
IN
US 20200097817A1

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0097817 A1

Harris et al . (43) Pub . Date : Mar. 26 , 2020

Publication Classification (54) CONTINUOUS LEARNING NEURAL
NETWORK SYSTEM USING ROLLING
WINDOW

(71) Applicant : Visa International Service
Association , San Francisco , CA (US)

(72) Inventors : Theodore Harris , San Francisco , CA
(US) ; Tatiana Korolevskaya , Mountain
View , CA (US) ; Yue Li , Sunnyvale , CA
(US)

(51) Int . Ci .
GOON 3/08 (2006.01)
GO6N 3/04 (2006.01)
H04L 29/06 (2006.01)

(52) U.S. Ci .
CPC G06N 3/08 (2013.01) ; H04L 63/1433

(2013.01) ; G06N 3/04 (2013.01)
(57) ABSTRACT
A disclosed method an analysis computer determining a
rolling window associated with interaction data for interac
tions that occur over time . The analysis computer can
retrieve interaction data for interactions occurring in the
rolling window . The analysis computer can then generate
pseudo interaction data based upon historical interaction
data . The analysis computer can optionally embed the inter
action data for the interactions occurring within the rolling
window and the pseudo interaction data to form interaction
data matrices . The analysis computer can then form a neural
network model using the interaction data matrices , which is
derived from the interaction data in the rolling window and
the pseudo interaction data .

(21) Appl . No .: 16 / 577,047

(22) Filed : Sep. 20 , 2019

Related U.S. Application Data
(60) Provisional application No. 62 / 734,149 , filed on Sep.

20 , 2018 .

100

FIRST REMOTE
CLENT
108

SECOND REMOTE
CLIENT

DATA RECEPTION
COMPUTER INTERACTION DATA

DATABASE
104

ANALYSIS
COMPUTER

102

NTH REMOTE
CUENT
112 REQUESTING

CLIENT

100

Patent Application Publication

FIRST REMOTE CLIENT 108 SECOND REMOTE

DATA RECEPTION COMPUTER 106

INTERACTION DATA DATABASE 104

ANALYSIS COMPUTER 102

Mar. 26 , 2020 Sheet 1 of 6

NTH REMOTE CLIENT 112

REQUESTING CLIENT 114

US 2020/0097817 A1

FIG . 1

Patent Application Publication Mar. 26 , 2020 Sheet 2 of 6 US 2020/0097817 A1

ANALYSIS COMPUTER
200

MEMORY
202

PROCESSOR
204

NETWORK
INTERFACE

206

COMPUTER READABLE MEDIUM
208

PSEUDO INTERACTION DATA GENERATION
MODULE

208A

EMBEDDING MODULE
2080

MACHINE LEARNING MODULE
2080

DATABASE
210

FIG . 2

300

Interaction Data

Input layer 304

Hidden layer 306

Output layer 308

302

Patent Application Publication

310

330

350

-370

320

340

360

-312

332

352

372

-322

Mar. 26 , 2020 Sheet 3 of 6

314

334

354

-324

US 2020/0097817 A1

FIG . 3

Patent Application Publication Mar. 26 , 2020 Sheet 4 of 6 US 2020/0097817 A1

404

INTERACTION
412

PSEUDO INTERACTION DATA
GENERATOR -408

-414
RETRIEVE
ROLLING
WINDOW

DETERMINE ONE OR
MORE ERROR
MATRICES

EMBED DATA -410

ERROR
MATRICES

-416 418

SPLIT TEST
SAMPLE TEST DATA

-420 422
424

LEARNING
MODEL

CANDIDATE
DATABASE

EVALUATE
MODELS

428 -426

YES NO IS MODEL
ACCEPTABLE CURRENT

MODEL (S)

END

-430 -432 434

REQUEST DETERMINE
RESPONSE RESPONSE

FIG . 4

502

516

INTERACTION DATA

CREATE INITIAL ERROR MATRIX

TRANSFORM DATA BASED ON EVALUATION

Patent Application Publication

504

-508

SPLIT TEST SAMPLE

TRAIN MODELS

--506

510

TEST SAMPLE

EVALUATE MODELS 512

Mar. 26 , 2020 Sheet 5 of 6

UPDATE ERROR MATRIX AND TOTAL ERROR

-514

-518

YES

STORE ERROR MATRIX

DOES TOTAL ERROR EXCEED A PREDETERMINED
THRESHOLD ?

US 2020/0097817 A1

FIG . 5

-602

-604

-606

608

INTERACTION DATA

RETRIEVE DATA

EXECUTE PRIOR MODELS WITH DATA

EVALUATE PRIOR MODEL PERFORMANCE

WEIGHT DATA BASED ON PERFORMANCE

Patent Application Publication

-614

-612

610

MODEL DATABASE

STORE HIGHEST RANKED NEW MODELS

EVALUATE NEW MODEL PERFORMANCE

CREATE N NEW MODELS

616

EXECUTE NEW MODELS WITH CURRENT INTERACTION DATA AND HISTORICAL INTERACTION DATA

Mar. 26 , 2020 Sheet 6 of 6

-618

-620

-622

MATCH CURRENT INTERACTION DATA AND HISTORICAL INTERACTION DATA BASED ON MODEL OUTPUT

DETERMINE SIMILARITY SCORE FOR EACH MATCH

DETERMINE TOP X SIMILARITY SCORE (S)

-624

INCLUDE TOP X HISTORICAL INTERACTION DATA INTO PSEUDO INTERACTION DATA

US 2020/0097817 A1

FIG . 6

US 2020/0097817 A1 Mar. 26 , 2020

CONTINUOUS LEARNING NEURAL
NETWORK SYSTEM USING ROLLING

WINDOW

[0012] FIG . 6 shows an example flowchart illustrating a
pseudo interaction data generation method according to
some embodiments .

DETAILED DESCRIPTION CROSS - REFERENCE TO RELATED
APPLICATIONS

[0001] This application is a non - provisional application of
U.S. Patent Application No. 62 / 734,149 , filed on Sep. 20 ,
2018 , which is herein incorporated by reference in its
entirety .

BACKGROUND

[0002] Network attacks are becoming increasing dynamic
and automated . Network attacks can be tracked and analyzed
to predict future attacks . However , new network attacks can
occur before a complete data analysis is performed using all
of the previous data . While automated learning can address
some issues , these models can drift over time . To combat
this threat , an automated solution is needed to monitor
incoming data .
[0003] Embodiments of the invention address this prob
lem and other problems individually and collectively .

SUMMARY

[0004] One embodiment is directed to a method compris
ing : determining , by an analysis computer , a rolling window
associated with interaction data for interactions that occur
over time ; retrieving , by the analysis computer , interaction
data for interactions occurring in the rolling window ; gen
erating , by the analysis computer , pseudo interaction data
based upon historical interaction data ; and forming , by the
analysis computer , a neural network model using the inter
action data for interactions occurring within the rolling
window and the pseudo interaction data .
[0005] Another embodiment is directed to an analysis
computer comprising : a processor ; a computer - readable
medium coupled to the processor , the computer - readable
medium comprising code executable by the processor for
implementing a method comprising : determining a rolling
window associated with interaction data for interactions that
occur over time ; retrieving interaction data for interactions
occurring in the rolling window ; generating pseudo interac
tion data based upon historical interaction data ; and forming
a neural network model using the interaction data for
interactions occurring within the rolling window and the
pseudo interaction data the interaction data matrices .
[0006] Further details regarding embodiments of the
invention can be found in the Detailed Description and the
Figures .

[0013] Prior to discussing embodiments , some terms can
be described in further detail .
[0014] A “ machine learning model ” may include an appli
cation of artificial intelligence that provides systems with the
ability to automatically learn and improve from experience
without explicitly being programmed . A machine learning
model may include a set of software routines and parameters
that can predict an output of a process (e.g. , identification of
an attacker of a computer network , authentication of a
computer , a suitable recommendation based on a user search
query , etc.) based on a “ feature vector ” or other input data .
A structure of the software routines (e.g. , number of sub
routines and the relation between them) and / or the values of
the parameters can be determined in a training process ,
which can use actual results of the process that is being
modeled , e.g. , the identification of different classes of input
data . Examples of machine learning models include support
vector machines (SVM) , models that classify data by estab
lishing a gap or boundary between inputs of different clas
sifications , as well as neural networks , collections of artifi
cial " neurons ” that perform functions by activating in
response to inputs . In some embodiments , a neural network
can include a convolutional neural network , a recurrent
neural network , etc.
[0015] A “ model database ” may include a database that
can store machine learning models . Machine learning mod
els can be stored in a model database in a variety of forms ,
such as collections of parameters or other values defining the
machine learning model . Models in a model database may
be stored in association with keywords that communicate
some aspect of the model . For example , a model used to
evaluate news articles may be stored in a model database in
association with the keywords “ news , ” “ propaganda , ” and
“ information . ” A server computer can access a model data
base and retrieve model from the model database , modify
models in the model database , delete models from the model
database , or add new models to the model database .
[0016] A " feature vector ” may include a set of measurable
properties (or “ features ”) that represent some object or
entity . A feature vector can include collections of data
represented digitally in an array or vector structure . A feature
vector can also include collections of data that can be
represented as a mathematical vector , on which vector
operations such as the scalar product can be performed . A
feature vector can be determined or generated from input
data . A feature vector can be used as the input to a machine
learning model , such that the machine learning model pro
duces some output or classification . The construction of a
feature vector can be accomplished in a variety of ways ,
based on the nature of the input data . For example , for a
machine learning classifier that classifies words as correctly
spelled or incorrectly spelled , a feature vector corresponding
to a word such as “ LOVE ” could be represented as the
vector (12 , 15 , 22 , 5) , corresponding to the alphabetical
index of each letter in the input data word . For a more
complex “ input , ” such as a human entity , an exemplary
feature vector could include features such as the human's
age , height , weight , a numerical representation of relative
happiness , etc. Feature vectors can be represented and stored

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] FIG . 1 shows an example monitoring system
according to embodiments .
[0008] FIG . 2 shows an example block diagram of an
analysis computer according to some embodiments .
[0009] FIG . 3 shows an example diagram illustrating a
learning process according to embodiments .
[0010] FIG . 4 shows an example flowchart of a monitoring
method according to embodiments .
[0011] FIG . 5 shows an example flowchart illustrating a
dynamic embedding determination method according to
some embodiments .

US 2020/0097817 A1 Mar. 26 , 2020
2

electronically in a feature store . Further , a feature vector can
be normalized , i.e. , be made to have unit magnitude . As an
example , the feature vector (12 , 15 , 22 , 5) corresponding to
“ LOVE ” could be normalized to approximately 0.40 , 0.51 ,
0.74 , 0.17) .
[0017] A “ rolling window ” can include a range of time . In
some embodiments , a rolling window can include a range of
time during which data (e.g. , interaction data) may occur .
For example , a rolling window may include a range of the
past hour , day , week , month , etc. In some embodiments , a
rolling window can include a start time and an end time . In
other embodiments , a rolling window may include a range
of a predetermined number of data . For example , a first
rolling window may include the first 500 data items , a
second rolling window may include data items 501 to 1000 ,
etc.
[0018] An “ interaction ” may include a reciprocal action or
influence . An interaction can include a communication ,
contact , or exchange between parties , devices , and / or enti
ties . An example interaction can include a login attempt by
a device to a secure webpage hosted by a server computer .
Additional example interactions include a transaction
between two parties and a data exchange between two
devices . In some embodiments , an interaction can include a
user requesting access to secure data , a secure webpage , a
secure location , and the like . In other embodiments , an
interaction can include a payment transaction in which two
devices can interact to facilitate a payment .
[0019] “ Interaction data ” can include data associated with
an interaction . Interaction data can include any suitable data
representative of and / or associated with an interaction . In
some embodiments , interaction data for interactions that
occur over time can comprise timestamps and entity iden
tifiers (e.g. , user identifiers , IP addresses , etc.) . An example
of interaction data can be webpage login attempt data . In
some embodiments , the interaction data can comprise HTTP
header packet data . The HTTP header packet data can
include data fields of , for example , authorization , browser
type , connection , date , expect , forwarded , from , host , warn
ing , etc.
[0020] “ Pseudo interaction data ” can include data resem
bling interaction data . In some embodiments , pseudo inter
action data can include similar data elements as interaction
data . For example , if the interaction data includes IP address
and date , then the pseudo interaction data can also include
IP address and date . In some embodiments , pseudo interac
tion data can include historical interaction data determined
to be similar to current interaction data . In other embodi
ments , pseudo interaction data can include generated inter
action data .
[0021] “ Historical interaction data ” can include past inter
action data . For example , interaction data not included
within a current rolling window (e.g. , with timestamps prior
to a start time of the rolling window) can be historical
interaction data .
[0022] A “ topological graph ” can include a representation
of a graph in a plane of distinct vertices connected by edges .
The distinct vertices in a topological graph may be referred
to as “ nodes . " Each node may represent specific information
for an event or may represent specific information for a
profile of an entity or object . The nodes may be related to
one another by a set of edges , E. An " edge ” may be
described as an unordered pair composed of two nodes as a
subset of the graph G = (V , E) , where is G is a graph

comprising a set V of vertices (nodes) connected by a set of
edges E. For example , a topological graph may represent a
transaction network in which a node representing a trans
action may be connected by edges to one or more nodes that
are related to the transaction , such as nodes representing
information of a device , a user , a transaction type , etc. An
edge may be associated with a numerical value , referred to
as a " weight , ” that may be assigned to the pairwise connec
tion between the two nodes . The edge weight may be
identified as a strength of connectivity between two nodes
and / or may be related to a cost or distance , as it often
represents a quantity that is required to move from one node
to the next .
[0023] A " subgraph ” or “ sub - graph ” can include a graph
formed from a subset of elements of a larger graph . The
elements may include vertices and connecting edges , and the
subset may be a set of nodes and edges selected amongst the
entire set of nodes and edges for the larger graph . For
example , a plurality of subgraph can be formed by randomly
sampling graph data , wherein each of the random samples
can be a subgraph . Each subgraph can overlap another
subgraph formed from the same larger graph .
[0024] A “ community ” can include a group of nodes in a
graph that are densely connected within the group . A com
munity may be a subgraph or a portion / derivative thereof
and a subgraph may or may not be a community and / or
comprise one or more communities . A community may be
identified from a graph using a graph learning algorithm ,
such as a graph learning algorithm for mapping protein
complexes . Communities identified using historical data can
be used to classify new data for making predictions . For
example , identifying communities can be used as part of a
machine learning process , in which predictions about infor
mation elements can be made based on their relation to one
another .
[0025] The term “ node " can include a discrete data point
representing specified information . Nodes may be connected
to one another in a topological graph by edges , which may
be assigned a value known as an edge weight in order to
describe the connection strength between the two nodes . For
example , a first node may be a data point representing a first
device in a network , and the first node may be connected in
a graph to a second node representing a second device in the
network . The connection strength may be defined by an edge
weight corresponding to how quickly and easily information
may be transmitted between the two nodes . An edge weight
may also be used to express a cost or a distance required to
move from one state or node to the next . For example , a first
node may be a data point representing a first position of a
machine , and the first node may be connected in a graph to
a second node for a second position of the machine . The
edge weight may be the energy required to move from the
first position to the second position .
[0026] A “ server computer ” may include a powerful com
puter or cluster of computers . For example , the server
computer can be a large mainframe , a minicomputer cluster ,
or a group of servers functioning as a unit . In one example ,
the server computer may be a database server coupled to a
web server . The server computer may comprise one or more
computational apparatuses and may use any of a variety of
computing structures , arrangements , and compilations for
servicing the requests from one or more client computers .
[0027] A “ memory ” may include any suitable device or
devices that may store electronic data . A suitable memory

US 2020/0097817 A1 Mar. 26 , 2020
3

may comprise a non - transitory computer readable medium
that stores instructions that can be executed by a processor
to implement a desired method . Examples of memories may
comprise one or more memory chips , disk drives , etc. Such
memories may operate using any suitable electrical , optical ,
and / or magnetic mode of operation .
[0028] A “ processor ” may refer to any suitable data com
putation device or devices . A processor may comprise one or
more microprocessors working together to accomplish a
desired function . The processor may include a CPU that
comprises at least one high - speed data processor adequate to
execute program components for executing user and / or
system - generated requests . The CPU may be a micropro
cessor such as AMD's Athlon , Duron and / or Opteron ; IBM
and / or Motorola's PowerPC ; IBM's and Sony's Cell pro
cessor ; Intel's Celeron , Itanium , Pentium , Xeon , and / or
XScale ; and / or the like processor (s) .
[0029] Embodiments may allow for continuous learning
and rebuilding of machine learning model (s) . An analysis
computer can determine a rolling window associated with
interaction data for interactions that occur over time . After
determining the rolling window , the analysis computer can
retrieve interaction data for interactions occurring in the
rolling window . The analysis computer can then generate
pseudo interaction data based upon historical interaction
data , and then embed the interaction data for the interactions
occurring within the rolling window and the pseudo inter
action data to form interaction data matrices . The analysis
computer can then form a neural network model using the
interaction data matrices .
[0030] As an illustrative example , the interaction data can
include login attempts (e.g. , attempts to login to a secure
webpage) . The analysis computer can determine a rolling
window of 1 week in length and then retrieve data relating
to the login attempts which occurred within the 1 week . The
analysis computer can also retrieve data relating to previous
login attempts (e.g. , historical interaction data) which may
have occurred prior to the rolling window . The previous
login attempts may have occurred the past 2 months , 6
months , 1 year , etc. The analysis computer can generate data
relating to pseudo login attempts , for example , based upon
trends in the data relating to the previous login attempts . For
example , the analysis computer may determine that previous
login attempts indicate that fraudulent login attempts are
typically performed at night by a particular browser type and
originating from a similar location . Past login attempts
associated with a trend like this can be selected for use as
pseudo login attempts . However , it is understood that the
analysis computer can determine any suitable trend in the
previous login attempts .
[0031] After creating the pseudo login attempts , the analy
sis computer can optionally embed the current login
attempts as well as the pseudo login attempts to form
interaction data matrices which may represent the current
login attempts and pseudo login attempts in a vector space .
The analysis computer can then form a neural network
model using the interaction data matrices . For example , the
analysis computer can train a neural network that may
predict whether or not a given login attempt is a fraudulent
or non - fraudulent login attempt .
[0032] Utilizing the current login attempts and the pseudo
login attempts when training the neural network can allow
for a resulting model which has increased predictive power .

For example , the pseudo login attempts can place emphasis
on particular trends by introducing data relating to those
trends .
[0033] This addresses the problem when a fraudster and a
secure system can react to the actions of another which can
lead to situation involving game theory (e.g. , a situation in
which there is strategic interaction between rational deci
sion - makers) . For example , a fraudster may perform fraudu
lent login attempts from a first geographic location . As a
result the secure system may be changed such that login
attempts originating from the first geographic location are
scrutinized with more particularity than login attempts origi
nating from other geographic locations . The fraudster can
then change their strategy and can , for example , perform IP
spoofing . The fraudster can modify the IP address such that
it appears , to the secure system , that the login attempt
originates from a second geographic location . Yet again , the
secure system may be changed such that login attempts
originating from the second geographic location are scruti
nized with more particularity than other geographic loca
tions . However , if the models implementing these changes
(e.g. , determining to scrutinize the particular geographic
location analyze current data , they can stop scrutinizing the
login attempts from the first geographic location . Thus ,
simply being reactive to what the fraudster is currently doing
and may not be desirable .
[0034] Another option to address the problem above might
be to use all of the historical data and all data within a
current rolling window (e.g. , current interaction data) . How
ever , using all of the historical interaction data and the
current interaction data to train a neural network can take a
long time since large amounts of data need to be processed .
If the neural network takes too long to train , then it cannot
react to , for example , network attacks which can occur on
much smaller timescales .

I. Systems

[0035] FIG . 1 shows a monitoring system 100 , comprising
an analysis computer 102 , an interaction data database 104 ,
a data reception computer 106 , a plurality of remote clier
108-112 , and a requesting client 114. The analysis computer
102 may be in operative communication with the interaction
data database 104 and the requesting client 114. The inter
action data database 104 may be in operative communica
tion with the data reception computer 106. The data recep
tion computer 106 may be in operative communication with
the plurality of remote clients 108-112 .
[0036] The components of the monitoring system 100 can
communicate with one another via any appropriate means ,
including a communications network . Messages and other
communications may be in encrypted or unencrypted form .
A communications network may be any one and / or the
combination of the following : a direct interconnection ; the
Internet ; a Local Area Network (LAN) ; a Metropolitan Area
Network (MAN) ; an Operating Missions as Nodes on the
Internet (OMNI) ; a secured custom connection ; a Wide Area
Network (WAN) ; a wireless network (e.g. , employing pro
tocols such as but not limited to a Wireless Application
Protocol (WAP) , I - mode , and / or the like) ; and / or the like .
Messages between the devices and computers may be trans
mitted using a secure communications protocol such as , but
not limited to , File Transfer Protocol (FTP) ; Hypertext
transfer Protocol (HTTP) ; Secure Hypertext Transfer Pro
tocol (HTTPS) , Secure Socket Layer (SSL) and / or the like .

US 2020/0097817 A1 Mar. 26 , 2020
4

[0037] For simplicity of illustration , a certain number of
components are shown in FIG . 1. It is understood , however ,
that embodiments of the invention may include more than
one of each component .
[0038] The plurality of remote clients 108-112 can include
the first remote client 108 , the second remote client 110 , and
the Nth remote client 112. A remote client can include any
suitable device (e.g. , personal computers , server computers ,
laptop computers , smart phones , etc.) . A remote client , such
as first remote client 108 , can perform an interaction with the
data reception computer 106. For example , the data recep
tion computer 106 may host a secure webpage . The remote
client can attempt to login to the secure webpage (e.g. ,
interact with the data reception computer 106) . In some
embodiments , the login attempt may be a successful login
attempt , a fraudulent login attempt , a failed login attempt ,
etc.

[0039] The data reception computer 106 can be configured
or programmed to store the interaction data in the interaction
data database 104. The data reception computer 106 can
receive data from the remote client . For example , the data
reception computer 106 can receive an HTTP header packet
and / or any other suitable data associated with a login
attempt . The data reception computer 106 can store the
interaction data (e.g. , the HTTP header packet) in the
interaction data database 104. In some embodiments , the
data reception computer 106 can forward the interaction data
to an intermediate computer which may store the interaction
data in the interaction data database 104 .
[0040] The interaction data database 104 can include any
suitable database . The database may be a conventional , fault
tolerant , relational , scalable , secure database such as those
commercially available from OracleTM or SybaseTM , or in
some embodiments , from other open source alternatives
(e.g. , MySQL , etc.) . The interaction data database 104 can
store interaction data .
[0041] The analysis computer 102 can be configured or
programmed to analyze interaction data . For example , in
some embodiments , the analysis computer 102 can deter
mine a rolling window associated with interaction data for
interactions that occur over time . The analysis computer 102
can retrieve interaction data occurring in the rolling window
from the interaction data database 104. The analysis com
puter 102 can also generate pseudo interaction data based
upon historical interaction data . In some embodiments , the
analysis computer 102 can generate the pseudo interaction
data based on one or more data trends in the historical
interaction data . The one or more trends can be determined
in any suitable matter as described herein . For example , the
analysis computer 102 can cluster the historical interaction
data based on similarities between the interactions repre
sented as the historical interaction data into community
groups . As an illustrative example , where the interaction
data may include login attempts , the historical interaction
data can be clustered into an IP address spoofing community
(which may include login attempts performed by spoofed IP
address) , an authentic community (which may include
authentic login attempts) , a network attack community
(which may include login atte performed by a network
of devices against a secure webpage) , etc.
[0042] The analysis computer 102 can also embed the
interaction data for the interactions occurring within the
rolling window as well as the pseudo interaction data to form

interaction data matrices . The analysis computer 102 can
then form a neural network model using the interaction data
matrices .
[0043] In some embodiments , the analysis computer 102
can store the neural network model in a model database . At
any suitable time thereafter , the analysis computer 102 can
receive a request message comprising request data from the
requesting client 114. In some embodiments , the request
message can include , for example , a request for the analysis
computer 102 to perform an analysis on the request data
comprising interaction data . In other embodiments , the
request message can request a prediction from the analysis
computer 102. The requesting client 114 can include any
suitable computer which can be configured to request infor
mation from the analysis computer 102 .
[0044] The analysis computer 102 can determine a
response message to the request message . The response
message can comprise response data output by the neural
network model based on the request data . The analysis
computer 102 can then provide the response message to the
requesting client 114 .
[0045] FIG . 2 shows a block diagram of an exemplary
analysis computer 200 according to some embodiments . The
analysis computer 200 may comprise a memory 202 , a
processor 204 , a network interface 206 , and a computer
readable medium 208. The computer readable medium 208
may comprise a number of software modules . The computer
readable medium 208 can comprise a pseudo interaction
data generation module 208 A , an embedding module 208B ,
and a machine learning module 208C . However , it is under
stood that the computer can comprise any other suitable
modules (e.g. , a database communication module , a rolling
window determination module , etc.) .
[0046] The analysis computer 200 can be in operative
communication with an interaction data database 210. The
interaction data database 210 can be similar to the interac
tion data database 104 , and the details thereof need not be
repeated here .
[0047] The memory 202 can be used to store data and
code . The memory 202 may be coupled to the processor 204
internally or externally (e.g. , cloud based data storage) , and
may comprise any combination of volatile and / or non
volatile memory , such as RAM , DRAM , ROM , flash , or any
other suitable memory device . For example , the memory
202 can store cryptographic keys , interaction data , weight
values , etc.
[0048] The computer readable medium 208 may comprise
code , executable by the processor 204 , for performing a
method comprising : determining , by an analysis computer ,
a rolling window associated with interaction data for inter
actions that occur over time ; retrieving , by the analysis
computer , interaction data for interactions occurring in the
rolling window ; generating , by the analysis computer ,
pseudo interaction data based upon historical interaction
data ; and forming , by the analysis computer , a neural
network model using the interaction data for interactions
occurring within the rolling window and the pseudo inter
action data .
[0049] The pseudo interaction data generation module
208A may comprise code or software , executable by the
processor 204 , for generating pseudo interaction data .
Pseudo interaction data can include data resembling inter
action data . In some embodiments , the pseudo interaction
data can include similar data elements as interaction data .

US 2020/0097817 A1 Mar. 26 , 2020
5

For example , if the interaction data includes IP address , host ,
time , and forwarded , then the pseudo interaction data can
also include IP address , host , time , and forwarded . In other
embodiments , pseudo interaction data can include historical
interaction data determined to be similar to current interac
tion data . In other embodiments , pseudo interaction data can
include generated interaction data . The pseudo interaction
data generation module 208A , in conjunction with the
processor 204 , can generate the pseudo interaction data in
any suitable manner based on historical interaction data
stored in the interaction data database 210 .

[0050] For example , the pseudo interaction data genera
tion module 208A , in conjunction with the processor 204 ,
can determine one or more data trends in the historical
interaction data . The one or more trends can be determined
in any suitable matter as described herein . For example , the
analysis computer 200 can perform a learning process using
the historical interaction data . The analysis computer 200
can , for example , cluster the historical interaction data based
on similarities between the interactions represented as the
historical interaction data into community groups . Further
details regarding clustering of data into community groups
are described in [Fortunato , Santo . “ Community detection in
graphs . ” Physics reports 486.3-5 (2010) : 75-174 .] which is
herein incorporated by reference . The pseudo interaction
data generation module 208A , in conjunction with the
processor 204 , can generate a plurality of pseudo interac
tions based on the one or more data trends (e.g. , identified
in the community groups) to form pseudo interaction data .
[0051] In some embodiments , the plurality of pseudo
interactions can include historical interactions determined to
be within a threshold amount of similarity of the current
interaction data (e.g. , the interaction data occurring within
the rolling window) . In other embodiments , the plurality of
pseudo interactions can include similar data elements (e.g. ,
IP address , hosts , forwarded , etc.) as historical interactions
determined to be within a threshold amount of similarity to
the current interaction data . Further details regarding gen
erating pseudo interaction data according to some embodi
ments are discussed herein in reference to FIG . 6 .
[0052] The embedding module 208B may comprise code
or software , executable by the processor 204 , for embedding
interaction data and the pseudo interaction data . In some
embodiments , embedding can include transforming input
data to output data while maintaining the underlying mean
ing of the input data in relation to other input data . The
embedding module 208B , in conjunction with the processor
204 , can perform an embedding process (e.g. , embed) in any
suitable manner . The embedding module 208B , in conjunc
tion with the processor 204 , can map discrete and / or cat
egorical variables to a vector , or matrix , of continuous
numbers . In some embodiments , the result of an embedding
process (e.g. , embedded interaction data and pseudo inter
action data) may be referred to as an embedding . The
embedding can be a low - dimensional , learned continuous
vector representation (s) . To construct representations of the
interaction data and the pseudo interaction data , the embed
ding module 208B , in conjunction with the processor 204 ,
can utilize an embedding neural network and a supervised
task to learn the embedding (s) . In some embodiments , the
individual dimensions in these resulting matrices (e.g. , inter
action data matrices) from the embedding process typically
may have no inherent meaning . Instead , the analysis com

puter 200 can take advantage of the overall patterns of
location and distance between vectors .
[0053] As an example , if one has input data (e.g. , input to
the embedding module 208B) that includes 50,000 words
used in a collection of movie reviews , the embedding
module 208B , in conjunction with the processor 204 , could
learn 100 - dimensional embeddings for each word using an
embedding neural network trained to predict the sentimen
tality of the reviews . Words in the vocabulary that are
associated with positive reviews such as “ brilliant ” or
“ excellent ” can come out closer in the embedding space
because the neural network has learned these are both
associated with positive reviews .
[0054] The embeddings determined by the embedding
module 208B , in conjunction with the processor 204 , can be
the parameters , or weights , of the neural network that are
adjusted during training to minimize the loss on the super
vised task . Although in a supervised machine learning task
the goal is usually to train a model to make predictions on
new data , in this embedding model , the predictions may not
be further used . The embedding module 208B , in conjunc
tion with the processor 204 , can determine the embedding
weights (e.g. , the representation of the interaction data and
pseudo interaction data as continuous vectors) . Further
details regarding embedding can be found in [Alon , Uri , et
al . " code2vec : Learning distributed representations of
code . ” Proceedings of the ACM on Programming Languages
3.POPL (2019) : 40.] where embeddings of code snippets are
determined , which is herein incorporated by reference .
[0055] The machine learning module 208C may comprise
code or software , executable by the processor 204 , for
training machine learning models (e.g. , neural network
models) . In some embodiments , the machine learning mod
ule 208C can contain code that defines a machine learning
model , as well as code that can enable the processor 204 to
train the machine learning model . The trained machine
learning model can accept feature inputs and determine an
output (e.g. , a classification , prediction , etc.) for each input
vector . The machine learning module 208C , in conjunction
with the processor 204 , may use suitable machine learning
models based on algorithms including , but not limited to :
neural networks , decision trees , support vector methods , and
K - means algorithms .
[0056] For example , the machine learning module 208C ,
in conjunction with the processor 204 , can build a math
ematical model based on sample data , known as “ training
data , ” to make predictions or decisions without being explic
itly programmed to perform the task . In some embodiments ,
the machine learning module 208C , in conjunction with the
processor 204 , can train a neural network . A neural network
can be a model based on a collection of connected units or
nodes called artificial neurons . Each connection (e.g. , edge)
can transmit information (e.g. , a signal) from node to
another . A node that receives a signal can process it and then
signal additional nodes connected to it . In some embodi
ments , the signal at a connection between nodes can include
a real number , and the output of each node can be computed
by some non - linear function of the sum of its inputs . Nodes
and edges can have a weight that adjusts as learning pro
ceeds . The weight may increase or decrease the strength of
the signal at an edge . In some embodiments , nodes may have
a threshold such that the signal is only sent if the aggregate
signal crosses that threshold . Different layers of the neural
network may perform different kinds of transformations on

US 2020/0097817 A1 Mar. 26 , 2020
6

their inputs . Further , signals can travel from the first layer
(e.g. , the input layer) , to the last layer (e.g. , the output layer) ,
possibly after traversing middle layer (s) (e.g. , hidden layer
(s)) . In some embodiments , the machine learning module
208C , in conjunction with the processor 204 , can train a
neural network as described in reference to FIG . 3 .
[0057] The network interface 206 may include an interface
that can allow the analysis computer 200 to communicate
with external computers . The network interface 206 may
enable the analysis computer 200 to communicate data to
and from another device (e.g. , a requesting client , etc.) .
Some examples of the network interface 206 may include a
modem , a physical network interface (such as an Ethernet
card or other Network Interface Card (NIC)) , a virtual
network interface , a communications port , a Personal Com
puter Memory Card International Association (PCMCIA)
slot and card , or the like . The wireless protocols enabled by
the network interface 206 may include Wi - FiTM . Data trans
ferred via the network interface 206 may be in the form of
signals which may be electrical , electromagnetic , optical , or
any other signal capable of being received by the external
communications interface (collectively referred to as “ elec
tronic signals ” or “ electronic messages ”) . These electronic
messages that may comprise data or instructions may be
provided between the network interface 206 and other
devices via a communications path or channel . As noted
above , any suitable communication path or channel may be
used such as , for instance , a wire or cable , fiber optics , a
telephone line , a cellular link , a radio frequency (RF) link ,
a WAN or LAN network , the Internet , or any other suitable
medium .

II . Methods

ments of the interaction) . Similarly , node 312 can be a
second element of the first vector of the interaction data 302 ,
while node 314 can be an Nth element of the first vector of
the interaction data 302 .
[0062] The first vector can include data associated with a
first login attempt . For example , the first element of the first
vector (e.g. , at node 310) can include an IP address . The
second element of the first vector (e.g. , at node 312) can
include a browser type . The Nth element of the first vector
(e.g. , at node 314) can include a host .
[0063] In some embodiments , the analysis computer , prior
to training the neural network , can embed the input inter
action data . For example , the edges 320 , 322 , and 324 can
illustrate embedding of the interaction data . The interaction
data 302 as a whole may be embedded , and the resulting
vector input into the neural network at the input layer 304 .
The embedding process can be performed with an embed
ding neural network (not specifically illustrated in FIG . 3) ,
and the embedding process is described in further detail
below .
[0064] As an illustrative example , a first interaction data
of the interaction data 302 can include three data elements .
The three data elements can be an IP address of “ 123.01 .
02.3456 , ” a browser type of " browser_A1 , " and a host of
" en.example.org . ” The interaction data 302 can be embed
ded for example via an embedding neural network (e.g. , a
neural network which may embed data) . The embedding
neural network can map the elements of the input interaction
data 302 to a vector of values . As noted above , the embed
ding neural network is not specifically illustrated in FIG . 3 .
[0065] As an example , the data input into the embedding
neural network can include [123.01.02.3456 , browser_A1 ,
en.example.org] . In some embodiments , the data elements of
the input interaction data 302 may be split in any suitable
manner , for example , via NGram . For example , the analysis
computer can determine to split the above interaction data
302 into [123_01 , 01_02 , 02_3456 , 123 , 01 , 02 , 3456 ,
browser_A1 , browser , A1 , en , example , org , en.example .
org] . This data may be input into the embedding neural
network . The output vector , corresponding to the input data ,
can be determined by the embedding neural network and can
include for example [1.2 , 3.4 , 1.0) . In some embodiments ,
the output vector of [1.2 , 3.4 , 1.0) can be referred to as an
embedding . The collection of all of the output vectors can be
referred to as an interaction data matrix , as each column , or
row , of the matrix may include one of the output vectors . It
is understood that even though the edges 320 , 322 , and 324
illustrate a one - to - one connection between nodes of the
interaction data 302 and the input layer 304 , the embedding
process may , in some embodiments , convolute the input data
elements . Further details regarding embedding can be found
in [Alon , Uri , et al . " code2vec : Learning distributed repre
sentations of code . ” Proceedings of the ACM on Program
ming Languages 3.POPL (2019) : 40.] where embeddings of
code snippets are determined , which is herein incorporated
by reference .
[0066] In other embodiments , at the edges 320 , 322 , and
324 , the analysis computer can re - weight the first element ,
the second element , and the Nth element , respectively . The
analysis computer can weight the elements of the interaction
data 302 in any suitable manner known to one of skill in the
art . In some embodiments each vector of the interaction data
302 may be weighted individually and then individually

[0058] Embodiments can use the systems and apparatuses
described herein to at least create a machine learning model
based on interaction data . FIGS . 3-4 describe some
examples of such methods . In some embodiments , the
analysis computer may include the analysis computer 102 or
the analysis computer 200 of FIGS . 1 and 2 , respectively .
[0059] According to some embodiments , the analysis
computer can continuously rebuild deep learning models
based on dynamic embedding of interaction data including ,
for example , HTTP header packets . In some embodiments ,
the analysis computer can create an AI system that can learn
in real - time . Previous machine learning models (e.g. , deep
learners , etc.) may have problems processing the interaction
data since the data can come from many different distribu
tions and populations . A traditional neural network that
evaluates different distributions in real - time can overfit the
data . In some embodiments , the analysis computer can
upfront some of the smoothing of the information space
(e.g. , by embedding the interaction data) . The analysis
computer can feed embedded data (e.g. , interaction data
matrices) into the learner .
[0060] A. Neural Networks
[0061] The analysis computer can embed interaction data
to form interaction data matrices as described herein . The
analysis computer can then input the interaction data matri
ces into , for example , a neural network . FIG . 3 shows
learning process according to some embodiments . As illus
trated , the artificial neural network 300 includes a series of
layers , each representing a set of nodes . For example , the
node 310 can be a first element of a first vector of the
interaction data 302 (e.g. , a vector including the data ele

US 2020/0097817 A1 Mar. 26 , 2020
7

input into the input layer 304 as shown in FIG . 3. At the edge
322 , the analysis computer can re - weight the second ele
ment .

[0067] On one side of the series of layers exists an input
layer 304. The input layer 304 includes a set of nodes (e.g. ,
nodes 330 , 332 , and 334) that are referred to herein as input
nodes . Each of these input nodes may be mapped to a
particular feature of an object model or an object model
itself . In some embodiments , each “ feature ” may actually
comprise a combination of other features . For example , a
feature may comprise a number of data points , a label
associated with those data points (e.g. , a region label) , a
position of the data points with respect to the rest of the
object model , or any other suitable feature . For example , in
some embodiments , a feature may be a result of embedding
interaction data , as described herein .
[0068] On the other side of the series of layers is an output
layer 308. The output layer 308 can include a number of
output nodes . Each of the output nodes may be mapped to
an object model associated with a particular category of
object . In some embodiments , each output node may be
mapped to a region of a number of regions associated with
an object model provided as input . As an illustrative
example , the output layer 308 can include two nodes (e.g. ,
nodes 370-372) . The node 370 can correspond to an output
of " fraud , ” whereas the node 372 can correspond to an
output of “ not fraud . ” However , it is understood that the
output layer 308 can include any suitable number of nodes
(e.g. , 2 , 5 , 10 , 100 , etc.) .
[0069] One or more hidden layers 306 can separate the
input layer 304 and the output layer 308. The set of hidden
layers 306 can include “ N ” number of hidden layers , where
“ N ” is an integer greater than or equal to one . In turn , each
of the hidden layers can also include a set of nodes that are
referred to herein as hidden nodes .
[0070] On one side of the hidden layers 306 , hidden nodes
(e.g. , nodes 350 , 352 , and 354) are interconnected to the
input nodes . Each of the input nodes may be connected to
each of the hidden nodes of the hidden layer connected to the
input layer 304. On the other side of the hidden layer 306 ,
hidden nodes are connected to the output nodes . Each of the
output nodes may be connected to each of the hidden nodes
of the hidden layer connected to the output layer 308. In
other words , each input node connects to each hidden node
in the hidden layer closest to the input layer 304 and each
output node connects to each hidden node in the hidden layer
closest to the output layer 308. The input nodes are not
directly interconnected to the output nodes . If multiple
hidden layers exist , the input nodes are interconnected to
hidden nodes of the closest hidden layer only . In turn , these
hidden nodes are interconnected to the hidden nodes of the
next hidden layer and so on and so forth .
[0071] An interconnection may represent a piece of infor
mation learned about the two interconnected nodes . In
comparison , a connection between a hidden node and an
output node may represent a piece of information learned
that is specific to the output node . The interconnection may
be assigned a numeric weight that can be tuned (e.g. , based
on a training dataset) , rendering the artificial neural network
300 adaptive to inputs and capable of " learning . "
[0072] Generally , the hidden layer 306 allows knowledge
about the input nodes of the input layer 304 to be shared
amongst the output nodes of the output layer 308. To do so ,
an activation function f can be applied to the input nodes

through the hidden layer 306. In an example , the activation
function f may be non - linear . Different non - linear activation
functions f are available including , for instance , a rectifier
function f (x) = max (0 , x) . The activation function f can
include any suitable activation (e.g. , step function , logistic
function , Tanh function , rectified linear unit (ReLU) , soft
max , etc.) .
[0073] The artificial neural network 300 may also use one
or more cost or loss functions to find an optimal solution
(e.g. , an optimal activation function) . The optimal solution
can represent the situation where no solution has a cost less
than the cost of the optimal solution . In an example , the cost
function includes a mean - squared error function that mini
mizes the average squared error between an output f (x) and
a target value y over the example pairs (x , y) . In some
embodiments , a backpropagation algorithm that uses gradi
ent descent to minimize the cost function may be used to
train the artificial neural network 300. Using a backpropa
gation algorithm , the output values are compared with a
correct answer to compute the value of some predefined
error - function . In some embodiments , by various tech
niques , the error is then fed back through the network . Using
this information , the algorithm may adjust the weights of
each connection in order to reduce the value of the error
function by some small amount . In other embodiments , the
artificial neural network 300 may be an autoencoder neural
network , in which both inputs and outputs are provided to
the artificial neural network during training and the autoen
coder learns to reconstruct its inputs .
[0074] In the depicted artificial neural network 300 , a
forecasting model may be generated such that the hidden
layer 306 retains information (e.g. , specific variable values
and / or transformative functions) for a set of input values and
output values used to train the artificial neural network 300 .
This retained information may be applied to a new interac
tion data in order to identify a likelihood that the interaction
data is fraudulent or not fraudulent . In some embodiments ,
the artificial neural network 300 may be trained on samples
having known classifications (e.g. , fraudulent or not fraudu
lent) . For example , an artificial neural network 300 may be
used to generate a forecasting model using inputs that
include a plurality of known fraudulent input samples and
known not fraudulent input samples where the results are
optimized to minimize a distance between results for the
fraudulent samples from a fraudulent center and maximize
results for the not fraudulent samples from that center . In this
example , the resulting forecasting model may be applied to
raw interaction data input in order to generate a result for
that interaction data input in relation to the results for the
known samples .
[0075] By way of illustration , a neural network as depicted
in FIG . 3 may be trained using both known fraudulent
samples and not fraudulent samples as inputs . Each of the
output nodes in this example may represent results posi
tioned within a hyperspace . When a new interaction data is
presented as input to the trained neural network , the neural
network will output a result which can be assessed based on
its position within the hyperspace .
[0076] B. Monitoring Method
[0077] FIG . 4 shows a flowchart of a monitoring method
according to embodiments . The method illustrated in FIG . 4
will be described in the context of an analysis computer
analyzing interaction data . The interaction data can include ,
for example , login attempts to a secure webpage . A login

US 2020/0097817 A1 Mar. 26 , 2020
8

attempt may be a fraudulent login attempt or an authentic
login attempt . The analysis computer can create a deep
learner (e.g. , a neural network) which can predict fraudulent
login attempts such as , for example , fraudulent login attacks
that may take place during a network attack . It is understood ,
however , that the method can be applied to other circum
stances and use cases .
[0078] Prior to step 404 , a data reception computer can
receive interaction data from , for example , a remote client .
For example , the data reception computer may host a secure
webpage . The remote client may attempt to access the secure
webpage . During the login attempt , the data reception com
puter can receive any suitable data associated with the login
attempt . For example , the received interaction data can
include data of an HTTP header packet . The HTTP header
packets can contain data such as , for example , IP address ,
browser type , forwarded (e.g. , original information of a
client connecting to a web server through an HTTP proxy) ,
host (e.g. , a domain name of the server (for virtual hosting) ,
and the TCP port number on which the server is listening . In
some embodiments , the port number may be omitted if the
port is the standard port for the service requested) , warning
(e.g. , A general warning about possible problems with the
entity body) , etc. The interaction data can further comprise
timestamps . The host header field in a request can provide
the host and port information from the target URL , enabling
an origin server to distinguish among resources while ser
vicing requests for multiple host names on a single IP
address . A fraudulent entity (e.g. , a fraudster) may attempt to
fraudulently login to the webpage . At step 404 , the data
reception computer can store the interaction data in an
interaction data database .
[0079] At step 406 , an analysis computer can determine a
rolling window associated with interaction data for interac
tions that occur over time . The rolling window may allow
the analysis computer to retrieve particular portion of
interaction data . The analysis computer can retrieve the
interaction data for interactions occurring in the rolling
window from the interaction data database . The rolling
window may be for any suitable length of time , for example ,
one month , one week , one day , etc. In some embodiments ,
the analysis computer can also filter the interaction data that
was obtained using the rolling window .
[0080] In some embodiments , at step 408 , after retrieving
the interaction data occurring within the rolling window , the
analysis computer can determine one or more error matrices .
The one or more error matrices may represent weights which
may be used during an embedding process (e.g. , at step 414)
to embed the interaction data . The one or more error
matrices may be determined , as described in further detail in
FIG . 5. The one or more error matrices can indicate , for
example , how much error there is in predictions created by
a trained model . The one or more error matrices can be used
to transform input interaction data . An error matrix which
transforms the interaction data in such a way to yield a low
error trained model may be an optimal error matrix , and may
be stored . Embedding can include mapping a discrete vari
able to a vector of continuous numbers . In the context of
neural networks , an embedding can include low - dimen
sional , learned continuous vector representations of discrete
variables . Neural network embeddings can be useful
because they can reduce the dimensionality of categorical
variables and meaningfully represent categories in the trans
formed space . The analysis computer can determine an

optimal embedding of the interaction data . For example , the
analysis computer can perform a dynamic temporal graph
embedding process .
[0081] In some embodiments , during a dynamic embed
ding process , the analysis computer can represent the input
data (e.g. , the interaction data occurring within the rolling
window) as a graph including a plurality of nodes connected
via edges . In some embodiments , the interaction data may
already be stored as a graph . Further details regarding graph
data and graph database models can be found in [Angles ,
Renzo , and Claudio Gutierrez . “ Survey of graph database
models . ” ACM Computing Surveys (CSUR) 40.1 (2008) : 1.) ,
which is herein incorporated by reference .
[0082] In some embodiments , the analysis computer can
split one or more data elements of the interaction data (e.g. ,
IP address) apart using , for example , NGram . An NGram can
be a contiguous sequence of n items from a given sample of
text or data . As an illustrative example , the analysis com
puter can receive the raw data field of “ 123.01.02.3456 ”
which may be an IP address . An example , NGram of the IP
address can be “ 123_01 , 01_02 , 02_3456 , 123 , 01 , 02 ,
3456. ” The analysis computer may then determine an adja
cency matrix and a degree matrix , as known to one of skill
in the art . An adjacency matrix can be a square matrix which
may represent a finite graph . Elements of the adjacency
matrix can indicate whether pairs of vertices (e.g. , nodes) are
adjacent or not in the graph . A degree matrix can be a
diagonal matrix which may contain information about the
degree of each vertex — that is , the number of edges attached
to each vertex . The adjacency matrix and the degree matrix
can allow for the analysis computer to perform analysis on
the graph data (e.g. , interaction data) .
[0083] In some embodiments , the analysis computer can
then apply a transformation function to edge weights based
on time and error matrices . The time matrix can include
weights based on the age of the corresponding interaction .
For example , the analysis computer can provide a greater
weight towards more recent data . In this way , the analysis
may place a greater emphasis on more recent data of the data
??? ring within the rolling window . The error matrix can be
determined in any suitable manner . As an example , the error
matrix can be determined using a simulated annealing
process , which may determine an optimal solution .
[0084] The analysis computer can perform the simulated
annealing process as described in further detail in FIG . 5. As
an overview of FIG . 5 , described in detail herein , the
simulated annealing process can include an unsupervised
deep learner (e.g. , a restricted Boltzmann machine , etc.)
which may be used to create community groups from the
input data . A restricted Boltzmann machine (RBM) can be a
generative stochastic artificial neural network that can learn
a probability distribution over its set of inputs . The com
munity groups may be used to create new linkage between
vertices in the original graph . For example , the analysis
computer can apply a transformation to the adjacency
matrix . The transformation can include applying the time
matrix to the adjacency matrix . The analysis computer can
then create a model , for example , a gradient boosted tree ,
which may predict whether or not interaction data is fraudu
lent interaction data . The analysis computer can then evalu
ate the performance of the resulting model using a sample
data set . The analysis computer can determine , based on the
analysis of the performance , residual error values for each
input interaction data . The analysis computer can also deter

US 2020/0097817 A1 Mar. 26 , 2020
9

mine a total error . In some embodiments , the total error can
be determined as a mean squared error (MSE) . If the total
error exceeds a predetermined error threshold , then the
analysis computer can determine to store the error matrix .
Otherwise , the analysis computer can iterate the process . For
example , the analysis computer can transform the interac
tion data using the error matrix determined from the residual
errors , the create a new model using the transformed inter
action data . If MSE meets a predetermined threshold or , in
some embodiments , if a max iteration is reached , then the
process can end .
[0085] At steps 410 , in some embodiments , the best N
error matrices may be selected and stored in a database . For
example , the stored error matrices may satisfy the require
ments of the dynamic embedding process , described in
further detail herein . The analysis computer may store the
error matrices which result in neural networks which include
the lowest total error . By doing so , the analysis computer can
store the error matrix , which when used to transform the
input interaction data can be used to train a neural network
yielding a low error model . These error matrices which are
the best N error matrices may be later used later during
embedding of interaction data at step 414. In some embodi
ments , the analysis computer may also store the trained
embedding neural network in association with the stored
error matrix .
[0086] At step 412 , the analysis computer can generate
pseudo interaction data . The pseudo interaction data may
allow the analysis computer to include additional interaction
data representative of trends over time , beyond that of the
current interaction data . In some embodiments , the pseudo
interaction data can be generated by an pseudo interaction
data generator . In some embodiments , the analysis computer
can generate the pseudo interaction data based upon histori
cal interaction data . In some embodiments , the analysis
computer can determine one or more data trends in the
historical interaction data comprising interactions that occur
within and outside of the rolling window . The analysis
computer can generate a plurality of pseudo interactions
based on the one or more data trends to form pseudo
interaction data .
[0087] In one illustration , the analysis computer can gen
erate pseudo interaction data by determining a community
group of IP addresses of historical interaction data , wherein
the comm munity group includes IP addresses typically asso
ciated with fraudulent login attempts . In this example , the
trend can be that these IP addresses typically perform
fraudulent login attempts . The analysis computer can then
generate pseudo interaction data comprising IP addresses
included in the community group . In some embodiments , the
interaction data for interactions that occur over time can
comprise timestamps and entity identifiers (e.g. , an IP
address which may identifier an entity) . The analysis com
puter can create pseudo interaction data for pseudo interac
tions which comprises timestamps and entity identifiers ,
such that the pseudo interaction data may mimic the inter
action data . For example , the analysis computer can create
the pseudo interaction data with timestamps which occur
within the rolling window .
[0088] Further details regarding pseudo interaction data
generation are discussed in reference to FIG . 6. As an
overview of FIG . 6 , described in detail herein , data can be
derived from ensemble unsupervised deep learning models .
Models can be generated with several different time win

dows . The data may be filtered by removing data that scored
stably (the records appeared in similar cluster groups) within
a prior predefined cutoff threshold . Using the ensemble of
learners , cluster groups can be generated based on fraud
trends from a predetermined time period (e.g. , the past three
weeks) . The historical interaction data can be selected based
on whether or not they are within same cluster group of
recent interaction data . The historical interaction data can be
filtered using , for example , a weighted information vector
distance score (e.g. , to determine which interactions of the
historical interaction data are most similar to interactions of
the current interaction data) . The top matching historical
interaction data can then be selected and , in some embodi
ments , be modified to align with current interaction data
(e.g. , editing the timestamps of the historical interaction data
such that they fall within the current rolling window) . The
selected historical interaction data may be included as
pseudo interaction data The data can then be added as
fraudulent pseudo interactions when rebuilding the model .
For example , if a particular community of IP address are
strongly associated with a type of fraud patterns which are
trending (e.g. , currently occurring) , the analysis computer
can generate fraudulent pseudo interaction data using those
IP addresses . An example of fraud may be transactional
fraud , login fraud , spamming fraud , etc.
[0089] As an example , pseudo interaction data generated
by the analysis computer may include a fraud pattern such
as “ nighttime network attacks originating from location A in
English , ” which may be associated with 8 IP addresses . The
fraud pattern may be determined via a community group
which may include the 8 IP address associated with the fraud
trend and may indicate that the IP addresses share a location
code , a language code , etc. The 8 IP addresses may be
associated with performing network attacks , where the fraud
pattern may indicate that if one of the IP address begins a
login attempt , typically the other 7 will soon also perform
login attempts . This fraud trend can be useful to include into
the current interaction data , as to not forget about the 8 IP
addresses working together to perform fraud . Pseudo inter
action data can include interaction data comprising login
attempts which may have previously occurred by these 8 IP
address . For example , the analysis computer can include the
following 8 login attempts as pseudo interaction data : 1)
[time : 23:10 , host : www.example.com , location : A , lan
guage : English] , 2) [23:11 , www.example.com , A , English] ,
3) [23:12 , www.example.com , A , English] , 4) [23:12 , www .
example.com , A , English] , 5) [23:12 , www.example.com , A ,
English] , 6) [23:13 , www.example.com , A , English] , 7)
[23:13 , www.example.com , A , English] , and 8) [23:13 ,
www.example.com , A , English] . It is understood , however ,
that the pseudo interaction data may include more , or fewer ,
data elements as illustrated in this example .
[0090] At step 414 , after retrieving the interaction data
occurring within the rolling window as well as generating
the pseudo interaction data , the analysis computer can
embed the interaction data for the interactions occurring
within the rolling window and the pseudo interaction data to
form interaction data matrices . Each column or row (de
pending on implementation) of the interaction data matrix
can correspond to an interaction . In some embodiments , the
analysis computer can embed the interaction data and the
pseudo interaction data N times , once per each of the one or
more error matrices determined at step 410. For example ,
the analysis computer can embed the interaction data using

US 2020/0097817 A1 Mar. 26 , 2020
10

each of the one or more error matrices , and in some
embodiments , one or more associated embedding neural
networks . For example , the analysis computer can input the
interaction data into an embedding neural network to embed
the data . If steps 408-410 are not performed , then the
analysis computer can embed the interaction data based on
one error matrix , which may be predetermined .
[0091] As an illustrative example , for the interaction data
relating to login attempts , the data from the http header
packets can be embedded . For example , the IP address data
can be embedded by splitting octets into separate columns .
The browser type data can be embedded by splitting data
components based on spaces . The forwarded data can be
embedded by splitting the “ for’and ‘ to ' IP addresses broken
apart by octets . The host data can be embedded by splitting
the domain name into components and natural language
parsing where appropriate . The warning data can be embed
ded by splitting by spaces . However , it is understood that
other embedding schemes may be determined and may not
result in a one - to - one representation of the input data
elements of the interaction data (e.g. , the process of embed
ding may or may not convolute data elements of the input
interaction data) .
[0092] For example , a first IP address of “ 123.01.02.3456 ”
can be represented by [123_01 , 01_02 , 02_3456 , 123 , 01 ,
02 , 3456] (e.g. , via Ngram) . A second IP address of “ 123 .
01.02.9999 ” can be represented by [123_01 , 01_02 ,
02_9999 , 123 , 01 , 02 , 9999] . For simplicity , the first IP
address can be represented as [0 , 1 , 2 , 3 , 4 , 5 , 6] , whereas the
second IP address can be represented as [0 , 1 , 7 , 3 , 4 , 5 , 8] .
Embedding these two IP addresses can be input as , for
example , Embedding (9 , 2 , input_length = 7) . The first argu
ment (9) can be the number of distinct entries or possible
values (e.g. , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8) in the training set (e.g. ,
the first IP address and the second IP address) . The second
argument (2) can indicate the size of the embedding vectors
(e.g. , how long the output vector will be or the output - in
this case , there would be 2 elements per output vector) . The
input_length argument can indicate the size (e.g. , how many
elements in the input vector) of each input sequence (e.g. ,
vector) . Once the network has been trained , the weights of
the embedding layer may be obtained , which in this case will
be of size (9 , 2) (e.g. , 9 elements per input vector and 2
elements per output vector) and can be illustrated as Table
1 , below , which may be used to map inputs to embedding
vectors .

numbers themselves are very different . They four digits may
share a common attribute such as they may be associated
with different devices operated by the same person , con
nected to the same subnet . For example , in the table above ,
the IP address components “ 3456 ” and “ 9999 ” may respec
tively produce embeddings [2.5 , 1.2] and [2.6 , 1.5] , and may
indicate that they may share a common attribute . “ 3456 ” and
" 9999 " may respectively designate a cell phone and a laptop
computer associated with the same person using the same
subnet , and the “ same person ” in this example may be the
common attribute .
[0094] By using embeddings as inputs to a learning model ,
similar data may be reflected in the input data that is
provided to the learning model (420 , which is described in
further detail below) , so that the learning model is trained in
a more accurate and efficient manner . Stated differently , the
similar data may reflect some underlying meaning in the
data , and that underlying meaning can be imparted to the
subsequently used learning model .
[0095] The IP address component , index and correspond
ing embeddings of Table 1 illustrates an example embed
ding , however it is understood that any suitable output
embeddings can be determined by the analysis computer .
Further , the inputs can include the interaction data as a
whole , rather than only the IP addresses in the above
example .
[0096] At step 416 , after embedding the data (e.g. , the
interaction data occurring within the rolling window as well
as the pseudo interaction data) , the analysis computer can
determine a test sample and split the test sample from the
rest of the data . For example , the analysis computer can
separate 10 % , 20 % , 30 % , 40 % , 50 % , etc. of the interaction
data matrices . The analysis computer can separate a sub
group of the interaction data matrices to form the test
sample . The analysis computer can separate the test sample
in any suitable manner known to one of skill in the art . At
step 418 , the test sample may be stored in a test data
database . The test sample may be separated from the training
sample in order to later evaluate the model trained with the
training sample .
[0097] At step 420 , after storing the test sample , the
analysis computer can then rebuild a deep learning model
using the data . For example , the analysis computer can form
a neural network model using the interaction data matrices .
The analysis computer can form the neural network model
in any suitable manner . The neural network can be a
convolutional neural network , a recurrent neural network ,
etc. For example , in some embodiments , the analysis com
puter can build a deep learning model based on vectors of
the interaction data matrices of interaction data (e.g. , HTTP
header packet data) .
[0098] As an example , the analysis computer can train a
neural network with the interaction data matrices of the
interaction data matrices not included in the test sample . For
example , each column or row (depending on implementa
tion) of the interaction data matrix can correspond to an
interaction vector . Each vector can be input into the neural
network for training . Based on the training , the analysis
computer can determine a plurality of neural network
weights in part defining the neural network model . For
example , the analysis computer can train the neural network
as described in FIG . 3. The analysis computer can then
evaluate the neural network model using the test sample . At

TABLE 1

Example Embedding

IP Address Component Index Embedding

0 123_01
01_02
02_3456
123
01
02
3456
02_9999
9999

2
3
4
5

[1.1 , 3.4]
[1.2 , 2.1]
[0.9 , 3.4]
[2.8 , 2.8]
[0.7 , 3.1]
[3.2 , 2.0]
[2.5 , 1.2]
[1.2 , 4.0]
[2.6 , 1.5]

6
7
8

[0093] In this example , the only difference between the
first and second IP addresses is the last four digits . As shown
in the table above , the output of the neural network can
produce embeddings that are similar , despite the fact that the

US 2020/0097817 A1 Mar. 26 , 2020
11

step 422 , the analysis computer can store the rebuilt deep
learning model (e.g. , the neural network model) in a candi
dates database .
[0099] At step 424 , after storing the neural network model
(s) in the candidates database , the analysis computer may
evaluate the neural network model (s) in the candidates
database using test data from the test data database . The
analysis computer can evaluate a neural network model with
the test data in any suitable manner . The analysis computer
can input the test data into the neural network model to
determine an output . For example , the analysis computer can
input login attempt data . The neural network model can
predict (e.g. , classify) the input login attempt data as fraudu
lent or not fraudulent . In some embodiments , the analysis
computer can determine if there is a shift in distribution
and / or fit of the models .
[0100] At step 426 , the analysis computer can determine
whether or not the model is acceptable based on the evalu
ation . For example , the analysis computer can determine
whether or not neural network model accurately predicted
the input login attempt data as fraudulent or not fraudulent .
The analysis computer can determine whether or not the
model is acceptable based on the prediction accuracy of the
model . For example , the analysis computer can determine
that the model is acceptable , if the model accurately pre
dicted 70 % , 80 % , 90 % , 95 % , 99 % , etc. of the input login
attempt data .
[0101] If the analysis computer determines that the model
is not acceptable , then the analysis computer can discard a
model that is not acceptable and end the process . In some
embodiments , the analysis computer can repeat step 424
426 for each of the other models stored in the candidate
database if other models are stored in the candidate database .
If the analysis computer determines that the model is accept
able , then the analysis computer can proceed to step 428. At
step 428 , the analysis computer can store the neural network
model in the current model database .
[0102] At any suitable time , at step 430 , the analysis
computer can receive a request message comprising request
data . The analysis con can receive the request message
from any suitable external computer (e.g. , the requesting
client 114 of FIG . 1) . In some embodiments , the request data
can include new interaction data (e.g. , a login attempt
comprising a timestamp , an IP address , a host , etc.) .
[0103] At step 432 , after receiving the request message ,
the analysis computer can determine a response message to
the request message . The response message can comprise
response data output by the neural network model based on
the request data . For example , the analysis computer can
determine whether or not the new interaction data indicates
a fraudulent login attempt . As another example , in some
embodiments , the analysis computer can determine a pre
diction of whether or not one or more entities associated
with one or more IP addresses will attempt a fraudulent login
attempt
[0104] At step 434 , the analysis computer can transmit the
response message to the requesting client . The requesting
client , upon receiving the response message , can quickly be
able to react to the fraudulent login attempt (if determined to
be fraudulent by the analysis computer) . By being able to
more precisely predict fraudulent login attempts , network
attacks can more efficiently and quickly be identified . Thus
allowing attack mitigation strategies to be employed sooner
and more pointedly towards the network attack .

[0105] C. Dynamic Embedding
[0106] FIG . 5 shows a dynamic embedding determination
method according to some embodiments . In some embodi
ments , the method described in FIG . 5 may be performed by
an analysis computer , as described herein . The dynamic
embedding determination method can be performed at step
408 of FIG . 4. During the dynamic embedding process , the
analysis computer can determine an optimal embedding for
the interaction data . For example , during steps 502-518 , the
analysis computer can transform interaction data prior to
inputting the data into a model to train and test the model .
The transformation can be applied via , for example , an error
matrix . The analysis computer can later redetermine the
error matrix based on an evaluation of the performance of
the model . In some embodiments , if the performance is poor
(e.g. , a high total error) , the analysis computer can apply the
error matrix of the model to the interaction data , then train
and evaluate a next model . The analysis computer may
repeat this process until the total error of a model's predic
tions exceeds a predetermined threshold . In which case , the
error matrix of the model may be stored and later used to
embed input data at step 414 of FIG . 4 , since the error matrix
is the optimal error matrix which may be applied to the input
data such that a resulting model has low total error .
[0107] At step 502 , the analysis computer can create an
initial error matrix for the interaction data retrieved from an
interaction data database (e.g. , at steps 406 of FIG . 4) . For
example , the interaction data may be in a form of a graph
comprising a plurality of nodes , the nodes connected via
edges . The analysis computer can generate an initial error
matrix which may include data elements of a predetermined
value (e.g. , 1) . The initial error matrix may be of a size
similar of that of the interaction data (e.g. , a size of an
adjacency matrix and / or a degree matrix) . In some embodi
ments , the analysis computer can weight the data elements
in the error matrix based on a timestamp associated with the
data elements corresponding interaction . The data elements
in the error matrix may be weighted by , for example , a linear
degrading function based on the time of the corresponding
interaction . In such a way , the analysis computer may weight
the initial error matrix based on how long ago an interaction
of the interaction data occurred .
[0108] As an illustrative example , the analysis computer
may first embed the data utilizing an error matrix which may
describe a current embedding strategy . Initially the analysis
computer may not know the optimal error embedding strat
egy represented by an optimal error matrix . As such , the
analysis computer may determine to create an initial error
matrix where each element may be equal to a value of 1 .
[0109] At step 504 , after creating the initial error matrix ,
the analysis computer can split a portion of the interaction
data into a test sample . For example , the analysis computer
can split the interaction data into a first portion and a second
portion . The first portion may be a test sample . The second
portion may be a training sample . In some embodiments , the
second portion may include more interaction data than the
first portion . However , it is understood that any suitable
percentage of the interaction data may be included into the
first portion . At step 506 , the analysis computer can store the
test sample into a test sample database .
[0110] At step 508 , after storing the test sample , the
analysis computer can train one or more models with the
interaction data . Specifically , the analysis computer can train
the one or more models with the second portion (e.g. ,

US 2020/0097817 A1 Mar. 26 , 2020
12

training sample) of the interaction data . The one or more
models can include any suitable models , for example , in
some embodiments , the one or more models can include a
decision tree . The analysis computer can create the decision
tree in part by gradient tree boosting using the training
sample and a predefined target feature , as known to one of
skill in the art . The predefined target feature can include any
suitable target for the decision tree (e.g. , determining
whether or not input interaction data is fraudulent or not
fraudulent) .
[0111] At step 510 , after training the one or more models ,
the analysis computer can evaluate the one or models with
the test sample retrieved from the test sample database . For
example , the analysis computer can input the interaction
data of the test sample into a model . The model , for example ,
a decision tree , can determine whether or not input interac
tion data can be classified as “ fraud ” or “ not fraud , " or other
suitable predefined target feature .
[0112] At step 512 , after evaluating the one or more
models with the test sample , the analysis computer can
update the error matrix as well as determine a total error . The
total error can be determined in any suitable manner . For
example , in some embodiments , the total error can be a MSE
(mean squared error) . The error matrix can be updated based
on the residuals from the evaluation of each input interaction
data . For example , residuals in a statistical or machine
learning model can include the differences between
observed (e.g. , observed fraudulent or not fraudulent login
attempt) and predicted values (e.g. , prediction of fraudulent
or not fraudulent login attempt) of data . The residuals can be
a diagnostic measure used when assessing the quality of the
model . In some embodiments , the residuals may be referred
to as errors . In some embodiments , the analysis computer
can examine residuals in terms of their magnitude and / or
whether they form a pattern .
[0113] As an example , a situation in which the residuals
are all O , the model predicts perfectly . The further residuals
are from 0 , the less accurate the model . In the case of linear
regression , the greater the sum of squared residuals , the
smaller the R - squared statistic , all else being equal . Where
the average residual is not 0 , it implies that the model may
be systematically biased (i.e. , consistently over - predicting or
under - predicting) . The situation in which the residuals con
tain patterns , the model may be qualitatively wrong , as it is
failing to explain some property of the interaction data .
[0114] The elements of the error matrix can be updated
based on the residuals associated with the corresponding
interaction data . For example , the neural network may
incorrectly predict fraudulent login attempt when provided
an authentic login attempt . The elements of the error matrix
which are associated with the authentic login attempt may be
updated based on the residuals from the incorrect prediction
of the authentic login attempt .
[0115] At step 514 , after updating the error matrix and the
total error , the analysis computer can determine whether or
not the total error exceeds a predetermined threshold . The
total error can exceed the threshold (e.g. , be greater than or
equal to , or less than or equal to depending on the metric of
the threshold) . If the analysis computer determines that the
total error does not exceed (e.g. , satisfy evaluation criteria) ,
then the analysis computer can proceed to step 516 , during
which the analysis computer can transform the interaction
data based on the evaluation . If the analysis computer

determines that the total error exceeds the predetermined
threshold , then the analysis computer can proceed to step
518 .
[011] At step 516 , after determining that the total error of
a model does not exceed the predetermined threshold , then
the analysis computer can transform the interaction data
using the error matrix . In this way , the residuals determined
from the previous model can be used to modify the input
interaction data . The analysis computer can then repeat steps
508-512 with the transformed interaction data . The analysis
computer can perform steps 508-516 any suitable number of
times until either the total error of the model exceeds the
predetermined threshold at step 514 , or until a maximum
number of iterations have been performed . By transforming
the input interaction data , the analysis computer can deter
mine which error matrix most accurately embeds the input
interaction data .
[0117] At step 518 , the analysis computer can store the
error matrix corresponding to the model which had a total
error which exceeds the predetermined threshold at step 514 .
In some embodiments , the analysis computer can store one
or more error matrices corresponding to one or more models
which have total errors which exceed the predetermined
threshold . In some embodiments , the analysis computer may
also store the embedding neural network associated with the
error matrix .
[0118] After storing the one or more error matrices (which
may be the most optimal error matrices) , the analysis
computer can embed interaction data including current inter
action data (e.g. , interaction data occurring within the rolling
window) and the pseudo interaction data , at step 414 ,
utilizing at least one error matrix . For example , the error
matrix may represent an optimal way to transform the input
data (e.g. , interaction data) such that a resulting model more
accurately predicts a target variable (e.g. , fraud) than other
models trained from not transformed data .
[0119] D. Pseudo Interaction Data Generator
[0120] FIG . 6 shows a pseudo interaction data generation
method according to some embodiments . In some embodi
ments , the method described in FIG . 6 may be performed by
an analysis computer , as described herein . For example , in
some embodiments , the analysis computer can determine
one or more data trends in the historical interaction data
comprising interactions that occur within and outside of the
rolling window . The analysis computer can then generate a
plurality of pseudo interactions based on the one or more
data trends to form pseudo interaction data . In some embodi
ments , determining the one or more trends can also include
clustering at least the historical interaction data into one or
more community groups . Each community group of the one
or more community groups may include data representing
interactions with similar characteristics .
[0121] At step 602 , the analysis computer can retrieve
interaction data from an interaction data database . The
analysis computer can retrieve historical interaction data ,
which may be stored in association with timestamps which
may occur prior to a determined rolling window (e.g. , at step
406 of FIG . 4) . In some embodiments , the analysis computer
can retrieve all historical interaction data . In other embodi
ments , the analysis computer can retrieve historical interac
tion data occurring within a plurality of historical rolling
windows . Each of the historical rolling windows can be of
a same size (e.g. , 2 days , 1 week , etc.) as the rolling window
of step 406. For example , the analysis computer can sample

US 2020/0097817 A1 Mar. 26 , 2020
13

historical interaction data from 10 historical rolling win
dows . The plurality of historical rolling windows can allow
the analysis computer to sample historical interaction data ,
and thus not perform data processing using all stored data
which may be computationally expensive . In yet other
embodiments , the analysis computer can apply weights to
the historical interaction data of each of the historical rolling
windows . For example , the analysis computer can weight
more recent data more heavily . The analysis computer can
weight the historical interaction data of the historical rolling
windows to place an emphasis on older or new trends in the
historical interaction data . In some embodiments , the analy
sis computer can run more than one prior models if the more
than one prior models were created in previous iterations .
[0122] At step 604 , after retrieving the historical interac
tion data , the analysis computer can execute previously
created models with the historical interaction data as input .
In some embodiments , the previously created models can
include deep learners which may cluster data into commu
nity groups . For example , the analysis computer can execute
a clustering model which can cluster the input historical
interaction data . The analysis computer can cluster data
points together which are characteristically similar . For
example , a first interaction can be associated with interaction
data comprising an IP address of “ 1234 , ” a date of “ 01 / 01 /
2019 , " a time of “ 23:50 , " a browser of “ browser_A , ” a host
of “ www.example.org . " A second interaction can be asso
ciated with interaction data comprising an IP address of
“ 2345 , ” a date of “ 01/02/2019 , " a time of “ 23:55 , " a browser
of “ browser_A , ” a host of “ www.example.org . ” The inter
action data for the first interaction and the second interaction
data may be clustered based on similar characteristics , for
example , due to attempted fraud which occurred late at night
targeting the same host and using similar browsers . How
ever , it is understood that interaction data may be clustered
based on any similarities .
[0123] At step 606 , the analysis computer can evaluate the
performance of the prior models . The analysis computer can
evaluate the performance of the prior models using any
suitable metric . For example , the analysis computer can
determine a classification accuracy , a logarithmic loss , a
confusion matrix , an area under curve (AUC) , an F1 score ,
a mean absolute error , a mean squared error , etc. In some
embodiments , the analysis computer can , using a vector
distance score , determine which data (e.g. , historical inter
action data) and prior models are the most stable when
executed with the historical interaction data . The analysis
computer can determine a stability score for each prior
model .
[0124] At step 608 , after evaluating the performance of the
prior models , the analysis computer can weight the historical
interaction data based on the performance of the prior
models . The analysis computer can weight the historical
interaction data in any suitable manner . For example , in
some embodiments , the analysis computer can weight the
historical interaction data based on an inverse of the stability

has substantially changed from when the prior model was
created , then the model will perform poorly and the data
may be weighted in accordance with the change .
[0126] In some embodiments , after weighting the histori
cal interaction data , the analysis computer can retrieve
additional random samples of historical interaction data if
additional historical interaction data is needed , for example
as a test sample for evaluating (e.g. , at step 612) the new
models trained at step 610. In other embodiments , the test
sample , may be a subset of the reweighted historical inter
action data . The test sample may not be used for training a
model , but may later be used to evaluate how well the model
was trained .
[0127] At step 610 , after weighting the historical interac
tion data , the analysis computer can create N new models .
The N new models may include machine learning models
(e.g. , neural networks) trained on the weighted historical
interaction data . The analysis computer can train the N new
models in any suitable manner described herein .
[0128] At step 612 , after training the N new models , the
analysis computer can evaluate the performance of the N
new models . The analysis computer can evaluate the per
formance of the N new models in any suitable manner as
described herein . For example , the analysis computer can ,
utilizing the test sample , to determine a vector distance score
to determine which models are the most stable for the test
sample . In some embodiments , the analysis computer can
determine how well the new model (s) performed in the same
or similar way to the evaluation at step 606. For example , the
analysis computer can determine how well the new model (s)
predict a target variable such as fraud . A model which
frequently receives authentic login attempt data but then
predicts the data as being fraudulent may have poor perfor
mance .

[0129] At step 614 , the analysis computer can store the
new model (s) based on the performance of the new models
determined at step 612. For example , in some embodiments ,
the analysis computer can sort the new models by stability
score and select a top Y number of model (s) based on a
pre - defined value of Y (e.g. , 1 , 2 , 3 , 10 , etc.) . The analysis
computer can then store the highest ranked new model (s) in
a model database . In future iterations of steps 602-614 , the
new models may be considered prior models . The analysis
computer can store the new model (s) which perform best .
[0130] At step 616 , the analysis computer can execute the
new models with a dataset , as input , including the historical
interaction data as well as the interaction data occurring
within the rolling window (e.g. , as retrieved at step 406) .
The analysis computer can execute the new models in any
suitable manner as described herein . For example , to deter
mine pseudo interaction data , the analysis computer may
execute the models in the model database with the retrieved
historical interaction data and the interaction data occurring
within the rolling window . The analysis computer can deter
mine which historical interaction data is similar to the
current interaction data based on a criteria (e.g. , being part
of a trend as identified by determined community groups) .
The historical interaction data which is most similar in terms
of , for example , shared community groups , can be included
as pseudo interaction data to be used to train a machine
learning model (e.g. , at step 420) . Steps 618-624 describe
the determination and selection of the historical interaction
data which can be included into pseudo interaction data .

score .

[0125] For example , if the model performed well (e.g. ,
predicted a target variable such as fraud accurately) then the
analysis computer may weight the historical interaction data
by a smaller amount than if the model performed poorly
(e.g. , did not predict a target variable such as fraud accu
rately) . The historical interaction data may be weighted
based on the performance of the model because , if the data

US 2020/0097817 A1 Mar. 26 , 2020
14

[0131] At step 618 , after executing the new models with
the historical interaction data and the interaction data occur
ring within the rolling window , the analysis computer can
match interaction data which occurs within the rolling
window to historical interaction data . For example , the new
model may cluster the data into community groups based on
similarities between the data points . The analysis computer
can determine if any of the interaction data occurring within
the rolling window matches (e.g. , over a threshold amount
of similarity) any of the historical interaction data . For
example , the analysis computer can determine a difference
between community groups of data using a vector distance
score (or any other suitable similarity metric) .
[0132] At step 620 , the analysis computer can determine
similarity scores for each interaction data within matched
community groups . For example , at step 618 , a fraudulent
historical interaction community group and a fraudulent
current community group may be matched . The analysis
computer can then , at step 620 , determine a similarity score
between each of the historical interaction data of the fraudu
lent historical interaction community group and each of the
interaction data occurring within the rolling window of the
fraudulent current community group . The similarity score
can be any suitable similarity score as described herein . In
some embodiments , the similarity score may be a vector
distance score , which can be a distance in vector space
between , for example , a fraudulent login attempt of the
historical interaction data and a fraudulent login attempt of
the current interaction data .
[0133] At steps 622 and 624 , after determining similarity
scores , the analysis computer can sort the interaction data
based on similarity score and include the top X matched
historical interaction data into pseudo interaction data . The
top X matched historical interaction data can include the
highest sorted (e.g. , highest similarity score) historical inter
action data . In other words , the analysis computer can
include the historical interaction data which most closely
matches trends in current interaction data into the pseudo
interaction data . In some embodiments , the pseudo interac
tion data can include interactions in which fraud may have
occurred (e.g. , a fraudulent login attempt) . Including these
pseudo interactions into the interaction data used to train a
machine learning model (e.g. , at step 420) can introduce
additional data to include trends which have occurred over
time in the historical interaction data and continuing into the
current interaction data . In such a way , the resulting trained
model may not forget about these overarching trends in the
historical interaction data when determining predictions , or
other suitable machine learning model output .

held in conjunction with KDD - 99 The Fifth International
Conference on Knowledge Discovery and Data Mining . The
dataset includes “ bad ” connections , called intrusions or
attacks , and “ good ” normal connections (e.g. , non - fraudu
lent connections) . This database contains a standard set of
data to be audited , which includes a wide variety of intru
sions simulated in a military network environment . See
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
for the dataset .
[0137] B. Methodology
[0138] First , the analysis computer pulled a 30 % sample
of the “ Bad ” data and 10 % sample of the “ Good " data . Then
the analysis computer ran an ensemble graph learner to
create community groups based on the “ Bad ” data . From the
graph model , “ Bad ” patterns were recommended using a
vector distance score to find similar “ Bad ” patterns to ones
found in the 30 % sample to generate pseudo interaction data .
Next , two models were generated , one using the 30 % “ Bad ”
and 10 % good data , the second mixed simulated “ Bad ”
attacks with 30 % “ Bad ” data . Both models used a gradient
boosted tree . For performance testing the analysis computer
used a new 10 % sample of both “ Good ” and “ Bad ” .
[0139] C. Results
[0140] Table 2 , below , illustrates the precision and recall
of models implemented with a dataset which does not
include pseudo interaction data and a dataset which does
include pseudo interaction data . The precision can be deter
mined as :

Precision = true positives (true positives + false posi
tives)

[0141] The recall can be determined as :
Recall = true positives / (true positives + false negatives)

TABLE 2

Experimental Results

Precision Recall

Dataset with no pseudo interaction data
Dataset with pseudo interaction data

.63

.72
.47
.69

III . Experimental Improvements
[0134] Embodiments , as described herein , are evaluated
against a model which does not include the use of pseudo
interaction data . The data set used as the interaction data
includes the KDD network intrusion dataset from the Third
International Knowledge Discovery and Data Mining Tools
Competition , which was held in conjunction with KDD - 99
The Fifth International Conference on Knowledge Discov
ery and Data Mining .
[0135] A. Data
[0136] The KDD network intrusion dataset was used to
test the system and method according to embodiments . This
is the data set used for The Third International Knowledge
Discovery and Data Mining Tools Competition , which was

[0142] Embodiments of the disclosure have a number of
advantages . Table 2 illustrates an improvement in both
precision and recall when utilizing pseudo interaction data
as described herein over using no pseudo interaction data . As
such , embodiments of the disclosure allow the analysis
computer to utilize the pseudo interaction data to make more
precise predictions of whether or not interaction data (e.g. ,
login attempt data) is fraudulent . By being able to more
precisely predict fraudulent login attempts , network attacks
can more efficiently and quickly be identified . Thus allowing
attack mitigation strategies to be employed sooner and more
pointedly towards the network attack .
[0143] Embodiments of the disclosure have advantages
over a case in which all of the data is used to train a model .
For example , while one other option might be to use all of
the historical data and all data within a current rolling
window (e.g. , current interaction data) , using all of the
historical interaction data and the current interaction data to
train a neural network can take a long time since large
amounts of data need to be processed . If the neural network

US 2020/0097817 A1 Mar. 26 , 2020
15

takes too long to train , then it cannot react to , for example ,
network attacks which can occur on much smaller times
cales .

[0144] Additionally , embodiments of the disclosure have
advantages over a case in which only current data from a
current rolling window is used to train a model . For
example , a fraudster and a secure system can react to the
actions of the other which can lead to situation involving
game theory (e.g. , a situation in which there is strategic
interaction between rational decision - makers) . The fraudster
may perform fraudulent login attempts from a first geo
graphic location . As a result the secure system may be
changed such that login attempts originating from the first
geographic location are scrutinized with more particularity
than login attempts originating from other geographic loca
tions . The fraudster can then change their strategy and can ,
for example , perform IP spoofing . The fraudster can modify
the IP address such that it appears , to the secure system , that
the login attempt originates from a second geographic
location . Yet again , the secure system may be changed such
that login attempts originating from the second geographic
location are scrutinized with more particularity than other
geographic locations . However , if the models implementing
these changes (e.g. , determining to scrutinize the particular
geographic location) analyze current data , they can stop
scrutinizing the login attempts from the first geographic
location . Thus , simply being reactive to what the fraudster is
currently doing .
[0145] Although the steps in the flowcharts and process
flows described above are illustrated or described in a
specific order , it is understood that embodiments of the
invention may include methods that have the steps in
different orders . In addition , steps may be omitted or added
and may still be within embodiments of the invention .
[0146] Any of the software components or functions
described in this application may be implemented as soft
ware code to be executed by a processor using any suitable
computer language such as , for example , Java , C , C ++ , C # ,
Objective - C , Swift , or scripting language such as Perl or
Python using , for example , conventional or object - oriented
techniques . The software code may be stored as a series of
instructions or commands on a computer readable medium
for storage and / or transmission , suitable media include
random access memory (RAM) , a read only memory
(ROM) , a magnetic medium such as a hard drive or a floppy
disk , or an optical medium such as a compact disk (CD) or
DVD (digital versatile disk) , flash memory , and the like . The
computer readable medium may be any combination of such
storage or transmission devices .
[0147] Such programs may also be encoded and transmit
ted using carrier signals adapted for transmission via wired ,
optical , and / or wireless networks conforming to a variety of
protocols , including the Internet . As such , a computer read
able medium according to an embodiment of the present
invention may be created using a data signal encoded with
such programs . Computer readable media encoded with the
program code may be packaged with a compatible device or
provided separately from other devices (e.g. , via Internet
download) . Any such computer readable medium may reside
on or within a single computer product (e.g. a hard drive , a
CD , or an entire computer system) , and may be present on
or within different computer products within a system or

network . A computer system may include a monitor , printer ,
or other suitable display for providing any of the results
mentioned herein to a user .
[0148] The above description is illustrative and is not
restrictive . Many variations of the invention will become
apparent to those skilled in the art upon review of the
disclosure . The scope of the invention should , therefore , be
determined not with reference to the above description , but
instead should be determined with reference to the pending
claims along with their full scope or equivalents .
[0149] One or more features from any embodiment may
be combined with one or more features of any other embodi
ment without departing from the scope of the invention .
[0150] As used herein , the use of “ a , ” “ an , ” or “ the ” is
intended to mean " at least one , ” unless specifically indicated
to the contrary .
What is claimed is :
1. A method comprising :
determining , by an analysis computer , a rolling window

associated with interaction data for interactions that
occur over time ;

retrieving , by the analysis computer , interaction data for
interactions occurring in the rolling window ;

generating , by the analysis computer , pseudo interaction
data based upon historical interaction data ; and

forming , by the analysis computer , a neural network
model using the interaction data for interactions occur
ring within the rolling window and the pseudo inter
action data .

2. The method of claim 1 , wherein the rolling window
includes a range of times during which the interaction data
occurs , and wherein the method further comprises :

embedding , by the analysis computer , the interaction data
for the interactions occurring within the rolling window
and the pseudo interaction data to form interaction data
matrices , and therein the neural network model is
formed using the interaction data matrices .

3. The method of claim 2 , wherein generating the pseudo
interaction data further comprises :

determining , by the analysis computer , one or more data
trends in the historical interaction data comprising
interactions that occur within and outside of the rolling
window ; and

generating , by the analysis computer , a plurality of pseudo
interactions based on the one or more data trends to
form the pseudo interaction data .

4. The method of claim 3 , wherein determining the one or
more data trends further comprises :

clustering , by the analysis computer , at least the historical
interaction data into one or more community groups ,
wherein each community group of the one or more
community groups includes data representing interac
tions with similar characteristics .

5. The method of claim 4 , wherein forming the neural
network model further comprises :

separating , by the analysis computer , a portion of the
interaction data matrices to form a test sample ;

storing , by the analysis computer , the test sample into a
database ;

training , by the analysis computer , a neural network with
the interaction data matrices not included in the test
sample ;

US 2020/0097817 A1 Mar. 26 , 2020
16

based on the training , determining , by the analysis com
puter , a plurality of neural network weights in part
defining the neural network model ;

evaluating , by the analysis computer , the neural network
model using the test sample ; and

based on the evaluating , storing , by the analysis computer ,
the neural network model in a model database .

6. The method of claim 5 , wherein the neural network is
a convolutional neural network or a recurrent neural net
work .

7. The method of claim 1 further comprising :
determining one or more error matrices ; and
embedding the interaction data for the interactions occur

ring within the rolling window and the pseudo inter
action data with a machine learning model and the one
or more error matrices to form interaction data matri
ces , and wherein forming the neural network model
comprises using the interaction data matrices to form
the neural network model .

8. The method of claim 7 , wherein determining the one or
more error matrices further comprises :

training , by the analysis computer , a model using a first
portion of the interaction data for the interactions
occurring within the rolling window ;

evaluating , by the analysis computer , the model using a
second portion of the interaction data for the interac
tions occurring within the rolling window ;

determining , by the analysis computer , an error matrix
and a total error based on the evaluation ;

determining , by the analysis computer , whether or not the
total error exceeds a predetermined error threshold ; and

if the total error exceeds the predetermined error thresh
old , storing , by the analysis computer , the error matrix
in a database .

9. The method of claim 1 further comprising :
storing , by the analysis computer , the neural network
model in model database .

10. The method of claim 9 further comprising :
receiving , by the analysis computer , a request message
comprising request data ; and

determining , by the analysis computer , a response mes
sage to the request message , the response message
comprising response data output by the neural network
model based on the request data .

11. An analysis computer comprising :
a processor ;
a computer - readable medium coupled to the processor ,

the computer - readable medium comprising code
executable by the processor for implementing a method
comprising :

determining a rolling window associated with interaction
data for interactions that occur over time ;

retrieving interaction data for interactions occurring in the
rolling window ;

generating pseudo interaction data based upon historical
interaction data ; and

forming a neural network model using the interaction data
for interactions occurring within the rolling window
and the pseudo interaction data .

12. The analysis computer of claim 11 further comprising :
a pseudo interaction data generation module coupled to

the processor ;
an embedding module coupled to the processor ; and
a machine learning module coupled to the processor .

13. The analysis computer of claim 11 , wherein generat
ing the pseudo interaction data further comprises :

determining one or more data trends in the historical
interaction data comprising interactions that occur
within and outside of the rolling window ; and

generating a plurality of pseudo interactions based on the
one or more data trends to form the pseudo interaction
data .

14. The analysis computer of claim 11 , wherein the
interaction data for interactions that occur over time com
prise timestamps and entity identifiers , and wherein the
pseudo interaction data for pseudo interactions comprise
timestamps and entity identifiers .

15. The analysis computer of claim 11 , wherein the
interactions are login attempts and comprise timestamps , IP
addresses , and browser types , wherein a login attempt
occurs when an entity attempts to login to a secure webpage .

16. The analysis computer of claim 15 , wherein generat
ing the pseudo interaction data based upon historical inter
action data further comprises :

determining a community group of similar login attempts
of historical interaction data , wherein the community
group includes IP addresses typically associated with
fraudulent login attempts ; and

generating the pseudo interaction data comprising at least
IP addresses included in the community group .

17. The analysis computer of claim 11 , wherein the
method further comprises :

determining a prediction , using the neural network model ,
of whether or not one or more entities associated with
one or more IP addresses will attempt a fraudulent login
attempt .

18. The analysis computer of claim 11 , wherein the
method further comprises :

receiving , from a requesting client , a request message
comprising request data , wherein the request data
includes new interaction data ;

determining , by the analysis computer , a response mes
sage to the request message , the response message
comprising response data output by the neural network
model based on the new interaction data ; and

providing the response message to the requesting client .
19. The analysis computer of claim 11 , wherein the

method further comprises :
determining one or more error matrices ; and
embedding the interaction data for the interactions occur

ring within the rolling window and the pseudo inter
action data with a machine learning model and the one
or more error matrices to form interaction data matri
ces , and wherein forming the neural network model
comprises using the interaction data matrices to form
the neural network model .

20. The analysis computer of claim 19 , wherein deter
mining the one or more error matrices further comprises :

training a model using a first portion of the interaction
data for the interactions occurring within the rolling
window ;

evaluating the model using a second portion of the
interaction data for the interactions occurring within the
rolling window ;

determining an error matrix and a total error based on the
evaluation ;

US 2020/0097817 A1 Mar. 26 , 2020
17

determining whether or not the total error exceeds a
predetermined error threshold ; and

if the total error exceeds the predetermined error thresh
old , storing the error matrix in a database .

