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Multi-Resolution Graph-Based Clustering
BACKGROUND OF THE INVENTION

Field of the Invention

The present invention generally relates to the geological study of earth formations
for the location and exploitation of mineral deposits using electrofacies analysis. More
particularly, the present invention relates to a new system and method for identifying
formations of mineral deposits using a user-friendly and reliable clustering technique that
can extract natural clusters from sets of logged data points for improved electrofacies

analysis of the formation.

Description of the Related Art

Mineral and hydrocarbon prospecting is based upon the geological study and
observation of formations of the earth's crust. Correlations have long been established
between geological phenomena and the formation of mineral and hydrocarbon deposits
that are sufficiently dense to make their exploitation economically profitable.

The study of rock and soil facies encountered while prospecting for minerals takes
on particular importance. As used herein, a facies is an assemblage of characteristics that
distinguish a rock or stratified body from others. A facies results from the physical,
chemical and biological conditions involved in the formation of a rock with respect to
other rocks or soil. This set of characteristics provides information on the origin of the
deposits, their distribution channels and the environment within which they were
produced. For example, sedimentary deposits can be classified according to their location
(continental, shoreline or marine), according to their origin (fluviatile, lacustrine, eolian)
and according to the environment within which they occurred (estuaries, deltas, marshes,
etc.). This information in turn makes it possible to detect, for example, zones in which
the probability of hydrocarbon accumulation is high.

The set of characteristics used to define a facies depends on the situation. For
example, a lithofacies may be defined by the rock’s petrographic and petrophysical
characteristics. These are the composition, texture and structure of the rock. Examples of
mineral composition are silicate, carbonate, evaporite, and so on. A rock’s texture is
determined by its grain size, sorting, morphology, degree of compaction, and degree of

cementation. The rock structure includes the thickness of beds, their alternation, presence
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of stones, lenses, fractures, degree of parallelism of laminations, etc. All of these
parameters are related to the macroscopic appearance of the rock.

For extraction of hydrocarbons from geologic formations, the particularly
desirable characteristics of the lithofacies are the porosity of the reservoir rocks and their
permeability, as well as the fraction of the pore volume occupied by these hydrocarbons.
These aid in estimating the nature, quantity, and producibility of the hydrocarbons
contained in such strata.

There are various sources of information on formation lithofacies. Information
may be gathered from subsurface observations such as, for example, by the study of core
samples taken from rock formations during the drilling of a bore hole for an oil well.
Such information can aiso be provided by drill cuttings sent up to the surface from the
bottom of a well by means of a fluid (generally drilling mud) injected near the drilling
tool. It is not normally cost-effective to identify facies using these methods. Information
on geological formations traversed by a bore hole is more commonly gathered by a
measurement sonde passing through the bore hole. The gathered information as a
function of the sonde’s position along the bore hole is then stored or “logged”.

Many downhole measurement techniques have been used in the past, including
passive measurements such as measuring the natural emission of gamma rays; and active
measurements such as emitting some form of energy into the formation and measuring
the response. Common active measurements include using acoustic waves,
electromagnetic waves, electric currents, and nuclear particles. The sonde measurements
are designed to reflect the distinguishing characteristics of the rock facies. Multiple logs
and sondes may be used to gather the measurements, which are then correlated and
standardized so as to furnish measurements at discrete levels separated by equal depth
intervals. The measurement standardization allows the automation of data interpretation
in order to obtain estimates of the porosity of the rocks encountered, the pore volume
occupied by hydrocarbons, and the ease of flow of hydrocarbons out of the reservoirs in
the case of petroleum prospecting. The set of measured formation characteristics values
that distinguish the strata in a given bore hole is herein termed the electrofacies.

Interpretation studies have demonstrated a strong correlation between the
electrofacies and lithofacies, thereby making it possible to identify with confidence the

compositional characteristics of the rocks traversed by bore holes based on the sonde
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measurements. It has been established that the sets of log measurements (i.e. sample
points) which correspond to a given lithofacies form a “cluster” in “data space”. That is,
when the measured characteristic values of a formation are graphed, the points generally
fall into a continuous region which is distinguishable from the regions where points for
other formations would fall.

Various systems and method that use the correlation or the observed clusters to
identify lithofacies from electrofacies have been created. These systems take the logged
measurements and convert them to a graph that furnishes, as a function of position along
the bore hole, an image of a succession of facies. The graph typically also provides some
indication of the measured formation characteristic values alongside the image. An
example of one such system and its output is described in U.S. Patent Application No.
4646240, which is hereby incorporated herein by reference. However, before these
systems can do the conversion, they must be tailored to the drilling region.

The most accurate existing systems and methods require a substantial amount of
user participation to set up, and conversely, those existing systems which are highly
automated tend to perform poorly. One proven approach uses a two-step methodology to
correlate different measured characteristic values into generalized electrofacies charts for
analysis. In the first step, the number of clusters is specified to an automatic clustering
algorithm such as maximum likelihood algorithm, hierarchical clustering method, dynamic
clustering or neural network. The number of clusters specified is large, creating clusters
containing small numbers of points. A petrophysicist or geologist then manually assigns
geological characteristics from the facies to each cluster and simultaneously merges similar
small clusters into electrofacies.

Another approach for creation of electrofacies charts requires that the number of
clusters specified to the automatic clustering algorithm be relatively small. In this approach,
the geologist often has a problem assigning specific geological facies to the clusters, which
tend to be much larger than the clusters in the previous approach. The geologist may aiso
be required to “lump” together geological facies at a coarser level of distinction than might
be appropriate. A large number of clusters require much work by the geologist to match
clusters to geology; too few clusters cause the geologist problems in making meaningful

linkages between clusters and geology.
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The electrofacies analysis systems described above suffer from various limitations
and drawbacks. The automatic clustering methods require the user to provide an initial
number of clusters before processing. This is a limitation because the results are very
sensitive to this parameter. Furthermore, unless the number is large, the identified clusters
may have shapes that are not geologically meaningful. This prevents them from being
directly used for facies analysis. On the other hand, manual merging of a large number of
small clusters based on similar geological characteristics by hand makes this process slow
and subjective. Furthermore, because electrofacies analysis occurs in N-dimensional space
it is still difficult even for a trained individual with good visualization tools to identify
clusters manually. Thus, it is desirable to develop a system and method that, in a relatively
constant, reliable, and systematic manner, permits automatic clustering of logged data to

extract information about the geological facies of the data.

SUMMARY OF THE INVENTION

Accordingly, there is disclosed herein a method for identifying formations of
mineral deposits. In one embodiment of this method, logs are made over multiple levels
within an interval along the bore hole in order to obtain a group of several measurements
for each of these levels. With each such level of the bore hole interval is associated a
sample point within a multidimensional space defined by the different logs. The sample
point coordinates are a function of the logging values measured at this level. The sample
points thus obtained will form a scatter diagram within this muitidimensional space.

The sample points of this scatter diagram are used to determine a set of
characteristic modes, each corresponding to a zone of maximum density in the
distribution of these samples; each mode is regarded as a characteristic of a respective
cluster and the surrounding samples of this cluster are related to it. A facies is designated
for each of the modes thus characterized and a graphic representation is produced as a
function of the depth of the succession of facies thus obtained. The characteristic modes
of each cluster are made up of sample points coming from the measurements themselves.

To identify the clusters, a neighboring index of each log measurement point in the
data set is calculated. Next, small natural groups of points (called attraction sets) are
formed based on the use of the neighboring index to determine the K-Nearest-Neighbor

(KNN) attraction for each point. Independently of the natural group formation, the
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optimal number of clusters is calculated based on the Kernel Representative Index (KRI)
and a user-specified resolution. Lastly, based on the data calculated from the prior steps,
final clusters are formed by merging the attraction sets.

Experimentation confirms that the above method allows an accurate determination
of the geological facies derived from the logging measurements obtained within an

interval of geological formations traversed by a sonde traveling in a bore hole.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more detailed description of the preferred embodiments of the present
invention, reference will now be made to the accompanying drawings, wherein:

Figure 1 illustrates logging equipment in operation in a bore hole;

Figure 2 illustrates a computer system used to process the logged data and determine
mineral compositions of the earth formation;

Figure 3 illustrates the scattering of points representative of the values of two
characteristic parameters of the formations measured within a given depth
interval;

Figure 4 is a flow diagram showing the steps for Multi-Resolution Graph Based
automatic clustering;

Figure 5 is a flow diagram showing the steps to determine Neighboring Index
Function;

Figure 6 is a flow diagram showing the steps to determine K-Nearest-Neighbor
Attraction;

Figure 7 is a flow diagram showing the steps for determining the Kernel Representative
Index;

Figure 8 is a curve of the Kernel Representative Index in decreasing order which may
be used to determine the optimal number of clusters at different resolutions; and

Figure 9A and 9B show the steps for performing merging to form final clusters.

While the invention is susceptible to various modifications and alternative forms,
specific embodiments thereof are shown by way of example in the drawings and will herein
be described in detail. It should be understood, however, that the drawings and detailed
description thereto are not intended to limit the invention to the particular form disclosed,

but on the contrary, the intention is to cover all modifications, equivalents and alternatives
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falling within the spirit and scope of the present invention as defined by the appended

claims.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENT

Figure 1 shows logging equipment in a bore hole 10 going through earth formations
12. The equipment includes a sonde 16 is suspended in the bore hole 10 at the end of a
cable 18. Cable 18 connects sonde 16 both mechanically and electrically, by means of a
pulley 19 on the surface, to a control installation 20 equipped with a winch 21 around
which the cable 18 is wound. The control installation includes recording and processing
equipment known in the art that make it possible to produce graphic representations called
logs of the measurements obtained by the sonde 16 according to the depth of the sonde in
the bore hole or well 10.

The bore hole 10 passes through a series of earth formations (not specifically
shown) that is typically composed of a series of zones or “beds”. The zones are identified
by the rock facies they contain, e.g. clay, limestone, etc. From the geological viewpoint,
each of these successive zones is characterized by a relative homogeneity that is revealed
by a set of characteristic data values (facies). These values vary from one zone to
another, but have a relatively limited range of variation within a given zone. These data,
which depend in particular on the mineralogical composition, the texture and the
structure of the rocks making up these zones, identify respective facies.

It is possible to establish a correspondence between, on the one hand, different
facies characterized by mineralogical factors, texture and structure and, on the other
hand, electrofacies which can be obtained directly from a suitable quantitative analysis of
a set of logs measured by the sonde as it traverses the bore hole. The possibility of
establishing such a correspondence between electrofacies and facies is capable of
providing a valuable aid in the geological knowledge of a zone of the earth's crust within
a given region, such knowledge being useful in completing the information usually
available to geologists and, in certain cases, helping them in the interpretation of the
facies encountered to obtain information on the history of the formations and for
determining the concentrations of mineral deposits.

An approximate image of the facies may be produced by first obtaining a number

of logs over a bore hole interval H;-H,. The measured values are discretized and
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correlated in depth so as to have, for each level of the interval considered, a set of
distinct log values. In one embodiment, the measurements are discretized into levels at 15
cm intervals. The set of log values thus obtained is analyzed to determine groups of
consecutive levels that have log values within a given range. The upper and lower values
of the range are based on the potential variations that may be caused by, e.g. bore hole
conditions such as roughness or caving of the bore hole walls. Those consecutive levels
having log values in the given range may be considered to share a “true” physical
characteristic value that is substantially constant over those levels. In this manner, those
zones having relatively constant values may be portrayed as facies having the indicated
measurement values.

To generate an image of the facies using the logged data points, processing of the
logged data measured by the sonde as it traverses the formation may be handled at the
well site by a computer system such as that shown in Figure 2. The computer system
consists of a keyboard 308 and a monitor 306 to permit user interaction with the
computer tower 302 containing the CPU and peripheral hardware. Logs gathered at the
well site may be graphically displayed on the monitor 306 and clustering (described
below) may be performed to determine the petrophysical characteristics of the formation.

Alternatively in a second embodiment, because of cost, space, power, and
transportation restrictions, one may prefer storage of the logged data gathered by the
sonde in a storage medium such as a 3.5 diskette, tape or recordable compact disc 310.
Processing of the data for determination of formation characteristics may then occur at
the office or laboratory using more powerful CPUs at a substantially lower cost than at
the well site.

As shown in Figure 3, if one analyzes a scattering of points representative of the
logs carried out on a succession of levels in a bore hole interval, it is noted that the
distribution density of these points in the scatter varies. This figure is the result of Multi-
Resolution Graph-based Clustering (MRGC) using four logs (Nphi, RhoB, GR and DT),
although only the two log measurements RhoB and Nphi are shown in the two
dimensional graph. RhoB corresponds to a density measurement log and Nphi is a
porosity measurement log measured by a Compensated Neutron Log (CNL) tool.
Examples of other log measurement propefties include natural gamma radiation

measurements (GR), temperature measurement (HRT), inverse of square root of
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resistivity measurement near the wall of the well in the “invaded” zone (HRXO),
acoustic wave transit time measurement (DT), measurement of resistivity of formation far
from well or bore hole (RT), and measurement of resistivity near bore hole wall (RXO).
These measurements may be made by logging tools such as resistivity tools, induction
tools, nuclear magnetic resonance tools, thermal neutron decay tools, and gamma
radiation tools, among others. Figure 3 demonstrates in two dimensions the results of the
automatic clustering technique described below. Although only 2 dimensions are shown,
the technique is generally applied to N-dimensions for N log measurement properties (4-
dimensions were used to obtain the clusters shown in Figure 3).

Once a set of measurement points has been obtained, it is desired to partition the
points. Initially, this partitioning is achieved by gathering the points into clusters using a
cluster identification algorithm. Many such algorithms exist, and they almost universally
require that the data be normalized.

There are several ways to normalize the data. One classical method, frequently
used, is to limit the data in an unit hypercube [0,1]¢, d being the number of features,
which corresponds to the number of dimensions. In each dimension, that dimension’s
minimal value is subtracted from the data, and the difference is divided by the total range
of the data in that dimension. In another method, the average value of each feature is
subtracted from the data, and the difference divided by the standard deviation. The
normalization changes the distance between data points and affect the natural separation
of data points, but it is necessary to prevent an improper choice of scale in one dimension
from dominating the measurements in other dimensions.

The clustering algorithms can be divided into parametric algorithms, and non-
parametric algorithms. Parametric algorithms are generally regarded as being less
desirable than non-parametric algorithms because parametric algorithms are based on
some model of the data, whereas non-parametric algorithms make no assumptions about
the data pattern. One consequent advantage of non-parametric algorithms is that they are
capable of recognizing clusters of varied shapes.

One example of a non-parametric approach is to divide the observations space
(e.g. the graph of Fig. 3) into regular hypercubes of a fixed size and estimating the
probability density function (PDF) of the data based on the number of measurement

points in each hypercube. One drawback of this approach is that the number of
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hypercubes increases exponentially as the number of data dimensions. Furthermore, this
approach encounters critical difficulties when the data includes clusters that are closely
spaced and/or clusters of very different densities or sizes.

Another example of a non-parametric approach is the K-Nearest-Neighbor (KNN)
approach. Rather than estimating the PDF by determining how many points are in a given
data volume (e.g. a hypercube), the PDF is estimated by measuring the data volume
occupied by a given number of points. The K-Nearest-Neighbor approach estimates the
PDF around a point by determining the radius from the point to its Kth nearest neighbor.

Another example of a non-parametric approach is described by C.T. Zahn in
Graph theoretical methods for detecting and describing Gestalt Clusters, IEEE Trans. On
Computers, v. C-20, n. 1, pp. 68-86, 1971, incorporated herein by reference. This
approach relies on graph theory. A connected graph is constructed by linking the data
points x; by arcs according to their proximity relationship.

In a graph representation of a data set, each observation x, is represented by a
node, and an arc is established between two distinct nodes if they are linked by a
relationship defined in the data set S. The graph is denoted by G = (S, A4), where 4 is the
set of arcs. Various graph structures have been used for clustering. Four particular
structures are the Minimum Spanning Tree (MST), Relative Neighborhood Graph
(RNG), Gabriel Graph (GG), and Delaunay Triangulation Graph (DTG). The MST is the
graph that connects every node together with the shortest overall arc length. The RNG,
GG, and DTG are graphs with nodes coupled based on increasingly relaxed distance
requirements. For a given set of measurement points, these graphs are related in the
following manner:

MST < RNG < GG c DTG (Eqnl)
The inclusion of G = G’ means that, for the same node set S, the set of arcs of G is
contained in the set of arcs of G’. The connectivity of MST implies the connectivity of
the other 3 structures, so that these graph-based methods begin with a single cluster that
is to be divided.

Typically, heuristic rules are then applied to remove the “inconsistent” arcs that
bridge inherent separations among potential clusters. The elimination of these arcs breaks
the graph into several connected sub-graphs, called connected components. Each

connected component gathers a group of points that are recognized as a cluster. The
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difficulty with this approach lies in the determination of the heuristic rules. Generally,
these rules are based on the comparison of valuation of arcs with a homogeneity criterion
for detecting arcs with uncommon valuation (the “inconsistent” arcs). However, no such
rules have been successfully established for more than three dimensions. Furthermore,
the resulting clusters are often unstable due to the irregularity of data distribution (i.e. the
identified clusters are highly sensitive to small disturbances in the data).

A fourth non-parametric approach is described by the authors of the following
references:

C. Gan et al Classification non supervisée par détection des zones frontiéres

application en reconnaissances des formes et segmentation, 13iéme Colloque

GRETSI, Juan-les-pins, Tome 2, pp. 1105-1108, 1991, and

C. Gan, Une approche de classification non supervisée basée sur la notion des k

plus proches voisins, French Ph.D. Thesis, University of Technology of

Compiegne, 1994.
In this approach, the KNN approach is combined with the graph theory approach to
devise a “Boundary Index” that allows detection of data clusters from data sets of any
dimension and of very complex shapes and configurations. Like KNN, Gan requires a
single parameter: the number of neighbors K. That is, given a value for K, the number of
clusters is automatically determined. Unlike KNN, Gan’s Boundary Index is sensitive to
the “change” of the local PDF rather than to the PDF itself. The KNN estimates the local
PDF, whereas the Boundary Index (BI) indicates whether a point is relatively close to a
mode of the PDF (i.e. a local maximum density zone, or the center of a cluster) or
relatively close to a valley of the PDF (i.e. a local minimum density zone, or the border
of a cluster). Gan’s Boundary Index is now developed here in detail in the context of
measurement point clustering.

Let measurement point x be an element of the set of measurement points S = { x,,
X,, ..., Xy } and let measurement point y be measurement point x’s nth Nearest Neighbor
(NN) in the set of measurement points S, n < K. The “limited rank” of measurement

point x with respect to its nth NN, y, is defined to be:

-10-



10

15

20

25

WO 01/31366 PCT/US00/41581

o) = m if x is the m®* NN of y, m < K
b ifxisthe m" NN ofy, m > K, (Eqn2)
where b is set so that K+1 < b < N-1. In other words, the limited rank ;’(x) is the rank
of x relative to y up to K, and then it is b thereafter. In practice, b is set equal to b =
K+1, thereby providing all points outside the neighborhood of interest an equal ranking.
The limited rank ;,’(x) is defined above for n = 1, 2, ..., K, i.e. for x’s K

nearest neighbors. The sum of the limited ranks for each point x is expressed as:
K
S = X on (). (Eqn3)
n=1

The smallest sum of the limited ranks is expressed:

s’min = 131}{}{ S,(xi) }! (Eqn4)

where N is the number of measurement points in the data set S. The largest sum of the

limited ranks is similarly expressed :
Sy = 1_\_/11a§l({ s'(x) }. (EqnS)

Using the largest and smallest sums of the limited ranks, the limited rank sums can be
normalized to a range of O to 1:

7o) = SO0 (Eqné)

S =S
This is the Boundary Index function /°(x). Because a point near a mode of the PDF is
more likely to be the nearest neighbor of nearby points than a point near a valley of the
PDF, a boundary index value near zero indicates that measurement point x is neara mode
of the PDF, whereas a value near one indicates that measurement point x is neara valley
of the PDF.

After determining the boundary indices, Gan applies a relaxation process to the
boundary indices to remove the local irregularities. Gan then separates the cluster kernel
points from the boundary points by a simple thresholding of the boundary index values.
In using this approach, the optimal value of K is determined by systematically repeating
the process for various values of K and observing the resulting numbers of clusters. A
“stable zone” may appear in which a range of consecutive K values results in a consistent

number of clusters. Any of these K values may be considered optimal.
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Advantages of Gan’s approach include the identifiability of clusters having varied
shapes, densities and volumes, even when they are small. Disadvantages include cluster
sensitivity to K. As expected, increasing K generally decreases the number of clusters due
to a stronger smoothing effect. However, when the clusters are not well-separated, the
“stable zone” disappears and it becomes difficult to identify a suitable value for K.
Further, the organization of the clusters is very sensitive to small changes in K. Finally,
for very unbalanced cluster sizes, this approach fails to identify obvious clusters. For
example, experiments indicate that for a log data set containing 2500 points with more
than a third of these data points concentrated in a very small space forming a very
compact cluster, and having the remaining points dispersed in a very large zone forming
many clusters of great volumes, Gan’s approach does not identify the obvious compact
cluster as one cluster. Rather, Gan’s approach generates several clusters in the small
compact zone and a few clusters in the large zone. The disadvantages and drawbacks of
Gan’s approach may be overcome by the method of Multi-Resolution Graph-based
Clustering (MRGC) shown in Figure 4.

Prior to clustering, the MRGC method requires the log measurements to be
normalized. As with all clustering methods using the concept of “distance”, the MRGC is
sensitive to scale changes. It is therefore desired to first normalize the data so as to
balance the weights of each measured feature (a feature represents one dimension of data
point). Hereafter, it is assumed that the data has been normalized in some fashion.

The first step in the MRGC method, block 510, determines a “Neighboring
Index” value for each measurement point. The neighboring index values are then used in
block 515 to automatically form small basic data groups by use of a multidimensional
KNN point-to-point attraction algorithm. Independently of block 515, the neighboring
index values are used in block 520 to determine a “Kernel Representative Index” (KRI)
for each measurement point. The points are then ordered according to their KRI, and one
or more optimal numbers of clusters (corresponding to different resolutions) is suggested
to the user. The user selects a resolution, and in block 530, the final clusters are obtained
by use of a multidimensional merging process that joins the basic data groups in the order
of their linking strength at their joint boundary, until the desired number of clusters is

achieved.
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Once the clusters have been obtained, they can be provided to a geologist who
identifies the facies that they represent. Discussed further below are methods for using
the clusters to provide identification of new measurement points taken elsewhere. First,
however, each of the blocks in Figure 4 is described in greater detail.

In block 510, the MRGC method calculates a modified boundary index using an
exponential function and an unlimited window size, which is always equal to N-1 (N is
the total number of data points). The new index is called “Neighboring Index” (NI), and
it is based on the weighted rank of measurement point x relative to all the other
measurement points y:

onx) = exp(-ml ), (Eqn7)
where x is the m™ NN of y, with y being the nth NN to x. The K parameter in the
boundary index function is effectively replaced by a constant ( that is greater than zero.
It is noted that  is insensitive to the size of the data set and may be set once for all log
data sets. In practice,  has been successfully set to 10, but a range of successful values
is expected. The weighted rank (x) is defined relative to all the other points, so »
ranges from 1 to N-1.

Unlike the limited rank function ;,” which is an increasing function, the weighted
rank function ; is a strictly decreasing function varying from 1 to 0, i.e., (1, 0). With
respect to each of its neighbor, x has a rank 4;(x), n = 1, 2, ..., N- 1. The sum of the

weighted ranks for a given measurement point x is:

N-1
s(x) = z onl(%)- (Eqn8)
The smallest and largest sums are expressed
Swn = Min{s(x) }, and (Eqn9)
Smax = Max{ 5(6) } (Equ10)

The Neighboring Index function / is defined to be:

Ix) = % (Eqnll)
Smax —Smin

The value of I varies between O and 1. Unlike the boundary index function, the higher

the value of the neighboring index function /, the closer the point to a mode of the PDF.
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The neighboring index function replaces K with a smoothing parameter ., but
advantageously, the neighboring index function is less sensitive to changes in .

One method for calculating the Neighboring Index function is now described with
reference to Figure 5. First, each measurement point is assigned an index i from 1 to N.
In step 610, a nearest neighbor array A is determined in which A[/][j] is the index of the
Jjth nearest neighbor of measurement point x,. For example with 6 measurement points, A
could be:

j=1t06
i=1526431
i=2463152
A= i=31615243 (Eqnl2)
i
[
[

=41132564
=51624315
=6[231456

In this example, x,’s nearest neighbor is x,, and x,’s nearest neighbor is x,. For
convenience, x, is considered to be the Nth nearest neighbor of itself. The determination
of this array requires on the order of N?/2 operations due to the need to calculate the
distance from each point to every other point. Once it is determined, a sorting algorithm
can be used to identify the rank array C in which C[{][j] is the rank of measurement point
x, relative to its jth nearest neighbor.

In step 620, a companion array B initialized as follows:

j=1t06
11123456
21123456
31123456 (Eqn13)
41123456
5
6

I

i

123456
123456

T O T O T

is used to track the initial position of indices in nearest neighbor array A. The nearest
neighbor array 4 is sorted a row at a time with B as a companion array. As values are

rearranged in A, the companion array B is rearranged in the same way. After the contents
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of the rows in A are sorted in the above example, the companion array B is:

j=11t06
625413
463152
246531 (Eqnl4)
132645
524361
312456

Il
D W —

. T, T S, e

]

Since B[1][3]=5, this indicates that x, is the 5" nearest neighbor of x,. It is noted that it
is desired to preserve the original nearest neighbor array A, so the sorting operation is
performed on a temporary copy of A and the original is left undisturbed for future use.

In step 630, the array C is filled so that C[i][j] is the rank of measurement point x;
relative to its jth nearest neighbor. Since the index of the jth nearest neighbor of x; is
Alillj1, and BI[k][i] gives the rank of i relative to x,, the following relationship can be used
to find C:

ClLll1 = Bl AL 11 (Eqnl5)
For the above example, the rank matrix C is:

j=1t06
543126
314226
254326 (Eqn16)
451346
554316
213516

il

O ST
il
DD W

Having determined the rank matrix C, it can be used in step 640 to easily
calculate the weighted ranks ,(x) of Eqn7, which are in turn used in step 650 to
calculate the summations of weighted ranks s(x) of Eqn8. The minimum and maximum
summations are determined in steps 660 and 670, and then in step 680 the Neighboring
Index values of Eqnll are calculated for each measurement point.

Returning momentarily to Figure 4, once the neighboring index values are
calculated, they are then used in block 515 to automatically form small basic data groups
by use of a multidimensional KNN point-to-point attraction algorithm. These attraction
sets will be used in the mode merging step 530 for forming final clusters.

The basic idea of the multidimensional KNN point-to-point attraction method is to

attempt to associate every point x in the set of measurement points with an adherence
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point y that maximizes the attraction function, Arr,(y). The choice of the point y is based
on the concept of “path of the highest gradient”. A general attraction function is:

Anry) = [9)V,0) - 1) (Eqn17)
The Neighboring Index values of points x and y are represented by I(x) and K(y)

.respectively. The adherence function V(y) can be any function. A useful form of the

adherence function could be the exponential function:

V.(y) = exp(-m/ [3) , where y is the mth NN of x and B> 0 (Eqn18)
In the preferred embodiment, the MRGC uses V(y)=1 if y is one of the K, nearest
neighbor points of point x, and O otherwise. Each point x is “directed” to the nearest
neighbor y that maximizes the attraction function with a value greater than zero. If none
of the nearest neighbor points of x has an attraction value greater than zero, then x is not
adhered to any other points.

In Figure 6, step 720 determines Eqnl7 for all the neighboring points y of a
measurement point x. In step 730, an adherence point (if one exists) is determined for
measurement point x by identifying the point y in the K, nearest neighbor points of point
x that maximizes Artr (y):

Antr, = Max(Atr (y)) (Eqnl9)
YEV,

and verifying that the maximal value is greater than zero. To reduce the number of
computations, it may be desired to eliminate the constant neighboring index value I(x)

from Eqnl7 and modify Eqnl9 to be:
Attr, = Max(Aur, (»)- () (Eqn20)
yE X

In steps 740 and 760, each point x is classified into one of the following categories:

1. x is not directed to any other point (Aztr, < 0). In this case (block 750) x is “free
attractor”, meaning that x is the kernel point of a local maximum of the PDF.

2. x is directed to another point and at the same time one or more other points are
directed to x. In this case, (block 770) x is a “related attractor”, meaning that x is
on the slope surrounding the kernel point of a local maximum of the PDF.

3. x is directed to another point but no other points are directed to x. In this case,
(block 780) x is “pending and related”, meaning that x is a boundary point in a

local minimum of the PDF.
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Once all the points have been classified as determined in step 790, the points are formed
into attraction sets. All free and related attractors are considered as modes, while the
pending and related points are considered as valleys (boundaries). An attraction set is
defined to be all points that directly or indirectly adhere to a common mode. Attraction
sets may be considered as basic (elementary) clusters that are small natural data groups of
the analyzed data set. Attraction sets include points “in the valley” which do not attract
any other points. These are considered the boundary points of the set.

In the KNN attraction method, the parameter X, is used in the adherence function.
The variable K, can be considered a smoothing parameter. The higher its value, the less
basic the attraction set structure are. But K, should not be too high, as it will reduce local
point-to-point attraction and merge some structures separated by narrow and deep
valleys. In this step, a small K, is usually preferred to construct high-resolution
structures. However, a very small K, should also be avoided because it will create small,
disconnected islands, that is, attraction sets where points are attracted among themselves
without creating any boundary points (block 780). If no boundary points are recognized
in an attraction set, this attraction set would never be merged with other sets in the final
merging step (block 530). By experience, K, = 5 generates consistent results even for
high dimensional data sets. The preferred values for K, are not be less than 4 or much
higher than 12, even for very large sets of data.

As a comparison, in the post-processing of Gan'’s clustering method, the clusters are
recognized by use of a threshold on the boundary index function, where points with a
boundary index lower than the threshold are considered as mode points; otherwise they
are considered as boundary points. After removing the boundary points, Gan detects the
connected components formed by mode points as clusters, and then the boundary points
are assigned to the cluster of their nearest neighbor. Compared with Gan’s method,
experience shows that the MRGC method using KNN point-to-point attraction results in
more consistent and stable clusters relative to variations in the smoothing parameters. In
other words, unlike the method of Gan, the MRGC method generates better cluster
borders and the results are less sensitive to the choice of smoothing parameter.

Referring momentarily to Figure 4, as the K-Nearest-Neighbor attraction for each
point is being determined and natural small groups are formed in block 515, a kernel

representative index (KRI) for each point in the data set may be determined in block 520.
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The KRI permits determination of the optimal number of clusters for the analyzed data
set.

For well-separated cluster data sets that contain a significant probability density
difference between modes and valleys, the number of clusters can be easily identified.
But in actual application data sets, the clusters are often very close together and the
number of clusters is ambiguous. The optimal number of clusters becomes a function of
desired resolution and it depends on the user’s requirements, namely, at what resolution
they would like to analyze the data. The MRGC automatic clustering method permits the
user to select the optimal number of clusters from one or more different possibilities.
Each cluster number is associated with a quality index and is suggested in the order of its
probability.

To detect the best number of clusters, the MRGC algorithm first determines the
representativity of each point in the data set. The representativity value aids in
determining if a mode is a real mode of a cluster or just a local irregularity. Each point is
characterized by how closely it represents a cluster kernel, and the best kernel
representatives are then selected to form clusters by merging basic structures detected in
block 515 (the merging process is presented further below). While ordering and
analyzing the function of kernel representativity, we can recognize some cluster kernels
are much better represented than others, and the gradient change of the Kernel
Representative Indexes (KRI) can highlight these kernels.

The neighboring index function by itself is inadequate as an indicator for the
number of clusters present because it is a primarily a local indicator with little influence
from the points outside the local region. To remedy this local effect, the MRGC
algorithm adds two other factors, the number of neighbors and the distance at which the
neighboring index of a point “loses its power”. This is the distance at which another
point having a higher value can be found.

Let I(x) be the neighboring index value of point x, and y be the first neighbor of x
having and index value /(y) > I(x) as shown in block 810 of Figure 7. As calculated in
block 820, the Kernel Representative Function F(x) can be written as:

Fx) = P@x)* M(x, y) * Dx, y) (Eqn21)
where a, b, and c are the exponents used to weight each corresponding function /(x),

M(x,y), and D(x,y). The neighbor function M(x, y) = m, if y is the m" neighbor of x, and
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D(x,y) is the distance between x and y. Based on testing experience, a=b=c=1 give
good results for the tested data. In this function, the factor /(x) allows us to recognize the
peak (kernel) of a mode, and M(x,y) and D(x,y), the extension of the importance of this
mode on the whole data set.

The number of neighbors, M(x,y), tends to produce resulting clusters of
equivalent sizes and the distance, D(x,y), clusters of equivalent volumes. The
combination of these two factors produces a good balance between the size and the
volume of a cluster, and generates consistent results (the change of weights, b and ¢, will
change this balance). The third drawback of Gan’s method mentioned above, that it
cannot generate consistent clusters if the data sets present clusters of very unbalanced
sizes, is thus solved.

Once the KRI have been calculated, they may be sorted and displayed as shown in
Figure 8. With the help of the decreasingly ordered KRI curve, one can easily recognize
the importance of a mode in the overall data set. There are several important drops
(breaks) which corresponds to the changes of cluster kernels from one stable plateau to
another. The drop points at 2, 5, 8 and 12 clusters each corresponds to the optimal
number of clusters at different resolutions.

The drop points of the curve can be automatically detected by the peaks of the
gradient (the first derivative) of the decreasingly ordered KRI curve. These peaks as well
as their values are provided to the user as possibilities of optimal cluster numbers and
associated quality indexes at different resolutions.

The points with the highest values of KRI selected in this way are considered as
“cluster kernels” and are used for mode merging and forming the final clusters as shown
in block 530 of Figure 4.

Before presenting multidimensional merging, a 2-D gray-level image example
serves as a simple visualization aid. If we consider the image’s gray-level as the third
dimension, an image can be considered as a relief having mountains (light values) and
seas (dark values). The merging method is conceptually similar to flooding the seas little
by little, with one sea merging with another in the order of their lowest border levels. To
merge mountains rather than seas, inverse landscapes should be considered, with the
merging occurring in order of the highest border levels. This process allows us to remove

the shallowest valley and merge the two most probable neighboring modes into one. But
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the realization of such a process for multidimensional data is not simple, because the
neighbor relationship among modes is not easy to evaluate. With the help of the K-
Nearest-Neighbor concept, the attraction sets and boundary points recognized previously
in block 515, the MRGC method implements the following algorithm for
multidimensional dot pattern mode merging as shown in Figures 9A and 9B. Attraction
sets referred to below are the sets of points corresponding to the elementary groups found
in block 515. '

Step 1: For every pair of attraction sets S, and S, (block 1001), find a pair of
points, p, and p, that fit the following four conditions:

1. p, ¢ S;and p, ¢ S,, block 1005.

2. p,and p, are boundary points in S, and S,, block 1010, 1015.

3. p, is in the K-nearest-neighbors of p,, block 1020, or p, is in the KNN
of p,, block 1025. This K could take the value of 2 yx K, for example,
but should not be too high to avoid merging non-neighbor attraction
sets.

4. The distance between p, and p,, D(p,, p,), block 1030, should be the
minimum among all pairs of points satisfying the three previous
conditions.

The points, p, and p,, may not exist for all pairs of attraction sets. These points are
considered as the shortest passage from one mode to another (S, and S,). At the end of
step 1, we have a list of all the shortest passages that exist between pairs of attraction
sets.

Step 2: For each passage in the list of shortest passages, determine a level L, and
sort the list of shortest passages in decreasing order (block 1033). For a given passage
(P2 p,), the level is defined by the minimum neighboring index value:

L= Min (I(p)), I(p,) ) (Eqn22)

Step 3: For each passage in the sorted list, blocks 1035 and 1040 test whether S,
and S, contain a cluster kernel selected in block 520. If at least one of them does not,
merge the two modes (block 1045). This is repeated in order of decreasing passage levels
(block 1034) until all passages have been considered (block 1050). In other words, the

modes having the shallowest joint valley are merged first.
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The clusters made in this way are deterministic. Clusters of higher resolutions
using higher numbers of cluster kernels are always subclusters of the low-resolution
clusters. This corresponds to the hierarchical way that the geologist organizes the
geological facies. The MRGC technique will automatically find the most easily broken
clusters and provide a solution according to the available data structure. This property is
important for subdividing facies based on the already recognized electrofacies
configuration.

Various extensions and different application modalities exist for the MRGC
automatic clustering technique described above. The Neighboring Index generated from
the MRGC method may be very helpful for geological interpretation of log measurement
data. For example, thresholding the entire data set based on the NI will identify the
denser zones of the log data set. Based on various experimental trials, it is known that
these zones correspond to the thick beds less affected by shoulder effects, which have
good homogeneity and greater lateral extension. Hence, these zones are the most
important for fluid flow and, thus, greater attention must be paid to these thick beds.
They will be useful for calibrating the electrofacies and designing/optimizing the
sampling program of the core.

Another extension of the MRGC algorithm also involves the geological
interpretation and calibration of the electrofacies. After the NI is normalized within each
cluster in the same manner as the data normalization described above, then the threshold
on the normalized NI allows the MRGC algorithm to recognize the mode zone of each
cluster. The visualization of these mode zones facilitates the geological interpretation and
calibration of the electrofacies, by allowing the geologist to concentrate on the most
representative points of the facies.

After the electrofacies model is made, it is possible to interpret another well in
terms of the existing electrofacies model. In the preferred embodiment, the Nearest
Neighbor Propagation algorithm assigns to each new measurement point the electrofacies
of its nearest neighbor in the reference data set used to create the model. Unlike the
dynamic clustering or Self-Organizing-Map methods which generate a mosaic separation
of the log space around the cluster kernels without any consideration of the cluster

shapes, the nearest neighbor propagation algorithm retains the original cluster shapes.
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Because the new measurement data might not fit the model data, quality control
while gathering log data measurements is very important for correct model propagation.
Three quality indices may be determined for each new measurement point (also termed
application point). The quality indices are based on the concept of MRGC in order to
evaluate the result of model propagation. First, for each application point x, its nearest
neighbor y belonging to the cluster ¢ in the reference model data set is determined. The
propagation algorithm then calculates the following information for each x:

1. The NI of y and the cluster-normalized NI of y to help locate the point x with respect
to the cluster kernel. Large values close to one indicate high confidence identification,
whereas small values close to zero indicate more of an extrapolation in making the
identification.

2. A Membership Index (MI) to indicate if x is inside or outside of the cluster defined on
the reference data set. The MI can be calculated by:

MI = D(x, k) / D(y, k) , (Eqn23)
where k is the kernel point of the cluster ¢, and D is the distance function. Ml is close
to 1 when x is inside and close to the cluster c. The higher the MI the farther x is
outside of the cluster ¢. The MI can be used for detecting abnormal points and/or new
facies of the application data set.

3. An Ambiguity Index (AI) indicates if x is relatively ambiguous between two clusters.
It can be calculated by:

Al = D(x,y) / D(x, 2) (Eqn24)
Where z is the nearest neighbor of x in the reference data set after removing the
cluster c. The values of Al should be between O and 1. The higher the Al, the more
ambiguous x’s position is between two clusters.

Using any or all of the above quality indices will enable automatic feedback to assess the

applicability of the model to the new well for each point.

In discussing the quality indices, it was assumed that the data logs gathered at the
new well site were the same types as those used to create the model. This assumption
may be incorrect. There are many occasions where fewer or different logs are gathered,
e.g. due to failure of one or more instruments downhole. Consequently, the electrofacies

model may need to be propagated to other wells using a reduced application data set.
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For an electrofacies model made by N logs (and thus of N data dimensions) and an
application data set with N-R logs available, where R is the number of logs which are not
available in the application data set, the nearest neighbor propagation method preferably
assigns for each application data point the electrofacies of its nearest neighbor in the
reference data set while ignoring the R unavailable logs of the reference data set. This
method respects the original cluster shapes and can be applied to the resuits of any
clustering method. For the case of MRGC, the quality indexes MI (Membership Index)
and Al (Ambiguity Index) described above can also be calculated.

Testing the process described above on a four-dimensional data set, the following
error percentages relative to a complete data set were obtained when one dimension was

omitted.

Removed Log RhoB Nphi GR DT
Error % 26.5 18.5 34.8 16.1

This example illustrates that Nearest Neighbor Propagation allows propagation to reduced
data sets. Furthermore, for complete data sets containing all logs it can be used to
recognize the separability of each log for electrofacies by removing one log at a time. For
the above example, the order of importance of these four logs is GR then RhoB, Nphi
and DT. The larger the errors made after removing a particular log, the greater the
amount of information provided by the log.

Propagation of electrofacies model for complete or reduced data sets can also
occur using a Most Attracting Nearest Neighbor (MANN) method, that is, the neighbor
having the highest value of NI in the K nearest neighbors of the reference data set.
Nearest Neighbor propagation is a special case of MANN propagation with K=1. This
method attracts application points to higher probability density zones (the higher the NI,
the more dense the zone). In theory, for the reduced data set the propagation error should
be reduced in zones of overlaid clusters.

Numerous variations and modifications will become apparent to those skilled in
the art once the above disclosure is fully appreciated. For example, clustering techniques
may be applied in fields such as economic analysis, image analysis, quality control for
manufacturing and statistical analyses of other kinds. It is intended that the following

claims be interpreted to embrace all such variations and modifications.
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CLAIMS

WHAT IS CLAIMED IS:
1. A method of defining the electrofacies of a geological formation traversed by a
bore hole comprising;:

moving a sonde through a plurality of positions in said bore hole and recording a
data set having a number d of measurements taken by the sonde at each of the plurality of
positions, wherein the d measurements at each position are associable with a point in d-
dimensional space; and

calculating a neighboring index / of each measurement point.

2. The method of claim 1, wherein said calculating a neighboring index includes:

determining for each given point x said given point’s nearest neighbor ranks m
relative to all other measurement points in the data set;

calculating the weighted ranks, ;(x), of said given point using the nearest
neighbor ranks m; and

determining for each given point x the summation s(x) of all the weighted ranks

on(x) for said given point.

3. The method of claim 2, wherein said calculating a neighboring index further
includes:

determining from the summations s(x) for each measurement point x a minimum
summation value S,,;,;

determining from the summations s(x) for each measurement point X a maximum
summation value S,,,,; and

calculating for each point x the neighboring index I(x) corresponding to

[(x) = S8 = S

Smax ™ Smin
4. The method of claim 2 wherein the weighted rank of the point is q(X)=exp(-
m/y).
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5. The method of claim 1, further comprising:

determining attraction sets that are disjoint sets of measurement points.

6. The method of claim 5, wherein the attraction sets are determined by:

calculating for each measurement point x in the data set a set of attraction values
Autr (y) where y ranges over the set of the nearest neighbors of x;

calculating the maximum Attr,(y) for each point x;

for those points x having a maximum Artr,(y) greater than zero, determining a
directed connection from point x to the point y that maximizes A, (y);

using the directed connections to categorize each measurement point x in the set as
a kernel point of a mode, slope point of a mode, or boundary point of a mode; and

forming attraction sets from the points having a shared kernel point.

7. The method of claim 6, wherein the attraction value calculations include finding

the products /(y)V,(y) where V. (y) is an adherence function.

8. The method of claim 7 wherein the adherence function V. (y)=1 if y is one of the

K-nearest-neighbors of x, otherwise V. (y) =0.

9. The method of claim 5, further comprising:
determining one or more optimal cluster numbers by calculating a Kernel

Representative Index F(x) for each measurement point in the data set.

10.  The method of claim 9 wherein the Kernel Representative Index F(x) is
determined by

determining for each point x in the data set, the nearest neighbor y of x satisfying
I(y)>I(x); and

calculating F(x)=1°(x)*M"(x,y)* D(x,y) in which M (x,y) is a rank function
that equals m when y is the mth neighbor of x, D(x,y) is the distance between x and y, and

a, b, ¢ are predetermined constants.
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1 11. The method of claim 9 wherein the optimal cluster number corresponds to a sharp

2 drop in the Kernel Representative Index F(x).

1 12.  The method of claim 9, further comprising:
2 performing mode merging of the attraction sets to form clusters of measurement

3 points, each cluster defining an electrofacies.

1 13. The method of claim 12, wherein the clusters of measurement points are formed
2 by:

3 for each a pair of attraction sets S; and S, from all attraction sets, identifying a
4  pair of points p, and p, belonging to S, and S,, respectively, that satisfy the conditions:

5 (a) p, and p, are boundary points;

6 (b) p, is in K-nearest-neighbors of p, or p, is in K-nearest-neighbors of p;; and

7 (c) the distance D(p,,p,) between p, and p, is minimum among all pairs of points
8  satisfying conditions (a) and (b).

1 14.  The method of claim 13, further comprising:

2 calculating L=Min(I(p,), 1(p,)) for each pair of points satisfying conditions (a), (b)
3 and (c); and

4 storing the values (p,,p,) wherein into a list in decreasing order with respect to L.

1 15. The method of claim 14, further comprising:
2 traversing the list in decreasing order while merging sets corresponding to points

3 p, and p, if the sets do not both contain previously selected cluster kernels.

1 16.  The method of claim 12, further comprising:
2 correlating the electrofacies with the geological formations traversed by the bore

3  hole.

1 17.  The method of claim 16, further comprising:
2 prior to said calculating the neighboring index, selecting the recorded

3 measurements points that are stable over consecutive levels; and
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after said correlating, comparing a recorded measurement point not selected in
said selecting step to the clusters of selected measurement points to predict the facies of
the geological formation at the bore hole positions corresponding to the unselected

recorded measurement points.

18.  The method of claim 17, further comprising:

producing a graph of the electrofacies of the geological formation as a function of

the depth of the bore hole.

19.  An apparatus for performing automatic clustering, comprising:

a memory unit configured to store log measurement points in d-dimensional
space; and

a processing unit configured to retrieve the log measurement points from the
memory unit, and configured to calculates a neighboring index 7 of each log measurement

point.

20.  The apparatus of claim 19, wherein the neighboring index corresponding to each
log measurement point is calculated by:

determining for each given point x said given point’s nearest neighbor ranks m
relative to said given point’s N-nearest-neighbors;

calculating the weighted ranks, (x), of said given point using the nearest
neighbor ranks m; and

determining for said given point the summation s(x) of the weighted ranks of said

given point.

21.  The apparatus of method of claim 20, wherein the neighboring index
corresponding to each log measurement point is calculated by:

determining for each given point x said given point’s nearest neighbor ranks m
relative to said given point’s N-nearest-neighbors;

calculating the weighted ranks, 4 (x), of said given point using the nearest

neighbor ranks m; and
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determining for said given point the summation s(x) of the weighted ranks of said
given point;

determining the minimum value S, of s(x) over each log measurement point in
the set;

determining the maximum value S, of s(x) over each log measurement point in
the set; and

calculating the neighboring index I(x} for each point in the set so that

I(x) — s('x)_smin .

Smax - Smin

22.  The apparatus of claim 19 wherein said processing unit is further configured to

determine attraction sets, the attraction sets containing log measurement points.

23.  The apparatus of claim 22, wherein the attraction sets are determined by:

calculating for each log measurement point p in the data set a set of attraction
values Arrr, (y)where y ranges over the set of the nearest neighbors of x;

calculating the maximum Aztr,(y) for each point x;

for those points x having a maximum Attr,(y) greater than zero, determining a
directed connection from point x to the point y that maximizes Aztr,(y);

using the directed connections to identify those which log measurement points
serve as a kernel points; and

for each kernel point, forming an attraction set that includes the given kernel point

and all those points having directed connections that lead to the given kernel point.
24.  The apparatus of claim 19, wherein said processing unit is further configured to

determine an optimal cluster number by calculating a Kernel Representative Index F(x)

for each log measurement point.
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25.  The apparatus of claim 24, wherein the Kernel Representative Index F(x) is
determined by:

calculating for each point x in the data set the nearest neighbor y of x satisfying
1(y)>I(x); and

calculating F(x)=1°(x)*M®(x,y)* D (x,y) in which M(x,y) is a rank function
that equals m when y is the mth neighbor of x, D(x,y) is the distance between x and y, and

a, b, c are predetermined constants.

26.  The apparatus of claim 19 wherein the optimal cluster number corresponds to a

sharp drop in the Kernel Representative Index F(x).

27.  The apparatus of claim 19, wherein said processing unit is further configured to
perform mode merging of the attraction sets to form clusters of log measurement points,

each cluster characterizing an electrofacies.

28.  The apparatus of claim 27, wherein the clusters of log measurement points are
formed by:

for each a pair of attraction sets S, and S, from all attraction sets, identifying a
pair of points p, and p, belonging to S, and S,, respectively, that satisfy the conditions:

(a) p, and p, are boundary points;

(b) p, is in K-nearest-neighbors of p, or p, is in K-nearest-neighbors of p,; and

(c) the distance D(p,,p,) between p, and p, is minimum among all pairs of points

satisfying conditions (a) and (b).

29.  The apparatus of claim 28, wherein the clusters of log measurement points are
further formed by:

calculating L=Min(I(p,), I(p,)) for each pair of points satisfying conditions (a), (b)
and (c); and

storing the values (p,,p,) wherein into a list in decreasing order with respect to L.

30.  The apparatus of claim 29, wherein the clusters of log measurement points are
further formed by:
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traversing the list in decreasing order while merging sets corresponding to points

p, and p, if the sets do not both contain a previously selected kernel points.

31.  The apparatus of claim 27, wherein the processing unit is further configured to

correlate the electrofacies with the facies traversed by the bore hole.

32. A method of defining the electrofacies of a geological formation traversed by a
bore hole comprising:

moving a sonde through a plurality of positions in said bore hole and recording a
data set having a number d of log measurements taken by the sonde at each of the
predetermined levels, wherein the d log measurements at each position are associable
with a point in d-dimensional space;

calculating a neighboring index / of each log measurement points; and

determining an optimal cluster number by calculating a Kernel Representative

Index F(x) for each log measurement point.

33.  The method of claim 32, wherein the Kernel Representative Index F(x) is
determined by:

determining for each point x in the data set, the nearest neighbor y of x that
satisfies /(y) > I(x); and

calculating F(x)=1°(x)*M"(x,y)* D(x, y) in which M(x,y) is a rank function
that equals m when y is the mth neighbor of x, D(x,y) is the distance between x and y, and

a, b, c are predetermined constants.

34.  The method of claim 32 wherein the optimal cluster number corresponds to a

sharp drop in Kernel Representative Index F(x).

35.  Anapparatus for performing automatic clustering, comprising:
a memory unit configured to store measurement points in d dimensional space;
a processing unit configured to retrieve the measurement points from the memory

unit; and
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wherein said processing unit calculates a neighboring index 7 of each measurement

point.

36.  The apparatus of claim 35, wherein the neighboring index corresponding to each
measurement point is calculated by:

determining for each given point x said given point’s nearest neighbor ranks m
relative to all other points;

calculating the weighted ranks, ,(x), of said given point using the nearest
neighbor ranks m; and

determining for said given point the summation s(x) of the weighted ranks for said

given point.

37. The apparatus of method of claim 36, wherein the neighboring index
corresponding to each measurement point is further calculated by:

determining the minimum value S, of s(x) over each measurement point in the

set;

determining the maximum value S, of s(x) over each measurement point in the
set; and

calculating the neighboring index I(x) for each point in the set by
1(x) = S8 S

Smax ™ Smin

38.  The apparatus of claim 35, wherein said processing unit is further configured to

determine attraction sets that are disjoint sets of measurement points.

39.  The apparatus of claim 38, wherein the attraction sets are determined by:

calculating for each measurement point x in the data set a set of attraction values
Attr (y) where y ranges over the set of the nearest neighbors of x;

calculating the maximum Arr,(y) for each point x;

for those points x having a maximum Attr,(y) greater than zero, directing point x
to the point y that maximizes A, (y);

using the directions to identify points that serve as a kernel point of a mode; and
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for each kernel point, forming an attraction set that inciudes the given kernel point

and all those points directed to the kernel point.

40.  The apparatus of claim 38, wherein the processing unit is further configured to
determine one or more optimal cluster numbers by calculating a Kernel Representative

Index F(x) for each measurement point in the data set.

41.  The apparatus of claim 40, wherein the Kernel Representative Index F(x) is
determined by:

calculating for each point x in the data set, the nearest neighbor y of x satisfying
I(y)>1I(x); and

calculating F(x)=17°(x)*M ®(x,y)*D(x,y) in which M(x,y) is a rank function
that equals m when y is the mth neighbor of x, D(x,y) is the distance between x and y, and

a, b, c are predetermined constants.

42.  The apparatus of claim 40 wherein the optimal cluster numbers correspond to

sharp drops in the Kernel Representative Index F(x).

43.  The apparatus of claim 40, wherein the processing unit is further configured to
perform mode merging of the attraction sets to form clusters of measurement points, each

cluster characterizing a prototype.

44.  The apparatus of claim 43, wherein the clusters of measurement points are formed
by:

for each a pair of attraction sets S, and S, from all attraction sets, identifying a
pair of points p, and p, belonging to S, and S., respectively, that satisfy the conditions:

(a) p, and p, are boundary points;

(b) p, is in K-nearest-neighbors of p, or p, is in K-nearest-neighbors of p;; and

(c) the distance D(p,,p,) between p, and p, is minimum among all pairs of points

satisfying conditions (a) and (b).
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45.  The apparatus of claim 44, further comprising:
calculating L=Min(I(p,), I(p,)) for each pair of points satisfying conditions (a), (b)
and (c); and

storing the values (p,,p,) wherein into a list in decreasing order with respect to L.
46.  The apparatus of claim 45, further comprising:
traversing the list in decreasing order while merging sets corresponding to points

p, and p, if the sets do not both contain a previously selected kernel points.

47.  The apparatus of claim 49, wherein the processing unit is further configured to

correlate the prototype with new measurement points.
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