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(57) ABSTRACT

Prediction of a mix of complex communities of microor-
ganisms includes a linear prediction, e.g. matrix-based, that
is corrected using an interaction model, e.g. a matrix, learnt
from reference true mix profiles and corresponding refer-
ence linear-predicted profiles. Reverse prediction makes it
possible to determine a mix of samples to be made given a
target mix profile.
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Figure 5a

Native faeces microbiota samples
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Figure 6a

Figure 6b

Mixed fermented microbiota samples
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METHOD OF PREDICTING AND THEN
PRODUCING A MIX OF MICROBIOTA
SAMPLES

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a National Stage of International
Application No. PCT/EP2022/062226 having an Interna-
tional Filing Date of 5 May 2022, which designated the
United States of America, and which International Applica-
tion was published under PCT Article 21(2) as WO Publi-
cation No. 2022/234053, which claims priority from and the
benefit of European Patent Application No. 21172578.3,
filed on 6 May 2021, the disclosures of which are incorpo-
rated herein by reference in their entireties.

BACKGROUND

Field

[0002] The present disclosure concerns the mixing or
“pooling” of complex communities of microorganisms, or
microbiotas, and more particularly methods and devices
using a learnt model, for example a matrix-based predictor,
linking the individual profiles or compositions of initial
microbiota samples with the profiles of resulting mixes
thereof.

Brief Description of Related Developments

[0003] Complex communities of microorganisms, also
known as microbiotas, play a key role in health and diseases.
In particular, it has been discovered that the administration
or transplantation of a complex community of microorgan-
isms, for instance via Fecal Microbiota Transplantation
(FMT), may treat infections and diseases.

[0004] In case of administration or transplantation of a
complex community of microorganisms, it is important for
the administrated or transplanted sample to have an appro-
priate profile in terms of viability and diversity of microor-
ganisms such as bacteria, archaea, viruses, phage, protozoa
and/or fungi.

[0005] Some administration and transplantation methods
are often empirical and take no particular precaution to
ensure the diversity of the microorganisms present in the
used samples, or to best preserve the viability of the micro-
organisms.

[0006] Furthermore, samples collected from donors may
not offer satisfactory profiles of complex communities of
microorganisms for an efficient treatment.

[0007] Mixes of complex microorganism community
samples collected from several donors have thus been con-
sidered to increase the diversity of the samples that can be
used as inocula for administration or transplantation.
[0008] To test various mixes, the mixing of samples is
actually performed randomly, and resulting products are
then sequenced in order to obtain final mix profiles, from
which curative and treatment properties are inferred. This
test-based approach has some drawbacks. In particular, it
consumes rare material given the harsh difficulties in obtain-
ing samples from donors and takes several weeks to be
completed due to sequencing analysis time.

[0009] Prediction of the mix composition, i.e. of the
profile of the mix product, has thus been contemplated.
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[0010] A simple way to predict the mix composition from
the individual profiles of the complex microbial communi-
ties used as starting material consists in applying a linear
prediction for each profiling feature: for instance, by sum-
ming the relative abundances of said profiling feature in the
individual profiles after weighting them by the ratio of the
corresponding complex communities in the mix.

[0011] However, some shifts or drifts between such linear-
predicted profiles and the true profiles (obtained by profiling
the mix result products) were observed. Hence, the linear
prediction of profiles is thus considered as being a naive
approach.

[0012] An assumption of the inventors is that the shifts
may result from some important and quick adjustments of
the microorganisms due to their interactions in the shared
environment, for instance an adaptation to new conditions of
the shared environment or a competition between microor-
ganisms.

[0013] There is thus a need to perform accurate predic-
tions to conduct the pooling in a way that guaranties the
delivery of a precise complex community product compo-
sition e.g. with expected treatment efficacy.

SUMMARY

[0014] The present disclosure seeks to overcome some of
the foregoing concerns by computer-aided designing these
shifts when predicting mix compositions, with a view of
driving, controlling or directing an actual mixing of micro-
biota samples for use thereof in, inter alia, administration or
transplantation methods.

[0015] In this respect, the present disclosure proposes a
computer-aided method of predicting a mix composition
resulting from the mixing of complex microorganism com-
munity samples belonging to an initial sample collection, the
method comprising:

[0016] predicting, using a linear approach, an interme-
diary mix profile for a mix of selected complex micro-
organism community samples, and

[0017] correcting the intermediary mix profile into a
predicted mix profile, using an interaction model learnt
from reference linear-predicted mix profiles and corre-
sponding reference true mix profiles.

[0018] In particular, the predicted mix profile may be used
to control actual picking and mixing of complex microor-
ganism community samples from the initial sample collec-
tion to obtain a mix result product. Picking samples may
simply mean taking or retrieving appropriate and sufficient
quantities of the samples from the initial collection. The
picking may be made either manually by an operator or
automatically by controlled robots.

[0019] It turns out that the present disclosure also provides
a method of producing a complex microorganism commu-
nity product, comprising:

[0020] selecting complex microorganism community
samples from an initial sample collection,

[0021] wusing the above prediction method to predict a
mix profile resulting from the mixing of the selected
samples,

[0022] comparing the predicted mix profile to a selec-
tion criterion, for example the sufficient presence of
taxa of interest or any target mix profile, and

[0023] depending on the outcome of the comparing,
actually picking and mixing the selected samples to
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obtain a mix result product. The selected samples are
preferably mixed using the relative abundancies used
for the prediction.

[0024] Of course, should the outcome of the comparing be
deceiving, no actual mixing may be performed, but another
selection of samples may be made to predict another mix
profile with the teachings of the disclosure. Thus, a plurality
of sets of selected samples may be successively considered.
Next, for each set, the using and comparing steps are
performed and then the actual picking and mixing are
performed depending on the outcome of their comparing.

[0025] Conversely, the present disclosure also proposes a
reverse approach with a computer-aided method of deter-
mining a target set of complex microorganism community
samples in an initial sample collection given a target mix
profile representing a target mix result product, the method
comprising:
[0026] selecting candidate sets of complex microorgan-
ism community samples from the initial sample col-
lection,

[0027] for each candidate set selected, using the above
prediction method to predict a mix profile resulting
from the mixing of the samples of the selected candi-
date set,

[0028] comparing the predicted mix profiles to the
target mix profile to choose one candidate set as the
target set.

[0029] The target mix profile may be general, i.e. quanti-
fying each profiling feature considered, or be specific to one
or some profiling features, e.g. defining some feature speci-
fications such as the presence or absence of one (or more)
profiling feature(s) and/or its relative abundance or quantity
or ranges of quantities, or defining a minimum level of
diversity for instance in terms of a number of profiling
features with minimum relative abundancies. The target mix
profile may thus be a set of profiles scanning various
possible values for a given feature specification.

[0030] The target set of samples may then be used to
control actual picking and mixing of complex microorgan-
ism community samples from the initial sample collection to
obtain a mix result product function of the target mix profile
(it may have the target mix profile or be close to it given
approximations).

[0031] It turns out that the present disclosure also provides
a method of producing a complex microorganism commu-
nity product having a target mix profile representing a target
mix result product, comprising:

[0032] selecting, using the above determining method, a
target set of complex microorganism community
samples belonging to an initial sample collection given
the target mix profile, and

[0033] actually picking and mixing the samples of the
selected target set to obtain a mix result product.

[0034] The present disclosure advantageously makes it
possible to instantaneously simulate various mix composi-
tions at low cost, in particular without consuming any actual
material (samples of the initial sample collection).

[0035] It further allows efficient sets of complex microor-
ganism community samples to be found with a view of
obtaining a mix result product that meets mix criteria, for
instance a target community profile or composition adapted
to cure a disease.
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[0036] Hence a pooling strategy can be defined ahead of a
production routine, depending on the needs of the intended
use (e.g. therapeutic, prophylactic, environmental, . . . ).
[0037] The mix result product so obtained can then be
administrated or transplanted into a human or animal body
or to plants as a fertilizer or even to environment media,
including water, soil and subsurface material, e.g., for treat-
ing contamination via bioremediation.

[0038] Preferably, Microbiome Ecosystem Therapy prod-
ucts can be produced using the above methods.

[0039] Correlatively, the disclosure also provides a com-
puter device comprising at least one microprocessor config-
ured for carrying out the steps of any of the above methods.
The computer device may thus be configured to emit a signal
to control a mixing device to actually pick and mix complex
microorganism community samples from the initial sample
collection to obtain a mix result product.

[0040] Optional features of aspects of the disclosure are
defined in the appended claims. Some of these features are
explained here below with reference to a method, while they
can be transposed into device features.

[0041] In some aspects, predicting the intermediary mix
profile includes computing a matrix product between a first
matrix defining the mix in terms of proportions of the
complex microorganism community samples of the initial
sample collection and a second matrix defining the indi-
vidual profiles of the complex microorganism community
samples. The second matrix, denoted A below, is defined by
the initial sample collection available.

[0042] In some aspects, correcting the intermediary mix
profile includes computing a matrix product between a
matrix representing the intermediary mix profile and a
square interaction matrix of the learnt interaction model.
Here, the interaction model may be the square interaction
matrix learnt from the reference linear-predicted mix pro-
files and the corresponding reference true mix profiles.
[0043] Using matrices to perform the prediction of sample
mixes advantageously allows a large number of profiling
features to be taken into account and quick computations to
obtain one or more predicted mix profiles for mix result
product or products.

[0044] In some aspects, the predicting method further
comprises clipping each negative value in the predicted mix
profile, i.e. the negative values are set to 0. This is to correct
theoretical predictions (for instance relative abundance
becomes negative) to nature reality.

[0045] In some aspects, the predicting method further
comprises normalizing to 1 a sum of relative abundancies of
profiling features defining the predicted mix profile. Again,
this aims at normalizing theoretical predictions to nature
reality. This is to have true relative abundancies, the sum of
which represents an entire composition.

[0046] It is also expected that a profiling feature not
present in the selected samples (that are mixes) should not
be present in the predicted mix profile. Hence, non-zero
abundances in the predicted mix profile for profiling features
initially not present in the selected samples are set to zero.
[0047] In some aspects regarding the reverse approach,
determining the set of samples may include determining a
relative abundance of each sample within the set. In other
words, the reverse prediction aims at obtaining the relative
proportions of the complex microorganism community
samples to be mixed together.
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[0048] In other aspects regarding the reverse approach,
comparing the predicted mix profiles to the target mix profile
includes computing a distance between each predicted mix
profile and the target mix profile and selecting, as target set,
the candidate set having the lowest distance.

[0049] Insome aspects, a profile of a complex community
of microorganisms (sample or mix) includes relative abun-
dancies of profiling features in the complex community of
microorganisms.

[0050] In specific aspects, the relative abundancies are
representative of mass or volume proportions of the profiling
features in the complex community of microorganisms.
[0051] In some aspects, profiling features forming a pro-
file of a complex community of microorganisms include one
or more features from taxa, genes, antibiotic resistance
genes, functions, metabolite traits, and metabolite and pro-
tein production, preferably include taxa.

[0052] Insome aspects, an individual profile of a complex
microorganism community sample is obtained using a pro-
filing technology such as 16S rRNA gene amplicon sequenc-
ing, NGS shotgun sequencing, amplicon sequencing other
than 16S rRNA gene-based, NGS amplicon-based targeted
sequencing, phylochip-based profiling, whole metagenome
sequencing (WMS), Polymerase Chain Reaction (PCR)
identification, a mass spectrometry (e.g. of LC/MS type or
GC/MS type), near-infrared (NIR) spectroscopy, nuclear
magnetic resonance (NMR) spectroscopy, preferably using
the 16S rRNA gene amplicon sequencing or NGS.

[0053] Insome aspects, a profile of a complex community
of microorganisms defines profiling features with respect to
one or more microorganisms present in the complex com-
munity of microorganisms from bacteria, archaea, viruses,
phage, protozoa and fungi, preferably with respect to bac-
teria and/or archaea.

[0054] Insome aspects, a profile of a complex community
of microorganisms defines profiling features that specify
relative abundances of microorganisms considered at one or
more taxonomic levels from strains, species, genus, families
and orders, preferably one or more taxonomic levels from
genus, families and orders.

[0055] Insome aspects, a profile of a complex community
of microorganisms includes relative abundancies, in the
complex community of microorganisms, of bacteria and/or
archaea taxa considered at a taxonomic level of genus,
families and orders.

[0056] Insome aspects, a profile of a complex community
of microorganisms includes relative abundancies, in the
complex community of microorganisms, of bacteria and/or
archaea taxa defined by the presence/absence or expression
of certain genes and/or functions (e.g., production of
butyrate, antibiotic resistance genes, production of enzymes
such as organophosphate hydrolases, phosphodiesterases,
superoxide dismutases, etc., production of anti-microbial
peptides, organophosphate hydrolyases or other enzyme
useful in bioremediation processes, . . . ).

[0057] In some aspects, the initial sample collection com-
prises samples selected from the group consisting of raw
complex microorganism community samples, engineered/
processed complex microorganism community samples,
artificial complex microorganism community samples (e.g.,
bacterial consortia obtained by mixing isolated strains) and
virtual complex microorganism community samples.
[0058] In some aspects, the initial sample collection
includes one or more of faecal, skin, buccal, vaginal, nasal,

Jul. 4, 2024

tumoral, human, animal, plant, water, soil samples. For
instance, it may include one or more faecal samples coming
from at least one donor, preferably coming from at least two
donors.

[0059] In some aspects, the interaction model (e.g. the
square interaction matrix) is obtained using machine learn-
ing that minimizes a formula function of a difference
between reference predicted mix profiles obtained from the
reference linear-predicted mix profiles and the interaction
model (preferably, a matrix product is performed with the
square interaction matrix), and the corresponding reference
true mix profiles.

[0060] The reference data (here profiles) are known as
training data for the machine learning process. It is searched
to minimize the error between matrix-based predicted pro-
files and corresponding true profiles, possibly given a regu-
larization term.

[0061] In this respect, the formula may add a regulariza-
tion term, preferably a Ridge-based regularization term, to
said difference.

[0062] In particular aspects, the regularization term
includes a difference between a square interaction matrix of
the interaction model and the identity matrix.

[0063] The regularization tends to penalize model solu-
tions too far from the identity. Indeed, it is expected that the
interactions between the microorganisms within the mixes
are not too substantial, so that model solutions far from the
identity are far from biological reality. The regularization
term thus avoids such accidental solutions (theoretical solu-
tions due to the particular set of training data) to be obtained.
[0064] In some aspects, negative values of relative abun-
dancies of profiling features in the reference predicted mix
profiles are clipped before minimizing the formula.

[0065] In some aspects, the method further comprises
normalizing to 1 a sum of relative abundancies of profiling
features defining one of the reference predicted mix profiles
before minimizing the formula. Preferably, several or all the
reference predicted mix profiles are individually normalized
to 1 if necessary.

[0066] In some aspects, a reference linear-predicted mix
profile is predicted, using a linear approach, from individual
profiles of complex microorganism community samples
mixed together to produce a reference mix product and the
corresponding reference true mix profile is obtained from
profiling (e.g. sequencing or 16S rRNA gene amplicon
sequencing) the reference mix product.

[0067] In some aspects relating to the producing method,
the selection criterion includes one or more from a diversity
criterion representative of an increase in profiling feature
diversity, a minimum or maximum relative abundance of
one or more profiling features, a non-zero relative abun-
dance for one or more specific profiling features or for a
minimum number of profiling features, a relative ratio
between at least two profiling features, a closeness (or
similarity such as minimal distance) to a target mix profile.
[0068] In some aspects, one selected complex microor-
ganism community sample is a virtual sample and the
method further comprises actually producing a complex
microorganism community sample corresponding to the
selected virtual sample from isolated strains and/or complex
microorganism community samples. This advantageously
allows defining a pooling strategy ahead, without consuming
material nor having yet the samples. A bacteria consortium
identified as being useful to produce a desired mix result
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product can then be produced by a mere mixing of isolated
strains. Similarly, a sample identified as being useful to
produce a desired mix result product can be produced by
mixing one or several of isolated strains with one or several
samples, resulting in an engineered sample enriched in the
desired strains.

[0069] Another aspect of the disclosure relates to a non-
transitory computer-readable medium storing a program
which, when executed by a microprocessor or computer
system in a device, causes the device to perform any method
as defined above.

[0070] At least parts of the methods according to the
disclosure may be computer implemented. Accordingly, the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit”, “module” or
“system”. Furthermore, the present disclosure may take the
form of a computer program product embodied in any
tangible medium of expression having computer usable
program code embodied in the medium.

[0071] Since the present disclosure can be implemented in
software, the present disclosure can be embodied as com-
puter readable code for provision to a programmable appa-
ratus on any suitable carrier medium. A tangible carrier
medium may comprise a storage medium such as a hard disk
drive, a magnetic tape device or a solid-state memory device
and the like. A transient carrier medium may include a signal
such as an electrical signal, an electronic signal, an optical
signal, an acoustic signal, a magnetic signal or an electro-
magnetic signal, e.g. a microwave or RF signal.

BRIEF DESCRIPTION OF THE FIGURES

[0072] FIG. 1 illustrates a complex microorganism com-
munity mixing platform implementing aspects of the present
disclosure;

[0073] FIG. 1a illustrates the behavior of an error mea-
surement depending on an hyper-parameter of a regulariza-
tion term when modelizing;

[0074] FIG. 2 illustrates, using a flowchart, general steps
of producing a mix result product, including predicting mix
profiles, according to aspects of the disclosure;

[0075] FIG. 3 illustrates, using a flowchart, general steps
of determining and then producing a mix result product
given a target mix profile, according to aspects of the
disclosure;

[0076] FIG. 4 shows a schematic representation a com-
puter device in accordance with aspects of the present
disclosure;

[0077] FIGS. 5a, 56 and 5c¢ illustrate results of a first
experiment of the present disclosure, based on mixing native
complex community samples of microorganisms;

[0078] FIGS. 64, 65 and 6c¢ illustrate other experimental
results of the present disclosure, based on mixing fermented
complex community samples of microorganisms;

[0079] FIGS. 7a and 75 illustrate yet other experimental
results of the present disclosure, mixing native and fer-
mented samples;

[0080] FIG. 8 illustrate a collection of sample profiles
used in a second experiment of the present disclosure;
[0081] FIGS. 9a and 95 illustrate results of the second
experiment seeking to find a mix composition to obtain a
mix product close enough to a target mix product;
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[0082] FIG. 10 illustrates the similarities between actual
mixes or actual and predicted mixes when comparing the
target mix product and the best predicted mix product shown
in FIGS. 9q and 95b;

[0083] FIG. 11 illustrates the PCA based on genus relative
abundances obtained from NGS shotgun sequencing of
samples in Experiment 3; and

[0084] FIG. 12 illustrates the PCA-based approach used in
Experiment 3.

DETAILED DESCRIPTION

[0085] The present disclosure concerns the mixing or
“pooling” of complex communities of microorganisms, or
“microbiotas” or “microbiota samples”. It is more particu-
larly directed to methods and devices using a learnt predictor
model linking the individual profiles or compositions of
initial complex microorganism community samples with the
profiles of resulting mixes thereof.

[0086] As used herein, the expressions “microbiota”,
“microbiota composition” and “complex community of
microorganisms” can be used interchangeably to refer to any
population of microorganisms comprising a high number of
microorganisms of different species which live together and
potentially in interaction. Microorganisms possibly present
in a complex community of microorganisms include yeasts,
bacteria, archae, virus, fungi, algae, phages, and any proto-
zoa of different origins such as soil, water, vegetal, animal,
or human origins.

[0087] Microbiotas according to the present text include
naturally occurring complex communities of microorgan-
isms (such as, for example, gut microbiota, i.e., the popu-
lation of microorganisms living in the intestine of an ani-
mal), as well as “engineered complex communities of
microorganisms”, i.e., complex communities resulting from
transformation steps such as addition of isolated beneficial
strains, treatments to remove potential deleterious microor-
ganisms (e.g., by using rare-cutting endonucleases targeting
genes specific for pathobionts), expansion by culture in
specific conditions (e.g., fermentation in appropriate
medium), etc. “Isolated beneficial strains” herein designate
natural strains known to have a beneficial effect in certain
conditions (e.g., Akkermansia muciniphila), as well as
genetically modified strains, including strains in which a
potential deleterious gene has been knocked out (for
example using a rare-cutting endonuclease such as Cas9)
and strains in which a transgene has been introduced (e.g.,
by the use of a bacteriophage, or the CRISPR system).
[0088] Complex communities of microorganisms and
microbiotas according to the present text include “raw” or
“native” complex communities or microbiotas, i.e., directly
obtained from a source, a donor or donors without being
treated by post-processing and “processed complex commu-
nities of microorganisms”, including engineered complex
communities or microbiotas and any complex microorgan-
ism communities resulting from a treatment on or post-
processing of or transformation of one or more natural raw
complex microorganism communities (e.g., a complex com-
munity or microbiota which been filtered, frozen, thawed
and/or lyophilized, and/or which has been extracted, isolated
or separated from its initial matrix by techniques well-
known for the skilled person such as, for example, those
described in WO 2016/170285 and WO 2017/103550).
[0089] The expression “samples”, “complex microorgan-
ism community samples” and “microbiota samples” can be
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used interchangeably and refer to initial complex commu-
nities or microbiotas in the meaning of the disclosure, i.e.
that are available for mixing.

[0090] The term “Microbiome Ecosystem Therapy prod-
uct” herein refers to any composition comprising a complex
community of microorganisms (either naturally occurring or
engineered, native or processed), provided it is in a form
suitable for administration to an individual in need thereof.
A Microbiome Ecosystem Therapy aims at modifying an
individual’s microbiota to obtain a health benefit (e.g.,
preventing or alleviating the symptoms of a disease, increas-
ing the chances that the individual responds to a treatment,
etc.). Typically, a Microbiome Ecosystem Therapy is done
by replacing at least part of a dysfunctional and/or damaged
ecosystem by a different complex community of microor-
ganisms in a subject in need thereof. Microbiome Ecosystem
Therapies include Fecal Microbiota Transplantation (FMT).
In the present text, unless specified otherwise, the term
“FMT” is broadly used to refer to any kind of Microbiome
Ecosystem Therapy.

[0091] As shown in FIG. 1 illustrating a complex micro-
organism community mixing platform 1 implementing
aspects of the present disclosure, samples 100 are available
through an initial sample bank or collection 10. Although a
single collection or bank is shown, the samples may be
stored in a plurality of sub-banks that altogether form
collection or bank 10.

[0092] The samples of the present disclosure may com-
prise or may consist of microorganisms coming from one or
more sources and/or from one or more donors 101.

[0093] The samples of the present disclosure may come
from:

[0094] a single source,

[0095] at least two sources,

[0096] a single donor,

[0097] at least two donors,

[0098] a single source and a single donor,

[0099] a single source and at least two donors,

[0100] at least two sources and a single donor, or

[0101] at least two sources and at least two donors,
[0102] As used herein, the term “source” refers to any

environment from where the sample comes from such as a
soil, water, parts of a vegetal, parts of animal body or fluids
or parts of human body or fluids. In case of a human or an
animal, the source may refer to any part of the body (skin,
nasal mucosa, . . . ) or to body fluids such as the content of
the intestine (e.g., a stool sample).

[0103] As used herein, the term “donor” refers to a veg-
etal, a physical location (for sources such as soil or water),
an animal or a human, preferably a human.

[0104] The donors may be pre-selected according to the
method and criteria described in the prior art, such as for
example in W0O2019/171012 Al.

[0105] In the example shown, some samples, referenced
100d, 100e, 100f; 100g, are raw complex communities of
microorganisms or microbiotas, i.e., directly obtained from
a donor or donors without being treated by post-processing.
[0106] Other samples, referenced 100a, 1005, 100c, are
“processed samples”, i.e., engineered complex microorgan-
ism communities resulting from a treatment on or post-
processing of or transformation of one or more natural raw
complex communities. As mentioned above the treatment
may include filtration, centrifugation, fermentation, freez-
ing, freeze-drying the initial complex community, and even
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mixing of initial complex communities, but also treatments
aimed at isolating spores and spore forming bacteria such as
the use of ethanol, chloroform or heat.

[0107] As shown, an initial complex community may be
one sample 1004, 100e, 1007, 100g belonging to the initial
sample collection 10 or be an external sample 99.

[0108] The initial sample collection 10 may include one or
more samples from any source (faecal, skin, nasal, buccal,
vaginal, tumoral . . . ) of any origin (human, animal, plant,
soil, . . . ), preferably one or more faecal samples coming
from at least one donor, preferably coming from at least two
donors.

[0109] According to a particular embodiment, the samples
of the collection 10 include faeces samples.

[0110] Faeces samples collected from donors may be
controlled according to the method and qualitative criteria
described in the prior art, such as for example in WO2019/
171012 Al. For example, the qualitative criteria of the
sample may comprise sample consistency between 1 and 6
on the Bristol scale; absence of blood and urine in the
sample; and/or absence of specific bacteria, parasites and/or
virus, as described in W02019/171012 Al.

[0111] Faeces samples may be collected according to any
method described the prior art, such as for example in
W02016/170285 A1, WO2017/103550 Al and/or WO2019/
171012 Al

[0112] Preferably, the samples may be collected and then
placed in anaerobic conditions. For example, as described in
W02016/170285 A1, WO2017/103550 Al and/or WO2019/
171012 A1, within 5 minutes following taking of the sample,
the samples may be placed in an oxygen-tight collecting
device.

[0113] The samples may be prepared according to the
methods described in the prior art, such as for example in
W02016/170285 A1, WO2017/103550 Al and/or WO2019/
171012 Al

[0114] All samples 100a-100g shown in the Figure are
actual samples stored in at least one bank.

[0115] Samples 100y-100z represented with dotted lines
are theoretical samples that are not actually collected from
a donor or produced, hence not actually stored in the storage
bank or banks 10. As explained below, these “virtual”
samples 100y-100z are depicted to illustrate theoretical
complex community profiles 110z imagined by an entity, for
instance a computer, an operator, a researcher, and so on.
[0116] The initial sample collection 10 may comprise only
native samples 1004-100g, or may comprise only processed
samples 100a-100¢, or may comprise only virtual samples
100y-100z, or any combination thereof.

[0117] A first object of the present disclosure relates to the
prediction of a mix composition resulting from the mixing of
samples 100a-100z belonging to the initial sample collection
10. The prediction is two-fold:

[0118] predicting, using a linear approach, an interme-
diary mix profile for a mix of selected complex micro-
organism community samples, and

[0119] correcting the intermediary mix profile into a
predicted mix profile, using an interaction model learnt
from reference linear-predicted mix profiles and corre-
sponding reference true mix profiles. The interaction
model is preferably a squared interaction matrix learnt
from the reference linear-predicted mix profiles and the
corresponding reference true mix profiles.
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[0120] The present inventors have surprisingly found that
a learnt interaction model, and more particularly the matrix-
based method, provides accurate prediction results once the
interaction model or matrix is learnt, hence giving relevant
hints to a final product without consuming any material of
the initial sample collection.

[0121] As the prediction can be computer-implemented,
the predicted mix profiles can be quickly obtained despite a
large number of mixes to predict, a large number of samples
available in the initial sample collection 10, and a large
number of features profiling the complex communities of
microorganisms (samples and mixes).

[0122] A second object of the present disclosure relates to
a reverse operation where a target set of samples is deter-
mined from the initial sample collection 10 given a target
mix profile representing a target mix result product. The
target mix result product may for instance represent a
desired complex community of microorganisms having
curative properties with respect to a disease or infection.
[0123] The reverse operation includes:

[0124] successively selecting candidate sets of complex
microorganism community samples from the initial
sample collection,

[0125] for each candidate set successively selected,
using the above prediction method to predict a mix
profile resulting from the mixing of the samples of the
selected candidate set,

[0126] comparing the predicted mix profiles to the
target mix profile to choose one candidate set as the
target set.

[0127] Both prediction operation and reverse operation
can be used to actually produce a mix result product.
[0128] With respect to the prediction operation, the pre-
dicted mix profile may then be compared to a selection
criterion, for instance the sufficient presence of taxa of
interest. Then, depending on the outcome of the comparing,
the selected samples are retrieved and actually mixed to
obtain the mix result product. The predicted mix profile can
thus be used to control actual picking and mixing of samples
from the initial sample collection to obtain the mix result
product.

[0129] The selection criterion may be set function of
desired properties for the mix result product.

[0130] Such an approach, including the interaction-model-
based or matrix-based prediction, is illustrated in FIG. 2,
described with more details below.

[0131] With respect to the reverse operation, a target set of
samples belonging to the initial sample collection is selected
using the reverse operation given a target mix profile,
corresponding for instance to a mix result product having
desired curative properties. Next, the samples of the target
set are picked and actually mixed to obtain the desired mix
result product. The target set of samples determined by the
reverse predicting method can thus be used to control actual
picking and mixing of samples from the initial sample
collection to obtain a mix result product function of the
target mix profile.

[0132] Aspects of such reverse approach using the target
mix profile are illustrated below with reference to FIG. 3.
[0133] By “mix” it is meant any actual mixing of samples
that results in a new complex community of microorganisms
or new microbiota composition. The result is also referred to
as mix result product as it may be used for administration or
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transplantation as described above. The mix result product
may for instance be used as an FMT inoculum.

[0134] By “profile” it is meant a description of the com-
position of the complex community of microorganisms or
microbiota composition concerned (be it a sample or a mix).
A profile for instance specifies the relative abundancies of
profiling features in the complex community or microbiota
composition. “relative” means that the sum of the abundan-
cies equals to 1. The relative abundancies may be expressed
in mass (or weight) or volume proportions of the profiling
features in the complex community of microorganisms.

[0135] Depending on the application concerned (for
instance, in the therapeutic field, depending on the disease
targeted and, in the bioremediation field, depending on the
pollutants to eliminate), the profiling features may be of
different types. Usually, they are selected from a group
including taxa, genes, antibiotic resistance genes, functions,
and metabolite traits, and metabolite and protein production.
A profile may mix profiling features of different types, for
instance taxa and antibiotic resistance genes. A particular
embodiment considers only taxa to profile a complex com-
munity of microorganisms.

[0136] Functions describe the known action of a protein or
a protein family (as phylogenetically defined, e.g. databases
of KEGG KOs or NCBI COGs or Enzyme Commission
Number), or they can define a metabolic context (e.g.
database of BiGG models at the reaction level, or KEGG
pathways at the metabolic pathway level), some databases
can be specialized as for example the CaZy database which
is a catalogue of Carbohydrate-active enzymes. Any of those
function categories (or a combination thereof) can be used as
features in the matrix model.

[0137] KEGG stands for “Kyoto Encyclopedia of Genes
and Genomes”, while KO stands for “KEGG Orthology”.
NCBI stands for “National Center for Biotechnology Infor-
mation”, COG stands for “Cluster of Orthologous Groups”
and BiGG stands for “Biochemical Genetic and Genomic”.

[0138] Various profiling techniques are known to obtain
complex community profiles, including 16S rRNA gene
amplicon (i.e. metagenome) sequencing, NGS shotgun
sequencing, amplicon sequencing other than 16S rRNA
gene-based, NGS amplicon-based targeted sequencing. 18S/
ITS gene sequencing, metagenomic sequencing, a phy-
lochip-based profiling, a Polymerase Chain Reaction (PCR)
identification, a mass spectrometry (e.g. of LC/MS type or
GC/MS type), near-infrared (NIR) spectroscopy and nuclear
magnetic resonance (NMR) spectroscopy.

[0139] As shown in FIG. 1, a profiler (or sequencer) 12 is
preferably used to provide a profile, e.g. a 16S sequencing,
of the actual samples 100a-100g. The corresponding indi-
vidual profiles so obtained are referenced 110a-110g and
form an initial profile collection or bank 11. Of course, the
16S rRNA sequencing is not mandatory and other methods
can be used as defined above, alone or in combination, to
provide the profiles 110.

[0140] The individual profiles, whatever the sequencing
technique used, are converted in the same format and stored
in a memory (not shown) of a computer as matrices or
vectors a,. The coefficient a,(j) of individual profile ‘x’
indicates the relative abundance of the profiling feature ‘j” in
the sample considered.

[0141] As mentioned previously, some individual profiles
110z may be artificially built by an operator, e.g. by defining
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coefficients a,(i) representing the relative abundances of the
profiling features ‘j’ in a theoretical sample.

[0142] The initial profile collection 11 may thus comprise
only individual profiles 110d-110g corresponding to native
samples 1004-100g, or may comprise only individual pro-
files 110a-110c¢ corresponding to processed samples 100a-
100c, or may comprise only virtual profiles 110y-110z
corresponding to virtual samples 100y-100z, or any combi-
nation thereof.

[0143] Any other profile handled thereafter (e.g. so-called
intermediary profiles or mix profiles) follows the same
profile format, for instance a vector made of the same
profiling features j° in the same order.

[0144] Preferably, bacterial abundance profiles are
obtained, meaning that the profiles specify relative abun-
dancies of profiling features concerning bacteria. More
generally, a profile of a complex community of microorgan-
isms may define profiling features with respect to one or
more microorganisms present in the complex community
(bacteria, archaea, viruses, phage, protozoa and fungi), pref-
erably with respect to bacteria and/or archaea. Of course,
profiling features within the same profile may concern
different microorganisms as previously listed.

[0145] Preferably, genus-based bacterial abundance pro-
files are obtained, meaning the profiling features describe
the relative abundancies of bacteria at genus level in the
complex community of microorganisms. More generally, a
profile of a complex community of microorganisms may
define profiling features that specify relative abundances of
microorganisms considered at one or more taxonomic levels
from strains, species, genus, families and orders, preferably
one or more taxonomic levels from genus, families and
orders.

[0146] The prediction operation and the reverse operation
are conducted by the pool predictor module 13 under the
control of the module 14. Module 14, referred to as “test and
decision module” or “decision module”, drives platform 1
with a view of predicting mix profiles and/or determining a
set of samples given a target mix profile and/or producing at
least one mix result product.

[0147] Modules 13 and 14 are preferably implemented
through a computer, having an input/output interface (e.g.
keyboard, mouse, screen) to allow an operator to interact
with platform 1.

[0148] As shown in the Figure, pool predictor 13 is
matrix-based and comprises two steps for predicting a result
mix profile from initial profiles of samples mixed together.
[0149] Matrix A defines the individual profiles of all the
samples available in the collection 10. It may be formed by
profiler or sequencer 12 or at least by the individual profiles
obtained from the profiler. Additionally any virtual indi-
vidual profile is also added to the matrix.

Preferably A = () }1]

{an (/)}]

[0150] where j=1...m, with m the number of profiling
features considered and n the number of individual
profiles 110 in the initial profile collection 11, hence of
samples 100 (including the virtual ones) in the initial
sample collection 10.

[0151] Square matrix W is the interaction matrix defined
above modelling the interaction between the microorgan-
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isms. A description of the modelling matrix W, including
how it is learnt, is provided below with more details. The
interaction matrix aims at representing the non-linear inter-
actions between the various profiling features of samples
when the latter are mixed together.

[0152] The prediction operation comprises a first matrix-
based step of predicting, using matrix A, an intermediary
mix profile, formed by matrix I, for at least one mix of
selected samples: [=P*A, where P is a matrix representing
the at least one mix of selected samples from collection 10.
[0153] Matrix P may define each mix in terms of mass or
volume proportions of the samples of the initial sample
collection.

[0154] For instance,

?=[aen.

[0155] where {p,(j)}; defines a mix ‘x” with p,(k) the
proportions of sample k (k from 1 to the number Nsamp
of samples in collections 10/11). The sum of the
proportions equals 1: X, nen(P(k))=1. Where a
sample r is not used in the mix x, p,(r)=0.

[0156] The matrix-based approach advantageously allows
a varying number of mixes to be predicted together: each
line of P defines a mix to predict (hence ‘t’ mixes are defined
in the above example), which number ‘t’ can vary from one
prediction to the other.

[0157] The mixes to test, i.e. a list of {p,(k)}: may be
defined in advance in list 140 of test and decision module 14.
Upon starting a new test procedure, module 14 reads list 140
and forms matrix P defined above using one or some or all
the mix definitions of the list. Of course, in a variant or in
combination, an operator may define at least one new mix on
the fly by selecting, on a screen connected to module 14,
samples 100 from the collection 10 and by specifying their
relative proportions. Hence a mix {p,(k)} can be created on
the fly.

[0158] The prediction operation [=P*A is for instance
computer-implemented.

[0159] Matrix

[ao) j]
~| oy

with j=1 ... m, is obtained defining the linear-predicted or
“intermediary” mix profiles for the tested mixes P. Those
mix profiles are “naive” predictions because they do not take
into account the interactions between the microorganisms
when the mix is actually performed.

[0160] That is why, according to the disclosure, the pre-
diction operation comprises a second step of correcting,
using the interaction model, in particular interaction matrix
W, the intermediary mix profiles, i.e. matrix I, into predicted
mix profiles, represented by matrix

_ {Vl(/)}j]
- {Vr(/)}j

R=I*W, with j=1 ... m.



US 2024/0221886 Al

[0161] Predicted mix profiles can thus be obtained quickly
for a varying number of mixes, without consuming any
material of collection 10.

[0162] Itis expected that the relative abundancies r,(j) are
not negative and form together an entire composition (i.e.
their sum equals 1 for a given mix ‘x’). However, this may
not be the case with a matrix product. Aspects of the
disclosure thus include post-processing result matrix R into
R' in order to meet biological constraints.

[0163] For instance, each negative value in R is clipped,
meaning the negative abundancies are set to 0. Thereafter,
the relative abundancies r,(j) are normalized, i.e. adjusted
(using a linear interpolation for instance) into r' (j) so that
their sum equals 1: £,_; ,(r",(j))=1. The final mix result
matrix is the following one

. {riu‘)}j]
AT

where {r',(j)}; is a vector representing the predicted mix
profile for tested mix x (defined by {p,(k)}). Optionally,
before normalizing, non-zero relative abundancies (non-
zero value in R) for profiling features that are absent in the
initial samples mixed together (i.e. a.(j) is zero for all
samples x mixed together) are set to zero.

[0164] The efficiency of the present method comes from
the modelling of the real positive and negative interactions
between the microorganisms of mixed samples into a matrix,
so-called interaction matrix W. Then a two-step matrix-
based process is efficiently used to predict real mix profiles.
[0165] Interaction matrix W is learnt for a given set of m
profiling features. Should the profiling features be reordered
in the profiles, the coefficients of interaction matrix W
should be reordered accordingly.

[0166] The m profiling features may also evolve over
time, for instance because new features are discovered, some
features become less meaningful hence they are deleted,
and/or some features can be split into more features to be
more precise. Evolution in the profiling features may also
result from the enhancement of the profiling/sequencing
methods and profilers/sequencers 12 that provide new pro-
filing data, as well as the improvements of the bioinformat-
ics method that combines algorithm and reference databases
of features.

[0167] Different sets of profiling features may also be
considered, for instance with respect to different diseases or
treatments that are targeted.

[0168] The profiling features themselves but also the num-
ber of features in the sets can evolve or change.

[0169] Hence, each time a new set of profiling features is
considered, interaction matrix W can be computed anew, as
well as matrix A describing the initial profile collection 11.
The computed interaction matrices W may be stored in
memory of pool predictor 13 so that they may be reused,
should the corresponding set of profiling features be used
anew.

[0170] Interaction matrix is preferably obtained using
machine learning. The machine learning is made using a set
of training data. The training data are built from reference
mix products ‘ref’ resulting from a plurality of mixes
{p,AK)} of samples k.

[0171] An actual reference mix of samples is homogenised
during a period of 10 minutes to 3 hours, preferably between
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30 min and 1.5 hour. The homogenisation is made at a
temperature between 0° C. and 10° C., preferably between
2° C. and 6° C., more preferably at about 4° C.

[0172] The mix is then considered as stable for a couple of
hours, at least up to 16 hours from the mixing, preferably up
to 24 hours therefrom.

[0173] It means that the interaction matrix is representa-
tive of the interactions that should occurred between the
microorganisms for a stabilized mix at 4° C.

[0174] Other interaction matrices may be produced that
are representative of other mixing conditions.

[0175] The individual profiles {a,(j)}; with j=1 ... m of
the samples x are known or obtained from a sequencer
profiling the samples x. Hence, reference linear-predicted
mix profiles {i, /j)}; are also known by using the above
linear formula [=P*A.

[0176] The mix profiles of the reference mix products
‘ref”, referred as to reference true mix profiles {r,, ()} are
also known or obtained from a sequencer profiling the
reference mix products ‘ref’.

[0177] Reference predicted mix profiles {r,,.,(j)}; corre-
spond to a matrix product between the reference linear-
predicted mix profiles {i,.[j)}: and the square interaction
matrix W (in the process of being learnt): R =1 *W or
{tprea(}=11,0/0)}*W for a single reference mix product
‘ref’.

[0178] The machine learning seeks to minimize an error in
the prediction of the reference mix profiles. In other words,
it seeks to minimize a formula that is based on a difference
between the reference true mix profiles

R = {Frrue1 (/)}] ]

{Firie-w (/)}]

and the corresponding reference linear predicted mix pro-
files

{rprea1 (D}
{rprea-n(D};

Riped = ] =Ly x W,

‘pred-i” and ‘true-i’ reference the predicted and true refer-
ence mix profiles corresponding to the same reference mix
product ‘i’, respectively. ‘N’ represents the number of ref-
erence mix products considered.

[0179] The training data for the machine learning are I,
and R,

[0180] In some aspects, the formula to minimize is the
residual vectors

true*

{Vrrue*i(/)}j - {rpredfi(k)}k = {Vrmefi(j)}]' - {iref(k)}k W,

[0181] or the residval matrix R,,,,—R,,./~R,,,, L *W.

[0182] Any norm may be used: 1.1, L2, Lp and so on.
Preferably, the Sum of Squared Difference (SSD) or its
derived Mean-Squared Error (MSE) may be used. Also the

minimum Chi-squared method may be used alternatively.
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[0183] The machine learning may then seek to solve the
following convex optimization problem:

1
min (ﬁ | rr % W—Rm,ellz)

where ||-|* is the MSE and N is the number of mix products
considered in R, _ and | S—
[0184] In aspects avoiding overfitting W, the formula adds
a regularization term, preferably a Ridge, L.2,-based regu-
larization term, to said difference. In a variant a Lasso,
L1.-based regularization term can be used. The Ridge
approach advantageously helps having a higher number of
non-zero coefficients in W, hence modelling more precisely
the interactions between the profiling features.

[0185] Hence, the machine learning seeks to solve the
following convex optimization problem:

true

1
min (ﬁ # | Lyer # W = Riel* + L || W = ID ||2)

where ||| is the regularization term (preferably Ridge), ID
is the identity matrix, and A is an hyper-parameter for the
regularization weighting.

[0186] In addition, constraints may be set during the
machine learning so that R, ., has no negative relative
abundancies and the sum of the relative abundancies of each
reference predicted mix profile is 1. In other words, a
modified matrix R',,,,, is preferably used corresponding to
clipping the negative relative abundancies in [, *W and then
to normalizing to 1 the sum of the relative abundancies for
each reference predicted mix profile, i.e. for each line in

L./W. Modified [, *W is noted Ir(;?W. Therefore, in
aspects, the machine learning seeks to solve the following

convex optimization problem:

1
min (ﬁ |17 W = Rpell> + L% || W = ID ||2).

[0187] The set of training data, let say N reference mix
results, is split into two subsets, one for the optimization of
the hyper-parameter A and the other for the optimization of

[0188] Various methods to optimize A are known, includ-
ing inter alia a minimizing information criteria approach (for
instance minimizing Akaike or Bayesian Information Crite-
rion) or a minimizing cross-validated residual approach, that
use the first subset of training data. For this optimization, W
may be set by default different from ID.

[0189] For example, the MSE of the above formula with
A varying between 107> and 10 is computed for a training
dataset and a test dataset (splitting the subset for optimiza-
tion of hyper-parameter A). The resulting MSE is as shown
in FIG. 1a.

[0190] As shown, when A is small, the train dataset MSE
is close to O while the test dataset MSE is very high. In this
situation, the model is overfitted.

[0191] On the other hand, when A is high, the model is
underfitted.
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[0192] A may therefore be chosen to minimize the MSE
for the test dataset.

[0193] Once A is known, the second subset of training data
is used to learn W by minimizing cross-validated residuals:
a k-fold procedure is performed.

[0194] The subset of training data (ie. {r,,, (j)}; and
{i,e-43)},) is split into k subsets, preferably k is selected
from integers 3 to 20, preferably from 4 to 10, more
preferably is equal to 5.

[0195] Each of the k subsets is successively selected in a
round-robin fashion (circular order) to define a test subset,
while the k—1 remaining subsets define a training subset.
[0196] For each of the k rounds, the model is trained using
the training subset, i.e.

X 1
it (- <l = Rl + 11| ¥ = 1)

is solved to find W. Advantageously, all the linear-predicted
mix profiles of the training subset are fed into a single matrix
L., (and the true mix profiles in R,,,.,) so as to learn W in a
single pass.

[0197] The learnt interaction matrix W is then checked
with the test subset; the test subset is applied to the matrix-
based model R,,,, = _#*W. A score based on any norm, for
instance on the

true

1
MSE— | o5 = Rl

is obtained.

[0198] As this operation is repeated for each k test subset,
k scores are obtained.

[0199] The learnt interaction matrix W corresponding to
the best score (i.e. the lowest one) can then be selected to
configure pool predictor 13.

[0200] Of course, other methodologies for machine learn-
ing can be used, provided a learnt interaction matrix W is
obtained.

[0201] In some aspects, the profiling features of samples
100 (i.e. used to form matrix A) are the same as the profiling
features of the final mix result (i.e. used to form matrix R).
As mentioned above, they may be taxa (as in the Experi-
ments 1 and 2 below), genes, antibiotic resistance genes,
functions, and metabolite traits, and metabolite and protein
production.

[0202] In other aspects, the profiling features of samples
100 (i.e. used to form matrix A) are different (in part or in
whole) from the profiling features of the final mix result (i.e.
used to form matrix R). Any of the above profiling features
(taxa, genes, functions, and so on) may be used.

[0203] As anexample, where a profiling technique such as
NGS shotgun sequencing is used, a higher number of
profiling features is obtained per sample 100 compared to
16S sequencing. Samples 100 can therefore be profiled
using NGS shotgun sequencing (hence matrix A is formed
with the NGS-shotgun profiling features) while the final mix
result may be kept with a reduced number of profiling
features, e.g. those obtained using 16S sequencing (hence
matrix R is formed with 16S profiling features). In that case,
matrix [ is formed with the NGS-shotgun profiling features
and interaction matrix W is not a square matrix and still
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models the interactions between the microorganisms, but as
relationships between the NGS-shotgun profiling features
and the 16S profiling features in the example.

[0204] In specific implementation seeking to reduce the
high number of NGS-shotgun profiling features, a Principal
Component Analysis (PCA) is performed, projecting this
high number of features onto k principal components (k
PCs). In one embodiment, the PCA is performed on the
features profiling the samples, i.e. when building matrix A.
In another embodiment, matrix [ is generated with the high
number of profiling features, and the PCA is performed on
matrix L.

[0205] As mentioned above, pool predictor 13 outputs a
final mix result matrix

. {ri(/)}j]
“lnoy

when mixes

*~[ o,

are provided as inputs.

[0206] Mix result matrix R', i.e. the predicted mix profiles
{r'(j)};, obtained by test and decision module 14 can then be
used to control a process of actual producing a mix result
product 19. For instance, it may be used to control, through
signalling S1 and optionally S2, an actual picking and
mixing of samples from the initial sample collection 10 to
obtain the mix result product.

[0207] One of the predicted mix profiles in R' may be
selected by decision module 14 to trigger the production of
the mix result product 19.

[0208] One or more selection criteria may be used to select
one of the predicted mix profiles.

[0209] The selection criteria may be stored in a file 141 in
memory. Criteria may be input in the system (list 141) by an
operator and mirror requirements of the mix result product
to have for instance curative or treatment properties.
[0210] The criteria relate to the profiling features of the
profiles. Hence, it is synonymous to a target mix profile, the
constraints on profiling features being more or less loosened
depending on the aspects.

[0211] The criteria may include a diversity criterion, for
instance a bacterial diversity criterion.

[0212] By “diversity” or “bacterial diversity” it is meant
the diversity or variability of the complex community of
microorganisms (mix or sample), e.g. measured at the level
of the genus, species, genes, functions or metabolites. The
diversity can be expressed with alpha-diversity parameters
to describe the complex community such as richness (num-
ber of species or genera or genes observed), Shannon index,
Simpson index and Inverse Simpson index; and with beta-
diversity parameters to compare complex communities such
as Bray-Curtis index, UniFrac index and Jaccard index.
[0213] A diversity criterion may thus represent a require-
ment in terms of presence (i.e. non-zero corresponding
relative abundancies) of a minimum number of profiling
features (e.g. bacteria genera) or of one or more predefined
profiling features. The minimum number of profiling fea-
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tures may be considered with respect to all the m profiling
features or in a variant with respect to a predefined sublist of
the m profiling features. This allows the selection process to
be focused on specific features for the desired mix result
product 19.

[0214] A predicted mix profile of R' that satisfies the
presence of the minimum number of profiling features may
for instance be selected.

[0215] A diversity criterion may represent a minimum or
maximum relative abundance of one or more specific pro-
filing features. For instance, a given bacteria genus may be
desired in the mix result product within at least 5% in
proportion (mass) compared to the other bacteria (specified
in other profiling features). The diversity criterion may also
define a range to which the relative abundance of one or
more specific profiling features should belong. Of course,
various diversity criteria may be mixed: a minimum or
maximum relative abundance for one profiling feature with
a range for another feature and/or with a maximum relative
abundance for a third feature. And so on.

[0216] Similarly, a relative ratio (possibly minimum and/
or maximum ratio) between at least two profiling features
may be used as a diversity criterion.

[0217] A predicted mix profile of R' that satisfies the
minimum or maximum relative abundancies of the specific
profiling features may for instance be selected.

[0218] A diversity criterion may also represent an increase
in profiling feature diversity.

[0219] A diversity criterion may define a closeness or
similarity to a specific target mix profile. For instance, a
target mix profile may be defined when a mix result product
exactly matching the target mix profile is desired. Usually,
the target mix profile is provided together with a maximal
value corresponding to a distance (measurement) evaluated
between profiles. A mix profile is said to be close to the
target mix profile when the distance between both profiles
(given the measurement) is below the maximal value. The
measurement may be any norm, L1, L.2, . . ., Lp, the SSD,
the MSE, Beta-diversity indexes or any other known dis-
tance measurement between the profiling features (e.g.
Bray-Curtis, Jaccard, unifrac distances or similarity mea-
sures).

[0220] The predicted mix profile of R' with the minimal
distance to the target mix profile may for instance be
selected.

[0221] All or part of the above-defined criteria may be
combined.

[0222] The one or more selection criteria to be used to
select one of the predicted mix profiles (i.e. more generally
the target mix profile) are retrieved by decision module 14
and applied to R".

[0223] The predicted mix profiles within R' may be con-
sidered successively in order.

[0224] The first predicted mix profile meeting the selec-
tion criterion or criteria may be selected for the production
of the mix result product 19.

[0225] In a variant, all the predicted mix profiles of R' are
evaluated with regard to the selection criterion or criteria,
and the one having the best score (e.g. meeting sorme criteria
and/or being the closest to some others) is selected.
[0226] More generally, a reverse prediction may be con-
templated where the selection criterion/target mix profile is
defined, for instance that corresponds to target mix products
having curative properties. File 140 may define candidate
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sets of samples to be tested from which it is searched the
“best” set given the target mix profile. The process may be
iterative meaning that a first group of disparate candidate
sets (i.e. with disparate mixes in terms of which samples are
mixed together and with which respective proportions) can
be first tested through file 140 to find the “best” one, and
then another group of candidate sets in the vicinity of the
“best” set (e.q. with modification of the proportions p, (k) of
the samples within the “best” set and/or with the addition or
deletion of only 1 or at most 2 samples to/from the set) may
then be tested. Of course one or more additional iterations
may be contemplated to progressively refine the “best”
result set of samples given the target mix profile.

[0227] At each iteration, the predicted mix profile of R’
with the minimal distance (Bray-Curtis, Jaccard, unifrac
distances and so on.) to the target mix profile may for
instance be selected as the “best” one. In a variant, multiple
(e.g. matrix-based) predictions may be made, and the “best”
candidate set is selected from the multiple (e.g. various
matrices R') predicted mix profiles so obtained. A compari-
son between the predicted mix profiles and the target mix
profile is thus conducted to choose one candidate set as the
“best” one, i.e. as a target set.

[0228] Once a predicted mix profile is selected, hence the
corresponding target set of samples from the initial collec-
tion is known, the process to produce the mix result product
19 starts.

[0229] Decision module 14 first retrieves the mix compo-
sition {p,(k)}, corresponding to the selected predicted mix
profile, i.e. retrieves the proportions p,(k) for each sample k
of the target set of samples in the initial collection 10. It then
signals, using S1, a selector and mixer 15 with these
proportions {p (k)},. In a variant, the signal S1 may be a
display to an operator: for instance the proportions {p,(k)},
are displayed, on a screen, to the operator for him or her to
manually perform the actual picking and mixing of samples.
[0230] Selector and mixer 15 may be a machine having
mechanical access (for instance through a controlled articu-
lated arm) to the collection 10 of samples and including a
bioreactor where performing the mixing of samples.
[0231] In response to signal S1, selector and mixer 15
picks, i.e. retrieves or takes, the samples having non-zero
proportions p,(k) from bank 10, takes an amount of each
sample given the corresponding proportion p, (k) and a total
volume or mass targeted for the mix result product 19. The
taken amounts of all the samples are poured in the bioreactor
where they are actually mixed.

[0232] Preferably they are homogenised during a period of
10 minutes to 3 hours, preferably between 30 min and 1.5
hour. The homogenisation is made at a temperature between
0° C. and 10° C., preferably between 2° C. and 8° C., more
preferably at about 4° C. The mix result product is then
considered as stable for a couple of hours, at least up to 16
hours from the mixing, preferably up to 24 hours therefrom.
[0233] The true mix profile 191 {r,,,,. ()}, of the resulting
mix result product 19 may be obtained using profiler/
sequencer 12. As it may slightly differ from the selected
predicted mix profile 192 {r.(j)} . it may be used (together
with the corresponding intermediary mix profile {i,(j)},) as
further training data in order to improve W. A new round as
described above may be implemented with this sole new
item of training data (or when a couple of items is obtained)
where [] may be kept unchanged and W is initially set to its
current value. This iterative learning of W as the platform 1
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is used, advantageously refines W, hence provides better
future mix profile predictions.

[0234] As mentioned above, some samples 100y-100z
may be virtual. In case such a virtual sample is selected by
decision module 14 (i.e. its corresponding relative abun-
dance p,(k) in the selected predicted mix profile is not zero),
there is a need to actually produce said sample from its
virtual definition (i.e. the corresponding individual profile).
[0235] When decision module 14 detects such non-zero
relative abundance for a virtual sample 100y-100z corre-
sponding to a bacterial consortium, it signals, using S2, a
sample generator 16 with the need of producing said artifi-
cial sample. S2 may identify the sample concerned and
indicate the amount of material needed (i.e. the correspond-
ing proportion p, (k) multiplied by the target total volume or
mass for the mix result product 19).

[0236] Sample generator 16 may be a machine having
mechanical access (for instance through a controlled articu-
lated arm) to a bank of isolated strains 160 and having
storage access to a file 161 defining the composition of
samples in terms of mix of individual strains. Sample
generator 16 also includes a bioreactor where performing the
mixing of the strains.

[0237] In response to signal S2, sample generator 16
retrieves the definition of artificial samples (bacterial con-
sortia) in terms of strains and takes the appropriate amount
of each required strain from the strain bank 16 given the
signalled amount of material needed. The taken amounts of
all required strains are poured in the bioreactor where they
are actually mixed, for instance during 30 minutes at 4° C.
[0238] In aspects, sample generator 16 may have access to
bank 10 and/or even to a bank of external samples 99. When
decision module 14 detects a non-zero relative abundance
for a virtual sample corresponding to an engineered or
processed complex community (i.e. a mix involving a
sample), it signals, using S2, sample generator 16 with the
need of producing said engineered or processed sample. S2
may identify each strain and/or each sample in bank 10
and/or each external sample concerned by the mix and
indicate the amount of material needed (i.e. the correspond-
ing proportion p, (k) multiplied by the target total volume or
mass for the mix result product 19).

[0239] In response to signal S2, sample generator 16
retrieves or picks the materials, pours them in the bioreactor
where they are actually mixed.

[0240] Once the mix is done and stabilized, the sample has
been generated, hence it is stored in the initial sample
collection or bank 10 where the selector and mixer 15 can
take it to actually produce mix result product 19.

[0241] Although signals S1 and S2 are described above as
control signal to drive the selector and mixer 15 and the
sample generator 16, one or both of them can be mere
signals displayed to an operator for him or her to actually
and manually perform the mixing.

[0242] FIG. 2 illustrates, using a flowchart, general steps
of producing such mix result product 19, including predict-
ing mix profiles. These steps are performed by platform 1.
[0243] At step 200, test and decision module 14 selects a
set of samples from those available in the initial sample
collection 11. This step may merely consist in providing or
selecting one mix definition {p (k)}, from list 140.

[0244] The definition of mix X’ is provided to pool
predictor 13 for prediction.
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[0245] X’ is initially set to 1 when the mix definitions in
list 140 are indexed from 1 to N,

[0246] At step 205, pool predictor 13 first performs a
linear prediction of the mix profile to obtain an intermediary
mix profile: {i,()},={p.(k)},*A. This is a matrix product.
[0247] At step 210, pool predictor 13 then performs the
correction of the intermediary mix profile using interaction
matrix W: {r,(j)},={1,()},*W. This is a matrix product.
[0248] Clipping and normalization of {r,(j)}, are also
performed if needed to obtain the predicted mix profile 215
for mix “x’, {r'. ()},

[0249] At step 220, it is checked whether {r',(j)}, satisfies
a selection-criterion-based condition. The condition may be
defined by a single selection criterion to satisfy or by a
multiplicity thereof. The condition may mirror criteria defin-
ing a complex community of microorganisms or a micro-
biota composition with desired curative or treatment prop-
erties.

[0250] If {r ()}, does not satisfy the condition, another
mix is considered through step 225 (incrementing the mix
index) before looping back to step 200. Of course, if all the
mixes have yet been considered (test 221), the process ends
without having any mix satisfying the condition. An alert
message may then be issued to an operator.

[0251] If {r',(§)}, does satisfy the condition, it is selected
and the process goes to step 230.

[0252] At step 230, the corresponding mix definition {p,,-
tect(K) }, 1s retrieved from list 140 by decision module 14 and
sent to selector and mixer 15 or displayed to the operator
(signal S1).

[0253] Optionally, where a virtual sample ‘k” has a corre-
sponding non-zero proportion p.,;...k), decision module 14
triggers its actual production by sample generator 16 or
displays the information to the operator, through the sending
of signal S2.

[0254] At step 235, the samples with corresponding non-
7er0 Po...AK) are retrieved by selector and mixer 15 from
bank 10 and then mixed together in a bioreactor.

[0255] It results the desired mix result product 19.
[0256] Thanks to the above prediction operation, an accu-
rate profile of a mix result product may be obtained (at least
estimated) quickly without consuming material (samples).
[0257] However, the samples may disappear over time (to
actually produce some products or because they deteriorate
over time) while new samples may be collected from new
donors. It turns out that the collection 10 may evolve over
time (thus A evolves), after a mix definition is determined to
produce a target mix result product. Thanks to the disclo-
sure, pool predictor 13 may be configured anew with the
evolved collection (A is redefined and W is learnt) and
another mix definition corresponding to the evolved collec-
tion can also be determined (using the prediction of the
disclosure) that allows a similar mix result product to be
generated.

[0258] The above sequence of steps 200-235 selects the
first mix in list 140 that satisfies the condition.

[0259] In a variant, a predicted mix profile may be esti-
mated by pool predictor 13 for all the mixes defined in list
140 before checking the condition at step 220 to find the
“best” mix, i.e. set of samples.

[0260] This approach, as illustrated in FIG. 3, seeks to find
a mix definition {p.(k)}, (i-e. a set of samples of collection
10) from a target mix profile. Such determination of a target
mix definition (i.e. a target set of samples) may take place in
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a production process as described now. Indeed, once the
target mix definition {p,(k)}, for the target mix profile has
been obtained by test and decision module 14, it may be used
to control a process of actual producing a mix result product
19 as described above: decision module 14 can send signal
S1, and optionally signal S2, to control modules 15 and 16
in the production process or inform the operator of the
operations to conduct.

[0261] FIG. 3 illustrates, using a flowchart, general steps
of producing such mix result product 19 given the target mix
profile. These steps are performed by platform 1.

[0262] At step 300, the target mix profile {r',(j)}, corre-
sponding to a desired mix result product is set in file 141.
[0263] The target mix profile may be a profile with well-
defined values for the profiling features, but also a profile
defining more loosened values, for instance a minimum
relative abundance for one or more profiling features, a
maximum relative abundance for one or more profiling
features, a range for the relative abundance of one or more
profiling features, a minimum number of non-zero relative
abundances in the profile or in a predefined subset of
profiling features, predefined profiling features with non-
zero relative abundancies, a defined ratio between relative
abundancies of two or more profiling features, and so on.
[0264] The target mix profile may be defined in file 141 in
such a way test and decision module 14 is able to feed pool
predictor 13 with this target mix profile as {r'(j)}, (cutput of
the model).

[0265] At step 305, a group of candidate sets of samples
from collection 10 are obtained. They may be predefined.
[0266] Random selection of samples from the collection
can be performed as well as random selection of respective
mix proportions p,(k).

[0267] The number of samples to mix may be selected
within a range of authorized numbers, e.g. 2 to 1000
samples, preferably 3 to 100. In practice, 3 to 10 is easily
handled. Of course, computer-implemented method accord-
ing to the disclosure makes it possible at low cost to perform
predictions for a higher number of samples mixed together.
[0268] The mix proportions may be selected from a group
of predefined proportions (given the number of samples
mixed together as the total of proportions must be 100%).
[0269] An initial group of candidate sets may be randomly
formed, usually resulting into very disparate sets of samples.
Another group of candidate sets may be formed given one or
more know sets (e.g. determined as “best” sets in a previous
iteration of the process of FIG. 3). The other group of
candidate sets may for instance include other candidate sets
that depart from the know set or sets by only different mix
proportions p,(k) and/or by a limited number of different
samples (e.g. only 1 or 2 different samples).

[0270] The candidate sets are defined in file 140 in such a
way test and decision module 14 is able to feed pool
predictor 13 with these candidate mixes (lists of {p,(&K)}.).
[0271] Next, steps 205, 210, 215 described above are
performed in order to predict one or more mix profiles
{r.()}, for the candidate sets/mixes. Thanks to the matrix-
based approach, the mix profiles of multiple candidate sets
(possibly all) may be simultaneously predicted, where P thus
includes multiple or all {p,(k)}: from list 140.

[0272] Step 310 checks whether all the candidate sets/
mixes have been processed (test 216). In the negative, the
next mix definition is considered through step 225.
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[0273] Next, at step 315, the predicted mix profiles are
compared to the target mix profile (selection criterion) with
a view to choose one candidate set as the target set.
[0274] For instance, a distance, e.g. a Bray-Curtis distance
or a Jaccard distance or an unifrac distance or a combination
thereof, is calculated for each predicted mix profile (hence
for each candidate set).

[0275] Step 320 determines the closest predicted mix
profile or profiles to the target mix profile given the con-
sidered distance. Preferably, the closest one is determined.
[0276] A distance margin may be implemented to guaran-
tee the closest predicted mix profile is close enough to the
target mix profile. In this situation, the closest predicted mix
profile must satisfy the margin, meaning its calculated
distance must be less that this margin. If no predicted mix
profile satisfies the test, the process ends and an alert
message may be issued to an operator.

[0277] Otherwise predicted mix profile {r',.G)}, 325
corresponding to target set/mix composition ‘select’ has
been determined when entering step 230 described above.
[0278] In some aspects (not shown in the Figure), this
target set/mix composition may be used to define a new
group of candidate sets as explained above in order to
perform another (even more) round of the process and refine
the target set/mix composition to be used at step 230.
[0279] At step 230, the mix definition ‘select’ is sent to
selector and mixer 15 or to the operator (signal S1).
[0280] Optionally, where a virtual sample ‘k” has a corre-
sponding non-zero proportion p.,;...k), decision module 14
triggers its actual production by signalling sample generator
16 or informing the operator, through the sending of signal
S2.

[0281] At step 235, the samples with corresponding non-
7ero P....Ak) are retrieved or picked, e.g. by selector and
mixer 15 from bank 10, and then mixed together in a
bioreactor.

[0282] It results the desired mix result product 19.
[0283] A Fecal Microbiota Transter (FMT) product and
more generally a Microbiome Ecosystem Therapy product
can be built from several samples. The mixing strategy as
defined by the present disclosure allows the diversity of the
final FMT product to be efficiently improved compared to a
mono sample strategy, furthermore without wasting mate-
rial.

[0284] Platform 1 described above with reference to FIG.
1 comprises several modules that are under the control of a
central computer. For instance pool predictor 13 and test and
decision module 14 are implemented in the central computer
while sequencer 12, selector and mixer 15, sample generator
16 and bank 10 are separate machines connected to the
central computer.

[0285] The description above mainly uses a matrix-based
prediction model, in particular a square interaction matrix.
Alternatives to the latter include deep learning models, such
as neural networks made of multiple layers of parameterized
differentiable nonlinear modules that can be trained or learnt
by backpropagation.

[0286] FIG. 4 schematically illustrates a computer device
400 managing the production platform 1. Computer device
400 may for instance implement pool predictor 13 and test
and decision module 14 and may control sequencer 12,
selector and mixer 15 and sample generator 16 via adapted
signalling (S1 and S2).
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[0287] The computer device 400 is configured to imple-
ment at least one embodiment of the present disclosure. The
computer device 400 may preferably be a device such as a
micro-computer, a workstation or a light portable device.
The computer device 400 comprises a communication bus
401 to which there are preferably connected:

[0288] a central processing unit 402, such as a micro-
processor, denoted CPU;

[0289] a read only memory 403, denoted ROM, for
storing computer programs for implementing the dis-
closure;

[0290] a random-access memory 404, denoted RAM,
for storing the executable code of methods according to
aspects of the disclosure as well as the registers adapted
to record variables and parameters necessary for imple-
menting methods according to aspects of the disclo-
sure;

[0291] a communication interface 405 connected to a
network 499 in order to communication with a user or
operator device and/or with other devices of platform 1,
for instance sequencer 12, selector and mixer 15 and
sample generator 16; and

[0292] a data storage means 406 such as a hard disk or
a flash memory, for storing computer programs for
implementing methods according to one or more
aspects of the disclosure as well as any data necessary
for aspects of the disclosure, including inter alia indi-
vidual sample profiles (i.e. collection 11), lists 140 and
141.

[0293] Optionally, the computer device 400 may also
include a screen 407 serving as a graphical interface with an
operator, for instance to configure the platform by means of
a keyboard 408 or any other pointing means (e.g. defining
lists 140, 141 as well as collection 11 and virtual samples
110y-z) and/or to display the results of the prediction process
or of the reverse operation, for instance to display the target
mix definition {p,.;...()},-

[0294] The computer device 400 may be optionally con-
nected to various peripherals useless for the present disclo-
sure, the sequencer 12, each being connected to an input/
output card (not shown).

[0295] Preferably the communication bus provides com-
munication and interoperability between the various ele-
ments included in the computer device 400 or connected to
it. The representation of the bus is not limitative and in
particular the central processing unit is operable to commu-
nicate instructions to any element of the computer device
400 directly or by means of another element of the computer
device 400.

[0296] The executable code may optionally be stored
either in read only memory 403, on the hard disk 406 or on
a removable digital medium (not shown). According to an
optional variant, the executable code of the programs can be
received by means of the communication network 499, via
the interface 405, in order to be stored in one of the storage
means of the computer device 400, such as the hard disk
406, before being executed.

[0297] The central processing unit 402 is preferably
adapted to control and direct the execution of the instruc-
tions or portions of software code of the program or pro-
grams according to the disclosure, which instructions are
stored in one of the aforementioned storage means. On
powering up, the program or programs that are stored in a
non-volatile memory, for example on the hard disk 406 or in



US 2024/0221886 Al

the read only memory 403, are transferred into the random-
access memory 404, which then contains the executable
code of the program or programs, as well as registers for
storing the variables and parameters necessary for imple-
menting the disclosure.

Experimental Results

Scope of the Experiments

[0298] The purpose of the experiments was to investigate
the efficiency of the interaction matrix W, including its
machine learning procedure as proposed, to predict the mix
profile of a mix of microbiota samples (Experiment 1) and
to determine a mix composition given a target mix profile
(Experiment 2).

Experiment 1—Protocol

[0299] Initial sample collection 10 was considered. Cor-
responding initial profile collection 11 was obtained by
sequencing, using a 16S based microbiota taxa profiling,
each of the microbiota samples. Hence, 131 taxa (at genus
level) were evaluated as profiling features.

[0300] Next, mixing of the samples were realized. Each
mix product was a combination of three to six samples with
respective ratios. The mixing was performed at 4° C. and the
mix homogenized during 30 min to 1 h30 after mixing. The
mix products were sequenced, using the same 16S based
microbiota taxa profiling, during their stable state (i.e.
during the hours following the homogenization, less than 16
h from the mixing).

[0301] A k-fold cross-validation strategy was employed
with k=5 to configure pool predictor 13, i.e. to learn A and
interaction matrix W. The k-fold strategy ensured that none
of the observations was used as training data and as test set
during the a same evaluation.

[0302] The modelization method as described in the mate-
rial and methods section was tested and applied at three
different taxonomic ranks: species, genus, family and order.
However, the species level datasets were very sparse, so it
was excluded from the testing procedure. Starting at the
genus level, the assignation tables were rich enough to allow
the analyses, so the less resolved levels (family, order) were
deduced from the genus tables, only for visualization pur-
poses when needed, but not used as is in the modelization
procedure. The main reason is that it is not possible to
deduce from a taxa level used in the training, the composi-
tion of a higher resolved level, and having the genera
information is important in our application perspective.
[0303] We have trained the models for native samples only
(FIG. 5) and for fermented samples (FIG. 6) separately as
well as both combined (FIG. 7). The MSE was used to
quantify the quality of the modelization when applied on the
data. The MSE were systematically compared between the
machine learning model and the linear model (the one
providing the naive predictions).

Experiment 1—Results

[0304] FIG. 5a illustrates the initial profile collection 11
corresponding to an initial sample collection 10 comprising
only native faeces microbiota samples. 27 microbiota
samples were considered. Their individual profiles are
depicted in the Figure.
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[0305] FIG. 54 illustrates the mix profiles of 24 mix
products mixing three to six microbiota samples from
amongst the 27 microbiota samples of FIG. 54, with respec-
tive ratios or proportions. The mix definitions {p (k)}, are
saved.

[0306] FIG. 5S¢ illustrates, on the left side, the error result-
ing from a linear prediction of the mix profiles given the mix
definitions {p,(k)}, and the individual sample profiles {a,
(1)}, The linear prediction corresponds to the sole step 205:
I=A*P.

[0307] The Figure also illustrates, on the right side, the
error resulting from the prediction according to the disclo-
sure (steps 205 and 210), i.e. involving the interaction matrix
W. W was machine-learned using only the sample and mix
profiles of FIGS. 5a and 556 (native samples) with the k-fold
cross-validation strategy.

[0308] The model-based method of the disclosure returns
a better performance than the linear method for the native
dataset.

[0309] FIG. 6q illustrates the initial profile collection 11
corresponding to an initial sample collection 10 comprising
only fermented faeces microbiota samples. 36 microbiota
samples were considered. Their individual profiles are
depicted in the Figure.

[0310] FIG. 64 illustrates the mix profiles of 48 mix
products mixing three to six microbiota samples from
amongst the 36 microbiota samples of FIG. 6a, with respec-
tive ratios or proportions. The mix definitions {p,(k)} are
saved.

[0311] FIG. 6¢ illustrates, on the left side, the error result-
ing from a linear prediction of the mix profiles given the mix
definitions {p (k)}, and the individual sample profiles {a_
(1)}, The linear prediction corresponds to the sole step 205:
I=A*P.

[0312] The Figure also illustrates, on the right side, the
error resulting from the prediction according to the disclo-
sure (steps 205 and 210), i.e. involving the interaction matrix
W. W was machine-learned using only the sample and mix
profiles of FIGS. 6a and 65 (fermented samples) with the
k-fold cross-validation strategy.

[0313] The model-based method of the disclosure returns
a dramatically better performance than the linear method for
the fermented dataset (median MSE is 5x lower with the ML,
model predictions).

[0314] For FIGS. 7a and 75, interaction matrix W was
machine-learned using both sample and mix profiles of
FIGS. 5a, 5b, 6a and 65 (i.e. native and fermented samples)
as training data. Again, the k-fold cross-validation strategy
was used.

[0315] FIG. 7a shows the result when the dataset of FIGS.
5a, 5b (i.e. native samples and mixes thereof) are applied to
pool predictor 13 so configured.

[0316] The left side of the Figure depicts the error result-
ing from a linear prediction of the mix profiles given the mix
definitions {p,(k)}, and the individual sample profiles {a,
@}

[0317] The right side depicts the error resulting from the
prediction according to the disclosure (steps 205 and 210),
i.e. involving the interaction matrix W so learnt.

[0318] As for the single dataset model, the combined
datasets model improves slightly the estimation when
applied to the native dataset.
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[0319] FIG. 75 shows the result when the dataset of FIGS.
6a, 65 (i.c. fermenter samples and mixes thereof) are applied
to pool predictor 13 so configured.

[0320] The left side of the Figure depicts the error result-
ing from a linear prediction of the mix profiles given the mix
definitions {p (k)}, and the individual sample profiles {a_
M)}

[03121] The right side depicts the error resulting from the
prediction according to the disclosure (steps 205 and 210),
i.e. involving the interaction matrix W so learnt.

[0322] As for the single dataset model, the combined
datasets model improves dramatically the estimation when
applied to the fermented dataset (median MSE is 4x lower
with the ML model predictions).

Experiment 1—Discussion and Conclusion

[0323] In all cases, the model-based prediction improves
the naive (linear) methods estimation. It is especially impor-
tant for the fermented dataset where the naive approach does
not perform well, especially for some groups of taxa. The
model-based correction approach was more efficient, prob-
ably as there were more room for improvement. If more data
are added to train the model, one can assume that the overall
performances and the robustness will improve. The training
method, also part of this disclosure, allows such a model
evolution.

Experiment 2—Protocol

[0324] In this experiment, the interaction matrix W
learned using native and fermented samples (i.e. W of FIGS.
7a and 7b) is used.

[0325] Another collection of samples was considered for
this experiment. It is made of 23 samples. Corresponding
collection of profiles was obtained by the same sequencing
of each of the 23 microbiota samples: using a 16S based
microbiota taxa profiling where 131 taxa (at genus level)
were considered as profiling features. FIG. 8 illustrates the
profile collection (at class level).

[0326] Pool predictor 13 was used to generate 160 mixes
with different input microbiota samples (mixing 2 to 4
samples out of 23) with different mixing conditions. Four
rounds (exp_1 to exp_4) of predictions were made, in which
eight different sets of samples (chunk_1 to chunk_8) were
considered with five different sets of proportions (Mix1 to
Mix5).

[0327] Each generated predicted mix profile can then be
identified by a triplet (i, j, k) where i=1 . . . 4 (exp), j=1 . .
. 8 (chunk) and k=1 . . . 5 (Mix), and a corresponding name
“exp_i-chunk_j-Mixk”

[0328] The different sets of proportions (in %) were pre-
defined as follows (depending on the number of samples in
the mix).

TABLE 1

sample proportions in mixes of 4 samples

Sample 1 Sample 2 Sample 3 Sample 4
Mix1 10 10 20 60
Mix2 20 20 20 40
Mix3 10 20 30 40
Mix4 20 30 20 30
Mix3 25 25 25 25
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TABLE 2

sample proportions in mixes of 3 samples

Sample 1 Sample 2 Sample 3
Mix1 10 20 70
Mix2 20 20 60
Mix3 10 50 40
Mix4 10 10 30
Mix3 33 33 34
TABLE 3
sample proportions in mixes of 2 samples
Sample 1 Sample 2

Mix1 10 90

Mix2 20 30

Mix3 30 70

Mix4 40 60

Mix5 50 50

[0329] The different candidate sets of samples were
defined as follows.

TABLE 4

compositions of candidate mixes

Sample 1 Sample 2 Sample 3 Sample 4
exp_l chunk 1 sample-7 sample-14 sample-17 sample-20
exp_l  chunk 2 sample-2 sample-4 sample-11  sample-22
exp_l  chunk 3 sample-5 sample-6 sample-23
exp_l chunk 4 sample-1 sample-3
exp_l  chunk 5 sample-9 sample-21
exp_l chunk 6  sample-16 sample-19
exp_l chunk 7 sample-8 sample-13 sample-15
exp_l chunk 8  sample-10 sample-12 sample-18
exp_2 chunk 1 sample-9 sample-12 sample-15
exp_2  chunk 2 sample-3 sample-5 sample-16
exp_2  chunk 3 sample-6 sample-8
exp_2 chunk 4 sample-7 sample-18 sample-23
exp_2 chunk 5 sample-13 sample-19 sample-22
exp_2 chunk 6 sample-1 sample-2 sample-21
exp_2 chunk 7 sample-4 sample-10 sample-14
exp_2 chunk 8 sample-11 sample-17 sample-20
exp_3 chunk 1 sample-6 sample-10 sample-14 sample-16
exp_3 chunk 2 sample-1 sample-5 sample-11
exp_3  chunk 3 sample-3 sample-4 sample-7
exp_3 chunk 4 sample-9 sample-19 sample-22
exp_3 chunk 5 sample-2 sample-12
exp_3 chunk 6  sample-15 sample-20
exp_3 chunk 7  sample-13 sample-21
exp_3 chunk 8 sample-8 sample-17 sample-18 sample-23
exp_4 chunk 1 sample-6 sample-9 sample-15
exp_4  chunk 2 sample-2 sample-18
exp_4  chunk 3 sample-3 sample-5 sample-12
exp_4 chunk 4 sample-1 sample-10 sample-14 sample-19
exp_4 chunk 5 sample-16 sample-21 sample-22 sample-23
exp_4 chunk 6 sample-4 sample-8
exp_4 chunk 7  sample-13 sample-17 sample-20
exp_4 chunk 8 sample-7 sample-11

[0330] For the present experiment, mix “exp_1-chunk_7-
Mix5”, i.e. a mix made of 33% of sample-8, 33% of
sample-13 and 34% of sample-15, was considered as a target
mix. Its predicted mix profile was used as a target mix
profile.
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[0331] The similarity between all the proposed mixes
“exp_i-chunk_j-Mixk” and the target mix “exp_1-chunk_7-
Mix5” was evaluated using the Bray-Curtis index at the
genus level (FIG. 9).

[0332] The Bray-Curtis index is forced to O when at least
two samples of the mix considered come from the same
donor. This was to avoid identifying mixes having the same
samples.

[0333] Mix “exp_l-chunk_7-Mix5” and the most similar
mixes for both metrics were actually mixed, and the result-
ing products were sequenced using the same sequencing
technique with a view of comparing their composition at the
phylum and family levels.

Experiment 2—Results

[0334] Table 5 below shows the 15 highest Bray-Curtis
similarities (based on the genera abundances) calculated
from the predicted mix profiles. The Bray-Curtis similarity
equals 1-Bray-Curtis dissimilarity measure.

TABLE 5

Bray-Curtis similarities to exp_1-chunk_7-Mix5

exp_4-chunk_4-Mix4 0.861
exp_4-chunk_4-Mix5 0.852
exp_4-chunk_4-Mix2 0.848
exp_4-chunk 4-Mix3 0.835
exp_4-chunk 4-Mix1 0.805
exp_4-chunk 2-Mix4 0.772
exp_4-chunk 2-Mix3 0.763
exp_l-chunk 8-Mix5 0.762
exp_4-chunk 2-Mix5 0.749
exp_4-chunk 2-Mix2 0.747
exp_l-chunk 8-Mix2 0.745
exp_3-chunk 1-Mix4 0.743
exp_3-chunk 1-Mix5 0.743
exp_l-chunk 8-Mix3 0.742
exp_2-chunk 7-Mix5 0.734

[0335] FIG. 9a shows the true profiles of the samples
composing exp_1l-chunk_7-Mix5 and the closest mix, exp_
4-chunk_4-Mix4 (made of 20% of sample-1, 30% of
sample-10, 20% of sample-14 and 30% of sample 19), as
well as their true mix profiles, at phylum level.

[0336] FIG. 95 illustrates the same comparison at family
level.
[0337] Although the initial samples have very different

profiles between exp_1-chunk 7-Mix5 and exp_4-chunk_4-
Mix4, the final products have very similar mix profiles at
both phylum and family levels.

[0338] Table 6 and FIG. 10 show the Bray-Curtis similar-
ity (at genus level) results of the comparisons between
exp_l-chunk_7-MixS5 and the closest mix, exp_4-chunk_4-
Mix4, as well as their true mix profiles.

TABLE 6

Bray-Curtis similarity (genus level)
between predicted and actual mixes

Bray-Curtis
Sample_1 Sample_2 similarity Type
exp_4-chunk 4-Mix4 exp_l-chunk 7-Mix5 0.753 Actual vs
real mix real mix Actual
exp_4-chunk 4-Mix4 exp_4-chunk 4-Mix4 0.783 Actual vs
real mix predicted Predicted
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TABLE 6-continued

Bray-Curtis similarity (genus level)

between predicted and actual mixes

Bray-Curtis
Sample_1 Sample_2 similarity Type
exp_l-chunk 7-Mix5 exp_l-chunk_7-Mix5 0.739 Actual vs
real mix predicted Predicted
[0339] Although the initial samples of the two mixes have

very different profiles, the final products have very similar
mix profiles at genus level according to the Bray-Curtis
distance metric. Table 6 and FIG. 10 shows a similarity gap
between an actual mix and its prediction. This however does
not impact substantially the similarity between the actual
mixes, which similarity remains at an acceptable level.

Experiment 2—Discussion and Conclusion

[0340] The experiment 2 shows that the prediction tool
can be used iteratively to predict mixes very close to a target
sample (Bray-Curtis similarity at the genus level greater
than 0.86), and to select corresponding samples and mix
proportions for the in vitro experience phase.

[0341] It also illustrates that two mixes produced accord-
ing to the prediction recipe are actually very close together
(Bray-Curtis similarity at the genus level greater than 0.75).
This demonstrates the performances of the prediction tool,
and its applicability in a real life context.

Experiment 3—Protocol

[0342] In this experiment, NGS shotgun sequencing has
been used to profile samples 100. Metagenomic sequencing
data were obtained for 76 pools and 69 samples from donors,
or individual fermentors.

[0343]
features (compared to 16S sequencing especially when

Due to the high number of NGS shotgun profiling

looking at the species level instead of the genus level, or for
certain functions), PCA has been used in order to reduce the
dimensions of each sample profile, to k PCs.

[0344] FIG. 11 depicts the PCA based on genus relative
abundances obtained from NGS shotgun sequencing of
native samples (native, inoculum or mix), fermentation
samples (fermented, inoculum or mix). Fermentation
samples tend to cluster together, as well as native samples.

[0345] This PCA-based strategy is summarized in FIG. 12
where it is clear that instead of learning a “TaxaxTaxa”
interaction matrix W (as in Experiments 1 and 2), a “top k
principal componentsxTaxa” interaction matrix W is learnt
in Experiment 3.

[0346] The methodology to learn this interaction matrix W
is the same as for 16S analyses of Experiments 1 and 2.
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Experiment 3—Results

[0347]

TABLE 7

comparison of prediction results between linear prediction,
taxa without PCA prediction and taxa with PCA prediction

MSE on Bray Curtis on
native fermented native fermented
Data Type of model  samples samples samples samples
Genus  Linear prediction 36.1e-6 222.6e—6 0.87 0.78
Taxa (loss MSE  29.7e-6  40.1e-6 0.88 0.89
when learning W)
Taxa PCA (loss 28.4e-6  25.6e—6 0.88 0.91
MSE)
Species  Linear prediction 11.4e-6  25.6e-6 0.80 0.79
Taxa (loss MSE)  9.0e-6  7.27e-6 0.82 0.85
Taxa PCA (loss 8.2le-6  5.05e-6 0.82 0.88
MSE)
[0348] The interaction matrix W has been learnt using

MSE. Also the comparisons between predicted mix results
(using W) and true mix results have been made based on
MSE or on the Bray Curtis distance.

[0349] Both modeling approaches (with or without PCA)
improve the taxonomic profile predictions (according to the
MSE or BC metrics) at the genus and the species levels. The
correction according to the disclosure (based on matrix W)
has a stronger impact in the prediction of mixes from
fermented samples, compared to native samples.

[0350] The reduction of profiling features using PCA
seems to improve notably the prediction accuracy from
fermented samples, while slightly improving it for predic-
tions from native samples.

[0351] Although the present disclosure has been described
herein above with reference to specific aspects, the present
disclosure is not limited to the specific aspects, and modi-
fications will be apparent to a skilled person in the art which
lie within the scope of the present disclosure.

[0352] Many further modifications and variations will
suggest themselves to those versed in the art upon referring
to the foregoing illustrative aspects, which are given by way
of example only and which are not intended to limit the
scope of the disclosure, that being determined solely by the
appended claims. In particular, the different features from
different aspects may be interchanged, where appropriate.
[0353] In the claims, the word “comprising” does not
exclude other elements or steps, and the indefinite article “a”
or “an” does not exclude a plurality. The mere fact that
different features are recited in mutually different dependent
claims does not indicate that a combination of these features
cannot be advantageously used.

What is claimed is:

1. A computer-aided method of predicting a mix compo-
sition resulting from the mixing of complex microorganism
community samples belonging to an initial sample collec-
tion, the method comprising:

predicting, using a linear approach, an intermediary mix

profile for a mix of selected complex microorganism
community samples, and

correcting the intermediary mix profile into a predicted

mix profile, using an interaction model learnt from
reference linear-predicted mix profiles and correspond-
ing reference true mix profiles.
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2. The method of claim 1, wherein the predicted mix
profile is used to control actual picking and mixing of
complex microorganism community samples from the initial
sample collection to obtain a mix result product.
3. The method of claim 1, wherein predicting the inter-
mediary mix profile includes computing a matrix product
between a first matrix defining the mix in terms of propor-
tions of the complex microorganism community samples of
the initial sample collection and a second matrix defining the
individual profiles of the complex microorganism commu-
nity samples.
4. The method of claim 1, wherein correcting the inter-
mediary mix profile includes computing a matrix product
between a matrix representing the intermediary mix profile
and a square interaction matrix of the learnt interaction
model.
5. A computer-aided method of determining a set of
complex microorganism community samples in an initial
sample collection given a target mix profile representing a
target mix result product, the method comprising:
selecting candidate sets of complex microorganism com-
munity samples from the initial sample collection,

for each candidate set selected, using the prediction
method of claim 1 to predict a mix profile resulting
from the mixing of the samples of the selected candi-
date set,

comparing the predicted mix profiles to the target mix

profile to choose one candidate set as the target set.

6. The method of claim 5, wherein the target set of
samples is used to control actual picking and mixing of
complex microorganism community samples from the initial
sample collection to obtain a mix result product function of
the target mix profile.

7. The method of claim 5, wherein comparing the pre-
dicted mix profiles to the target mix profile includes com-
puting a distance between each predicted mix profile and the
target mix profile and selecting, as target set, the candidate
set having the lowest distance.

8. The method of any of claim 1, wherein a profile of a
complex community of microorganisms includes relative
abundancies of profiling features in the complex community
of microorganisms.

9. The method of any of claim 1, wherein profiling
features forming a profile of a complex community of
microorganisms include one or more features selected from
the group consisting of taxa, genes, antibiotic resistance
genes, functions, metabolite traits, and metabolite and pro-
tein production, preferably include taxa.

10. The method of claim 1, wherein a profile of a complex
community of microorganisms defines profiling features
with respect to one or more microorganisms present in the
complex community of microorganisms from bacteria,
archaea, viruses, phage, protozoa and fungi, preferably with
respect to bacteria and/or archaea, and/or.

defines profiling features that specify relative abundances

of microorganisms considered at one or more taxo-
nomic levels from strains, species, genus, families and
orders, preferably one or more taxonomic levels from
genus, families and orders, and/or

includes relative abundancies, in the complex community

of microorganisms, of bacteria and/or archaea taxa
considered at a taxonomic level of genus, families and
orders.
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11. The method of any of claim 1, wherein the interaction
model is obtained using machine learning that minimizes a
formula function of a difference between

reference predicted mix profiles obtained from the refer-

ence linear-predicted mix profiles and the interaction
model, and

the corresponding reference true mix profiles.

12. A method of producing a complex microorganism
community product, comprising:

selecting complex microorganism community samples

from an initial sample collection,

using the prediction method of claim 1 to predict a mix

profile resulting from the mixing of the selected
samples,

comparing the predicted mix profile to a selection crite-

rion, and

depending on the outcome of the comparing, actually

picking and mixing the selected samples to obtain a
mix result product.

13. The method of claim 12, wherein the selection crite-
rion includes one or more from a diversity criterion repre-
sentative of an increase in profiling feature diversity, a
minimum or maximum relative abundance of one or more
profiling features, a non-zero relative abundance for one or
more specific profiling features or for a minimum number of
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profiling features, a relative ratio between at least two
profiling features, a closeness to a target mix profile.

14. A method of producing a complex microorganism
community product having a target mix profile representing
a target mix result product, comprising:

selecting, using the determining method of claim 5, a

target set of complex microorganism community
samples belonging to an initial sample collection given
the target mix profile, and

actually picking and mixing the microorganism commu-

nity samples of the selected target set to obtain a mix
result product.

15. The method of claim 14, wherein one selected com-
plex microorganism community sample is a virtual sample
and the method further comprises actually producing an
artificial complex microorganism community sample corre-
sponding to the selected virtual sample from isolated strains.

16. A computer device comprising at least one micropro-
cessor configured for carrying out the method of claim 1.

17. A non-transitory computer-readable medium storing a
program which, when executed by a microprocessor or
computer system in a device, causes the device to perform
the method of claim 1.
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