
THAT TARTANI A MANO ALTO AL LA TOMA A MILANO MOLTO US 20180113813A1
(19) United States
(12) Patent Application Publication (10) Pub . No . : US 2018 / 0113813 A1

Garibay et al . (43) Pub . Date : Apr . 26 , 2018

(54) DYNAMIC ADDRESS TRANSLATION TABLE
ALLOCATION

(71) Applicant : International Business Machines
Corporation , Armonk , NY (US)

G06F 12 / 1009 (2006 . 01)
G06F 9 / 455 (2006 . 01)

(52) U . S . CI .
CPC GO6F 12 / 1027 (2013 . 01) ; G06F 12 / 1081

(2013 . 01) ; G06F 12 / 1009 (2013 . 01) ; G06F
2009 / 45583 (2013 . 01) ; G06F 2212 / 65

(2013 . 01) ; G06F 2212 / 68 (2013 . 01) ; G06F
9 / 45558 (2013 . 01)

(72) Inventors : Victor A . Garibay , Leander , TX (US) ;
Daniel E . Hurlimann , Austin , TX
(US) ; Chetan Mehta , Austin , TX (US) ;
Travis J . Pizel , Rochester , MN (US) ;
Fernando Pizzano , Poughkeepsie , NY
(US) ; Thomas R . Sand , Rochester , MN
(US)

(57) ABSTRACT

(21) Appl . No . : 15 / 632 , 639

(22) Filed : Jun . 26 , 2017
Related U . S . Application Data

(63) Continuation of application No . 15 / 334 , 588 , filed on
Oct . 26 , 2016 , now Pat . No . 9 , 710 , 395 .

A system and method dynamically allocate address transla
tion tables for direct memory access windows by donating
logical memory blocks to allocate to the address translation
tables . A dynamic address translation table allocation mod
ule dynamically changes the allocation of memory to the
address translation tables without a platform or partition
reboot . A portion of the dynamic address translation table
allocation module may reside in the hypervisor and in the
partition and communicate to dynamically allocate memory
to the address translation tables . The dynamic address trans
lation table allocation module in the partition may donate
logical memory blocks to the hypervisor to increase the
allocation of memory to the address translation tables .

Publication Classification
(51) Int . Ci .

GOOF 12 / 1027
G06F 12 / 1081

(2006 . 01)
(2006 . 01)

Computer System 100

PartitionA 110 PartitionB Partition nu 114
120
122

Applications
Middleware

Operating System 124

OS DAAM
105A

DMA Windows
128

116 Hypervisor
Hypervisor DAAM

105B
Address Translation

Table (s)
130

System Hardware 118

Mem
132

CPU (S)
134 Ilo

136

Patent Application Publication Apr . 26 , 2018 Sheet 1 of 4 US 2018 / 0113813 A1

Computer System 100

PartitionA 110 PartitionB Partition

122 _ 1
Applications
Middleware

Operating System 124
OS DAAM
105A

DMA Windows
128

116 Hypervisor -

Hypervisor DAAM
105B

Address Translation
Table (s)

130 H

System Hardware 118

Mem EO CPU (s)
134 132 136

FIG . 1

Operating System DAAM

Hypervisor DAAM

210

Patent Application Publication

maxDMAwindow = queryMaximumDMAwindow

Query the max DMA Window

230

size .

Calculate the max DMA Window size .

240

shiftLparMemoryToHypervisor (pointerToLMB)

If the max DMA Window is not

big enough . Give up an LMB - - - - -

250 to the hypervisor .

-

Update the number of IOAT to include the donated
memory .

260

- - - - - -

maxDMAwindow = query Maximum DMAwindow

Determine the max DMA Window . If it is not big enough or optimal . Return to give more memory .

Calculate the max DMA Window size .

Apr . 26 , 2018 Sheet 2 of 4

270

280

maxDMAwindow = createDMAwindow (DMA window
size < = maxDMAWindow , page Size

If the max DMA Window is optimal , then create the optimal DMA window to maximize 1 / 0 adapter performance .

Hypervisor Calculates and Returns the DMA Window size .

FIG . 2

US 2018 / 0113813 A1

Patent Application Publication Apr . 26 , 2018 Sheet 3 of 4 US 2018 / 0113813 A1

300

Start

310 Determine the Maximum DMA Window Size

320
Yes

Optimal Size ?

No

7330 330
Donate Memory to the Hypervisor

Add Donated Memory to Increase the
Maximum DMA Window Size

L340 340

Create the Optimal DMA Window to Maximize
1 / O Adapter Performance

350

Done

FIG . 3

Patent Application Publication Apr . 26 , 2018 Sheet 4 of 4 US 2018 / 0113813 A1

400
Step
310

410
Yes Max DMA Window > =

Partition Memory ?

No
420

Yes Performance
Acceptable With Current

Window Size ?

No
430

No Step More Memory
Available to Donate ? 350

T Yes

Step
330

FIG . 4

US 2018 / 0113813 A1 Apr . 26 , 2018

DYNAMIC ADDRESS TRANSLATION TABLE
ALLOCATION

[0005] The foregoing and other features and advantages of
the invention will be apparent from the following more
particular description of preferred embodiments of the
invention , as illustrated in the accompanying drawings . BACKGROUND

1 . Technical Field

[0001] This invention generally relates to address transla
tion in a computing environment , and more specifically
relates to dynamic address translation table allocation for a
direct memory access (DMA) window without a platform or
partition reboot .

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWING (S)

[0006] The disclosure will be described in conjunction
with the appended drawings , where like designations denote
like elements , and :
[0007] FIG . 1 is a block diagram that illustrates a com
puter system with a dynamic ATT allocation module
(DAAM for dynamically changing the allocation of
memory to the address translation tables ;
[0008] FIG . 2 is a signal flow diagram that illustrates
handshake communication of the dynamic ATT allocation
module for dynamically changing the allocation of memory
to the address translation tables ;
[0009] FIG . 3 is a flow diagram of a method for dynami
cally changing the allocation of memory to the address
translation tables ; and
[0010] FIG . 4 is a flow diagram of an example method for
step 320 in FIG . 3 .

2 . Background Art

[0002] Address translation tables (ATTs) are used to pro
vide security for main storage memory accesses by I / O
adapters sometimes called DMA Windows . The ATT maps
addresses used by the I / O adapter to do direct memory
access (DMA) of main storage memory . The ATT holds
address translation table entries (ATTE) , where each entry
consists of authority information (Read / Write) and main
storage address information . A typical ATTE is at least 8
bytes in length , but other size entries could be used . Each
ATTE maps to a page of main memory . The pages can be
various sizes such as 4K , 64K , 1M , and 16M . There are also
larger blocks of main memory used to manage the allocation
of main memory . These larger blocks are sometimes called
Logical Memory Blocks , or LMBs . The LMBs are used to
divide up main storage memory into pieces that can be
assigned to a hypervisor that manages logical partitions or to
the logical partitions themselves .
[0003] The ATT must be accessible by the hardware to do
translations and trusted firmware , such as a hypervisor , must
be able to set up mappings when needed . Hence the ATT is
typically in hypervisor storage memory . It is advantageous
to limit memory used by the Hypervisor since any memory
used by the hypervisor is memory that can ' t be used by
partitions / users . Also , hypervisor storage memory typically
must be allocated during platform initialization . There is a
tradeoff between large ATT tables and small ATT tables . A
large ATT table may allow all or nearly all of memory to be
mapped to the I / O adapter but that will take too much
memory . A small ATT uses less memory but may result in
more overhead by the hypervisor while mapping and
unmapping pages of memory . Further , determining the size
of the DMA windows needed for each IO adapter at initial
ization time is very difficult .

DETAILED DESCRIPTION
[0011] The claims and disclosure herein describe dynami
cally allocating address translation tables for direct memory
access windows by donating logical memory blocks to
allocate to the address translation tables without a platform
or partition reboot . A dynamic address translation table
allocation module dynamically changes the allocation of
memory to the address translation tables . A portion of the
dynamic address translation table allocation module may
reside in the hypervisor and in the partition and communi
cate to dynamically allocate memory to the address trans
lation tables . The dynamic address translation table alloca
tion module in the partition may donate logical memory
blocks to the hypervisor to increase the allocation of
memory to the address translation tables .
[0012] Referring now to FIG . 1 , a block diagram illus
trates a computer system 100 with a dynamic ATT allocation
module (DAAM) for dynamically changing the allocation of
memory used for address translation . The DAAM dynami
cally changes the address translation table allocation for a
direct memory access (DMA) window during run time of the
partition and after the platform or partition is initialized such
that a reboot of the partition is not required after the
allocation . In the illustrated example , the DAAM is made up
of two parts the OS DAAM 105A and the hypervisor DAAM
105B , which are collectively referred to herein as DAAM
105 . Computer system 100 may represent a computers
system or server that is part of a cloud computing system , or
may be a stand - alone host computer system . The computer
system 100 may host one or more partitions or virtual
machines . In the illustrated example , the computer system
100 hosts three partitions 110 , 112 , 114 . PartitionA 110
includes applications 120 , middleware 122 , and operating
system 124 in the manner as known in the prior art .
PartitionA 110 further includes DMA windows 128 . The
DMA windows 128 is the memory assigned to the partition
and accessible via DMA memory operations as known in the
prior art . PartitionA 110 includes the operating system
dynamic ATT allocation module (OS DAAM) 105A for

BRIEF SUMMARY
[0004] An apparatus and method dynamically allocates
address translation tables for direct memory access windows
by donating logical memory blocks to allocate to the address
translation tables . A dynamic address translation table allo
cation module dynamically changes the allocation of
memory to the address translation tables without a platform
or partition reboot . A portion of the dynamic address trans
lation table allocation module may reside in the hypervisor
and in the partition and communicate to dynamically allo
cate memory to the address translation tables . The dynamic
address translation table allocation module in the partition
may donate logical memory blocks to the hypervisor to
increase the allocation of memory to the address translation
tables .

US 2018 / 0113813 A1 Apr . 26 , 2018

dynamically changing the allocation of memory used for
address translation as described herein . DAAM 105A thus is
a portion of the DAAM 105 residing in a partition . In some
implementations , the DAAM 105A may reside within the
operating system 124 . PartitionB 112 and PartitionC 114
may include the same components as shown for PartitionA
110 .
[0013] Again referring to FIG . 1 , in the illustrated
example , the computer system 100 further includes a hyper
visor 116 . A hypervisor is one suitable example of partition
manager system software that allocates and controls the
partitions 110 , 112 and 114 . The hypervisor 116 runs on the
computer system 100 and provides a virtual operating plat
form for virtual machines or logical partitions as known in
the prior art . The hypervisor 116 also virtualizes the system
hardware 118 to provide virtualized hardware resources to
the partitions . The system hardware 118 may include
memory 132 , computer processing units 134 and I / O devices
136 as known in the prior art . The hypervisor 116 includes
a portion of the DAAM shown here as DAAM 105B . The
DAAM 105B in the hypervisor manages allocation of the
address translation tables 130 as described further below .
[0014] The present invention may be a system , a method ,
and / or a computer program product at any possible technical
detail level of integration . The computer program product
may include a computer readable storage medium (or media)
having computer readable program instructions thereon for
causing a processor to carry out aspects of the present
invention .
[0015] The computer readable storage medium can be a
tangible device that can retain and store instructions for use
by an instruction execution device . The computer readable
storage medium may be , for example , but is not limited to ,
an electronic storage device , a magnetic storage device , an
optical storage device , an electromagnetic storage device , a
semiconductor storage device , or any suitable combination
of the foregoing . A non - exhaustive list of more specific
examples of the computer readable storage medium includes
the following : a portable computer diskette , a hard disk , a
random access memory (RAM) , a read - only memory
(ROM) , an erasable programmable read - only memory
(EPROM or Flash memory) , a static random access memory
(SRAM) , a portable compact disc read - only memory (CD
ROM) , a digital versatile disk (DVD) , a memory stick , a
floppy disk , a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon , and any suitable combination of the fore
going . A computer readable storage medium , as used herein ,
is not to be construed as being transitory signals per se , such
as radio waves or other freely propagating electromagnetic
waves , electromagnetic waves propagating through a wave
guide or other transmission media (e . g . , light pulses passing
through a fiber - optic cable) , or electrical signals transmitted
through a wire .
[0016] Computer readable program instructions described
herein can be downloaded to respective computing / process
ing devices from a computer readable storage medium or to
an external computer or external storage device via a net
work , for example , the Internet , a local area network , a wide
area network and / or a wireless network . The network may
comprise copper transmission cables , optical transmission
fibers , wireless transmission , routers , firewalls , switches ,
gateway computers and / or edge servers . A network adapter
card or network interface in each computing / processing

device receives computer readable program instructions
from the network and forwards the computer readable
program instructions for storage in a computer readable
storage medium within the respective computing processing
device .
[0017] Computer readable program instructions for carry
ing out operations of the present invention may be assembler
instructions , instruction - set - architecture (ISA) instructions ,
machine instructions , machine dependent instructions ,
microcode , firmware instructions , state - setting data , con
figuration data for integrated circuitry , or either source code
or object code written in any combination of one or more
programming languages , including an object oriented pro
gramming language such as Smalltalk , C + + , or the like , and
procedural programming languages , such as the “ C ” pro
gramming language or similar programming languages . The
computer readable program instructions may execute
entirely on the user ' s computer , partly on the user ' s com
puter , as a stand - alone software package , partly on the user ' s
computer and partly on a remote computer or entirely on the
remote computer or server . In the latter scenario , the remote
computer may be connected to the user ' s computer through
any type of network , including a local area network (LAN)
or a wide area network (WAN) , or the connection may be
made to an external computer (for example , through the
Internet using an Internet Service Provider) . In some
embodiments , electronic circuitry including , for example ,
programmable logic circuitry , field - programmable gate
arrays (FPGA) , or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry , in order to
perform aspects of the present invention .
[0018] Aspects of the present invention are described
herein with reference to flowchart illustrations and / or block
diagrams of methods , apparatus (systems) , and computer
program products according to embodiments of the inven
tion . It will be understood that each block of the flowchart
illustrations and / or block diagrams , and combinations of
blocks in the flowchart illustrations and / or block diagrams ,
can be implemented by computer readable program instruc
tions .
[0019] These computer readable program instructions may
be provided to a processor of a general purpose computer ,
special purpose computer , or other programmable data pro
cessing apparatus to produce a machine , such that the
instructions , which execute via the processor of the com
puter or other programmable data processing apparatus ,
create means for implementing the functions / acts specified
in the flowchart and / or block diagram block or blocks . These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer , a programmable data processing apparatus , and /
or other devices to function in a particular manner , such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function / act
specified in the flowchart and / or block diagram block or
blocks .
[0020] The computer readable program instructions may
also be loaded onto a computer , other programmable data
processing apparatus , or other device to cause a series of
operational steps to be performed on the computer , other
programmable apparatus or other device to produce a com

US 2018 / 0113813 A1 Apr . 26 , 2018

puter implemented process , such that the instructions which
execute on the computer , other programmable apparatus , or
other device implement the functions / acts specified in the
flowchart and / or block diagram block or blocks .
[0021] The flowchart and block diagrams in the Figures
illustrate the architecture , functionality , and operation of
possible implementations of systems , methods , and com
puter program products according to various embodiments
of the present invention . In this regard , each block in the
flowchart or block diagrams may represent a module , seg
ment , or portion of instructions , which comprises one or
more executable instructions for implementing the specified
logical function (s) . In some alternative implementations , the
functions noted in the blocks may occur out of the order
noted in the Figures . For example , two blocks shown in
succession may , in fact , be executed substantially concur
rently , or the blocks may sometimes be executed in the
reverse order , depending upon the functionality involved . It
will also be noted that each block of the block diagrams
and / or flowchart illustration , and combinations of blocks in
the block diagrams and / or flowchart illustration , can be
implemented by special purpose hardware - based systems
that perform the specified functions or acts or carry out
combinations of special purpose hardware and computer
instructions .
[0022] FIG . 2 represents a signal flow diagram that
describes handshake communication of the dynamic ATT
allocation module (DAAM) 105 for dynamically changing
the allocation of memory to the address translation tables .
The communication described in FIG . 2 takes place between
the operating system and the hypervisor as shown in FIG . 1 .
In this example and throughout the description herein ,
references to actions taken by the operating system (OS)
may be performed by the portion of the DAAM 105A
located in or associated with the operating system 124 in
PartitionA 110 . Similarly , reference to actions taken by the
hypervisor may be performed by the portion of the DAAM
105B residing in the hypervisor 116 .
[0023] Again referring to FIG . 2 an example of dynami
cally changing the allocation of memory to the address
translation tables is illustrated . In this example , the operating
system (OS) queries the maximum DMA window size 210 .
The hypervisor calculates the maximum DMA window size
and responds to the query to return the maximum DMA
window size 220 . The OS then determines whether the
maximum DMA window size is big enough . If the maximum
DMA window size is not big enough , then the OS gives up
memory in the form of an LMB to the hypervisor 230 . The
hypervisor receives the donated LMB and updates the
address translation tables to include the donated memory
240 . The hypervisor may respond by returning a code that
indicates whether is successfully updated the address trans -
lation tables with the memory . The OS then again queries the
maximum DMA window size . The hypervisor recalculates
the maximum DMA window size and returns this value to
the OS . The OS determines whether the maximum DMA
window size is now optimal 250 . The hypervisor then
calculates the max DMA window size 260 . If the DMA
window size is not optimal , the OS DAAM would return to
repeat step 230 to send additional memory to the hypervisor .
If the DMA window size is big enough or optimal , then the
OS creates the optimal sized DMA window to maximize the
I / O adapter performance by sending a request to the hyper -

visor to create a DMA window of the optimal size with the
given page size 270 . The hypervisor then creates the DMA
window 280 .
[0024] Again referring to FIG . 2 , after the operating
system (OS) queries the maximum DMA window size 210 ,
the hypervisor calculates the maximum DMA window size
and responds to the query to return the maximum DMA
window size . The hypervisor calculates the maximum DMA
window size by taking the number of address translation
table entries (ATTEs) and multiplies by the largest page size
in the manner known in the prior art . Similarly , the OS
creates the optimal sized DMA window by sending a request
to the hypervisor similar to the manner known in the prior
art . The hypervisor creates a DMA window of the optimal
size with the given page size where the given page size may
or may not be the maximum page size . The hypervisor
creates the DMA window using the additional memory
donated by the OS to create an optimal DMA window that
will maximize the I / O adapter performance as described
herein .
[0025] The DMA window size may be considered optimal
as determined by a device driver for an I / O adapter where
the device driver dictates the max amount of memory that
could be mapped simultaneously (i . e . , X number of buffers /
pages per port or N pages per request + Max # of requests ,
etc .) . Other metrics could also be used to determine opti
mization . Similarly , a determination of the system perfor
mance can be done in various ways . For example , perfor
mance could be determined by using past performance
stored in a table to predict the performance with the current
ATT size . Other performance metrics known in the art could
also be used .
100261 FIG . 3 illustrates a flow diagram of a method 300
for dynamically changing the allocation of memory to the
address translation tables . The method 300 is presented as a
series of steps performed by a computer software program
such as the DAAM 105 described above . First , determine
the maximum DMA window size (step 310) . This can be
done , for example , by the DAAM in the operating system
querying the DAAM in the hypervisor , as shown in step 210
in FIG . 2 . Determine if the DMA window size is an optimal
size (step 320) . If the DMA window size is not optimal (step
320 = no) then donate memory to the hypervisor (step 330) .
Add the donated memory to increase the maximum DMA
window size (step 340) and return to step 310 . If the DMA
window size is optimal (step 320 = yes) then create the
optimal DMA window to maximize I / O adapter performance
(step 350) . The method 300 is then done .
10027] Referring now to FIG . 4 , a flow diagram shows
method 400 that is an exemplary method for performing step
320 in method 300 for dynamically changing the allocation
of memory to the address translation tables . The method 400
is presented as a series of steps performed by a computer
software program such as the DAAM 105 described above .
First , determine if the maximum DMA window size is
greater than or equal to partition memory (step 410) . This is
done to determine if the system can create an ATT to cover
all of partition memory . If the maximum DMA window size
is greater than or equal to partition memory (step 410 = yes)
then go to step 350 . If the maximum DMA window size is
not greater than or equal to partition memory (step 410 = no)
then determine if performance is acceptable with the current
window size (step 420) . If the performance is acceptable
with the current window size (step 420 = yes) then go to step

US 2018 / 0113813 A1 Apr . 26 , 2018

350 . If the performance is not acceptable with the current
window size (step 420 = no) then determine whether there is
more available memory that could be donated to the hyper
visor (step 430) . If there is more available memory that
could be donated to the hypervisor (step 430 = yes) then go to
step 330 . If there is no more memory to donate to the
hypervisor (step 430 = no) then go to step 350 . The method
400 is then done .
[0028] The claims and disclosure herein provide an appa
ratus and method for dynamically allocating address trans
lation tables (ATTs) for direct memory access (DMA) win
dows by donating logical memory blocks (LMBs) to
increase the size of the DMA window and thereby increase
the efficiency of the DMA memory access .
10029] One skilled in the art will appreciate that many
variations are possible within the scope of the claims . Thus ,
while the disclosure is particularly shown and described
above , it will be understood by those skilled in the art that
these and other changes in form and details may be made
therein without departing from the spirit and scope of the
claims .

1 . (canceled)
2 . The apparatus of claim 3 wherein the memory donated

by the operating system is a logical memory block (LMB) .
3 . An apparatus comprising :
at least one processor ;
a memory coupled to the at least one processor ;
an operating system residing in the memory and executed
by the at least one processor ;

a hypervisor residing in the memory and executed by the
at least one processor that manages a plurality of
logical partitions ; and

a dynamic address translation table allocation module
(DAAM) residing in the memory and executed by the
at least one processor that dynamically changes allo
cation of memory to address translation tables using
memory donated from the operating system , wherein
the DAAM comprises an OS DAAM residing in the
operating system and a hypervisor DAAM residing in
the hypervisor , wherein the OS DAAM queries the
hypervisor for a maximum direct memory access
(DMA) window size .

4 . The apparatus of claim 3 wherein the OS DAAM
determines the maximum DMA window size is not optimal
and donates memory to the hypervisor to increase the
address translation table size .

5 . The apparatus of claim 4 wherein the OS DAAM
donates memory by giving a logical memory block to the
hypervisor .

6 . The apparatus of claim 4 wherein a hypervisor DAAM
in the hypervisor updates the size of the address translation
table and calculates a new maximum DMA window size .

7 . The apparatus of claim 6 wherein the OS DAAM
creates a DMA window to maximize the input output
performance of an adapter by sending a request to create a
DMA window of the maximum size as determined by the
hypervisor DAAM .

8 . (canceled)
9 . The method of claim 13 wherein the memory donated

by the operating system to the hypervisor is a logical
memory block (LMB) .

10 - 12 . (canceled)

13 . A computer - implemented method for dynamically
changing direct memory access window size , the method
comprising :
providing an operating system ;
providing a hypervisor that manages a plurality of logical

partitions , and
dynamically changing size of a direct memory access

(DMA) window by changing the allocation of memory
to an address translation table using memory donated
from the operating system to the hypervisor ;

wherein the operating system queries the hypervisor for a
maximum direct memory access (DMA) window size

wherein the operating system determines the maximum
DMA window size is not optimal and donates memory
to the hypervisor to increase size of the address trans
lation table

wherein the operating system creates an DMA window to
maximize input output performance of an adapter by
sending a request to create a DMA window of the
maximum size as determined by the hypervisor ; and

wherein the hypervisor determines if the maximum DMA
window size is optimal by determining if performance
is acceptable with the maximum DMA window size ,
and where it is determined that performance is not
acceptable determining if more memory is available to
donate to the hypervisor .

14 . (canceled)
15 . The article of manufacture of claim 16 wherein the

memory donated by the operating system is a logical
memory block (LMB) .

16 . An article of manufacture comprising software stored
on a computer readable storage medium , the software com
prising :

a dynamic address translation table allocation module
(DAAM) that dynamically changes allocation of
memory to address translation tables using memory
donated from an operating system , wherein the DAAM
comprises an OS DAAM residing in the operating
system and a hypervisor DAAM residing in a hyper
visor , wherein the OS DAAM queries the hypervisor
for a maximum direct memory access (DMA) window
size .

17 . The article of manufacture of claim 16 wherein the OS
DAAM determines the maximum DMA window size is not
optimal and donates memory to the hypervisor to increase
the address translation table size .

18 . The article of manufacture of claim 17 wherein the OS
DAAM donates memory by giving a logical memory block
to the hypervisor .

19 . The article of manufacture of claim 17 wherein a
hypervisor DAAM in the hypervisor updates the size of the
address translation table and calculates a new maximum
DMA window size .

20 . The article of manufacture of claim 19 wherein the OS
DAAM creates a DMA window to maximize the input
output performance of an adapter by sending a request to
create a DMA window of the maximum size as determined
by the hypervisor DAAM .

* * * * *

