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CONTINUOUS LEARNING NEURAL 
NETWORK SYSTEM USING ROLLING 

WINDOW 

[ 0012 ] FIG . 6 shows an example flowchart illustrating a 
pseudo interaction data generation method according to 
some embodiments . 

DETAILED DESCRIPTION CROSS - REFERENCE TO RELATED 
APPLICATIONS 

[ 0001 ] This application is a non - provisional application of 
U.S. Patent Application No. 62 / 734,149 , filed on Sep. 20 , 
2018 , which is herein incorporated by reference in its 
entirety . 

BACKGROUND 

[ 0002 ] Network attacks are becoming increasing dynamic 
and automated . Network attacks can be tracked and analyzed 
to predict future attacks . However , new network attacks can 
occur before a complete data analysis is performed using all 
of the previous data . While automated learning can address 
some issues , these models can drift over time . To combat 
this threat , an automated solution is needed to monitor 
incoming data . 
[ 0003 ] Embodiments of the invention address this prob 
lem and other problems individually and collectively . 

SUMMARY 

[ 0004 ] One embodiment is directed to a method compris 
ing : determining , by an analysis computer , a rolling window 
associated with interaction data for interactions that occur 
over time ; retrieving , by the analysis computer , interaction 
data for interactions occurring in the rolling window ; gen 
erating , by the analysis computer , pseudo interaction data 
based upon historical interaction data ; and forming , by the 
analysis computer , a neural network model using the inter 
action data for interactions occurring within the rolling 
window and the pseudo interaction data . 
[ 0005 ] Another embodiment is directed to an analysis 
computer comprising : a processor ; a computer - readable 
medium coupled to the processor , the computer - readable 
medium comprising code executable by the processor for 
implementing a method comprising : determining a rolling 
window associated with interaction data for interactions that 
occur over time ; retrieving interaction data for interactions 
occurring in the rolling window ; generating pseudo interac 
tion data based upon historical interaction data ; and forming 
a neural network model using the interaction data for 
interactions occurring within the rolling window and the 
pseudo interaction data the interaction data matrices . 
[ 0006 ] Further details regarding embodiments of the 
invention can be found in the Detailed Description and the 
Figures . 

[ 0013 ] Prior to discussing embodiments , some terms can 
be described in further detail . 
[ 0014 ] A “ machine learning model ” may include an appli 
cation of artificial intelligence that provides systems with the 
ability to automatically learn and improve from experience 
without explicitly being programmed . A machine learning 
model may include a set of software routines and parameters 
that can predict an output of a process ( e.g. , identification of 
an attacker of a computer network , authentication of a 
computer , a suitable recommendation based on a user search 
query , etc. ) based on a “ feature vector ” or other input data . 
A structure of the software routines ( e.g. , number of sub 
routines and the relation between them ) and / or the values of 
the parameters can be determined in a training process , 
which can use actual results of the process that is being 
modeled , e.g. , the identification of different classes of input 
data . Examples of machine learning models include support 
vector machines ( SVM ) , models that classify data by estab 
lishing a gap or boundary between inputs of different clas 
sifications , as well as neural networks , collections of artifi 
cial " neurons ” that perform functions by activating in 
response to inputs . In some embodiments , a neural network 
can include a convolutional neural network , a recurrent 
neural network , etc. 
[ 0015 ] A “ model database ” may include a database that 
can store machine learning models . Machine learning mod 
els can be stored in a model database in a variety of forms , 
such as collections of parameters or other values defining the 
machine learning model . Models in a model database may 
be stored in association with keywords that communicate 
some aspect of the model . For example , a model used to 
evaluate news articles may be stored in a model database in 
association with the keywords “ news , ” “ propaganda , ” and 
“ information . ” A server computer can access a model data 
base and retrieve model from the model database , modify 
models in the model database , delete models from the model 
database , or add new models to the model database . 
[ 0016 ] A " feature vector ” may include a set of measurable 
properties ( or “ features ” ) that represent some object or 
entity . A feature vector can include collections of data 
represented digitally in an array or vector structure . A feature 
vector can also include collections of data that can be 
represented as a mathematical vector , on which vector 
operations such as the scalar product can be performed . A 
feature vector can be determined or generated from input 
data . A feature vector can be used as the input to a machine 
learning model , such that the machine learning model pro 
duces some output or classification . The construction of a 
feature vector can be accomplished in a variety of ways , 
based on the nature of the input data . For example , for a 
machine learning classifier that classifies words as correctly 
spelled or incorrectly spelled , a feature vector corresponding 
to a word such as “ LOVE ” could be represented as the 
vector ( 12 , 15 , 22 , 5 ) , corresponding to the alphabetical 
index of each letter in the input data word . For a more 
complex “ input , ” such as a human entity , an exemplary 
feature vector could include features such as the human's 
age , height , weight , a numerical representation of relative 
happiness , etc. Feature vectors can be represented and stored 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0007 ] FIG . 1 shows an example monitoring system 
according to embodiments . 
[ 0008 ] FIG . 2 shows an example block diagram of an 
analysis computer according to some embodiments . 
[ 0009 ] FIG . 3 shows an example diagram illustrating a 
learning process according to embodiments . 
[ 0010 ] FIG . 4 shows an example flowchart of a monitoring 
method according to embodiments . 
[ 0011 ] FIG . 5 shows an example flowchart illustrating a 
dynamic embedding determination method according to 
some embodiments . 
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electronically in a feature store . Further , a feature vector can 
be normalized , i.e. , be made to have unit magnitude . As an 
example , the feature vector ( 12 , 15 , 22 , 5 ) corresponding to 
“ LOVE ” could be normalized to approximately 0.40 , 0.51 , 
0.74 , 0.17 ) . 
[ 0017 ] A “ rolling window ” can include a range of time . In 
some embodiments , a rolling window can include a range of 
time during which data ( e.g. , interaction data ) may occur . 
For example , a rolling window may include a range of the 
past hour , day , week , month , etc. In some embodiments , a 
rolling window can include a start time and an end time . In 
other embodiments , a rolling window may include a range 
of a predetermined number of data . For example , a first 
rolling window may include the first 500 data items , a 
second rolling window may include data items 501 to 1000 , 
etc. 
[ 0018 ] An “ interaction ” may include a reciprocal action or 
influence . An interaction can include a communication , 
contact , or exchange between parties , devices , and / or enti 
ties . An example interaction can include a login attempt by 
a device to a secure webpage hosted by a server computer . 
Additional example interactions include a transaction 
between two parties and a data exchange between two 
devices . In some embodiments , an interaction can include a 
user requesting access to secure data , a secure webpage , a 
secure location , and the like . In other embodiments , an 
interaction can include a payment transaction in which two 
devices can interact to facilitate a payment . 
[ 0019 ] “ Interaction data ” can include data associated with 
an interaction . Interaction data can include any suitable data 
representative of and / or associated with an interaction . In 
some embodiments , interaction data for interactions that 
occur over time can comprise timestamps and entity iden 
tifiers ( e.g. , user identifiers , IP addresses , etc. ) . An example 
of interaction data can be webpage login attempt data . In 
some embodiments , the interaction data can comprise HTTP 
header packet data . The HTTP header packet data can 
include data fields of , for example , authorization , browser 
type , connection , date , expect , forwarded , from , host , warn 
ing , etc. 
[ 0020 ] “ Pseudo interaction data ” can include data resem 
bling interaction data . In some embodiments , pseudo inter 
action data can include similar data elements as interaction 
data . For example , if the interaction data includes IP address 
and date , then the pseudo interaction data can also include 
IP address and date . In some embodiments , pseudo interac 
tion data can include historical interaction data determined 
to be similar to current interaction data . In other embodi 
ments , pseudo interaction data can include generated inter 
action data . 
[ 0021 ] “ Historical interaction data ” can include past inter 
action data . For example , interaction data not included 
within a current rolling window ( e.g. , with timestamps prior 
to a start time of the rolling window ) can be historical 
interaction data . 
[ 0022 ] A “ topological graph ” can include a representation 
of a graph in a plane of distinct vertices connected by edges . 
The distinct vertices in a topological graph may be referred 
to as “ nodes . " Each node may represent specific information 
for an event or may represent specific information for a 
profile of an entity or object . The nodes may be related to 
one another by a set of edges , E. An " edge ” may be 
described as an unordered pair composed of two nodes as a 
subset of the graph G = ( V , E ) , where is G is a graph 

comprising a set V of vertices ( nodes ) connected by a set of 
edges E. For example , a topological graph may represent a 
transaction network in which a node representing a trans 
action may be connected by edges to one or more nodes that 
are related to the transaction , such as nodes representing 
information of a device , a user , a transaction type , etc. An 
edge may be associated with a numerical value , referred to 
as a " weight , ” that may be assigned to the pairwise connec 
tion between the two nodes . The edge weight may be 
identified as a strength of connectivity between two nodes 
and / or may be related to a cost or distance , as it often 
represents a quantity that is required to move from one node 
to the next . 
[ 0023 ] A " subgraph ” or “ sub - graph ” can include a graph 
formed from a subset of elements of a larger graph . The 
elements may include vertices and connecting edges , and the 
subset may be a set of nodes and edges selected amongst the 
entire set of nodes and edges for the larger graph . For 
example , a plurality of subgraph can be formed by randomly 
sampling graph data , wherein each of the random samples 
can be a subgraph . Each subgraph can overlap another 
subgraph formed from the same larger graph . 
[ 0024 ] A “ community ” can include a group of nodes in a 
graph that are densely connected within the group . A com 
munity may be a subgraph or a portion / derivative thereof 
and a subgraph may or may not be a community and / or 
comprise one or more communities . A community may be 
identified from a graph using a graph learning algorithm , 
such as a graph learning algorithm for mapping protein 
complexes . Communities identified using historical data can 
be used to classify new data for making predictions . For 
example , identifying communities can be used as part of a 
machine learning process , in which predictions about infor 
mation elements can be made based on their relation to one 
another . 
[ 0025 ] The term “ node " can include a discrete data point 
representing specified information . Nodes may be connected 
to one another in a topological graph by edges , which may 
be assigned a value known as an edge weight in order to 
describe the connection strength between the two nodes . For 
example , a first node may be a data point representing a first 
device in a network , and the first node may be connected in 
a graph to a second node representing a second device in the 
network . The connection strength may be defined by an edge 
weight corresponding to how quickly and easily information 
may be transmitted between the two nodes . An edge weight 
may also be used to express a cost or a distance required to 
move from one state or node to the next . For example , a first 
node may be a data point representing a first position of a 
machine , and the first node may be connected in a graph to 
a second node for a second position of the machine . The 
edge weight may be the energy required to move from the 
first position to the second position . 
[ 0026 ] A “ server computer ” may include a powerful com 
puter or cluster of computers . For example , the server 
computer can be a large mainframe , a minicomputer cluster , 
or a group of servers functioning as a unit . In one example , 
the server computer may be a database server coupled to a 
web server . The server computer may comprise one or more 
computational apparatuses and may use any of a variety of 
computing structures , arrangements , and compilations for 
servicing the requests from one or more client computers . 
[ 0027 ] A “ memory ” may include any suitable device or 
devices that may store electronic data . A suitable memory 
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may comprise a non - transitory computer readable medium 
that stores instructions that can be executed by a processor 
to implement a desired method . Examples of memories may 
comprise one or more memory chips , disk drives , etc. Such 
memories may operate using any suitable electrical , optical , 
and / or magnetic mode of operation . 
[ 0028 ] A “ processor ” may refer to any suitable data com 
putation device or devices . A processor may comprise one or 
more microprocessors working together to accomplish a 
desired function . The processor may include a CPU that 
comprises at least one high - speed data processor adequate to 
execute program components for executing user and / or 
system - generated requests . The CPU may be a micropro 
cessor such as AMD's Athlon , Duron and / or Opteron ; IBM 
and / or Motorola's PowerPC ; IBM's and Sony's Cell pro 
cessor ; Intel's Celeron , Itanium , Pentium , Xeon , and / or 
XScale ; and / or the like processor ( s ) . 
[ 0029 ] Embodiments may allow for continuous learning 
and rebuilding of machine learning model ( s ) . An analysis 
computer can determine a rolling window associated with 
interaction data for interactions that occur over time . After 
determining the rolling window , the analysis computer can 
retrieve interaction data for interactions occurring in the 
rolling window . The analysis computer can then generate 
pseudo interaction data based upon historical interaction 
data , and then embed the interaction data for the interactions 
occurring within the rolling window and the pseudo inter 
action data to form interaction data matrices . The analysis 
computer can then form a neural network model using the 
interaction data matrices . 
[ 0030 ] As an illustrative example , the interaction data can 
include login attempts ( e.g. , attempts to login to a secure 
webpage ) . The analysis computer can determine a rolling 
window of 1 week in length and then retrieve data relating 
to the login attempts which occurred within the 1 week . The 
analysis computer can also retrieve data relating to previous 
login attempts ( e.g. , historical interaction data ) which may 
have occurred prior to the rolling window . The previous 
login attempts may have occurred the past 2 months , 6 
months , 1 year , etc. The analysis computer can generate data 
relating to pseudo login attempts , for example , based upon 
trends in the data relating to the previous login attempts . For 
example , the analysis computer may determine that previous 
login attempts indicate that fraudulent login attempts are 
typically performed at night by a particular browser type and 
originating from a similar location . Past login attempts 
associated with a trend like this can be selected for use as 
pseudo login attempts . However , it is understood that the 
analysis computer can determine any suitable trend in the 
previous login attempts . 
[ 0031 ] After creating the pseudo login attempts , the analy 
sis computer can optionally embed the current login 
attempts as well as the pseudo login attempts to form 
interaction data matrices which may represent the current 
login attempts and pseudo login attempts in a vector space . 
The analysis computer can then form a neural network 
model using the interaction data matrices . For example , the 
analysis computer can train a neural network that may 
predict whether or not a given login attempt is a fraudulent 
or non - fraudulent login attempt . 
[ 0032 ] Utilizing the current login attempts and the pseudo 
login attempts when training the neural network can allow 
for a resulting model which has increased predictive power . 

For example , the pseudo login attempts can place emphasis 
on particular trends by introducing data relating to those 
trends . 
[ 0033 ] This addresses the problem when a fraudster and a 
secure system can react to the actions of another which can 
lead to situation involving game theory ( e.g. , a situation in 
which there is strategic interaction between rational deci 
sion - makers ) . For example , a fraudster may perform fraudu 
lent login attempts from a first geographic location . As a 
result the secure system may be changed such that login 
attempts originating from the first geographic location are 
scrutinized with more particularity than login attempts origi 
nating from other geographic locations . The fraudster can 
then change their strategy and can , for example , perform IP 
spoofing . The fraudster can modify the IP address such that 
it appears , to the secure system , that the login attempt 
originates from a second geographic location . Yet again , the 
secure system may be changed such that login attempts 
originating from the second geographic location are scruti 
nized with more particularity than other geographic loca 
tions . However , if the models implementing these changes 
( e.g. , determining to scrutinize the particular geographic 
location analyze current data , they can stop scrutinizing the 
login attempts from the first geographic location . Thus , 
simply being reactive to what the fraudster is currently doing 
and may not be desirable . 
[ 0034 ] Another option to address the problem above might 
be to use all of the historical data and all data within a 
current rolling window ( e.g. , current interaction data ) . How 
ever , using all of the historical interaction data and the 
current interaction data to train a neural network can take a 
long time since large amounts of data need to be processed . 
If the neural network takes too long to train , then it cannot 
react to , for example , network attacks which can occur on 
much smaller timescales . 

I. Systems 

[ 0035 ] FIG . 1 shows a monitoring system 100 , comprising 
an analysis computer 102 , an interaction data database 104 , 
a data reception computer 106 , a plurality of remote clier 
108-112 , and a requesting client 114. The analysis computer 
102 may be in operative communication with the interaction 
data database 104 and the requesting client 114. The inter 
action data database 104 may be in operative communica 
tion with the data reception computer 106. The data recep 
tion computer 106 may be in operative communication with 
the plurality of remote clients 108-112 . 
[ 0036 ] The components of the monitoring system 100 can 
communicate with one another via any appropriate means , 
including a communications network . Messages and other 
communications may be in encrypted or unencrypted form . 
A communications network may be any one and / or the 
combination of the following : a direct interconnection ; the 
Internet ; a Local Area Network ( LAN ) ; a Metropolitan Area 
Network ( MAN ) ; an Operating Missions as Nodes on the 
Internet ( OMNI ) ; a secured custom connection ; a Wide Area 
Network ( WAN ) ; a wireless network ( e.g. , employing pro 
tocols such as but not limited to a Wireless Application 
Protocol ( WAP ) , I - mode , and / or the like ) ; and / or the like . 
Messages between the devices and computers may be trans 
mitted using a secure communications protocol such as , but 
not limited to , File Transfer Protocol ( FTP ) ; Hypertext 
transfer Protocol ( HTTP ) ; Secure Hypertext Transfer Pro 
tocol ( HTTPS ) , Secure Socket Layer ( SSL ) and / or the like . 
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[ 0037 ] For simplicity of illustration , a certain number of 
components are shown in FIG . 1. It is understood , however , 
that embodiments of the invention may include more than 
one of each component . 
[ 0038 ] The plurality of remote clients 108-112 can include 
the first remote client 108 , the second remote client 110 , and 
the Nth remote client 112. A remote client can include any 
suitable device ( e.g. , personal computers , server computers , 
laptop computers , smart phones , etc. ) . A remote client , such 
as first remote client 108 , can perform an interaction with the 
data reception computer 106. For example , the data recep 
tion computer 106 may host a secure webpage . The remote 
client can attempt to login to the secure webpage ( e.g. , 
interact with the data reception computer 106 ) . In some 
embodiments , the login attempt may be a successful login 
attempt , a fraudulent login attempt , a failed login attempt , 
etc. 

[ 0039 ] The data reception computer 106 can be configured 
or programmed to store the interaction data in the interaction 
data database 104. The data reception computer 106 can 
receive data from the remote client . For example , the data 
reception computer 106 can receive an HTTP header packet 
and / or any other suitable data associated with a login 
attempt . The data reception computer 106 can store the 
interaction data ( e.g. , the HTTP header packet ) in the 
interaction data database 104. In some embodiments , the 
data reception computer 106 can forward the interaction data 
to an intermediate computer which may store the interaction 
data in the interaction data database 104 . 
[ 0040 ] The interaction data database 104 can include any 
suitable database . The database may be a conventional , fault 
tolerant , relational , scalable , secure database such as those 
commercially available from OracleTM or SybaseTM , or in 
some embodiments , from other open source alternatives 
( e.g. , MySQL , etc. ) . The interaction data database 104 can 
store interaction data . 
[ 0041 ] The analysis computer 102 can be configured or 
programmed to analyze interaction data . For example , in 
some embodiments , the analysis computer 102 can deter 
mine a rolling window associated with interaction data for 
interactions that occur over time . The analysis computer 102 
can retrieve interaction data occurring in the rolling window 
from the interaction data database 104. The analysis com 
puter 102 can also generate pseudo interaction data based 
upon historical interaction data . In some embodiments , the 
analysis computer 102 can generate the pseudo interaction 
data based on one or more data trends in the historical 
interaction data . The one or more trends can be determined 
in any suitable matter as described herein . For example , the 
analysis computer 102 can cluster the historical interaction 
data based on similarities between the interactions repre 
sented as the historical interaction data into community 
groups . As an illustrative example , where the interaction 
data may include login attempts , the historical interaction 
data can be clustered into an IP address spoofing community 
( which may include login attempts performed by spoofed IP 
address ) , an authentic community ( which may include 
authentic login attempts ) , a network attack community 
( which may include login atte performed by a network 
of devices against a secure webpage ) , etc. 
[ 0042 ] The analysis computer 102 can also embed the 
interaction data for the interactions occurring within the 
rolling window as well as the pseudo interaction data to form 

interaction data matrices . The analysis computer 102 can 
then form a neural network model using the interaction data 
matrices . 
[ 0043 ] In some embodiments , the analysis computer 102 
can store the neural network model in a model database . At 
any suitable time thereafter , the analysis computer 102 can 
receive a request message comprising request data from the 
requesting client 114. In some embodiments , the request 
message can include , for example , a request for the analysis 
computer 102 to perform an analysis on the request data 
comprising interaction data . In other embodiments , the 
request message can request a prediction from the analysis 
computer 102. The requesting client 114 can include any 
suitable computer which can be configured to request infor 
mation from the analysis computer 102 . 
[ 0044 ] The analysis computer 102 can determine a 
response message to the request message . The response 
message can comprise response data output by the neural 
network model based on the request data . The analysis 
computer 102 can then provide the response message to the 
requesting client 114 . 
[ 0045 ] FIG . 2 shows a block diagram of an exemplary 
analysis computer 200 according to some embodiments . The 
analysis computer 200 may comprise a memory 202 , a 
processor 204 , a network interface 206 , and a computer 
readable medium 208. The computer readable medium 208 
may comprise a number of software modules . The computer 
readable medium 208 can comprise a pseudo interaction 
data generation module 208 A , an embedding module 208B , 
and a machine learning module 208C . However , it is under 
stood that the computer can comprise any other suitable 
modules ( e.g. , a database communication module , a rolling 
window determination module , etc. ) . 
[ 0046 ] The analysis computer 200 can be in operative 
communication with an interaction data database 210. The 
interaction data database 210 can be similar to the interac 
tion data database 104 , and the details thereof need not be 
repeated here . 
[ 0047 ] The memory 202 can be used to store data and 
code . The memory 202 may be coupled to the processor 204 
internally or externally ( e.g. , cloud based data storage ) , and 
may comprise any combination of volatile and / or non 
volatile memory , such as RAM , DRAM , ROM , flash , or any 
other suitable memory device . For example , the memory 
202 can store cryptographic keys , interaction data , weight 
values , etc. 
[ 0048 ] The computer readable medium 208 may comprise 
code , executable by the processor 204 , for performing a 
method comprising : determining , by an analysis computer , 
a rolling window associated with interaction data for inter 
actions that occur over time ; retrieving , by the analysis 
computer , interaction data for interactions occurring in the 
rolling window ; generating , by the analysis computer , 
pseudo interaction data based upon historical interaction 
data ; and forming , by the analysis computer , a neural 
network model using the interaction data for interactions 
occurring within the rolling window and the pseudo inter 
action data . 
[ 0049 ] The pseudo interaction data generation module 
208A may comprise code or software , executable by the 
processor 204 , for generating pseudo interaction data . 
Pseudo interaction data can include data resembling inter 
action data . In some embodiments , the pseudo interaction 
data can include similar data elements as interaction data . 
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For example , if the interaction data includes IP address , host , 
time , and forwarded , then the pseudo interaction data can 
also include IP address , host , time , and forwarded . In other 
embodiments , pseudo interaction data can include historical 
interaction data determined to be similar to current interac 
tion data . In other embodiments , pseudo interaction data can 
include generated interaction data . The pseudo interaction 
data generation module 208A , in conjunction with the 
processor 204 , can generate the pseudo interaction data in 
any suitable manner based on historical interaction data 
stored in the interaction data database 210 . 

[ 0050 ] For example , the pseudo interaction data genera 
tion module 208A , in conjunction with the processor 204 , 
can determine one or more data trends in the historical 
interaction data . The one or more trends can be determined 
in any suitable matter as described herein . For example , the 
analysis computer 200 can perform a learning process using 
the historical interaction data . The analysis computer 200 
can , for example , cluster the historical interaction data based 
on similarities between the interactions represented as the 
historical interaction data into community groups . Further 
details regarding clustering of data into community groups 
are described in [ Fortunato , Santo . “ Community detection in 
graphs . ” Physics reports 486.3-5 ( 2010 ) : 75-174 . ] which is 
herein incorporated by reference . The pseudo interaction 
data generation module 208A , in conjunction with the 
processor 204 , can generate a plurality of pseudo interac 
tions based on the one or more data trends ( e.g. , identified 
in the community groups ) to form pseudo interaction data . 
[ 0051 ] In some embodiments , the plurality of pseudo 
interactions can include historical interactions determined to 
be within a threshold amount of similarity of the current 
interaction data ( e.g. , the interaction data occurring within 
the rolling window ) . In other embodiments , the plurality of 
pseudo interactions can include similar data elements ( e.g. , 
IP address , hosts , forwarded , etc. ) as historical interactions 
determined to be within a threshold amount of similarity to 
the current interaction data . Further details regarding gen 
erating pseudo interaction data according to some embodi 
ments are discussed herein in reference to FIG . 6 . 
[ 0052 ] The embedding module 208B may comprise code 
or software , executable by the processor 204 , for embedding 
interaction data and the pseudo interaction data . In some 
embodiments , embedding can include transforming input 
data to output data while maintaining the underlying mean 
ing of the input data in relation to other input data . The 
embedding module 208B , in conjunction with the processor 
204 , can perform an embedding process ( e.g. , embed ) in any 
suitable manner . The embedding module 208B , in conjunc 
tion with the processor 204 , can map discrete and / or cat 
egorical variables to a vector , or matrix , of continuous 
numbers . In some embodiments , the result of an embedding 
process ( e.g. , embedded interaction data and pseudo inter 
action data ) may be referred to as an embedding . The 
embedding can be a low - dimensional , learned continuous 
vector representation ( s ) . To construct representations of the 
interaction data and the pseudo interaction data , the embed 
ding module 208B , in conjunction with the processor 204 , 
can utilize an embedding neural network and a supervised 
task to learn the embedding ( s ) . In some embodiments , the 
individual dimensions in these resulting matrices ( e.g. , inter 
action data matrices ) from the embedding process typically 
may have no inherent meaning . Instead , the analysis com 

puter 200 can take advantage of the overall patterns of 
location and distance between vectors . 
[ 0053 ] As an example , if one has input data ( e.g. , input to 
the embedding module 208B ) that includes 50,000 words 
used in a collection of movie reviews , the embedding 
module 208B , in conjunction with the processor 204 , could 
learn 100 - dimensional embeddings for each word using an 
embedding neural network trained to predict the sentimen 
tality of the reviews . Words in the vocabulary that are 
associated with positive reviews such as “ brilliant ” or 
“ excellent ” can come out closer in the embedding space 
because the neural network has learned these are both 
associated with positive reviews . 
[ 0054 ] The embeddings determined by the embedding 
module 208B , in conjunction with the processor 204 , can be 
the parameters , or weights , of the neural network that are 
adjusted during training to minimize the loss on the super 
vised task . Although in a supervised machine learning task 
the goal is usually to train a model to make predictions on 
new data , in this embedding model , the predictions may not 
be further used . The embedding module 208B , in conjunc 
tion with the processor 204 , can determine the embedding 
weights ( e.g. , the representation of the interaction data and 
pseudo interaction data as continuous vectors ) . Further 
details regarding embedding can be found in [ Alon , Uri , et 
al . " code2vec : Learning distributed representations of 
code . ” Proceedings of the ACM on Programming Languages 
3.POPL ( 2019 ) : 40. ] where embeddings of code snippets are 
determined , which is herein incorporated by reference . 
[ 0055 ] The machine learning module 208C may comprise 
code or software , executable by the processor 204 , for 
training machine learning models ( e.g. , neural network 
models ) . In some embodiments , the machine learning mod 
ule 208C can contain code that defines a machine learning 
model , as well as code that can enable the processor 204 to 
train the machine learning model . The trained machine 
learning model can accept feature inputs and determine an 
output ( e.g. , a classification , prediction , etc. ) for each input 
vector . The machine learning module 208C , in conjunction 
with the processor 204 , may use suitable machine learning 
models based on algorithms including , but not limited to : 
neural networks , decision trees , support vector methods , and 
K - means algorithms . 
[ 0056 ] For example , the machine learning module 208C , 
in conjunction with the processor 204 , can build a math 
ematical model based on sample data , known as “ training 
data , ” to make predictions or decisions without being explic 
itly programmed to perform the task . In some embodiments , 
the machine learning module 208C , in conjunction with the 
processor 204 , can train a neural network . A neural network 
can be a model based on a collection of connected units or 
nodes called artificial neurons . Each connection ( e.g. , edge ) 
can transmit information ( e.g. , a signal ) from node to 
another . A node that receives a signal can process it and then 
signal additional nodes connected to it . In some embodi 
ments , the signal at a connection between nodes can include 
a real number , and the output of each node can be computed 
by some non - linear function of the sum of its inputs . Nodes 
and edges can have a weight that adjusts as learning pro 
ceeds . The weight may increase or decrease the strength of 
the signal at an edge . In some embodiments , nodes may have 
a threshold such that the signal is only sent if the aggregate 
signal crosses that threshold . Different layers of the neural 
network may perform different kinds of transformations on 
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their inputs . Further , signals can travel from the first layer 
( e.g. , the input layer ) , to the last layer ( e.g. , the output layer ) , 
possibly after traversing middle layer ( s ) ( e.g. , hidden layer 
( s ) ) . In some embodiments , the machine learning module 
208C , in conjunction with the processor 204 , can train a 
neural network as described in reference to FIG . 3 . 
[ 0057 ] The network interface 206 may include an interface 
that can allow the analysis computer 200 to communicate 
with external computers . The network interface 206 may 
enable the analysis computer 200 to communicate data to 
and from another device ( e.g. , a requesting client , etc. ) . 
Some examples of the network interface 206 may include a 
modem , a physical network interface ( such as an Ethernet 
card or other Network Interface Card ( NIC ) ) , a virtual 
network interface , a communications port , a Personal Com 
puter Memory Card International Association ( PCMCIA ) 
slot and card , or the like . The wireless protocols enabled by 
the network interface 206 may include Wi - FiTM . Data trans 
ferred via the network interface 206 may be in the form of 
signals which may be electrical , electromagnetic , optical , or 
any other signal capable of being received by the external 
communications interface ( collectively referred to as “ elec 
tronic signals ” or “ electronic messages ” ) . These electronic 
messages that may comprise data or instructions may be 
provided between the network interface 206 and other 
devices via a communications path or channel . As noted 
above , any suitable communication path or channel may be 
used such as , for instance , a wire or cable , fiber optics , a 
telephone line , a cellular link , a radio frequency ( RF ) link , 
a WAN or LAN network , the Internet , or any other suitable 
medium . 

II . Methods 

ments of the interaction ) . Similarly , node 312 can be a 
second element of the first vector of the interaction data 302 , 
while node 314 can be an Nth element of the first vector of 
the interaction data 302 . 
[ 0062 ] The first vector can include data associated with a 
first login attempt . For example , the first element of the first 
vector ( e.g. , at node 310 ) can include an IP address . The 
second element of the first vector ( e.g. , at node 312 ) can 
include a browser type . The Nth element of the first vector 
( e.g. , at node 314 ) can include a host . 
[ 0063 ] In some embodiments , the analysis computer , prior 
to training the neural network , can embed the input inter 
action data . For example , the edges 320 , 322 , and 324 can 
illustrate embedding of the interaction data . The interaction 
data 302 as a whole may be embedded , and the resulting 
vector input into the neural network at the input layer 304 . 
The embedding process can be performed with an embed 
ding neural network ( not specifically illustrated in FIG . 3 ) , 
and the embedding process is described in further detail 
below . 
[ 0064 ] As an illustrative example , a first interaction data 
of the interaction data 302 can include three data elements . 
The three data elements can be an IP address of “ 123.01 . 
02.3456 , ” a browser type of " browser_A1 , " and a host of 
" en.example.org . ” The interaction data 302 can be embed 
ded for example via an embedding neural network ( e.g. , a 
neural network which may embed data ) . The embedding 
neural network can map the elements of the input interaction 
data 302 to a vector of values . As noted above , the embed 
ding neural network is not specifically illustrated in FIG . 3 . 
[ 0065 ] As an example , the data input into the embedding 
neural network can include [ 123.01.02.3456 , browser_A1 , 
en.example.org ] . In some embodiments , the data elements of 
the input interaction data 302 may be split in any suitable 
manner , for example , via NGram . For example , the analysis 
computer can determine to split the above interaction data 
302 into [ 123_01 , 01_02 , 02_3456 , 123 , 01 , 02 , 3456 , 
browser_A1 , browser , A1 , en , example , org , en.example . 
org ] . This data may be input into the embedding neural 
network . The output vector , corresponding to the input data , 
can be determined by the embedding neural network and can 
include for example [ 1.2 , 3.4 , 1.0 ) . In some embodiments , 
the output vector of [ 1.2 , 3.4 , 1.0 ) can be referred to as an 
embedding . The collection of all of the output vectors can be 
referred to as an interaction data matrix , as each column , or 
row , of the matrix may include one of the output vectors . It 
is understood that even though the edges 320 , 322 , and 324 
illustrate a one - to - one connection between nodes of the 
interaction data 302 and the input layer 304 , the embedding 
process may , in some embodiments , convolute the input data 
elements . Further details regarding embedding can be found 
in [ Alon , Uri , et al . " code2vec : Learning distributed repre 
sentations of code . ” Proceedings of the ACM on Program 
ming Languages 3.POPL ( 2019 ) : 40. ] where embeddings of 
code snippets are determined , which is herein incorporated 
by reference . 
[ 0066 ] In other embodiments , at the edges 320 , 322 , and 
324 , the analysis computer can re - weight the first element , 
the second element , and the Nth element , respectively . The 
analysis computer can weight the elements of the interaction 
data 302 in any suitable manner known to one of skill in the 
art . In some embodiments each vector of the interaction data 
302 may be weighted individually and then individually 

[ 0058 ] Embodiments can use the systems and apparatuses 
described herein to at least create a machine learning model 
based on interaction data . FIGS . 3-4 describe some 
examples of such methods . In some embodiments , the 
analysis computer may include the analysis computer 102 or 
the analysis computer 200 of FIGS . 1 and 2 , respectively . 
[ 0059 ] According to some embodiments , the analysis 
computer can continuously rebuild deep learning models 
based on dynamic embedding of interaction data including , 
for example , HTTP header packets . In some embodiments , 
the analysis computer can create an AI system that can learn 
in real - time . Previous machine learning models ( e.g. , deep 
learners , etc. ) may have problems processing the interaction 
data since the data can come from many different distribu 
tions and populations . A traditional neural network that 
evaluates different distributions in real - time can overfit the 
data . In some embodiments , the analysis computer can 
upfront some of the smoothing of the information space 
( e.g. , by embedding the interaction data ) . The analysis 
computer can feed embedded data ( e.g. , interaction data 
matrices ) into the learner . 
[ 0060 ] A. Neural Networks 
[ 0061 ] The analysis computer can embed interaction data 
to form interaction data matrices as described herein . The 
analysis computer can then input the interaction data matri 
ces into , for example , a neural network . FIG . 3 shows 
learning process according to some embodiments . As illus 
trated , the artificial neural network 300 includes a series of 
layers , each representing a set of nodes . For example , the 
node 310 can be a first element of a first vector of the 
interaction data 302 ( e.g. , a vector including the data ele 
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input into the input layer 304 as shown in FIG . 3. At the edge 
322 , the analysis computer can re - weight the second ele 
ment . 

[ 0067 ] On one side of the series of layers exists an input 
layer 304. The input layer 304 includes a set of nodes ( e.g. , 
nodes 330 , 332 , and 334 ) that are referred to herein as input 
nodes . Each of these input nodes may be mapped to a 
particular feature of an object model or an object model 
itself . In some embodiments , each “ feature ” may actually 
comprise a combination of other features . For example , a 
feature may comprise a number of data points , a label 
associated with those data points ( e.g. , a region label ) , a 
position of the data points with respect to the rest of the 
object model , or any other suitable feature . For example , in 
some embodiments , a feature may be a result of embedding 
interaction data , as described herein . 
[ 0068 ] On the other side of the series of layers is an output 
layer 308. The output layer 308 can include a number of 
output nodes . Each of the output nodes may be mapped to 
an object model associated with a particular category of 
object . In some embodiments , each output node may be 
mapped to a region of a number of regions associated with 
an object model provided as input . As an illustrative 
example , the output layer 308 can include two nodes ( e.g. , 
nodes 370-372 ) . The node 370 can correspond to an output 
of " fraud , ” whereas the node 372 can correspond to an 
output of “ not fraud . ” However , it is understood that the 
output layer 308 can include any suitable number of nodes 
( e.g. , 2 , 5 , 10 , 100 , etc. ) . 
[ 0069 ] One or more hidden layers 306 can separate the 
input layer 304 and the output layer 308. The set of hidden 
layers 306 can include “ N ” number of hidden layers , where 
“ N ” is an integer greater than or equal to one . In turn , each 
of the hidden layers can also include a set of nodes that are 
referred to herein as hidden nodes . 
[ 0070 ] On one side of the hidden layers 306 , hidden nodes 
( e.g. , nodes 350 , 352 , and 354 ) are interconnected to the 
input nodes . Each of the input nodes may be connected to 
each of the hidden nodes of the hidden layer connected to the 
input layer 304. On the other side of the hidden layer 306 , 
hidden nodes are connected to the output nodes . Each of the 
output nodes may be connected to each of the hidden nodes 
of the hidden layer connected to the output layer 308. In 
other words , each input node connects to each hidden node 
in the hidden layer closest to the input layer 304 and each 
output node connects to each hidden node in the hidden layer 
closest to the output layer 308. The input nodes are not 
directly interconnected to the output nodes . If multiple 
hidden layers exist , the input nodes are interconnected to 
hidden nodes of the closest hidden layer only . In turn , these 
hidden nodes are interconnected to the hidden nodes of the 
next hidden layer and so on and so forth . 
[ 0071 ] An interconnection may represent a piece of infor 
mation learned about the two interconnected nodes . In 
comparison , a connection between a hidden node and an 
output node may represent a piece of information learned 
that is specific to the output node . The interconnection may 
be assigned a numeric weight that can be tuned ( e.g. , based 
on a training dataset ) , rendering the artificial neural network 
300 adaptive to inputs and capable of " learning . " 
[ 0072 ] Generally , the hidden layer 306 allows knowledge 
about the input nodes of the input layer 304 to be shared 
amongst the output nodes of the output layer 308. To do so , 
an activation function f can be applied to the input nodes 

through the hidden layer 306. In an example , the activation 
function f may be non - linear . Different non - linear activation 
functions f are available including , for instance , a rectifier 
function f ( x ) = max ( 0 , x ) . The activation function f can 
include any suitable activation ( e.g. , step function , logistic 
function , Tanh function , rectified linear unit ( ReLU ) , soft 
max , etc. ) . 
[ 0073 ] The artificial neural network 300 may also use one 
or more cost or loss functions to find an optimal solution 
( e.g. , an optimal activation function ) . The optimal solution 
can represent the situation where no solution has a cost less 
than the cost of the optimal solution . In an example , the cost 
function includes a mean - squared error function that mini 
mizes the average squared error between an output f ( x ) and 
a target value y over the example pairs ( x , y ) . In some 
embodiments , a backpropagation algorithm that uses gradi 
ent descent to minimize the cost function may be used to 
train the artificial neural network 300. Using a backpropa 
gation algorithm , the output values are compared with a 
correct answer to compute the value of some predefined 
error - function . In some embodiments , by various tech 
niques , the error is then fed back through the network . Using 
this information , the algorithm may adjust the weights of 
each connection in order to reduce the value of the error 
function by some small amount . In other embodiments , the 
artificial neural network 300 may be an autoencoder neural 
network , in which both inputs and outputs are provided to 
the artificial neural network during training and the autoen 
coder learns to reconstruct its inputs . 
[ 0074 ] In the depicted artificial neural network 300 , a 
forecasting model may be generated such that the hidden 
layer 306 retains information ( e.g. , specific variable values 
and / or transformative functions ) for a set of input values and 
output values used to train the artificial neural network 300 . 
This retained information may be applied to a new interac 
tion data in order to identify a likelihood that the interaction 
data is fraudulent or not fraudulent . In some embodiments , 
the artificial neural network 300 may be trained on samples 
having known classifications ( e.g. , fraudulent or not fraudu 
lent ) . For example , an artificial neural network 300 may be 
used to generate a forecasting model using inputs that 
include a plurality of known fraudulent input samples and 
known not fraudulent input samples where the results are 
optimized to minimize a distance between results for the 
fraudulent samples from a fraudulent center and maximize 
results for the not fraudulent samples from that center . In this 
example , the resulting forecasting model may be applied to 
raw interaction data input in order to generate a result for 
that interaction data input in relation to the results for the 
known samples . 
[ 0075 ] By way of illustration , a neural network as depicted 
in FIG . 3 may be trained using both known fraudulent 
samples and not fraudulent samples as inputs . Each of the 
output nodes in this example may represent results posi 
tioned within a hyperspace . When a new interaction data is 
presented as input to the trained neural network , the neural 
network will output a result which can be assessed based on 
its position within the hyperspace . 
[ 0076 ] B. Monitoring Method 
[ 0077 ] FIG . 4 shows a flowchart of a monitoring method 
according to embodiments . The method illustrated in FIG . 4 
will be described in the context of an analysis computer 
analyzing interaction data . The interaction data can include , 
for example , login attempts to a secure webpage . A login 
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attempt may be a fraudulent login attempt or an authentic 
login attempt . The analysis computer can create a deep 
learner ( e.g. , a neural network ) which can predict fraudulent 
login attempts such as , for example , fraudulent login attacks 
that may take place during a network attack . It is understood , 
however , that the method can be applied to other circum 
stances and use cases . 
[ 0078 ] Prior to step 404 , a data reception computer can 
receive interaction data from , for example , a remote client . 
For example , the data reception computer may host a secure 
webpage . The remote client may attempt to access the secure 
webpage . During the login attempt , the data reception com 
puter can receive any suitable data associated with the login 
attempt . For example , the received interaction data can 
include data of an HTTP header packet . The HTTP header 
packets can contain data such as , for example , IP address , 
browser type , forwarded ( e.g. , original information of a 
client connecting to a web server through an HTTP proxy ) , 
host ( e.g. , a domain name of the server ( for virtual hosting ) , 
and the TCP port number on which the server is listening . In 
some embodiments , the port number may be omitted if the 
port is the standard port for the service requested ) , warning 
( e.g. , A general warning about possible problems with the 
entity body ) , etc. The interaction data can further comprise 
timestamps . The host header field in a request can provide 
the host and port information from the target URL , enabling 
an origin server to distinguish among resources while ser 
vicing requests for multiple host names on a single IP 
address . A fraudulent entity ( e.g. , a fraudster ) may attempt to 
fraudulently login to the webpage . At step 404 , the data 
reception computer can store the interaction data in an 
interaction data database . 
[ 0079 ] At step 406 , an analysis computer can determine a 
rolling window associated with interaction data for interac 
tions that occur over time . The rolling window may allow 
the analysis computer to retrieve particular portion of 
interaction data . The analysis computer can retrieve the 
interaction data for interactions occurring in the rolling 
window from the interaction data database . The rolling 
window may be for any suitable length of time , for example , 
one month , one week , one day , etc. In some embodiments , 
the analysis computer can also filter the interaction data that 
was obtained using the rolling window . 
[ 0080 ] In some embodiments , at step 408 , after retrieving 
the interaction data occurring within the rolling window , the 
analysis computer can determine one or more error matrices . 
The one or more error matrices may represent weights which 
may be used during an embedding process ( e.g. , at step 414 ) 
to embed the interaction data . The one or more error 
matrices may be determined , as described in further detail in 
FIG . 5. The one or more error matrices can indicate , for 
example , how much error there is in predictions created by 
a trained model . The one or more error matrices can be used 
to transform input interaction data . An error matrix which 
transforms the interaction data in such a way to yield a low 
error trained model may be an optimal error matrix , and may 
be stored . Embedding can include mapping a discrete vari 
able to a vector of continuous numbers . In the context of 
neural networks , an embedding can include low - dimen 
sional , learned continuous vector representations of discrete 
variables . Neural network embeddings can be useful 
because they can reduce the dimensionality of categorical 
variables and meaningfully represent categories in the trans 
formed space . The analysis computer can determine an 

optimal embedding of the interaction data . For example , the 
analysis computer can perform a dynamic temporal graph 
embedding process . 
[ 0081 ] In some embodiments , during a dynamic embed 
ding process , the analysis computer can represent the input 
data ( e.g. , the interaction data occurring within the rolling 
window ) as a graph including a plurality of nodes connected 
via edges . In some embodiments , the interaction data may 
already be stored as a graph . Further details regarding graph 
data and graph database models can be found in [ Angles , 
Renzo , and Claudio Gutierrez . “ Survey of graph database 
models . ” ACM Computing Surveys ( CSUR ) 40.1 ( 2008 ) : 1. ) , 
which is herein incorporated by reference . 
[ 0082 ] In some embodiments , the analysis computer can 
split one or more data elements of the interaction data ( e.g. , 
IP address ) apart using , for example , NGram . An NGram can 
be a contiguous sequence of n items from a given sample of 
text or data . As an illustrative example , the analysis com 
puter can receive the raw data field of “ 123.01.02.3456 ” 
which may be an IP address . An example , NGram of the IP 
address can be “ 123_01 , 01_02 , 02_3456 , 123 , 01 , 02 , 
3456. ” The analysis computer may then determine an adja 
cency matrix and a degree matrix , as known to one of skill 
in the art . An adjacency matrix can be a square matrix which 
may represent a finite graph . Elements of the adjacency 
matrix can indicate whether pairs of vertices ( e.g. , nodes ) are 
adjacent or not in the graph . A degree matrix can be a 
diagonal matrix which may contain information about the 
degree of each vertex — that is , the number of edges attached 
to each vertex . The adjacency matrix and the degree matrix 
can allow for the analysis computer to perform analysis on 
the graph data ( e.g. , interaction data ) . 
[ 0083 ] In some embodiments , the analysis computer can 
then apply a transformation function to edge weights based 
on time and error matrices . The time matrix can include 
weights based on the age of the corresponding interaction . 
For example , the analysis computer can provide a greater 
weight towards more recent data . In this way , the analysis 
may place a greater emphasis on more recent data of the data 
??? ring within the rolling window . The error matrix can be 
determined in any suitable manner . As an example , the error 
matrix can be determined using a simulated annealing 
process , which may determine an optimal solution . 
[ 0084 ] The analysis computer can perform the simulated 
annealing process as described in further detail in FIG . 5. As 
an overview of FIG . 5 , described in detail herein , the 
simulated annealing process can include an unsupervised 
deep learner ( e.g. , a restricted Boltzmann machine , etc. ) 
which may be used to create community groups from the 
input data . A restricted Boltzmann machine ( RBM ) can be a 
generative stochastic artificial neural network that can learn 
a probability distribution over its set of inputs . The com 
munity groups may be used to create new linkage between 
vertices in the original graph . For example , the analysis 
computer can apply a transformation to the adjacency 
matrix . The transformation can include applying the time 
matrix to the adjacency matrix . The analysis computer can 
then create a model , for example , a gradient boosted tree , 
which may predict whether or not interaction data is fraudu 
lent interaction data . The analysis computer can then evalu 
ate the performance of the resulting model using a sample 
data set . The analysis computer can determine , based on the 
analysis of the performance , residual error values for each 
input interaction data . The analysis computer can also deter 
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mine a total error . In some embodiments , the total error can 
be determined as a mean squared error ( MSE ) . If the total 
error exceeds a predetermined error threshold , then the 
analysis computer can determine to store the error matrix . 
Otherwise , the analysis computer can iterate the process . For 
example , the analysis computer can transform the interac 
tion data using the error matrix determined from the residual 
errors , the create a new model using the transformed inter 
action data . If MSE meets a predetermined threshold or , in 
some embodiments , if a max iteration is reached , then the 
process can end . 
[ 0085 ] At steps 410 , in some embodiments , the best N 
error matrices may be selected and stored in a database . For 
example , the stored error matrices may satisfy the require 
ments of the dynamic embedding process , described in 
further detail herein . The analysis computer may store the 
error matrices which result in neural networks which include 
the lowest total error . By doing so , the analysis computer can 
store the error matrix , which when used to transform the 
input interaction data can be used to train a neural network 
yielding a low error model . These error matrices which are 
the best N error matrices may be later used later during 
embedding of interaction data at step 414. In some embodi 
ments , the analysis computer may also store the trained 
embedding neural network in association with the stored 
error matrix . 
[ 0086 ] At step 412 , the analysis computer can generate 
pseudo interaction data . The pseudo interaction data may 
allow the analysis computer to include additional interaction 
data representative of trends over time , beyond that of the 
current interaction data . In some embodiments , the pseudo 
interaction data can be generated by an pseudo interaction 
data generator . In some embodiments , the analysis computer 
can generate the pseudo interaction data based upon histori 
cal interaction data . In some embodiments , the analysis 
computer can determine one or more data trends in the 
historical interaction data comprising interactions that occur 
within and outside of the rolling window . The analysis 
computer can generate a plurality of pseudo interactions 
based on the one or more data trends to form pseudo 
interaction data . 
[ 0087 ] In one illustration , the analysis computer can gen 
erate pseudo interaction data by determining a community 
group of IP addresses of historical interaction data , wherein 
the comm munity group includes IP addresses typically asso 
ciated with fraudulent login attempts . In this example , the 
trend can be that these IP addresses typically perform 
fraudulent login attempts . The analysis computer can then 
generate pseudo interaction data comprising IP addresses 
included in the community group . In some embodiments , the 
interaction data for interactions that occur over time can 
comprise timestamps and entity identifiers ( e.g. , an IP 
address which may identifier an entity ) . The analysis com 
puter can create pseudo interaction data for pseudo interac 
tions which comprises timestamps and entity identifiers , 
such that the pseudo interaction data may mimic the inter 
action data . For example , the analysis computer can create 
the pseudo interaction data with timestamps which occur 
within the rolling window . 
[ 0088 ] Further details regarding pseudo interaction data 
generation are discussed in reference to FIG . 6. As an 
overview of FIG . 6 , described in detail herein , data can be 
derived from ensemble unsupervised deep learning models . 
Models can be generated with several different time win 

dows . The data may be filtered by removing data that scored 
stably ( the records appeared in similar cluster groups ) within 
a prior predefined cutoff threshold . Using the ensemble of 
learners , cluster groups can be generated based on fraud 
trends from a predetermined time period ( e.g. , the past three 
weeks ) . The historical interaction data can be selected based 
on whether or not they are within same cluster group of 
recent interaction data . The historical interaction data can be 
filtered using , for example , a weighted information vector 
distance score ( e.g. , to determine which interactions of the 
historical interaction data are most similar to interactions of 
the current interaction data ) . The top matching historical 
interaction data can then be selected and , in some embodi 
ments , be modified to align with current interaction data 
( e.g. , editing the timestamps of the historical interaction data 
such that they fall within the current rolling window ) . The 
selected historical interaction data may be included as 
pseudo interaction data The data can then be added as 
fraudulent pseudo interactions when rebuilding the model . 
For example , if a particular community of IP address are 
strongly associated with a type of fraud patterns which are 
trending ( e.g. , currently occurring ) , the analysis computer 
can generate fraudulent pseudo interaction data using those 
IP addresses . An example of fraud may be transactional 
fraud , login fraud , spamming fraud , etc. 
[ 0089 ] As an example , pseudo interaction data generated 
by the analysis computer may include a fraud pattern such 
as “ nighttime network attacks originating from location A in 
English , ” which may be associated with 8 IP addresses . The 
fraud pattern may be determined via a community group 
which may include the 8 IP address associated with the fraud 
trend and may indicate that the IP addresses share a location 
code , a language code , etc. The 8 IP addresses may be 
associated with performing network attacks , where the fraud 
pattern may indicate that if one of the IP address begins a 
login attempt , typically the other 7 will soon also perform 
login attempts . This fraud trend can be useful to include into 
the current interaction data , as to not forget about the 8 IP 
addresses working together to perform fraud . Pseudo inter 
action data can include interaction data comprising login 
attempts which may have previously occurred by these 8 IP 
address . For example , the analysis computer can include the 
following 8 login attempts as pseudo interaction data : 1 ) 
[ time : 23:10 , host : www.example.com , location : A , lan 
guage : English ] , 2 ) [ 23:11 , www.example.com , A , English ] , 
3 ) [ 23:12 , www.example.com , A , English ] , 4 ) [ 23:12 , www . 
example.com , A , English ] , 5 ) [ 23:12 , www.example.com , A , 
English ] , 6 ) [ 23:13 , www.example.com , A , English ] , 7 ) 
[ 23:13 , www.example.com , A , English ] , and 8 ) [ 23:13 , 
www.example.com , A , English ] . It is understood , however , 
that the pseudo interaction data may include more , or fewer , 
data elements as illustrated in this example . 
[ 0090 ] At step 414 , after retrieving the interaction data 
occurring within the rolling window as well as generating 
the pseudo interaction data , the analysis computer can 
embed the interaction data for the interactions occurring 
within the rolling window and the pseudo interaction data to 
form interaction data matrices . Each column or row ( de 
pending on implementation ) of the interaction data matrix 
can correspond to an interaction . In some embodiments , the 
analysis computer can embed the interaction data and the 
pseudo interaction data N times , once per each of the one or 
more error matrices determined at step 410. For example , 
the analysis computer can embed the interaction data using 
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each of the one or more error matrices , and in some 
embodiments , one or more associated embedding neural 
networks . For example , the analysis computer can input the 
interaction data into an embedding neural network to embed 
the data . If steps 408-410 are not performed , then the 
analysis computer can embed the interaction data based on 
one error matrix , which may be predetermined . 
[ 0091 ] As an illustrative example , for the interaction data 
relating to login attempts , the data from the http header 
packets can be embedded . For example , the IP address data 
can be embedded by splitting octets into separate columns . 
The browser type data can be embedded by splitting data 
components based on spaces . The forwarded data can be 
embedded by splitting the “ for’and ‘ to ' IP addresses broken 
apart by octets . The host data can be embedded by splitting 
the domain name into components and natural language 
parsing where appropriate . The warning data can be embed 
ded by splitting by spaces . However , it is understood that 
other embedding schemes may be determined and may not 
result in a one - to - one representation of the input data 
elements of the interaction data ( e.g. , the process of embed 
ding may or may not convolute data elements of the input 
interaction data ) . 
[ 0092 ] For example , a first IP address of “ 123.01.02.3456 ” 
can be represented by [ 123_01 , 01_02 , 02_3456 , 123 , 01 , 
02 , 3456 ] ( e.g. , via Ngram ) . A second IP address of “ 123 . 
01.02.9999 ” can be represented by [ 123_01 , 01_02 , 
02_9999 , 123 , 01 , 02 , 9999 ] . For simplicity , the first IP 
address can be represented as [ 0 , 1 , 2 , 3 , 4 , 5 , 6 ] , whereas the 
second IP address can be represented as [ 0 , 1 , 7 , 3 , 4 , 5 , 8 ] . 
Embedding these two IP addresses can be input as , for 
example , Embedding ( 9 , 2 , input_length = 7 ) . The first argu 
ment ( 9 ) can be the number of distinct entries or possible 
values ( e.g. , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 ) in the training set ( e.g. , 
the first IP address and the second IP address ) . The second 
argument ( 2 ) can indicate the size of the embedding vectors 
( e.g. , how long the output vector will be or the output - in 
this case , there would be 2 elements per output vector ) . The 
input_length argument can indicate the size ( e.g. , how many 
elements in the input vector ) of each input sequence ( e.g. , 
vector ) . Once the network has been trained , the weights of 
the embedding layer may be obtained , which in this case will 
be of size ( 9 , 2 ) ( e.g. , 9 elements per input vector and 2 
elements per output vector ) and can be illustrated as Table 
1 , below , which may be used to map inputs to embedding 
vectors . 

numbers themselves are very different . They four digits may 
share a common attribute such as they may be associated 
with different devices operated by the same person , con 
nected to the same subnet . For example , in the table above , 
the IP address components “ 3456 ” and “ 9999 ” may respec 
tively produce embeddings [ 2.5 , 1.2 ] and [ 2.6 , 1.5 ] , and may 
indicate that they may share a common attribute . “ 3456 ” and 
" 9999 " may respectively designate a cell phone and a laptop 
computer associated with the same person using the same 
subnet , and the “ same person ” in this example may be the 
common attribute . 
[ 0094 ] By using embeddings as inputs to a learning model , 
similar data may be reflected in the input data that is 
provided to the learning model ( 420 , which is described in 
further detail below ) , so that the learning model is trained in 
a more accurate and efficient manner . Stated differently , the 
similar data may reflect some underlying meaning in the 
data , and that underlying meaning can be imparted to the 
subsequently used learning model . 
[ 0095 ] The IP address component , index and correspond 
ing embeddings of Table 1 illustrates an example embed 
ding , however it is understood that any suitable output 
embeddings can be determined by the analysis computer . 
Further , the inputs can include the interaction data as a 
whole , rather than only the IP addresses in the above 
example . 
[ 0096 ] At step 416 , after embedding the data ( e.g. , the 
interaction data occurring within the rolling window as well 
as the pseudo interaction data ) , the analysis computer can 
determine a test sample and split the test sample from the 
rest of the data . For example , the analysis computer can 
separate 10 % , 20 % , 30 % , 40 % , 50 % , etc. of the interaction 
data matrices . The analysis computer can separate a sub 
group of the interaction data matrices to form the test 
sample . The analysis computer can separate the test sample 
in any suitable manner known to one of skill in the art . At 
step 418 , the test sample may be stored in a test data 
database . The test sample may be separated from the training 
sample in order to later evaluate the model trained with the 
training sample . 
[ 0097 ] At step 420 , after storing the test sample , the 
analysis computer can then rebuild a deep learning model 
using the data . For example , the analysis computer can form 
a neural network model using the interaction data matrices . 
The analysis computer can form the neural network model 
in any suitable manner . The neural network can be a 
convolutional neural network , a recurrent neural network , 
etc. For example , in some embodiments , the analysis com 
puter can build a deep learning model based on vectors of 
the interaction data matrices of interaction data ( e.g. , HTTP 
header packet data ) . 
[ 0098 ] As an example , the analysis computer can train a 
neural network with the interaction data matrices of the 
interaction data matrices not included in the test sample . For 
example , each column or row ( depending on implementa 
tion ) of the interaction data matrix can correspond to an 
interaction vector . Each vector can be input into the neural 
network for training . Based on the training , the analysis 
computer can determine a plurality of neural network 
weights in part defining the neural network model . For 
example , the analysis computer can train the neural network 
as described in FIG . 3. The analysis computer can then 
evaluate the neural network model using the test sample . At 

TABLE 1 

Example Embedding 

IP Address Component Index Embedding 

0 123_01 
01_02 
02_3456 
123 
01 
02 
3456 
02_9999 
9999 

2 
3 
4 
5 

[ 1.1 , 3.4 ] 
[ 1.2 , 2.1 ] 
[ 0.9 , 3.4 ] 
[ 2.8 , 2.8 ] 
[ 0.7 , 3.1 ] 
[ 3.2 , 2.0 ] 
[ 2.5 , 1.2 ] 
[ 1.2 , 4.0 ] 
[ 2.6 , 1.5 ] 

6 
7 
8 

[ 0093 ] In this example , the only difference between the 
first and second IP addresses is the last four digits . As shown 
in the table above , the output of the neural network can 
produce embeddings that are similar , despite the fact that the 
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step 422 , the analysis computer can store the rebuilt deep 
learning model ( e.g. , the neural network model ) in a candi 
dates database . 
[ 0099 ] At step 424 , after storing the neural network model 
( s ) in the candidates database , the analysis computer may 
evaluate the neural network model ( s ) in the candidates 
database using test data from the test data database . The 
analysis computer can evaluate a neural network model with 
the test data in any suitable manner . The analysis computer 
can input the test data into the neural network model to 
determine an output . For example , the analysis computer can 
input login attempt data . The neural network model can 
predict ( e.g. , classify ) the input login attempt data as fraudu 
lent or not fraudulent . In some embodiments , the analysis 
computer can determine if there is a shift in distribution 
and / or fit of the models . 
[ 0100 ] At step 426 , the analysis computer can determine 
whether or not the model is acceptable based on the evalu 
ation . For example , the analysis computer can determine 
whether or not neural network model accurately predicted 
the input login attempt data as fraudulent or not fraudulent . 
The analysis computer can determine whether or not the 
model is acceptable based on the prediction accuracy of the 
model . For example , the analysis computer can determine 
that the model is acceptable , if the model accurately pre 
dicted 70 % , 80 % , 90 % , 95 % , 99 % , etc. of the input login 
attempt data . 
[ 0101 ] If the analysis computer determines that the model 
is not acceptable , then the analysis computer can discard a 
model that is not acceptable and end the process . In some 
embodiments , the analysis computer can repeat step 424 
426 for each of the other models stored in the candidate 
database if other models are stored in the candidate database . 
If the analysis computer determines that the model is accept 
able , then the analysis computer can proceed to step 428. At 
step 428 , the analysis computer can store the neural network 
model in the current model database . 
[ 0102 ] At any suitable time , at step 430 , the analysis 
computer can receive a request message comprising request 
data . The analysis con can receive the request message 
from any suitable external computer ( e.g. , the requesting 
client 114 of FIG . 1 ) . In some embodiments , the request data 
can include new interaction data ( e.g. , a login attempt 
comprising a timestamp , an IP address , a host , etc. ) . 
[ 0103 ] At step 432 , after receiving the request message , 
the analysis computer can determine a response message to 
the request message . The response message can comprise 
response data output by the neural network model based on 
the request data . For example , the analysis computer can 
determine whether or not the new interaction data indicates 
a fraudulent login attempt . As another example , in some 
embodiments , the analysis computer can determine a pre 
diction of whether or not one or more entities associated 
with one or more IP addresses will attempt a fraudulent login 
attempt 
[ 0104 ] At step 434 , the analysis computer can transmit the 
response message to the requesting client . The requesting 
client , upon receiving the response message , can quickly be 
able to react to the fraudulent login attempt ( if determined to 
be fraudulent by the analysis computer ) . By being able to 
more precisely predict fraudulent login attempts , network 
attacks can more efficiently and quickly be identified . Thus 
allowing attack mitigation strategies to be employed sooner 
and more pointedly towards the network attack . 

[ 0105 ] C. Dynamic Embedding 
[ 0106 ] FIG . 5 shows a dynamic embedding determination 
method according to some embodiments . In some embodi 
ments , the method described in FIG . 5 may be performed by 
an analysis computer , as described herein . The dynamic 
embedding determination method can be performed at step 
408 of FIG . 4. During the dynamic embedding process , the 
analysis computer can determine an optimal embedding for 
the interaction data . For example , during steps 502-518 , the 
analysis computer can transform interaction data prior to 
inputting the data into a model to train and test the model . 
The transformation can be applied via , for example , an error 
matrix . The analysis computer can later redetermine the 
error matrix based on an evaluation of the performance of 
the model . In some embodiments , if the performance is poor 
( e.g. , a high total error ) , the analysis computer can apply the 
error matrix of the model to the interaction data , then train 
and evaluate a next model . The analysis computer may 
repeat this process until the total error of a model's predic 
tions exceeds a predetermined threshold . In which case , the 
error matrix of the model may be stored and later used to 
embed input data at step 414 of FIG . 4 , since the error matrix 
is the optimal error matrix which may be applied to the input 
data such that a resulting model has low total error . 
[ 0107 ] At step 502 , the analysis computer can create an 
initial error matrix for the interaction data retrieved from an 
interaction data database ( e.g. , at steps 406 of FIG . 4 ) . For 
example , the interaction data may be in a form of a graph 
comprising a plurality of nodes , the nodes connected via 
edges . The analysis computer can generate an initial error 
matrix which may include data elements of a predetermined 
value ( e.g. , 1 ) . The initial error matrix may be of a size 
similar of that of the interaction data ( e.g. , a size of an 
adjacency matrix and / or a degree matrix ) . In some embodi 
ments , the analysis computer can weight the data elements 
in the error matrix based on a timestamp associated with the 
data elements corresponding interaction . The data elements 
in the error matrix may be weighted by , for example , a linear 
degrading function based on the time of the corresponding 
interaction . In such a way , the analysis computer may weight 
the initial error matrix based on how long ago an interaction 
of the interaction data occurred . 
[ 0108 ] As an illustrative example , the analysis computer 
may first embed the data utilizing an error matrix which may 
describe a current embedding strategy . Initially the analysis 
computer may not know the optimal error embedding strat 
egy represented by an optimal error matrix . As such , the 
analysis computer may determine to create an initial error 
matrix where each element may be equal to a value of 1 . 
[ 0109 ] At step 504 , after creating the initial error matrix , 
the analysis computer can split a portion of the interaction 
data into a test sample . For example , the analysis computer 
can split the interaction data into a first portion and a second 
portion . The first portion may be a test sample . The second 
portion may be a training sample . In some embodiments , the 
second portion may include more interaction data than the 
first portion . However , it is understood that any suitable 
percentage of the interaction data may be included into the 
first portion . At step 506 , the analysis computer can store the 
test sample into a test sample database . 
[ 0110 ] At step 508 , after storing the test sample , the 
analysis computer can train one or more models with the 
interaction data . Specifically , the analysis computer can train 
the one or more models with the second portion ( e.g. , 



US 2020/0097817 A1 Mar. 26 , 2020 
12 

training sample ) of the interaction data . The one or more 
models can include any suitable models , for example , in 
some embodiments , the one or more models can include a 
decision tree . The analysis computer can create the decision 
tree in part by gradient tree boosting using the training 
sample and a predefined target feature , as known to one of 
skill in the art . The predefined target feature can include any 
suitable target for the decision tree ( e.g. , determining 
whether or not input interaction data is fraudulent or not 
fraudulent ) . 
[ 0111 ] At step 510 , after training the one or more models , 
the analysis computer can evaluate the one or models with 
the test sample retrieved from the test sample database . For 
example , the analysis computer can input the interaction 
data of the test sample into a model . The model , for example , 
a decision tree , can determine whether or not input interac 
tion data can be classified as “ fraud ” or “ not fraud , " or other 
suitable predefined target feature . 
[ 0112 ] At step 512 , after evaluating the one or more 
models with the test sample , the analysis computer can 
update the error matrix as well as determine a total error . The 
total error can be determined in any suitable manner . For 
example , in some embodiments , the total error can be a MSE 
( mean squared error ) . The error matrix can be updated based 
on the residuals from the evaluation of each input interaction 
data . For example , residuals in a statistical or machine 
learning model can include the differences between 
observed ( e.g. , observed fraudulent or not fraudulent login 
attempt ) and predicted values ( e.g. , prediction of fraudulent 
or not fraudulent login attempt ) of data . The residuals can be 
a diagnostic measure used when assessing the quality of the 
model . In some embodiments , the residuals may be referred 
to as errors . In some embodiments , the analysis computer 
can examine residuals in terms of their magnitude and / or 
whether they form a pattern . 
[ 0113 ] As an example , a situation in which the residuals 
are all O , the model predicts perfectly . The further residuals 
are from 0 , the less accurate the model . In the case of linear 
regression , the greater the sum of squared residuals , the 
smaller the R - squared statistic , all else being equal . Where 
the average residual is not 0 , it implies that the model may 
be systematically biased ( i.e. , consistently over - predicting or 
under - predicting ) . The situation in which the residuals con 
tain patterns , the model may be qualitatively wrong , as it is 
failing to explain some property of the interaction data . 
[ 0114 ] The elements of the error matrix can be updated 
based on the residuals associated with the corresponding 
interaction data . For example , the neural network may 
incorrectly predict fraudulent login attempt when provided 
an authentic login attempt . The elements of the error matrix 
which are associated with the authentic login attempt may be 
updated based on the residuals from the incorrect prediction 
of the authentic login attempt . 
[ 0115 ] At step 514 , after updating the error matrix and the 
total error , the analysis computer can determine whether or 
not the total error exceeds a predetermined threshold . The 
total error can exceed the threshold ( e.g. , be greater than or 
equal to , or less than or equal to depending on the metric of 
the threshold ) . If the analysis computer determines that the 
total error does not exceed ( e.g. , satisfy evaluation criteria ) , 
then the analysis computer can proceed to step 516 , during 
which the analysis computer can transform the interaction 
data based on the evaluation . If the analysis computer 

determines that the total error exceeds the predetermined 
threshold , then the analysis computer can proceed to step 
518 . 
[ 011 ] At step 516 , after determining that the total error of 
a model does not exceed the predetermined threshold , then 
the analysis computer can transform the interaction data 
using the error matrix . In this way , the residuals determined 
from the previous model can be used to modify the input 
interaction data . The analysis computer can then repeat steps 
508-512 with the transformed interaction data . The analysis 
computer can perform steps 508-516 any suitable number of 
times until either the total error of the model exceeds the 
predetermined threshold at step 514 , or until a maximum 
number of iterations have been performed . By transforming 
the input interaction data , the analysis computer can deter 
mine which error matrix most accurately embeds the input 
interaction data . 
[ 0117 ] At step 518 , the analysis computer can store the 
error matrix corresponding to the model which had a total 
error which exceeds the predetermined threshold at step 514 . 
In some embodiments , the analysis computer can store one 
or more error matrices corresponding to one or more models 
which have total errors which exceed the predetermined 
threshold . In some embodiments , the analysis computer may 
also store the embedding neural network associated with the 
error matrix . 
[ 0118 ] After storing the one or more error matrices ( which 
may be the most optimal error matrices ) , the analysis 
computer can embed interaction data including current inter 
action data ( e.g. , interaction data occurring within the rolling 
window ) and the pseudo interaction data , at step 414 , 
utilizing at least one error matrix . For example , the error 
matrix may represent an optimal way to transform the input 
data ( e.g. , interaction data ) such that a resulting model more 
accurately predicts a target variable ( e.g. , fraud ) than other 
models trained from not transformed data . 
[ 0119 ] D. Pseudo Interaction Data Generator 
[ 0120 ] FIG . 6 shows a pseudo interaction data generation 
method according to some embodiments . In some embodi 
ments , the method described in FIG . 6 may be performed by 
an analysis computer , as described herein . For example , in 
some embodiments , the analysis computer can determine 
one or more data trends in the historical interaction data 
comprising interactions that occur within and outside of the 
rolling window . The analysis computer can then generate a 
plurality of pseudo interactions based on the one or more 
data trends to form pseudo interaction data . In some embodi 
ments , determining the one or more trends can also include 
clustering at least the historical interaction data into one or 
more community groups . Each community group of the one 
or more community groups may include data representing 
interactions with similar characteristics . 
[ 0121 ] At step 602 , the analysis computer can retrieve 
interaction data from an interaction data database . The 
analysis computer can retrieve historical interaction data , 
which may be stored in association with timestamps which 
may occur prior to a determined rolling window ( e.g. , at step 
406 of FIG . 4 ) . In some embodiments , the analysis computer 
can retrieve all historical interaction data . In other embodi 
ments , the analysis computer can retrieve historical interac 
tion data occurring within a plurality of historical rolling 
windows . Each of the historical rolling windows can be of 
a same size ( e.g. , 2 days , 1 week , etc. ) as the rolling window 
of step 406. For example , the analysis computer can sample 
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historical interaction data from 10 historical rolling win 
dows . The plurality of historical rolling windows can allow 
the analysis computer to sample historical interaction data , 
and thus not perform data processing using all stored data 
which may be computationally expensive . In yet other 
embodiments , the analysis computer can apply weights to 
the historical interaction data of each of the historical rolling 
windows . For example , the analysis computer can weight 
more recent data more heavily . The analysis computer can 
weight the historical interaction data of the historical rolling 
windows to place an emphasis on older or new trends in the 
historical interaction data . In some embodiments , the analy 
sis computer can run more than one prior models if the more 
than one prior models were created in previous iterations . 
[ 0122 ] At step 604 , after retrieving the historical interac 
tion data , the analysis computer can execute previously 
created models with the historical interaction data as input . 
In some embodiments , the previously created models can 
include deep learners which may cluster data into commu 
nity groups . For example , the analysis computer can execute 
a clustering model which can cluster the input historical 
interaction data . The analysis computer can cluster data 
points together which are characteristically similar . For 
example , a first interaction can be associated with interaction 
data comprising an IP address of “ 1234 , ” a date of “ 01 / 01 / 
2019 , " a time of “ 23:50 , " a browser of “ browser_A , ” a host 
of “ www.example.org . " A second interaction can be asso 
ciated with interaction data comprising an IP address of 
“ 2345 , ” a date of “ 01/02/2019 , " a time of “ 23:55 , " a browser 
of “ browser_A , ” a host of “ www.example.org . ” The inter 
action data for the first interaction and the second interaction 
data may be clustered based on similar characteristics , for 
example , due to attempted fraud which occurred late at night 
targeting the same host and using similar browsers . How 
ever , it is understood that interaction data may be clustered 
based on any similarities . 
[ 0123 ] At step 606 , the analysis computer can evaluate the 
performance of the prior models . The analysis computer can 
evaluate the performance of the prior models using any 
suitable metric . For example , the analysis computer can 
determine a classification accuracy , a logarithmic loss , a 
confusion matrix , an area under curve ( AUC ) , an F1 score , 
a mean absolute error , a mean squared error , etc. In some 
embodiments , the analysis computer can , using a vector 
distance score , determine which data ( e.g. , historical inter 
action data ) and prior models are the most stable when 
executed with the historical interaction data . The analysis 
computer can determine a stability score for each prior 
model . 
[ 0124 ] At step 608 , after evaluating the performance of the 
prior models , the analysis computer can weight the historical 
interaction data based on the performance of the prior 
models . The analysis computer can weight the historical 
interaction data in any suitable manner . For example , in 
some embodiments , the analysis computer can weight the 
historical interaction data based on an inverse of the stability 

has substantially changed from when the prior model was 
created , then the model will perform poorly and the data 
may be weighted in accordance with the change . 
[ 0126 ] In some embodiments , after weighting the histori 
cal interaction data , the analysis computer can retrieve 
additional random samples of historical interaction data if 
additional historical interaction data is needed , for example 
as a test sample for evaluating ( e.g. , at step 612 ) the new 
models trained at step 610. In other embodiments , the test 
sample , may be a subset of the reweighted historical inter 
action data . The test sample may not be used for training a 
model , but may later be used to evaluate how well the model 
was trained . 
[ 0127 ] At step 610 , after weighting the historical interac 
tion data , the analysis computer can create N new models . 
The N new models may include machine learning models 
( e.g. , neural networks ) trained on the weighted historical 
interaction data . The analysis computer can train the N new 
models in any suitable manner described herein . 
[ 0128 ] At step 612 , after training the N new models , the 
analysis computer can evaluate the performance of the N 
new models . The analysis computer can evaluate the per 
formance of the N new models in any suitable manner as 
described herein . For example , the analysis computer can , 
utilizing the test sample , to determine a vector distance score 
to determine which models are the most stable for the test 
sample . In some embodiments , the analysis computer can 
determine how well the new model ( s ) performed in the same 
or similar way to the evaluation at step 606. For example , the 
analysis computer can determine how well the new model ( s ) 
predict a target variable such as fraud . A model which 
frequently receives authentic login attempt data but then 
predicts the data as being fraudulent may have poor perfor 
mance . 

[ 0129 ] At step 614 , the analysis computer can store the 
new model ( s ) based on the performance of the new models 
determined at step 612. For example , in some embodiments , 
the analysis computer can sort the new models by stability 
score and select a top Y number of model ( s ) based on a 
pre - defined value of Y ( e.g. , 1 , 2 , 3 , 10 , etc. ) . The analysis 
computer can then store the highest ranked new model ( s ) in 
a model database . In future iterations of steps 602-614 , the 
new models may be considered prior models . The analysis 
computer can store the new model ( s ) which perform best . 
[ 0130 ] At step 616 , the analysis computer can execute the 
new models with a dataset , as input , including the historical 
interaction data as well as the interaction data occurring 
within the rolling window ( e.g. , as retrieved at step 406 ) . 
The analysis computer can execute the new models in any 
suitable manner as described herein . For example , to deter 
mine pseudo interaction data , the analysis computer may 
execute the models in the model database with the retrieved 
historical interaction data and the interaction data occurring 
within the rolling window . The analysis computer can deter 
mine which historical interaction data is similar to the 
current interaction data based on a criteria ( e.g. , being part 
of a trend as identified by determined community groups ) . 
The historical interaction data which is most similar in terms 
of , for example , shared community groups , can be included 
as pseudo interaction data to be used to train a machine 
learning model ( e.g. , at step 420 ) . Steps 618-624 describe 
the determination and selection of the historical interaction 
data which can be included into pseudo interaction data . 

score . 

[ 0125 ] For example , if the model performed well ( e.g. , 
predicted a target variable such as fraud accurately ) then the 
analysis computer may weight the historical interaction data 
by a smaller amount than if the model performed poorly 
( e.g. , did not predict a target variable such as fraud accu 
rately ) . The historical interaction data may be weighted 
based on the performance of the model because , if the data 
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[ 0131 ] At step 618 , after executing the new models with 
the historical interaction data and the interaction data occur 
ring within the rolling window , the analysis computer can 
match interaction data which occurs within the rolling 
window to historical interaction data . For example , the new 
model may cluster the data into community groups based on 
similarities between the data points . The analysis computer 
can determine if any of the interaction data occurring within 
the rolling window matches ( e.g. , over a threshold amount 
of similarity ) any of the historical interaction data . For 
example , the analysis computer can determine a difference 
between community groups of data using a vector distance 
score ( or any other suitable similarity metric ) . 
[ 0132 ] At step 620 , the analysis computer can determine 
similarity scores for each interaction data within matched 
community groups . For example , at step 618 , a fraudulent 
historical interaction community group and a fraudulent 
current community group may be matched . The analysis 
computer can then , at step 620 , determine a similarity score 
between each of the historical interaction data of the fraudu 
lent historical interaction community group and each of the 
interaction data occurring within the rolling window of the 
fraudulent current community group . The similarity score 
can be any suitable similarity score as described herein . In 
some embodiments , the similarity score may be a vector 
distance score , which can be a distance in vector space 
between , for example , a fraudulent login attempt of the 
historical interaction data and a fraudulent login attempt of 
the current interaction data . 
[ 0133 ] At steps 622 and 624 , after determining similarity 
scores , the analysis computer can sort the interaction data 
based on similarity score and include the top X matched 
historical interaction data into pseudo interaction data . The 
top X matched historical interaction data can include the 
highest sorted ( e.g. , highest similarity score ) historical inter 
action data . In other words , the analysis computer can 
include the historical interaction data which most closely 
matches trends in current interaction data into the pseudo 
interaction data . In some embodiments , the pseudo interac 
tion data can include interactions in which fraud may have 
occurred ( e.g. , a fraudulent login attempt ) . Including these 
pseudo interactions into the interaction data used to train a 
machine learning model ( e.g. , at step 420 ) can introduce 
additional data to include trends which have occurred over 
time in the historical interaction data and continuing into the 
current interaction data . In such a way , the resulting trained 
model may not forget about these overarching trends in the 
historical interaction data when determining predictions , or 
other suitable machine learning model output . 

held in conjunction with KDD - 99 The Fifth International 
Conference on Knowledge Discovery and Data Mining . The 
dataset includes “ bad ” connections , called intrusions or 
attacks , and “ good ” normal connections ( e.g. , non - fraudu 
lent connections ) . This database contains a standard set of 
data to be audited , which includes a wide variety of intru 
sions simulated in a military network environment . See 
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html 
for the dataset . 
[ 0137 ] B. Methodology 
[ 0138 ] First , the analysis computer pulled a 30 % sample 
of the “ Bad ” data and 10 % sample of the “ Good " data . Then 
the analysis computer ran an ensemble graph learner to 
create community groups based on the “ Bad ” data . From the 
graph model , “ Bad ” patterns were recommended using a 
vector distance score to find similar “ Bad ” patterns to ones 
found in the 30 % sample to generate pseudo interaction data . 
Next , two models were generated , one using the 30 % “ Bad ” 
and 10 % good data , the second mixed simulated “ Bad ” 
attacks with 30 % “ Bad ” data . Both models used a gradient 
boosted tree . For performance testing the analysis computer 
used a new 10 % sample of both “ Good ” and “ Bad ” . 
[ 0139 ] C. Results 
[ 0140 ] Table 2 , below , illustrates the precision and recall 
of models implemented with a dataset which does not 
include pseudo interaction data and a dataset which does 
include pseudo interaction data . The precision can be deter 
mined as : 

Precision = true positives ( true positives + false posi 
tives ) 

[ 0141 ] The recall can be determined as : 
Recall = true positives / ( true positives + false negatives ) 

TABLE 2 

Experimental Results 

Precision Recall 

Dataset with no pseudo interaction data 
Dataset with pseudo interaction data 

.63 

.72 
.47 
.69 

III . Experimental Improvements 
[ 0134 ] Embodiments , as described herein , are evaluated 
against a model which does not include the use of pseudo 
interaction data . The data set used as the interaction data 
includes the KDD network intrusion dataset from the Third 
International Knowledge Discovery and Data Mining Tools 
Competition , which was held in conjunction with KDD - 99 
The Fifth International Conference on Knowledge Discov 
ery and Data Mining . 
[ 0135 ] A. Data 
[ 0136 ] The KDD network intrusion dataset was used to 
test the system and method according to embodiments . This 
is the data set used for The Third International Knowledge 
Discovery and Data Mining Tools Competition , which was 

[ 0142 ] Embodiments of the disclosure have a number of 
advantages . Table 2 illustrates an improvement in both 
precision and recall when utilizing pseudo interaction data 
as described herein over using no pseudo interaction data . As 
such , embodiments of the disclosure allow the analysis 
computer to utilize the pseudo interaction data to make more 
precise predictions of whether or not interaction data ( e.g. , 
login attempt data ) is fraudulent . By being able to more 
precisely predict fraudulent login attempts , network attacks 
can more efficiently and quickly be identified . Thus allowing 
attack mitigation strategies to be employed sooner and more 
pointedly towards the network attack . 
[ 0143 ] Embodiments of the disclosure have advantages 
over a case in which all of the data is used to train a model . 
For example , while one other option might be to use all of 
the historical data and all data within a current rolling 
window ( e.g. , current interaction data ) , using all of the 
historical interaction data and the current interaction data to 
train a neural network can take a long time since large 
amounts of data need to be processed . If the neural network 
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takes too long to train , then it cannot react to , for example , 
network attacks which can occur on much smaller times 
cales . 

[ 0144 ] Additionally , embodiments of the disclosure have 
advantages over a case in which only current data from a 
current rolling window is used to train a model . For 
example , a fraudster and a secure system can react to the 
actions of the other which can lead to situation involving 
game theory ( e.g. , a situation in which there is strategic 
interaction between rational decision - makers ) . The fraudster 
may perform fraudulent login attempts from a first geo 
graphic location . As a result the secure system may be 
changed such that login attempts originating from the first 
geographic location are scrutinized with more particularity 
than login attempts originating from other geographic loca 
tions . The fraudster can then change their strategy and can , 
for example , perform IP spoofing . The fraudster can modify 
the IP address such that it appears , to the secure system , that 
the login attempt originates from a second geographic 
location . Yet again , the secure system may be changed such 
that login attempts originating from the second geographic 
location are scrutinized with more particularity than other 
geographic locations . However , if the models implementing 
these changes ( e.g. , determining to scrutinize the particular 
geographic location ) analyze current data , they can stop 
scrutinizing the login attempts from the first geographic 
location . Thus , simply being reactive to what the fraudster is 
currently doing . 
[ 0145 ] Although the steps in the flowcharts and process 
flows described above are illustrated or described in a 
specific order , it is understood that embodiments of the 
invention may include methods that have the steps in 
different orders . In addition , steps may be omitted or added 
and may still be within embodiments of the invention . 
[ 0146 ] Any of the software components or functions 
described in this application may be implemented as soft 
ware code to be executed by a processor using any suitable 
computer language such as , for example , Java , C , C ++ , C # , 
Objective - C , Swift , or scripting language such as Perl or 
Python using , for example , conventional or object - oriented 
techniques . The software code may be stored as a series of 
instructions or commands on a computer readable medium 
for storage and / or transmission , suitable media include 
random access memory ( RAM ) , a read only memory 
( ROM ) , a magnetic medium such as a hard drive or a floppy 
disk , or an optical medium such as a compact disk ( CD ) or 
DVD ( digital versatile disk ) , flash memory , and the like . The 
computer readable medium may be any combination of such 
storage or transmission devices . 
[ 0147 ] Such programs may also be encoded and transmit 
ted using carrier signals adapted for transmission via wired , 
optical , and / or wireless networks conforming to a variety of 
protocols , including the Internet . As such , a computer read 
able medium according to an embodiment of the present 
invention may be created using a data signal encoded with 
such programs . Computer readable media encoded with the 
program code may be packaged with a compatible device or 
provided separately from other devices ( e.g. , via Internet 
download ) . Any such computer readable medium may reside 
on or within a single computer product ( e.g. a hard drive , a 
CD , or an entire computer system ) , and may be present on 
or within different computer products within a system or 

network . A computer system may include a monitor , printer , 
or other suitable display for providing any of the results 
mentioned herein to a user . 
[ 0148 ] The above description is illustrative and is not 
restrictive . Many variations of the invention will become 
apparent to those skilled in the art upon review of the 
disclosure . The scope of the invention should , therefore , be 
determined not with reference to the above description , but 
instead should be determined with reference to the pending 
claims along with their full scope or equivalents . 
[ 0149 ] One or more features from any embodiment may 
be combined with one or more features of any other embodi 
ment without departing from the scope of the invention . 
[ 0150 ] As used herein , the use of “ a , ” “ an , ” or “ the ” is 
intended to mean " at least one , ” unless specifically indicated 
to the contrary . 
What is claimed is : 
1. A method comprising : 
determining , by an analysis computer , a rolling window 

associated with interaction data for interactions that 
occur over time ; 

retrieving , by the analysis computer , interaction data for 
interactions occurring in the rolling window ; 

generating , by the analysis computer , pseudo interaction 
data based upon historical interaction data ; and 

forming , by the analysis computer , a neural network 
model using the interaction data for interactions occur 
ring within the rolling window and the pseudo inter 
action data . 

2. The method of claim 1 , wherein the rolling window 
includes a range of times during which the interaction data 
occurs , and wherein the method further comprises : 

embedding , by the analysis computer , the interaction data 
for the interactions occurring within the rolling window 
and the pseudo interaction data to form interaction data 
matrices , and therein the neural network model is 
formed using the interaction data matrices . 

3. The method of claim 2 , wherein generating the pseudo 
interaction data further comprises : 

determining , by the analysis computer , one or more data 
trends in the historical interaction data comprising 
interactions that occur within and outside of the rolling 
window ; and 

generating , by the analysis computer , a plurality of pseudo 
interactions based on the one or more data trends to 
form the pseudo interaction data . 

4. The method of claim 3 , wherein determining the one or 
more data trends further comprises : 

clustering , by the analysis computer , at least the historical 
interaction data into one or more community groups , 
wherein each community group of the one or more 
community groups includes data representing interac 
tions with similar characteristics . 

5. The method of claim 4 , wherein forming the neural 
network model further comprises : 

separating , by the analysis computer , a portion of the 
interaction data matrices to form a test sample ; 

storing , by the analysis computer , the test sample into a 
database ; 

training , by the analysis computer , a neural network with 
the interaction data matrices not included in the test 
sample ; 
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based on the training , determining , by the analysis com 
puter , a plurality of neural network weights in part 
defining the neural network model ; 

evaluating , by the analysis computer , the neural network 
model using the test sample ; and 

based on the evaluating , storing , by the analysis computer , 
the neural network model in a model database . 

6. The method of claim 5 , wherein the neural network is 
a convolutional neural network or a recurrent neural net 
work . 

7. The method of claim 1 further comprising : 
determining one or more error matrices ; and 
embedding the interaction data for the interactions occur 

ring within the rolling window and the pseudo inter 
action data with a machine learning model and the one 
or more error matrices to form interaction data matri 
ces , and wherein forming the neural network model 
comprises using the interaction data matrices to form 
the neural network model . 

8. The method of claim 7 , wherein determining the one or 
more error matrices further comprises : 

training , by the analysis computer , a model using a first 
portion of the interaction data for the interactions 
occurring within the rolling window ; 

evaluating , by the analysis computer , the model using a 
second portion of the interaction data for the interac 
tions occurring within the rolling window ; 

determining , by the analysis computer , an error matrix 
and a total error based on the evaluation ; 

determining , by the analysis computer , whether or not the 
total error exceeds a predetermined error threshold ; and 

if the total error exceeds the predetermined error thresh 
old , storing , by the analysis computer , the error matrix 
in a database . 

9. The method of claim 1 further comprising : 
storing , by the analysis computer , the neural network 
model in model database . 

10. The method of claim 9 further comprising : 
receiving , by the analysis computer , a request message 
comprising request data ; and 

determining , by the analysis computer , a response mes 
sage to the request message , the response message 
comprising response data output by the neural network 
model based on the request data . 

11. An analysis computer comprising : 
a processor ; 
a computer - readable medium coupled to the processor , 

the computer - readable medium comprising code 
executable by the processor for implementing a method 
comprising : 

determining a rolling window associated with interaction 
data for interactions that occur over time ; 

retrieving interaction data for interactions occurring in the 
rolling window ; 

generating pseudo interaction data based upon historical 
interaction data ; and 

forming a neural network model using the interaction data 
for interactions occurring within the rolling window 
and the pseudo interaction data . 

12. The analysis computer of claim 11 further comprising : 
a pseudo interaction data generation module coupled to 

the processor ; 
an embedding module coupled to the processor ; and 
a machine learning module coupled to the processor . 

13. The analysis computer of claim 11 , wherein generat 
ing the pseudo interaction data further comprises : 

determining one or more data trends in the historical 
interaction data comprising interactions that occur 
within and outside of the rolling window ; and 

generating a plurality of pseudo interactions based on the 
one or more data trends to form the pseudo interaction 
data . 

14. The analysis computer of claim 11 , wherein the 
interaction data for interactions that occur over time com 
prise timestamps and entity identifiers , and wherein the 
pseudo interaction data for pseudo interactions comprise 
timestamps and entity identifiers . 

15. The analysis computer of claim 11 , wherein the 
interactions are login attempts and comprise timestamps , IP 
addresses , and browser types , wherein a login attempt 
occurs when an entity attempts to login to a secure webpage . 

16. The analysis computer of claim 15 , wherein generat 
ing the pseudo interaction data based upon historical inter 
action data further comprises : 

determining a community group of similar login attempts 
of historical interaction data , wherein the community 
group includes IP addresses typically associated with 
fraudulent login attempts ; and 

generating the pseudo interaction data comprising at least 
IP addresses included in the community group . 

17. The analysis computer of claim 11 , wherein the 
method further comprises : 

determining a prediction , using the neural network model , 
of whether or not one or more entities associated with 
one or more IP addresses will attempt a fraudulent login 
attempt . 

18. The analysis computer of claim 11 , wherein the 
method further comprises : 

receiving , from a requesting client , a request message 
comprising request data , wherein the request data 
includes new interaction data ; 

determining , by the analysis computer , a response mes 
sage to the request message , the response message 
comprising response data output by the neural network 
model based on the new interaction data ; and 

providing the response message to the requesting client . 
19. The analysis computer of claim 11 , wherein the 

method further comprises : 
determining one or more error matrices ; and 
embedding the interaction data for the interactions occur 

ring within the rolling window and the pseudo inter 
action data with a machine learning model and the one 
or more error matrices to form interaction data matri 
ces , and wherein forming the neural network model 
comprises using the interaction data matrices to form 
the neural network model . 

20. The analysis computer of claim 19 , wherein deter 
mining the one or more error matrices further comprises : 

training a model using a first portion of the interaction 
data for the interactions occurring within the rolling 
window ; 

evaluating the model using a second portion of the 
interaction data for the interactions occurring within the 
rolling window ; 

determining an error matrix and a total error based on the 
evaluation ; 
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determining whether or not the total error exceeds a 
predetermined error threshold ; and 

if the total error exceeds the predetermined error thresh 
old , storing the error matrix in a database . 


