US 20190149317A1
a9y United States

a2y Patent Application Publication o) Pub. No.: US 2019/0149317 A1l

Payton et al. (43) Pub. Date: May 16, 2019
(54) HOMOMORPHIC DATABASE OPERATIONS (60) Provisional application No. 61/861,368, filed on Aug.
APPARATUSES, METHODS AND SYSTEMS 1, 2013.
(71) Applicant: Visa International Service Publication Classification

Association, San Francisco, CA (US) (51) Int. Cl

(72) Inventors: Paul Payton, San Carlos, CA (US); HO4L 9/00 (2006.01)
Scott Edington, Arlington, VA (US); HO4L 9/14 (2006.01)

Johan Van Tilburg, Bluffton, SC (US) (52) US. L
CPC oo HO4L 9/008 (2013.01); HO4L %14

(21) Appl. No.: 16/155,539 (2013.01)

(22) Filed: Oct. 9, 2018 7 ABSTRACT

The HOMOMORPHIC DATABASE OPERATIONS APPA-

RATUSES, METHODS AND SYSTEMS (“HEDO”) trans-

(63) Continuation of application No. 15/868,736, filed on form transaction storage requests and homomorphic model
Jan. 11, 2018, now Pat. No. 10,153,895, which is a queries using HEDO components into homomorphic model
continuation of application No. 15/628,383, filed on query results. In some implementations, the disclosure pro-
Jun. 20, 2017, now Pat. No. 9,912,472, which is a vides a processor-implemented method of securely querying
continuation of application No. 14/449,706, filed on a shared homomorphically encrypted data repository and
Aug. 1, 2014, now Pat. No. 9,722,777. performing cross-table homomorphic joins.

Related U.S. Application Data

idual HEDG query
operatens 311

Request

) N grouping keys
el query nput 37 ?C6

Modsl qusry
requast 03

HEDO Resufis
Resuonse 317

HEDO mods query
eauls 318

Mode! query
esponse 321

»|»-x \O ®
Jrege

000

HEDO Query 312

and refieve grouping keys 305

ek oompare

Exarngle Data Fow: Queryng and ioking Homamorphicaly Encrycied Datebases

Patent Application Publication

pompattors' data in e shared homo

¥

HVte

Merchant

ponrd
$R6Y

£ S0l ¢an query te dafa to deferming how | stack up
\, against my compatti. Houevar, | dontwanty /
~competors fo know anything about my Galag”

May 16, 2019 Sheet 1 of 19 US 2019/0149317 Al

o aggregate deta foma franciel peye

yan sioe it semands securt

opergfions inchuding cross-able JOINs.

fransac s maintening St conbo
[oerwho can see whatdata and whle anlyslorng.
N cnorpled vabes forpotent nfomallon, ./
1 '

Examale: Homomorptically Encryoted Datebase perations

Patent Application Publication = May 16, 2019 Sheet 2 of 19 US 2019/0149317 A1

HEDO Clent DB 207

[g ey
Insestion 208/

/ HatagULih
storage reqest

HEDO Package
slorage request 208

Homamorphic encrypled
values, homomorphic
encrypted grouging
5, and unenovpled
tta values 240

Tamacion
storage reguest /

Generele HEDO Package
105,64, 3GHP
Compongnt 600, Fig .

terchant Transacton
Server Y 201b

Figure 2 Example Data Flow: Homamorghically Encrypted Datehase Transechion Date Aggregetion

Patent Application Publication = May 16, 2019 Sheet 3 of 19 US 2019/0149317 A1

Post-pracess queniss,

Extract ndiiduel HEDO query
Supplementa aggregalion § 18

operatons 311

Vol qery nput 100

requast wilh queries and
groaping kevs 308

Request Rer'e i
grouping keys grouphng kevs
Qﬁs 108 / HEDO model query

Nodelquery
qugS 1{% “ I

R DO
[Mot query /(5 resuis 319

EERAIN ernea 1 [
el responsa 321

Group/Order by using group keys f i

/ Rend
N, Weryoupt 322

Gonert model o HEDO queries, ;
de.a,mg Glf‘!'(}f(i‘“g Om w a-ﬁim‘_ b y e 4 S —— %
and refriave gmup n geys 16 05 ST () 4] HEDO Que:"[i‘]‘; /

feset Eﬁﬁch o8 tanessary 3 ‘q
&, HOP Component 500 Fig, 5}~

Berfom Homomore
foin on Homgl

hic pm '41 &4, i Componant 40, Figs. 448
a7t jonad by an encryplod field feg,
, decrynt & jon, use grouping keys, andior the e

Figure 3 Exarmle Data Flow, Querying and Joining Homomorphically Encrysted Databases

Patent Application Publication = May 16, 2019 Sheet 4 of 19 US 2019/0149317 A1

HEDO Server 401 HEDO Repostory 402
o, oot O

Defemming typa of JON
b based onkeyord feg,
LEFT, QUTER, elc.)

Exarmine Jex aufpul
{okens for o
Keyword

Process querywih
HEDD fover

HEDO Query

Determine tabies thet are

2 e

e oelput okens

i[;@

443]
i lables are

= 0016 01 & homomorghicaly

sroryoled valie

m

U

Sigral default b query
4

/ . Creals n0n-parseable —
L — i N

0l fin stategy

Figure 4A Exarmple Logic Flow: Perfoming Hemomorphic Jois, &9, HJ Component 400

¢

May 16, 2019 Sheet 5 of 19 US 2019/0149317 Al

Patent Application Publication

HEDO Raposttory 402

Pettorm ol using JON

| ONfeld or grouping ek |
"\ st v JONON |
fiekd ineach table
8
rieve kay used fo erienvnl N s) ,
1Nt &
ioing kews o 48 i3
HEDQ ey , o)
Ditrypt recored values for Examine dectynton
i | each JOIN ON grouping oulputs, Selectvaive ¢
= 1 fisk using appropriate s witin grouping i
ey forrange acceptabie value tangs
f 3 3

Defermin grouping feld
assoniated with nach JON ON
ol

o
Kl

Foreach Skey_ifn
Sorouping keys, decrypt
sosond vaues foreach
JO ON grouping fed
using $hey i

it recend ranges
“gouging feid hat escly” hp

w

\J8Y

Example Logic Flow: Performing Homomorphic Jois, 2., Hi Componsnt 409

Figure 48

Patent Application Publication = May 16, 2019 Sheet 6 of 19 US 2019/0149317 A1

o

. 3l
Delprine database e

. Invoke catabase cperafion an

Detemine cobimnghecards
dals velues

fatnead processig (ag, prtp
aggragation, summelon, ek

<

&

Qery FEDO Tbvary ra
homarorphic operafion b
Substute for datshase cperafion

L
=3

Delemnine required sierage alfnbuies for
s o memay locaton b hekd
restllant value

<¥
a<:>
&5

Exeuie homomombic operafion
on smeelest feasiole porton of
Gata values

A4

<y

i

_ Perorn homamorphic garhage!
tollecton o resufant vaie |

Examle Logio Flow: Homorarphic G

Figure §

Patent Application Publication = May 16, 2019 Sheet 7 of 19 US 2019/0149317 A1

Herchant Transaction

Serverit HEDO Cllart 8.2 HEDC Dabase § 03

. P,

L=t
o

5
o

5

Exteact reqpest values, nomalize Query forstorage schema E Relrive tamplate, retun
Gelaag, create NOVS) 4 femplate E siorage sthema

g

e
e
oS

S\ b N
A umpreessed MO homomorhicaly e Extract st unprovessed NDY
N\ W0w? /

Weleh schera
meiadala valies o

N

N

et vl sing = Excoptushg goupg ey
{erminist homomerphic

Aoy

&

y \ Determing previous!
b) e g ey oan be
SR / used

/Gogigle\
T\ aleli? /

ey

Loadudtarvhey bFrcrypt vaie ushhg unfary ey

Figure § Exampie Logic Flow: Generalig HEDC Packages, e, GHP Componsnt 600

US 2019/0149317 Al

May 16, 2019 Sheet 8 of 19

Patent Application Publication

JsVLIBIUY IDSO OOEH Pdwey

v . @inbig

[wa] SHAVHD

<>

>

| ||

P07

uonngqasi sy ¢

uosuedwon frio 'z

uoHosleq PNRIY 'L

OIN3d IHd

OWET 3H4

US 2019/0149317 Al

May 16, 2019 Sheet 9 of 19

Patent Application Publication

DoeBIU] 198N OUAM ophwexy

f1. @anb1 4

o] [SHavaD

ot T
.N:, 0964 L7ESOO00Y L0000 TIRGANYD
: 9% L L G000 L0000y BRG]
1 [CBLBUOUHUTL0000Y AH KDY
H BFEL (BECIOE T00TY TR
= LGEg SSER00000F L0000 WAL
BPOT A6} oysn’y wiojsnyg

aO—

Liysiph B6LE TOW T 061 S00000VLON00Y RIES PASH ARIOYHE 10D

BOBE DOW 3T £TER00R00YL0000Y RIBT PIBN TIRGANYD 1BN0ERE
S48 Jusap BUSn DO QLSS S 1P SUORIPSURY §

QLT DO 32 L L000000PLU00NY BIUD DOSN MM IUDISNG
*spae jumiagp Busn oW oues sy 17 SBORORSURS ¢

SpAy JUmaRp BUSn oW SUIES D13 1B SUOBOBSHRE 2

SYEL DUW 3T LEEZONOGIPLIG0HY BT PBEN YIANYNITY JRU0IBAjG
“spen Jsiap GUsn DO QUIES o4} 1P SUCHITSURE £

1565 DOV L SERG0006H0Y LO0D0D PARD PISN YAROOY SRUDISAY

JRGINN SIUBLSISIIURLDISI UDNORSURE) DISUM

UORNGLISIC HSIY 'E

uosueduoy Ayeko -z

3 SHALISNOAN “SIMSYLINI SUoR R JF

H JEABIOY DUl

H AsoBeyeny gpieusisw

Hels] L] vepoupmgguenaesuesy S SIMOISAOAY 1ARS

- = IDNSIIORIDYPICD AL

5757 - JAORIOMPIES okt SIsUoISHOAR O

SPGUINN JIPPIOURIEY

“ .@Eﬂgsm.nwgbgﬂu@u RSP PBIG
Tz | [l wvno || suseuonen |

, uonasiaq pneid i
{ ZNY | | oeqisom || unmuowwog |
X @ - OWIq FHd

Patent Application Publication = May 16, 2019 Sheet 10 of 19 US 2019/0149317 A1l

To3a
“Python Shelt” =l®] x |
File Edit Sheli Debug QOptions Windows Haip
Python 2.2.3 (default,)} OIMSC v, 1500 32bit {ntel)] onwin A

32 ol
Type “copyright”, "oredits” or “license{ ¥ for more information,

S5 sassseesneessrRESTARTewmmnwsmosnewaonswww
2>

Standard homomorphically encrypted length of one bitis $150 bits.
This is roughly 948 decimal digits.

Client sent {'Procedure’: ‘QueryEight’, ‘Issuer” %ssuen{}(}f}(}{}fm
33 potential cases of fraud.

Case 1 : total amount in question on 4000014000005635 is: 26804
Applying criterion for high-end slectronics merchants,

* FLAG AS FRAUD ** 103¢

Case 2: total amount is question on 4000014000002891. 19; 2548.7
Applying criterion for high-end slecironics merchants.
* FLAG AS FRAUD **

Case 3 :total amount in guestion on 40000140000068190 is: 2871.5
Applying criterion for high-end slectronics merchants.
** FLAG AS FRAUD =

Case 4 : total amount in question on 40000140000067 11 is: 242.8
Applying criterion for gasoline/ssrvice stations.
“* FLAG AS FRAUD **

Case 5 total amount in question on 4000014000006313 is: 269.28

bt

hd
e 122 (Gl 45
Figure 7C Example: HEDO User Interface

US 2019/0149317 Al

May 16, 2019 Sheet 11 of 19

Patent Application Publication

aorraiu] 1950 OUIH odwexy

a.l ainbiy

LiX3

SHAVYD

YR 2
oo § -
AT TL 5L ST8 528 RIVAAOH
e vErD 168 677 Fvaol
tleng 60091 $reL voEe HODTTE
R Vo 70E) e R7HL
@ 008 el vz L9 SLIVA
WOLeND
). 8 ..«Qw muaw«wMWﬂmE@n« hSQ} «.«Mmg W.ﬂ@ pug hﬁﬂ% P20 ﬁm4ﬂﬁ Wﬂ:@ﬁﬂ qugax
'l meEs SEOLON00GELE IO BIPD
M B0y Mua&uﬂﬁﬁﬂaﬂ Mmook Y 7 G8 pue snok UM 25T ﬂ—vﬂ&gm WYHOME
m "BLEEVO0OBE'S 30 RIRD
w g a0} mn@ﬁu&REQU ok I G 2L pue 207 4 YHM LS M—wm_w&w RS0
; CILLSBOBIY LY 30
E 2yop © 40f 5:05500U00 N0k YIM LEEL L BUE 0K Y19 C1rep Spusds Nyl
POLEGI0LE 64 30
- PHEP © 40F SOnRot0s ok LM 192 PUZ 10K HIM LO'O0L SPUSES SLIVAR
o~ = JURURIORF JUORDRSURI] pUE
; IIPIOUPIES T VORDESURLL = JOUUINN SHERIOUIRT SIUM
! FIORIOUPIRTY GUORIRSIILLY WO
- m LY GUOIESUR | ‘BRLING THORIOUPIETs 192198
]
i o m e SBGUINH " HELDION SOUM
YT 4~ BB WOl
O 01
‘ FioBERn WeudaR 15ag
THET _ 9z _ _ 001y ” — oIBEA _
_ 48 || woireyp | w Heusg _

uonnqrsi) sty ¢

uosuedwoy Aekor 'z

uonaaleq presd i

O34 3Hd

OWAQ M4

LR Zi

Patent Application Publication = May 16, 2019 Sheet 12 of 19 US 2019/0149317 A1l

=
£7%
5

|

Figure 1

EVANS
MORENO
DELEON

I 705
HOWARD

HODGES [I

KiM [T —
WATTS [
INGRAM [I
LEONARD [}
HERRERA [~ I
SHELTON [=""Jl

RICKLAND " NOER . — ,
! T : : T Merchant
OANIELS | — [,Z
MORALES™™"Jum : = = = ¢

30 4D 60 80 100 120 140 160 180 200

TRAN [

_ e e

#lcolaa

Figure TE Example: HEDO User Interface

US 2019/0149317 Al

May 16, 2019 Sheet 13 of 19

Patent Application Publication

aoelioyul 4980 OaaH widwexy

42 ainbi4

JiX3

[SHAVED |

Ay

¥

oo

[]

Y3L

o]

e

Xed 7

8214

e ¥

e

<4 oy lE ey

1514

[} 4

SUBY

j% 43

NOSHYANOD

EAET
iz

>

@ 10AB} 45 B SHOARD b asRg SREeR aRmduion
o (BAGE HSH B suonsd 501 9ARYy SpUBRIew anRedwon
G 1BAG] uSE Yis suonet 160 BARY SRIByISN BRiedwion
W (BAB] AL Yie suoned 02 9584 SRIRIew sRietuon

7 1enb] B8H YA sunged b sey sl

BTEOT 910801 wap iy suoaed gy sey sl
¥ jene) Wiy suosaed gy sey s iy

1567

q862

') [-

'FRPIOUPIEY WO} (4ER1 IPEPIOUPIB]) WINOINEIY 100198

HUCHOLSURI L JIBUIQPN FIBRITHPIRY 1803
{43131 ‘IPPIOUPIED] JUROTHBRRDVEE

DY SR IEPIOUPIRY A J6pI0

wspd Bloptowey Ag dnoig

JRGUINN THSDIOUPIEY » JBDIOYRIETY QUOHDESURL PUB
v JHELDIOIN JUOHIBSUEL L DIDYM

FAUOROETURLY

N

|

HIEUGOIPEY

_ s,Alg4

|

Bhosmon

fngseg *

YOINGLISIC YSIY '€

uosueduion Ayelot -2

uosaaC pnesd ‘L

OIN3Ad 3H4

QNG 3HA

LB 4

Patent Application Publication = May 16, 2019 Sheet 14 of 19 US 2019/0149317 A1l

1878
Figure 1 !“lﬁ! X l
Comparing Risk Levels for Merchant and Market

50
1 Merchant
. ovket

454

404

3584

304

Percentle
o d
&1

20-

18+

10

A co+aa

Figure 7G Example: HEDO User Interface

US 2019/0149317 Al

May 16, 2019 Sheet 15 of 19

Patent Application Publication

@ sy
NN Ee Y RE
,mw,w\\\\\\\w\\\\l T
i SL 8 (S0) worshs bunessdn |
i Tl peoeuspiesty | Ol & JOAISS O
SL 8 Josmaug goan i £ 4
AT P em————— o
SRLIBYDG ajge] =
Ty @ JUSUOCLUIOT T
BT E sdAoy Budnoigy SE18 shan BTE siepon I T Tt
et 6 - T B JUSUOHRLGD MDD
By CQDQ\A\—UEM SUDOBSURE Y 61 ¥ SIUNGOoY
IBTE suasnboy TETS sisnes| TETE sueysiepn
SET § sddy oL 2 syusid g5 g steen
Bl & osegeeg] OGM”]F&I\\\\U
55T jueuodios OaIH
2
H aoaac] sbesoig l\\\\\;\\\\\\\\
B— uam
It L es? §
{shusid . ﬂnv.lum m mmm m
M =3 B0 n(m..m LTI T v
o B soeLsiu] sbrioig
= 0L 8 TR
SOBLIOIN HIOMIBN - shg wieteks
plen- F
vvvvvv shg 20Blal FLe :
Zre BTG Esensor Y i(0e ‘ot [EeEEees
(syoomeq wiaydued J Inding ndu e B £08 Lk
- - St 15 S ndo HA0ID
& P - 77§ ecepelu] wEE ~
Resinec Indu) Jogas I08$800i4 O1dAID \\Mllfy HEDDBDY -
SR S | I ddidvditn= Tt ZOE uonemwsisig sayndwont

US 2019/0149317 Al

May 16, 2019 Sheet 16 of 19

Patent Application Publication

6 2unBiy

BIR(] S9nss ®eq eyed 2le(] 5on8s] geg
Sy IRASBPA =iy BT OBISOM BIE0] BSIA
Aumioe
uoiebgssaul WEHINPNRY
JBUY puy of Japodpen
' HBfing,
Py ,m% Q I MW m&mmm:m Loes pisy NYd Uoes (SN} SRAIBHAL
2 O senest spodal g proy (aNvd) $pEn 0y {smpumns) syurg Bumss
s SuapIzeLEs SpIED BSIA B B SBUED] sapiupies spEn By
B SIA pnpngsg e &g appw Bl spelep| ORI Aynusp
peI0adsns JO4 SUGOUSUR | , Eﬁww (e
SEABUIERT s

Patent Application Publication = May 16, 2019 Sheet 17 of 19 US 2019/0149317 A1l

Sample Representation

Mercham

Merchan

.

viIsA
PLATINGM

Figure 10

Patent Application Publication = May 16, 2019 Sheet 18 of 19

Figure 11

US 2019/0149317 Al

1102
Sample Representation

PAN

\ | ransaction
History

SAmount

{ Customer
| Mame

Tiffany

Louis Vuitton

Looking for
Customers who
Match
business
demographics
precise fargeled
marketing

Patent Application Publication = May 16, 2019 Sheet 19 of 19 US 2019/0149317 A1l

VISA UTTL

PLATINUM

Visa

Figure 12

US 2019/0149317 Al

HOMOMORPHIC DATABASE OPERATIONS
APPARATUSES, METHODS AND SYSTEMS

PRIORITY CLAIM

[0001] This application claims priority to U.S. provisional
patent application Ser. No. 61/861,368, filed Aug. 1, 2013,
attorney docket no. 532US01, entitled “Homomorphic Data-
base Operations Apparatuses, Methods and System.” The
aforementioned application is all hereby expressly incorpo-
rated herein by reference.

[0002] This application for letters patent disclosure docu-
ment describes inventive aspects that include various novel
innovations (hereinafter “disclosure”) and contains material
that is subject to copyright, mask work, and/or other intel-
lectual property protection. The respective owners of such
intellectual property have no objection to the facsimile
reproduction of the disclosure by anyone as it appears in
published Patent Office tile/records, but otherwise reserve
all rights.

FIELD

[0003] The present innovations generally address the cre-
ation, maintenance, population and querying of secure data-
bases containing full or partial data values stored using
somewhat homomorphic, fully homomorphic, or other
encryption scheme(s), and more particularly, include
HOMOMORPHIC DATABASE OPERATIONS APPARA-
TUSES, METHODS AND SYSTEMS.

[0004] However, in order to develop a reader’s under-
standing of the innovations, disclosures have been compiled
into a single description to illustrate and clarify how aspects
of these innovations operate independently, interoperate as
between individual innovations, and/or cooperate collec-
tively. The application goes on to further describe the
interrelations and synergies as between the various innova-
tions; all of which is to further compliance with 35 U.S.C.
§ 112.

BACKGROUND

[0005] Consumers engaging in transactions create large
amounts of data, some of which may include private infor-
mation. For example, a consumer’s bank account number,
balance, or mailing address may be private information.
When making purchases, consumers may choose between
multiple merchants offering similar services and in compe-
tition with one another. Merchants may desire to optimize
the manner in which they attract and/or retain customers.

BRIEF DESCRIPTION OF THE DRAWINGS

[0006] The accompanying appendices and/or drawings
illustrate various non-limiting, example, innovative aspects
in accordance with the present descriptions:

[0007] FIG. 1 shows an example block diagram illustrat-
ing aspects of the HEDO, in one implementation of the
HEDO operation;

[0008] FIG. 2 shows an example data flow illustrating
aspects of homomorphically encrypted database transaction
data aggregation, in one implementation of the HEDO
operation;

[0009] FIG. 3 shows an example data flow illustrating
aspects of querying and joining homomorphically encrypted
databases, in one implementation of the HEDO operation;

May 16, 2019

[0010] FIGS. 4A-B show an example logic flow illustrat-
ing aspects of performing homomorphic joins, e.g., an
example HJ Component, in one implementation of the
HEDO operation;

[0011] FIG. 5 shows an example logic flow illustrating
aspects of homomorphic calculations in database space, e.g.,
an example HOP Component, in one implementation of the
HEDO operation;

[0012] FIG. 6 shows an example logic flow illustrating
aspects of generating HEDO packages, e.g., an example
GHP Component, in one implementation of the HEDO
operation;

[0013] FIGS. 7A-G show example user interfaces illus-
trating aspects of the HEDO, in one implementation of the
HEDO operation; and

[0014] FIG. 8 shows a block diagram illustrating aspects
of an exemplary embodiment of a HEDO user interface
controller, in one implementation of the HEDO operation.
[0015] FIGS. 9-12 illustrate further aspects of the HEDO,
in one implementation of the HEDO operation.

[0016] The leading number of each reference number
within the drawings indicates the figure in which that
reference number is introduced and/or detailed. As such, a
detailed discussion of reference number 101 would be found
and/or introduced in FIG. 1. Reference number 201 is
introduced in FIG. 2, etc.

DETAILED DESCRIPTION

HEDO

[0017] The HOMOMORPHIC DATABASE OPERA-
TIONS APPARATUSES, METHODS AND SYSTEMS
(hereinafter “HEDO” user interface) transform transaction
data aggregation and homomorphic database model queries,
via HEDO components, in response to user activities. In
some embodiments, this is carried out in real time.

[0018] FIG. 1 shows an example block diagram illustrat-
ing aspects of the HEDO, in one implementation of the
HEDO operation. In some embodiments, a merchant 101a
may wish to store their transaction data in a shared homo-
morphic database along with their competitors’ data, e.g.,
1014. In so doing, the merchant can query the data to
determine how they compare against competitors using a
variety of comparison metrics without having access to their
competitors’ underlying data. Similarly, competitors can
perform such queries without having access to the mer-
chant’s specific data. In one embodiment, a pay network
server 102 may wish to outsource the storage and the
querying of transaction data and may forward data that the
server receives from merchants and consumers engaging in
transactions, e.g., 1025. However, the pay network server
may wish to maintain tight controls over the data such as
limiting who can see the data stored as well as having
assurances that important data point values remain
encrypted when stored using the outsourced solution. In one
embodiment, HEDO server 103a a may aggregate data from
a financial payment network and store it such that the data
is encrypted and has semantic security. Semantic security in
this context meaning that an adversary with possession of
the stored data would be unable to determine substantial
properties or values of the stored data. In some embodi-
ments, the HEDO server 103a a may allow access to the
stored encrypted data and may perform operations to evalu-

US 2019/0149317 Al

ate encrypted models through the use of homomorphic
operations including homomorphic cross-table joins, e.g.,
10354.

[0019] FIG. 2 shows an example data flow illustrating
aspects of homomorphically encrypted database transaction
data aggregation, in one implementation of the HEDO
operation. In one embodiment a transaction input 202a¢ may
be forwarded to merchant transaction server 201a, 2015.
The merchant transaction server may process the transaction
and initiate a transaction storage request 2034,20356 to
HEDO client 204. A transaction storage request may be a
request to encrypt certain values in the transaction storage
request while leaving other values unencrypted, and facili-
tate the insertion of those values and that record into an
HEDO repository server. In one embodiment, an HEDO
package may be generated 205 upon the processing of the
transaction storage request. Further detail with regard to
HEDO package generation may be found with respect to
FIG. 6, e.g. a GHP component 600. In one embodiment,
grouping keys that may be utilized by the HEDO client, the
HEDO server, and/or the HEDO repository server at a future
point may be generated, during the creation of the HEDO
package. In one embodiment, the grouping keys are inserted
206 into an HEDO client database 207. In other embodi-
ments, the grouping keys may be retransmitted back to the
merchant, transaction server, forwarded to the HEDO server,
stored in the HEDO repository, and/or the like. In one
embodiment the HEDO client may then transmit an HEDO
package storage request 208 to HEDO server 209. The
HEDO server may then store the package contents in a
repository. An example HEDO repository server schema
suitable for storing merchant transaction server transaction
storage requests, substantially in the form of SQL statements
is:

CREATE TABLE IssuerE

(Number VARCHAR(16) PRIMARY KEY

);

CREATE TABLE MerchantE

(Number VARCHAR(16) PRIMARY KEY,
Category CHAR(4) NOT NULL

);
CREATE TABLE CardholderE
(Number VARCHAR(250000) PRIMARY KEY, --
HOMOMORPHICALLY ENCRYPTED
Surname VARCHAR(64) NOT NULL,
Issuer VARCHAR(16) NOT NULL,
Product VARCHAR(3) NOT NULL,
Risk VARCHAR(50000) NOT NULL --HOMOMORPHICALLY
ENCRYPTED
);
CREATE TABLE TransactionE
(Number VARCHAR(64) PRIMARY KEY,
Merchant VARCHAR(16) NOT NULL,
Cardholder VARCHAR(250000) NOT NULL, --
HOMOMORPHICALLY ENCRYPTED
Type VARCHAR(3) NOT NULL,
Amount VARCHAR(250000) NOT NULL -- HOMOMORPHICALLY
ENCRYPTED
);
CREATE TABLE PurchaseE
(Transaction VARCHAR(64) NOT NULL,
Surname VARCHAR(2048000) NOT NULL, --HOLOMORPHICALLY
ENCRYPTED
Merchant VARCHAR(16) NOT NULL,
Product VARCHAR(32) NOT NULL,
Quantity INTEGER NOT NULL

CREATE TABLE ProductE

May 16, 2019

-continued

(Code VARCHAR(32) PRIMARY KEY,
Good VARCHAR(256) NOT NULL,
Price DECIMAL(6,2) NOT NULL

);

[0020] An example alternative HEDO repository server
schema suitable for storing merchant transaction server
transaction storage requests and maintaining grouping val-
ues for use with grouping keys, substantially in the form of
SQL statements is:

CREATE TABLE IssuerE

(Number VARCHAR(16) PRIMARY KEY

);

CREATE TABLE MerchantE

(Number VARCHAR(16) PRIMARY KEY,
Category CHAR(4) NOT NULL

CREATE TABLE CardholderE

(Number VARCHAR(250000) PRIMARY KEY,
Number_grp VARCHAR(250000) NOT NULL,
Number__gkey VARCHAR(250000) NOT NULL,
Surname VARCHAR(64) NOT NULL,

Issuer VARCHAR(16) NOT NULL,

Product VARCHAR(3) NOT NULL,

Risk VARCHAR(50000) NOT NULL,

Risk_grp VARCHAR(50000) NOT NULL,
Risk_gkey VARCHAR(50000) NOT NULL

CREATE TABLE TracsactionE
(Number VARCHAR(64) PRIMARY KEY,
Merchant VARCHAR(16) NOT NULL,
Cardholder VARCHAR(250000) NOT NULL,
Cardholder__grp VARCHAR(250000) NOT NULL,
Cardholder__gkey VARCHAR(250000) NOT NULL,
Type VARCHAR(3) NOT NULL,
Amount VARCHAR(250000) NOT NULL,
Amount__grp VARCHAR(250000) NOT NULL,
Amount_gkey VARCHAR(250000) NOT NULL

);

CREATE TABLE PurchaseE

(Transaction VARCHAR(64) NOT NULL,
Surname VARCHAR(2048000) NOT NULL,
Sumname__grp VARCHAR(2048000) NOT NULL,
Sumname_ gkey VARCHAR (2048000) NOT NULL,
Merchant VARCHAR(16) NOT NULL,

Product VARCHAR(32) NOT NULL,

Quantity INTEGER NOT NULL

);

CREATE TABLE ProductE

(Code VARCHAR(32) PRIMARY KEY,
Good VARCHAR(256) NOT NULL,
Price DECIMAL(6,2) NOT NULL

);

[0021] In some embodiments, the repository is an open
source or commercial database running and in communica-
tion with the HEDO server 209. Databases suitable for this
purpose include but are not limited to PostgreSQL, MySQL,
Oracle, and/or the like. In other embodiments, the HEDO
repository may be contained on a different server such as the
HEDO repository server 211, and/or the HEDO client 204
itself. In one embodiment, homomorphically encrypted val-
ues, homomorphic encrypted grouping values, and/or unen-
crypted data values, e.g., 210, may be forwarded from the
HEDO server 209 to the HEDO repository server 211. The
HEDO repository server 211 may then perform an insertion
into the repository of the encrypted and non-encrypted
values, 212. In some embodiments, the HEDO repository
server may be a database server that is configured with

US 2019/0149317 Al

user-defined functions to further process the encrypted and/
or unencrypted values contained in homomorphic insertion
212. For example, in one embodiment, all of the data
forwarded to the HEDO repository server 211 may be in
unencrypted form. In such embodiments, a user defined
function, stored procedure, and/or the like running and in
communication with HEDO repository server 211 may
selectively or completely encrypt the values from homo-
morphic insertion 212 using either deterministic or non-
deterministic homomorphic encryption. An example user
defined function suitable for encrypting a binary decimal
value (such as a digit of a credit card number), substantially
in the form of Python executable code is:

def BCD__Encrypt (Number,Lambda,p):

number = abs(Number) % 10 # ensure 0-9 [no A-F!]
Eight = (Number & 0x08) !=0)
Four = ((Number & 0x04) !=0)
Two = ((Number & 0x02) !=0)
One = ((Number & 0x01) !=0)
BCD = [Encrypt(One ,Lambda,p),\

Encrypt(Two ,Lambda,p),\

Encrypt(Four ,Lambda,p),\

Encrypt(Eight,Lambda,p)]
return BCD

[0022] In other embodiments, more complicated valida-
tion may be performed on the data before or after encryp-
tion. An example of such a validation may be the LUHN
algorithm used for validating credit card numbers. An
example implementation of the LUHN algorithm, suitable
for use on homomorphically encrypted HEDO data, sub-
stantially in the form of Python code is:

def LuhnAlgorithm(BCD,PAN_ Length):
Zero = ¢cZERO; Tally0 = BCD_ Zero; Tallyl = BCD_ Zero;
Tally2 = BCD_ Zero
Double the BCD values of selected digits
starting at the check digit.
for Position in range(PAN_ Length-2,-1,-2):
Digit = BCD[Position]
[Digit0,Digit1] = BCD_ Double(Digit)
Digit = BCD__Resolve(Digit0,Digitl)
BCDJPosition] = Digit
Sum all the resulting digits, producing
a tally of their values.
for Position in range(PAN_ Length):
Digit = BCD[Position]
Answer = BCD__Sum(Tally0,Tally1,Tally2,Digit)
Tally0 = Answer[0]; Tallyl = Answer[1]; Tally2 =
Answer[2]
Return the least significant BCD digit
(modulo ten operation).
return TallyO

[0023] FIG. 3 shows an example data flow illustrating
aspects of querying and joining homomorphically encrypted
databases, in one implementation of the HEDO operation. In
one embodiment, user 301 may initiate a model query input
302. A model query input may consist of a query or query
parameters that are suitable for querying an HEDO reposi-
tory. In one embodiment, suitable query models may be
stored on HEDO server 310, and called by name by user 301
in a model query input 302. In one embodiment, HEDO
server 310 may contain a parameterized query which the
model query input may invoke by name. For example, a
query “loyalty_comparison” stored on or in communication
with the HEDO server may be invoked through a model

May 16, 2019

query referencing the query by name and providing suitable
parameters such as a merchant identifier, issuer identifier,
and/or the like. Example model query requests may be found
herein and particularly with respect to FIG. 7.

[0024] In one embodiment the model query request 303 is
forwarded to HEDO client 304. The HEDO client may
convert the model query to HEDO queries, may determine
the join, order, and/or grouped by tables required to execute
the query, and/or retrieve grouping keys from a database in
communication with the HEDO client, e.g., 305. In one
embodiment, the HEDO client 304 may request grouping
keys from HEDO client database 307, e.g., request grouping
keys 306. The database may retrieve keys associated with
tables of the query that may require aggregation, cross-table
joining, and/or the like. In one embodiment, the HEDO
client may forward an HEDO model query request contain-
ing HEDO queries and, optionally, required grouping keys,
e.g. 309 to HEDO server 310. An example HEDO model
query request substantially in the form of an HTTP(S) POST
message including XML-formatted data, is provided below:

POST /hedo__model__query__request.php HTTP/1.1
Host: www.hedoserver.com
Content-Type: Application/ XML
Content-Length: 667
<?XML version = "1.0" encoding = "UTF-8"?>
<hedo__model__query_ request>
<timestamp>2020-12-12 15:22:43</timestamp>
<user__name>HEDO_ CLIENT</user__name>
<credentials>
<password>secretpass1234</password>
<private_ key>h767kwjiwnfe456#@hnniimidrtsxbi</private_ key>
</credentials>
<model__query name="loyalty_ comparison”>
<query num=1>
select MerchantE.Category into MCC from
MerchantE where MerchantE. Number = ‘{Merchant}’
</query>
<query num=2>
select CardholderE.Surname, TransactionE.Amount
from TransactionE, CardholderE where
CardholderE.Number = TransactionE.Cardholder
and TransactionE.Merchant = ‘{Merchant}’
</query>
<query>

</query>
</model__query>
<grouping_ keys>
<group name="CardholderE.Number = TransactionE.Cardholder”>
<tablel name="CardholderE” field="Number>
<key value="id:1-2000”>
Jukyftrddesrsdxerr43serd43wshryt
Erwsadxtyjfgkftyresagt43esy4Swuykg
Sredfytkuhopj;/945ur6tsgred-yukg
</key>
<key value="id:rest”>

</key>
<key default="true”>

</key>
<key>

</key>
</tablel>
<tableN>

</tableN>
</group>
</grouping_ keys>
</hedo__model__query_ request>

US 2019/0149317 Al

[0025] In some embodiment HEDO server 310 may
receive the model query request and extract individual
HEDO query operations, e.g., 311. For example, in one
embodiment, an HEDO model query may contain multiple
queries. An example first query may include a query that
determines a merchant’s customer loyalty score. In such an
embodiment a second query may then determine the loyalty
scores of the merchant’s customers with respect to other
merchants in competition with the querying merchant. In so
doing, the HEDO server may execute multiple discrete
model queries and, optionally, integrate the resultant values
either through SQL. aggregation options, user-specified func-
tion processing, and/or the like. In one embodiment, a first
HEDO query 312 is forwarded to the HEDO repository 313.
As discussed herein, in some embodiments, the HEDO
repository is in fact a database in communication with
HEDO server 310. In other embodiments, the repository is
stored on a third-party cloud provider platform such as
Amazon AWS™, RackSpace Cloud™, and/or the like.

[0026] In one embodiment, the HEDO repository may
determine that multiple tables are required to be queried in
order to successfully process the query, and may further
determine that table values that are to be joined on are in fact
homomorphically encrypted values. The HEDO repository
may process the HEDO query and perform the required
homomorphic joins, e.g. 314. Further detail regarding per-
forming homomorphic joins may be found with respect to
FIGS. 4 A-B, e.g., an example HJ Component 400. In some
embodiments, the homomorphically joined tables may
require additional homomorphic calculations to be per-
formed on the results set in order to complete the HEDO
query execution, e.g., 315. For example, the homomorphic-
ally joined results set may require summation. However,
because the values are homomorphically encrypted, tradi-
tional or default summation interfaces integrated into the
database software may not be suitable for performing sum-
mations on large or complex data values such as may be
found with respect to homomorphic encryption. As such,
specialized homomorphic operations may be performed on
homomorphic data instead of the normal equivalent database
operations. In other embodiments, the HEDO repository
may determine that the interfaces integrated into the data-
base software are suitable for performing calculations on
homomorphically encrypted data. Periodically, the HEDO
repository may re-crypt, truncate, and/or reset, the length of
a final or interim homomorphic calculation value in order to
maintain the ability for the HEDO repository and/or an
underlying database implementation to be able to maintain
the values and usable form. Further detail with regard to
performing homomorphic calculations, re-crypting, truncat-
ing, and/or resetting the length of homomorphic calculation
outputs (e.g., “Homomorphic garbage collection), may be
found with respect to FIG. 5, e.g., an example HOP com-
ponent 500. In one embodiment, upon the completion of the
homomorphic calculations on the HEDO repository results
set, aggregation, grouping and/or ordering of the return
values may be required. These operations may, in one
embodiment, be performed on homomorphically encrypted
data. As such, facilities such as those described with respect
to homomorphic joins may be employed in order to facilitate
the grouping, ordering, and/or other aggregation of the
results set. In one embodiment, wherein the aggregation
column returned from the HEDO repository has been
encrypted using a key that is known or obtainable, the

May 16, 2019

HEDO repository may use the key to decrypt and group/
order on a homomorphically encrypted field, e.g., 316. In
one embodiment, the HEDO repository may return the
results, e.g., HEDO results response 317. An example
HEDO results response, substantially in the form of an
HTTP(S) POST message including XML -formatted data, is
provided below:

POST /hedo__results__response.php HTTP/1.1
Host: www.hedoserver.com
Content-Type: Application/ XML
Content-Length: 667
<?XML version = "1.0" encoding = "UTF-8"?>
<hedo__results_ response>
<timestamp>2020-12-12 15:23:18</timestamp>
<user__name>HEDO__REPOSITORY__SERVER</user_name>
<credentials>
<password>secretpass5678</password>
<private_ key>TGDFRRED456#@hnniimidrtsxbi</private_ key>
</credentials>
<query__results name="loyalty_ comparison”>
<component val="1" name="merchant_ customer__loyalty”>
<res type="homomorphic_ encrypted”>
{merchant}’s customers are {crypt_loyal val} loyal
</res>
<val name="crypt_ loyal_ val”

decryptable_ by="client_ server_ only”

HEDO_ server_can_ decrypt="false”>
111010001000101111111000001111
0001110111100011010101111101111

<fval>
</component>
<component val="2" name="customer__market_ loyalty”>
<res type="cleartext_ result” cmployal="78%">

Merchant {merchant}’s customers are {cmployal}

more loyal to competitors among the group Gap

and Nordstrom

</res>
</component>
</query__results>
<hedo__results_ response>

[0027] The HEDO server may perform post-processing of
the query results and/or supplemental aggregation 318. It
should be noted that alternative implementations of the
HEDO may perform homomorphic joining, homomorphic
aggregation, homomorphic grouping, and/or the like at any
point in the data path. In so doing, and HEDO may be
configured such that more or less computation may be
outsourced to a third-party less-trusted server depending on
varying levels of user risk tolerance. An example implemen-
tation wherein HEDO server 310 performs homomorphic
aggregation/grouping on a result set returned from HEDO
repository 313, written substantially in the form of execut-
able Python code is:

def Query(Parameters):
#Execute HEDO query
SQL_ Command = Queryl A.format(**Parameters)
Cursor.execute(SQL__Command)
Rows = Cursor.fetchall()
Results = list(); MyResults = list()
for Row in Rows:
Risk = Encryption. ASCII_ Decrypt(eval(Row[0]),Encryption.p)
Count = Row[1]
Results.append(list([Risk,Count]))
print ‘A total of”,len(Results), rows were returned.’
Perform HEDO aggregation in memory on server
RiskValues = sorted(map(lambda x: x[0], Results))
RiskValues = [k for k,g in itertools.groupby(RiskValues)]

US 2019/0149317 Al

-continued

for Risk in RiskValues:
Members = [Item for Item in Results if
Item[0] == Risk]; Count = 0
for Member in Members:
Count += Member[1]
print ‘Risk level’,Risk,*had’,Count,‘rows.’
Count = Encryption.Binary_ Encrypt
(Count,Encryption.Lambda,Encryption.p)
MyResults.append
(dict(zip(Query1Fields,list([Risk,Count]))))
print

[0028] In one embodiment, HEDO server 310 may return
the aggregated results to HEDO client 304, e.g., HEDO
model query results 319. As discussed above, the HEDO
client may perform supplemental client-side HEDO result
processing 320. For example, in an HEDO configuration
wherein the keys required to properly aggregate and/or
group result data are unavailable to the HEDO server, the
HEDO client may perform the role of aggregator while the
HEDO server and/or HEDO repository performs the role of
querying. Such a configuration may be beneficial in the case
where an HEDO client is a trusted server and the HEDO
server and/or HEDO repository are suspect or less-trusted
servers. In one embodiment, HEDO client 304 will return
the query results, e.g., model query response 321 and the
user client device may render the model query output, e.g.,
322.

[0029] FIGS. 4A-B show an example logic flow illustrat-
ing aspects of performing homomorphic joins, e.g., an
example HJ Component, in one implementation of the
HEDO operation. In one embodiment, and HEDO query 403
may be received from HEDO server 401. The HEDO
repository 402, which may itself be a server or a database in
communication with the HEDO server, may process the
HEDO query using a HEDO lexer. A lexical analyzer such
as Lex and/or other suitable commercial products, may be
used for this purpose. In one embodiment, if a query is
determined not to span multiple tables 405, a signal may be
sent to the default database query executor to handle the
non-joined query 406. In other embodiments, if the query is
determined to spend multiple tables, the lex output tokens
may be searched for a joining keyword 407. A joining
keyword may be any standard or nonstandard SQL keyword
that designates a joined query. Examples of joining key-
words include INNER, OUTER, and/or the like. If a joining
keyword is not found 408, the HEDO repository may in one
embodiment default the query to an INNER JOIN 409. In
other embodiments, if a joining keyword is found 408 the
type of joining may be determined based on the joining
keyword token 410. For example, a LEFT join keyword may
instruct the HEDO repository to later select a particular
homomorphic joins strategy based on the joined type. In one
embodiment, the tokens may be examined to determine the
tables that are joined in the query 411. Furthermore, the
relevant tokens may be further processed or parsed to
determine the fields upon which the tables should be joined
412. For example, in one embodiment, the text “foo.bar”
may signify that the “bar” field on table “foo” is to be joined.
In one embodiment, the HEDO repository and/or HEDO
server may determine if the tables are to be joined on a
homomorphic Lee encrypted value. Homomorphic Lee
encrypted fields may have certain characteristics that make
JOIN strategies employed by open source and commercial

May 16, 2019

database systems ineffective to join tables containing homo-
morphic Lee encrypted values. For example, values that
have had homomorphic operations performed upon them
may grow exponentially in the operations performed. As
more and more storage is required to encapsulate the record
value, joins of homomorphic values may swamp built in
joined query executions. Therefore, if the join is not a
homomorphic join 414, the join may be passed to the default
database query executor such that query executor may
handle the non-homomorphic join 406. In other embodi-
ments, if the join is a homomorphic join 414, the HEDO
repository 402 may determine a homomorphic join strategy
based on the join column attributes 415. The join column
attributes may be attributes that are inherent to the field type
of the joined column, such as extremely large variable
character fields or large integer fields used in contexts where
smaller storage requirements would be expected. The join
strategy may also be determined based on the join column
names, comments associated with the join columns and
stored with the database table, and/or the like. In some
embodiments, the homomorphically encrypted field values
may have been encrypted using a deterministic homomor-
phic strategy. As such, when a given value such as a
consumer’s credit card number is deterministically homo-
morphically encrypted, there can be assurances that future
encryptions of the same value will result in the same
ciphertext. Under this homomorphic join strategy record
values for homomorphically encrypted data may be directly
compared across database tables as the inherent variability
and noise associated with various encryption schemes may
have been minimized through the use of a deterministic
homomorphic encryption scheme. In one embodiment, if the
tables can be homomorphically joined directly on the record
values 416, then the join may be performed using the
appropriate JOIN ON field as though the field were a
non-encrypted value 421. In other embodiments, if the tables
may not be homomorphically joined directly on the record
values 416, it may be determined whether the key that was
used to homomorphically encrypt the record values is avail-
able to the HEDO repository 402, e.g., 417. For example, in
one embodiment, the HEDO repository may query an
HEDO client for an encryption key to use in performing the
requested join. In other embodiments, the HEDO repository
and/or the HEDO server may directly store the required join
key or other structure such as a garbled circuit that may be
used to perform the join. In one embodiment, the HEDO
repository 402 may retrieve the key used to encrypt JOIN
ON values in each JOIN table 422. The retrieved key may
then be used to decrypt the required JOIN ON values 423.
In one embodiment, the join may now be performed using
the decrypted JOIN ON values, e.g. 421. In still other
embodiments, if the key that was used to encrypt homomor-
phically the joined record values is not available 417, the
HEDO query may be analyzed to determine if it contains one
or more grouping keys 418. If no grouping keys are avail-
able a non-parsable query exception may be generated 419
and returned to the HEDO server 401. The HEDO server 401
may in turn output a non-parsable query error. In other
embodiments, if the HEDO query does contain grouping
keys 418 the keys may be extracted from the HEDO query
421 and a grouping field associated with each column
required for the join may be determined 425. Grouping fields
may, in one embodiment, be additional fields that are either
added directly to the database table schema or maintained in

US 2019/0149317 Al

a hidden table or oilier structure suitable for retrieval, such
that while the value of the associated encrypted field may not
be available and no information regarding the similarity of
the unencrypted values may be determined as a nondeter-
ministic homomorphic encryption scheme may have been
used, the grouping field may be utilized to enable a database
join to be completed. In some embodiments, the grouping
fields may contain values that have been stored as a result of
a deterministic encryption scheme. In such embodiments,
the penetration or decryption of the encrypted grouping field
values would only compromise the underlying value used
for grouping or joins. In still other embodiments, the group-
ing fields may be encrypted using a nondeterministic
encryption scheme such that one or more grouping keys may
be required in order to determine the underlying grouping
field value and therefore in order to perform a successful
join. In one embodiment, if only one grouping keys present
426, that grouping key may be assumed to apply to all
grouping field values and as such may be used to decrypt the
record values for each JOIN ON grouping field using the
singular key 428. In other embodiments, if more than one
grouping keys present 426, the HEDO repository 402 may
determine whether the plurality of grouping keys may be
correlated with record ranges in the grouping field that each
key correspondingly encrypts 427. In one embodiment, the
plurality of keys may be used to decrypt the grouping field
values in total by a applying the decryption keys to the
various ranges to which they apply 428. In still other
embodiments, if the plurality of grouping keys cannot be
definitively associated with the range of grouping field
values that they encrypt 427, for each key within the
plurality of grouping keys the HEDO repository may
decrypt the record values for each JOIN ON grouping field
using the cake 429. In one embodiment, the decrypted
output values for a given grouping field value may be
examined to determine the value that is what, in the group-
ing field acceptable value range and that value may then be
used as the decrypted grouping field value 430. In further
embodiments, upon completion of the decryption, a join
may be performed using the decrypted grouping field values
associated with the JOIN ON field in each table 421.

[0030] FIG. 5 shows an example logic flow illustrating
aspects of homomorphic calculations in database, space,
e.g., an example HOP Component, in one implementation of
the HEDO operation. In one embodiment, the HEDO reposi-
tory 501 may analyze a joined or non-joined query to
determine which columns or records in the result set require
further processing. Further processing may include group-
ing, aggregation, summation, user-specified function pro-
cessing, and/or the like 502. In one embodiment, the pro-
cessing needs may be used to determine which underlying
database operations are required to successfully process the
query completely 503. For example, field values may be
required to be added in order to determine a sum value of all
records returned. Similarly, result set field values may be
required to be compared against each other so as to deter-
mine the minimum value within the result set. However, in
some embodiments, the presence of homomorphically
encrypted data may frustrate the execution of such database
operations. In one embodiment, if the column, record, and/or
value to be operated upon in the result set is not homomor-
phically encrypted the HEDO repository may invoke the
normal underlying database operation on the value 505. In
other embodiments, if the value is homomorphically

May 16, 2019

encrypted 504 the HEDO repository may query a homo-
morphic library for a homomorphic operation that may be
substituted for the database operation. For example, in the
case where multiple values in a result set must be added in
order to determine a final value, the homomorphic library
may contain a homomorphically optimized addition func-
tion to facilitate the adding of homomorphically encrypted
values 506. In other embodiments, the homomorphic opera-
tion is the same as the default database operation. If a
homomorphic operation is not found, in one embodiment,
the default database operation may still be applied to the data
values. In so doing, operations that in their normal usage
would work equally well on homomorphically encrypted
values may be utilized without modifications for homomor-
phic encryption. In other embodiments, if a homomorphic
operation is found 507, the homomorphic operation may be
executed on a portion or all of the data values 508. In some
embodiments, the smallest feasible portion of a data value
may be used to perform a homomorphic operation. For
example, one implementation of a non-homomorphic mean
value determination function may sum all of the result
values and then divide the total by the number of values
encountered. In a homomorphic version of mean value
determinations however, it may be more computationally
beneficial to incrementally calculate the mean as each addi-
tional record value is added. In one embodiment, the
required storage attributes for a column or a memory loca-
tion that may hold the resultant value from the homomorphic
operation may be determined 509. If the value resulting from
the homomorphic operation exceeds the required storage
attributes 510, homomorphic garbage collection may be
performed on the resultant value 511. Homomorphic gar-
bage collection may, in some embodiments, be used to
shorten or truncate the length of the value produced by a
homomorphic operation. In some embodiments, the garbage
collection may take the form of a full decryption followed by
a full encryption. In other embodiments, the garbage col-
lection may take the form of a re-crypt operation, wherein
the actual unencrypted value of the result of the homomor-
phic operation is never calculated by the garbage collection
function. In one embodiment, if more incremental homo-
morphic operation processing is required 512, the next
feasible portion of the data value may be homomorphically
evaluated along with the previous value, e.g., 508.

[0031] FIG. 6 shows an example logic flow illustrating
aspects of generating HEDO packages, e.g., an example
GHP Component, in one implementation of the HEDO
operation. In one embodiment, merchant transaction server
601 may transmit a transaction storage request 604 to HEDO
client 602. In one embodiment, the HEDO client may extract
values from the transaction storage request and normalize
the data, e.g., 605. Normalizing may include trimming
strings, casting values two different data types, querying a
data schema table to determine required properties of a
transaction storage request value, and/or the like. In one
embodiment, the HEDO client may query for a storage
schema template 606. The HEDO database 603 may retrieve
the template and return an applicable storage schema 607. In
one embodiment, the HEDO client may then match the
schema metadata values to the normalized data values
extracted from the transaction storage request, e.g., 608. In
one embodiment, all of the values are marked as unpro-
cessed and the first unprocessed value is then extracted 609.
If the unprocessed value does not need to be homomorphic-

US 2019/0149317 Al

ally encrypted 610, the HEDO client may determine whether
there are more unprocessed values 611. If there are no
unprocessed values the procedure may exit. If there are
unprocessed values the next unprocessed value may be
extracted. If the value under examination does need to be
homomorphically encrypted 610, the HEDO client may
determine whether a deterministic homomorphic encryption
is available 612. If a deterministic homomorphic encryption
is available, the value may be encrypted using such a scheme
613. If deterministic homomorphic encryption is not avail-
able, the HEDO client may determine whether a nondeter-
ministic homomorphic encryption is available 615. If no
such nondeterministic homomorphic encryption is available
the client may return a storage encryption error 616. If a
nondeterministic homomorphic encryption is available 615,
the HEDO client may determine if there is a unitary key used
for nondeterministic encryption. If a unitary key is used the
HEDO client will load the key 618 and encrypt the values
using the unitary key 619. If the unitary key is not used for
nondeterministic homomorphic encryption 617, the HEDO
client may determine if a previously created grouping key
can be used to encrypt the extracted values 620. If a
previously used grouping key is not available 621, a new
grouping key may be created 622. In some embodiments, the
grouping key may be forwarded to an HEDO client database
for storage. In other embodiments, the grouping key may be
stored by the HEDO server, the HEDO repository, the
merchant transaction server, and/or the like. In still other
embodiments, the grouping key may be supplemented with
metadata such as but not limited to, the table, the fields,
and/or the range of values that the grouping key encrypts. In
so doing, the HEDO may later utilize the grouping key in
performing homomorphic joins, homomorphic aggregation,
and/or other homomorphic operations. Once a grouping key
is obtained, in some embodiments, the extracted values may
be encrypted using the grouping key 623. If more values are
unprocessed 614, the procedure may repeat, otherwise the
procedure may terminate.

[0032] FIGS. 7A-G show example user interfaces illus-
trating aspects of the HEDO, in one implementation of the
HEDO operation. In one embodiment, the HEDO user
interface 701a, allows merchants to easily perform useful
queries against the HEDO database without having access to
the underlying data values. In one embodiment, a merchant
may desire to detect fraud, e.g. 7015, and may define fraud
as multiple purchases made by the same cardholder at the
same merchant type with cards from multiple issuers. In
other embodiments, the merchant may desire to compare its
known customers’ transactions to those transactions its
customers make at the merchants competitors, 701¢. In still
other embodiments, the merchant may desire to know how
the risk levels associated with its customers compare to
those of the customers of its competitors, 701d.

[0033] With respect to FIG. 7B, and HEDO user interface,
e.g. 7024, may be presented for fraud detection. In one
embodiment, competitors of the merchant may be displayed
7025 as well as a SQL-like query 702¢ that allows a
merchant to specify an issuer for which to determine levels
of fraud. In other embodiments, other entities such as the
issuer themselves, a consumer and/or the like may utilize the
query facilities. In one embodiment, the results of the query
are displayed 702d and show instances where customers
utilize different cards to engage in transactions with mer-
chants of the same type. In still other embodiments, a table

May 16, 2019

may be displayed containing the customer’s last name, the
card number used, as well as the MCC code for the sus-
pected fraud.

[0034] With respect to FIG. 7C, an HEDO user interface
703a may display incremental progress as the HEDO server
queries the HEDO database. In one embodiment, the client
inputs such as which query to execute, which issuer to query
for, and/or the like, e.g., 7035, may be displayed. In other
embodiments, differing criterion such as that for a high-end
retailer of electronics merchandise may be applied and
matching results displayed 703c.

[0035] With respect to FIG. 7D, the HEDO user interface
704q, may be utilized to perform a consumer loyalty com-
parison for a merchant against other merchants in a cohort.
In one embodiment, competitors of the merchant may be
displayed 70454, as well as two queries 704¢. In the first
query, the merchant may desire to determine their own
loyalty score. In one embodiment, in a second query the
merchant may desire to determine customer loyalty for its
customers that shop at the merchant’s competitors. In such
cases, the merchant may not have access to the direct
underlying transaction amount values for the purchases its
customers make at competing merchants. In one embodi-
ment, customer names as well as spend amounts with both
the merchant and the merchant competitors may be dis-
played 704d. In some embodiments, a table may be used to
compare, by customer, the merchant spend, market spend,
total spend, and/or the like 704e.

[0036] With respect to FIG. 7E, in some embodiments, the
HEDO user interface 705a may display a graphical repre-
sentation that charts consumer loyalty between the merchant
and the market as a whole, e.g., 7055. The market in this
case being defined as identified competitors of the merchant
in question. A relative value of an individual consumer’s
loyalty to the merchant and to the merchant’s competitors
may be shown by dividing an aggregate spend represent as
into multiple sections, e.g. 705¢.

[0037] With respect to FIG. 7F, the HEDO user interface
706a may be utilized by a merchant to compare the mer-
chant’s customer risk level to the customer risk level of its
competitors. This comparison may be performed by the
HEDO server and database without exposing underlying
encrypted data to the merchant, and while performing opera-
tions on stored encrypted data itself. In one embodiment,
competitors of the merchant may be selected 7065 and two
queries may be created 706¢. In the first query the merchant
may desire to learn its risk level. In the second query, the risk
level associated with the comparison group may be selected
and returned. In one embodiment, a merchant may receive a
listing of risk levels and the number of its customers at the
given risk level 706d. In some embodiments, similar sum-
mary data regarding risk levels and customer accounts may
be displayed for the comparison merchant group 706e. In
some embodiments, a table may be used to chart risk levels
of the merchant and the comparison group, e.g., 706/,
[0038] With respect to FIG. 7G, the HEDO user interface
707a may display a graphical representation comparing risk
levels for a merchant and market. Percentile values may be
graphed for each risk level for both the merchant and the
market, e.g. 707b.

HEDO Controller

[0039] FIG. 8 shows a block diagram illustrating embodi-
ments of a HEDO controller. In this embodiment, the HEDO

US 2019/0149317 Al

controller 801 may serve to aggregate, process, store, search,
serve, identify, instruct, generate, match, and/or facilitate
interactions with a computer through various technologies,
and/or other related data.

[0040] Typically, users which may be people and/or other
systems, may engage information technology systems (e.g.,
computers) to facilitate information processing. In turn,
computers employ processors to process information; such
processors 803 may be referred to as central processing units
(CPU). One form of processor is referred to as a micropro-
cessor. CPUs use communicative circuits to pass binary
encoded signals acting as instructions to enable various
operations. These instructions may be operational and/or
data instructions containing and/or referencing other instruc-
tions and data in various processor accessible and operable
areas of memory 829 (e.g., registers, cache memory, random
access memory, etc.). Such communicative instructions may
be stored and/or transmitted in batches (e.g., batches of
instructions) as programs and/or data components to facili-
tate desired operations. These stored instruction codes, e.g.,
programs, may engage the CPU circuit, components and
other motherboard and/or system components to perform
desired operations. One type of program is a computer
operating system, which, may be executed by CPU on a
computer; the operating system enables and facilitates users
to access and operate computer information technology and
resources. Some resources that may be employed in infor-
mation technology systems include: input and output
mechanisms through which data may pass into and out of a
computer; memory storage into which data may be saved;
and processors by which information may be processed.
These information technology systems may be used to
collect data for later retrieval, analysis, and manipulation,
which may be facilitated through a database program. These
information technology systems provide interfaces that
allow users to access and operate various system compo-
nents.

[0041] In one embodiment, the HEDO controller 801 may
be connected to and/or communicate with entities such as,
but not limited to: one or more users from user input devices
811; peripheral devices 812; an optional cryptographic pro-
cessor device 828; and/or a communications network 813.

[0042] Networks are commonly thought to comprise the
interconnection and interoperation of clients, servers, and
intermediary nodes in a graph topology. It should be noted
that the term “server” as used throughout this application
refers generally to a computer, other device, program, or
combination thereof that processes and responds to the
requests of remote users across a communications network.
Servers serve their information to requesting “clients.” The
term “client” as used herein refers generally to a computer,
program, other device, user and/or combination thereof that
is capable of processing and making requests and obtaining
and processing any responses from servers across a com-
munications network. A computer, other device, program, or
combination thereof that, facilitates, processes information
and requests, and/or furthers the passage of information
from a source user to a destination user is commonly
referred to as a “node.” Networks are generally thought to
facilitate the transfer of information from source points to
destinations. A node specifically tasked with furthering the
passage of information from a source to a destination is
commonly called a “router.” There are many forms of
networks such as Local Area Networks (LANs), Pico net-

May 16, 2019

works, Wide Area Networks (WANs), Wireless Networks
(WLANSs), etc. For example, the Internet is generally
accepted as being an interconnection of a multitude of
networks whereby remote clients and servers may access
and interoperate with one another.

[0043] The HEDO controller 801 may be based on com-
puter systems that may comprise, but are not limited to,
components such as: a computer systemization 802 con-
nected to memory 829.

Computer Systemization

[0044] A computer systemization 802 may comprise a
clock 830, central processing unit (“CPU(s)” and/or “pro-
cessor(s)” (these terms are used interchangeable throughout
the disclosure unless noted to the contrary)) 803, a memory
829 (e.g., a read only memory (ROM) 806, a random access
memory (RAM) 805, etc.), and/or an interface bus 807, and
most frequently, although not necessarily, are all intercon-
nected and/or communicating through a system bus 804 on
one or more (mother)board(s) 802 having conductive and/or
otherwise transportive circuit pathways through which
instructions (e.g., binary encoded signals) may travel to
effectuate communications, operations, storage, etc. The
computer systemization may be connected to a power source
886; c.g., optionally the power source may be internal.
Optionally, a cryptographic processor 826 and/or transceiv-
ers (e.g., ICs) 874 may be connected to the system bus. In
another embodiment, the cryptographic processor and/or
transceivers may be connected as either internal and/or
external peripheral devices 812 via the interface bus 1/O. In
turn, the transceivers may be connected to antenna(s) 875,
thereby effectuating wireless transmission and reception of
various communication and/or sensor protocols; for
example the antenna(s) may connect to: a Texas Instruments
WiLink WI.1283 transceiver chip (e.g., providing 802.11 n,
Bluetooth 3.0, FM, global positioning system (GPS)
(thereby allowing HEDO controller to determine its loca-
tion)); Broadcom BCM4329FKUBG transceiver chip (e.g.,
providing 802.1n, Bluetooth 2.1+EDR, FM, etc.); a Broad-
com BCM4750IUBS receiver chip (e.g., GPS); an Infineon
Technologies X-Gold 618-PMB9800 (e.g., providing 2G/3G
HSDPA/HSUPA communications); and/or the like. The sys-
tem clock typically has a crystal oscillator and generates a
base signal through the computer systemization’s circuit
pathways. The clock is typically coupled to the system bus
and various clock multipliers that will increase or decrease
the base operating frequency for other components inter-
connected in the computer systemization. The clock and
various components in a computer systemization drive sig-
nals embodying information throughout the system. Such
transmission and reception of instructions embodying infor-
mation throughout a computer systemization may be com-
monly referred to as communications. These communicative
instructions may further be transmitted, received, and the
cause of return and/or reply communications beyond the
instant computer systemization to: communications net-
works, input devices, other computer systemizations,
peripheral devices, and/or the like. It should be understood
that in alternative embodiments, any of the above compo-
nents may be connected directly to one another, connected
to the CPU and/or organized in numerous variations
employed as exemplified by various computer systems.

[0045] The CPU comprises at least one high-speed data
processor adequate to execute program components for

US 2019/0149317 Al

executing user and/or system-generated requests. Often, the
processors themselves will incorporate various specialized
processing units, such as, but not limited to: integrated
system (bus) controllers, memory management control
units, floating point units, and even specialized processing
sub-units like graphics processing units, digital signal pro-
cessing units, and/or the like. Additionally, processors may
include internal fast access addressable memory, and be
capable of mapping and addressing memory 829 beyond the
processor itself;, internal memory may include, but is not
limited to: fast registers, various levels of cache memory
(e.g.,level 1,2, 3, etc.), RAM, etc. The processor may access
this memory through the use of a memory address space that
is accessible via instruction address, which the processor can
construct and decode allowing it to access a circuit path to
a specific memory address space having a memory state. The
CPU may be a microprocessor such as; AMD’s Athlon,
Duron and/or Opteron; ARM’s application, embedded and
secure processors; IBM and/or Motorola’s DragonBall and
PowerPC; IBM’s and Sony’s Cell processor; Intel’s Cel-
eron, Core (2) Duo, Itanium, Pentium, Xeon, and/or XScale;
and/or the like processor(s). The CPU interacts with memory
through instruction passing through conductive and/or trans-
portive conduits (e.g., (printed) electronic and/or optic cir-
cuits) to execute stored instructions (i.e., program code)
according to conventional data processing techniques. Such
instruction passing facilitates communication within the
HEDO controller and beyond through various interfaces.
Should processing requirements dictate a greater amount
speed and/or capacity, distributed processors (e.g., Distrib-
uted HEDO), mainframe, multi-core, parallel, and/or super-
computer architectures may similarly be employed. Alter-
natively, should deployment requirements dictate greater
portability, smaller Personal Digital Assistants (PDAs) may
be employed.

[0046] Depending on the particular implementation, fea-
tures of the HEDO may be achieved by implementing a
microcontroller such as CAST’s R8051XC2 microcon-
troller; Intel’s MCS 51 (i.e., 8051 microcontroller); and/or
the like. Also, to implement certain features of the HEDO,
some feature implementations may rely on embedded com-
ponents, such as; Application-Specific Integrated Circuit
(“ASIC”), Digital Signal Processing (“DSP”), Field Pro-
grammable Gate Array (“FPGA”), and/or the like embedded
technology. For example, any of the HEDO component
collection (distributed or otherwise) and/or features may be
implemented via the microprocessor and/or via embedded
components; e.g., via ASIC, coprocessor, DSP, FPGA, and/
or the like. Alternately, some implementations of the HEDO
may be implemented with embedded components that are
configured and used to achieve a variety of features or signal
processing.

[0047] Depending on the particular implementation, the
embedded components may include software solutions,
hardware solutions, and/or some combination of both hard-
ware/software solutions. For example, HEDO features dis-
cussed herein may be achieved through implementing
FPGAs, which are a semiconductor devices containing
programmable logic components called “logic blocks”, and
programmable interconnects, such as the high performance
FPGA Virtex series and/or the low cost Spartan series
manufactured by Xilinx. Logic blocks and interconnects can
be programmed by the customer or designer, after the FPGA
is manufactured, to implement any of the HEDO features. A

May 16, 2019

hierarchy of programmable interconnects allow logic blocks
to be interconnected as needed by the HEDO system
designer/administrator, somewhat like a one-chip program-
mable breadboard. An FPGA’s logic blocks can be pro-
grammed to perform the operation of basic logic gates such
as AND, and XOR, or more complex combinational opera-
tors such as decoders or mathematical operations. In most
FPGAs, the logic blocks also include memory elements,
which may be circuit flip-flops or more complete blocks of
memory. In some circumstances, the HEDO may be devel-
oped on regular FPGAs and then migrated into a fixed
version that more resembles ASIC implementations. Alter-
nate or coordinating implementations may migrate HEDO
controller features to a final ASIC instead of or in addition
to FPGAs. Depending on the implementation all of the
aforementioned embedded components and microproces-
sors may be considered the “CPU” and/or “processor” for
the HEDO.

Power Source

[0048] The power source 886 may be of any standard form
for powering small electronic circuit board devices such as
the following power cells: alkaline, lithium hydride, lithium
ion, lithium polymer, nickel cadmium, solar cells, and/or the
like. Other types of AC or DC power sources may be used
as well. In the case of solar cells, in one embodiment, the
case provides an aperture through which the solar cell may
capture photonic energy. The power cell 886 is connected, to
at least one of the interconnected subsequent components of
the HEDO thereby providing an electric current to all
subsequent components. In one example, the power source
886 is connected to the system bus component 804. In an
alternative embodiment, an outside power source 886 is
provided through a connection across the I/O 808 interface.
For example, a USB and/or IEEE 1394 connection carries
both data and power across the connection and is therefore
a suitable source of power.

Interface Adapters

[0049] Interface bus(ses) 807 may accept, connect, and/or
communicate to a number of interface adapters, convention-
ally although not necessarily in the form of adapter cards,
such as but not limited to: input output interfaces (1/O) 808,
storage interfaces 809, network interfaces 810, and/or the
like. Optionally, cryptographic processor interfaces 827
similarly may be connected to the interface bus. The inter-
face bus provides for the communications of interface
adapters with one another as well as with other components
of the computer systemization. Interface adapters are
adapted for a compatible interface bus. Interface adapters
conventionally connect to the interface bus via a slot archi-
tecture. Conventional slot, architectures may be employed,
such as, but not limited to: Accelerated Graphics Port
(AGP), Card Bus, (Extended) Industry Standard Architec-
ture ((E)ISA), Micro Channel Architecture (MCA), NuBus,
Peripheral Component Interconnect (Extended) (PCI(X)),
PCI Express, Personal Computer Memory Card Interna-
tional Association (PCMCIA), and/or the like.

[0050] Storage interfaces 809 may accept, communicate,
and/or connect to a number of storage devices such as, but
not limited to: storage devices 814, removable disc devices,
and/or the like. Storage interfaces may employ connection
protocols such as, but not limited to: (Ultra) (Serial)

US 2019/0149317 Al

Advanced Technology Attachment (Packet Interface) ((Ul-
tra) (Serial) ATA(PI)), (Enhanced) Integrated Drive Elec-
tronics ((E)IDE), Institute of Electrical and Electronics
Engineers (IEEE) 1394, fiber channel, Small Computer
Systems Interface (SCSI), Universal Serial Bus (USB),
and/or the like.

[0051] Network interfaces 810 may accept, communicate,
and/or connect to a communications network 813. Through
a communications network 813, the HEDO controller is
accessible through remote clients 8335 (e.g., computers with
web browsers) by users 833a. Network interfaces may
employ connection protocols such as, but not limited to:
direct connect, Ethernet (thick, thin, twisted pair 10/100/
1000 Base T, and/or the like), Token Ring, wireless connec-
tion such as IEEE 802.11a-x, and/or the like. Should pro-
cessing requirements dictate a greater amount speed and/or
capacity, distributed network controllers (e.g., Distributed
HEDO), architectures may similarly be employed to pool,
load balance, and/or otherwise increase the communicative
bandwidth required by the HEDO controller. A communi-
cations network may be any one and/or the combination of
the following: a direct interconnection; the Internet; a Local
Area Network (LAN); a Metropolitan Area Network
(MAN); an Operating Missions as Nodes on the Internet
(OMNI); a secured custom connection; a Wide Area Net-
work (WAN); a wireless network (e.g., employing protocols
such as, but not limited to a Wireless Application Protocol
(WAP), I-mode, and/or the like); and/or the like. A network
interface may be regarded as a specialized form of an input
output interface. Further, multiple network interfaces 810
may be used to engage with various communications net-
work types 813. For example, multiple network interfaces
may be employed to allow for the communication over
broadcast, multicast, and/or unicast networks.

[0052] Input Output interfaces (I/O) 808 may accept,
communicate, and/or connect to user input devices 811,
peripheral devices 812, cryptographic processor devices
828, and/or the like. I/O may employ connection protocols
such as, but not limited to: audio: analog, digital, monaural,
RCA, stereo, and/or the like; data: Apple Desktop Bus
(ADB), IEEE 1394a-b, serial, universal serial bus (USB);
infrared; joystick; keyboard; midi; optical; PC AT; PS/2;
parallel; radio; video interface: Apple Desktop Connector
(ADC), BNC, coaxial, component, composite, digital, Digi-
tal Visual Interface (DVI), high-definition multimedia inter-
face (HDMI), RCA, RF antennae, S-Video, VGA, and/or the
like; wireless transceivers: 802.11a/b/g/n/x; Bluetooth; cel-
Iular (e.g., code division multiple access (CDMA), high
speed packet access (HSPA(+)), high-speed downlink
packet access (HSDPA), global system for mobile commu-
nications (GSM), long term evolution (LTE), WiMax, etc.);
and/or the like. One typical output device may include a
video display, which typically comprises a Cathode Ray
Tube (CRT) or liquid Crystal Display (LLCD) based monitor
with an interface (e.g., DVI circuitry and cable) that accepts
signals from a video interface, may be used. The video
interface composites information generated by a computer
systemization and generates video signals based on the
composited information in a video memory frame. Another
output device is a television set, which accepts signals from
a video interface. Typically, the video interface provides the
composited video information through a video connection
interface that accepts a video display interface (e.g., an RCA

May 16, 2019

composite video connector accepting an RCA composite
video cable; a DVI connector accepting a DVI display cable,
etc.).

[0053] User input devices 811 often are a type of periph-
eral device 512 (see below) and may include: card readers,
dongles, finger print readers, gloves, graphics tablets, joy-
sticks, keyboards, microphones, mouse (mice), remote con-
trols, retina readers, touch screens (e.g., capacitive, resistive,
etc.), trackballs, trackpads, sensors (e.g., accelerometers,
ambient light, GPS, gyroscopes, proximity, etc.), styluses,
and/or the like.

[0054] Peripheral devices 812 may be connected and/or
communicate to I/O and/or other facilities of the like such as
network interfaces, storage interfaces, directly to the inter-
face bus, system bus, the CPU, and/or the like. Peripheral
devices may be external, internal and/or part of the HEDO
controller. Peripheral devices may include: antenna, audio
devices (e.g., line-in, line-out, microphone input, speakers,
etc.), cameras (e.g., still, video, webcam, etc.), dongles (e.g.,
for copy protection, ensuring secure transactions with a
digital signature, and/or the like), external processors (for
added capabilities; e.g., crypto devices 528), force-feedback
devices (e.g., vibrating motors), network interfaces, printers,
scanners, storage devices, transceivers (e.g., cellular, GPS,
etc.), video devices (e.g., goggles, monitors, etc.), video
sources, visors, and/or the like. Peripheral devices often
include types of input devices (e.g., cameras).

[0055] It should be noted that although user input devices
and peripheral devices may be employed, the HEDO con-
troller may be embodied as an embedded, dedicated, and/or
monitor-less (i.e., headless) device, wherein access would be
provided over a network interface connection.

[0056] Cryptographic units such as, but not limited to,
microcontrollers, processors 826, interfaces 827, and/or
devices 828 may be attached, and/or communicate with the
HEDO controller. A MC68HC16 microcontroller, manufac-
tured by Motorola Inc., may be used for and/or within
cryptographic units. The MC68HC16 microcontroller uti-
lizes a 16-bit multiply-and-accumulate instruction in the 16
MHz configuration and requires less than one second to
perform a 512-bit RSA private key operation. Cryptographic
units support the authentication of communications from
interacting agents, as well as allowing for anonymous trans-
actions. Cryptographic units may also be configured as part
of the CPU. Equivalent microcontrollers and/or processors
may also be used. Other commercially available specialized
cryptographic processors include: Broadcom’s CryptoNetX
and other Security Processors; nCipher’s nShieid; SafeNet’s
Luna PCI (e.g., 7100) series; Semaphore Communications’
40 MHz Roadrunner 184; Sun’s Cryptographic Accelerators
(e.g., Accelerator 6000 PCle Board, Accelerator 500 Daugh-
tercard); Via Nano Processor (e.g., L2100, 1.2200, U2400)
line, which is capable of performing 500+ MB/s of crypto-
graphic instructions; VLSI Technology’s 33 MHz 6868;
and/or the like.

Memory

[0057] Generally, any mechanization and/or embodiment
allowing a processor to affect the storage and/or retrieval of
information is regarded as memory 829. However, memory
is a fungible technology and resource, thus, any number of
memory embodiments may be employed in lieu of or in
concert with one another. It is to be understood that the
HEDO controller and/or a computer systemization may

US 2019/0149317 Al

employ various forms of memory 829. For example, a
computer systemization may be configured wherein the
operation of on-chip CPU memory (e.g., registers), RAM,
ROM, and any other storage devices are provided by a paper
punch tape or paper punch card mechanism; however, such
an embodiment would result in an extremely slow rate of
operation. In a typical configuration, memory 829 will
include ROM 806, RAM 805, and a storage device 814. A
storage device 814 may be any conventional computer
system storage. Storage devices may include a drum; a
(fixed and/or removable) magnetic disk drive; a magneto-
optical drive; an optical drive (i.e., Blueray, CD ROM/
RAM/Recordable (R)/ReWritable (RW), DVD R/RW, HD
DVD R/RW etc.); an array of devices (e.g., Redundant Array
of Independent Disks (RAID)); solid state memory devices
(USB memory, solid state drives (SSD), etc.); other proces-
sor-readable storage mediums; and/or other devices of the
like. Thus, a computer systemization generally requires and
makes use of memory.

Component Collection

[0058] The memory 829 may contain a collection of
program and/or database components and/or data such as,
but not limited to: operating system component(s) 815
(operating system); information server component(s) 816
(information server); user interface component(s) 817 (user
interface); Web browser component(s) 818 (Web browser);
database(s) 819; mail server component(s) 821; mail client
component(s) 822; cryptographic server component(s) 820
(cryptographic server); the HEDO component(s) 835; HJ
Component 814; HOP Component 842; GHP Component
843; and/or the like (i.e., collectively a component collec-
tion). These components may be stored and accessed from
the storage devices and/or from storage devices accessible
through an interface bus. Although non-conventional pro-
gram components such as those in the component collection,
typically, are stored in a local storage device 814, they may
also be loaded and/or stored in memory such as: peripheral
devices, RAM, remote storage facilities through a commu-
nications network, ROM, various forms of memory, and/or
the like.

Operating System

[0059] The operating system component 815 is an execut-
able program component facilitating the operation of the
HEDO controller. Typically, the operating system facilitates
access of I/O, network interfaces, peripheral devices, storage
devices, and/or the like. The operating system may be a
highly fault tolerant, scalable, and secure system such as:
Apple Macintosh OS X (Server); AT&T Plan 9; Be OS: Unix
and Unix-like system distributions (such as AT&T’s UNIX;
Berkley Software Distribution (BSD) variations such as
FreeBSD, NetBSD, OpenBSD, and/or the like; Linux dis-
tributions such as Red Hat, Ubuntu, and/or the like); and/or
the like operating systems. However, more limited and/or
less secure operating systems also may be employed such as
Apple Macintosh OS, IBM OS/2, Microsoft DOS, Microsoft
Windows 2000/2003/3.1/95/98/CE/Millenium/NT/Vista/
XP/Win7 (Server), Palm OS, and/or the like. An operating
system may communicate to and/or with other components
in a component collection, including itself, and/or the like.
Most frequently, the operating system communicates with
other program components, user interfaces, and/or the like.

May 16, 2019

For example, the operating system may contain, communi-
cate, generate, obtain, and/or provide program component,
system, user, and/or data communications, requests, and/or
responses. The operating system, once executed by the CPU,
may enable the interaction with communications networks,
data, I/O, peripheral devices, program components, memory,
user input devices, and/or the like. The operating system
may provide communications protocols that allow the
HEDO controller to communicate with other entities
through a communications network 813. Various communi-
cation protocols may be used by the HEDO controller as a
subcarrier transport mechanism for interaction, such as, but
not limited to: multicast, TCP/IP, UDP, unicast, and/or the
like.

Information Server

[0060] An information server component 816 is a stored
program component that is executed by a CPU. The infor-
mation server may be a conventional Internet information
server such as, but not limited to Apache Software Founda-
tion’s Apache, Microsoft’s Internet Information Server, and/
or the like. The information server may allow for the
execution of program components through facilities such as
Active Server Page (ASP), ActiveX, (ANSI) (Objective-) C
(++), C# and/or .NET, Common Gateway Interface (CGI)
scripts, dynamic (D) hypertext markup language (HTML),
FLASH, Java, JavaScript, Practical Extraction Report Lan-
guage (PERL), Hypertext Pre-Processor (PHP), pipes,
Python, wireless application protocol (WAP), WebObjects,
and/or the like. The information server may support secure
communications protocols such as, but not limited to, File
Transfer Protocol (FTP); HyperText Transfer Protocol
(HTTP); Secure Hypertext Transfer Protocol (HTFPS),
Secure Socket Layer (SSL), messaging protocols (e.g.,
America Online (AOL) Instant Messenger (AIM), Applica-
tion Exchange (APEX), ICQ, Internet Relay Chat (IRC),
Microsoft Network (MSN) Messenger Service, Presence
and Instant Messaging Protocol (PRIM), Internet Engineer-
ing Task Force’s (IETF’s) Session Initiation Protocol (SIP),
SIP for Instant Messaging and Presence Leveraging Exten-
sions (SIMPLE), open XML-based Extensible Messaging
and Presence Protocol (XMPP) (i.e., Jabber or Open Mobile
Alliance’s (OMA’s) Instant Messaging and Presence Ser-
vice (IMPS)), Yahoo! Instant Messenger Service, and/or the
like. The information server provides results in the form of
Web pages to Web browsers, and allows for the manipulated
generation of the Web pages through interaction with other
program components. After a Domain Name System (DNS)
resolution portion of an HTTP request is resolved to a
particular information server, the information server
resolves requests for information at specified locations on
the HEDO controller based on the remainder of the HTTP
request. For example, a request such as http://123.124.125.
126/mylnformation. html might have the IP portion of the
request “123.124.125.126” resolved by a DNS server to an
information server at that IP address; that information server
might in turn further parse the http request for the “/myln-
formation.htm]” portion of the request and resolve it to a
location in memory containing the information “mylInfor-
mation.html.” Additionally, other information serving pro-
tocols may be employed across various ports, e.g., FTP
communications across port 21, and/or the like. An infor-
mation server may communicate to and/or with other com-
ponents in a component collection, including itself, and/or

US 2019/0149317 Al

facilities of the like. Most frequently, the information server
communicates with the HEDO database 819, operating
systems, other program components, user interfaces, Web
browsers, and/or the like.

[0061] Access to the HEDO database may be achieved
through a number of database bridge mechanisms such as
through scripting languages as enumerated below (e.g.,
CGI) and through inter-application communications chan-
nels as enumerated below (e.g., CORBA, WebObjects, etc.).
Any data requests through a Web browser are parsed through
the bridge mechanism into appropriate grammars as required
by the HEDO. In one embodiment, the information server
would provide a Web form accessible by a Web browser.
Entries made into supplied fields in the Web form are tagged
as having been entered into the particular fields, and parsed
as such. The entered terms are then passed along with the
field tags, which act to instruct the parser to generate queries
directed to appropriate tables and/or fields. In one embodi-
ment, the parser may generate queries in standard SQL by
instantiating a search string with the proper join/select
commands based on the tagged text entries, wherein the
resulting command is provided over the bridge mechanism
to the HEDO as a query. Upon generating query results from
the query, the results are passed over the bridge mechanism,
and may be parsed for formatting and generation of a new
results Web page by the bridge mechanism. Such a new
results Web page is then provided to the information server,
which may supply it to the requesting Web browser.
[0062] Also, an information server may contain, commu-
nicate, generate, obtain, and/or provide program component,
system, user, and/or data communications, requests, and/or
responses.

User Interface

[0063] Computer interfaces in some respects are similar to
automobile operation interfaces. Automobile operation
interface elements such as steering wheels, gearshifts, and
speedometers facilitate the access, operation, and display of
automobile resources, and status. Computer interaction
interface elements such as check boxes, cursors, menus,
scrollers, and windows (collectively and commonly referred
to as widgets) similarly facilitate the access, capabilities,
operation, and display of data and computer hardware and
operating system resources, and status. Operation interfaces
are commonly called user interfaces. Graphical user inter-
faces (GUIs) such as the Apple Macintosh Operating Sys-
tem’s Aqua, IBM’s OS/2, Microsoft’s Windows 2000/2003/
3.1/95/98/CE/Millenium/NT/XP/Vista/7 (i.e., Aero), Unix’s
X-Windows (e.g., which may include additional Unix
graphic interface libraries and layers such as K Desktop
Environment (KDE), mythTV and GNU Network Object
Model Environment (GNOME)), web interface libraries
(e.g., ActiveX, AJAX, (D)HTML, FLASH, Java, JavaScript,
etc. interface libraries such as, but not limited to, Dojo,
jQuery UI, MooTools, Prototype, script.aculo.us, SWFOb-
ject, Yahoo! User Interface, any of which may be used and
provide a baseline and means of accessing and displaying
information graphically to users.

[0064] A user interface component 817 is a stored program
component that is executed by a CPU. The user interface
may be a conventional graphic user interface as provided by,
with, and/or atop operating systems and/or operating envi-
ronments such as already discussed. The user interface may
allow for the display, execution, interaction, manipulation,

May 16, 2019

and/or operation of program components and/or system
facilities through textual and/or graphical facilities. The user
interface provides a facility through which users may affect,
interact, and/or operate a computer system. A user interface
may communicate to and/or with other components in a
component collection, including itself, and/or facilities of
the like. Most frequently, the user interface communicate
with operating systems, other program components, and/or
the like. The user interface may contain, communicate,
generate, obtain, and/or provide program component, sys-
tem, user, and/or data communications, requests, and/or
responses.

Web Browser

[0065] Web browser component 818 is a stored program
component that is executed by a CPU. The Web browser
may be a conventional hypertext viewing application such as
Microsoft Internet Explorer or Netscape Navigator, Secure
Web browsing may be supplied with 128 bit (or greater)
encryption by way of HTTPS, SSL, and/or the like. Web
browsers allowing for the execution of program components
through facilities such as ActiveX, AJAX, (D)HTML,
FLASH, Java, JavaScript, web browser plug-in APIs (e.g.,
Firefox, Safari Plug-in, and/or the like APIs), and/or the like.
Web browsers and like information access tools may be
integrated into PDAs, cellular telephones, and/or other
mobile devices. A Web browser may communicate to and/or
with other components in a component collection, including
itself, and/or facilities of the like. Most frequently, the Web
browser communicates with information servers, operating
systems, integrated program components (e.g., plug-ins),
and/or the like; e.g., it may contain, communicate, generate,
obtain, and/or provide program component, system, user,
and/or data communications, requests, and/or responses.
Also, in place of a Web browser and information server, a
combined application may be developed to perform similar
operations of both. The combined application would simi-
larly affect the obtaining and the provision of information to
users, user agents, and/or the like from the HEDO enabled
nodes. The combined application may be nugatory on sys-
tems employing standard Web browsers.

Mail Server

[0066] A mail server component 821 is a stored program
component that is executed by a CPU 803. The mail server
may be a conventional Internet mail server such as, but not
limited to sendmail, Microsoft Exchange, and/or the like.
The mail server may allow for the execution of program
components through facilities such as ASP, ActiveX, (ANSI)
(Objective-) C (++), C# and/or .NET, CGI scripts, Java,
JavaScript, PERL, PHP, pipes, Python, WebObjects, and/or
the like. The mail server may support communications
protocols such as, but not limited to: Internet message access
protocol (IMAP), Messaging Application Programming
Interface (MAPI)/Microsoft Exchange, post office protocol
(POP3), simple mail transfer protocol (SMTP), and/or the
like. The mail server can route, forward, and process incom-
ing and outgoing mail messages that have been sent, relayed
and/or otherwise traversing through and/or to the HEDO.

[0067] Accessto the HEDO mail may be achieved through
a number of APIs offered by the individual Web server
components and/or the operating system.

US 2019/0149317 Al

[0068] Also, a mail server may contain, communicate,
generate, obtain, and/or provide program component, sys-
tem, user, and/or date communications, requests, informa-
tion, and/or responses.

Mail Client

[0069] A mail client component 822 is a stored program
component that is executed by a CPU 803. The mail client
may be a conventional mail viewing application such as
Apple Mail, Microsoft Entourage, Microsoft Outlook,
Microsoft Outlook Express, Mozilla, Thunderbird, and/or
the like. Mail clients may support a number of transfer
protocols, such as: IMAP, Microsoft Exchange, POP3,
SMTP, and/or the like. A mail client may communicate to
and/or with other components in a component collection,
including itself, and/or facilities of the like. Most frequently,
the mall client communicates with mail servers, operating
systems, other mail clients, and/or the like; e.g., it may
contain, communicate, generate, obtain, and/or provide pro-
gram component, system, user, and/or data communications,
requests, information, and/or responses. Generally, the mail
client provides a facility to compose and transmit electronic
mail messages.

Cryptographic Server

[0070] A cryptographic server component 820 is a stored
program component that is executed by a CPU 803, cryp-
tographic processor 826, cryptographic processor interface
827, cryptographic processor device 828, and/or the like.
Cryptographic processor interfaces will allow for expedition
of encryption and/or decryption requests by the crypto-
graphic component; however, the cryptographic component,
alternatively, may run on a conventional CPU. The crypto-
graphic component allows for the encryption and/or decryp-
tion of provided data. The cryptographic component allows
for both symmetric and asymmetric (e.g., Pretty Good
Protection (PGP)) encryption and/or decryption. The cryp-
tographic component may employ cryptographic techniques
such as, but not limited to: digital certificates (e.g., X.509
authentication framework), digital signatures, dual signa-
tures, enveloping, password access protection, public key
management, and/or the like. The cryptographic component
will facilitate numerous (encryption and/or decryption)
security protocols such as, but not limited to: checksum,
Data Encryption Standard (DES), Elliptical Curve Encryp-
tion (ECC), International Data Encryption Algorithm
(IDEA), Message Digest 5 (MDS5, which is a one way hash
operation), passwords, Rivest Cipher (RC5), Rijndael, RSA
(which is an Internet encryption and authentication system
that uses an algorithm developed in 1977 by Ron Rivest, Adi
Shamir, and Leonard Adleman), Secure Hash Algorithm
(SHA), Secure Socket Layer (SSL), Secure Hypertext Trans-
fer Protocol (HTTPS), and/or the like. Employing such
encryption security protocols, the HEDO may encrypt all
incoming and/or outgoing communications and may serve as
node within a virtual private network (VPN) with a wider
communications network. The cryptographic component
facilitates the process of “security authorization” whereby
access to a resource is inhibited by a security protocol
wherein the cryptographic component effects authorized
access to the secured resource. In addition, the cryptographic
component may provide unique identifiers of content, e.g.,
employing and MDS hash to obtain a unique signature for an

May 16, 2019

digital audio file. A cryptographic component may commu-
nicate to and/or with other components in a component
collection, including itself, and/or facilities of the like. The
cryptographic component supports encryption schemes
allowing for the secure transmission of information across a
communications network to enable the HEDO component to
engage in secure transactions if so desired. The crypto-
graphic component facilitates the secure accessing of
resources on the HEDO and facilitates the access of secured
resources on remote systems; i.e., it may act as a client
and/or server of secured resources. Most frequently, the
cryptographic component communicates with information
servers, operating systems, other program components, and/
or the like. The cryptographic component may contain,
communicate, generate, obtain, and/or provide program
component, system, user, and/or data communications,
requests, and/or responses.

The HEDO Database

[0071] The HEDO database component 819 may be
embodied in a database and its stored data. The database is
a stored program component, which is executed by the CPU;
the stored program component portion configuring the CPU
to process the stored data. The database may be a conven-
tional fault tolerant, relational, scalable, secure database
such as Oracle or Sybase. Relational databases are an
extension of a flat file. Relational databases consist of a
series of related tables. The tables are interconnected via a
key field. Use of the key field allows the combination of the
tables by indexing against the key field; i.e., the key fields
act as dimensional pivot points for combining information
from various tables. Relationships generally identify links
maintained between tables by matching primary keys. Pri-
mary keys represent fields that uniquely identify the rows of
a table in a relational database. More precisely, they
uniquely identify rows of a table on the “ones” side of a
one-to-many relationship.

[0072] Alternatively the HEDO database may be imple-
mented using various standard data-structures, such as an
array, hash, (linked) list, struct, structured text file (e.g.,
XML), table, and/or the like. Such data-structures may be
stored in memory and/or in (structured) files. In another
alternative, an object-oriented database may be used, such as
Frontier, ObjectStore, Poet, Zope, and/or the like. Object
databases can include a number of object collections that are
grouped and/or linked, together by common attributes; they
may be related to other object collections by some common
attributes. Object-oriented databases perform similarly to
relational databases with the exception that objects are not
just pieces of data but may have other types of capabilities
encapsulated within a given object. If the HEDO database is
implemented as a data-structure, the use of the HEDO
database 819 maybe integrated into another component such
as the HEDO component 835. Also, the database may be
implemented as a mix of data structures, objects, and
relational structures. Databases may be consolidated and/or
distributed in countless variations through standard data
processing techniques. Portions of databases, e.g., tables,
may be exported and/or imported and thus decentralized
and/or integrated.

[0073] In one embodiment, the database component 819
includes several tables 819a-m. A Users table 819a may
include fields such as, but not limited to: user_id, ssn, dob,
first_name, last_name, age, state, address_{firstline, address_

US 2019/0149317 Al

secondline, zipcode, devices_list, contact_info, contact_
type, alt_contact_info, alt_contact_type, and/or the like. The
Users table may support and/or track multiple entity
accounts on a HEDO. A Clients table 8195 may include
fields such as, but not limited to: client_id, client_name,
client_ip, client_type, client_model, operating system,
os_version, app_installed_flag, and/or the like. An Apps
table 819¢ may include fields such as, but not limited to:
app_id, app_name, app_type, os_compatibilities_list, ver-
sion, timestamp, developer_id, and/or the like. A Merchants
table 8194 may include fields such as, but not limited to:
merchant_id, merchant_name, merchant_address, ip_ad-
dress, mac_address, auth_key, port_num, security_settings_
list, and/or the like. An Issuers table 819¢ may include fields
such as, but not limited to: issuer_id, issuer_name, issuer_
address, ip_address, mac_address, auth_key, port_num,
security_settings_list, and/or the like. An Acquirers table
819/'may include fields such as, but not limited to: acquirer_
id, acquirer_name, acquirer_gateway_id, issuer_aquirer_
flag, institution_name, and/or the like. An Accounts table
819¢g may include fields such as, but not limited to; account_
id, account_firstname, account_lastname, account_type,
account_num, account_balance_list, billingaddress_linel,
billingaddress_line2, billing zipcode, billing_state, ship-
ping_preferences, shippingaddress_linel, shippingaddress_
line2, shipping_zipcode, shipping_state, and/or the like. A
Transactions table 819/ may include fields such as, but not
limited to: transaction_id, user_id, timestamp, transaction_
cost, purchase_details_list, num_products, products_list,
product_type, product_params_list, product_title, product_
summary, quantity, account_firstname, account_lastname,
account_type, account_num, billingaddress_linel, bill-
ingaddress_line2, billing_zipcode, billing_state, shipping_
preferences, shippingaddress_linel, shippingaddress_line2,
shipping_zipcode, shipping_state, merchant_id, merchant_
name, merchant_auth_key, and/or the like. An Encryption
table 819/ may include fields such as, but not limited to:
encryption_id, encryption_scheme, encryption_method,
salt_value, key_ids, and/or the like. A Models table 819/
may include fields such as, but not limited to; model_id,
model_name, user_id, issuer_id, merchant_id, model_de-
scription, mode_commands, and/or the like. A Keys table
819% may include fields such as, but not limited to: key_id,
key_decrypts_record_pointer, generated._date, owned_by_
id, user_id, acquirer_id, merchant_id, server_identifier, key_
expiration, and/or the like. A Grouping Keys table 819/ may
include fields such as, but not limited to; grouping key_id,
sub_key_of _key_id, key_id, description, server_identifier,
table_id, table_names, table_grouping_fields, table_group-
ing_rangees, and/or the like. A Table Schemas table 819m
may include fields such as, but not limited to: table_schema_
id, server_identifiers, table_names, table_structure, group-
ing_method, table_encrypted_values, table_encrypted_val-
ue_methods, and/or the like.

[0074] Inone embodiment, the HEDO database may inter-
act with other database systems. For example, employing a
distributed database system, queries and data access by
search HEDO component may treat the combination of the
HEDO database, an integrated data security layer database
as a single database entity.

[0075] In one embodiment, user programs may contain
various user interface primitives, which may serve to update
the HEDO. Also, various accounts may require custom
database tables depending upon the environments and the

May 16, 2019

types of clients the HEDO may need to serve. It should be
noted that any unique fields may be designated as a key field
throughout. In an alternative embodiment, these tables have
been decentralized into their own databases and their respec-
tive database controllers (i.e., individual database controllers
for each of the above tables). Employing standard data
processing techniques, one may further distribute the data-
bases over several computer systemizations and/or storage
devices. Similarly, configurations of the decentralized data-
base controllers may be varied by consolidating and/or
distributing the various database components 819a-m. The
HEDO may be configured to keep track of various settings,
inputs, and parameters via database controllers.

[0076] The HEDO database may communicate to and/or
with other components in a component collection, including
itself, and/or facilities of the like. Most frequently, the
HEDO database communicates with the HEDO component,
other program components, and/or the like. The database
may contain, retain, and provide information regarding other
nodes and data.

The HEDOs

[0077] The HEDO component 835 is a stored program
component that is executed by a CPU. In one embodiment,
the HEDO component incorporates any and/or all combi-
nations of the aspects of the HEDO that was discussed in the
previous figures. As such, the HEDO affects accessing,
obtaining and the provision of information, services, trans-
actions, and/or the like across various communications
networks. The features and embodiments of the HEDO
discussed herein increase network efficiency by reducing
data transfer requirements the use of more efficient data
structures and mechanisms for their transfer and storage. As
a consequence, more data may be transferred in less time,
and latencies with regard to transactions, are also reduced. In
many eases, such reduction in storage, transfer time, band-
width requirements, latencies, etc., will reduce the capacity
and structural infrastructure requirements to support the
HEDO’s features and facilities, and in many eases reduce
the costs, energy consumption/requirements, and extend the
life of HEDO’s underlying infrastructure; this has the added
benefit of making the HEDO more reliable. Similarly, many
of the features and mechanisms are designed to be easier for
users to use and access, thereby broadening the audience that
may enjoy/employ and exploit the feature sets of the HEDO;
such ease of use also helps to increase the reliability of the
HEDO. In addition, the feature sets include heightened
security as noted via the Cryptographic components 820,
826, 828 and throughout, making access to the features and
data more reliable and secure.

[0078] The HEDO component may transform transaction
storage requests and model query requests, and/or the like
and use the HEDO. In one embodiment, the HEDO com-
ponent 835 takes inputs (e.g., transaction storage request
203a, 2035, HEDO package storage request 208, homomor-
phic insertion 212, model query request 303, request group-
ing keys 306, HEDO model query request 309, HEDO query
312 and/or the like) etc., and transforms the inputs via
various components (e.g., HI Component 841; HOP Com-
ponent 842; GHP Component 843, and/or the like), into
outputs (e.g., HEDO results response 317, HEDO model
query results 319, receive grouping keys 308, model query
response 321, render model query output 322, and/or the
like).

US 2019/0149317 Al

[0079] The HEDO component enabling access of infor-
mation between nodes may be developed by employing
standard development tools and languages such as, but not
limited to: Apache components, Assembly, ActiveX, binary
executables, (ANSI) (Objective-) C (++), C# and/or .NET,
database adapters, CGI scripts, Java, JavaScript, mapping
tools, procedural and object oriented development tools,
PERL, PHP, Python, shell scripts, SQL commands, web
application server extensions, web development environ-
ments and libraries (e.g., Microsoft’s ActiveX; Adobe AIR,
FLEX & FLASH; AJAX; (D)HTML; Dojo, Java;
JavaScript; jQuery(UI); MooTools; Prototype; script.aculo.
us; Simple Object Access Protocol (SOAP); SWFObject;
Yahoo! User Interface; and/or the like), WebObjects, and/or
the like. In one embodiment, the HEDO server employs a
cryptographic server to encrypt and decrypt communica-
tions. The HEDO component may communicate to and/or
with other components in a component collection, including
itself, and/or facilities of the like. Most frequently, the
HEDO component communicates with the HEDO database,
operating systems, other program components, and/or the
like. The HEDO may contain, communicate, generate,
obtain, and/or provide program component, system, user,
and/or data communications, requests, and/or responses.

Distributed HEDOs

[0080] The structure and/or operation of any of the HEDO
node controller components may be combined, consoli-
dated, and/or distributed in any number of ways to facilitate
development and/or deployment. Similarly, the component
collection may be combined in any number of ways to
facilitate deployment and/or development. To accomplish
this, one may integrate the components into a common code
base or in a facility that can dynamically load the compo-
nents on demand in an integrated fashion.

[0081] The component collection may be consolidated
and/or distributed in countless variations through standard
data processing and/or development techniques. Multiple
instances of any one of the program components in the
program component collection may be instantiated on a
single node, and/or across numerous nodes to improve
performance through load-balancing and/or data-processing
techniques. Furthermore, single instances may also be dis-
tributed across multiple controllers and/or storage devices;
e.g., databases. All program component instances and con-
trollers working in concert may do so through standard data
processing communication techniques.

[0082] The configuration of the HEDO controller will
depend on the context of system deployment. Factors such
as, but not limited to, the budget, capacity, location, and/or
use of the underlying hardware resources may affect deploy-
ment requirements and configuration. Regardless of if the
configuration results in more consolidated and/or integrated
program components, results in a more distributed series of
program components, and/or results in some combination
between a consolidated and distributed configuration, data
may be communicated, obtained, and/or provided. Instances
of components consolidated into a common code base from
the program component collection may communicate,
obtain, and/or provide data. This may be accomplished
through intra-application data processing communication
techniques such as, but not limited to: data referencing (e.g.,

May 16, 2019

pointers), internal messaging, object instance variable com-
munication, shared memory space, variable passing, and/or
the like.

[0083] If component collection components are discrete,
separate, and/or external to one another, then communicat-
ing, obtaining, and/or providing data with and/or to other
component components may be accomplished through inter-
application data processing communication techniques such
as, but not limited to: Application Program Interfaces (API)
information passage; (distributed) Component Object Model
((D)COM), (Distributed) Object Linking and Embedding
((D)OLE), and/or the like), Common Object Request Broker
Architecture (CORBA), Jini local and remote application
program interfaces, JavaScript Object Notation (JSON),
Remote Method Invocation (RMI), SOAP, process pipes,
shared files, and/or the like. Messages sent between discrete
component components for inter-application communica-
tion or within memory spaces of a singular component for
intra-application communication may be facilitated through
the creation and parsing of a grammar. A grammar may be
developed by using development tools such as lex, yace,
XML, and/or the like, which allow for grammar generation
and parsing capabilities, which in turn may form the basis of
communication messages within and between components.
[0084] For example, a grammar may be arranged to rec-
ognize the tokens of an HTTP post command, e.g.:

[0085] w3c-post http:// . . . Valuel

[0086] where Valuel is discerned as being a parameter
because “http://” is part of the grammar syntax, and what
follows is considered part of the post value. Similarly, with
such a grammar, a variable “Valuel” may be inserted into an
“http://”” post command and then sent. Use grammar syntax
itself may be presented as structured data that is interpreted
and/or otherwise used to generate the parsing mechanism
(e.g., a syntax description text file as processed by lex, yace,
etc.). Also, once the parsing mechanism is generated and/or
instantiated, it itself may process and/or parse structured
data such as, but not limited to: character (e.g., tab) delin-
eated text, HTML, structured text streams, XML, and/or the
like structured data. In another embodiment, inter-applica-
tion data processing protocols themselves may have inte-
grated and/or readily available parsers (e.g., JSON, SOAP,
and/or like parsers) that may be employed to parse (e.g.,
communications) data. Further, the parsing grammar may be
used beyond message parsing, but may also be used to parse:
databases, data collections, data stores, structured data,
and/or the like. Again, the desired, configuration will depend
upon the context, environment, and requirements of system
deployment.

[0087] For example, in some implementations, the HEDO
controller may be executing a PHP script implementing a
Secure Sockets Layer (“SSL”) socket server via the infor-
mation sherver, which listens to incoming communications
on a server port to which a client may send data, e.g., data
encoded in JSON format. Upon identifying an incoming
communication, the PHP script may read the incoming
message from the client device, parse the received JSON-
encoded text data to extract information from the JSON-
encoded text data into PHP script variables, and store the
data (e.g., client identifying information, etc.) and/or
extracted information in a relational database accessible
using the Structured Query Language (“SQL”). An exem-
plary listing, written substantially in the form of PHP/SQL
commands, to accept JSON-encoded input data from a

US 2019/0149317 Al

client, device via a SSL connection, parse the data to extract
variables, and store the data to a database, is provided below:

<?PHP
header('Content-Type: text/plain’);
//set ip address and port to listen to for incoming data
$address = ©192.168.0.100°;
$port = 255;
//create a server-side SSL socket, listen
//for/accept incoming communication
$sock = socket_creat(AF__INET, SOCK__STREAM, 0);
socket__bind($sock, $address, $port)
or die(*Could not bind to address’);

socket__listen($sock);
$client = socket__accept($sock);
//read input data from client device in 1021 byte
//blocks until end of message
do {

$input = “;

$input = socket__read($client, 1024);

$data .= $input;
} while($input 1= “);
// parse data to extract variables
$obj = json_decode($data, true);
// store input data in a database
mysql__connect("10.1.1.1",$srvr,$pass); // access database server
mysql_select("CLIENT__DB.SQL"); // select database to append
mysql_select(“INSERT INTO UserTable (transmission) VALUES
($data)™); // add data to UserTable table in a CLINE database
mysql_close("CLIENT__DB.SQL"); // close connection to database
>

[0088] Also, the following resources may be used to
provide example embodiments regarding SOAP parser
implementation:

http://www.xav.com/perl/site/lib/SOAP/Parser.html
http://publib.boulder.ibm.com/infocenter/tivihelp/v2rl/index.jsp?
topic=/com.ibm.IBMDILdoc/referenceguide295.htm

[0089] and other parser implementations:

http://publib.boulder.ibm.com/infocenter/tivihelp/v2rl/index.jsp?
topic=/com.ibm.IBMDILdoc/referenceguide259.htm

[0090] all of which are hereby expressly incorporated by
reference.
[0091] In order to address various issues and advance the

art, the entirety of this application for HEDO (including the
Cover Page, Title, Headings, Field, Background, Summary,
Brief Description of the Drawings, Detailed Description,
Claims, Abstract, Figures, Appendices, and otherwise)
shows, by way of illustration, various embodiments in which
the claimed innovations may be practiced. The advantages
and features of the application are of a representative sample
of embodiments only, and are not exhaustive and/or exclu-
sive. They are presented only to assist in understanding and
teach the claimed principles. It should be understood that
they are not representative of all claimed innovations. As
such, certain aspects of the disclosure have not been dis-
cussed herein. That alternate embodiments may not have
been presented for a specific portion of the innovations or
that further undescribed alternate embodiments may be
available for a portion is not to be considered a disclaimer
of those alternate embodiments. It will be appreciated that
many of those undescribed embodiments incorporate the
same principles of the innovations and others are equivalent.

16

May 16, 2019

Thus, it is to be understood that other embodiments may be
utilized and functional, logical, operational, organizational,
structural and/or topological modifications may be made
without departing from the scope and/or spirit of the dis-
closure. As such, all examples and/or embodiments are
deemed to be non-limiting throughout this disclosure. Also,
no inference should he drawn regarding those embodiments
discussed herein relative to those not discussed herein other
than it is as such for purposes of reducing space and
repetition. For instance, it is to be understood that the logical
and/or topological structure of any combination of any
program components (a component collection), other com-
ponents and/or any present feature sets as described in the
figures and/or throughout are not limited to a feed operating
order and/or arrangement, but rather, any disclosed order is
exemplary and all equivalents, regardless of order, are
contemplated by the disclosure. Furthermore, it is to be
understood that such features are not limited to serial
execution, but rather, any number of threads, processes,
services, servers, and/or the like that may execute a syn-
chronously, concurrently, in parallel, simultaneously, syn-
chronously, and/or the like are contemplated by the disclo-
sure. As such, some of these features may be mutually
contradictory, in that they cannot be simultaneously present
in a single embodiment. Similarly, some features are appli-
cable to one aspect of the innovations, and inapplicable to
others. In addition, the disclosure includes other innovations
not presently claimed. Applicant reserves all rights in those
presently unclaimed innovations including the right to claim
such innovations, file additional applications, continuations,
continuations in part, divisions, and/or the like thereof. As
such, it should be understood that advantages, embodiments,
examples, functional features, logical, operational, organi-
zational, structural, topological, and/or other aspects of the
disclosure are not to be considered limitations on the dis-
closure as defined by the claims or limitations on equivalents
to the claims. It is to be understood that, depending on the
particular needs and/or characteristics of a HEDO individual
and/or enterprise user, database configuration and/or rela-
tional model, data type, data transmission and/or network
framework, syntax structure, and/or the like, various
embodiments of the HEDO, may be implemented that
enable a great deal of flexibility and customization. For
example, aspects of the HEDO may be adapted for restau-
rant dining, online shopping, brick-and-mortar shopping,
secured information processing, and/or the like. While vari-
ous embodiments and discussions of the HEDO have been
directed to electronic purchase transactions, however, it is to
be understood that the embodiments described herein may
be readily configured and/or customized for a wide variety
of other applications and/or implementations.

[0092] As additional examples of the wide scope of the
systems and methods disclosed herein, the following
example illustrates a fraud scenario. In this example, mul-
tiple purchases were made by the same cardholder at the
same merchant type (MCC) with cards for multiple issuers.
Merchant types were either gasoline/service stations or
high-end electronics. Ticket value was $1500 plus for high-
end electronics and $200 plus for gasoline. FIG. 9 show an
example of targeting fraud using HEDO operations. At step
902, the issuing bank is identified by data collected by Visa.
The system retrieves all Visa cards (PANs) issued by the
issuing bank at step 904. At step 906, the cardholder is
identified for each PAN, and all Visa cards held by each

US 2019/0149317 Al

cardholder is identified at step 908. Step 910 examines
transactions made by all Visa cards held by each cardholder
to find fraudulent activity. For suspected fraudulent trans-
actions, step 912 reports Issuer surname, PAN, and MCC for
further investigation. At step 914, Visa sends similar reports
to all other impacted issuers. FIG. 10 depicts a sample
representation involving a Visa credit card 1002 and a Visa
debit card 1004 that are being handled by merchants. An
alert symbol is provided for any identified issues.

[0093] It should be understood that different or additional
embodiments can be considered in such examples. For
example, in one embodiment, the systems and methods may
use live data including timestamps to add another dimension
of analysis. As another example, multi-party agreements
may enable account-level analysis, rather than only at the
PAN or surname level.

[0094] Other embodiments include multiple public/private
keys being required and/or multiple encryption schemes
being used. Software/hardware optimizations can also be
used with fully homomorphic encryption. In another
embodiment, multi-party relationships can be used to har-
ness the benefits of aggregate data. Still further, the systems
and methods disclosed herein can run on modeled data, not
live data. In another embodiment, the model strives to
encapsulate reality and contains key domain knowledge.
Additionally, if fully homomorphic encryption takes an
excessively long time to compute, then somewhat homo-
morphic encryption can be used as described in Appendix A
of the following application: U.S. provisional patent appli-
cation Ser. No. 61/861,368, filed Aug. 1, 2013, attorney
docket no. 532USO01, entitled “Homomorphic Database
Operations Apparatuses, Methods and Systems,” which is
expressly incorporated herein by reference.

[0095] As another example, HEDO operations can also be
used with customer acquisition. In one scenario, the mer-
chant may be looking for consumers who match its customer
demographics by querying transactions made by related
merchants. As an example, FIG. 11 illustrates at 1102
analysis involving “Tiffany” offering a new sterling silver
tag that it wishes to market to frequent purchasers of coach
and/or Louis Vuitton handbags. The analysis using HEDO
operations identifies such customers at region 1104. This can
optimize the merchant’s marketing dollars by developing
precise marketing campaigns to reach new customers who
are in the merchant’s exact target market. Product-level data
can also be incorporated in the analysis. Because of such
operations, Visa can provide the conduit for the offer without
revealing private customer information. Also, targeted cus-
tomers could opt-in to the Visa offers program.

[0096] Other embodiments involving HEDO operations
can include (Dis-)Loyalty scenarios. As an illustration, a
merchant can compare its customers’ transactions with those
made at its competitors. Analysis involving HEDO opera-
tions can assess which customers are the most valuable to
the target with marketing campaigns to convert to higher
transactions versus loyal customers to the company or to its
competitors. Reports based upon such analysis can be gen-
erated including the graphical report and comparison shown
in FIG. 12 at 1202. In one embodiment, information may be
made more useful with product-level data rather than with
only ticket values. Additionally, implementations using live

May 16, 2019

data could include timestamps and geo-location to further
assist in precise targeting.

1-16. (canceled)

17. An encrypted table value homomorphically joining
apparatus, comprising:

a memory; and

a processor disposed in communication with said

memory, and configured to issue a plurality of process-

ing instructions stored in the memory, wherein the

processor issues instructions to:

receive a query input, wherein the query input requires
data values from a plurality of tables;

based on the query input, determine at least one field on
which to join the plurality of tables;

determine that the determined at least one field contains
deterministically homomorphically encrypted data;

based on the determination that the at least one field
contains deterministically homomorphically
encrypted data, determine a homomorphic join strat-
egy that includes directly comparing values in two
homomorphically encrypted fields;

perform a homomorphic join on the at least one field in
the plurality of tables using the determined homo-
morphic join strategy; and

provide resultant homomorphically joined tables.

18. The apparatus of claim 17, wherein the processor
further issues instructions to:

analyze the resultant homomorphically joined tables to

determine that at least one record in the resultant
homomorphically joined tables requires further pro-
cessing; and

determine that the at least one record in the resultant

homomorphically joined tables contains homomor-
phically encrypted data.

19. The apparatus of claim 18, wherein the processor
further issues instructions to perform a homomorphically
optimized addition function to add the homomorphically
encrypted data values contained in the at least one record.

20. The apparatus of claim 17, wherein the homomorphic
join strategy includes using a key common to all values in
at least one of the at least one field to decrypt the homo-
morphically encrypted values in a field.

21. The apparatus of claim 17, wherein when the homo-
morphic join strategy includes utilizing grouping keys,
additionally comprising instructions to:

receive a plurality of grouping keys;

determine a plurality of ranges of field values that each

grouping key may be used to decrypt; and

decrypt each of the field values in each of the ranges using

the grouping keys.

22. The apparatus of claim 17, additionally comprising
instructions to aggregate results from the resultant homo-
morphically joined tables.

23. The apparatus of claim 22, wherein aggregating
involves leaving encrypted space and re-entering the
encrypted space.

24. The apparatus of claim 22, wherein the aggregation is
performed completely in encrypted space.

25. A processor implemented method of homomorphic-
ally joining repository tables using encrypted table values,
comprising:

receiving, using one or more data processors, a query

input, wherein the query input requires data values
from a plurality of tables;

US 2019/0149317 Al

based on the query input, determining, using the one or
more data processors, at least one field on which to join
the plurality of tables;

determining, using the one or more data processors, that

the determined at least one field contains deterministi-
cally homomorphically encrypted data;

based on the determination that the at least one field

contains deterministically homomorphically encrypted
data, determining a homomorphic join strategy that
includes directly comparing values in two homomor-
phically encrypted fields;

performing, using the one or more data processors, a

homomorphic join on the at least one field in the
plurality of tables using the determined homomorphic
join strategy; and

providing, using the one or more data processors, resul-

tant homomorphically joined tables.

26. The method of claim 25, further comprising:

analyzing the resultant homomorphically joined tables to

determine that at least one record in the resultant
homomorphically joined tables requires further pro-
cessing; and

determining that the at least one record in the resultant

homomorphically joined tables contains homomor-
phically encrypted data.

27. The method of claim 26, wherein the processor further
issues instructions to perform a homomorphically optimized
addition function to add the homomorphically encrypted
data values contained in the at least one record.

28. The method of claim 25, wherein the homomorphic
join strategy includes using a key common to all values in
at least one of the plurality of fields to decrypt the plurality
of homomorphically encrypted values in a field.

29. The method of claim 25, wherein when the homo-
morphic join strategy includes utilizing grouping keys,
additionally comprising:

receiving a plurality of grouping keys;

determining a plurality of ranges of field values that each

grouping key may be used to decrypt; and

decrypting each of the field values in each of the ranges

using the grouping keys.

30. The method of claim 25, additionally comprising
aggregating results from the resultant homomorphically
joined tables.

May 16, 2019

31. The method of claim 30, wherein aggregating
involves leaving encrypted space and re-entering the
encrypted space.

32. The method of claim 30, wherein the aggregation is
performed completely in encrypted space.

33. A non-transitory computer readable medium storing
instructions that, when executed, cause an apparatus at least
to perform:

receiving a query input, wherein the query input requires

data values from a plurality of tables;

based on the query input, determining at least one field on

which to join the plurality of tables;
determining that the determined at least one field contains
deterministically homomorphically encrypted data;

based on the determination that the at least one field
contains deterministically homomorphically encrypted
data, determining a homomorphic join strategy that
includes directly comparing values in two homomor-
phically encrypted fields;

performing a homomorphic join on the at least one field

in the plurality of tables using the determined homo-
morphic join strategy; and

providing resultant homomorphically joined tables.

34. The non-transitory computer readable medium of
claim 33 further comprising instructions causing the appa-
ratus to perform:

analyzing the resultant homomorphically joined tables to

determine that at least one record in the resultant
homomorphically joined tables requires further pro-
cessing; and

determining that the at least one record in the resultant

homomorphically joined tables contains homomor-
phically encrypted data.

35. The non-transitory computer readable medium of
claim 34 further comprising instructions causing the appa-
ratus to perform a homomorphically optimized addition
function to add the homomorphically encrypted data values
contained in the at least one record.

36. The non-transitory computer readable medium of
claim 33 further comprising instructions causing the appa-
ratus to perform aggregating results from the resultant
homomorphically joined tables.

#* #* #* #* #*

