, running in geographically diverse areas, and
combinations thereof. For example, when moving clockwise
around ring 184, a set of rules may be applied to assess
whether an encountered host 130 meets any additional crite
ria that are desired to be considered. If the encountered host
130 does not meet the additional criteria, the search for an
available host may continue onward around ring 184 until a
host is encountered that does meet the additional criteria.

0050. Other arrangements may also be used to achieve
geographic diversity. For example, rather than using a single
ring 184, a tiered ring arrangement may be used. An example
of such an arrangement is described in greater detail below in
connection with FIGS. 17-25.

0051) 2. Load Balancing
0.052 Referring to FIG. 12, the hosts 130 may be assigned
to multiple positions on the ring 184 in order to promote load
balancing, that is, to avoid non-uniform data and load distri
bution that may otherwise be created by a random position
assignment of each host 130 on ring 184. Thus, in FIG. 12,
hosts A, B, C, D, and E areassigned multiple positions on ring
184. This multiple positioning tends to reduce the variance in
the number of data sets assigned to each host 130, because the
increased number of random placements on ring 184 tends to
cause the number of data sets assigned to each host 130 to
converge on an average value. Thus, assigning more positions
to each host 130 on the ring 184 improves load balancing. In
an embodiment, only the first instance of each encountered
host 130 is placed in the preference list 190. In the case of key
k, the first host with a larger position, which the correspond
ing data set is assigned to, is host A. With N=4, a process
accessing a data set associated with key k reads or writes to
hosts A, B, C, and D. The preference list 190 for key k is
different than above due to the hosts having multiple positions
on ring 184 and due to the hosts being encountered in a
different order. In the case of key k, the first host with a larger
position, which the corresponding data set is assigned to, is
host B. A client process 134 accessing a data set associated
with key k, reads or writes to hosts B, C, D, and A, in that
order. In other example embodiments, multiple instances of
each encountered host 130 may be placed in the preference
list 190, e.g., in order to retry a host 130 that was previously
unavailable.
0053 Assigning hosts 130 multiple positions on ring 184
also facilitates usage of heterogeneous hardware, that is, more
powerful hosts 130 may be assigned more positions on ring
184 and less powerful hosts 130 may be assigned fewer posi
tions on ring 184. For example, in FIG. 12 host E has fewer
positions than any other host, and thus is assumed to be a less
powerful host. As will be appreciated, a range of hosts may be

US 2014/0229432 A1

used, each being more or less powerful than other hosts 130.
The number of positions assigned to a particular host 130 may
be a function of the relative power of the particular host 130.
0054 Additionally, if a sufficient number of positions
assigned to each host 130, then each host 130 may have a
successor/predecessor relationship with each of the other
hosts 130. Accordingly, if one of the hosts 130 becomes
unavailable, or is decommissioned, the load handled by the
decommissioned host 130 may be approximately evenly dis
persed across the remaining available hosts 130 without los
ing data availability. Likewise, when a host 130 becomes
available again, or a new host 130 is added to data set service
112, the newly available host 130 may offload a roughly
equivalent amount of load from each of the other available
hosts 130.
0055 B. Read/Write Access Operations
0056 Referring now to FIGS. 13 A-13B. 14A-14B, and
15A-15B, read and write operations are shown. The read/
write operations may be invoked by a service request made to
data set service 112 by client processes 134. Upon receiving
the service request, the data set service 112 performs the
requested operation and provides a response to the client
process 134.
0057. At data set service 112, one of the hosts 130 is
responsible for coordinating the read or write request. The
host 130 responsible for coordinating the read or write
request is referred to herein as the coordinator. In an embodi
ment, the coordinator is the first host 130 listed in the prefer
ence list 190, and coordinating the read or write request
includes performing a local read or write operation. For
example, the service request may initially be received by
another host 130, and that host 130 may make a decision to
forward the service request to the host 130 which serves as the
coordinator (e.g., the top host in the preference list 190). In
another embodiment, the coordinator may be another host
130, such as a host 130 that is not on the preference list 190,
and coordinating the read or write request does not include
performing a local read or write operation. For example, the
coordinator may be a host 130 which happens to initially
receive the read or write request, but which does not happen
to be near the top of the preference list 190, and which does
not make a decision to forward the service request to a host
which is near the top of the preference list 190. For purposes
of providing an example, it is assumed herein that the coor
dinator is the first host 130 listed in the preference list 190.
0.058. In an embodiment, as described above, read and
write operations may access the first N healthy hosts in pref
erence list 190, skipping over hosts 130 that are potentially
down or inaccessible. When all hosts 130 are healthy, the top
N hosts 130 in the preference list 190 of a key may be
accessed. When there are host failures or network partitions,
hosts 130 that are further down in the preference list 190 may
be accessed instead, thereby maintaining high availability.
0059 Referring first to FIGS. 13 A-13B, an example write
operation is shown. In FIG. 13A, a write request for version
V, is received by host A from client process 134 (either
directly or indirectly, as described above). Assuming the dis
tribution of hosts 130 on ring 184 as shown in FIG. 12, then
the preference list 190 for key k is P={A, B, C, D, E. Host
A is the coordinator and, in this example, performs the write
operation locally (step 150). Host A then copies the new
version V, to the remaining N-1 highest-ranked reachable
hosts, hosts B and C (e.g., if N=3), which then also perform
the write operation and store additional copies (step 152).

Aug. 14, 2014

0060. When the data set is stored, in addition to the data
itself, the key associated with the data and a vector clock are
also stored. The key permits the data set to be identified later.
The vector clock is used for data versioning to capture cau
sality relations between different versions of the same data set
and comprises a list of (host ID, counter) pairs associated with
the versions of data sets. Data versioning through the use of
vector clocks is discussed in greater detail below in connec
tion with FIG. 16.

0061. In FIG. 13B, hosts B and C report back to host A
whether the write operation was successful, and host A
responds to client process 134 confirming whether the write
operation was successful (step 154). In embodiment, in order
for a write operation to be considered successful, the write
operation must be successful at Whosts, where W is a con
figurable value and WsN. Thus, for example, if N=3 and
W=2, a write operation is considered successful if it is suc
cessful at two hosts 130, even if the write operation was
attempted at three hosts 130. It may be noted that, if the write
operation is successful one or more of the hosts 130, copies of
the data set may still eventually migrate to the top N hosts in
the preference lists 190, as described in greater detail below.
Thus, even if a write operation is not considered Successful
according to the test set forth above, eventual consistency of
the data set at the top N hosts may still be achieved.
0062 Referring to FIGS. 14A-14B, an example write
operation with data hand-off is shown. Data hand-off is a
mechanism that attempts to migrate data to the N highest
ranked hosts in the preference list 190 for a data set. For
example, as described above, in general, the coordinator
attempts to send the data to the top N hosts in the preference
list190. However, if one or more of the hosts 130 is down, the
coordinator sends the data to hosts 130 further down the
preference list 190. The preference list 190 provides a well
defined sequence of hosts 130 that will participate in write
operations (and in read operations), and the data hand-off
mechanism is used to migrate the data back to the N highest
ranked hosts 130 in the preference list 190.
0063 Thus, as shown in FIG. 14A, host A receives a write
request for version V, as in FIG. 13A. Host Athen performs
the write operation and attempts to copy the new version to
the remaining Nhighest-ranked reachable hosts, hosts B and
C. In the illustrated example, host C has temporarily failed,
and thus a write at host D is attempted. The data written at host
D may be tagged with a hint Suggesting which host 130
should have received and written the data (e.g., host C), so
that at some later time host D may forward the data to host C.
In FIG. 14B, when host C is healthy, a data hand-off is made
and the data is copied back to host C. The data is thus migrated
back to host C, which is one of the N highest-ranked hosts in
the preference list 190.
0064. In an embodiment, related techniques may be used
to restore lost copies of data sets. For example, when hosts
130 enter or leave and there is a corresponding change in the
preference lists 190 which may cause data to become mis
placed. For example, a host 130 added to system 100 will
displace the rankings of other hosts 130 in preference lists
190. In such situations, to implement a data hand-off, pairs of
hosts 130 may periodically perform a comparison of ranges
they share in common, and then perform necessary data trans
fers to reconcile any differences detected during the compari
son. For example, a host (the sender) holding a range of keys
for which it is not one of the top N hosts may choose any one
of the top N hosts at random (the receiver). As another

US 2014/0229432 A1

example, the host may choose a host in the top N hosts that is
unlikely to have the data, for example, because the host
recently joined the data set service 112. The two hosts 130
may then proceed with a low-level database comparison
within that range, and the sender may forward any data sets
that are more recent than what the receiver is storing to
reconcile any differences that are detected by the comparison.
The data may migrate to at least one host 130 in the preference
list 190 and then be propagated to remaining hosts 130 in the
preference list 190. For example, the propagation to the
remaining hosts 130 may be implemented by comparing data
sets stored at pairs of hosts 130 that are within the top N hosts
in the preference lists 190 for some set of keys. In an embodi
ment, Merkle trees may be used to efficiently find set differ
ences between the data stored at two hosts. For example, a
Merkle tree may be used in which each node of the tree
contains a Summary (or hash value) computed over the data in
its subtree, and in which the leaves contain hashes of one or
more data values (e.g., keys, versions, and clocks). Differ
ences in the contents of the trees may be found by recursing
down branches along which the data Summaries (hash values)
differ. To improve the efficiency of the comparison, the
Merkle tree may be encoded using a Bloom filter.
0065. Using the above-described mechanisms, the data set
service 112 makes an ongoing attempt to dynamically
migrate copies of the most recent versions of data sets to the
top N hosts in their preference lists 190. Thus, even though
copies of the most recent version of a data set may initially be
copied at hosts 130 which are lower in its preference list 190,
or may for another reason become lost at one of the top N
hosts, the copies eventually migrate back to the top N hosts in
the preference lists 190, resulting in eventual consistency of
the data set at the top N hosts.
0066 Referring to FIGS. 15A-15B, an example read
operation 148 performed using preference list 190 is shown.
In FIG. 15A, a read request is received by host A from client
process 134 (either directly or indirectly, as described above)
(step 160). Host A coordinates the read operation by request
ing data from B and C in parallel to doing a local read. Hosts
B and C perform the requested read operation. In FIG. 15B,
host A receives read results from hosts Band C (step 162), and
provides a response to client process 134 (step 164).
0067. When receiving a read request, a coordinator may
request all existing versions of data for that key from the N
highest-ranked reachable hosts 130 in the preference list 190
for that key, and then wait for R responses before returning the
result to the client process 134 (where R is the number of
hosts that needed to participate in a Successful read opera
tion). In the example of FIGS. 15A-15B, the value R is set
equal to three.
0068. Like the value W, the value R is configurable. For
example, if R=1, then once host A responds with a successful
read, the data from that read is returned to the client process
134 for use. As another example, if R=2, then data may not be
returned until reads are performed on both hosts A and B.
Upon performing the two reads, system 100 realizes that the
data is the same version and return the same data as when
R=1. As yet another example, if R=3, then data may not be
returned until reads were performed on hosts A, B, and C.
0069. The values R and W may be configured to be less
than N to provide consistent and high performance. Setting
the values R and W such that R+W>Nyields a quorum-like
system in which there is a configurably high probability of
overlap between the set of hosts 130 that participate in read

Aug. 14, 2014

and write operations. The higher N is set, the more likely the
system is to have availability and durability because the
chances that at least one replica exists is high. On the other
hand, it may be noted that data need not be written to and read
from the same set of hosts 130. For example, a data set may be
written to hosts 130 which are further down on the preference
list 190, migrated through data hand-off to hosts 130 that are
higher on the preference list 190, and then ultimately read
from the hosts 130 that are higher on the preference list 190.
Eventual consistency of the data set at the top N hosts in the
preference list 190 is achieved. In another embodiment, Rand
W may be configured to be much smaller than N (e.g., such
that R+W<N), and copies of the data set may be sent only to
W-1 hosts (in addition to the coordinator). In such an
embodiment, the above-mentioned data repair mechanisms
may be used to propagate the data set to remaining ones of the
top N hosts.
0070. In an embodiment, the application programming
interface for the data set service 112 may be configured as
follows. For example, the commands may have the following
form:

(0071 write(Key, Value, Context)->ResultCode.
0072 read.(Key)->ValueList, Context, ResultCode

where Key is an unbounded sequence of bytes, Value is an
object comprising data (an unbounded sequence of bytes) and
metadata (a read-only, arbitrary, extensible data set contain
ing information about the value, including the last time the
value was written, diagnostic and debugging information, and
so on); Value list is a list of values; Context is opaque object
used internally by the storage system to track vector clock
state for the read-modify-write cycle; and ResultCode is a
code indication whether a read or write operation was suc
cessful.
0073. The write operation changes the value identified by
the key to the value specified by the Value parameter, unless
the Context is stale, meaning that an intervening write has
already occurred on that key. In an embodiment, the client
process 134 restarts the read-modify-write cycle (optimistic
locking). In another embodiment, the client process 134 may
permit the write operation to continue, in which case there
may be conflicting versions of the data set. The read operation
performs a lookup in the data set service 112 for value(s)
associated with the key. Any and all values that are success
fully read are returned in the Value list. An opaque Context
object is returned for use in a Subsequent update operation. If
multiple values are returned, the client process 134 is
expected to perform a reconciliation operation for all of the
values. If a Subsequent update is performed (using the
returned Context), the assumption is that the updated value is
a represents a reconciliation of all values returned in the value
list, plus any additional changes to the value (if any).
0074 As will be appreciated, a greater or lesser level of
complexity in the application programming interface may be
used. For example, in an embodiment, the Value object may
include a type parameter that permits information concerning
how long data should be maintained to be specified, e.g., so
that old/abandoned data may eventually be deleted.
0075. In another embodiment, a key may be used that is
divided into two parts: (partition-key, object-key). In Such an
embodiment, the partition-key may be hashed to generate the
preference list 190 for the key, as described above for the key
parameter. Two data sets sharing the same partition-key may
therefore have the same preference list 190, and hence with
very high probability their respective copies of data sets

US 2014/0229432 A1

would reside on the same set of hosts 130. Such a scheme
allows accessing several data-sets together as an optimiza
tion, since the same set of hosts is in the top N hosts of the
preference 190 lists for all the keys that share a partition-key.
For example, in the merchant website example of FIG. 2, it
may be desirable to store all data sets that relate to a particular
user (e.g., shopping cart, profile, credit-card information, and
so on) on the same set of hosts 130. By using the same
partition-key for each of these data sets, the data sets are
stored on the same set of hosts 130. The (partition-key, object
key) combination uniquely identifies each individual data set
for the user. Another optimization made possible by this
arrangement is range queries on keys sharing a partition-key.
For example, Such range queries may be used to iterate
through all object-keys for a given partition-key, by accessing
a single host 130 that is in the top N of the preference list 190
for that partition-key.
0076. In another embodiment, a type parameter may be
added to the write command (e.g., write(Key, Value, Context,
Type)->ResultCode), so that a client process 134 may specify
the type of data that is being written. The data set service 12
may be configured to delete data a certain amount of time
after it is last accessed (e.g., in order to reclaim storage space
when data is no longer needed). The time allowed before
deletion may be based on the type of data. The type may also
be used to decide the number of copies of the data that the data
set service 112 should store (e.g., on the basis that some types
of data may be more critical than others).
0077. In another embodiment, a read context may also be
passed as input to the read command (e.g., read(Key, Context)
->Value list, Context, ResultCode). In such an embodiment,
the read context passed as input to the read command may be
obtained as a result of a previous read. By passing it back as
input to a read operation, a client process 134 may indicate
interest in retrieving the specific version of the data set that
was accessed during the previous read operation. As will be
appreciated, other variations on the application programming
interface are also possible.

III. Data Versioning

0078 A. Operation of Vector Clocks
0079 Referring to FIG.16, a data versioning arrangement

is discussed. As previously indicated, in order to provide high
availability, the data set service 112 permits multiple versions
of the same data to be present at the same time on different
hosts 130. An ongoing attempt is made to migrate copies of
the most recent versions of data sets to the top N hosts in their
preference lists 190, however, this process is not instanta
neous. Before the migration occurs, copies of older versions
of a data set may be in existence at various hosts in its
preference list 190, even at hosts 130 that are at or near the top
of the preference list 190. Thus, for example, one host 130
may have one version reflecting temporarily lost old changes
and another host 130 may have another version reflecting new
changes made while the old changes are unavailable.
0080. In an embodiment, it is desirable to be able to deter
mine whether two copies of the same data set are different
versions of the data set and have differences relative to each
other. It is also desirable to be able to assess those differences,
Such that it is possible to distinguish situations in which two
versions have an ancestor-descendant relationship with each
other (e.g., one version is merely outdated and has been
incorporated into the other version) from situations in which

Aug. 14, 2014

two versions are in conflict (e.g., each version contains data
that is not reflected in the other version).
I0081. In an embodiment, a version history is stored with
each copy of a data set. For example, the version history may
be stored in the form of vector clocks which capture causality
relations between different versions of the same data set. The
vector clocks may concisely store enough information about
the version history of the data set to permit a determination
whether two versions are in conflict. In an embodiment, the
vector clock comprises a list of host ID, counter pairs
associated with the versions of data sets. The host ID value
indicates the host that coordinated the write operation. The
counter value indicates the number of times that host has
written to the data set. The counter value encodes causality
information for a data version, that is, a Summary of what
changes preceded that version.
I0082. When trying to determine whether two versions of a
data set have a causal ordering (and hence one can be forgot
ten) or are on parallel branches (and hence need reconcilia
tion), it is enough to examine their vector clocks. If one has
greater-or-equal counter values for all the host-IDs in the
other's vector clock, then the former is a descendant of the
latter, and the latter can be forgotten. Thus, the vector clocks
permit client processes 134 to reconcile multiple versions of
the same data in order to collapse multiple branches of data
evolution back into one.
I0083 FIG. 16 illustrates an example of data versioning as
may be used by data set service 112. Initially, at step 400, the
data set is empty. At step 402, a client process 134 updates
empty data version Vo using host A. Host A, which coordi
nates the write, copies the clock of the previous version and
increases the counter value associated with host A and creates
the vector clock for data version V. In this case, the counter
is incremented to one since this is the first update. Data set
service 112 stores data version V and its associated vector
clock (A, 1), e.g., host A performs a local write operation
and further sends the new version (along with the new vector
clock) to hosts B and C to perform additional local write
operations and store additional copies. In one example
embodiment where data set service 112 stores shopping cart
information within a merchant website system, this update
may have occurred due to a visitor adding an item to a shop
ping cart. As will be appreciated, what constitutes a new
“version of the data set may vary depending on the applica
tion.

I0084. In FIG. 16, the coordinator is one of the N highest
ranked reachable hosts in the preference list190. As indicated
above, the coordinator may also be a host 130 that is not one
of the N highest ranked reachable hosts in the preference list
190. In such an example, when receiving a write request, the
coordinator may choose one of the N highest-ranked reach
able hosts 130 in the preference list 190 for that key to gen
erate a vector clock for the new version and store the new
version locally. The coordinator may then send the new ver
sion (along with the new vector clock) to the remaining N
highest-ranked reachable hosts, as previously described.
I0085. At step 404, the same client process 134 updates
data version V using host A. The host A, which coordinates
the write, copies the clock of the previous version and
increases the counter value associated with host A to two and
creates the vector clock for data version V. Again, host A
forwards the data version V and its associated vector clock
(A, 2) to hosts B and C for local write operations and store
additional copies. Version V descends from version V and

US 2014/0229432 A1

therefore over-writes version V, however there may be rep
licas of version V lingering at host partitions that have not yet
seen version V.
I0086. At step 406, the same process updates data version
V using a host B to coordinate the request. For example, host
A may be unavailable. Since a new host B coordinates the
update, a new vector clock entry is created associated with
this host B with a counter value of one. Data set service 112
stores data version V and the associated clock (A2): (B. 1).
The vector clock for data version V may also be stored, if
desired, in order to maintain version history or to allow more
complex reconciliations to be performed. After step 406, a
host that is aware of version V, but not of version V, may
receive version V and the associated vector clock. The host
can determine by comparing the respective clocks (A, 1)
and (A, 2): (B. 1) of version V and version V that version
V causally precedes version V and hence that it was meant
to be overwritten by version Vs. If, on the other hand, a
different sequence of events has occurred, and a vector clock
for data version V has less-than-or-equal counters for all of
the hosts in the clock of version V, then version V is an
ancestor of version V and can be removed.
I0087. At step 408, a different client process 134 reads
version V and tries to update it using host C. For example,
hosts A and B may be unavailable. In the present example, it
is assumed that host C was not involved in the write operation
of step 406, and is not aware of version V. Since a new host
C coordinates the update, a new vector clock entry is created
associated with this host C with a counter value of one. Data
set service 112 stores data version V and the associated clock
(A, 2); (C.1). After step 408, a host that is aware of version
V or version V2 could determine, upon receiving version V
and the associated vector clock, that version V and version
V are over-written by the new data and can be removed.
0088 At step 410, a client process 134 reads both version
V and version V. For example, the read operation may be
coordinated by host A and may also involve hosts B and C.
Host A obtains its own copy of the data set with vector clock
(A, 2), the copy of the data set from host B with vector clock
(A, 2): (B. 1), and the copy of the data set from host C with
vector clock (A, 2); (C, 1). The context of the read is a
Summary of the clocks of version V and version V, namely
(A, 2): (B. 1); (C.1). Host A will find that there is no causal
relation between version V and version V because, from an
examination of the vector clocks, there are changes in each of
version V and version V that are not reflected in the other.
The versions V and V are then reconciled.
0089. In an embodiment, the data set service 112 (host A,
in this example) provides the multiple versions to client pro
cess 134 (and/or version reconciliation logic 136 associated
with client process 134), which in turn decides how to per
form the reconciliation. This arrangement permits any busi
ness logic that is used to perform the reconciliation to be
stored or associated with the client process 134 rather than
with the data set service 112. Although client process 134 and
version reconciliation logic 136 are shown as being separate,
it will be appreciated that client process 134 and version
reconciliation logic 136 may be provided in integral fashion.
In another embodiment, the version reconciliation logic 136
may be provided with the data set service 112. The multiple
versions may be reconciled by, for example, using a default
ordering on the versions to decide which one to keep, by
merging the different versions to produce a single reconciled
version, by performing an analysis of the data and determin

Aug. 14, 2014

ing how to treat discrepancies on a discrepancy-by-discrep
ancy basis, and so on. As will appreciated different
approaches may be more optimal in different situations,
depending on the application.
0090. At step 412, a write request is received from client
process 134. Host A coordinates the write and updates the
corresponding counter value in the vector clock. The updated
version may also include other changes implemented by cli
ent process 134, unrelated to the reconciliation operation.
New version Vs will have the vector clock (A, 3); (B. 1); (C.
1).
0091. It may be noted that, at step 412, host A updates the
counter number to (A, 3); (B. 1); (C, 1)), regardless whether
any changes are implemented to the data set in addition to the
reconciliation. No single version exists with the vector clock
(A, 2): (B. 1); (C. 1). So updating the counter in the vector
clock distinguishes the parent clock from the new clock.
Additionally, increasing the counteris desirable because mul
tiple client processes may attempt to reconcile at the same
time (e.g., using different hosts to coordinate) but arrive at
different results (e.g., because of different merge logic,
because they added changes as well as reconciling, and so
on). If the counter is not updated, the different merge attempts
may be assigned the same clock, i.e., (A, 2): (B. 1); (C.1).
and hence be indistinguishable from each other.
0092
0093. In an embodiment, rather than comprising only
(host ID, counter) pairs, the vector clock comprises a number
of additional values and has the following form:

0094 Vector Clock - (<Host ID> <host-gend <key
gen->), <counters, <time-stamp}

B. Vector Clock Information and Truncation

The host ID is a unique identifier for a host and the counter
parameter encodes the causality information for a data ver
sion, and corresponding to the host ID, counter pair
described previously. In an embodiment, the combination of
the (<Host ID <host-gend <key-gend) parameters operates
in the manner described previously with regard to the host ID
alone. That is, a host is considered a different host (i.e., no
causal relation between different versions of a data set may be
implied) if any one of the three parameters (<Host ID <host
gen <key-gen) is different.
0095. In an embodiment, hosts 130 do not write vector
clocks synchronously to disk. Hence, the potential exists that
a host may forget the sequence numbers it generated for each
key and consequently reuse the sequence numbers, thereby
compromising the consistency of the vector clocks. When the
risk of forgetting (e.g., after host failure) is identified, a host
130 updates its <host-gend parameter so that for all future
vector clocks it generates (for any key), it appears to be an
entirely different host. Thus, incrementing the <host-gend
parameter upon rebooting the host 130 permits vector clocks
generated prior to failure to be distinguished from vector
clocks generated after rebooting. As will be appreciated, the
counter for each vector clock is monotonically increasing in
an unbounded fashion. In an embodiment, in order to avoid
unbounded counter numbers, each host is periodically forced
to choose a new unique identity, e.g., by incrementing the
<host-gen parameter. For example, a host be assigned a new
unique identity after rebooting, thereby also Zeroing the
<counters parameter. This causes the highest possible
counter value to be bounded by the number of writes that a
single host 130 can coordinate before changing identity. In
another embodiment, an identity change may be triggered

US 2014/0229432 A1

automatically in a host if one or more of its counter values
reaches a predetermined threshold value.
0096. The <key-gend parameter may be used to track a
key generation counter. In an embodiment, after data hand
off, hosts 130 delete any data that was obtained. This saves
storage capacity for hosts 130 that are lower down on the
preference list 190. At the same time, the hosts 130 maintain
the <key-gen parameter, which is incremented after data
hand-off, thereby preventing any causal relationship being
assumed the next time the host 130 is asked to perform a write
operation. For example, if host D coordinates a write opera
tion for version of a data set having a vector clock (A, 3), (D.
1), performs a data hand-off, and later is asked to coordinate
another write operation for a version of the data set having a
vector clock (A, 2), it would be inappropriate for the
updated data set to have a vector clock (A, 3), (D, 2). By
assigning a new <key-gen value in this situation, the host
130 is made to appear like a new host, thereby avoiding the
appearance of causality between the two versions. In an
embodiment, each host 130 maintains a separate <key-gen
per key and remembers the key generation for every key for
which it generated a vector clock since it last changed identity
(e.g., changed <Host ID or updated its <host-gen). Like
wise, each host 130 may also remember the last <counters
parameter used in a vector clock for the key since either the
corresponding <key-gen parameter or <host-gen param
eter was updated.
0097. The <time-stamp parameter may be used to moni
tor the age of the data set and entries in its vector clock. In
Some applications, it is desirable to delete data if the data
exceeds a predetermined age. For example, in a shopping cart
application, it may be desirable to delete a shopping cart that
has gone abandoned for a period of days, weeks, months or
years, and so on. The time-stamp may be used to Support the
deletion of data sets in this manner. Additionally, the time
stamp may also be used for vector clock truncation. As will be
appreciated, as the length of the list of different hosts (or same
hosts with different <host-gen or <key-gen parameters)
that have coordinated a write operation in connection with a
data set increases, the length of the vector clock for that data
set increases (i.e., because the length of the list of (host ID,
counter) pairs contained in the vector clock increases).
Accordingly, using the time-stamp, vector clocks that have
aged by a predetermined amount may be deleted or truncated.
0098. In other embodiments, rather than using vector
clocks, other version history mechanisms may be used to
track the changes in data sets. For example, hash histories
may also be used. Herein, the term “version history” refers to
any data structure that may be used to track changes in a data
set over time (i.e., to track that changes exist, not necessarily
to track the nature of the changes). As may be appreciated,
different version history mechanisms may provide different
tradeoffs in terms of disk space usage, bandwidth, maintain
ing consistency when deleting old versions, speed and ease in
detecting causal precedence, and so on. In an embodiment, a
version history mechanism is used which permits the detec
tion of causal precedence (or the absence thereof, previously
referred to as a conflict) between two or more copies of a data
set. The version history mechanism may be used to allow
version conflicts to occur (availability) without the loss of
data and to facilitate maintaining consistency as data migrates
to hosts that are highest in preference lists.

Aug. 14, 2014

IV. Multiple Data Centers
(0099 A. Architecture of Multiple Data Center Arrange
ment

0100 Referring to FIGS. 17-25, another embodiment of
data processing system 100 is shown. In FIGS. 17-25, data
sets are partitioned over hosts 130 in accordance with a multi
tiered ring arrangement. The multi-tiered ring arrangement
may, for example, be used to implement data set storage
systems in which hosts are located in different geographic
locations (e.g., in different data centers, which may be in
different cities, in different countries, on different continents,
etc.). For example, the data may be replicated across Such
different data centers in order to reduce the probability of
correlated failures between hosts. The failure of a single data
center is unlikely to significantly impact availability of the
entire system. Additionally, by redirecting client requests to a
closer data center (in terms of network latency), the end-to
end data retrieval response time may be reduced. The multi
tiered ring arrangement may also be used for other reasons,
for example, Such as with hosts located within a common data
center. For example, different tiers of rings may be used to
specify areas within a data center, particular racks of hosts
within a data center, and so on. For purposes of providing an
example, in FIG. 17, it is assumed that the multi-tiered ring
arrangement is used to implement a data storage set storage
system in which hosts are located in different data centers.
0101 Referring first to FIG. 17, FIG. 17 shows an embodi
ment in which data processing system 100 comprises a two
tiered or two-level ring arrangement. The two-tiered ring
arrangement may be used to implement the data set service
112 shown in FIG. 1 and/or FIG. 2. In FIG. 17, data process
ing system 100 comprises a plurality of data centers 502
logically positioned on an upper level ring 504. Although four
data centers 502 are shown, it will be appreciated that in
practice any number of data centers 502 may be used.
0102 The data centers 502 may be connected to each other
by way of a communication network 508 (e.g., a wide area
network, the Internet, etc.). Messaging between the data cen
ters 502 may pass through message filters 510, discussed in
greater detail below in connection with FIG. 25. As in FIGS.
1-2, each of data centers 502 may be accessed by various user
computers 102 by way of communication network 104 (e.g.,
the Internet).
0103) Each of the data centers 502 further comprises a
plurality of hosts 130 logically positioned on a respective
lower level ring 184. In the illustrated example, each lower
level ring 184 corresponds to a different data center 502.
Within each data center 502, the hosts 130 on each ring 184
may also operate as described above in connection with
FIGS. 3-16. The lower level rings 184 may be homogenous or
heterogeneous (e.g., having different numbers of hosts, dif
ferent hash functions, different configurations, and so on).
Further, as will be seen below, the operation of the upper level
ring 504 with regard to data centers 502 may be the same as
the operation of ring 184 as described above in connection
with FIGS. 3-16 with regard to hosts 130.
0104 Referring to FIG. 18, in an embodiment, the data set
storage system 118 may be distributed across the data centers
502, such that each data center 502 stores a portion of the data
sets. Each of the data centers 502 may have responsibility for
a range of hash values on the top level ring 504 (or sets of
ranges of hash values on the top level ring 504, as described in
greater detail below), with each data center 502 being respon
sible for read/write operations in connection with hash values

US 2014/0229432 A1

extending from its own position in the hash range to the
position of the previous data center 502, in the same manner
as described above in connection with hosts 130 and ring 184.
When a request to access a data set is received (e.g., via a read
operation or a write operation), the key is applied to a hash
function for the upper level ring 504 to determine the data
center(s) 502 from which the data set may be accessed. (In
FIG. 18, the designations DC1-DC4 respectively denote dif
ferent ones the four data centers 502 in FIG. 17.) The key is
also applied to a hash function for the lower level ring 184 to
determine the hosts 130 within the relevant the data center(s)
502 from which the data may be accessed. The hash function
that is used for upper level ring 504 may be the same or
different as the hash function (or hash functions) used for
lower level rings 184. Likewise, as indicated above, the hash
function that is used for each of the lower level rings 184 may
be the same or different as the hash function (or hash func
tions) used for other lower level rings 184. With the mapping
arrangement shown in FIG. 18, individual data centers 504
may be added or removed without a total remapping of the
partitioning of data sets to data centers 504, thereby promot
ing scalability.
0105. In an embodiment, data replication across data cen

ters may also be supported in the same manner as described
above in FIG. 10 in connection with hosts 130. Thus, as
shown in FIG. 18, rather than the data set being assigned
merely to the immediate data center 502 on the ring 504, the
data set may be assigned to the first M Successor data centers
502. Data set storage service 112 may operate to ensure that
the data set is replicated at M data centers 502, and each data
center 502 may responsible for the region of the ring 504
between itself and its Mth predecessor.
0106 The number of data centers 502 that store replicas of
a given data set may be configurable, for example, on a per
data set basis, per data type basis, and so on. As will be
appreciated, the number of replicas of each data set that are
maintained may be determined based on, among other things,
a desired level of availability and a desired level of update
traffic on communication network 508. That is, availability
increases as more replicas are stored across different data
centers. However, the amount of network traffic on commu
nication network 508 also increases during updating as the
replicated copies of the data set are kept consistent. Assuming
a data set is to be replicated within a data center 502, the
number of hosts within the data center 502 that replicate the
data set may also be configurable, for example, on a data
center-by-data center basis, on a per data set basis, on a per
data type basis, and so on.
0107. In an embodiment, load balancing across data cen

ters may also be supported in the same manner as described
above in FIG. 12 in connection with hosts 130. For example,
the data centers 502 may be assigned to multiple positions on
the ring 504. Such an arrangement may be used to avoid
non-uniform data and load distribution that may otherwise be
created by a random position assignment of each data center
502 on ring 504. Such multiple positioning tends to reduce the
variance in the number of data sets assigned to each data
center 502, because the increased number of random place
ments on ring 184 tends to cause the number of data sets
assigned to each data center 502 to converge on an average
value. Additionally, assigning data centers 502 multiple posi
tions on ring 504 also facilitates usage of heterogeneous data
centers, that is, more powerful data centers 502 (e.g., as
determined based on processing capacity, storage capacity,

Aug. 14, 2014

and/or network capacity) may be assigned more positions on
ring 504 and less powerful data centers 502 may be assigned
fewer positions on ring 504. Additionally, assigning data cen
ters 502 multiple positions on ring 504 also facilitates trans
ferring load between data centers, because each data center
502 may have a successor/predecessor relationship with each
of the other data centers 502 (assuming a sufficient number of
positions is assigned to each data center 502 on the ring 504).
Thus, for example, if one of the data centers 502 becomes
unavailable, or is decommissioned, the load handled by the
decommissioned data center 502 may be approximately
evenly dispersed across the remaining available data centers
502 without losing data availability.
0.108 Referring to FIG. 19, each data set may have a
preference list519 of data centers 502, which is the order that
each of the data centers 502 is first encountered while moving
clockwise around the ring 504 from the hash value generated
based on the key. The preference list 519 represents the pre
ferred order of data centers 502 used for accessing (e.g.,
reading, writing, and so on) a data set. When all the data
centers 502 are available, the top M data centers 502 in the
preference list519 store the data set. Successive operations on
the same data set may access the same set of M data centers,
and may therefore be consistent (i.e. an operation accesses the
same data that was read/written by the previous operation on
the same key). If one or more data centers 502 in the prefer
ence list 519 happen to fail, or if there is a network partition,
the data set may temporarily be stored at a data center 502 or
data centers 502 lower ranked in the preference list 519.
thereby maintaining high availability. Additionally, although
Successive operations to the same data set may access differ
ent sets of data centers 502, the operations may still be con
sistent as long as there is some overlap in the sets of data
centers 502 that are accessed. By accessing available data
centers 502 that are highest in the preference list 519, minor
changes in the availability of hosts from operation to opera
tion do not negatively affect consistency because Subsequent
accesses may involve overlapping data centers.
0109. The preference list 519 may, for example, be com
puted based on the hash function. In an embodiment, in order
to access the data centers 502 that store a given data set, each
host 130 may store information regarding the data center
positions in the hash space (in order to compute the prefer
ence list519) as well as the availability of data centers 502 (in
order to select the Mavailable data centers that are highest in
the preference list 519). In another embodiment, the prefer
ence list 519 may be stored, e.g., to permit the stored prefer
ence list519 to be constructed based on the hash function and
based on other factors may be desired to be taken into account
when constructing the preference list 519.
0110 B. Access Operations
0111 Referring now to FIGS. 20-24, operations in con
nection with accessing data sets stored in the data centers 502
are shown. FIG. 20 is a flowchart of an access operation
implemented by the system of FIG. 17 according to an
embodiment. FIGS. 21-24 are diagrams showing aspects of
the access operation of FIG. 20 in greater detail according to
an embodiment.

0112 At step 602, a connection is established by a data
center 502 with a user computer 102. As will be appreciated,
each data center 502 may include not only hosts 130 that
implement data set service 112 but also other hosts that imple
ment network interface 110 and other services 114. Accord
ingly, with reference to FIG.21, the connection may be estab

US 2014/0229432 A1

lished with a host 532 which may, for example, be one of the
hosts that implements network interface 110.
0113. In an embodiment, the connection with the user
computer 102 may be established at one data center 502 (e.g.,
potentially on a random basis), and then redirected to another
data center 502. For example, in FIG. 21, a connection with
user computer 102 may be established by a host 532 in one
data center DC4 (step 602), and then transferred to another
host 534 in another data center DC1 (step 604) which, for
example, may be closer, may be less loaded, and/or may
exhibit other characteristics which make it better Suited for
maintaining the connection.
0114. At step 606, a data access request (e.g., a read
request, a write request, etc.) is received. With reference to
FIG.22, the data access request may be received by a host 130
in data set service 112 from host 536, which may be executing
a client process 134 (see FIG.3). For example, in the context
of the example provided above in FIG. 2, host 534 may be one
of the hosts that implements network interface 110 and may
be connected to user computer 102, host 536 may be one of
the hosts that implements shopping cart service 124 and may
receive requests from host 534, and host 130 may be one of
the hosts that implements data set service 112 and may
receive access requests from host 536. When an access
request for a data set is received at a host 130 in a data center
502, the host 130 determines whether the data set is stored
locally in the data center 502 at step 608. The data set may be
stored locally in the data center 502, for example, because the
data center 502 is one of the top M data centers in the pref.
erence list519, because the data center 502 is further down on
the preference list 519 but is temporarily storing the data set
until the data set migrates to a data center 502 that is one of the
top Mdata centers in the preference list 519, because the data
center 502 has established a connection with a user and has
temporarily stored a leased copy of the data set (as described
in greater below), or for another reason. If the data set is stored
locally, then a response may be provided based on the local
copy or copies (possibly more than one version) of the data set
at step 610. Otherwise, the host 130 may obtain a copy or
copies (possibly more than one version) of the data set from
other ones of the data centers 502. If there are conflicting
version of the data set (e.g., conflicting versions from within
a data center, conflict versions from different data centers, or
both), any such conflicting versions may be reported to the
data set version reconciliation logic 136 associated with the
particular client process 134 requesting the data set and
resolved by the data set version reconciliation logic 136, as
described above. For purposes of providing an example, it is
assumed that data center DC1 is not one of the Mdata centers
that stores a replica of the data set. Therefore, host 130 at data
center DC1 operates as a coordinator to obtain copies of the
data set from other data centers.

0115. At step 612, after the access request is received, the
key for the data set is applied to a hash function for the upper
level ring 504 and the lower level ring 184. At step 614, with
reference to FIG. 22, host 130 at data center DC1 (operating
as the coordinator) requests the data from one or more of the
top data centers in the preference list 519. In an embodiment,
host 130 applies the key to a hash function for the upper level
ring 504 and transmits an access request to data centers DC2
and DC3 (e.g., after determining that data centers DC2 and
DC3 are at the top of the preference list 519 for the data set).
When the access request is received by respective hosts 130 at
data centers DC2 and DC3, those hosts 130 apply the key to

Aug. 14, 2014

a hash function for the lower level ring 184 to determine the
hosts 130 within the respective data center that store the data
set. In this manner, it is not necessary for host 130 at data
center DC1 to store information concerning the positions of
hosts 130 on the rings 184 of the remote data centers DC2 and
DC3. In another embodiment, each of the hosts 130 at each of
the data centers 502 stores this information, and the host 130
at data center DC1 may apply the key to both the upper level
ring 504 and the lower level ring 184.
0116. In an embodiment, the data set may be pre-fetched
when the connection with user computer 102 is established.
For example, in the context of the shopping cart example of
FIG. 2, a user computer 102 may establish a connection with
host 534, but it may be some time before a request for the
shopping cart data set is made. For example, the user may
shop for a time before performing an action that necessitates
accessing the shopping cart data set. The data set may there
fore be pre-fetched by performing a read operation from the
remote data centers 502 as soon as the connection is estab
lished with user computer 102 is established, without waiting
for the user to perform an action which necessitates accessing
the shopping cart data set. As a result, a local copy of the data
set may be immediately available when the user performs an
action which necessitates accessing the shopping cart data
set. This arrangement may be used to avoid network latency
associated with obtaining the data set by way of the commu
nication network 508.

0117. At step 616, the remote data centers 502 process the
access request and transmit a response, which is received by
host 130 at data center DC1. In an embodiment, in order for a
read operation to be successful, the read operation must be
Successful at R, data centers, where R is a configurable
value and RsM. In an embodiment, in order for a write
operation to be considered Successful, the write operation
must be successful at W, data centers, where W is a
configurable value and W, is M. Setting the values R., and
W. Such that R,+W,Myields a quorum-like system in
which there is a configurably high probability of overlap
between the set of data centers 502 that participate in read and
write operations.
0118. As will be appreciated, when accessing data sets
from data centers 502, data sets need not be written to and
read from the same set of data centers 502, as described above
with regard to hosts 130. For example, a data set may be
written to data centers 502 which are further down on the
preference list 519, migrated through data hand-off to data
centers 502 that are higher on the preference list519, and then
ultimately read from the data centers 502 that are higher on
the preference list 519. In this manner, eventual consistency
of the data set at the top M data centers in the preference list
519 may be achieved. Data centers 502 may also periodically
perform low level database comparisons of ranges they share
in common, and then perform necessary data transfers to
reconcile any differences detected during the comparison
(e.g., due to lost copies of data sets). Thus, the data set service
112 may make an ongoing attempt to dynamically migrate
copies of the most recent versions of data sets to the top M
data centers in their preference lists 519. Even though copies
of the most recent version of a data set may initially be copied
at data centers 502 which are lower in its preference list 519.
or may for another reason become lost at one of the top Mdata
centers, the copies eventually migrate back to the top M data
centers in the preference lists 519, resulting in eventual con
sistency of the data set at the top M data centers.

US 2014/0229432 A1

0119. At step 618, the version histories for all the data sets
received from the various hosts 130 and data centers 502 are
compared to check consistency between data sets received
from different data centers. In an embodiment, the version
histories are vector clocks, and the vector clock arrangement
as described above in connection with FIG. 16 is used to
capture causality relations between different versions of the
same data set stored at different data centers 502. For
example, every host 130 may be given a universally unique
<Host ID parameter, e.g., such that any given two hosts 130
may be distinguished from each other, even if they are in
different centers. In Such an arrangement, the logic that is
used to perform data versioning need not necessarily be cog
nizant of (or otherwise take into account) the fact that the
hosts 130 are organized according to a multi-tiered ring
arrangement. In another embodiment, data versioning is per
formed separate at the level of lower level ring 184 and at the
level of upper level ring 504. In such an embodiment, the
vector clock may include a <data center IDs parameter which
indicates the data center that coordinated the write operation.
0120 At step 620, with reference to FIG. 24, the data set is
refreshed at the remote data centers. In an embodiment, once
the data set is obtained, the data set is retained in the data
center DC1 for a period of time (referred to herein as a “lease
time'). Subsequently, future read operations are performed
locally provided the lease has not expired. For example, when
the data center receives a read to a data set, it returns the data
set from a local host 130, without transmitting a read request
to remote data centers 502. With regard to write operations, in
an embodiment, write operations may be controlled using a
message filter, as described below. In another embodiment,
write operations may be performed using the same lease
arrangement as described above for read operations. That is,
when it receives an update to the data set, the host 130 per
forms the update locally and propagates the updates asyn
chronously to the other data centers 502 only upon expiration
of the lease. By operating on the local copy of the data set,
latency experienced at user computer 102 is reduced. In
another embodiment, neither a message filter nor a lease
arrangement is used, and updates are immediately propagated
to the other data centers 502.

0121. In the context of a network service, for example, a
retail website, the lease time may be determined based on the
average session time of user computers 102 and extended if
the a session with a user computer 102 is active. However,
during this lease time it is also possible for conflicts to arise in
different copies of the data set if the data set is being accessed
at multiple data centers simultaneously (e.g., if multiple user
computers 102 are accessing the same data set at different
data centers). In such situations, it may be desirable to refresh
the local copy (as shown in FIG.24) and synchronize the local
copy with other replica copies maintained at other data cen
ters. To the extent that conflicts arise in the data set stored at
different data centers 502, such conflicts may be resolved by
data set version reconciliation logic 136.
0122 C. Message Filter Operations
0123 Referring now to FIG. 25, in an embodiment, it may
be desirable to reduce communication overhead across data
centers while still meeting a desired level of availability, e.g.,
if the cost of storing data in the data centers is impacted by the
level of network traffic (e.g., peak network traffic, average
network traffic, and so on). For example, it may be desirable
to avoid immediate propagation of data sets to other data
centers so that traffic bursts are smoothened.

Aug. 14, 2014

0.124. To this end, message filters 510 in each of the data
centers 502 may be used to modulate network traffic. Each
message filter 510 may be logically centralized in the corre
sponding data center 502. The message filter 510 may be
configured to receive write requests from hosts 130 within the
data center 502 and propagate the write requests immediately
or in a delayed fashion. As shown in FIG. 25, data center 502
generates network traffic with a burst 552. The message filter
510 operates to smoothen the burst and create a bandwidth
profile 554 in which the network traffic is spread out over a
period of time. As another example, the message filter 510
may be configured to discard older versions of the data set
(based on an analysis of the vector clocks) and forward only
the most recent version of the data set. Message filter 510 may
also be configured to operate as a reliable message storage
system. For example, if a data center 502 is down or unavail
able to receive message(s), then the message filter 510 may be
configured to store the message and send the message when
the data center 502 is back online.

0.125. The invention is described above with reference to
drawings. These drawings illustrate certain details of specific
embodiments that implement the systems, methods and pro
grams of the present invention. However, describing the
invention with drawings should not be construed as imposing
on the invention any limitations that may be present in the
drawings. The present invention contemplates methods, sys
tems and program products on any machine-readable media
for accomplishing its operations. The embodiments of the
present invention may be implemented using an existing
computer processor, or by a special purpose computer pro
cessor incorporated for this or another purpose or by a hard
wired system.
I0126. As noted above, embodiments within the scope of
the present invention include program products comprising
machine-readable media for carrying or having machine-ex
ecutable instructions or data structures stored thereon. Such
machine-readable media can be any available media which
can be accessed by a general purpose or special purpose
computer or other machine with a processor. By way of
example, such machine-readable media can comprise RAM,
ROM, EPROM, EEPROM, CD-ROM or other optical disk
storage, magnetic disk storage or other magnetic storage
devices, or any other medium which can be used to carry or
store desired program code in the form of machine-execut
able instructions or data structures and which can be accessed
by a general purpose or special purpose computer or other
machine with a processor. When information is transferred or
provided over a network or another communications connec
tion (either hardwired, wireless, or a combination of hard
wired or wireless) to a machine, the machine properly views
the connection as a machine-readable medium. Thus, any
Such connection is properly termed a machine-readable
medium. Combinations of the above are also included within
the scope of machine-readable media. Machine-executable
instructions comprise, for example, instructions and data
which cause a general purpose computer, special purpose
computer, or special purpose processing machines to perform
a certain function or group of functions.
0127 Embodiments of the invention are described in the
general context of method steps which may be implemented
in one embodiment by a program product including machine
executable instructions, such as program code, for example,
in the form of program modules executed by machines in
networked environments. Generally, program modules

US 2014/0229432 A1

include routines, programs, objects, components, data struc
tures, etc., that perform particular tasks or implement particu
lar abstract data types. Machine-executable instructions,
associated data structures, and program modules represent
examples of program code for executing steps of the methods
disclosed herein. The particular sequence of such executable
instructions or associated data structures represent examples
of corresponding acts for implementing the functions
described in Such steps.
0128 Embodiments of the present invention may be prac
ticed in a networked environment using logical connections
to one or more remote computers having processors. Logical
connections may include a local area network (LAN) and a
wide area network (WAN) that are presented here by way of
example and not limitation. Such networking environments
are commonplace in office-wide or enterprise-wide computer
networks, intranets and the Internet and may use a wide
variety of different communication protocols. Those skilled
in the art will appreciate that such network computing envi
ronments will typically encompass many types of computer
system configurations, including personal computers, hand
held devices, multi-processor Systems, microprocessor-based
or programmable consumer electronics, network PCs, serv
ers, minicomputers, mainframe computers, and the like.
Accordingly, the user computers 102 depicted in FIG.1 may
include, but are not limited to, desktop computers, laptop
computers, set-top boxes, personal digital assistants, cellular
telephones, media players, web pads, tablets, etc. Embodi
ments of the invention may also be practiced in distributed
computing environments where tasks are performed by local
and remote processing devices that are linked (either by hard
wired links, wireless links, or by a combination of hardwired
or wireless links) through a communications network. In a
distributed computing environment, program modules may
be located in both local and remote memory storage devices.
0129. An exemplary system for implementing the overall
system or portions of the invention might include a general
purpose computing device in the form of a computer, includ
ing a processing unit, a system memory, and a system bus that
couples various system components including the system
memory to the processing unit. The system memory may
include read only memory (ROM) and random access
memory (RAM). The computer may also include a magnetic
hard disk drive for reading from and writing to a magnetic
hard disk, a magnetic disk drive for reading from or writing to
a removable magnetic disk, and an optical disk drive for
reading from or writing to a removable optical disk Such as a
CD-ROM or other optical media. The drives and their asso
ciated machine-readable media provide nonvolatile storage
of machine-executable instructions, data structures, program
modules, and other data for the computer.
0130. It should be noted that although the flowcharts pro
vided herein show a specific order of method steps, it is
understood that the order of these steps may differ from what
is depicted. Also two or more steps may be performed con
currently or with partial concurrence. Such variation will
depend on the software and hardware systems chosen and on
designer choice. It is understood that all such variations are
within the scope of the invention. Likewise, software and web
implementations of the present invention could be accom
plished with standard programming techniques with rule
based logic and other logic to accomplish the various data
base searching steps, correlation steps, comparison steps and
decision steps. It should also be noted that the word “engine'

Aug. 14, 2014

as used herein and in the claims is intended to encompass
implementations using one or more lines of Software code,
and/or hardware implementations, and/or equipment for
receiving manual inputs. Components such as engines, inter
faces, databases, browsers, and so on, may be in communi
cation with each other either because such components are
provided in integral fashion because they are in communica
tion with each other through a communication link, such as a
network, and/or for other reasons,
I0131 The foregoing description of embodiments of the
invention have been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
invention to the precise form disclosed, and modifications and
variations are possible in light of the above teachings or may
be acquired from practice of the invention. The embodiments
were chosen and described in order to explain the principles
of the invention and its practical application to enable one
skilled in the art to utilize the invention in various embodi
ments and with various modifications as are Suited to the
particular use contemplated.
What is claimed is:
1. A computer-implemented data storage system compris

ing:
mapping logic executed by a processor operative to execute

instructions stored in memory, the mapping logic con
figured to map responsibility for storing a plurality of
data sets to a plurality of data centers, wherein the plu
rality of data centers include a plurality of hosts for
maintaining parts of the data sets;

data set replication logic executed by a processor operative
to execute instructions stored in memory, the data set
replication logic configured to write a first plurality of
copies of a data set at a first subset of the plurality of
hosts within a first subset of the plurality of data centers:

data set retrieval logic executed by a processor operative to
execute instructions stored in memory, the data set
retrieval logic configured to read a second plurality of
copies of the data set at a second subset of the plurality
of hosts within a second subset of the plurality of data
centers; and

data set comparison logic executed by a processor opera
tive to execute instructions stored in memory, the data
set comparison logic configured to:
evaluate causal relationships between elements of the

second plurality of copies of the data set to provide a
single copy of the data set, the evaluation of causal
relationships including at least an determination of
causal relationships between elements in the second
plurality of copies of the data set that are not causal
ancestors of other elements in the second plurality of
copies of the data set; and

cause reconciliation between at least two copies of the
second plurality of copies, wherein respective ele
ments of the at least two copies are determined not to
be causal ancestors of one another.

2. The computer-implemented data storage system of
claim 1, wherein at least one member in the first subset of data
centers and the second subset of data centers are different.

3. The computer-implemented data storage system of
claim 1, wherein the data set comparison logic is further
configured to cause generation of the single copy of the data
set based, at least in part, on the reconciliation between the at
least two copies.

US 2014/0229432 A1

4. The computer-implemented data storage system of
claim 1, wherein the reconciliation is based at least in part on
data versioning information.

5. The computer-implemented data storage system of
claim 1, wherein the reconciliation includes applying a
default ordering on copies in the second plurality of copies of
the data set.

6. The computer-implemented data storage system of
claim 5, wherein the default ordering includes partial order
ing.

7. The computer-implemented data storage system of
claim 5, wherein the default ordering is based at least in part
on changes identified in data versioning information.

8. The computer-implemented data storage system of
claim 1, wherein the reconciliation includes merging copies
in the second plurality of copies.

9. The computer-implemented data storage system of
claim 8, wherein merging copies in the second plurality of
copies of the data set is based at least in part on changes
identified in data versioning information.

10. The computer-implemented data storage system of
claim 1, wherein the first subset of the first subset of the
plurality of hosts within the plurality of data centers com
prises a set of one or more hosts in the first subset of the
plurality of hosts within each data center of the first subset of
the plurality of data centers.

11. The computer-implemented data storage system of
claim 1, wherein reading a second plurality of copies of a data
set at the second subset of the plurality of hosts within the first
Subset of the plurality of data centers includes reading data
from a second ordered sequence of hosts.

12. A computer-implemented method comprising:
obtaining a data set;
writing a first plurality of copies of the data set at a first

plurality of hosts within a first subset of a plurality of
data centers;

reading a second plurality of copies of the data set at a
second plurality of hosts within a second subset of the
plurality of data centers;

evaluating causal relationships between elements of the
second plurality of copies of the data set, wherein evalu
ating causal relationships comprises at least determining
causal relationships between elements in the second plu
rality of copies of the data set that are not causal ances
tors of other elements in the second plurality of copies of
the data set;

reconciling between at least two copies of the second plu
rality of copies, wherein the at least two copies comprise
respective elements that are determined not to be causal
ancestors of one another; and

Aug. 14, 2014

determining a single copy of the data set from the second
plurality of copies of the data set based, at least in part,
on the reconciling between the at least two copies.

13. The computer-implemented method of claim 12,
wherein evaluating causal relationships is based at least in
part on data versioning information.

14. The computer-implemented method of claim 12,
wherein evaluating causal relationships includes applying a
default ordering on copies in the second plurality of copies of
the data set.

15. The computer-implemented method of claim 12,
wherein determining a single copy of the data set includes
merging copies in the second plurality of copies.

16. The computer-implemented method of claim 12,
wherein at least one member in the first subset of data centers
and the second subset of data centers are different.

17. The computer-implemented method of claim 12,
wherein writing the first plurality of copies of the data set at
the first plurality of hosts within the first subset of the plurality
of data centers includes writing data to a first ordered
sequence of hosts.

18. The computer-implemented method of claim 17,
wherein reading the second plurality of copies of a data set at
the second plurality of hosts within the second subset of the
plurality of data centers includes reading data from a second
ordered sequence of hosts.

19. A computer-readable medium containing computer
executable instructions, wherein the computer-executable
instructions, when executed by a processor, cause the proces
SOr to:

read a plurality of copies of a data set at a plurality of hosts
within a subset of a plurality of data centers;

evaluate causal relationships between elements of the plu
rality of copies of the data set, wherein evaluating causal
relationships comprises at least evaluating causal rela
tionships between elements in the second plurality of
copies of the data set that are not causal ancestors of
other elements in the plurality of copies of the data set;
and

determine a single copy of the data set from the plurality of
copies of the data set based on the evaluated causal
relationships between the elements of the plurality of
copies of the data set.

20. The computer-readable medium of claim 19, wherein
evaluating causal relationships further comprises applying
partial ordering on copies in the plurality of copies of the data
Set.

