(12) STANDARD PATENT

(11) Application No. AU 2020281709 B2

(19) AUSTRALIAN PATENT OFFICE

(54)Title

Variants of terminal deoxynucleotidyl transferase and uses thereof.

(51)International Patent Classification(s)

C12N 9/12 (2006.01)

C12P 19/34 (2006.01)

Application No: (21)2020281709 (22)Date of Filing: 2020.05.26

(87)WIPO No: WO20/239737

(30)**Priority Data**

(31)Number (32) Date

(33)Country

19177018.9 2019.05.28 16/423,972

2019.05.28

EΡ US

(43)Publication Date: Accepted Journal Date: (44)

2020.12.03 2024.08.08

Applicant(s) (71)

DNA Script;Institut Pasteur;Centre National De La Recherche Scientifique

(72)Inventor(s)

CHAMPION, Elise; SOSKINE, Mikhael; YBERT, Thomas; DELARUE, Marc

(74)Agent / Attorney

Davies Collison Cave Pty Ltd, Level 4 7 Macquarie Place, Sydney, NSW, 2000, AU

Related Art (56)

WO 2018/102818 A1

WO 2017/216472 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property **Organization**

International Bureau

English

(10) International Publication Number WO 2020/239737 A1

(43) International Publication Date 03 December 2020 (03.12.2020)

(51) International Patent Classification:

(21) International Application Number:

PCT/EP2020/064524

(22) International Filing Date:

C12P 19/34 (2006.01)

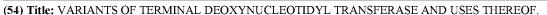
26 May 2020 (26.05.2020)

C12N 9/12 (2006.01)

(25) Filing Language:

(26) Publication Language: English

(30) Priority Data:


19177018.9 28 May 2019 (28.05.2019) EP 16/423,972 28 May 2019 (28.05.2019) US

- (71) Applicants: DNA SCRIPT [FR/FR]; Immeuble Okabé 67 avenue de Fontainebleau, 94270 LE KREMLIN-BICÊTRE (FR). INSTITUT PASTEUR [FR/FR]; 25-28 rue du Docteur Roux, 75724 Paris Cedex 15 (FR).
- (72) Inventors: CHAMPION, Elise; 198 bis rue de Tolbiac, 75013 PARIS FRANCE (FR). SOSKINE, Mikhael; 139 rue du Plessis Bouchard, 95130 Franconville (FR). YBERT, Thomas; 4 rue de la Vega, 75012 PARIS (FR). DELARUE, Marc; 98 Bd de la Reine apt 4, 78000 VERSAILLES (FR).
- (74) Agent: CABINET BECKER ET ASSOCIES; 25, rue Louis le Grand, 75002 PARIS (FR).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available); ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- with sequence listing part of description (Rule 5.2(a))

(57) Abstract: The present invention relates to variants of Terminal deoxynucleotidyl Transferase (TdT), each of which (i) has an amino acid sequence selected from SEQ ID NO₈ 10-35, or a functionally equivalent sequence, with at least an amino acid substitution at the position corresponding to residue C302 (with respect to SEQ ID NO: 1) or a functionally equivalent residue in SEQ ID NO₈ 10-35, respectively, (ii) is able to synthesize a nucleic acid fragment without a template and (iii) is able to incorporate a 3'-O-modified nucleotide into the nucleic acid fragment.

WO 2020/239737 PCT/EP2020/064524

<u>VARIANTS OF TERMINAL DEOXYNUCLEOTIDYL TRANSFERASE AND USES THEREOF</u>

FIELD OF THE INVENTION

The invention relates to variants of Terminal deoxynucleotidyl Transferase (TdT) and uses thereof for the enzymatic synthesis of nucleic acid sequences without template. More particularly, the present invention relates to such variants suitable to incorporate modified nucleotides, for the synthesis of nucleic acid molecules with determined or controlled sequences.

10 BACKGROUND

15

20

25

30

Methods for *de novo* chemical synthesis of nucleic acids based on solid-phase phosphoramidite chemistry have been largely used and refined over the past 40 years. The technique consists of a four-step chain elongation cycle that adds one base per cycle onto a growing oligonucleotide chain attached to a solid support matrix. Although it has been the method of choice to synthesize nucleic acids during the past decades, this technology has some notable limitations: It requires the use of multiple solvents and reagents, and due to limitations in chemical reaction efficiency, the length of synthetic oligonucleotides typically do not exceed 150–200 bases. Moreover, these short fragments need to be further assembled to provide the desired DNA sequence.

One alternative to chemical synthesis consists in using template independent DNA polymerases that will add reversible terminator modified nucleotides to a growing single stranded chain of nucleic acids. This allows the addition of one type of nucleotide per cycle in a controlled fashion.

Some native enzymes are able to act on natural nucleotides in the absence of template and so can catalyze the synthesis of nucleic acids in an uncontrolled fashion. However, they are particularly inefficient to incorporate modified nucleotides and more particularly reversible terminator modified nucleotides. Efforts have been made to develop new DNA polymerases able to act on modified nucleotides but the resulting enzymes are not fully satisfactory in terms of performances for the synthesis of any type of nucleic acids.

So far, only few DNA polymerases that can act efficiently on single strand DNA (without the use of template) have been identified. The most characterized polymerase having such template-independent activity is the Terminal deoxynucleotidyl Transferase (TdT). TdT

enzymes have been extensively used to modify single stranded DNA for various types of applications including biotechnology, biomedical research and synthetic biology. However, native TdT is poorly able to use modified nucleotides.

Several attempts to develop modified TdT with acceptable performance for the incorporation of modified nucleotides have been carried over. However, the performances of the incorporation of such modified nucleotides is still a limiting factor. Incorporation efficiency is the key parameter driving the overall purity and yield of synthesis. These two characteristics of the synthesis process have a significant impact of quality, turnaround time and cost of nucleic acid products.

There is therefore a need to develop improved TdT capable to use modified nucleotides in the absence of template, for developing efficient and cost-effective methods for the nucleic acid synthesis.

SUMMARY OF THE INVENTION

5

15

20

25

30

By working on TdT for *de novo* synthesis of polynucleotides with controlled sequence and without the use of a template, the inventors have discovered that some targeted amino acid residues of the catalytic domain of the TdT may be specifically modified to improve the ability of such modified TdT for synthesizing polynucleotides. More particularly, the inventors have developed modified TdTs with targeted amino acid substitution(s) that lead to improve the enzymatic synthesis of polynucleotides and to reduce the overall cost of synthesizing polynucleotides. The inventors previously developed variants of murine TdT (SEQ ID NO:1 or SEQ ID NO:2). By further working on TdT, the inventors have now developed new TdT variants.

In some embodiments, each of the modified TdTs presents one or more targeted amino acids substitution as compared to wild-type TdTs (such as SEQ ID NOs 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 or 34) and N-terminal truncated versions thereof that comprise a TdT catalytic domain (such as SEQ ID NOs 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35). In some embodiments, each of the modified TdTs of the invention possesses an amino acid sequence having a specified percent sequence identity with a catalytic domain of aTdT (such as SEQ ID NOs 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35) and having one or more specified amino acid substitution(s). The template-independent polymerases of the invention allow the enzymatic synthesis of polynucleotides at a faster rate, with less expense and higher quality.

10

15

20

30

Embodiments of the invention provide variants of Terminal deoxynucleotidyl Transferase (TdT) which comprise an amino acid sequence of a TdT catalytic domain or of a percent sequence identity of a TdT catalytic domain, such as set forth in SEQ ID NOs 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35, with at least an amino acid substitution at position corresponding to residue C173 (with respect to the amino acid numbering of SEQ ID NO: 11), or functionally equivalent residue, is capable of synthesizing a nucleic acid fragment without template and is capable of incorporating a modified nucleotide, such as 3'-O- modified nucleotide, into a nucleic acid fragment. Particularly, the modified nucleotide is incorporated onto a free 3'-hydroxyl of the nucleic fragment.

More particularly, embodiments of the invention provide terminal deoxynucleotidyl transferase (TdT) variants comprising an amino acid sequence at least 90% identical to SEQ ID NO: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35 with a substitution at position corresponding to residue C173 with respect to SEQ ID NOs 11, 13, 17, 19, 21, 29 or 31, or at position corresponding to residue C172 with respect to SEQ ID NO: 15, or at position corresponding to residue C178 with respect to SEQ ID NO: 23, or at position corresponding to residue C174 with respect to SEQ ID NO: 25, or at position corresponding to residue C171 with respect to SEQ ID NO: 33, or at position corresponding to residue C182 with respect to SEQ ID NO: 33, or at position corresponding to residue C176 with respect to SEQ ID NO: 35, wherein the TdT variant (i) is capable of synthesizing a nucleic acid fragment without a template and (ii) is capable of incorporating a modified nucleotide, such as 3'-O- modified nucleotide, into a nucleic acid fragment. In some embodiments, the above percent identity value is at least 95% identity with the indicated SEQ ID NOs; in some embodiments, the above percent identity value is at least 98% identity; in some embodiments, the above percent identity value is at least 99% identity.

Advantagesously, in regard to (ii), such modified nucleotide is a 3'-O-modified nucleotide that may be incorporated onto a free 3'-hydroxyl of the nucleic acid fragment. The 3'-O-modified nucleotide may comprise a 3'-O-NH2-nucleoside triphosphate, a 3'-O-azidomethyl-nucleoside triphosphate, a 3'-O-allyl-nucleoside triphosphate, a 3'O—(2-nitrobenzyl)-nucleoside triphosphate, or a 3'-O-propargyl-nucleoside triphosphate.

In a particular embodiment, the substitution is selected from

C313G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO:10; or C173G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 11; or C302G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 12; or C173G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 13; or C302G/R/P/A/V/S/N/Q/D with

10

15

20

25

30

35

4

respect to SEQ ID NO: 14; or C172G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 15; or C304G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 16; or C173G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 17; or C304G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 18; or C173G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 19; or C293G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 21; or C282G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 21; or C282G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 23; or C304G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 24; or C174G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 25; or C300G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 27; or C305G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 27; or C305G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 30; or C173G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 30; or C173G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 30; or C173G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 33; or C271G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 33; or C271G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 33; or C271G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 33; or C271G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 33; or C271G/R/P/A/V/S/N/Q/D with respect to SEQ ID NO: 35.

In a further embodiment, the substitution is selected from

C302G/R with respect to SEQ ID NO: 4; or C302G/R with respect to SEQ ID NO: 9; or C313G/R with respect to SEQ ID NO: 10; or C173G/R with respect to SEQ ID NO: 11; or C302G/R with respect to SEQ ID NO: 12; or C173G/R with respect to SEQ ID NO: 13; or C302G/R with respect to SEQ ID NO: 14; or C172G/R with respect to SEQ ID NO: 15; or C304G/R with respect to SEQ ID NO: 16; or C173G/R with respect to SEQ ID NO: 17; or C304G/R with respect to SEQ ID NO: 18; or C173G/R with respect to SEQ ID NO: 19; or C293G/R with respect to SEQ ID NO: 20; or C173G/R with respect to SEQ ID NO: 21; or C282G/R with respect to SEQ ID NO: 22; or C173G/R with respect to SEQ ID NO: 23; or C304G/R with respect to SEQ ID NO: 24; or C174G/R with respect to SEQ ID NO: 25; or C300G/R with respect to SEQ ID NO: 26; or C171G/R with respect to SEQ ID NO: 27; or C305G/R with respect to SEQ ID NO: 28; or C173G/R with respect to SEQ ID NO: 29; or C302G/R with respect to SEQ ID NO: 30; or C173G/R with respect to SEQ ID NO: 31; or C313G/R with respect to SEQ ID NO: 32; or C182G/R with respect to SEQ ID NO: 33; or C271G/R with respect to SEQ ID NO: 33; or C271G/R with respect to SEQ ID NO: 33; or C271G/R with respect to SEQ ID NO: 33; or C271G/R with respect to SEQ ID NO: 35.

In some embodiments, the invention is directed to compositions comprising TdT variants comprising amino acid sequence having at least 90 percent identity, or in some embodiments, at least 95 percent identity, at least 97 percent identity, or in some embodiments, at least 98 percent identity, or at least 99% identity with a reference or wild type TdT sequence selected from the group consisting of SEQ ID NOs: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35, wherein such TdT variants have a mutation selected from C173G/R/P/A/V/S/N/Q/D,

10

15

20

preferably C173G/R (wherein the amino acid residue number is with respect to SEQ ID NO: 11, or an equivalent residue number of SEQ ID NOs 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35) (i) is capable of synthesizing a nucleic acid fragment without a template and (ii) such TdT variants incorporate 3'-O-modified nucleoside triphosphates with greater efficiency, or at a higher rate, than the reference or wild type TdT.

Some embodiments provide truncated variants of Terminal deoxynucleotidyl Transferase (TdT) each of which comprises an amino acid sequence with at least 90 percent identity to any of SEQ ID NOs 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35 with at least two amino acid substitutions, preferably at least three amino acid substitutions, selected from M63R/Q, L131P, C173G/R, R207L/N, D250V, R325P/N and E328N/L/T/S, (wherein residue numbers are with respect to SEQ ID NO: 11or with respect to their functionally equivalent residues numbers in SEQ ID NOs 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35), (i) is able to synthesize a nucleic acid fragment without a template and (ii) is able to incorporate a modified nucleotide into the nucleic acid fragment, for example, a 3'-O-reversibly blocked deoxynucleoside triphosphate onto a free 3'-hydroxyl of a nucleic acid fragment.

In further embodiments, the above percent sequence identity value is at least 95, 96, 97, 98 or 99 percent identity with the specified sequences.

Embodiments of the invention also provide a nucleic acid molecule encoding a variant of a TdT as defined above and/or an expression vector comprising such nucleic acid molecule, and/or a host cell comprising such nucleic acid molecule or expression vector.

Embodiments of the invention also provide a process for producing a variant of TdT according to the invention, wherein a host cell as defined above is cultivated under culture conditions allowing the expression of the nucleic acid encoding said variant, and wherein the variant is optionally retrieved.

The invention further relates to the use of a variant of TdT, for synthesizing a nucleic acid molecule without template, by the successive addition of one or more 3'O-modified nucleotides to a nucleic acid fragment. In some embodiments, such methods comprise the steps of (a) providing an initiator comprising an oligonucleotide having a free 3'-hydroxyl; (b) reacting under enzymatic extension conditions a TdT variant of the invention with the initiator or an extended initiator in the presence of a 3'-O-reversibly blocked nucleoside. In some embodiments, such method further includes steps of (c) deblocking the extended initiators to

15

20

form extended initiators with free 3'-hydroxyls and (d) repeating steps (b) and (c) until a nucleic acid molecule of a predetermined sequence is synthesized.

Embodiments of the invention also provide a process for synthesizing a nucleic acid molecule without template, comprising a step of contacting a nucleic acid primer with both at least one nucleotide, preferably at least one 3'O-modified nucleotide, and a variant of TdT according to the invention.

The present invention further provides a kit for performing a nucleotide incorporation reaction comprising a variant of TdT according to the invention, and one or more nucleotides, preferably one or more 3'O-modified nucleotides, and optionally at least one nucleic acid primer.

DESCRIPTION OF THE INVENTION 10

The DNA polymerase families are divided into seven families based on their sequence homology and crystal structure. Among them, the polymerases of PolX family represent a wide variety of polymerases from replicative polymerases to terminal transferase enzymes. Polymerases from PolX family are present across a very wide range of eukaryotic organisms. Polymerases from the PolX family are implicated in a vast variety of biological processes and in particular in DNA damage repair mechanisms or error correction mechanisms. The PolX family regroups polymerase β (Pol β), μ (Pol μ), λ (Pol λ), IV from yeast (Pol IV) and the Terminal deoxynucleotidyl Transferase (TdT). TdT is naturally implicated in DNA repair and maintenance mechanisms. In particular, TdT has the unique ability to conserve a nucleotide polymerization activity even in absence of template strand. In specific conditions and with natural nucleotides, TdT is able to elongate DNA fragments with several hundred nucleotides, in absence of any complementary strand. However, wild type TdT is totally unable to efficiently incorporate sugar-modified nucleotides.

It is thus the purpose of the present invention to provide variants of TdT with targeted mutation(s) that allow them to incorporate modified nucleotides into a nucleic fragment during synthesize of said nucleotide fragment. More particularly, the inventors have identified specific amino acid residues that may be advantageously substituted, alone or in combination, to improve the ability of the enzyme to synthesize nucleic acid fragments of various length and with pre-determined sequence, including by using modified nucleotides.

25

WO 2020/239737 PCT/EP2020/064524 7

Definitions

5

10

20

25

30

As used therein, the terms "mutant" and "variant" may be used interchangeably to refer to polypeptides related to or derived from SEQ ID NO: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26 27, 28, 29, 30, 31, 32, 33, 34 or 35 and comprising a modification or an alteration, i.e., a substitution, insertion, and/or deletion, at one or more (e.g., several) positions and having both a polymerase activity without template and ability to incorporate 3'-Omodified nucleoside triphosphates into a nucleic acid chain. The variants may be obtained by various techniques well known in the art. In particular, examples of techniques for altering the DNA sequence encoding the wild-type protein, include, but are not limited to, site-directed mutagenesis, random mutagenesis and synthetic oligonucleotide construction. Mutagenesis activities consist in deleting, inserting or substituting one or several amino-acids in the sequence of a protein or in the case of the invention of a polymerase. Targeted amino-acids could be concomitant or distributed along the whole sequence of the polymerase. Specific motifs or structural features could be targeted for example.

The terms "modification" or "alteration" as used herein in relation to a position or amino acid 15 mean that the amino acid in the specific position has been modified compared to the amino acid of the wild-type protein.

A "substitution" means that an amino acid residue is replaced by another amino acid residue. Preferably, the term "substitution" refers to the replacement of an amino acid residue by another selected from the naturally-occurring standard 20 amino acid residues, rare naturally occurring amino acid residues (e.g. hydroxyproline, hydroxylysine, allohydroxylysine, 6-N-methylysine, N-ethylglycine, N-methylglycine, N-ethylasparagine, allo-isoleucine, N-methylisoleucine, Nmethylvaline, pyroglutamine, aminobutyric acid, ornithine, norleucine, norvaline), and nonnaturally occurring amino acid residue, often made synthetically, (e.g. cyclohexyl-alanine). Preferably, the term "substitution" refers to the replacement of an amino acid residue by another selected from the naturally-occurring standard 20 amino acid residues. The sign "+" indicates a combination of substitutions.

The amino acids are herein represented by their one-letter or three-letters code according to the following nomenclature: A: alanine (Ala); C: cysteine (Cys); D: aspartic acid (Asp); E: glutamic acid (Glu); F: phenylalanine (Phe); G: glycine (Gly); H: histidine (His); I: isoleucine (Ile); K: lysine (Lys); L: leucine (Leu); M: methionine (Met); N: asparagine (Asn); P: proline (Pro); Q: glutamine (Gln); R: arginine (Arg); S: serine (Ser); T: threonine (Thr); V: valine (Val); W: tryptophan (Trp) and Y: tyrosine (Tyr).

10

15

20

25

30

In the present document, the following terminology is used to designate a substitution: L238A denotes that amino acid residue (Leucine, L) at position 238 of the parent sequence is changed to an Alanine (A). A132V/I/M denotes that amino acid residue (Alanine, A) at position 132 of the parent sequence is substituted by one of the following amino acids: Valine (V), Isoleucine (I), or Methionine (M). The substitution can be a conservative or non-conservative substitution. Examples of conservative substitutions are within the groups of basic amino acids (arginine, lysine and histidine), acidic amino acids (glutamic acid and aspartic acid), polar amino acids (glutamine, asparagine and threonine), hydrophobic amino acids (methionine, leucine, isoleucine, cysteine and valine), aromatic amino acids (phenylalanine, tryptophan and tyrosine), and small amino acids (glycine, alanine and serine).

As used herein, the terms "sequence identity" or "identity" refer to the number (or fraction expressed as a percentage %) of matches (identical amino acid residues) between two polypeptide sequences. The sequence identity is determined by comparing the sequences when aligned so as to maximize overlap and identity while minimizing sequence gaps. In particular, sequence identity may be determined using any of a number of mathematical global or local alignment algorithms, depending on the length of the two sequences. Sequences of similar lengths are preferably aligned using a global alignment algorithm (e.g. Needleman and Wunsch algorithm; Needleman and Wunsch, 1970) which aligns the sequences optimally over the entire length, while sequences of substantially different lengths are preferably aligned using a local alignment algorithm (e.g. Smith and Waterman algorithm (Smith and Waterman, 1981) or Altschul algorithm (Altschul et al., 1997; Altschul et al., 2005)). Alignment for purposes of determining percent amino acid sequence identity can be achieved in various ways that are within the skill in the art, for instance, using publicly available computer software available on internet web sites such as http://blast.ncbi.nlm.nih.gov/ or http://www.ebi.ac.uk/Tools/emboss/. Those skilled in the art can determine appropriate parameters for measuring alignment, including any algorithm needed to achieve maximal alignment over the full length of the sequences being compared. For purposes herein, % amino acid sequence identity values refer to values generated using the pair wise sequence alignment program EMBOSS Needle, that creates an optimal global alignment of two sequences using the Needleman-Wunsch algorithm, wherein all search parameters are set to default values, i.e. Scoring matrix = BLOSUM62, Gap open = 10, Gap extend = 0.5, End gap penalty = false, End gap open = 10 and End gap extend = 0.5.

Herein, the terms "peptide", "polypeptide", "protein", "enzyme", refer to a chain of amino acids linked by peptide bonds, regardless of the number of amino acids forming said chain.

Unless otherwise specified, the positions disclosed in the present application are numbered by reference to the amino acid sequence set forth in a specified SEQ ID NO.

Variants of TdT

5

10

15

20

25

30

The present invention provides variants of TdT enzyme that can be used for synthesizing polynucleotides of predetermined sequences, such as DNA or RNA, without the use of template strand. The TdT variants of the invention allow modified nucleotides, and more particularly 3'O-modified nucleotides, to be used in an enzyme-mediated method of polynucleotide synthesis, such as described by Hiatt et al, U.S. patent 5763594.

In some embodiments of the invention, "modified Terminal desoxyribonucleotidyl Transferase", "modified TdT", "variants of Terminal desoxyribonucleotidyl Transferase" and "variants of TdT" refer to enzymes that comprise an amino acid sequent that shares at least 80% identity with an amino acid sequence of one of the amino acid sequences set forth in SEQ ID NOS: 2, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35, excepting at least one amino acid residue substitution. In some embodiments, the variant of TdT comprises an amino acid sequence that shares at least 90% identity with SEQ ID NOS: 2, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, excepting at least one amino acid residue substitution. In still other embodiments, the variant of TdT comprises an amino acid sequence that shares at least 95% identity with SEQ ID NOS: 2, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, excepting at least one amino acid residue substitution. In still other embodiments, the variant of TdT comprises an amino acid sequence that shares at least 97%, 98% or 99% identity with SEQ ID NOS: 2, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, excepting at least one amino acid residue substitution.

In some cases, variants of the present invention may be described according to their mutations on specific residues, whose positions are determined by alignment with or reference to a SEQ ID NO.

By "functionally equivalent residue" is meant a residue in a given sequence of a TdT having an identical functional role as compared to a corresponding residue in a functionally equivalent sequence. In the context of the invention, each sequence of TdT selected from SEQ ID NO: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35 may be considered as a "functionally equivalent sequence" of any one of the other sequences.

In some embodiments, the invention comprises a variant of Terminal deoxynucleotidyl Transferase (TdT) that comprises an amino acid sequence having at least 80%, preferably at

WO 2020/239737 PCT/EP2020/064524

least 85%, 90%, 95%, 97%, 98% or 99% identity with an amino acid sequence selected from SEQ ID NO: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35, with at least an amino acid substitution at position corresponding to a functionally equivalent residue of residue C173 with respect to SEQ ID NO:11, (i) is able to synthesize a nucleic acid fragment without template and (ii) is able to incorporate a 3'-O-modified nucleoside triphosphate, such as a 3'-O-blocked nucleoside triphosphate, into the nucleic fragment.

Indeed, the inventors have discovered that such substitution has a great impact on both surface and interaction properties of the enzyme with nucleotides, which may allow incorporation of 3'O-modified nucleotides in a nucleic acid sequence.

Further embodiments of TdT variants of the invention are listed as entries in Tables 1A through 1C (single substitutions), Tables 2A through 2C (two substitutions), Tables 3A through 3C (three substitutions), and Tables 4A through 4F (four substitutions), wherein each such variant TdT is defined by the indicated SEQ ID NO in the righthand column modified by the substitution(s) listed in the lefthand column of the same row as the SEQ ID NO. A "non-wild type" substitution means that the substitution may be any amino acid except for the amino acid at the indicated position in the wild type sequence, or equivalently, the sequence of the indicated SEQ ID NO.

Table1A: <u>TdT variants at position C173 (SEQ ID NO: 11) or functionally equivalent</u> positions of the indicated SEQ ID NO

Non-wild type	
substitution at	SEQ ID NO
C313	10
C173	11
C302	12
C173	13
C302	14
C172	15
C304	16
C173	17
C304	18
C173	19
C293	20
C173	21

C282	22
C178	23
C304	24
C174	25
C300	26
C171	27
C305	28
C173	29
C302	30
C173	31
C313	32
C182	33
C271	34
C176	35

Table1B: Further TdT variants at position C173 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO

Substitution	SEQ ID NO
C313/G/R/P/A/V/S/N/Q/D	10
C173/G/R/P/A/V/S/N/Q/D	11
C302/G/R/P/A/V/S/N/Q/D	12
C173/G/R/P/A/V/S/N/Q/D	13
C302/G/R/P/A/V/S/N/Q/D	14
C172/G/R/P/A/V/S/N/Q/D	15
C304/G/R/P/A/V/S/N/Q/D	16
C173/G/R/P/A/V/S/N/Q/D	17
C304/G/R/P/A/V/S/N/Q/D	18
C173/G/R/P/A/V/S/N/Q/D	19
C293/G/R/P/A/V/S/N/Q/D	20
C173/G/R/P/A/V/S/N/Q/D	21
C282/G/R/P/A/V/S/N/Q/D	22
C178/G/R/P/A/V/S/N/Q/D	23
C304/G/R/P/A/V/S/N/Q/D	24
C174/G/R/P/A/V/S/N/Q/D	25

C300/G/R/P/A/V/S/N/Q/D	26
C171/G/R/P/A/V/S/N/Q/D	27
C305/G/R/P/A/V/S/N/Q/D	28
C173/G/R/P/A/V/S/N/Q/D	29
C302/G/R/P/A/V/S/N/Q/D	30
C173/G/R/P/A/V/S/N/Q/D	31
C313/G/R/P/A/V/S/N/Q/D	32
C182/G/R/P/A/V/S/N/Q/D	33
C271/G/R/P/A/V/S/N/Q/D	34
C176/G/R/P/A/V/S/N/Q/D	35

Table1C: <u>Further TdT variants at position C173 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO</u>

Substitutions	SEQ ID NO
C313/G/R	10
C173/G/R	11
C302/G/R	12
C173/G/R	13
C302/G/R	14
C172/G/R	15
C304/G/R	16
C173/G/R	17
C304/G/R	18
C173/G/R	19
C293/G/R	20
C173/G/R	21
C282/G/R	22
C178/G/R	23
C304/G/R	24
C174/G/R	25
C300/G/R	26
C171/G/R	27
C305/G/R	28

C173/G/R	29
C302/G/R	30
C173/G/R	31
C313/G/R	32
C182/G/R	33
C271/G/R	34
C176/G/R	35

Table 2A: <u>Further TdT variants at position C173 (SEQ ID NO: 11) and position M63 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO</u>

Non-wildtype substitutions	SEQ ID NO
at locations	
M63 + C173	11
M63 + C173	13
L62 + C172	15
M63 + C173	17
M63 + C173	19
R64 + C173	21
M73 + C178	23
M64 + C174	25
M61 + C171	27
M63 + C173	29
L63 + C173	31
M63 + C182	33
M66 + C176	35

WO 2020/239737 PCT/EP2020/064524 14

Table 2B: Further TdT variants at position C173 (SEQ ID NO: 11) and position M63 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEO ID NO

Substitutions and substitution positions SEQ ID NO M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D11 M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D 13 L62R/Q/G/A/V/D/N/H/E + C172G/R/P/A/V/S/N/Q/D15 M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D17 19 M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D R64R/O/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/O/D 21 M73R/Q/G/A/V/D/N/H/E + C178G/R/P/A/V/S/N/Q/D23 25 M64R/Q/G/A/V/D/N/H/E + C174G/R/P/A/V/S/N/Q/DM61R/Q/G/A/V/D/N/H/E + C171G/R/P/A/V/S/N/Q/D27 M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D29 31 L63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/DM63R/Q/G/A/V/D/N/H/E + C182G/R/P/A/V/S/N/Q/D33 M66R/Q/G/A/V/D/N/H/E + C176G/R/P/A/V/S/N/Q/D 35

Table 2C: Further TdT variants at position C173 (SEQ ID NO: 11) and position M63 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO 5

Substitutions and substitution positions SEO ID NO M63R/Q + C173G/R11 M63R/Q + C173G/R13 L62R/Q + C172G/R15 M63R/Q + C173G/R17 19 M63R/Q + C173G/RR64R/Q + C173G/R21 M73R/Q + C178G/R23 M64R/Q + C174G/R25 27 M61R/Q + C171G/R29 M63R/Q + C173G/RL63R/Q + C173G/R31 M63R/Q + C182G/R33 M66R/Q + C176G/R35

Table 3A: <u>Further TdT variants at positions C173 (SEQ ID NO: 11)</u>, M63 (SEQ ID NO: 11) and R207 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO

Mutations	SEQ ID NO
M63 + C173 + R207	11
M63 + C173 + R207	13
L62 + C172 + R206	15
M63 + C173 + R207	17
M63 + C173 + R207	19
R64 + C173 + R208	21
M73 + C178 + R207	23
M64 + C174 + R208	25
M61 + C171 + R205	27
M63 + C173 + R207	29
L63 + C173 + R207	31
M63 + C182 + R216	33
M66 + C176 + R210	35

Table 3B: <u>Further TdT variants at positions C173 (SEQ ID NO: 11)</u>, M63 (SEQ ID NO: 11) and R207 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO

Mutations SEO ID NO M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D + R207 N/L/K/H/G/D/A/P 11 M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D + R207 N/L/K/H/G/D/A/P 13 15 L62R/Q/G/A/V/D/N/H/E + C172G/R/P/A/V/S/N/Q/D + R206 N/L/K/H/G/D/A/P M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D + R207 N/L/K/H/G/D/A/P 17 19 M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D + R207 N/L/K/H/G/D/A/P R64Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D + R208 N/L/K/H/G/D/A/P 21 23 M73R/Q/G/A/V/D/N/H/E + C178G/R/P/A/V/S/N/Q/D + R207 N/L/K/H/G/D/A/P 25 M64R/Q/G/A/V/D/N/H/E + C174G/R/P/A/V/S/N/Q/D + R208 N/L/K/H/G/D/A/P M61R/Q/G/A/V/D/N/H/E + C171G/R/P/A/V/S/N/Q/D + R205 N/L/K/H/G/D/A/P 27 29 M63R/O/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/O/D + R207 N/L/K/H/G/D/A/P L63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D + R207N/L/K/H/G/D/A/P 31 33 M63R/Q/G/A/V/D/N/H/E + C182G/R/P/A/V/S/N/Q/D + R216N/L/K/H/G/D/A/P 35 M66R/Q/G/A/V/D/N/H/E + C176G/R/P/A/V/S/N/Q/D + R210N/L/K/H/G/D/A/P

Table 3C: <u>Further TdT variants at positions C173 (SEQ ID NO: 11)</u>, M63 (SEQ ID NO: 11) and R207 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO

SEQ ID NO

Mutations	
M63R/Q + C173G/R + R207L/N	11
M63R/Q + C173G/R + R207L/N	13
M62R/Q + C172G/R + R206L/N	15
M63R/Q + C173G/R + R207L/N	17
M63R/Q + C173G/R + R207L/N	19
R64Q + C173G/R + R208L/N	21
M73R/Q + C178G/R + R207N/L	23
M64R/Q + C174G/R + R208 N/L	25
M61R/Q + C171G/R + R205N/L	27
M63R/Q + C173G/R + R207L/N	29
L63R/Q + C173G/R + R207L/N	31
M63R/Q + C182G/R + R216N/L	33
M66R/Q + C176G/R + R210N/L	35

5

Table 4A: <u>Further TdT variants at positions C173 (SEQ ID NO: 11)</u>, M63 (SEQ ID NO: 11), R207 (SEQ ID NO: 11) and R324 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO

Mutations	SEQ ID NO
M63 + C173 + R207 + R324	11
M63 + C173 + R207 + R324	13
L62 + C172 + R206 + R320	15
M63 + C173 + R207 + R331	17
M63 + C173 + R207 + P325	19
R64 + C173 + R208 + T331	21
M73 + C178 + R207 + R325	23
M64 + C174 + R208 + P326	25
M61 + C171 + R205 + R323	27

M63 + C173 + R207 + R328	29
L63 + C173 + R207 + R325	31
M63 + C182 + R216 + R338	33
M66 + C176 + R210 + R328	35

Table 4B: <u>Further TdT variants at positions C173 (SEQ ID NO: 11)</u>, M63 (SEQ ID NO: 11), R207 (SEQ ID NO: 11) and R324 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO

Mutations SEQ ID NO M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D 11 + R207 N/L/K/H/G/D/A/P + R324P/N/A/L/K/H/G/DM63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D13 + R207 N/L/K/H/G/D/A/P + R324P/N/A/L/K/H/G/DL62R/O/G/A/V/D/N/H/E + C172G/R/P/A/V/S/N/O/D 15 + R206 N/L/K/H/G/D/A/P + R320P/N/A/L/K/H/G/DM63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D 17 + R207 N/L/K/H/G/D/A/P + R331P/N/A/L/K/H/G/D 19 M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D + R207 N/L/K/H/G/D/A/P + P325N/A/L/K/H/G/D R64O/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/O/D 21 + R208 N/L/K/H/G/D/A/P + T331P/N/A/L/K/H/G/D M73R/Q/G/A/V/D/N/H/E + C178G/R/P/A/V/S/N/Q/D23 + R207 N/L/K/H/G/D/A/P + R325P/N/A/L/K/H/G/D M64R/Q/G/A/V/D/N/H/E + C174G/R/P/A/V/S/N/Q/D25 + R208 N/L/K/H/G/D/A/P + P326N/A/L/K/H/G/D M61R/O/G/A/V/D/N/H/E + C171G/R/P/A/V/S/N/O/D 27 + R205 N/L/K/H/G/D/A/P + R323P/N/A/L/K/H/G/D M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D29 + R207 N/L/K/H/G/D/A/P + R328P/N/A/L/K/H/G/DL63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D 31 + R207N/L/K/H/G/D/A/P + R325P/N/A/L/K/H/G/DM63R/Q/G/A/V/D/N/H/E + C182G/R/P/A/V/S/N/Q/D33 + R216N/L/K/H/G/D/A/P + R338P/N/A/L/K/H/G/D 35 M66R/Q/G/A/V/D/N/H/E + C176G/R/P/A/V/S/N/Q/D + R210N/L/K/H/G/D/A/P + R328P/N/A/L/K/H/G/D

Table 4C: Further TdT variants at positions C173 (SEQ ID NO: 11), M63 (SEQ ID NO: 11), R207 (SEQ ID NO: 11) and R324 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO

Mutations	SEQ ID NO
M63R/Q + C173G/R + R207N/L + R324P/N	11
M63R/Q + C173G/R + R207N/L + R324P/N	13
L62R/Q + C172G/R + R206N/L + R320P/N	15
M63R/Q + C173G/R + R207N/L + R331P/N	17
M63R/Q + C173G/R + R207N/L + P325N	19
R64Q/G + C173G/R + R208N/L + T331P/N	21
M73R/Q/G + C178G/R + R207N/L + R325P/N	23
M64R/Q + C174G/R + R208N/L + P326N	25
M61R/Q + C171G/R + R205N/L + R323P/N	27
M63R/Q + C173G/R + R207N/L + R328P/N	29
L63R/Q + C173G/R + R207N/L + R325P/N	31
M63R/Q + C182G/R + R216N/L + R338P/N	33
M66R/Q + C176G/R + R210N/L + R328P/N	35

5 Table 4D: Further TdT variants at positions C173 (SEQ ID NO: 11), M63 (SEQ ID NO: 11), R207 (SEQ ID NO: 11) and E327 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO

Mutations	SEQ ID NO
M63 + C173 + R207 + E327	11
M63 + C173 + R207 + E327	13
L62 + C172 + R206 + G323	15
M63 + C173 + R207 + E334	17
M63 + C173 + R207 + E327	19
R64 + C173 + R208 + E334	21
M73 + C178 + R207 + E328	23
M64 + C174 + R208 + E329	25
M61 + C171 + R205 + E326	27
M63 + C173 + R207 + E331	29
L63 + C173 + R207 + E328	31
M63 + C182 + R216 + E341	33

M66 + C176 + R210 + E331	35
--------------------------	----

Table 4E: <u>Further TdT variants at positions C173 (SEQ ID NO: 11)</u>, M63 (SEQ ID NO: 11), R207 (SEQ ID NO: 11) and E327 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO

Mutations	SEQ ID NO
M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D	11
+ R207 N/L/K/H/G/D/A/P + E327N/L/T/S	
M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D	13
+ R207 N/L/K/H/G/D/A/P + E327N/L/T/S	
L62R/Q/G/A/V/D/N/H/E + C172G/R/P/A/V/S/N/Q/D	15
+ R206 N/L/K/H/G/D/A/P + G323N/L/T/S	
M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D	17
+ R207 N/L/K/H/G/D/A/P + E334N/L/T/S	
M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D	19
+ R207 N/L/K/H/G/D/A/P + E327N/L/T/S	
R64Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D	21
+ R208 N/L/K/H/G/D/A/P + E334N/L/T/S	
M73R/Q/G/A/V/D/N/H/E + C178G/R/P/A/V/S/N/Q/D	23
+ R207 N/L/K/H/G/D/A/P + E328N/L/T/S	
M64R/Q/G/A/V/D/N/H/E + C174G/R/P/A/V/S/N/Q/D	25
+ R208 N/L/K/H/G/D/A/P + E329N/L/T/S	
M61R/Q/G/A/V/D/N/H/E + C171G/R/P/A/V/S/N/Q/D	27
+ R205 N/L/K/H/G/D/A/P + E326N/L/T/S	
M63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D	29
+ R207 N/L/K/H/G/D/A/P + E331N/L/T/S	
L63R/Q/G/A/V/D/N/H/E + C173G/R/P/A/V/S/N/Q/D	31
+ R207N/L/K/H/G/D/A/P + E328N/L/T/S	
M63R/Q/G/A/V/D/N/H/E + C182G/R/P/A/V/S/N/Q/D	33
+ R216N/L/K/H/G/D/A/P + E341N/L/T/S	
M66R/Q/G/A/V/D/N/H/E + C176G/R/P/A/V/S/N/Q/D	35
+ R210N/L/K/H/G/D/A/P + E331N/L/T/S	

Table 4F: Further TdT variants at positions C173 (SEQ ID NO: 11), M63 (SEQ ID NO: 11), R207 (SEQ ID NO: 11) and E327 (SEQ ID NO: 11) or functionally equivalent positions of the indicated SEQ ID NO

Mutations	SEQ ID NO
M63R/Q + C173G/R + R207 N/L + E327N/L/T/S	11
M63R/Q + C173G/R + R207N/L + E327N/L/T/S	13
L62R/Q + C172G/R + R206N/L + G323N/L/T/S	15
M63R/Q + C173G/R + R207N/L + E334N/L/T/S	17
M63R/Q + C173G/R + R207N/L + E327N/L/T/S	19
R64Q/G + C173G/R + R208N/L + E334N/L/T/S	21
M73R/Q + C178G/R + R207N/L + E328N/L/T/S	23
M64R/Q + C174G/R + R208N/L + E329N/L/T/S	25
M61R/Q + C171G/R + R205N/L + E326N/L/T/S	27
M63R/Q/G + C173G/R + R207N/L + E331N/L/T/S	29
L63R/Q + C173G/R + R207N/L + E328N/L/T/S	31
M63R/Q + C182G/R + R216N/L + E341N/L/T/S	33
M66R/Q + C176G/R + R210N/L + E331N/L/T/S	35

- Advantageously, the substitution is selected from CzzzG/R/P/A/V/S/N/Q/D, where Czzz represents an amino acid residue number functionally equivalent to C173 of SEQ ID NO: 11 in SEQ ID NOs 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35, respectively, and preferably from CzzzG/R, where Czzz represents an amino acid residue number functionally equivalent to C173 of SEQ ID NO: 11 in SEQ ID NOs 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35, respectively.
- In a particular embodiment, the variant further comprises at least one amino acid substitution at position corresponding to functionally equivalent residues of residues selected from M63, R207, R324 and E327, of SEQ ID NO:11.
 - According to the invention, all variants of TdT as disclosed above are able to both synthesize a nucleic acid fragment without template and incorporate a modified nucleotide into the nucleic acid fragment. Advantageously, said variants have an increased ability to incorporate a modified nucleotide, preferably a 3'O-modified nucleotide, into a nucleic acid fragment as compared to a TdT of SEQ ID NOs: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35.

10

15

20

In some of the embodiments described above, the efficiency of a variant TdT in incorporating a 3'O-modified nucleoside triphosphate is at least 110 percent that of a wild type TdT of sequence SEQ ID NO: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35 in other embodiments, the efficiency of a variant TdT in incorporating a 3'O-modified nucleoside triphosphate is at least 150 percent that of a wild type TdT of sequence SEQ ID NO: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35; in other embodiments, the efficiency of a variant TdT in incorporating a 3'O-modified nucleoside triphosphate is at least 200 percent that of a wild type TdT of sequence SEQ ID NO: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35.

In a particular embodiment, the variants of the invention comprise the amino acid sequence of SEQ ID NOs 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35 and optionally additional amino acid fragments at the C-ter or N-ter. In another embodiment, the variants of the invention consist solely on the amino acid sequence of SEQ ID NOs 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35.

According to a another aspect of the invention, the variant of Terminal deoxynucleotidyl Transferase (TdT) comprises an amino acid sequence as set forth in SEQ ID NOs 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35 or an amino acid sequence having 90% sequence identity, preferably 95%, 96%, 97%, 98%, 99% sequence identity with any of the foregoing sequences, with at least three amino acid substitutions selected from M63R/Q, L131P, C173G/R, R207L/N, D250V, R324P/N and E327N/L/T/S, or a functionally equivalent residue, wherein the positions are numbered by reference to the amino acid sequence set forth in SEQ ID NO:11 or as set forth directly elsewhere herein in respect of their individual SEQ ID NOs, (i) is able to synthesize a nucleic acid fragment without template and (ii) is able to incorporate a 3'-O-modified nucleotide into the nucleic fragment.

For instance, the variant of TdT comprises an amino acid sequence within a specified percent sequence identity of SEQ ID NO:11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 and 35 and a combination of substitutions selected from M63R + L131P + R207L, M63R + L131P + R207N, M63R + L131P + D250V, M63R + L131P + R324P, M63R + L131P + R324A, M63R + L131P + E327N, M63R + R207L + D250V, M63R + R207L + R324P, M63R + R207L + R324A, M63R + R207L + E327L, M63R + R207L + E327N, M63R + R207N + E327N, M63R + R207N + E327N, M63R + R207N + E327L, M63R + R207N + E327N, M63R + R207N + E327N, M63R + R207N + E327L, M63R + R324P + E327N, M63Q + L131P + R207L, M63Q + L131P + R207N, M63Q + L131P + D250V, M63Q + L131P + R324P, M63Q + L131P + R324P, M63Q + L131P + E327L, M63Q + L131P + R324P, M63Q + L131P +

25

E327N, M63Q + R207L + D250V, M63Q + R207L + R324P, M63Q + R207L + R324A, M63O + R207L + E327L, M63O + R207L + E327N, M63O + D250V + R324P, M63O + D250V + R324A, M63O + D250V + E327L, M63O + D250V + E327N, M63O + R324P + E327L, M63Q + R324P + E327N, M63Q + R324A + E327L, M63Q + R324A + E327N, L131P + R207L + D250V, L131P + R207L + R324A, L131P + R207L + E327L, L131P + R207L + 5 E327N, L131P + R207N + D250V, L131P + R207N + R324P, L131P + R207N + R324A, L131P + R207N + E327L, L131P + R207N + E327N, L131P + D250V + R324P, L131P + D250V + R324A, L131P + D250V + E327L, L131P + D250V + E327N, L131P + R324P + E327L, L131P + R324P + E327N, L131P + R324A + E327L, L131P + R324A + E327N, R207L + D250V + R324P, R207L + D250V + R324A, R207L + D250V + E327L, R207L + D250V + 10 E327N, R207L + R324P + E327L, R207L + R324P + E327N, R207L + R324A + E327L, R207L + R324A + E327N, R207N + D250V + R324P, R207N + D250V + R324A, R207N + D250V + E327L, R207N + D250V + E327N, R207N + R324P + E327L, R207N + R324P + E327N, R207N + R324A + E327L, R207N + R324A + E327N, D250V + R324P + E327L, D250V + R324P + E327N, D250V + R324A + E327L, D250V + R324A + E327N and R207L 15 + D250V + R324P, or functionally equivalent residue(s) wherein the above position numbers are with respect to SEQ ID NO 11.

In a particular embodiment, the variant of TdT comprises an amino acid sequence within a specified percent sequence identity of SEQ ID N°11, or functionally equivalent sequence, with the combination of substitutions R207L + R324P + E327L, or functionally equivalent residues.

In a particular embodiment, the variant of TdT comprises an amino acid sequence within a specified percent sequence identity of SEQ ID N°11, or functionally equivalent sequence, with the combination of substitutions R207N + R324A + E327N, or functionally equivalent residues.

Such variant may further comprise at least one substitution at position corresponding to residues selected from L52, A108, L131, T340, G284, H287, E289, W450, R354 and A510, with respect to SEQ ID NO 11, or functionally equivalent residue(s) in functionally equivalent sequence.

As exposed above, said variant may also comprise the combination of constant mutations L52F+A108V+R354K and/or G284L/S+H287D+E289A, with respect to SEQ ID NO:11, or functionally equivalent residue(s) in functionally equivalent sequence.

According to a further aspect, the invention provides a variant of Terminal deoxynucleotidyl 30 Transferase (TdT) which comprises an amino acid sequence within a specified percent sequence identity of SEQ ID NO:11 or a functionally equivalent sequence, with at least one amino acid substitution selected from M63R, M63Q, L131P, R207L, R207N, D250V, R324P, R324A, E327L, E327N, or functionally equivalent residue(s), (i) is able to synthesize a nucleic acid

PCT/EP2020/064524

fragment without a template and (ii) is able to incorporate a 3'-O-modified nucleotide into the nucleic fragment.

In another aspect, the invention provides a variant of Terminal deoxynucleotidyl Transferase (TdT) which comprises an amino acid sequence within a specified percent sequence identity of SEQ ID NO:11 or a functionally equivalent sequence, with at least the combination of 5 substitutions selected from M63R + L131P, M63R + R207L, M63R + R207N, M63R + D250V, M63R + R324P, M63R + R324A, M63R + E327L, M63R + E327N, M63Q + L131P, M63Q + R207L, M63Q + R207N, M63Q + D250V, M63Q + R324P, M63Q + R324A, M63Q + E327L, M63Q + E327N, L131P + R207L, L131P + R207N, L131P + D250V, L131P + R324P, L131P + R324A, L131P + E327L, L131P + E327N, R207L + D250V, R207L + R324P, R207L + 10 R324A, R207L + E327L, R207L + E327N, R207N + D250V, R207N + R324P, R207N + R324A, R207N + E327L, R207N + E327N, D250V + R324P, D250V + R324A, D250V + E327L, D250V + E327N, R324P + E327L, R324P + E327N, R324A + E327L and R324A + E327N, or functionally equivalent residue(s), wherein the positions are numbered by reference to the amino acid sequence set forth in SEQ ID N°11, (i) is able to synthesize a nucleic acid 15 fragment without a template and (ii) is able to incorporate a 3'-O-modified nucleotide into the nucleic fragment.

According to some embodiments, a variant of TdT has a substitution or combination of substitutions described above and has an amino acid sequence within at least 80% identity with SEQ ID NOs 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35; in some embodiments, such amino acid sequence is within at least 85%, 90%, 95%, 96%, 97%, 98%, or 99% identity with SEQ ID NOs 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35.

Additional modifications

20

25

30

In an embodiment, the variant of TdT further includes any type of tagging peptide in its N-terminal, C-terminal or both extremity, such as a His-tag sequence. Said tagging peptide could be used for purification, identification, increasing expression, secretability or increasing catalytic activity. It will be understood that such different tags are extensively described in the literature and thus all tag known to a skilled person are covered by the present invention.

The variants of the invention can also include one or more exogenous or heterologous features at the N- and/or C-terminal regions of the protein for use, e.g., in the purification of the recombinant polymerase.

20

The variant of the invention may further comprise a substitution of residues between positions C378 to L406, wherein the positions are numbered by reference to the amino acid sequence set forth in SEQ ID N°1, or functionally equivalent residues, by residues H363 to C390 of the Pol μ polymerase of sequence SEQ ID NO:3, wherein the positions are numbered by reference to the amino acid sequence set forth in SEQ ID N°3 or functionally equivalent residues.

Advantageously, the variant of TdT comprises at least the amino acid sequence SEQ ID NO: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35, with the disclosed substitution(s) and percent sequence identity values.

Nucleic acids, expression cassette, vector

It is also the purpose of the invention to provide a nucleic acid molecule encoding a variant of the invention. As used herein, the term "nucleic acid", "nucleic sequence," "polynucleotide", "oligonucleotide" and "nucleotide sequence" are used interchangeably and refer to a sequence of deoxyribonucleotides and/or ribonucleotides. In one embodiment, the nucleic acid is a DNA. In an alternative embodiment, the nucleic acid is RNA. In an alternative embodiment, the nucleic acid is XNA.

The nucleic acids can be in single stranded form or in duplex form or a mixture of the two. It can be of recombinant, artificial and/or synthetic origin and it can comprise modified nucleotides. Such modifications could be natural modifications such as epigenetic modifications, or unnatural modification such as labels, modified bond, a modified purine or pyrimidine base, or a modified sugar. In one embodiment, nucleic acid molecules are DNA, RNA or XNA bearing naturally occurring epigenetic modifications such as methylation, hydfroxymethylation, formylation or 5-carboxylation. In one embodiment, nucleic acid molecules are DNA, RNA or XNA bearing unnaturally occurring modifications such as fluorescent tag, fluorescent label, interaction groups.

- The nucleic acids of the invention can be in isolated or purified form, and made, isolated and/or manipulated by techniques known per se in the art, e.g., cloning and expression of cDNA libraries, amplification, enzymatic synthesis or recombinant technology. The nucleic acids can also be synthesized in vitro by well-known chemical synthesis techniques, as described in, e.g., Belousov (1997) Nucleic Acids Res. 25:3440-3444.
- The invention also encompasses nucleic acids which hybridize, under stringent conditions, to a nucleic acid encoding a TdT variant as defined above. Preferably, such stringent conditions include incubations of hybridization filters at about 42° C for about 2.5 hours in 2 X

15

20

25

30

SSC/0.1%SDS, followed by washing of the filters four times of 15 minutes in 1 X SSC/0.1% SDS at 65° C. Protocols used are described in such reference as Sambrook et al. (Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Press, Cold Spring Harbor N.Y. (1988)) and Ausubel (Current Protocols in Molecular Biology (1989)).

The invention also encompasses nucleic acids encoding a TdT variant of the invention, wherein the sequence of said nucleic acids, or a portion of said sequence at least, has been engineered using optimized codon usage.

Alternatively, the nucleic acids according to the invention may be deduced from the sequence of the TdT variant according to the invention and codon usage may be adapted according to the host cell in which the nucleic acids shall be transcribed. These steps may be carried out according to methods well known to one skilled in the art and some of which are described in the reference manual Sambrook et al. (Sambrook et al., 2001).

In one embodiment, nucleic acid molecules are polymeric molecules having length of more than 50, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1 000, 2 000, 3 000, 4 000, 5 000, 6 000, 7 000, 8 000, 9 000, 10 000, 15 000, 20 000, 30 000, 40 000, 50 000 or 100 000 nucleotides.

Nucleic acids of the invention may further comprise additional nucleotide sequences, such as regulatory regions, i.e., promoters, enhancers, silencers, terminators, signal peptides and the like that can be used to cause or regulate expression of the polypeptide in a selected host cell or system.

The present invention further relates to an expression cassette comprising a nucleic acid according to the invention operably linked to one or more control sequences that direct the expression of said nucleic acid in a suitable host cell. Typically, the expression cassette comprises, or consists of, a nucleic acid according to the invention operably linked to a control sequence such as transcriptional promoter and/or transcription terminator. The control sequence may include a promoter that is recognized by a host cell or an *in vitro* expression system for expression of a nucleic acid encoding a TdT variant of the present invention. The promoter contains transcriptional control sequences that mediate the expression of the enzyme. The promoter may be any polynucleotide that shows transcriptional activity in the host cell including mutant, truncated, and hybrid promoters, and may be obtained from genes encoding extracellular or intracellular polypeptides either homologous or heterologous to the host cell. The control sequence may also be a transcription terminator, which is recognized by a host cell to terminate transcription. The terminator is operably linked to the 3'-terminus of the nucleic acid encoding the esterase. Any terminator that is functional in the host cell may be used in the

10

15

20

25

30

present invention. Typically, the expression cassette comprises, or consists of, a nucleic acid according to the invention operably linked to a transcriptional promoter and a transcription terminator.

The invention also relates to a vector comprising a nucleic acid or an expression cassette as defined above.

The term "vector" refers to DNA molecule used as a vehicle to transfer recombinant genetic material into a host cell. The major types of vectors are plasmids, bacteriophages, viruses, cosmids, and artificial chromosomes. The vector itself is generally a DNA sequence that consists of an insert (a heterologous nucleic acid sequence, transgene) and a larger sequence that serves as the "backbone" of the vector. The purpose of a vector which transfers genetic information to the host is typically to isolate, multiply, or express the insert in the target cell. Vectors called expression vectors (expression constructs) are specifically adapted for the expression of the heterologous sequences in the target cell, and generally have a promoter sequence that drives expression of the heterologous sequences encoding a polypeptide. Generally, the regulatory elements that are present in an expression vector include a transcriptional promoter, a ribosome binding site, a terminator, and optionally present operator. Preferably, an expression vector also contains an origin of replication for autonomous replication in a host cell, a selectable marker, a limited number of useful restriction enzyme sites, and a potential for high copy number. Examples of expression vectors are cloning vectors, modified cloning vectors, specifically designed plasmids and viruses. Expression vectors providing suitable levels of polypeptide expression in different hosts are well known in the art. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which the vector is to be introduced.

Embodiments of the invention provide a host cell comprising a nucleic acid, an expression cassette or a vector as described above. The present invention thus relates to the use of a nucleic acid, expression cassette or vector according to the invention to transform, transfect or transduce a host cell. The choice of the vector will typically depend on the compatibility of the vector with the host cell into which it must be introduced.

According to the invention, the host cell may be transformed, transfected or transduced in a transient or stable manner. The expression cassette or vector of the invention is introduced into a host cell so that the cassette or vector is maintained as a chromosomal integrant or as a selfreplicating extra-chromosomal vector. The term "host cell" also encompasses any progeny of a parent host cell that is not identical to the parent host cell due to mutations that occur during replication. The host cell may be any cell useful in the production of a variant of the present WO 2020/239737 PCT/EP2020/064524 27

invention, e.g., a prokaryote or a eukaryote. The prokaryotic host cell may be any Gram-positive or Gram-negative bacterium. The host cell may also be an eukaryotic cell, such as a yeast, fungal, mammalian, insect or plant cell.

The nucleic acid, expression cassette or expression vector according to the invention may be introduced into the host cell by any method known by the skilled person, such as electroporation, conjugation, transduction, competent cell transformation, protoplast transformation, protoplast fusion, biolistic "gene gun" transformation, PEG-mediated transformation, lipid-assisted transformation or transfection, chemically mediated transfection, lithium acetate-mediated transformation, liposome-mediated transformation,

10 Optionally, more than one copy of a nucleic acid, cassette or vector of the present invention may be inserted into a host cell to increase production of the variant.

Modified nucleotides

5

25

30

According to the invention, the variants of TdT are able to incorporate modified nucleotides, preferably modified 3'O- nucleotides and more preferably 3'O-blocked nucleotides.

In the context of the invention, the expression "Modified Nucleotide" refers to a molecule 15 containing a nucleoside (i.e. a base attached to a deoxyribose or ribose sugar molecule) bound to three phosphate groups which has at least one additional group on one of its extremity: 2', 3', 5' or base. Said additional group blocks further addition of nucleotides by preventing the formation of any phosphodiester bond (3'O-modification, 2' or 2'O modifications) or by sterically preventing the polymerase to attach to any nucleic acid fragments that comprises on 20 its 3' extremity such modified nucleotide (5' or base modification). Furtherly, said additional group has advantagesoulsy a reversible nature allowing that group to be removed through a specific cleaving reaction.

Nucleosides or nucleotide triphosphates include deoxyadenosine triphosphate (dATP), deoxyguanosine triphosphate (dGTP), deoxycytidine triphosphate (dCTP) or deoxythymidine triphosphate (dTTP) for examples of nucleotide containing deoxyribose. Adenosine triphosphate (ATP), guanosine triphosphate (GTP), cytidine triphosphate (CTP) or uridine triphosphate (UTP) are further examples of nucleotide triphosphates containing ribose. Other types of nucleosides may be bound to three phosphates to form nucleotide triphosphates, such as naturally occurring modified nucleosides and artificial nucleosides.

In a particular embodiment, the modified nucleotide is a 3'O-blocked nucleotide, which comprises a group reversibly attached to the 3' end of the nucleotide triphosphate to prevent

15

20

25

30

further nucleotide addition. Said group could have diverse chemical natures, such as azidomethyl, aminoxy, and allyl.

Advantageously, the modified nucleotide is selected from a 3'-O-NH₂-nucleoside triphosphate, a 3'-O-azidomethyl-nucleoside triphosphate, a 3'-O-allyl-nucleoside triphosphate, a 3'O—(2-nitrobenzyl)-nucleoside triphosphate, or a 3'-O-propargyl-nucleoside triphosphate.

[0022] In some embodiments, the modified nucleotides comprise a modified nucleotide or nucleoside molecule comprising a purine or pyrimidine base and a ribose or deoxyribose sugar moiety having a removable 3'-OH blocking group covalently attached thereto, such that the 3' carbon atom has attached a group of the structure:

10 -O-Z

wherein -Z is any of -C(R')2-0-R", -C(R')2-N(R")2, -C(R')2-N(H)R", -C(R')2-S-R" and -C(R')2-F, wherein each R" is or is part of a removable protecting group; each R' is independently a hydrogen atom, an alkyl, substituted alkyl, arylalkyl, alkenyl, alkynyl, aryl, heteroaryl, heterocyclic, acyl, cyano, alkoxy, aryloxy, heteroaryloxy or amido group, or a detectable label attached through a linking group; with the proviso that in some embodiments such substituents have up to 10 carbon atoms and/or up to 5 oxygen or nitrogen heteroatoms; or (R')2 represents an alkylidene group of formula =C(R"')2 wherein each R"' may be the same or different and is selected from the group comprising hydrogen and halogen atoms and alkyl groups, with the proviso that in some embodiments the alkyl of each R" has from 1 to 3 carbon atoms; and wherein the molecule may be reacted to yield an intermediate in which each R" is exchanged for H or, where Z is -(R')2-F, the F is exchanged for OH, SH or NH2, preferably OH, which intermediate dissociates under aqueous conditions to afford a molecule with a free 3'-OH; with the proviso that where Z is -C(R')2-S-R", both R' groups are not H. In certain embodiments, R' of the modified nucleotide or nucleoside is an alkyl or substituted alkyl, with the proviso that such alkyl or substituted alkyl has from 1 to 10 carbon atoms and from 0 to 4 oxygen or nitrogen heteroatoms. In certain embodiments, -Z of the modified nucleotide or nucleoside is of formula -C(R')₂-N3. In certain embodiments, Z is an azidomethyl group.

[0023] In some embodiments, Z is a cleavable organic moiety with or without heteroatoms having a molecular weight of 200 or less. In other embodiments, Z is a cleavable organic moiety with or without heteroatoms having a molecular weight of 100 or less. In other embodiments, Z is a cleavable organic moiety with or without heteroatoms having a molecular weight of 50 or less.

15

In a further particular embodiment, "3'O modified nucleotide" refers to nucleotide triphosphate bearing at the 3' extremity either a 3'-O-methyl, 3'-azido, 3'-O-azidomethyl, 3'-O-amino, 3'-aminoxy or 3'-O-allyl group. In a further embodiment, the 3'-blocked nucleotide triphosphate is blocked by either a 3'-O-azidomethyl, 3'-aminoxy or 3'-O-allyl group. In other embodiments, "3'O modified nucleotide" refers to nucleotide triphosphate bearing at the 3' extremity either esters, ethers, carbonitriles, phosphates, carbonates, carbamates, hydroxylamine, borates, nitrates, sugars, phosphoramide, phosphoramidates, phenylsulfenates, sulfates, sulfones or amino acids. In some embodiments, the foregoing 3'-O-blocking groups have a molecule weight of 100 or less.

In another embodiments, 3'-O-blocking groups of the invention include methyl, 3'-O-(2-nitrobenzyl), allyl, amine, azidomethyl, tert-butoxy ethoxy, or propargyl.

In further particular embodiment, "3'O modified nucleotide" refers to a nucleotide triphosphate having a terminator effector modifying group such as those described in WO2016034807.

Interestingly, the variants of the invention exhibit an increased affinity for modified nucleotides, as compared to wild type TdT, and thereby an increased ability to incorporate such modified nucleotide in a nucleic acid sequence during nucleic acid synthesis. More particularly, the variants of the invention are able to use and incorporate modified 3'O- nucleotides (and more particularly, 3'O-blocked nucleotide) in nucleic acid sequence, which is not possible with wild type TdT (see Knapp et al. Chem. Eur. J., 2011, 17:2903).

According to a particular aspect, the invention relates to variants of TdT able to work with modified nucleotides in a nucleic acids enzymatic synthesis process, particularly with 3'O-modified nucleotides (e.g., 3'O-blocked nucleotide), and having the ability to produce long length nucleic acid molecules or derivative of nucleic acid molecules.

Enzymatic Synthesis of nucleic acid

It is the purpose of the present invention to provide variants of TdT that may be used for the synthesis of nucleic acid, such as described in Ybert et al, WO2015/159023; Jensen et al, Biochemistry, 57: 1821-1832 (2018); Hiatt et al, U.S. patent 5808045. More particularly, it is the purpose of the present invention to provide variants of TdT suitable to add modified nucleotides to an initiating nucleic acid strand. The blocking group may be then removed for allowing a new addition of modified nucleotide.

10

15

20

25

According to the invention, by use of a variant of the invention, it is possible to implement successive cycles comprising additions and deprotections. This process will therefore allow by multiple cycles of addition of a reversible modified nucleotide and further removal of the blocking group to allow the controlled extension of an initiating nucleic acid strand into a defined sequence.

The present invention contemplates the use of modified TdT according to the present invention in any enzymatic nucleic acid synthesis process.

Embodiments of the present invention provide a method of synthesizing a polynucleotide having a predetermined sequence, comprising the steps of:

- a) providing an initiator having a 3'-terminal nucleotide having a free 3'-hydroxyl;
- b) repeating cycles of (i) contacting under elongation conditions the initiator or elongated fragments having free 3'-O-hydroxyls with a 3'-O-blocked nucleoside triphosphate and a TdT variant of the present invention, so that the initiator or elongated fragments are elongated by incorporation of a 3'-O-blocked nucleoside triphosphate to form 3'-O-blocked elongated fragments, and (ii) deblocking the elongated fragments to form elongated fragments having free 3'-hydroxyls, until the polynucleotide is formed.

It is also the purpose of the present invention to provide a process for synthesizing a nucleic acid molecule without template, comprising a step of contacting a nucleic acid primer with both at least one nucleotide, preferably at least one 3'O-modified nucleotide, and a variant of the invention.

The present invention contemplates the concept of enzymatic nucleic acids synthesis process. In such process, nucleic acids molecules are de novo synthesized in absence of any template strand. Accordingly, ordered sequence of nucleotides are coupled to an initiator nucleic acid fragment with the help of the variant of the invention. It will be understood that quantitative coupling and more generally high coupling efficiency of each nucleotide to the growing nucleic acid chain is of great importance. It will also be understood that non-terminator nucleotides, such as natural nucleotides or permanent labeled nucleotides, will not permit any control over the sequence synthesized and will result, for example, in uncontrolled and undesired polyadditions.

In some embodiments, the method of synthesizing a polynucleotide comprises the steps of (a) 30 providing an initiator having a free 3'-hydroxyl; (b) reacting under extension conditions the initiator or an extension intermediate having a free 3'-hydroxyl with a variant TdT of the invention in the presence of a 3'-O-blocked nucleoside triphosphate to produce a 3'-O-blocked extension intermediate; (c) deblocking the extension intermediate to produce an extension

10

15

20

30

intermediate with a free 3'-hydroxyl; and (d) repeating steps (b) and (c) until the polynucleotide is synthesized.

In some embodiments, the method of synthesizing a polynucleotide comprises the steps of (a) providing an initiator attached to a solid support, the iniator being an oligonucleotide having a free 3'-hydroxyl; (b) reacting under extension conditions the initiator or an extension intermediate having a free 3'-hydroxyl with a variant TdT of the invention in the presence of a 3'-O-blocked nucleoside triphosphate to produce a 3'-O-blocked extension intermediate; (c) washing the solid support to remove unincorporated 3'-O-blocked nucleoside triphosphate; (d) deblocking the extension intermediate by exposing the solid support to a deblocking agent to produce an extension intermediate having a free 3'-hydroxyl; and (e) repeating steps (b) and (d) until the polynucleotide is synthesized. The method may include a further step of cleaving the completed polynucleotide from the solid support.

In some embodiments, for TdT catalyzed addition reactions, the enzymatic conditions may contain from about 0.20 and about 200 µM of the nucleotide having the removable blocking moiety protecting the 3'-hydroxyl and from about 0.20 to 200 µM of free and unmodified 3'-hydroxyls derived from the initiating substrate. In some embodiments, the reaction buffer contains from about 10 to about 500 mM potassium cacodylate buffer (pH between 6.5 and 7.5). and from about 0.01 to about 10 mM of a divalent cation (e.g. CoC1₂ or MnC1₂). Other buffer compositions and components may be suitable for particular desired embodiment of the present invention.

In the context of the invention, the expression "cleaving reaction" refers to any action of substance or physical conditions, which is able to cleave the additional group previously described on reversible modified nucleotides. A person skilled in the art is able to determine a cleaving reaction for any previously listed group.

In one embodiment, the cleaving agent is a chemical cleaving agent. In an alternative embodiment, the cleaving agent is an enzymatic cleaving agent.

It will be understood by the person skilled in the art that the selection of cleaving agent is dependent on the type of 3'-nucleotide blocking group used. For example, tris(2-carboxyethyl)phosphine (TCEP) can be used to cleave a 3'O-azidomethyl groups, palladium complexes can be used to cleave a 3'O-allyl groups, or sodium nitrite can be used to cleave a 3'O-amino group. In particular embodiment, the cleaving reaction is involving: TCEP, a palladium complex or sodium nitrite.

10

15

25

30

In particular embodiment, the cleaving reaction is performed in the presence of additional components such as denaturant (urea, guanidinium chloride, formamide or betaine for example). In a further embodiment, the cleavage reaction is performed with one or more buffers. It will be understood by the person skilled in the art that the choice of buffer is dependent on the exact mechanism of reaction.

The present invention relates to variants of TdT with the capacity to incorporate, in a quantitative way, modified nucleotides. By "quantitative way" or "quantitative reaction", it is meant a reaction that goes to completion, i.e. in which reactants are totally converted into the product. Polymerase that incorporates in a quantitative way reversible modified nucleotide is a polymerase able to elongate every fragment of nucleic acid with all the nucleotides available leading to the conversion of all the initiating fragments of length n, to fragments of length n+1.

As used herein, "initiating fragment" refers to a short oligonucleotide sequence with a free 3'-end, which can be further elongated. In one embodiment, the initiating fragment is a DNA initiating fragment. In an alternative embodiment, the initiating fragment is an RNA initiating fragment.

In one embodiment, the initiating fragment possesses between 3 and 100 nucleotides, in particular between 3 and 20 nucleotides.

In one embodiment, the initiating fragment is single-stranded. In an alternative embodiment, the initiating fragment is double-stranded.

In one embodiment, the initiating fragment is immobilized on a solid support. The initiating fragment may be attached with various method to a solid support resulting in a stable under the various enzymatic or synthesis reaction conditions that the fragment will undergo.

In one embodiment, the initiating fragment is immobilized on a solid support via a reversible interacting moiety, such as a chemically-cleavable linker, an antibody/immunogenic epitope, a biotin/biotin-binding protein or glutathione-GST tag. In a further embodiment, the initiating fragment is immobilized on a solid support via a chemically-cleavable linker, such as a disulfide, allyl, or azide-masked hemiaminal ether linker.

In an initiating fragment, the immobilized part contains at least one restriction site. The use of restriction enzymes and restriction sites to selectively hydrolyze nucleic acids chain at a specific site is describe in the literature. Any skilled person will be able to choose the appropriate restriction enzyme that will match the initiating fragment cleaving site sequence.

In an alternative embodiment, the initiating fragment contains at least one uridine. Treatment with uracil-DNA glycosylase (UDG) generates an abasic site. Treatment on an appropriate substrate with an apurinic/apyrimidinic (AP) site endonuclease will extract the nucleic acid strand.

5 Applications

10

15

20

Described herein is the use of variants of TdT to be used for nucleic acid synthesis, oligonucleotide synthesis, probe synthesis, tagging, nucleic acid amplification, aptamers, therapeutic nucleic acid molecules, drug target discovery and validation, disease diagnosis, metabolic engineering, data storage, crops improvement, library design, sequencing pools, nucleic acid labeling or attachment or any other application that is involving nucleic acid molecules.

Production of Variant TdTs

Variants of the invention may be produced by mutating known reference or wild type TdT-coding polynucleotides, then expressing it using conventional molecular biology techniques. For example, the mouse TdT gene (SEQ ID NO: 1) may be assembled from synthetic fragments using conventional molecular biology techniques, e.g. using protocols described by Stemmer et al, Gene, 164: 49-53 (1995); Kodumal et al, Proc. Natl. Acad. Sci., 101: 15573-15578 (2004); or the like, or it may be directly cloned from mouse cells using protocols described by Boule et al, Mol. Biotechnology, 10: 199-208 (1998), or Bentolila et al, EMBO J., 14: 4221-4229 (1995); or the like.

For example, an isolated TdT gene may be inserted into an expression vector, such as pET32 (Novagen) to give a vector pCTdT which then may be used to make and express variant TdT proteins using conventional protocols. Vectors with the correct sequence may be transformed in E. coli producer strains.

Transformed strains are cultured using conventional techniques to pellets from which TdT protein is extracted. For example, previously prepared pellets are thawed in 30 to 37°C water bath. Once fully thawed, pellets are resuspended in lysis buffer composed of 50mM tris-HCL (Sigma) pH 7.5, 150mM NaCl (Sigma), 0.5mM mercaptoethanol (Sigma), 5% glycerol (Sigma), 20mM imidazole (Sigma) and 1 tab for 100mL of protease cocktail inhibitor (Thermofisher). Careful resuspension is carried out in order to avoid premature lysis and remaining of aggregates. Resuspended cells are lysed through several cycles of French press, until full color homogeneity is obtained. Usual pressure used is 14,000psi. Lysate is then

centrifuged for 1h to 1h30 at 10,000 rpm. Centrifugate is pass through a 0.2µm filter to remove any debris before column purification.

PCT/EP2020/064524

TdT protein may be purified from the centrifugate in a one-step affinity procedure. For example, Ni-NTA affinity column (GE Healthcare) is used to bind the polymerases. Initially the column has been washed and equilibrated with 15 column volumes of 50mM tris-HCL (Sigma) pH 7.5, 150mM NaCl (Sigma) and 20mM imidazole (Sigma). Polymerases are bound to the column after equilibration. Then a washing buffer, composed of 50mM tris-HCL (Sigma) pH 7.5, 500mM NaCl (Sigma) and 20mM imidazole (Sigma), is applied to the column for 15 column volumes. After wash the polymerases are eluted with 50mM tris-HCL (Sigma) pH 7.5, 500mM NaCl (Sigma) and 0.5M imidazole (Sigma). Fractions corresponding to the highest concentration of polymerases of interest are collected and pooled in a single sample. The pooled fractions are dialyzed against the dialysis buffer (20 mM Tris-HCl, pH 6.8, 200mM Na Cl, 50mM MgOAc, 100mM [NH4]2SO4). The dialysate is subsequently concentrated with the help of concentration filters (Amicon Ultra-30, Merk Millipore). Concentrated enzyme is distributed in small aliquots, 50% glycerol final is added, and those aliquots are then frozen at -20°C and stored for long term. 5μL of various fraction of the purified enzymes are analyzed in SDSPAGE gels.

Kits, Enzyme and Nucleotide Composition

5

10

15

A particular aspect of the invention is relative to the composition and the use of kits comprising a variant of TdT according to the invention, or to any particular aspect of the present invention, with optionally any combination of one or more components selected from: an initiating fragment, one or more reversible terminator nucleotides, additional enzyme and reagents used in a cleaving reaction. Said kits can be used in a method of enzymatic nucleic acid synthesis.

The present invention covers the composition of matter comprising variants of TdT according to the invention, or to any particular aspect of the present invention, with reversible modified nucleotide in a mix with appropriate buffer and ratio concentration.

EXAMPLES

Example 1 – Generation, expression and purification of variants of TdT according to the invention

Expression strain generation

- The TdT mouse gene is been generated from the pET28 plasmid described in [Boulé et al., 1998, *Mol. Biotechnol.* **10**, 199-208]. Sequence SEQ ID NO:4 (Tag TdT) is been amplified by using the following primers:
 - T7-pro: TAATACGACTCACTATAGGG (SEQ ID NO:5)
 - T7-ter: GCTAGTTATTGCTCAGCGG (SEQ ID NO:6)
- through standard molecular biology techniques. The sequence is then cloned into plasmid pET32 backbone to give the new pCTdT plasmid.

After sequencing pCTdT is transformed into commercial *E. coli* cells, BL21 (DE3, from Novagen). Growing colonies on plate with kanamycin are isolated and named Ec-CTdT.

Polymerase variants generation

The pCTdT vector is used as starting vector. Specific primers comprising one or several point mutations are been generated from Agilent online software (http://www.genomics.agilent.com:80/primerDesignProgram.jsp). The commercially available kit QuickChange II (Agilent) has been used to generate the desired modified polymerase comprising the targeted mutations. Experimental procedure has followed the supplier's protocol. After generation of the different vectors, each of them have been sequenced. Vectors with the correct sequence have been transformed in *E. coli* producer strains, as described before. Clones able to grow on kanamycin LB-agar plates are isolated.

Expression

The Ec-CTdT and Ec-clone' strains are used for inoculating 250mL erlens with 50mL of LB media supplemented with appropriate amount of kanamycin. After overnight growth at 37°C, appropriate volumes of these pre-cultures are used to inoculate 5L erlens with 2L LB media with kanamycin. The initial OD for the 5L cultures is chosen to be 0.01. The erlens are put at 37°C under strong agitation and the OD of the different cultures are regularly checked. After

reaching an OD comprised between 0.6 and 0.9 each erlen is supplemented by the addition of 1mL of 1M IPTG (Isopropyl β -D-1-thiogalactopyranoside, Sigma). The erlens are put back to agitation under a controlled temperature of 37°C. After overnight expression, the cells are harvested in several pellets. Pellets expressing the same variants are pooled and stored at -20°C, eventually for several months.

PCT/EP2020/064524

Extraction

5

10

20

25

30

Previously prepared pellets are thawed in 30 to 37°C water bath. Once fully thawed, pellets are resuspended in lysis buffer composed of 50mM tris-HCL (Sigma) pH 7.5, 150mM NaCl (Sigma), 0.5mM mercaptoethanol (Sigma), 5% glycerol (Sigma), 20mM imidazole (Sigma) and 1 tab for 100mL of protease cocktail inhibitor (Thermofisher). Careful resuspension is carried out in order to avoid premature lysis and remaining of aggregates. Resuspended cells are lysed through several cycles of French press, until full color homogeneity is obtained. Usual pressure used is 14,000psi. Lysate is then centrifuged for 1h to 1h30 at 10,000 rpm. Centrifugate is pass through a 0.2µm filter to remove any debris before column purification.

15 Purification

A one-step affinity procedure is used to purify the produced and extracted polymerase enzymes. A Ni-NTA affinity column (GE Healthcare) is used to bind the polymerases. Initially the column has been washed and equilibrated with 15 column volumes of 50mM tris-HCL (Sigma) pH 7.5, 150mM NaCl (Sigma) and 20mM imidazole (Sigma). Polymerases are bound to the column after equilibration. Then a washing buffer, composed of 50mM tris-HCL (Sigma) pH 7.5, 500mM NaCl (Sigma) and 20mM imidazole (Sigma), is applied to the column for 15 column volumes. After wash the polymerases are eluted with 50mM tris-HCL (Sigma) pH 7.5, 500mM NaCl (Sigma) and 0.5M imidazole (Sigma). Fractions corresponding to the highest concentration of polymerases of interest are collected and pooled in a single sample. The pooled fractions are dialyzed against the dialysis buffer (20 mM Tris-HCl, pH 6.8, 200mM Na Cl, 50mM MgOAc, 100mM [NH₄]₂SO₄). The dialysate is subsequently concentrated with the help of concentration filters (Amicon Ultra-30, Merk Millipore). Concentrated enzyme is distributed in small aliquots, 50% glycerol final is added, and those aliquots are then frozen at -20°C and stored for long term. 5μL of various fraction of the purified enzymes are analyzed in SDS-PAGE gels.

020/239737 PCT/EP2020/064524

Example 2 – Evaluation of the activity of variants of TdT with fluorescent primers

37

Activity Test

5

Elongation performance of TdT variants generated, expressed and purified according to example 1 is evaluated through the following assay. All the results are compared with each other and with the wild type TdT enzyme and to a control tube lacking any polymerase enzyme.

Table 5: Activity test

Reagent	Concentration	Volume
H ₂ O	-	12 μL
Activity Buffer	10x	2 μL
dNTP	250 μΜ	2 μL
Purified enzyme	20 μΜ	2 μL
Fluorescent primer DNA	500 nM	2 μL

The Activity buffer comprises, for example, TdT reaction buffer (available from New England Biolabs) supplemented with CoCl₂. Primer used is the following:

10 5'-AAAAAAAAAAAAAAAGGGG-3' (SEQ ID NO:7)

The primer has also an ATTO fluorescent dye on the 5' extremity.

Nucleotides used (noted as dNTP in table 5) are 3'-O-amino-2',3'-dideoxynucleotides-5'-triphosphate (ONH₂, Firebird Biosciences) such as 3'-O-amino-2',3'-dideoxyadenosine-5'-triphosphate for example.

For each different variant tested, one tube is used for the reaction. The reagents are added in the tube, starting from water, and then in the order of Table 5. After 30 min at 37°C the reaction is stopped by addition of formamide (Sigma).

Analysis

The analysis is involving polyacrylamide gel analysis. Samples from activity test are analyzed through polyacrylamide 16% (biorad) denaturing gel. Gels are made just before the analysis by pouring polyacrylamide inside glass plates and let it polymerize. The gel inside the glass plates is mounted on an adapted tank filed with TBE buffer (Sigma) for the electrophoresis step. The

samples to be analyzed are loaded on the top of the gel. A tension of 500 to 2,000V is applied between the top and bottom of the gel for 3 to 6h at room temperature. Once migrated according to the sample target size, system is dismounted, and gel fluorescence is scanned through the use of Typhoon instrument (GE Life Sciences). After image acquisition, ImageJ software (imagej.nih.gov/ij/) is used to analyze the percentage of incorporation of the modified nucleotides.

38

Example 3 – Evaluation of the activity of variants of TdT with unlabeled primer

Activity Test

5

Elongation performance of variants 5 generated, expressed and purified according to example
10 1 is evaluated through the following assay. All the results are compared with a reference variant
(SEQ ID NO:9) obtained from previous research and to a control tube lacking any polymerase
enzyme.

Table 6: Activity test

Reagent	Concentration	Volume
H ₂ O	-	12 μL
Activity Buffer	10x	2 μL
dNTP	250 μΜ	2 μL
Purified enzyme	20 μΜ	2 μL
Fluorescent primer DNA	500 nM	2 μL

15 Primer used is the following:

5'- TTTTTTTTTTTAAATAAGG-3' (SEQ ID NO:8)

Nucleotides used (noted as dNTP in table 6) were 3'-O-amino-2',3'-dideoxynucleotides-5'-triphosphate (ONH2, Firebird Biosciences) such as 3'-O-amino-2',3'-dideoxyadenosine-5'-triphosphate for example.

For each variant tested one tube was used for the reaction. The reagents are added in the tube starting from the water and then in the order of Table 6. After 30min at 37°C the reaction was stopped by addition of formamide (Sigma).

5

10

15

Analysis

The analysis used liquid chromatography and mass spectrometer detection and quantification (LC/MS). Samples from activity test are analyzed through LC/MS. Samples are loaded into the LC/MS instrument and a standard oligonucleotide separation method is performed. Acquisition of data was followed by deconvolution and spectrum calculation.

Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as, an acknowledgement or admission or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

CLAIMS

- 1. A terminal deoxynucleotidyl transferase (TdT) variant comprising an amino acid sequence at least 90% identical to the amino acid sequence as set forth in the amino acid sequence selected from SEQ ID NO: 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33 or 35,
- wherein the amino acid sequence comprises at least one amino acid substitution of a cysteine residue at position 173 with respect to SEQ ID NOs 11, 13, 17, 19, 21, 29 or 31, or of a functionally equivalent cysteine residue selected from a cysteine at position 172 with respect to SEQ ID NO: 15, or cysteine at position 178 with respect to SEQ ID NO: 23, or cysteine at position 174 with respect to SEQ ID NO: 25, or cysteine at position 171 with respect to SEQ ID NO: 27, or cysteine at position 182 with respect to SEQ ID NO: 33, or cysteine at position 176 with respect to SEQ ID NO: 35,
- wherein the amino acid sequence comprises a further substitution of an arginine residue at position 207 with respect to SEQ ID NOs 11, 13, 17, 19, 23, 29 or 31, or of a functionally equivalent arginine residue selected from an arginine at position 206 with respect to SEQ ID NO: 15, or a arginine at position 208 with respect to SEQ ID NOs 21 or 25, or arginine at position 205 with respect to SEQ ID NO: 27, or arginine at position 216 with respect to SEQ ID NO: 33, or a arginine at position 210 with respect to SEQ ID NO: 35,

wherein the TdT variant (i) is capable of synthesizing a nucleic acid fragment without a template and (ii) is capable of incorporating a modified nucleotide into a nucleic acid fragment.

- 2. The TdT variant of claim 1 having a further substitution of a methionine residue at position 63 with respect to SEQ ID NOs 11, 13, 15, 17, 19, 29 or 33, or of a functionally equivalent methionine residue selected from a methionine at position 73 with respect to SEQ ID NO: 23, or methionine at position 73 with respect to SEQ ID NO: 23, or methionine at position 64 with respect to SEQ ID NO: 25, or methionine at position 61 with respect to SEQ ID NO: 27, or a methionine at position 66 with respect to SEQ ID NO: 35.
- 3. The TdT variant of claim 1 or 2, having a further substitution of an arginine residue at position 324 with respect to SEQ ID NOs 11 or 13, or of a functionally equivalent arginine residue selected from an arginine at position 320 with respect to SEQ ID NO: 15, or a arginine at position 331 with respect to SEQ ID NO: 17, or a arginine at position 325 with respect to SEQ ID NOs 19, 23 or 31, or a arginine at position 326 with respect to SEQ ID NO: 25, or a arginine at position 323 with respect to SEQ ID NO: 27, or a arginine at position 328 with respect to SEQ ID NO: 33, or a arginine at position 328 with respect to SEQ ID NO: 35.

- 4. The TdT variant of any one of the previous claims, having a further substitution of glutamic acid residue at position 327 with respect to SEQ ID NOs 11 or 13, or of a functionally equivalent glutamic acid residue selected from a glutamic acid at position 334 with respect to SEQ ID NO: 17 or 21, or a glutamic acid at position 331 with respect to SEQ ID NOs 29 or 35, or a glutamic acid at position 328 with respect to SEQ ID NOs 19, 23 or 31, or a glutamic acid at position 329 with respect to SEQ ID NO: 25, or a glutamic acid at position 326 with respect to SEQ ID NO: 27, or a glutamic acid at position 341 with respect to SEQ ID NO: 33.
- 5. The TdT variant of any one of the previous claims, wherein said substitution of said cysteine is G, R, P, A, V, S, N, Q or D.
- 6. The TdT variant of claim 5, wherein said substitution of said cysteine is G or R.
- 7. The TdT variant of any one of claims 2 to 6, wherein said substitution of said methionine is R, Q, G, A, V, D, N, H or E.
- 8. The TdT variant of claim 7, wherein said substitution of said methionine is R or Q.
- 9. The TdT variant of any one of the previous claims, wherein said substitution of said arginine is N, L, K, H, G, D, A or P.
- 10. The TdT variant of claim 9, wherein said substitution of said arginine is N or L.
- 11. The TdT variant of any one of claim 4 to 10, wherein said substitution of said glutamic acid is N, L, T or S.
- 12. The TdT variant of any one of claims 1 to 11, wherein said TdT variant is capable of incorporating onto a nucleic acid fragment a 3'-O-modified nucleotide.
- 13. The TdT variant of claim 12, wherein said TdT variant is capable of incorporating onto a free 3'-hydroxyl of the nucleic acid fragment.
- 14. The TdT variant of claim 12 or 13, wherein said 3'-O-modified nucleotide is selected from a 3'-O-NH₂-nucleoside triphosphate, a 3'-O-azidomethyl-nucleoside triphosphate, a 3'-O-allyl-nucleoside triphosphate, a 3'-O-propargyl-nucleoside triphosphate.
- 15. The TdT variant of any one of claims 1 to 14, wherein said TdT variant incorporates said 3'-O-modified nucleotide at a rate greater than that of a wild type TdT.
- 16. An isolated nucleic acid encoding a TdT variant as defined in any one of claims 1 to 15.

- 17. A method of producing a TdT variant comprising:
- (a) culturing a host cell comprising a nucleic acid according to claim 16 under conditions suitable to express the nucleic acid encoding the TdT variant; and optionally
- (b) recovering said TdT variant from the cell culture.
- 18. A method of synthesizing a polynucleotide having a predetermined sequence, the method comprising the steps of:
 - a) providing an initiator having a 3'-terminal nucleotide having a free 3'-hydroxyl;
- b) repeating cycles of (i) contacting under elongation conditions the initiator or elongated fragments having free 3'-O-hydroxyls with a 3'-O-blocked nucleoside triphosphate and a TdT variant according to any one of claims 1 to 15, so that the initiator or elongated fragments are elongated by incorporation of a 3'-O-blocked nucleoside triphosphate to form 3'-O-blocked elongated fragments, and (ii) deblocking the elongated fragments to form elongated fragments having free 3'-hydroxyls, until the polynucleotide is formed.
- 19. The method of claim 18 wherein said 3'-O-blocked nucleoside triphosphate is a 3'-O-NH₂nucleoside triphosphate, a 3'-O-azidomethyl-nucleoside triphosphate, a 3'-O-allyl-nucleoside triphosphate, or a 3'-O-(2-nitrobenzyl)-nucleoside triphosphate.
- 20. A kit for performing a nucleotide incorporation reaction comprising
- a variant of TdT according to any one of claims 1 to 15,
- one or more nucleotides, and
- optionally at least one nucleic acid primer.
- 21. The kit of claim 20, wherein said one or more nucleotides comprise one or more 3'-Omodified nucleotides.

SEQUENCE LISTING

< 116) <i>></i>	DNA 3	2CL.T	DL SA	42										
<120		VARIA THERI		OF ⁻	ΓERM	INAL	DEO	(YNU(CLEO	ΓΙDΥΙ	_ TRA	ANSFI	ERASI	E AND	USES
<136)>	B3000	0PC06	9											
<166)>	35													
<176)>	Pater	ntIn	vers	sion	3.5									
<210 <211 <212 <213	L> 2>	1 510 PRT Mus r	nusci	ulus											
<400)>	1													
Met 1	Asp	Pro	Leu	Gln 5	Ala	Val	His	Leu	Gly 10	Pro	Arg	Lys	Lys	Arg 15	Pro
Arg	Gln	Leu	Gly 20	Thr	Pro	Val	Ala	Ser 25	Thr	Pro	Tyr	Asp	Ile 30	Arg	Phe
Arg	Asp	Leu 35	Val	Leu	Phe	Ile	Leu 40	Glu	Lys	Lys	Met	Gly 45	Thr	Thr	Arg
Arg	Ala 50	Phe	Leu	Met	Glu	Leu 55	Ala	Arg	Arg	Lys	Gly 60	Phe	Arg	Val	Glu
Asn 65	Glu	Leu	Ser	Asp	Ser 70	Val	Thr	His	Ile	Val 75	Ala	Glu	Asn	Asn	Ser 80
Gly	Ser	Asp	Val	Leu 85	Glu	Trp	Leu	Gln	Leu 90	Gln	Asn	Ile	Lys	Ala 95	Ser
Ser	Glu	Leu	Glu 100	Leu	Leu	Asp	Ile	Ser 105	Trp	Leu	Ile	Glu	Cys 110	Met	Gly
Ala	Gly	Lys	Pro	Val	Glu	Met	Met	Gly	Arg	His	Gln	Leu 125	Val	Val	Asn

Pro Ala Val Lys Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr Leu Asn Asn Tyr Asn Gln Leu Phe Thr Asp Ala Leu Asp Ile Leu Ala Glu Asn Asp Glu Leu Arg Glu Asn Glu Gly Ser Cys Leu Ala Phe Met Arg Ala Ser Ser Val Leu Lys Ser Leu Pro Phe Pro Ile Thr Ser Met Lys Asp Thr Glu Gly Ile Pro Cys Leu Gly Asp Lys Val Lys Ser Ile Ile Glu Gly Ile Ile Glu Asp Gly Glu Ser Ser Glu Ala Lys Ala Val Leu Asn Asp Glu Arg Tyr Lys Ser Phe Lys Leu Phe Thr Ser Val Phe Gly Val Gly Leu Lys Thr Ala Glu Lys Trp Phe Arg Met Gly Phe Arg Thr Leu Ser Lys Ile Gln Ser Asp Lys Ser Leu Arg Phe Thr Gln Met Gln Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Asn Arg Pro Glu Ala Glu Ala Val Ser Met Leu Val Lys Glu Ala Val Val

Arg Asn Ser Ser Pro Ser Pro Val Pro Gly Ser Gln Asn Val Pro Ala

Thr Phe Leu Pro Asp Ala Leu Val Thr Met Thr Gly Gly Phe Arg Arg Gly Lys Met Thr Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Glu Ala Thr Glu Asp Glu Glu Gln Gln Leu Leu His Lys Val Thr Asp Phe Trp Lys Gln Gln Gly Leu Leu Tyr Cys Asp Ile Leu Glu Ser Thr Phe Glu Lys Phe Lys Gln Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu Asp His Gly Arg Val His Ser Glu Lys Ser Gly Gln Gln Glu Gly Lys Gly Trp Lys Ala Ile Arg Val Asp Leu Val Met Cys Pro Tyr Asp Arg Ala Phe Ala Leu Leu Gly Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Thr His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Arg Thr Lys Arg Val Phe Leu Glu Ala Glu Ser Glu Glu Glu Ile Phe Ala His Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala

<210> 2 <211> 381 <212> PRT

<213> Mus musculus

<400> 2

Asn Ser Ser Pro Ser Pro Val Pro Gly Ser Gln Asn Val Pro Ala Pro 1 5 10 15

Ala Val Lys Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr Leu 20 25 30

Asn Asn Tyr Asn Gln Leu Phe Thr Asp Ala Leu Asp Ile Leu Ala Glu 35 40 45

Asn Asp Glu Leu Arg Glu Asn Glu Gly Ser Cys Leu Ala Phe Met Arg 50 55 60

Ala Ser Ser Val Leu Lys Ser Leu Pro Phe Pro Ile Thr Ser Met Lys 65 70 75 80

Asp Thr Glu Gly Ile Pro Cys Leu Gly Asp Lys Val Lys Ser Ile Ile 85 90 95

Glu Gly Ile Ile Glu Asp Gly Glu Ser Ser Glu Ala Lys Ala Val Leu 100 105 110

Asn Asp Glu Arg Tyr Lys Ser Phe Lys Leu Phe Thr Ser Val Phe Gly 115 120 125

Val Gly Leu Lys Thr Ala Glu Lys Trp Phe Arg Met Gly Phe Arg Thr 130 135 140

Leu Ser Lys Ile Gln Ser Asp Lys Ser Leu Arg Phe Thr Gln Met Gln 145 150 155 160

Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Asn Arg 165 170 175

Pro Glu Ala Glu Ala Val Ser Met Leu Val Lys Glu Ala Val Val Thr

180 185 190

Phe Leu Pro Asp Ala Leu Val Thr Met Thr Gly Gly Phe Arg Arg Gly 195 200 205

Lys Met Thr Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Glu Ala 210 215 220

Thr Glu Asp Glu Glu Gln Gln Leu Leu His Lys Val Thr Asp Phe Trp 225 230 235 240

Lys Gln Gln Gly Leu Leu Tyr Cys Asp Ile Leu Glu Ser Thr Phe 245 250 255

Glu Lys Phe Lys Gln Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe 260 265 270

Gln Lys Cys Phe Leu Ile Leu Lys Leu Asp His Gly Arg Val His Ser 275 280 285

Glu Lys Ser Gly Gln Gln Glu Gly Lys Gly Trp Lys Ala Ile Arg Val 290 295 300

Asp Leu Val Met Cys Pro Tyr Asp Arg Arg Ala Phe Ala Leu Leu Gly 305 310 315 320

Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Thr 325 330 335

His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Arg Thr 340 345 350

Lys Arg Val Phe Leu Glu Ala Glu Ser Glu Glu Glu Ile Phe Ala His 355 360 365

Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 370 375 380

```
<210> 3 <211> 494
```

<212> PRT

<213> Homo sapiens

<400> 3

Met Leu Pro Lys Arg Arg Arg Ala Arg Val Gly Ser Pro Ser Gly Asp 1 5 10 15

Ala Ala Ser Ser Thr Pro Pro Ser Thr Arg Phe Pro Gly Val Ala Ile 20 25 30

Tyr Leu Val Glu Pro Arg Met Gly Arg Ser Arg Arg Ala Phe Leu Thr 35 40 45

Gly Leu Ala Arg Ser Lys Gly Phe Arg Val Leu Asp Ala Cys Ser Ser 50 55 60

Glu Ala Thr His Val Val Met Glu Glu Thr Ser Ala Glu Glu Ala Val 65 70 75 80

Ser Trp Gln Glu Arg Arg Met Ala Ala Ala Pro Pro Gly Cys Thr Pro 85 90 95

Pro Ala Leu Leu Asp Ile Ser Trp Leu Thr Glu Ser Leu Gly Ala Gly 100 105 110

Gln Pro Val Pro Val Glu Cys Arg His Arg Leu Glu Val Ala Gly Pro 115 120 125

Arg Lys Gly Pro Leu Ser Pro Ala Trp Met Pro Ala Tyr Ala Cys Gln 130 135 140

Arg Pro Thr Pro Leu Thr His His Asn Thr Gly Leu Ser Glu Ala Leu 145 150 155 160

Glu Ile Leu Ala Glu Ala Ala Gly Phe Glu Gly Ser Glu Gly Arg Leu 165 170 175

Leu Thr Phe Cys Arg Ala Ala Ser Val Leu Lys Ala Leu Pro Ser Pro Val Thr Thr Leu Ser Gln Leu Gln Gly Leu Pro His Phe Gly Glu His Ser Ser Arg Val Val Gln Glu Leu Leu Glu His Gly Val Cys Glu Glu Val Glu Arg Val Arg Arg Ser Glu Arg Tyr Gln Thr Met Lys Leu Phe Thr Gln Ile Phe Gly Val Gly Val Lys Thr Ala Asp Arg Trp Tyr Arg Glu Gly Leu Arg Thr Leu Asp Asp Leu Arg Glu Gln Pro Gln Lys Leu Thr Gln Gln Lys Ala Gly Leu Gln His His Gln Asp Leu Ser Thr Pro Val Leu Arg Ser Asp Val Asp Ala Leu Gln Gln Val Val Glu Glu Ala Val Gly Gln Ala Leu Pro Gly Ala Thr Val Thr Leu Thr Gly Gly Phe Arg Arg Gly Lys Leu Gln Gly His Asp Val Asp Phe Leu Ile Thr His Pro Lys Glu Gly Gln Glu Ala Gly Leu Leu Pro Arg Val Met Cys Arg Leu Gln Asp Gln Gly Leu Ile Leu Tyr His Gln His Gln His Ser

Cys Cys Glu Ser Pro Thr Arg Leu Ala Gln Gln Ser His Met Asp Ala 370 380

Phe Glu Arg Ser Phe Cys Ile Phe Arg Leu Pro Gln Pro Pro Gly Ala 385 390 395 400

Ala Val Gly Gly Ser Thr Arg Pro Cys Pro Ser Trp Lys Ala Val Arg 405 410 415

Val Asp Leu Val Val Ala Pro Val Ser Gln Phe Pro Phe Ala Leu Leu 420 425 430

Gly Trp Thr Gly Ser Lys Leu Phe Gln Arg Glu Leu Arg Arg Phe Ser 435 440 445

Arg Lys Glu Lys Gly Leu Trp Leu Asn Ser His Gly Leu Phe Asp Pro 450 455 460

Glu Gln Lys Thr Phe Phe Gln Ala Ala Ser Glu Glu Asp Ile Phe Arg 465 470 475 480

His Leu Gly Leu Glu Tyr Leu Pro Pro Glu Gln Arg Asn Ala 485 490

<210> 4

<211> 401

<212> PRT

<213> Homo sapiens

<400> 4

Thr Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val
1 5 10 15

Pro Arg Gly Ser His Met Ser Pro Ser Pro Val Pro Gly Ser Gln Asn 20 25 30

Val Pro Ala Pro Ala Val Lys Lys Ile Ser Gln Tyr Ala Cys Gln Arg 35 40 45 Arg Thr Thr Leu Asn Asn Tyr Asn Gln Leu Phe Thr Asp Ala Leu Asp 50 55 60

Ile Leu Ala Glu Asn Asp Glu Leu Arg Glu Asn Glu Gly Ser Cys Leu 65 70 75 80

Ala Phe Met Arg Ala Ser Ser Val Leu Lys Ser Leu Pro Phe Pro Ile 85 90 95

Thr Ser Met Lys Asp Thr Glu Gly Ile Pro Cys Leu Gly Asp Lys Val 100 105 110

Lys Ser Ile Ile Glu Gly Ile Ile Glu Asp Gly Glu Ser Ser Glu Ala 115 120 125

Lys Ala Val Leu Asn Asp Glu Arg Tyr Lys Ser Phe Lys Leu Phe Thr 130 135 140

Ser Val Phe Gly Val Gly Leu Lys Thr Ala Glu Lys Trp Phe Arg Met 145 150 155 160

Gly Phe Arg Thr Leu Ser Lys Ile Gln Ser Asp Lys Ser Leu Arg Phe 165 170 175

Thr Gln Met Gln Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser 180 185 190

Cys Val Asn Arg Pro Glu Ala Glu Ala Val Ser Met Leu Val Lys Glu 195 200 205

Ala Val Val Thr Phe Leu Pro Asp Ala Leu Val Thr Met Thr Gly Gly 210 215 220

Phe Arg Arg Gly Lys Met Thr Gly His Asp Val Asp Phe Leu Ile Thr 225 230 235 240

Ser Pro Glu Ala Thr Glu Asp Glu Glu Gln Gln Leu Leu His Lys Val

245 250 255

Thr Asp Phe Trp Lys Gln Gln Gly Leu Leu Leu Tyr Cys Asp Ile Leu 260 265 270

Glu Ser Thr Phe Glu Lys Phe Lys Gln Pro Ser Arg Lys Val Asp Ala 275 280 285

Leu Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu Asp His Gly 290 295 300

Arg Val His Ser Glu Lys Ser Gly Gln Gln Glu Gly Lys Gly Trp Lys 305 310 315 320

Ala Ile Arg Val Asp Leu Val Met Cys Pro Tyr Asp Arg Arg Ala Phe 325 330 335

Ala Leu Leu Gly Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg 340 345 350

Arg Tyr Ala Thr His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu 355 360 365

Tyr Asp Arg Thr Lys Arg Val Phe Leu Glu Ala Glu Ser Glu Glu Glu 370 375 380

Ile Phe Ala His Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn 385 390 395 400

Ala

<210> 5

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> t7-pro primer

```
<400> 5
                                                                      20
taatacgact cactataggg
<210> 6
<211> 19
<212> DNA
<213> Artificial Sequence
<220>
<223> T7-ter primer
<400> 6
                                                                      19
gctagttatt gctcagcgg
<210> 7
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 7
                                                                      18
aaaaaaaaa aaaagggg
<210> 8
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> primer
<400> 8
                                                                      20
tttttttt ttaaataagg
<210> 9
<211> 401
<212> PRT
<213> Artificial Sequence
<220>
<223> Reference TdT variant
<400> 9
```

Thr Met Gly Ser Ser His His His His His Ser Ser Gly Leu Val
1 5 10 15

Pro Arg Gly Ser His Met Ser Pro Ser Pro Val Pro Gly Ser Gln Asn 20 25 30

Val Pro Ala Pro Ala Val Lys Lys Ile Ser Gln Tyr Ala Cys Gln Arg 35 40 45

Arg Thr Thr Leu Asn Asn Tyr Asn Gln Leu Phe Thr Asp Ala Leu Asp 50 55 60

Ile Leu Ala Glu Asn Asp Glu Leu Arg Glu Asn Glu Gly Ser Cys Leu 65 70 75 80

Ala Phe Met Arg Ala Ser Ser Val Leu Lys Ser Leu Pro Phe Pro Ile 85 90 95

Thr Ser Met Lys Asp Thr Glu Gly Ile Pro Cys Leu Gly Asp Lys Val 100 105 110

Lys Ser Ile Ile Glu Gly Ile Ile Glu Asp Gly Glu Ser Ser Glu Ala 115 120 125

Lys Ala Val Leu Asn Asp Glu Arg Tyr Lys Ser Phe Lys Leu Phe Thr 130 135 140

Ser Val Phe Gly Val Gly Leu Lys Thr Ala Glu Lys Trp Phe Arg Met 145 150 155 160

Gly Phe Arg Thr Leu Ser Lys Ile Gln Ser Asp Lys Ser Leu Arg Phe 165 170 175

Thr Gln Met Gln Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser 180 185 190

Cys Val Asn Arg Pro Glu Ala Glu Ala Val Ser Met Leu Val Lys Glu

195 200 205

Ala Val Val Thr Phe Leu Pro Asp Ala Leu Val Thr Met Thr Gly Gly 210 215 220

Phe Arg Arg Gly Lys Met Thr Gly His Asp Val Asp Phe Leu Ile Thr 225 230 235 240

Ser Pro Glu Ala Thr Glu Asp Glu Glu Gln Gln Leu Leu His Lys Val 245 250 255

Thr Asp Phe Trp Lys Gln Gln Gly Leu Leu Leu Tyr Cys Asp Ile Leu 260 265 270

Glu Ser Thr Phe Glu Lys Phe Lys Gln Pro Ser Arg Lys Val Asp Ala 275 280 285

Leu Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu Asp His Gly 290 295 300

Arg Val His Ser Glu Lys Ser Gly Gln Gln Glu Gly Lys Gly Trp Lys 305 310 315 320

Ala Ile Arg Val Asp Leu Val Met Cys Pro Tyr Asp Arg Arg Ala Phe 325 330 335

Ala Leu Leu Gly Trp Thr Gly Ser Ala Gln Phe Ser Arg Asp Leu Arg 340 345 350

Arg Tyr Ala Thr His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu 355 360 365

Tyr Asp Arg Thr Lys Arg Val Phe Leu Glu Ala Glu Ser Glu Glu Glu 370 375 380

Ile Phe Ala His Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn 385 390 395 400

<210> 10

<211> 519

<212> PRT

<213> Bos taurus

<400> 10

Met Ala Gln Gln Arg Gln His Gln Arg Leu Pro Met Asp Pro Leu Cys 1 5 10 15

Thr Ala Ser Ser Gly Pro Arg Lys Lys Arg Pro Arg Gln Val Gly Ala 20 25 30

Ser Met Ala Ser Pro Pro His Asp Ile Lys Phe Gln Asn Leu Val Leu 35 40 45

Phe Ile Leu Glu Lys Lys Met Gly Thr Thr Arg Arg Asn Phe Leu Met 50 55 60

Glu Leu Ala Arg Arg Lys Gly Phe Arg Val Glu Asn Glu Leu Ser Asp 65 70 75 80

Ser Val Thr His Ile Val Ala Glu Asn Asn Ser Gly Ser Glu Val Leu 85 90 95

Glu Trp Leu Gln Val Gln Asn Ile Arg Ala Ser Ser Gln Leu Glu Leu 100 105 110

Leu Asp Val Ser Trp Leu Ile Glu Ser Met Gly Ala Gly Lys Pro Val 115 120 125

Glu Ile Thr Gly Lys His Gln Leu Val Val Arg Thr Asp Tyr Ser Ala 130 135 140

Thr Pro Asn Pro Gly Phe Gln Lys Thr Pro Pro Leu Ala Val Lys Lys 145 150 155 160

Ile Ser Gln Tyr Ala Cys Gln Arg Lys Thr Thr Leu Asn Asn Tyr Asn His Ile Phe Thr Asp Ala Phe Glu Ile Leu Ala Glu Asn Ser Glu Phe Lys Glu Asn Glu Val Ser Tyr Val Thr Phe Met Arg Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Thr Ile Ile Ser Met Lys Asp Thr Glu Gly Ile Pro Cys Leu Gly Asp Lys Val Lys Cys Ile Ile Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys Ala Val Leu Asn Asp Glu Arg Tyr Gln Ser Phe Lys Leu Phe Thr Ser Val Phe Gly Val Gly Leu Lys Thr Ser Glu Lys Trp Phe Arg Met Gly Phe Arg Ser Leu Ser Lys Ile Met Ser Asp Lys Thr Leu Lys Phe Thr Lys Met Gln Lys Ala Gly Phe

Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Thr Arg Ala Glu Ala Glu 320

Ala Val Gly Val Leu Val Lys Glu Ala Val Trp Ala Phe Leu Pro Asp 325

Ala Phe Val Thr Met Thr Gly Gly Phe Arg Arg Gly Lys Lys Ile Gly

His Asp Val Asp Phe Leu Ile Thr Ser Pro Gly Ser Ala Glu Asp Glu 355 360 365

Glu Gln Leu Leu Pro Lys Val Ile Asn Leu Trp Glu Lys Lys Gly Leu 370 375 380

Leu Leu Tyr Tyr Asp Leu Val Glu Ser Thr Phe Glu Lys Phe Lys Leu 385 390 395 400

Pro Ser Arg Gln Val Asp Thr Leu Asp His Phe Gln Lys Cys Phe Leu 405 410 415

Ile Leu Lys Leu His His Gln Arg Val Asp Ser Ser Lys Ser Asn Gln
420 425 430

Gln Glu Gly Lys Thr Trp Lys Ala Ile Arg Val Asp Leu Val Met Cys 435 440 445

Pro Tyr Glu Asn Arg Ala Phe Ala Leu Leu Gly Trp Thr Gly Ser Arg 450 455 460

Gln Phe Glu Arg Asp Ile Arg Arg Tyr Ala Thr His Glu Arg Lys Met 465 470 475 480

Met Leu Asp Asn His Ala Leu Tyr Asp Lys Thr Lys Arg Val Phe Leu 485 490 495

Lys Ala Glu Ser Glu Glu Glu Ile Phe Ala His Leu Gly Leu Asp Tyr 500 505 510

Ile Glu Pro Trp Glu Arg Asn 515

<210> 11

<211> 380

<212> PRT

<213> Bos taurus

<400> 11

Asp Tyr Ser Ala Thr Pro Asn Pro Gly Phe Gln Lys Thr Pro Pro Leu 1 5 10 15

Ala Val Lys Lys Ile Ser Gln Tyr Ala Cys Gln Arg Lys Thr Thr Leu 20 25 30

Asn Asn Tyr Asn His Ile Phe Thr Asp Ala Phe Glu Ile Leu Ala Glu 35 40 45

Asn Ser Glu Phe Lys Glu Asn Glu Val Ser Tyr Val Thr Phe Met Arg 50 55 60

Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Thr Ile Ile Ser Met Lys 65 70 75 80

Asp Thr Glu Gly Ile Pro Cys Leu Gly Asp Lys Val Lys Cys Ile Ile 85 90 95

Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys Ala Val Leu 100 105 110

Asn Asp Glu Arg Tyr Gln Ser Phe Lys Leu Phe Thr Ser Val Phe Gly
115 120 125

Val Gly Leu Lys Thr Ser Glu Lys Trp Phe Arg Met Gly Phe Arg Ser 130 135 140

Leu Ser Lys Ile Met Ser Asp Lys Thr Leu Lys Phe Thr Lys Met Gln 145 150 155 160

Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Thr Arg 165 170 175

Ala Glu Ala Glu Ala Val Gly Val Leu Val Lys Glu Ala Val Trp Ala 180 185 190

Phe Leu Pro Asp Ala Phe Val Thr Met Thr Gly Gly Phe Arg Arg Gly

195 200 205

Lys Lys Ile Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Gly Ser 210 215 220

Ala Glu Asp Glu Glu Gln Leu Leu Pro Lys Val Ile Asn Leu Trp Glu 225 230 235 240

Lys Lys Gly Leu Leu Tyr Tyr Asp Leu Val Glu Ser Thr Phe Glu 245 250 255

Lys Phe Lys Leu Pro Ser Arg Gln Val Asp Thr Leu Asp His Phe Gln 260 265 270

Lys Cys Phe Leu Ile Leu Lys Leu His His Gln Arg Val Asp Ser Ser 275 280 285

Lys Ser Asn Gln Glu Gly Lys Thr Trp Lys Ala Ile Arg Val Asp 290 295 300

Leu Val Met Cys Pro Tyr Glu Asn Arg Ala Phe Ala Leu Leu Gly Trp 305 310 315 320

Thr Gly Ser Arg Gln Phe Glu Arg Asp Ile Arg Arg Tyr Ala Thr His 325 330 335

Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Lys Thr Lys 340 345 350

Arg Val Phe Leu Lys Ala Glu Ser Glu Glu Glu Ile Phe Ala His Leu 355 360 365

Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 370 375 380

<210> 12

<211> 509

<212> PRT

<213> Homo sapiens

<400> 12

Met Asp Pro Pro Arg Ala Ser His Leu Ser Pro Arg Lys Lys Arg Pro 1 5 10 15

Arg Gln Thr Gly Ala Leu Met Ala Ser Ser Pro Gln Asp Ile Lys Phe 20 25 30

Gln Asp Leu Val Val Phe Ile Leu Glu Lys Lys Met Gly Thr Thr Arg 35 40 45

Arg Ala Phe Leu Met Glu Leu Ala Arg Arg Lys Gly Phe Arg Val Glu 50 55 60

Asn Glu Leu Ser Asp Ser Val Thr His Ile Val Ala Glu Asn Asn Ser 65 70 75 80

Gly Ser Asp Val Leu Glu Trp Leu Gln Ala Gln Lys Val Gln Val Ser 85 90 95

Ser Gln Pro Glu Leu Leu Asp Val Ser Trp Leu Ile Glu Cys Ile Arg 100 105 110

Ala Gly Lys Pro Val Glu Met Thr Gly Lys His Gln Leu Val Val Arg 115 120 125

Arg Asp Tyr Ser Asp Ser Thr Asn Pro Gly Pro Pro Lys Thr Pro Pro 130 135 140

Ile Ala Val Gln Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr 145 150 155 160

Leu Asn Asn Cys Asn Gln Ile Phe Thr Asp Ala Phe Asp Ile Leu Ala 165 170 175

Glu Asn Cys Glu Phe Arg Glu Asn Glu Asp Ser Cys Val Thr Phe Met 180 185 190

Arg Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Thr Ile Ile Ser Met Lys Asp Thr Glu Gly Ile Pro Cys Leu Gly Ser Lys Val Lys Gly Ile Ile Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys Ala Val Leu Asn Asp Glu Arg Tyr Gln Ser Phe Lys Leu Phe Thr Ser Val Phe Gly Val Gly Leu Lys Thr Ser Glu Lys Trp Phe Arg Met Gly Phe Arg Thr Leu Ser Lys Val Arg Ser Asp Lys Ser Leu Lys Phe Thr Arg Met Gln Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Thr Arg Ala Glu Ala Glu Ala Val Ser Val Leu Val Lys Glu Ala Val Trp Ala Phe Leu Pro Asp Ala Phe Val Thr Met Thr Gly Gly Phe Arg Arg Gly Lys Lys Met Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Gly

Glu Lys Lys Gly Leu Leu Leu Tyr Tyr Asp Leu Val Glu Ser Thr Phe 370 375 380

Ser Thr Glu Asp Glu Glu Gln Leu Leu Gln Lys Val Met Asn Leu Trp

Glu Lys Leu Arg Leu Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe 385 390 395 400

Gln Lys Cys Phe Leu Ile Phe Lys Leu Pro Arg Gln Arg Val Asp Ser 405 410 415

Asp Gln Ser Ser Trp Gln Glu Gly Lys Thr Trp Lys Ala Ile Arg Val 420 425 430

Asp Leu Val Leu Cys Pro Tyr Glu Arg Arg Ala Phe Ala Leu Leu Gly 435 440 445

Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Thr 450 455 460

His Glu Arg Lys Met Ile Leu Asp Asn His Ala Leu Tyr Asp Lys Thr 465 470 475 480

Lys Arg Ile Phe Leu Lys Ala Glu Ser Glu Glu Glu Ile Phe Ala His 485 490 495

Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 500 505

<210> 13

<211> 380

<212> PRT

<213> Homo sapiens

<400> 13

Asp Tyr Ser Asp Ser Thr Asn Pro Gly Pro Pro Lys Thr Pro Pro Ile 1 5 10 15

Ala Val Gln Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr Leu 20 25 30

Asn Asn Cys Asn Gln Ile Phe Thr Asp Ala Phe Asp Ile Leu Ala Glu 35 40 45

Asn Cys Glu Phe Arg Glu Asn Glu Asp Ser Cys Val Thr Phe Met Arg 50 55 60

Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Thr Ile Ile Ser Met Lys 65 70 75 80

Asp Thr Glu Gly Ile Pro Cys Leu Gly Ser Lys Val Lys Gly Ile Ile 85 90 95

Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys Ala Val Leu 100 105 110

Asn Asp Glu Arg Tyr Gln Ser Phe Lys Leu Phe Thr Ser Val Phe Gly 115 120 125

Val Gly Leu Lys Thr Ser Glu Lys Trp Phe Arg Met Gly Phe Arg Thr 130 135 140

Leu Ser Lys Val Arg Ser Asp Lys Ser Leu Lys Phe Thr Arg Met Gln 145 150 155 160

Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Thr Arg 165 170 175

Ala Glu Ala Glu Ala Val Ser Val Leu Val Lys Glu Ala Val Trp Ala 180 185 190

Phe Leu Pro Asp Ala Phe Val Thr Met Thr Gly Gly Phe Arg Arg Gly 195 200 205

Lys Lys Met Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Gly Ser 210 215 220

Thr Glu Asp Glu Glu Gln Leu Leu Gln Lys Val Met Asn Leu Trp Glu 225 230 235 240

Lys Lys Gly Leu Leu Leu Tyr Tyr Asp Leu Val Glu Ser Thr Phe Glu

245 250 255

Lys Leu Arg Leu Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe Gln 260 265 270

Lys Cys Phe Leu Ile Phe Lys Leu Pro Arg Gln Arg Val Asp Ser Asp 275 280 285

Gln Ser Ser Trp Gln Glu Gly Lys Thr Trp Lys Ala Ile Arg Val Asp 290 295 300

Leu Val Leu Cys Pro Tyr Glu Arg Arg Ala Phe Ala Leu Leu Gly Trp 305 310 315 320

Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Thr His 325 330 335

Glu Arg Lys Met Ile Leu Asp Asn His Ala Leu Tyr Asp Lys Thr Lys 340 345 350

Arg Ile Phe Leu Lys Ala Glu Ser Glu Glu Glu Ile Phe Ala His Leu 355 360 365

Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 370 375 380

<210> 14

<211> 506

<212> PRT

<213> Gallus gallus

<400> 14

Met Glu Arg Ile Arg Pro Pro Thr Val Val Ser Gln Arg Lys Arg Gln 1 5 10 15

Lys Gly Met Tyr Ser Pro Lys Leu Ser Cys Gly Tyr Glu Ile Lys Phe 20 25 30

Asn Lys Leu Val Ile Phe Ile Met Gln Arg Lys Met Gly Met Thr Arg Arg Thr Phe Leu Met Glu Leu Ala Arg Ser Lys Gly Phe Arg Val Glu Ser Glu Leu Ser Asp Ser Val Thr His Ile Val Ala Glu Asn Asn Ser Tyr Pro Glu Val Leu Asp Trp Leu Lys Gly Gln Ala Val Gly Asp Ser Ser Arg Phe Glu Ile Leu Asp Ile Ser Trp Leu Thr Ala Cys Met Glu Met Gly Arg Pro Val Asp Leu Glu Lys Lys Tyr His Leu Val Glu Gln Ala Gly Gln Tyr Pro Thr Leu Lys Thr Pro Glu Ser Glu Val Ser Ser Phe Thr Ala Ser Lys Val Ser Gln Tyr Ser Cys Gln Arg Lys Thr Thr Leu Asn Asn Cys Asn Lys Lys Phe Thr Asp Ala Phe Glu Ile Met Ala

Glu Asn Tyr Glu Phe Lys Glu Asn Glu Ile Phe Cys Leu Glu Phe Leu
180 185 190

Arg Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Pro Val Thr Arg Met

Lys Asp Ile Gln Gly Leu Pro Cys Met Gly Asp Arg Val Arg Asp Val 210 215 220

Ile Glu Glu Ile Ile Glu Glu Gly Glu Ser Ser Arg Ala Lys Asp Val 225 230 235 240 Leu Asn Asp Glu Arg Tyr Lys Ser Phe Lys Glu Phe Thr Ser Val Phe 245 250 255

Gly Val Gly Val Lys Thr Ser Glu Lys Trp Phe Arg Met Gly Leu Arg 260 265 270

Thr Val Glu Glu Val Lys Ala Asp Lys Thr Leu Lys Leu Ser Lys Met 275 280 285

Gln Arg Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Ser 290 295 300

Lys Ala Glu Ala Asp Ala Val Ser Ser Ile Val Lys Asn Thr Val Cys 305 310 315 320

Thr Phe Leu Pro Asp Ala Leu Val Thr Ile Thr Gly Gly Phe Arg Arg 325 330 335

Gly Lys Lys Ile Gly His Asp Ile Asp Phe Leu Ile Thr Ser Pro Gly 340 345 350

Gln Arg Glu Asp Asp Glu Leu Leu His Lys Gly Leu Leu Leu Tyr Cys 355 360 365

Asp Ile Ile Glu Ser Thr Phe Val Lys Glu Gln Ile Pro Ser Arg His 370 375 380

Val Asp Ala Met Asp His Phe Gln Lys Cys Phe Ala Ile Leu Lys Leu 385 390 395 400

Tyr Gln Pro Arg Val Asp Asn Ser Ser Tyr Asn Met Ser Lys Lys Cys 405 410 415

Asp Met Ala Glu Val Lys Asp Trp Lys Ala Ile Arg Val Asp Leu Val 420 425 430 Ile Thr Pro Phe Glu Gln Tyr Ala Tyr Ala Leu Leu Gly Trp Thr Gly
435 440 445

Ser Arg Gln Phe Gly Arg Asp Leu Arg Arg Tyr Ala Thr His Glu Arg 450 455 460

Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Lys Arg Lys Arg Val 465 470 475 480

Phe Leu Lys Ala Gly Ser Glu Glu Glu Ile Phe Ala His Leu Gly Leu 485 490 495

Asp Tyr Val Glu Pro Trp Glu Arg Asn Ala 500 505

<210> 15

<211> 376

<212> PRT

<213> Gallus gallus

<400> 15

Gln Tyr Pro Thr Leu Lys Thr Pro Glu Ser Glu Val Ser Ser Phe Thr 1 5 10 15

Ala Ser Lys Val Ser Gln Tyr Ser Cys Gln Arg Lys Thr Thr Leu Asn 20 25 30

Asn Cys Asn Lys Lys Phe Thr Asp Ala Phe Glu Ile Met Ala Glu Asn 35 40 45

Tyr Glu Phe Lys Glu Asn Glu Ile Phe Cys Leu Glu Phe Leu Arg Ala 50 55 60

Ala Ser Val Leu Lys Ser Leu Pro Phe Pro Val Thr Arg Met Lys Asp 70 75 80

Ile Gln Gly Leu Pro Cys Met Gly Asp Arg Val Arg Asp Val Ile Glu 85 90 95 Glu Ile Ile Glu Glu Gly Glu Ser Ser Arg Ala Lys Asp Val Leu Asn 100 105 110

Asp Glu Arg Tyr Lys Ser Phe Lys Glu Phe Thr Ser Val Phe Gly Val 115 120 125

Gly Val Lys Thr Ser Glu Lys Trp Phe Arg Met Gly Leu Arg Thr Val 130 135 140

Glu Glu Val Lys Ala Asp Lys Thr Leu Lys Leu Ser Lys Met Gln Arg 145 150 155 160

Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Ser Lys Ala 165 170 175

Glu Ala Asp Ala Val Ser Ser Ile Val Lys Asn Thr Val Cys Thr Phe 180 185 190

Leu Pro Asp Ala Leu Val Thr Ile Thr Gly Gly Phe Arg Arg Gly Lys 195 200 205

Lys Ile Gly His Asp Ile Asp Phe Leu Ile Thr Ser Pro Gly Gln Arg 210 215 220

Glu Asp Asp Glu Leu Leu His Lys Gly Leu Leu Leu Tyr Cys Asp Ile 225 230 235 240

Ile Glu Ser Thr Phe Val Lys Glu Gln Ile Pro Ser Arg His Val Asp 245 250 255

Ala Met Asp His Phe Gln Lys Cys Phe Ala Ile Leu Lys Leu Tyr Gln 260 265 270

Pro Arg Val Asp Asn Ser Ser Tyr Asn Met Ser Lys Lys Cys Asp Met 275 280 285

Ala Glu Val Lys Asp Trp Lys Ala Ile Arg Val Asp Leu Val Ile Thr

290 295 300

Pro Phe Glu Gln Tyr Ala Tyr Ala Leu Leu Gly Trp Thr Gly Ser Arg 305 310 315 320

Gln Phe Gly Arg Asp Leu Arg Arg Tyr Ala Thr His Glu Arg Lys Met 325 330 335

Met Leu Asp Asn His Ala Leu Tyr Asp Lys Arg Lys Arg Val Phe Leu 340 345 350

Lys Ala Gly Ser Glu Glu Glu Ile Phe Ala His Leu Gly Leu Asp Tyr 355 360 365

Val Glu Pro Trp Glu Arg Asn Ala 370 375

<210> 16

<211> 518

<212> PRT

<213> Monodelphis domestica

<400> 16

Met His Arg Ile Arg Thr Ile Asp Ser Asp Phe Gly Lys Lys Arg Gln 1 5 10 15

Lys Lys Met Asp Asn His Ile Ser Ser Met Ile Tyr Glu Ile Lys Phe 20 25 30

His Glu Phe Val Leu Phe Ile Leu Glu Lys Lys Met Gly Ala Thr Arg 35 40 45

Arg Thr Phe Leu Thr Asp Leu Ala Arg Lys Lys Gly Phe Arg Val Glu 50 55 60

Asn Glu Leu Ser Asn Ser Val Thr His Ile Val Ala Glu Asn Asn Ser 65 70 75 80

Gly Ser Asp Val Leu Ala Trp Leu Lys Thr His Lys Met Glu Lys Thr 85 90 95

Thr Gln Phe Glu Leu Leu Asp Ile Ser Trp Leu Ile Glu Cys Met Lys 100 105 110

Val Gly Lys Pro Val Asp Thr Lys Gly Lys Tyr Gln Leu Met Glu Ser 115 120 125

Arg Val Asp Ser Ala Asn Pro Asp Pro Thr Ala Gly Thr Leu Asn Ile 130 135 140

Leu Pro Pro Thr Thr Lys Thr Ile Ser Gln Tyr Ala Cys Gln Arg Arg 145 150 155 160

Thr Thr Ile Asn Asn His Asn Gln Arg Phe Thr Asp Ala Phe Glu Ile 165 170 175

Leu Ala Lys Asn Tyr Glu Phe Lys Glu Asn Asp Asp Thr Cys Leu Thr 180 185 190

Phe Met Arg Ala Ile Ser Val Leu Lys Cys Leu Pro Phe Glu Val Val 195 200 205

Ser Leu Lys Asp Thr Glu Gly Leu Pro Trp Ile Gly Asp Glu Val Lys 210 215 220

Gly Ile Met Glu Glu Ile Ile Glu Asp Gly Glu Ser Leu Glu Val Gln 225 230 235 240

Ala Val Leu Asn Asp Glu Arg Tyr Gln Ser Phe Lys Leu Phe Thr Ser 245 250 255

Val Phe Gly Val Gly Leu Lys Thr Ala Asp Lys Trp Tyr Arg Met Gly 260 265 270

Phe Arg Thr Leu Asn Lys Ile Arg Ser Asp Lys Thr Leu Lys Leu Thr 275 280 285

Lys Met Gln Lys Ala Gly Leu Cys Tyr Tyr Glu Asp Leu Ile Asp Cys 290 295 300

Val Ser Lys Ala Glu Ala Asp Ala Val Ser Leu Leu Val Gln Asp Ala 305 310 315 320

Val Trp Thr Phe Leu Pro Asp Ala Leu Val Thr Ile Thr Gly Gly Phe 325 330 335

Arg Arg Gly Lys Glu Phe Gly His Asp Val Asp Phe Leu Ile Thr Ser 340 345 350

Pro Gly Ala Glu Lys Glu Gln Glu Asp Gln Leu Leu Gln Lys Val Thr 355 360 365

Asn Leu Trp Lys Lys Gln Gly Leu Leu Leu Tyr Cys Asp Leu Ile Glu 370 375 380

Ser Thr Phe Glu Asp Leu Lys Leu Pro Ser Arg Lys Ile Asp Ala Leu 385 390 395 400

Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu Tyr His His Lys 405 410 415

Glu Asp Lys Arg Lys Trp Glu Met Pro Thr Gly Ser Asn Glu Ser Glu 420 425 430

Ala Lys Ser Trp Lys Ala Ile Arg Val Asp Leu Val Val Cys Pro Tyr 435 440 445

Asp Arg Tyr Ala Phe Ala Leu Leu Gly Trp Ser Gly Ser Arg Gln Phe 450 455 460

Glu Arg Asp Leu Arg Arg Tyr Ala Thr His Glu Lys Lys Met Met Leu 465 470 475 480 Asp Asn His Ala Leu Tyr Asp Lys Thr Lys Lys Ile Phe Leu Lys Ala 485 490 495

Lys Ser Glu Glu Glu Ile Phe Ala His Leu Gly Leu Glu Tyr Ile Gln 500 505 510

Pro Ser Glu Arg Asn Ala 515

<210> 17

<211> 387

<212> PRT

<213> Monodelphis domestica

<400> 17

Ser Ala Asn Pro Asp Pro Thr Ala Gly Thr Leu Asn Ile Leu Pro Pro 1 5 10 15

Thr Thr Lys Thr Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr Ile
20 25 30

Asn Asn His Asn Gln Arg Phe Thr Asp Ala Phe Glu Ile Leu Ala Lys 35 40 45

Asn Tyr Glu Phe Lys Glu Asn Asp Asp Thr Cys Leu Thr Phe Met Arg 50 55 60

Ala Ile Ser Val Leu Lys Cys Leu Pro Phe Glu Val Val Ser Leu Lys 65 70 75 80

Asp Thr Glu Gly Leu Pro Trp Ile Gly Asp Glu Val Lys Gly Ile Met 85 90 95

Glu Glu Ile Ile Glu Asp Gly Glu Ser Leu Glu Val Gln Ala Val Leu 100 105 110

Asn Asp Glu Arg Tyr Gln Ser Phe Lys Leu Phe Thr Ser Val Phe Gly 115 120 125

Val Gly Leu Lys Thr Ala Asp Lys Trp Tyr Arg Met Gly Phe Arg Thr 130 135 140

Leu Asn Lys Ile Arg Ser Asp Lys Thr Leu Lys Leu Thr Lys Met Gln 145 150 155 160

Lys Ala Gly Leu Cys Tyr Tyr Glu Asp Leu Ile Asp Cys Val Ser Lys 165 170 175

Ala Glu Ala Asp Ala Val Ser Leu Leu Val Gln Asp Ala Val Trp Thr 180 185 190

Phe Leu Pro Asp Ala Leu Val Thr Ile Thr Gly Gly Phe Arg Arg Gly 195 200 205

Lys Glu Phe Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Gly Ala 210 215 220

Glu Lys Glu Gln Glu Asp Gln Leu Leu Gln Lys Val Thr Asn Leu Trp 225 230 235 240

Lys Lys Gln Gly Leu Leu Leu Tyr Cys Asp Leu Ile Glu Ser Thr Phe 245 250 255

Glu Asp Leu Lys Leu Pro Ser Arg Lys Ile Asp Ala Leu Asp His Phe 260 265 270

Gln Lys Cys Phe Leu Ile Leu Lys Leu Tyr His His Lys Glu Asp Lys 275 280 285

Arg Lys Trp Glu Met Pro Thr Gly Ser Asn Glu Ser Glu Ala Lys Ser 290 295 300

Trp Lys Ala Ile Arg Val Asp Leu Val Val Cys Pro Tyr Asp Arg Tyr 305 310 315 320

Ala Phe Ala Leu Leu Gly Trp Ser Gly Ser Arg Gln Phe Glu Arg Asp

325 330 335

Leu Arg Arg Tyr Ala Thr His Glu Lys Lys Met Met Leu Asp Asn His 340 345 350

Ala Leu Tyr Asp Lys Thr Lys Lys Ile Phe Leu Lys Ala Lys Ser Glu 355 360 365

Glu Glu Ile Phe Ala His Leu Gly Leu Glu Tyr Ile Gln Pro Ser Glu 370 375 380

Arg Asn Ala 385

<210> 18

<211> 512

<212> PRT

<213> Elephantulus edwardii

<400> 18

Met Asp Pro Leu Gln Met Ala Cys Thr Gly Pro Arg Lys Lys Arg Ala 1 5 10 15

Arg Gln Met Asp Thr Ser Met Gly Ser Thr Gln Asp Ile Lys Phe Gln 20 25 30

Asp Leu Val Leu Phe Ile Leu Glu Lys Lys Met Gly Thr Thr Arg Arg 35 40 45

Ala Phe Leu Met Glu Leu Ala Arg Arg Lys Gly Phe Arg Val Glu Asn 50 55 60

Glu Leu Ser Asp Ser Val Thr His Ile Val Ala Glu Asn Asn Ser Gly 65 70 75 80

Ser Asp Val Leu Glu Trp Leu Gln Val Gln Lys Ile Lys Ala Ser Ser 85 90 95 Gln Leu Glu Leu Leu Asp Val Ser Trp Leu Ile Glu Cys Met Gly Ala 100 105 110

Gly Lys Leu Val Glu Ile Thr Gly Lys His Gln Leu Val Ser Ile Met 115 120 125

Val Arg Gly Asp Cys Pro Ala Ser His Asp Ser Ser Pro Gln Lys Thr 130 135 140

Glu Ser Ala Ala Val Gln Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg 145 150 155 160

Thr Thr Leu Asn Asn His Asn His Ile Phe Thr Asp Ala Phe Glu Ile 165 170 175

Leu Ala Glu Asn Cys Glu Phe Arg Glu Asn Glu Gly Ser Tyr Val Thr 180 185 190

Tyr Met Arg Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Ser Ile Ile 195 200 205

Ser Met Lys Asp Thr Glu Gly Ile Pro Cys Leu Ala Asp Lys Val Lys 210 215 220

Cys Val Ile Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys 225 230 235 240

Ala Val Leu Asn Asp Glu Arg Tyr Lys Ser Phe Lys Leu Phe Thr Ser 245 250 255

Val Phe Gly Val Gly Leu Lys Thr Ala Glu Lys Trp Phe Arg Leu Gly 260 265 270

Phe Arg Thr Leu Ser Gly Ile Met Asn Asp Lys Thr Leu Lys Leu Thr 275 280 285

His Met Gln Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys 290 295 300 Val Thr Arg Ala Glu Ala Glu Ala Val Gly Val Leu Val Lys Glu Ala Val Trp Ala Phe Leu Pro Asp Ala Ile Val Thr Met Thr Gly Gly Phe Arg Arg Gly Lys Lys Val Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Glu Ala Thr Glu Glu Gln Glu Gln Leu Leu His Lys Val Ile Thr Phe Trp Glu Lys Glu Gly Leu Leu Tyr Cys Asp Leu Tyr Glu Ser Thr Phe Glu Lys Leu Lys Met Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu His Arg Glu Cys Val Asp Asp Gly Thr Ser Ser Gln Leu Gln Gly Lys Thr Trp Lys Ala Ile Arg Val Asp Leu Val Val Cys Pro Tyr Glu Cys Arg Ala Phe Ala Leu Leu Gly Trp Thr Gly Ser Pro Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Thr His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr

Asp Lys Thr Lys Arg Lys Phe Leu Ser Ala Asp Ser Glu Glu Asp Ile

Phe Ala His Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 500 505 510

<210> 19

<211> 381

<212> PRT

<213> Elephantulus edwardii

<400> 19

Asp Cys Pro Ala Ser His Asp Ser Ser Pro Gln Lys Thr Glu Ser Ala 1 5 10 15

Ala Val Gln Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr Leu 20 25 30

Asn Asn His Asn His Ile Phe Thr Asp Ala Phe Glu Ile Leu Ala Glu 35 40 45

Asn Cys Glu Phe Arg Glu Asn Glu Gly Ser Tyr Val Thr Tyr Met Arg 50 55 60

Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Ser Ile Ile Ser Met Lys 65 70 75 80

Asp Thr Glu Gly Ile Pro Cys Leu Ala Asp Lys Val Lys Cys Val Ile 85 90 95

Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys Ala Val Leu 100 105 110

Asn Asp Glu Arg Tyr Lys Ser Phe Lys Leu Phe Thr Ser Val Phe Gly 115 120 125

Val Gly Leu Lys Thr Ala Glu Lys Trp Phe Arg Leu Gly Phe Arg Thr 130 135 140

Leu Ser Gly Ile Met Asn Asp Lys Thr Leu Lys Leu Thr His Met Gln 145 150 155 160 Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Thr Arg 165 170 175

Ala Glu Ala Glu Ala Val Gly Val Leu Val Lys Glu Ala Val Trp Ala 180 185 190

Phe Leu Pro Asp Ala Ile Val Thr Met Thr Gly Gly Phe Arg Arg Gly 195 200 205

Lys Lys Val Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Glu Ala 210 215 220

Thr Glu Glu Gln Glu Gln Leu Leu His Lys Val Ile Thr Phe Trp 225 230 235 240

Glu Lys Glu Gly Leu Leu Leu Tyr Cys Asp Leu Tyr Glu Ser Thr Phe 245 250 255

Glu Lys Leu Lys Met Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe 260 265 270

Gln Lys Cys Phe Leu Ile Leu Lys Leu His Arg Glu Cys Val Asp Asp 275 280 285

Gly Thr Ser Ser Gln Leu Gln Gly Lys Thr Trp Lys Ala Ile Arg Val 290 295 300

Asp Leu Val Val Cys Pro Tyr Glu Cys Arg Ala Phe Ala Leu Leu Gly 305 310 315 320

Trp Thr Gly Ser Pro Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Thr 325 330 335

His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Lys Thr 340 345 350

Lys Arg Lys Phe Leu Ser Ala Asp Ser Glu Glu Asp Ile Phe Ala His

355 360 365

Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 370 375 380

<210> 20

<211> 506

<212> PRT

<213> Artificial Sequence

<220>

<223> Python bivittatus

<400> 20

Met Asn Lys Met Lys Thr Ser Asp Phe Ser Pro Met Arg Lys Arg Gln 1 5 10 15

Lys Arg Met Gln Ile Ala Ala Pro Leu Ser Ser Tyr Lys Ile Glu Phe 20 25 30

Lys Asp Ile Ile Ile Phe Ile Val Glu Arg Lys Met Gly Met Thr Arg 35 40 45

Arg Met Phe Leu Met Asp Leu Ala Arg Arg Lys Gly Phe Arg Val Glu 50 55 60

Asn Glu Leu Ser Asp Leu Val Thr His Val Val Ala Glu Asn Asn Ser 65 70 75 80

Cys Ser Glu Ile Leu Lys Trp Leu Gln Lys His Asn Val Glu Asp Ser 85 90 95

Ser Arg Phe Arg Ile Leu Asp Ile Arg Trp Leu Thr Ala Cys Met Glu 100 105 110

Val Gly Arg Pro Val Asp Ser Glu Lys Tyr Gln Leu Pro Glu Asp Glu 115 120 125

Asp Arg Ser Val Thr Ser Asp Leu Asp Arg Asp Ser Ile Ser Glu Tyr

130 135 140

Ala Cys Gln Arg Arg Thr Thr Leu Lys Asn Tyr Asn Gln Lys Phe Thr Asp Ala Phe Glu Ile Leu Ala Glu Asn Tyr Glu Phe Asn Glu Asn Lys Gly Phe Cys Thr Ala Phe Arg Arg Ala Ala Ser Val Leu Lys Cys Leu Pro Phe Thr Ile Val Gln Val His Asp Ile Glu Gly Val Pro Trp Met Gly Lys Gln Val Lys Gly Ile Ile Glu Asp Ile Ile Glu Glu Gly Glu Ser Ser Lys Val Lys Ala Val Leu Asp Asn Glu Asn Tyr Arg Ser Val Lys Leu Phe Thr Ser Val Phe Gly Val Gly Leu Lys Thr Ser Asp Lys Trp Tyr Arg Met Gly Leu Arg Thr Leu Glu Glu Val Lys Arg Asp Lys Asn Leu Lys Leu Thr Arg Met Gln Lys Ala Gly Phe Leu His Tyr Asp Asp Leu Thr Ser Cys Val Ser Lys Ala Glu Ala Asp Ala Ala Ser Leu Ile Val Gln Asp Val Val Trp Lys Ile Val Pro Asn Ala Ile Val Thr

Ile Ala Gly Gly Phe Arg Arg Gly Lys Gln Thr Gly His Asp Val Asp

Phe Leu Ile Thr Val Pro Gly Ser Lys Gln Glu Glu Glu Glu Leu Leu 340 345 350

His Thr Val Ile Asp Ile Trp Lys Lys Gln Glu Leu Leu Leu Tyr Tyr 355 360 365

Asp Leu Ile Glu Ser Thr Phe Glu Asp Thr Lys Leu Pro Ser Arg Lys 370 375 380

Val Asp Ala Leu Asp His Phe Gln Lys Cys Phe Ala Ile Leu Lys Val 385 390 395 400

His Lys Glu Arg Glu Asp Lys Gly Asn Ser Ile Arg Ser Lys Ala Phe 405 410 415

Ser Glu Glu Ile Lys Asp Trp Lys Ala Ile Arg Val Asp Leu Val 420 425 430

Val Val Pro Phe Glu Gln Tyr Ala Phe Ala Leu Leu Gly Trp Thr Gly 435 440 445

Ser Thr Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Thr His Glu Lys 450 455 460

Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Lys Thr Lys Lys Ile 465 470 475 480

Phe Leu Asn Ala Ala Ser Glu Glu Glu Ile Phe Ala His Leu Gly Leu 485 490 495

Asp Tyr Leu Glu Pro Trp Glu Arg Asn Ala 500 505

<210> 21

<211> 387

<212> PRT

<213> Artificial Sequence

<220>
<223> Python bivittatus
<400> 21
Glu Lys Tyr Gln Leu Pro

Glu Lys Tyr Gln Leu Pro Glu Asp Glu Asp Arg Ser Val Thr Ser Asp 1 5 10 15

Leu Asp Arg Asp Ser Ile Ser Glu Tyr Ala Cys Gln Arg Arg Thr Thr 20 25 30

Leu Lys Asn Tyr Asn Gln Lys Phe Thr Asp Ala Phe Glu Ile Leu Ala 35 40 45

Glu Asn Tyr Glu Phe Asn Glu Asn Lys Gly Phe Cys Thr Ala Phe Arg 50 55 60

Arg Ala Ala Ser Val Leu Lys Cys Leu Pro Phe Thr Ile Val Gln Val 65 70 75 80

His Asp Ile Glu Gly Val Pro Trp Met Gly Lys Gln Val Lys Gly Ile 85 90 95

Ile Glu Asp Ile Ile Glu Glu Gly Glu Ser Ser Lys Val Lys Ala Val 100 105 110

Leu Asp Asn Glu Asn Tyr Arg Ser Val Lys Leu Phe Thr Ser Val Phe 115 120 125

Gly Val Gly Leu Lys Thr Ser Asp Lys Trp Tyr Arg Met Gly Leu Arg 130 135 140

Thr Leu Glu Glu Val Lys Arg Asp Lys Asn Leu Lys Leu Thr Arg Met 145 150 155 160

Gln Lys Ala Gly Phe Leu His Tyr Asp Asp Leu Thr Ser Cys Val Ser 165 170 175

Lys Ala Glu Ala Asp Ala Ala Ser Leu Ile Val Gln Asp Val Val Trp

180 185 190

Lys Ile Val Pro Asn Ala Ile Val Thr Ile Ala Gly Gly Phe Arg Arg 195 200 205

Gly Lys Gln Thr Gly His Asp Val Asp Phe Leu Ile Thr Val Pro Gly 210 215 220

Ser Lys Gln Glu Glu Glu Leu Leu His Thr Val Ile Asp Ile Trp 225 230 235 240

Lys Lys Gln Glu Leu Leu Tyr Tyr Asp Leu Ile Glu Ser Thr Phe 245 250 255

Glu Asp Thr Lys Leu Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe 260 265 270

Gln Lys Cys Phe Ala Ile Leu Lys Val His Lys Glu Arg Glu Asp Lys 275 280 285

Gly Asn Ser Ile Arg Ser Lys Ala Phe Ser Glu Glu Glu Ile Lys Asp 290 295 300

Trp Lys Ala Ile Arg Val Asp Leu Val Val Val Pro Phe Glu Gln Tyr 305 310 315 320

Ala Phe Ala Leu Leu Gly Trp Thr Gly Ser Thr Gln Phe Glu Arg Asp 325 330 335

Leu Arg Arg Tyr Ala Thr His Glu Lys Lys Met Met Leu Asp Asn His 340 345 350

Ala Leu Tyr Asp Lys Thr Lys Lys Ile Phe Leu Asn Ala Ala Ser Glu 355 360 365

Glu Glu Ile Phe Ala His Leu Gly Leu Asp Tyr Leu Glu Pro Trp Glu 370 375 380 Arg Asn Ala
385

<210> 22
<211> 490
<212> PRT
<213> Canis lupus
<400> 22

Met Gly Ala Glu Ala Gly Thr Trp Arg Asp Thr Gly Gly Lys Phe Leu 1 5 10 15

Leu Leu Ala Thr Glu Pro Glu Arg Lys Phe Arg Ala Ser Asp Ala Cys 20 25 30

Cys Gln Gly Pro Ser Pro Ala Gly Gln Ala Leu Glu Glu Thr Gly Ala 35 40 45

Cys Asp Ser Ile Thr His Ile Val Ala Glu Asn Asn Ser Gly Ser Asp 50 55 60

Val Leu Glu Trp Leu Gln Val Gln Asn Ile Lys Ala Ser Ser Gln Leu 65 70 75 80

Glu Leu Leu Asp Ile Ser Trp Leu Ile Glu Ser Met Gly Ala Gly Lys 85 90 95

Pro Val Glu Met Thr Gly Lys His Gln Leu Met Arg Arg Asp Tyr Thr 100 105 110

Ala Ser Pro Asn Pro Glu Leu Gln Lys Thr Leu Pro Val Ala Val Lys 115 120 125

Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr Leu Asn Asn Tyr 130 135 140

Asn Asn Val Phe Thr Asp Ala Phe Glu Val Leu Ala Glu Asn Tyr Glu 145 150 155 160 Phe Arg Glu Asn Glu Val Phe Ser Leu Thr Phe Met Arg Ala Ala Ser 165 170 175

Val Leu Lys Ser Leu Pro Phe Thr Ile Ile Ser Met Lys Asp Thr Glu 180 185 190

Gly Ile Pro Cys Leu Gly Asp Gln Val Lys Cys Ile Ile Glu Glu Ile 195 200 205

Ile Glu Asp Gly Glu Ser Ser Glu Val Lys Ala Val Leu Asn Asp Glu 210 215 220

Arg Tyr Gln Ser Phe Lys Leu Phe Thr Ser Val Phe Gly Val Gly Leu 225 230 235 240

Lys Thr Ser Glu Lys Trp Phe Arg Met Gly Phe Arg Thr Leu Ser Lys 245 250 255

Ile Lys Ser Asp Lys Ser Leu Lys Phe Thr Pro Met Gln Lys Ala Gly 260 265 270

Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Thr Arg Ala Glu Ala 275 280 285

Glu Ala Val Gly Val Leu Val Lys Glu Ala Val Gly Ala Phe Leu Pro 290 295 300

Asp Ala Phe Val Thr Met Thr Gly Gly Phe Arg Arg Gly Lys Lys Met 305 310 315 320

Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Gly Ser Thr Asp Glu 325 330 335

Asp Glu Glu Gln Leu Leu Pro Lys Val Ile Asn Leu Trp Glu Arg Lys 340 345 350

Gly Leu Leu Tyr Cys Asp Leu Val Glu Ser Thr Phe Glu Lys Leu 355 360 365

Lys Leu Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe Gln Lys Cys 370 375 380

Phe Leu Ile Leu Lys Leu His His Gln Arg Val Asp Gly Gly Lys Cys 385 390 395 400

Ser Gln Gln Glu Gly Lys Thr Trp Lys Ala Ile Arg Val Asp Leu Val 405 410 415

Met Cys Pro Tyr Glu Arg Arg Ala Phe Ala Leu Leu Gly Trp Thr Gly 420 425 430

Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Ser His Glu Arg 435 440 445

Lys Met Ile Leu Asp Asn His Ala Leu Tyr Asp Lys Thr Lys Lys Ile 450 455 460

Phe Leu Lys Ala Glu Ser Glu Glu Glu Ile Phe Ala His Leu Gly Leu 465 470 475 480

Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 485 490

<210> 23

<211> 381

<212> PRT

<213> Canis lupus

<400> 23

Asp Tyr Thr Ala Ser Pro Asn Pro Glu Leu Gln Lys Thr Leu Pro Val 1 5 10 15

Ala Val Lys Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr Leu 20 25 30 Asn Asn Tyr Asn Asn Val Phe Thr Asp Ala Phe Glu Val Leu Ala Glu 35 40 45

Asn Tyr Glu Phe Arg Glu Asn Glu Val Phe Ser Leu Thr Phe Met Arg 50 55 60

Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Thr Ile Ile Ser Met Lys 65 70 75 80

Asp Thr Glu Gly Ile Pro Cys Leu Gly Asp Gln Val Lys Cys Ile Ile 85 90 95

Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys Ala Val Leu 100 105 110

Asn Asp Glu Arg Tyr Gln Ser Phe Lys Leu Phe Thr Ser Val Phe Gly 115 120 125

Val Gly Leu Lys Thr Ser Glu Lys Trp Phe Arg Met Gly Phe Arg Thr 130 135 140

Leu Ser Lys Ile Lys Ser Asp Lys Ser Leu Lys Phe Thr Pro Met Gln 145 150 155 160

Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Thr Arg 165 170 175

Ala Glu Ala Glu Ala Val Gly Val Leu Val Lys Glu Ala Val Gly Ala 180 185 190

Phe Leu Pro Asp Ala Phe Val Thr Met Thr Gly Gly Phe Arg Arg Gly
195 200 205

Lys Lys Met Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Gly Ser 210 215 220

Thr Asp Glu Asp Glu Glu Gln Leu Leu Pro Lys Val Ile Asn Leu Trp

Glu Arg Lys Gly Leu Leu Leu Tyr Cys Asp Leu Val Glu Ser Thr Phe 245 250 255

Glu Lys Leu Lys Leu Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe 260 265 270

Gln Lys Cys Phe Leu Ile Leu Lys Leu His His Gln Arg Val Asp Gly 275 280 285

Gly Lys Cys Ser Gln Gln Glu Gly Lys Thr Trp Lys Ala Ile Arg Val 290 295 300

Asp Leu Val Met Cys Pro Tyr Glu Arg Arg Ala Phe Ala Leu Leu Gly 305 310 315 320

Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Ser 325 330 335

His Glu Arg Lys Met Ile Leu Asp Asn His Ala Leu Tyr Asp Lys Thr 340 345 350

Lys Lys Ile Phe Leu Lys Ala Glu Ser Glu Glu Glu Ile Phe Ala His 355 360 365

Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 370 375 380

<210> 24

<211> 512

<212> PRT

<213> Artificial Sequence

<220>

<223> Condylura cristata

<400> 24

Met Asp Pro Leu Gln Met Ala Cys Thr Gly Pro Arg Lys Lys Arg Ala

Arg Gln Met Asp Thr Ser Met Gly Ser Thr Gln Asp Ile Lys Phe Gln 20 25 30

1

Asp Leu Val Leu Phe Ile Leu Glu Lys Lys Met Gly Thr Thr Arg Arg 35 40 45

Ala Phe Leu Met Glu Leu Ala Arg Arg Lys Gly Phe Arg Val Glu Asn 50 55 60

Glu Leu Ser Asp Ser Val Thr His Ile Val Ala Glu Asn Asn Ser Gly 70 75 80

Ser Asp Val Leu Glu Trp Leu Gln Val Gln Lys Ile Lys Ala Ser Ser 85 90 95

Gln Leu Glu Leu Leu Asp Val Ser Trp Leu Ile Glu Cys Met Gly Ala 100 105 110

Gly Lys Leu Val Glu Ile Thr Gly Lys His Gln Leu Val Ser Ile Met 115 120 125

Val Arg Gly Asp Cys Pro Ala Ser His Asp Ser Ser Pro Gln Lys Thr 130 135 140

Glu Ser Ala Ala Val Gln Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg 145 150 155 160

Thr Thr Leu Asn Asn His Asn His Ile Phe Thr Asp Ala Phe Glu Ile 165 170 175

Leu Ala Glu Asn Cys Glu Phe Arg Glu Asn Glu Gly Ser Tyr Val Thr 180 185 190

Tyr Met Arg Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Ser Ile Ile 195 200 205

Ser	Met 210	Lys	Asp	Thr	Glu	Gly 215	Ile	Pro	Cys	Leu	Ala 220	Asp	Lys	Val	Lys
Cys 225	Val	Ile	Glu	Glu	Ile 230	Ile	Glu	Asp	Gly	Glu 235	Ser	Ser	Glu	Val	Lys 240
Ala	Val	Leu	Asn	Asp 245	Glu	Arg	Tyr	Lys	Ser 250	Phe	Lys	Leu	Phe	Thr 255	Ser
Val	Phe	Gly	Val 260	Gly	Leu	Lys	Thr	Ala 265	Glu	Lys	Trp	Phe	Arg 270	Leu	Gly
Phe	Arg	Thr 275	Leu	Ser	Gly	Ile	Met 280	Asn	Asp	Lys	Thr	Leu 285	Lys	Leu	Thr
His	Met 290	Gln	Lys	Ala	Gly	Phe 295	Leu	Tyr	Tyr	Glu	Asp 300	Leu	Val	Ser	Cys
Val 305	Thr	Arg	Ala	Glu	Ala 310	Glu	Ala	Val	Gly	Val 315	Leu	Val	Lys	Glu	Ala 320
Val	Trp	Ala	Phe	Leu 325	Pro	Asp	Ala	Ile	Val 330	Thr	Met	Thr	Gly	Gly 335	Phe
Arg	Arg	Gly	Lys 340	Lys	Val	Gly	His	Asp 345	Val	Asp	Phe	Leu	Ile 350	Thr	Ser
Pro	Glu	Ala 355	Thr	Glu	Glu	Gln	Glu 360	Gln	Gln	Leu	Leu	His 365	Lys	Val	Ile
Thr	Phe 370	Trp	Glu	Lys	Glu	Gly 375	Leu	Leu	Leu	Tyr	Cys 380	Asp	Leu	Tyr	Glu
Ser 385	Thr	Phe	Glu	Lys	Leu 390	Lys	Met	Pro	Ser	Arg 395	Lys	Val	Asp	Ala	Leu 400

Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu His Arg Glu Cys

Val Asp Asp Gly Thr Ser Ser Gln Leu Gln Gly Lys Thr Trp Lys Ala 420 425 430

Ile Arg Val Asp Leu Val Val Cys Pro Tyr Glu Cys Arg Ala Phe Ala 435 440 445

Leu Leu Gly Trp Thr Gly Ser Pro Gln Phe Glu Arg Asp Leu Arg Arg 450 455 460

Tyr Ala Thr His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr 465 470 475 480

Asp Lys Thr Lys Arg Lys Phe Leu Ser Ala Asp Ser Glu Glu Asp Ile 485 490 495

Phe Ala His Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 500 505 510

<210> 25

<211> 382

<212> PRT

<213> Artificial Sequence

<220>

<223> Condylura cristata

<400> 25

Gly Asp Cys Pro Ala Ser His Asp Ser Ser Pro Gln Lys Thr Glu Ser 1 5 10 15

Ala Ala Val Gln Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr 20 25 30

Leu Asn Asn His Asn His Ile Phe Thr Asp Ala Phe Glu Ile Leu Ala 35 40 45

Glu Asn Cys Glu Phe Arg Glu Asn Glu Gly Ser Tyr Val Thr Tyr Met

Arg Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Ser Ile Ile Ser Met 65 70 75 80

Lys Asp Thr Glu Gly Ile Pro Cys Leu Ala Asp Lys Val Lys Cys Val 85 90 95

Ile Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys Ala Val 100 105 110

Leu Asn Asp Glu Arg Tyr Lys Ser Phe Lys Leu Phe Thr Ser Val Phe 115 120 125

Gly Val Gly Leu Lys Thr Ala Glu Lys Trp Phe Arg Leu Gly Phe Arg 130 135 140

Thr Leu Ser Gly Ile Met Asn Asp Lys Thr Leu Lys Leu Thr His Met 145 150 155 160

Gln Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Thr 165 170 175

Arg Ala Glu Ala Glu Ala Val Gly Val Leu Val Lys Glu Ala Val Trp 180 185 190

Ala Phe Leu Pro Asp Ala Ile Val Thr Met Thr Gly Gly Phe Arg Arg 195 200 205

Gly Lys Lys Val Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Glu 210 215 220

Ala Thr Glu Glu Gln Gln Gln Leu Leu His Lys Val Ile Thr Phe 225 230 235 240

Trp Glu Lys Glu Gly Leu Leu Leu Tyr Cys Asp Leu Tyr Glu Ser Thr 245 250 255

Phe Glu Lys Leu Lys Met Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu His Arg Glu Cys Val Asp Asp Gly Thr Ser Ser Gln Leu Gln Gly Lys Thr Trp Lys Ala Ile Arg Val Asp Leu Val Val Cys Pro Tyr Glu Cys Arg Ala Phe Ala Leu Leu Gly Trp Thr Gly Ser Pro Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Thr His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Lys Thr Lys Arg Lys Phe Leu Ser Ala Asp Ser Glu Glu Asp Ile Phe Ala His Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala <210> <211> 508 <212> PRT <213> Ochotona princeps <400> 26 Met Asp Ser Leu Gln Thr Gly His Leu Gly Pro Arg Lys Lys Arg Ser

Arg Gln Thr Asp Ala Ala Arg Thr Ser Ile Pro Gln Glu Val Lys Phe

Gln Asp Leu Val Leu Phe Ile Leu Glu Lys Lys Met Gly Ser Thr Arg

Arg Ala Phe Leu Met Glu Leu Ala Arg Ser Lys Gly Phe Arg Val Glu 50 55 60

Asn Glu Leu Ser Asp Ser Val Thr His Ile Val Ala Glu Asn Asn Ser 65 70 75 80

Gly Ser Asp Val Leu Glu Trp Leu Gln Val Gln Lys Leu Lys Asp Ser 85 90 95

Ser Gln Leu Glu Leu Leu Asp Val Ser Trp Leu Ile Glu Cys Met Arg 100 105 110

Ala Gly Lys Pro Val Ala Thr Thr Gly Lys His Gln Leu Val Met Arg 115 120 125

Glu Glu Tyr Ser Ala Asn Pro Ser Pro Gly Pro Gln Ala Thr Pro Ala 130 135 140

Val Tyr Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr Leu Asn 145 150 155 160

Asn His Asn His Ile Phe Thr Asp Ala Phe Glu Ile Leu Ala Glu Asn 165 170 175

Tyr Glu Phe Lys Glu Asn Glu Gly Cys Tyr Val Thr Tyr Met Arg Ala 180 185 190

Ala Ser Val Leu Lys Ser Leu Pro Phe Thr Ile Val Ser Met Lys Asp 195 200 205

Thr Glu Gly Ile Pro Cys Leu Glu Asp Lys Val Lys Ser Ile Met Glu 210 215 220

Glu Ile Ile Glu Glu Gly Glu Ser Ser Glu Val Lys Ala Val Leu Ser 225 230 235 240

Asp Glu Arg	Tyr Gln 245	Cys Phe	Lys	Leu	Phe 250	Thr	Ser	Val	Phe	Gly 255	Val
Gly Leu Lys	Thr Ser 260	Glu Lys	Trp	Phe 265	Arg	Met	Gly	Phe	Arg 270	Ser	Leu
Ser Asn Ile 275	Arg Leu	Asp Lys	Ser 280	Leu	Lys	Phe	Thr	Gln 285	Met	Gln	Lys
Ala Gly Phe 290	Arg Tyr	Tyr Glu 295		Ile	Val	Ser	Cys 300	Val	Thr	Arg	Ala
Glu Ala Glu 305	Ala Val	Asp Val 310	Leu	Val	Asn	Glu 315	Ala	Val	Arg	Ala	Phe 320
Leu Pro Asp	Ala Phe 325	Ile Thr	Met	Thr	Gly 330	Gly	Phe	Arg	Arg	Gly 335	Lys
Lys Ile Gly	His Asp 340	Val Asp	Phe	Leu 345	Ile	Thr	Ser	Pro	Glu 350	Leu	Thr
Glu Glu Asp 355	Glu Gln	Gln Leu	Leu 360	His	Lys	Val	Met	Asn 365	Leu	Trp	Glu
Lys Lys Gly 370	Leu Leu	Leu Tyr 375	His	Asp	Leu	Val	Glu 380	Ser	Thr	Phe	Glu
Lys Leu Lys 385	Gln Pro	Ser Arg 390	Lys	Val	Asp	Ala 395	Leu	Asp	His	Phe	Gln 400
Lys Cys Phe	Leu Ile 405	Phe Lys	Leu	Tyr	His 410	Glu	Arg	Val	Gly	Gly 415	Asp
Arg Cys Arg	Gln Pro 420	Glu Gly	Lys	Asp 425	Trp	Lys	Ala	Ile	Arg 430	Val	Asp
Leu Val Met 435	Cys Pro	Tyr Glu	Cys 440	His	Ala	Phe	Ala	Leu 445	Leu	Gly	Trp

Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Ser His 450 455 460

Glu Arg Lys Met Ile Leu Asp Asn His Ala Leu Tyr Asp Lys Thr Lys 465 470 475 480

Arg Val Phe Leu Gln Ala Glu Asn Glu Glu Glu Ile Phe Ala His Leu 485 490 495

Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 500 505

<210> 27

<211> 379

<212> PRT

<213> Ochotona princeps

<400> 27

Glu Tyr Ser Ala Asn Pro Ser Pro Gly Pro Gln Ala Thr Pro Ala Val 1 5 10 15

Tyr Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr Leu Asn Asn 20 25 30

His Asn His Ile Phe Thr Asp Ala Phe Glu Ile Leu Ala Glu Asn Tyr 35 40 45

Glu Phe Lys Glu Asn Glu Gly Cys Tyr Val Thr Tyr Met Arg Ala Ala 50 55 60

Ser Val Leu Lys Ser Leu Pro Phe Thr Ile Val Ser Met Lys Asp Thr 65 70 75 80

Glu Gly Ile Pro Cys Leu Glu Asp Lys Val Lys Ser Ile Met Glu Glu 85 90 95

Ile Ile Glu Glu Gly Glu Ser Ser Glu Val Lys Ala Val Leu Ser Asp

100 105 110

Glu Arg Tyr Gln Cys Phe Lys Leu Phe Thr Ser Val Phe Gly Val Gly
115 120 125

Leu Lys Thr Ser Glu Lys Trp Phe Arg Met Gly Phe Arg Ser Leu Ser 130 135 140

Asn Ile Arg Leu Asp Lys Ser Leu Lys Phe Thr Gln Met Gln Lys Ala 145 150 155 160

Gly Phe Arg Tyr Tyr Glu Asp Ile Val Ser Cys Val Thr Arg Ala Glu 165 170 175

Ala Glu Ala Val Asp Val Leu Val Asn Glu Ala Val Arg Ala Phe Leu 180 185 190

Pro Asp Ala Phe Ile Thr Met Thr Gly Gly Phe Arg Arg Gly Lys Lys 195 200 205

Ile Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Glu Leu Thr Glu 210 215 220

Glu Asp Glu Gln Gln Leu Leu His Lys Val Met Asn Leu Trp Glu Lys 225 230 235 240

Lys Gly Leu Leu Tyr His Asp Leu Val Glu Ser Thr Phe Glu Lys 245 250 255

Leu Lys Gln Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe Gln Lys 260 265 270

Cys Phe Leu Ile Phe Lys Leu Tyr His Glu Arg Val Gly Gly Asp Arg 275 280 285

Cys Arg Gln Pro Glu Gly Lys Asp Trp Lys Ala Ile Arg Val Asp Leu 290 295 300

Val Met Cys Pro Tyr Glu Cys His Ala Phe Ala Leu Leu Gly Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Ser His Glu Arg Lys Met Ile Leu Asp Asn His Ala Leu Tyr Asp Lys Thr Lys Arg Val Phe Leu Gln Ala Glu Asn Glu Glu Glu Ile Phe Ala His Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala <210> <211> <212> PRT <213> Erinaceus europaeus <400> 28 Met Asp Ala Leu Pro Val Val His Ser Ser Pro Arg Lys Lys Arg Ser Arg Leu Met Gly Ala Ser Val Ala Tyr Pro Pro Tyr Asp Ile Lys Phe His Asn Leu Val Leu Phe Ile Leu Glu Lys Lys Met Gly Ser Ser Arg Arg Ala Phe Leu Met Glu Leu Ala Arg Arg Lys Gly Phe Arg Val Glu

Asp Glu Leu Ser Asp Ser Ile Thr His Ile Val Ala Glu Asn Asn Thr

Gly Ser Glu Val Leu Glu Trp Leu Gln Val Gln Asp Ile Lys Ile Ser

Ser Gln Leu Glu Leu Leu Asp Val Ser Trp Leu Val Glu Cys Met Arg 100 105 110

Ala Gly Asn Pro Val Val Ile Thr Gly Lys His Gln Leu Val Ser Tyr 115 120 125

Thr Val Lys Ser Asp Ala Ser Phe Gly Ser Asn Pro Gly Ser Gln Asn 130 135 140

Thr Pro Pro Leu Ala Ile Lys Lys Ile Ser Gln Tyr Ala Cys Gln Arg 145 150 155 160

Arg Thr Ser Leu Asn Asn Cys Asn His Ile Phe Thr Asp Ala Leu Asp 165 170 175

Ile Leu Ala Glu Asn His Glu Phe Arg Glu Asn Glu Val Ser Cys Val 180 185 190

Ala Phe Met Arg Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Thr Ile 195 200 205

Ile Ser Met Lys Asp Thr Lys Gly Ile Pro Cys Leu Gly Asp Lys Ala 210 215 220

Lys Cys Val Ile Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val 225 230 235 240

Lys Ala Ile Leu Asn Asp Glu Arg Tyr Gln Ser Phe Lys Leu Phe Thr 245 250 255

Ser Val Phe Gly Val Gly Leu Lys Thr Ser Glu Lys Trp Phe Arg Met 260 265 270

Gly Phe Arg Thr Leu Asn Lys Ile Met Ser Asp Lys Thr Leu Lys Leu 275 280 285

Thr	Arg 290	Met	Gln	Lys	Ala	Gly 295	Phe	Leu	Tyr	Tyr	Glu 300	Asp	Leu	Val	Ser
Cys 305	Val	Ala	Lys	Ala	Glu 310	Ala	Asp	Ala	Val	Ser 315	Val	Leu	Val	Gln	Glu 320
Ala	Val	Trp	Ala	Phe 325	Leu	Pro	Asp	Ala	Met 330	Val	Thr	Met	Thr	Gly 335	Gly
Phe	Arg	Arg	Gly 340	Lys	Lys	Leu	Gly	His 345	Asp	Val	Asp	Phe	Leu 350	Ile	Thr
Ser	Pro	Gly 355	Ala	Thr	Glu	Glu	Glu 360	Glu	Gln	Gln	Leu	Leu 365	Pro	Lys	Val
Ile	Asn 370	Phe	Trp	Glu	Arg	Lys 375	Gly	Leu	Leu	Leu	Tyr 380	His	Asp	Leu	Val
Glu 385	Ser	Thr	Phe	Glu	Lys 390	Leu	Lys	Leu	Pro	Ser 395	Arg	Lys	Val	Asp	Ala 400
Leu	Asp	His	Phe	Gln 405	Lys	Cys	Phe	Leu	Ile 410	Leu	Lys	Leu	His	Leu 415	Gln
His	Val	Asn	Gly 420	Val	Gly	Asn	Ser	Lys 425	Thr	Gly	Gln	Gln	Glu 430	Gly	Lys
Asn	Trp	Lys 435	Ala	Ile	Arg	Val	Asp 440	Leu	Val	Met	Cys	Pro 445	Tyr	Glu	Arg
Arg	Ala 450	Phe	Ala	Leu	Leu	Gly 455	Trp	Thr	Gly	Ser	Arg 460	Gln	Phe	Glu	Arg
Asp 465	Leu	Arg	Arg	Phe	Ala 470	Thr	His	Glu	Arg	Lys 475	Met	Met	Leu	Asp	Asn 480
His	Ala	Leu	Tyr	Asp 485	Lys	Thr	Lys	Arg	Ile 490	Phe	Leu	Lys	Ala	Glu 495	Ser

Glu Glu Glu Ile Phe Ala His Leu Gly Leu Asp Tyr Ile Asp Pro Trp 500 505 510

Glu Arg Asn Ala 515

<210> 29

<211> 384

<212> PRT

<213> Erinaceus europaeus

<400> 29

Asp Ala Ser Phe Gly Ser Asn Pro Gly Ser Gln Asn Thr Pro Pro Leu 1 5 10 15

Ala Ile Lys Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Ser Leu 20 25 30

Asn Asn Cys Asn His Ile Phe Thr Asp Ala Leu Asp Ile Leu Ala Glu 35 40 45

Asn His Glu Phe Arg Glu Asn Glu Val Ser Cys Val Ala Phe Met Arg 50 55 60

Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Thr Ile Ile Ser Met Lys 65 70 75 80

Asp Thr Lys Gly Ile Pro Cys Leu Gly Asp Lys Ala Lys Cys Val Ile 85 90 95

Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys Ala Ile Leu 100 105 110

Asn Asp Glu Arg Tyr Gln Ser Phe Lys Leu Phe Thr Ser Val Phe Gly 115 120 125

Val Gly Leu Lys Thr Ser Glu Lys Trp Phe Arg Met Gly Phe Arg Thr

130 135 140

Leu Asn Lys Ile Met Ser Asp Lys Thr Leu Lys Leu Thr Arg Met Gln Lys Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Ala Lys Ala Glu Ala Asp Ala Val Ser Val Leu Val Gln Glu Ala Val Trp Ala Phe Leu Pro Asp Ala Met Val Thr Met Thr Gly Gly Phe Arg Arg Gly Lys Lys Leu Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Gly Ala Thr Glu Glu Glu Gln Gln Leu Leu Pro Lys Val Ile Asn Phe Trp Glu Arg Lys Gly Leu Leu Tyr His Asp Leu Val Glu Ser Thr Phe Glu Lys Leu Lys Leu Pro Ser Arg Lys Val Asp Ala Leu Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu His Leu Gln His Val Asn Gly Val Gly Asn Ser Lys Thr Gly Gln Glu Gly Lys Asn Trp Lys Ala Ile Arg Val Asp Leu Val Met Cys Pro Tyr Glu Arg Arg Ala Phe Ala

Leu Leu Gly Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg

Phe Ala Thr His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr 340 345 350

Asp Lys Thr Lys Arg Ile Phe Leu Lys Ala Glu Ser Glu Glu Ile 355 360 365

Phe Ala His Leu Gly Leu Asp Tyr Ile Asp Pro Trp Glu Arg Asn Ala 370 380

<210> 30

<211> 510

<212> PRT

<213> Artificial Sequence

<220>

<223> Tupaia chinensis

<220>

<221> misc_feature

<222> (78)..(78)

<223> Xaa can be any naturally occurring amino acid

<220>

<221> misc_feature

<222> (82)..(82)

<223> Xaa can be any naturally occurring amino acid

<400> 30

Met Asp Leu Leu Arg Met Ala Pro Leu Ser Pro Arg Lys Lys Arg Pro 1 5 10 15

Arg Gln Met Gly Ser Ser Met Ala Ser Ala Pro His Asp Ile Lys Phe 20 25 30

Gln Gly Val Val Leu Tyr Ile Leu Glu Lys Lys Met Gly Thr Thr Arg 35 40 45

Arg Ala Phe Leu Met Glu Leu Ala Arg Arg Lys Gly Phe Arg Val Glu 50 55 60

Asn 65	Glu	Leu	Ser	Met	Ser 70	Leu	Ser	His	Gln	Val 75	Trp	Asp	Xaa	Asn	Cys 80
Gly	Xaa	Asp	Val	Arg 85	Glu	Trp	Leu	Gln	Val 90	Gln	Lys	Val	Lys	Ala 95	Ser
Ser	Gln	Pro	Glu 100	Leu	Leu	Asp	Val	Ser 105	Trp	Leu	Val	Glu	Cys 110	Met	Arg
Ala	Gly	Lys 115	Pro	Val	Glu	Ala	Thr 120	Gly	Lys	His	Gln	Leu 125	Leu	Val	Lys
Ser	Asp 130	His	Ser	Thr	Ser	Pro 135	Ser	Pro	Gly	Pro	Gln 140	Lys	Thr	Pro	Ala
Leu 145	Ala	Val	Gln	Lys	Ile 150	Ser	Gln	Tyr	Ala	Cys 155	Gln	Arg	Arg	Thr	Thr 160
Leu	Asn	Asn	Cys	Asn 165	Arg	Val	Phe	Thr	Asp 170	Ala	Phe	Glu	Thr	Leu 175	Ala
Glu	Asn	Tyr	Glu 180	Phe	Arg	Glu	Asn	Glu 185	Asp	Ser	Ser	Val	Ile 190	Phe	Leu
Arg	Ala	Ala 195	Ser	Val	Leu	Arg	Ser 200	Leu	Pro	Phe	Thr	Ile 205	Thr	Ser	Met
Arg	Asp 210	Thr	Glu	Gly	Leu	Pro 215	Cys	Leu	Gly	Asp	Lys 220	Val	Lys	Cys	Val
Ile 225	Glu	Glu	Ile	Ile	Glu 230	Asp	Gly	Glu	Ser	Ser 235	Glu	Val	Asn	Ala	Val 240
Leu	Asn	Asp	Glu	Arg 245	Tyr	Lys	Ser	Phe	Lys 250	Leu	Phe	Thr	Ser	Val 255	Phe
Gly	Val	Gly	Leu 260	Lys	Thr	Ser	Glu	Lys 265	Trp	Phe	Arg	Met	Gly 270	Phe	Arg

Thr Leu Ser Arg Val Arg Ser Asp Lys Ser Leu His Leu Thr Arg Met 275 280 285

Gln Gln Ala Gly Phe Leu Tyr Tyr Glu Asp Leu Ala Ser Cys Val Thr 290 295 300

Arg Ala Glu Ala Glu Ala Val Gly Val Leu Val Lys Glu Ala Val Gly 305 310 315 320

Ala Phe Leu Pro Asp Ala Leu Val Thr Ile Thr Gly Gly Phe Arg Arg 325 330 335

Gly Lys Lys Thr Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro Gly 340 345 350

Ser Thr Glu Glu Lys Glu Glu Glu Leu Leu Gln Lys Val Leu Asn Leu 355 360 365

Trp Glu Lys Lys Gly Leu Leu Leu Tyr Tyr Asp Leu Val Glu Ser Thr 370 375 380

Phe Glu Lys Leu Lys Thr Pro Ser Arg Lys Val Asp Ala Leu Asp His 385 390 395 400

Phe Pro Lys Cys Phe Leu Ile Leu Lys Leu His His Gln Arg Val Asp 405 410 415

Gly Asp Lys Pro Ser Gln Gln Glu Gly Lys Ser Trp Lys Ala Ile Arg 420 425 430

Val Asp Leu Val Met Cys Pro Tyr Glu Arg His Ala Phe Ala Leu Leu 435 440 445

Gly Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala 450 455 460 Thr His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Lys 465 470 475 480

Thr Lys Arg Val Phe Leu Lys Ala Glu Ser Glu Glu Asp Ile Phe Ala 485 490 495

His Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 500 505 510

<210> 31

<211> 381

<212> PRT

<213> Artificial Sequence

<220>

<223> Tupaia chinensis

<400> 31

Asp His Ser Thr Ser Pro Ser Pro Gly Pro Gln Lys Thr Pro Ala Leu 1 5 10 15

Ala Val Gln Lys Ile Ser Gln Tyr Ala Cys Gln Arg Arg Thr Thr Leu 20 25 30

Asn Asn Cys Asn Arg Val Phe Thr Asp Ala Phe Glu Thr Leu Ala Glu 35 40 45

Asn Tyr Glu Phe Arg Glu Asn Glu Asp Ser Ser Val Ile Phe Leu Arg 50 55 60

Ala Ala Ser Val Leu Arg Ser Leu Pro Phe Thr Ile Thr Ser Met Arg 65 70 75 80

Asp Thr Glu Gly Leu Pro Cys Leu Gly Asp Lys Val Lys Cys Val Ile 85 90 95

Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Asn Ala Val Leu 100 105 110

Asn Asp Glu 115		Lys Ser	Phe 120	Lys	Leu	Phe	Thr	Ser 125	Val	Phe	Gly
Val Gly Leu 130	Lys Thr	Ser Glu 135	-	Trp	Phe	Arg	Met 140	Gly	Phe	Arg	Thr
Leu Ser Arg 145	Val Arg	Ser Asp 150	Lys	Ser	Leu	His 155	Leu	Thr	Arg	Met	Gln 160
Gln Ala Gly	Phe Leu 165		Glu	Asp	Leu 170	Ala	Ser	Cys	Val	Thr 175	Arg
Ala Glu Ala	Glu Ala 180	Val Gly	Val	Leu 185	Val	Lys	Glu	Ala	Val 190	Gly	Ala
Phe Leu Pro 195	•	Leu Val	Thr 200	Ile	Thr	Gly	Gly	Phe 205	Arg	Arg	Gly
Lys Lys Thr 210	Gly His	Asp Val 215	-	Phe	Leu	Ile	Thr 220	Ser	Pro	Gly	Ser
Thr Glu Glu 225	Lys Glu	Glu Glu 230	Leu	Leu	Gln	Lys 235	Val	Leu	Asn	Leu	Trp 240
Glu Lys Lys	Gly Leu 245	Leu Leu	Tyr	Tyr	Asp 250	Leu	Val	Glu	Ser	Thr 255	Phe
Glu Lys Leu	Lys Thr 260	Pro Ser	Arg	Lys 265	Val	Asp	Ala	Leu	Asp 270	His	Phe
Pro Lys Cys 275	Phe Leu	Ile Leu	Lys 280	Leu	His	His	Gln	Arg 285	Val	Asp	Gly
Asp Lys Pro 290	Ser Gln	Gln Glu 295	-	Lys	Ser	Trp	Lys 300	Ala	Ile	Arg	Val
Asp Leu Val 305	Met Cys	Pro Tyr 310	Glu	Arg	His	Ala 315	Phe	Ala	Leu	Leu	Gly 320

Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Thr 325 330 335

His Glu Arg Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Lys Thr 340 345 350

Lys Arg Val Phe Leu Lys Ala Glu Ser Glu Glu Asp Ile Phe Ala His 355 360 365

Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 370 375 380

<210> 32

<211> 525

<212> PRT

<213> Ornithorhynchus anatinus

<400> 32

Met Ser Phe Ala Met Phe Pro Ala Lys Lys Glu His Leu Lys Lys Lys 1 5 10 15

Arg Arg Arg Met Asn Gly Cys Ile Ser Pro Thr Leu Tyr Glu Ile Lys 20 25 30

Phe Asn Glu Phe Val Leu Phe Ile Leu Glu Lys Lys Met Gly Thr Thr 35 40 45

Arg Arg Ala Phe Leu Met Glu Leu Ala Arg Arg Lys Gly Phe Arg Val 50 55 60

Glu Ser Glu Leu Ser Glu Ser Val Thr His Ile Val Ala Glu Asn Asn 65 70 75 80

Ser Cys Ser Asp Val Leu Glu Trp Leu Ala Val Gln Asn Val Gly Asp 85 90 95

Ser Ser Arg Phe Glu Leu Leu Asp Ile Ser Trp Leu Thr Glu Cys Met

100 105 110

Lys Val Gly Lys Pro Val Glu Ala Ile Gly Lys His Gln Leu Met Arg 115 120 125

Gly Asn Cys Leu Thr Asn Ser Ala Pro Ile Asn Cys Met Thr Glu Thr 130 135 140

Pro Ser Leu Ala Thr Lys Gln Val Ser Gln Tyr Ala Cys Glu Arg Arg 145 150 155 160

Thr Thr Leu Asn Asn Cys Asn Gln Lys Phe Thr Asp Ala Phe Glu Ile 165 170 175

Leu Ala Lys Asp Phe Glu Phe Arg Glu Asn Glu Gly Ile Cys Leu Ala 180 185 190

Phe Met Arg Ala Ile Ser Val Leu Lys Cys Leu Pro Phe Thr Ile Val 195 200 205

Arg Met Lys Asp Ile Glu Gly Val Pro Trp Leu Gly Asp Gln Val Lys 210 215 220

Ser Ile Ile Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Ser Val Lys 225 230 235 240

Ala Val Leu Asn Asp Glu Arg Tyr Arg Ser Phe Gln Leu Phe Asn Ser 245 250 255

Val Phe Glu Val Gly Leu Thr Asp Asn Gly Glu Asn Gly Ile Ala Arg 260 265 270

Gly Phe Gln Thr Leu Asn Glu Val Ile Thr Asp Glu Asn Ile Ser Leu 275 280 285

Thr Lys Thr Thr Leu Ser Thr Ser Leu Trp Asn Tyr Leu Pro Gly Phe 290 295 300

Leu Tyr Tyr Glu Asp Leu Val Ser Cys Val Ala Lys Glu Glu Ala Asp Ala Val Tyr Leu Ile Val Lys Glu Ala Val Arg Ala Phe Leu Pro Glu Ala Leu Val Thr Leu Thr Gly Gly Phe Arg Arg Gly Lys Lys Ile Gly His Asp Val Asp Phe Leu Ile Ser Asp Pro Glu Ser Gly Gln Asp Glu Gln Leu Leu Pro Asn Ile Ile Lys Leu Trp Glu Lys Gln Glu Leu Leu Leu Tyr Tyr Asp Leu Val Glu Ser Thr Phe Glu Lys Thr Lys Ile Pro Ser Arg Lys Val Asp Ala Met Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu His His Gln Lys Val Asp Ser Gly Arg Tyr Lys Pro Pro Pro Glu Ser Lys Asn His Glu Ala Lys Asn Trp Lys Ala Ile Arg Val Asp Leu Val Met Cys Pro Phe Glu Gln Tyr Ala Tyr Ala Leu Leu Gly Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr Ala Thr His Glu Lys Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Lys Thr

Lys Lys Ile Phe Leu Lys Ala Glu Ser Glu Glu Asp Ile Phe Thr His

500 505 510

Leu Gly Leu Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 515 520 525

<210> 33

<211> 394

<212> PRT

<213> Ornithorhynchus anatinus

<400> 33

Leu Thr Asn Ser Ala Pro Ile Asn Cys Met Thr Glu Thr Pro Ser Leu 1 5 10 15

Ala Thr Lys Gln Val Ser Gln Tyr Ala Cys Glu Arg Arg Thr Thr Leu 20 25 30

Asn Asn Cys Asn Gln Lys Phe Thr Asp Ala Phe Glu Ile Leu Ala Lys 35 40 45

Asp Phe Glu Phe Arg Glu Asn Glu Gly Ile Cys Leu Ala Phe Met Arg 50 55 60

Ala Ile Ser Val Leu Lys Cys Leu Pro Phe Thr Ile Val Arg Met Lys 65 70 75 80

Asp Ile Glu Gly Val Pro Trp Leu Gly Asp Gln Val Lys Ser Ile Ile 85 90 95

Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Ser Val Lys Ala Val Leu 100 105 110

Asn Asp Glu Arg Tyr Arg Ser Phe Gln Leu Phe Asn Ser Val Phe Glu 115 120 125

Val Gly Leu Thr Asp Asn Gly Glu Asn Gly Ile Ala Arg Gly Phe Gln 130 135 140

Thr 145	Leu	Asn	Glu	Val	Ile 150	Thr	Asp	Glu	Asn	Ile 155	Ser	Leu	Thr	Lys	Thr 160
Thr	Leu	Ser	Thr	Ser 165	Leu	Trp	Asn	Tyr	Leu 170	Pro	Gly	Phe	Leu	Tyr 175	Tyr
Glu	Asp	Leu	Val 180	Ser	Cys	Val	Ala	Lys 185	Glu	Glu	Ala	Asp	Ala 190	Val	Tyr
Leu	Ile	Val 195	Lys	Glu	Ala	Val	Arg 200	Ala	Phe	Leu	Pro	Glu 205	Ala	Leu	Val
Thr	Leu 210	Thr	Gly	Gly	Phe	Arg 215	Arg	Gly	Lys	Lys	Ile 220	Gly	His	Asp	Val
Asp 225	Phe	Leu	Ile	Ser	Asp 230	Pro	Glu	Ser	Gly	Gln 235	Asp	Glu	Gln	Leu	Leu 240
Pro	Asn	Ile	Ile	Lys 245	Leu	Trp	Glu	Lys	Gln 250	Glu	Leu	Leu	Leu	Tyr 255	Tyr
Asp	Leu	Val	Glu 260	Ser	Thr	Phe	Glu	Lys 265	Thr	Lys	Ile	Pro	Ser 270	Arg	Lys
Val	Asp	Ala 275	Met	Asp	His	Phe	Gln 280	Lys	Cys	Phe	Leu	Ile 285	Leu	Lys	Leu
His	His 290	Gln	Lys	Val	Asp	Ser 295	Gly	Arg	Tyr	Lys	Pro 300	Pro	Pro	Glu	Ser
Lys 305	Asn	His	Glu	Ala	Lys 310	Asn	Trp	Lys	Ala	Ile 315	Arg	Val	Asp	Leu	Val 320
Met	Cys	Pro	Phe	Glu 325	Gln	Tyr	Ala	Tyr	Ala 330	Leu	Leu	Gly	Trp	Thr 335	Gly
Ser	Arg	Gln	Phe 340	Glu	Arg	Asp	Leu	Arg 345	Arg	Tyr	Ala	Thr	His 350	Glu	Lys

Lys Met Met Leu Asp Asn His Ala Leu Tyr Asp Lys Thr Lys Lys Ile 355 360 365

Phe Leu Lys Ala Glu Ser Glu Glu Asp Ile Phe Thr His Leu Gly Leu 370 375 380

Asp Tyr Ile Glu Pro Trp Glu Arg Asn Ala 385 390

<210> 34

<210> 34 <211> 479

<212> PRT

<213> Jaculus jaculus

<400> 34

Met Asp Pro Glu Gln Ala Ala His Trp Ser Pro Arg Lys Lys Arg Pro 1 5 10 15

Arg Gln Arg Ser Ala Ser Val Ala Ser Ala Pro His Asp Ile Arg Phe 20 25 30

Gln Asp Leu Val Leu Phe Ile Leu Glu Lys Lys Met Gly Ser Thr Arg 35 40 45

Arg Ala Phe Leu Met Glu Leu Ala Arg Arg Lys Gly Phe Arg Val Glu 50 55 60

Asn Glu Leu Ser Asp Ser Val Thr His Ile Val Ala Glu Asn Asn Ser 65 70 75 80

Gly Ser Asp Val Met Lys Trp Leu Gln Gly Gln Asn Ile Gln Ala Ser 85 90 95

Ser Glu Leu Glu Leu Leu Asp Val Ser Trp Leu Ile Glu Cys Met Gly 100 105 110

Ala Gly Lys Pro Val Glu Met Thr Gly Arg His Gln Leu Val Lys Gln

115 120 125

Thr Phe Cys Leu Pro Gly Phe Ile Leu Gln Asp Ala Phe Asp Ile Leu 130 135 140

Ala Glu Asn Cys Glu Phe Arg Glu Asn Glu Ala Ser Cys Val Glu Phe 145 150 155 160

Met Arg Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Pro Ile Ile Ser 165 170 175

Val Lys Asp Thr Glu Gly Ile Pro Trp Leu Gly Gly Lys Val Lys Cys 180 185 190

Val Ile Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys Ala 195 200 205

Leu Leu Asn Asp Glu Arg Tyr Lys Ser Phe Lys Leu Phe Thr Ser Val 210 215 220

Phe Gly Val Gly Leu Lys Thr Ala Glu Arg Trp Phe Arg Met Gly Phe 225 230 235 240

Arg Thr Leu Ser Thr Val Lys Leu Asp Lys Ser Leu Thr Phe Thr Arg 245 250 255

Met Gln Lys Ala Gly Phe Leu His Tyr Glu Asp Leu Val Ser Cys Val 260 265 270

Thr Arg Ala Glu Ala Glu Ala Val Ser Val Leu Val Gln Gln Ala Val 275 280 285

Val Ala Phe Leu Pro Asp Ala Leu Val Ser Met Thr Gly Gly Phe Arg 290 295 300

Arg Gly Lys Lys Ile Gly His Asp Val Asp Phe Leu Ile Thr Ser Pro 305 310 315 320

Glu Ala Thr Glu Glu Glu Gln Gln Leu Leu His Lys Val Thr Asn 325 330 335

Phe Trp Glu Gln Lys Gly Leu Leu Leu Tyr Cys Asp His Val Glu Ser 340 345 350

Thr Phe Glu Lys Cys Lys Leu Pro Ser Arg Lys Val Asp Ala Leu Asp 355 360 365

His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu Tyr Arg Glu Arg Val 370 380

Asp Ser Val Lys Ser Ser Gln Gln Glu Gly Lys Gly Trp Lys Ala Ile 385 390 395 400

Arg Val Asp Leu Val Met Cys Pro Tyr Glu Cys Arg Ala Phe Ala Leu 405 410 415

Leu Gly Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg Tyr 420 425 430

Ala Thr His Glu Arg Lys Met Arg Leu Asp Asn His Ala Leu Tyr Asp 435 440 445

Lys Thr Lys Arg Val Phe Leu Lys Ala Glu Ser Glu Glu Glu Ile Phe 450 455 460

Ala His Leu Gly Leu Glu Tyr Ile Glu Pro Leu Glu Arg Asn Ala 465 470 475

<210> 35

<211> 384

<212> PRT

<213> Jaculus jaculus

<400> 35

Ser Ser Glu Leu Glu Leu Leu Asp Val Ser Trp Leu Ile Glu Cys Met 1 5 10 15 Gly Ala Gly Lys Pro Val Glu Met Thr Gly Arg His Gln Leu Val Lys 20 25 30

Gln Thr Phe Cys Leu Pro Gly Phe Ile Leu Gln Asp Ala Phe Asp Ile 35 40 45

Leu Ala Glu Asn Cys Glu Phe Arg Glu Asn Glu Ala Ser Cys Val Glu 50 55 60

Phe Met Arg Ala Ala Ser Val Leu Lys Ser Leu Pro Phe Pro Ile Ile 65 70 75 80

Ser Val Lys Asp Thr Glu Gly Ile Pro Trp Leu Gly Gly Lys Val Lys 85 90 95

Cys Val Ile Glu Glu Ile Ile Glu Asp Gly Glu Ser Ser Glu Val Lys 100 105 110

Ala Leu Leu Asn Asp Glu Arg Tyr Lys Ser Phe Lys Leu Phe Thr Ser 115 120 125

Val Phe Gly Val Gly Leu Lys Thr Ala Glu Arg Trp Phe Arg Met Gly 130 135 140

Phe Arg Thr Leu Ser Thr Val Lys Leu Asp Lys Ser Leu Thr Phe Thr 145 150 155 160

Arg Met Gln Lys Ala Gly Phe Leu His Tyr Glu Asp Leu Val Ser Cys 165 170 175

Val Thr Arg Ala Glu Ala Glu Ala Val Ser Val Leu Val Gln Gln Ala 180 185 190

Val Val Ala Phe Leu Pro Asp Ala Leu Val Ser Met Thr Gly Gly Phe 195 200 205 Arg Arg Gly Lys Lys Ile Gly His Asp Val Asp Phe Leu Ile Thr Ser 210 215 220

Pro Glu Ala Thr Glu Glu Glu Glu Gln Gln Leu Leu His Lys Val Thr 225 230 235 240

Asn Phe Trp Glu Gln Lys Gly Leu Leu Leu Tyr Cys Asp His Val Glu 245 250 255

Ser Thr Phe Glu Lys Cys Lys Leu Pro Ser Arg Lys Val Asp Ala Leu 260 265 270

Asp His Phe Gln Lys Cys Phe Leu Ile Leu Lys Leu Tyr Arg Glu Arg 275 280 285

Val Asp Ser Val Lys Ser Ser Gln Gln Glu Gly Lys Gly Trp Lys Ala 290 295 300

Ile Arg Val Asp Leu Val Met Cys Pro Tyr Glu Cys Arg Ala Phe Ala 305 310 315 320

Leu Leu Gly Trp Thr Gly Ser Arg Gln Phe Glu Arg Asp Leu Arg Arg 325 330 335

Tyr Ala Thr His Glu Arg Lys Met Arg Leu Asp Asn His Ala Leu Tyr 340 345 350

Asp Lys Thr Lys Arg Val Phe Leu Lys Ala Glu Ser Glu Glu Glu Ile 355 360 365

Phe Ala His Leu Gly Leu Glu Tyr Ile Glu Pro Leu Glu Arg Asn Ala 370 380