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(57) ABSTRACT 
An arithmetic formula is discovered that can be used to 
reduce logic to arithmetic. The formula enables a logic 
algorithm to be reduced to an arithmetic algorithm without 
the use of logical trees, thereby converting a logical opera 
tion to an arithmetic operation. The use of the arithmetic 
formula enables the computation of functions that use Bool 
ean logic. The operation of a computer program relies on 
logic circuits, which in turn implement Boolean logic. 
Considering that a computer program requires a minimum of 
one or more logic circuits to execute, it now becomes 
possible to replace the functions of these logic circuits by a 
computer program implementing the arithmetic formula. 
Therefore, it is possible to develop software that functions 
similar to a real processor. 
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ELEMENTS OF PROCESSOR SOFTWARE 

BACKGROUND OF THE INVENTION 

0001. The field of invention is related to the elements 
required for the development of processor software. The 
elements are computer programming techniques and the 
computation of Boolean logic functions using a new arith 
metic formula. 
0002. It was proven by Church and Turing that there is no 
general solution for a decision problem. For n number of 
inputs does any single mathematical formula capable of 
affirming or not affirming an output exist? Would it be 
possible to express the decidable fragments of full first order 
logic as a single mathematical formula'? Numerous pub 
lished research efforts indicate that decision trees can be 
replaced by Succinct arithmetic formulas. In our work, we 
apply a new arithmetic formula to reduce logic to arithmetic, 
which is essential to elucidate the elements required for the 
development of processor Software. As a logical algorithm 
can be reduced to an arithmetic algorithm without using 
logical trees, logical programming can be replaced by 
simple arithmetic programming. In other words, it is pos 
sible to convert a logical operation to an arithmetic opera 
tion. A program containing millions of if-else logical tests 
can therefore be replaced by a single arithmetic formula. 
Thus, an ordinary processor could be used to run programs 
that have been designed elegantly and efficiently. 
0003 Microprocessors contain both combinational and 
sequential logic circuits. Physical logic gates contain 
elementary logic gates, which can be used to design logic 
circuits to perform specific Boolean operations. A computer 
program functions by using logic circuits, which implement 
Boolean logic. Furthermore, the functionality of software 
depends on the capability of the processor, which in turn 
depends on the number of logic gates it contains and on the 
extent to which the design of the logic circuits enables them 
to perform specified Boolean operations. It is known that 
Boolean logic is decidable; hence, for a given number of 
inputs the output would be either True or False. The question 
is whether it would be possible to develop software capable 
of performing the functions of logic circuits or processors. 
Our work confirms that it is possible to develop processor 
software with this capability. 

BRIEF SUMMARY OF THE INVENTION 

0004. An arithmetic formula is discovered that can be 
used to reduce logic to arithmetic. By using this arithmetic 
formula I have made two inventions, one of which is related 
to computer programming techniques for which it is known 
that decision trees can be replaced by Succinct arithmetic 
formulas. The other invention is related to new processor 
software that can either perform the functions of logic 
circuits or a hardware processor. In this work, we studied the 
elements required for the development of processor soft 
ware. The use of an arithmetic formula enables a logical 
algorithm to be reduced to an arithmetic algorithm without 
the use of logical trees, thereby converting a logical opera 
tion into an arithmetic operation. It is known that the 
processing speed of an arithmetic operation exceeds that of 
a logical operation; therefore, the conversion of a logical 
operation to an arithmetic operation leads to an increase in 
processing speed. A computer program containing millions 
of logical tests can be replaced by a simple arithmetic 
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program, enabling us to perform elegant and efficient pro 
gramming using an ordinary processor. 
0005. A computer program functions by using logic cir 
cuits, which implement Boolean logic. Functions relying on 
Boolean logic can be computed using arithmetic formulas by 
reducing the Boolean logic to simple arithmetic. This indi 
cates that by employing an arithmetic formula in a computer 
program, it would enable us to compute Boolean logic 
functions. The logic circuits are designed with the purpose 
of performing the specified Boolean operations. The mini 
mum requirement to execute a computer program is the 
presence of one or more logic circuits, the function of which 
can be replaced by using an arithmetic formula in the 
computer program. This indicates that there is no necessity 
for logic circuits. Thus, the task that is usually performed by 
logic circuits can be accomplished by employing a computer 
program using the arithmetic formula. Therefore, it is pos 
sible to develop software capable of performing the func 
tions of logic circuits or a hardware processor. 

BRIEF DESCRIPTION OF THE DRAWINGS 

0006 FIG. 1 is a flowchart of the computer program 
presented in example 1. In this case, the computer program 
contains a logical test. 
0007 FIG. 2 is a flowchart of the computer program 
presented in example 1. In this case, the decision trees have 
been replaced by the new arithmetic formula, which con 
verts the logical operation shown in FIG. 1 to an arithmetic 
operation. 

DETAILED DESCRIPTION 

0008. The following description is divided into two parts. 
Part I describes the computer programming techniques 
based on the new arithmetic formula in which the decision 
trees have been replaced by succinct arithmetic formulas. 
Part II describes the computation of Boolean logic functions 
using the new arithmetic formula. These two parts comprise 
the essential elements required for the development of 
processor Software. 
0009 Part I: Reduction of Logic to Arithmetic 
0010 For n number of inputs, is there any single math 
ematical formula capable of providing an affirmative or non 
affirmative output? As a result of our work, this has become 
possible because a mathematical formula has been found 
that can be used to reduce a logical algorithm to a simple 
algorithm that does not use logical trees, thereby converting 
a logical operation to an arithmetic operation. The formula 
enables us to express the decidable fragments of full first 
order logic as a single mathematical formula. Therefore, in 
a computer program, logical tests containing thousands of 
if-else statements can be replaced by a single mathematical 
equation using the proposed formula, which enables us to 
convert a decision algorithm into an algebraic manipulation 
or a mathematical equation. This changes the way in which 
algorithms, and hence programs, are designed. 
0011 Consider the function Y=(x|+|d+x)/(x|+|d+d). 
(1/e), where -OO<d-OO. 
Now, Y1=IY/log YI and Y2=Y1/log Y11, which for n 
number of terms becomes 

Taking the limit as n->OO yields, for x>d then Yn=e and Z=f. 
For X=d then Yn=1/e and Zg, for x<d then Yn=0 and Z=h. 
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0012. This result can be proven, but it is related to 
mathematics. We call Yn as a fundamental logic function 
and consider Yin as standard math library function. The 
function Z is given by 

Which can be written as Zaf-bg+ch, 
where a=(Yn-1/e)Yn/(e-1/e)e, b=(Yn-e)Yn/(1/e-e)(1/ 
e), and c=(Yn-e)(Yn-1/e). 
0013 Heref, g, and h are functions of X. This formula can 
be used to replace a decision algorithm by a simple algo 
rithm, which does not use decision trees. The fundamental 
logic function Yn(X, d), which depends on variable X and 
constant d, has the functions a, b, and c. Therefore, a, b, and 
c are also logic functions, i.e., they can only assume two 
values: either 0 or 1. Logic functions a, b, and c are 
considered standard math library functions and their use 
enables us to replace logical trees by a single mathematical 
equation. 
0014. If x>d then a-1, b=0, c=0 and Z becomes Z=f 
0015. If x d then b=1, c=0, a=0 and Z becomes Z=g 
0016. If x<d then c=1, a0, b=0 and Z becomes Z=h 
This indicates that the logical test has three possible out 
comes: greater than, equal to, or less than, where the term a 
indicates greater than, b indicates equal to, and c indicates 
less than. 
0017. If a program contains many logical tests then these 
can be converted into a single mathematical equation by 
replacing f, g, and h by Z1, Z2, and Z3, respectively, where 
Z1, Z2, and Z3 are of the same form as function Z. This can 
be clearly explained as follows. 
0018. The function Z has the independent variable x, 
which is compared with the constant d. In this case, the 
corresponding logic function is Yn, which depends on both 
X and d. The mathematical formula Z is expressed in terms 
of f, g, and h with logic function Yn, where f, g, and h are 
functions of X. Similarly, for the functions Z1, Z2, and Z3 
the independent variables are X1, X2, and X3 and the con 
stants are d1 d2, and d3, respectively. The corresponding 
logic functions are Yi, Y, and Yk, respectively. Now the 
function Z can be expressed as 

0019 where f1, g1, and h1 are functions of x1 and the 
logic function Yi depends on x1 and d1, respectively. The 
same applies to the formulas for Z2 and Z3: 

0020. The application of these principles to a program 
containing many logical tests can be illustrated with the 
following example. In the above formula for Z, if x>d is true 
then Z becomes Z=Z1 in which case the formula Z1 under 
goes a logical test as a result of the comparison of indepen 
dent variable X1 with constant d1. The final result will be 
Z=f1 or Z= g1 or Z=h1 depending upon the value of x1 and 
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d1. This demonstrates that it is possible to replace a program 
containing many logical tests with a single mathematical 
equation. 
0021 Programming techniques based on logic functions: 
0022. The C programming language was used to create 
examples to demonstrate the replacement of a logical test by 
a single mathematical equation. 

Example 1 

0023 Consider a program, written using C, in which f, g, 
and h are functions of X. This can be written as: 

main() 

0024. The flowchart representing this computer program 
is shown in FIG. 1. The use of the mathematical formula 
enables us to replace the logical if-else test by a single 
mathematical equation. The function Yn, which only has 
three values, namely e, 1/e, and 0 for the values x>d, X=d, 
and x<d, respectively, is responsible for the reduction of the 
logic to the arithmetic. This function is called as a logic 
function and, to ensure the simplicity of the program, the 
logic function Yin is considered a standard math library 
function. 

main() 

0025. The flowchart representing this computer program 
is shown in FIG. 2 Unlike the program shown in FIG. 1, this 
program does not contain a logical test. The fundamental 
logic function Yn converts a logical operation to an alge 
braic manipulation or mathematical equation. 

Example 2 

0026 Consider a program written in the C language in 
which p, q, r, s, and t are functions of X, and d1 d2, and d3 
are constants, where d1 >d2>.d3. In this program d1 d2, and 
d3 are not initially declared, because they are constant 
numbers. 
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0027 Programming can easily be accomplished by using 
logic functions a, b and c, which either have the value 0 or 
1. In the program presented above, the first logical test 
determines if x>d1, in which case the fundamental logic 
function for the variable x and constant d1 is Yi(x, d1). The 
corresponding logic functions are a1, b1, and c1, in which 
case if x>d1 then a1 =1, b1 =0, and c1 =0 else a1 =0. Similarly, 
in the second logical test, which determines if x=d1, then 
b1 =1, c1 =0, and a1 =0 else b1–0. In the third logical test, 
which determines if X >d2, the fundamental logic function 
for the variable x and constant d2 is Y(X, d2) and the 
corresponding logic functions are a2, b2, and c2. In this case 
if x>d2 then a2=1, b2–0, c2=0 else a2–0. The fourth logical 
test determines if x>d3, in which case the fundamental logic 
function for the variable x and constant d3 is Yk(x, d3) and 
the corresponding logic functions are a3, b3, and c3. In this 
case, if x>d3 then a3=1, b3=0, c3=0 else a3=0. 
0028. The logical trees in the above mentioned program 
can be replaced by a single mathematical equation which is 
given by Z=(a1p--b1c)+c1a2r+(b2+c2)(a35+(b3+c3)t) 
0029. Although this equation appears complicated, it is 
simple to formulate. Now, it becomes obvious how the 
functions in the program can be expressed as a single 
mathematical equation, which can be written as 

0030 The equations Z, h, and I assume the form of the 
reduction formula Zaf-bg+ch, which has three terms, and 
where the term a indicates greater than, b indicates equal to, 
c indicates less than. 

0031. In the above mentioned program, the first logical 
test determines if X >d1. If this is true then a1 =1, b1 =0, and 
c1=0; therefore, the first term of equation Z is alp. The 
second logical test determines if x=d 1 in which case b1 =1. 
c1=0, a 1–0; thus, the second term is big. If both of these tests 
are false, the third term clh is determined. In this case, the 
function h contains a logical test; hence, if X >d2 is true then 
the first term is a2r, but if X >d2 is not true then the next 
logical test determines if either X=d2 or x<d2. However, 
there is no logical test to determine if both of these functions 
are true. Therefore, the second and third terms are b2I and 
c2I, respectively. In the third term the function 1 contains a 
logical test to determine if x>d3 is true, in which case the 
first term is a35. If this test fails, then the next logical test 
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determines if either X=d3 or x<d3. However, there again is 
no logical test to determine if both of these functions are 
true. Therefore, the second and third terms are b3t and c3t, 
respectively. As the function t does not contain a logical test, 
the program finally terminates. 
0032 Consequently, it is possible to write a program in C 
using a single mathematical statement by using logic func 
tions (a1, b1, c1), (a2, b2, c2), and (a3, b3, c3): 

main() 

Example 3 

0033. In this example, the C language is used to demon 
strate a method in which a single mathematical statement 
containing AND and OR operations is used. The program 
uses functions p, q, r, and S, all of which are functions of X. 
The variables are X, X1, X2, X3, and X4, whereas d, d1 d2. 
d3, and d4 are constants. In this program, d, d1 d2, d3, and 
d4 are not declared in the initial statement, because they are 
COnStantS. 

main() 

0034. Now, the program provided above can be rewritten 
by using logic functions. The fundamental logic functions 
for the logical tests x>d, x1dd1, x2-d2, X3>d3, and X4-d4 
are Yi(x, d), Y(x1, d1), Yk(x2, d2), Y1(x3, d3), and Ym(x4, 
d4), respectively. The corresponding logic functions are (a, 
b,c), (a1, b1, c1), (a2, b2. c2), (a3, b3, c3), and (a4, b4, ca), 
respectively. 
0035 Consider the first logical test in the above men 
tioned program, which is if x>d && x1dd1). In this state 
ment, if both logical tests are true then the result of the whole 
statement is true. The comparison X >d represents a and 
x1dd 1 represents a1. Therefore, the overall result, which is 
true, is given by aa1. This is the only valid term for the AND 
operation. However, the logical test has three possible 
outcomes: greater than, equal to, or less than. Therefore, a 
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0036. In this case the only term that is true if both logical 
tests are true, is aal, which means that, for the remaining 
terms, of the outcome of the AND operation is false. In 
combination, the true and false results of the AND operation 
can be expressed as 

0037 Here the function h contains a logical test consist 
ing of an OR operation: if (x2-d2x3>d3), for which the 
comparison X2>d2 represents a2 and the comparison X3>d3 
represents a3. The result of this OR operation is true if either 
or both of the logical tests is true. 
0038 Assuming the outcome of the first logical test a2 of 

this OR operation is true, the second logical test of this 
operation has three possible outcomes: a3 or b3 or c3. For 
this combination, the true result of the OR operation has the 
terms a2(a3+b3+c3). Now, assuming a3 is true, then the first 
logical test of the OR operation has three possible outcomes: 
a2 orb2 or c2. For this combination, the true result of the OR 
operation contains the terms a3(a2+b2+c2). Therefore, the 
terms of the OR operation for which the result is true are 
given by a2(a3+b3+c3)+a3 (a2+b2+c2) 
0039. As the term a2a3 occurs twice in this result, it is 
only necessary to use it once; therefore, the terms become 

0040 All the terms, both true and false, resulting from 
the OR operation are obtained by expanding a2a3 to (a2+ 
b2+c2)(a3+b3+c3)-a2(a3+b3+c3)+a3(b2+c2)+(b2+c2)(b3+ 
c3), in which case it becomes possible to express the 
function h for both true and false results of the OR operation 
aS 

0041. In equation (2) the function I contains the logical 
test if x4-d4). The comparison X4->d4 indicates a4. If a4 is 
true then the result is given by a4r, but if the result of this 
test is false, then the logical test has two possible outcomes: 
either b4 or cA. However, there is no logical test to determine 
if both of these outcomes are true. Therefore, if X4-d4 is not 
true then the result is given by (b4+c4)s. Now, we can 
express the function I for both the true and false results of 
the logical test by 

0042. In equation (3), the functions does not contain a 
logical test. Therefore, the program finally terminates. Sub 
stituting function I in equation (2) and then Substituting 
function h in equation (1) leads to a single mathematical 
statement for the computer program given above: 

0.043 Again using the C language to reformulate the 
above mentioned program using a single mathematical equa 
tion, gives the following: 

main() 
{ 

float X, X1, X2, X3, X4, p, q, r, S, Z: 
printf(“Enter the numbers x, x1, x2, X3, X4''); 
scanf(“%fyofofofof, &X, &X1, &X2, &X3, &X4); 
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-continued 

0044) Therefore, the use of the proposed formula together 
with optimization techniques enables us to design elegant 
and efficient programs in which logical operations are 
reduced to arithmetic operations. This makes it possible to 
execute a complex program using an ordinary processor; 
hence, the Software can be developed to run on an ordinary 
processor. This approach to designing software would there 
fore be useful for tablet computers and other computing 
devices with ordinary processors. 
0045 Part II: Computation of Boolean Logic Functions 
Using Arithmetic Formulas 
0046. The computation of Boolean logic functions can be 
performed using an arithmetic formula. An arithmetic for 
mula capable of computing Boolean functions was found 
and its development is described in this part of the docu 
ment. This approach can also be used to solve the satisfi 
ability (SAT) problem. Simple logic circuits can be used to 
perform complex Boolean operations. Physical logic gates 
contain elementary logic gates that can be used to construct 
logic circuits to perform specified Boolean operations. As 
shown in Part I of this document, the use of an arithmetic 
formula enables us to perform AND, OR, and NOT elemen 
tary logical operations. The logic circuits implement Bool 
ean logic. The procedure for computing the Boolean func 
tion using an arithmetic formula involves the conversion of 
the binary input (O or 1) to decimal input, which is also 
provided in the format 0 or 1. With the aid of an arithmetic 
formula, a computer program can be used to compute the 
output in the same decimal format, namely 0 or 1. This 
decimal output is Subsequently converted back into binary 
form. In this procedure, the function performed by logic 
circuits is therefore replaced by the computation of an 
arithmetic formula. 

0047. The arithmetic formula can be used to perform 
Boolean operations ranging from elementary to complex. 
The purpose of designing combinational and sequential 
logic circuits, both of which are found in microprocessors, 
is to perform specified Boolean operations. It is possible to 
compute any Boolean logic function by using an arithmetic 
formula; in other words, an arithmetic formula can be used 
to perform the same Boolean operation that is performed by 
combinational and sequential logic circuits. All that is 
required to accomplish the task of logic circuits is a com 
puter program in which the arithmetic formula is imple 
mented. A computer program requires a minimum of one or 
more logic circuits to enable it to execute and the functions 
of these logic circuits can be replaced by an arithmetic 
formula in the computer program. Therefore, computer 
software can be developed to perform the functions of logic 
circuits, that is, to perform the function of the processor. This 
new kind of software is referred to as processor software. 
The functionality of any software depends on the capability 
of the processor on which the software is executed. In turn, 
the capability of the processor depends on the design of the 
logic circuits and the number of logic gates it contains. The 
use of processor software therefore enables us to develop 
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software for devices that do not necessarily have a powerful 
processor, such as mobile tablet computers and other similar 
computing devices. 
0.048 Consider the function 

where f, g, and h are functions of X. Setting fig enables us 
to express the arithmetic formula as 

where a={(Yn-1/e)Yn/(e-1/e)e}+{(Yn-e)Yn/(1/e-e)1/e} 
and b=(Yn-e)(Yn-1/e) 
Setting d=1 we find that for x>1, a-1, b=0; thus, Zg. 
Further, for x<1, a0, b=1; thus, Z=h. 
0049 Calling a and b as logic functions which depend on 
the fundamental logic function Yn(X, d), means the value of 
a and b can either be 0 or 1 (the binary number system only 
has only two values: 0 and 1 and the conversion of 0 and 1 
to decimal numbers also produces the values 0 and 1.) In this 
case, the decimal input is represented by X, which can either 
assume the value 0 or 1, which implies that there is no 
number greater than 1. In other words, X has a discrete value, 
which can be either 0 or 1. 
0050. Using logic functions a and b, we can express the 
Boolean function as an arithmetic formula. Next, the imple 
mentation of the arithmetic formula of a and b is demon 
strated for both combinational and sequential logic circuits. 
0051) NOT gate: 
0052. The Boolean function for a NOT gate is given by 
Q=A', where the binary input A has two values: either 0 or 
1. Using an arithmetic formula enables us to express the 
NOT function as Z-aF+bT, where g F and h-T. In this case, 
the decimal input is X, which either has the value 0 or 1. In 
the function, F represents false with a value of 0, whereas T 
represents true with a value of 1. The values of T and F are 
in the decimal number system; therefore, the output Z is also 
a decimal number. 
0053. The result of the operation is verified next. For 
binary input A=0 the binary output is Q=1 Converting the 
binary input A=0 to decimal input, which is x=0, the values 
a=0, b=1 are obtained for X=0, in which case Z=T. However, 
T=1, which means that Z=1, for which the decimal output is 
Z=1. After converting the decimal output to a binary num 
ber, the binary output is obtained as 1. 
0054 Similarly, for binary input A=1 the binary output is 
Q=0. Converting the binary input A=1 to decimal input, 
which is X=1, for which a-1, b=0; thus, Z=F. However, F=0, 
which means that Z=0, for which the decimal output is Z=0. 
After converting the decimal output to a binary number, the 
binary output is obtained as 0. 
0.055 AND gate: 
0056. The AND operation for two binary inputs A and B 
is given by Q=AB. The truth table for this Boolean function 
is given below in Table 1. 

TABLE 1. 

A. B Q = AB 

O O O 
O 1 O 
1 O O 
1 1 1 
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0057. It now becomes possible to compute this Boolean 
function by using an arithmetic operation. The decimal input 
corresponding to binary input A is X. The fundamental logic 
function for the variable x and constant d=1 is Yn(x,1). The 
corresponding logic functions are (a, b). The decimal input 
corresponding to binary input B is X1. The fundamental 
logic function for the variable x1 and constant d=1 is Ym(x1, 
1). The corresponding logic functions are (a1, b1). 
0058. In a logical AND operation, if both of the binary 
inputs are true then the result is also true. Furthermore, in the 
decimal number system the binary inputs for A=1 and B=1 
are X=1 and x1=1, respectively. The values of the corre 
sponding logic functions are a=1, b=0 and a1 =1, b1 =0, 
respectively. 
0059. The output of the AND operation for Q=AB, which 
in this case is true, is therefore given by aal. Expansion of 
the term a by (a+b) and a1 by (a1+b1) means that aa1 
becomes (a+b)(a1+b1)=aa1 +b(a1+b1)+ab 1. In this case the 
output term, which is true, is given by aal, whereas both of 
the remaining terms produce a false result for the AND 
operation. The arithmetic expression for the AND operation 
is given by: 

0060 For the expression Z, the values of T and F are 
expressed as decimal numbers. The values of T and F are 1 
and 0, respectively. The NAND operation can be expressed 
arithmetically by interchanging T and F: thus, Zaal F+ 
ab1+b(a1+b1) IT. 
0061 OR gate: 
0062. The OR operation for two binary inputs A and B is 
given by Q=A+B. The truth table for this Boolean function 
is given below in Table 2. 

TABLE 2 

A. B Q = A + B 

O O O 
O 1 1 
1 O 1 
1 1 1 

0063. This OR Boolean function is computed using an 
arithmetic operation. The decimal input corresponding to 
binary input A is variable x. The fundamental logic function 
for this variable and constant d=1 is Yn(x,1), for which the 
corresponding logic functions are (a, b). The decimal input 
corresponding to binary input B is X1. The fundamental 
logic function for variable x1 and constant d=1 is Ym(x1, 1), 
which has the corresponding logic functions (a1, b1). 
0064. In a logical OR operation, if both of the binary 
inputs are false then the overall result is false, otherwise the 
result is true. In the decimal number system the binary inputs 
for A=0 and B=0 are X=0 and x1=0, respectively. The values 
of the corresponding logic functions are b=1, a0 and b1 =1. 
a 1–0, respectively. 
0065. In this case, the output of the OR operation for 
Q=A+B, which is false, is given by bb1, which is expanded 
to give (a+b)(a1+b1)=bb1+a(a1+b1)+bal. Here, the output 
term, which is false, is given by bbl and the remaining terms 
represent the true results of the OR operation. The arithmetic 
expression for OR operation is given by 
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0066 Interchanging T and F leads to the arithmetic 
expression for the NOR operation, which is given by 
Z=alb+a(a1+b1)F +bb1T 
0067 Full Adder: 
0068. The Full Adder operation has binary inputs, namely 
A, B, and carry C. The operation has two outputs given by 
S=A+B+C, and CAB+C(A+B) The truth table of these data 

Boolean functions is given below in Table 3. 

TABLE 3 

A. B Cin Cout S 

O O O O O 
1 O O O 1 
O 1 O O 1 
1 1 O 1 O 
O O 1 O 1 
1 O 1 1 O 
O 1 1 1 O 
1 1 1 1 1 

0069. The two Boolean functions S and C are com 
puted using an arithmetic operation. The decimal inputs 
corresponding to binary inputs A, B, and C are X, X1, and 
x2, respectively. The fundamental logic functions for the 
variables x, x1, and x2 and constant d=1 are Y1(x,1), Ym(x1, 
1), and Yn(X2, 1), respectively, for which the corresponding 
logic functions are (a,b), (al, b1), and (a2, b2), respectively. 
0070 The binary numbers are 0 and 1, and have equiva 
lent values in the decimal number system of 0 and 1. 
Considering the inputs in the truth table for which the output 
of S is 1, the values x=1, x1=0, and x2=0 produce the output 
1, with the corresponding term of the true result given by 
ab1b2. The other inputs that also produce the output S=1, are 
x=0, x1 =1, and X2=0; x=0, x1=0, and X2=1; and X=1, X1 =1, 
and x2=1, with the corresponding terms of the true result 
given by ba1b2, bb1a2, and aa1a2, respectively. 
0071 Expanding aa1a2 to (a+b)(a1 +b1)(a2+b2), fol 
lowed by the grouping of the terms with true and false 
outcomes leads to the arithmetic expression for the Boolean 
function S: 

Similarly, the arithmetic expression for the Boolean function 
C is given by 

0072 JK FlipFlop: 
0073. The JK FlipFlop operation has two binary inputs J 
and K, and one clock signal Q. Its output is given by the 
Boolean function Q, JQ'+K'Q, the truth table of which is ext 

given below in Table 4. 

TABLE 4 

J K Q Qext 

O O O O 
O O 1 1 
O 1 O O 
O 1 1 O 
1 O O 1 
1 O 1 1 
1 1 O 1 
1 1 1 O 

Feb. 16, 2017 

0074 The Boolean function Q, is computed by using 
an arithmetic operation. The decimal inputs corresponding 
to the binary inputs J, K, and Q are X, X1, and X2, respec 
tively, and the fundamental logic functions for the variables 
X, X1, and x2 and constant d=1 are Y1(x,1), Ym(x1, 1), and 
Yn(X2, 1), respectively. The corresponding logic functions 
are (a,b), (a1, b1), and (a2, b2), respectively. The arithmetic 
expression for the Boolean function Q, is given by: 

0075. The above mentioned examples of combinational 
and sequential logic demonstrates that the function of com 
binational and sequential logic circuits can be replaced by 
computer programming by using arithmetic formulas a and 
b. The sequential logic is time dependent; hence, the output 
not only depends on the present value of its input signals but 
also on the past history of its inputs. It is also possible to 
express both the combinational and sequential logic as an 
arithmetic expression by observing the truth table of the 
function. If the Boolean formula it not known, but the truth 
table is available, then that Boolean function can be 
expressed as an arithmetic formula by grouping the terms 
with true and false outcomes together and using logic 
functions a and b; in other words, the SAT problem is solved. 
Thus, the use of simple logic circuits enables us to perform 
complex Boolean operations. 

0076. A microprocessor contains combinational and 
sequential logic circuits. We construct logic circuits to 
perform specified Boolean operations. In general, logic 
circuits perform both arithmetic and logical operations. A 
computer program functions by using logic circuits, which 
in turn implement Boolean logic. An arithmetic formula is 
found that can be used to reduce logic to arithmetic; in other 
words, we can compute Boolean functions using an arith 
metic formula. A computer program requires a minimum of 
one or more logic circuits to enable it to execute, and the 
functions of these logic circuits can be replaced by a 
computer program using an arithmetic formula. This obvi 
ates the need for logic circuits to perform a required Boolean 
operation. We have demonstrated that it is possible to 
replace the functions of logic gates and logic circuits. Such 
as Full Adder and JK FlipFlop, by arithmetic formulas. All 
that is required to accomplish the task of these elementary 
logic gates and circuits is a computer program using an 
arithmetic formula. Therefore, it becomes possible to 
develop software capable of performing the functions of 
logic circuits or the processor. This new type of Software is 
referred to as processor software. The capability of a pro 
cessor depends on the design of the logic circuits and the 
number of logic gates the processor contains. Similarly, the 
capability of processor Software depends on the way in 
which the software was developed and thus its ability to 
perform all the specified Boolean operations. In other words, 
the ability of processor software to perform all the specified 
Boolean operations is a measure of the capability of the 
processor software. Processors used in mobile tablets and 
computers have different capabilities. The use of arithmetic 
formulas to replace the function performed by logic circuits 
and logic gates therefore enables us to develop processor 
software for devices of any size, such as mobile, tablet 
computers, and all other computing devices. 
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1. A method to replace a decision algorithm by a simple 

algorithm, which does not use decision trees; comprises 
implementing logic functions, wherein the output of said 
logic functions have two values either 0 or 1. 

2. The method as claimed in claim 1, computation of 
Boolean logic functions can be made using an arithmetic 
formula. 

3. The method of claim 1, wherein the conversion of a 
logical operation to an arithmetic operation leads to an 
increase in the processing speed. 
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4. (canceled) 
5. (canceled) 
6. (canceled) 
7. (canceled) 
8. (canceled) 
9. The method of claim 1, wherein the use of logic 

functions enables us to develop efficient programs capable 
of running on an ordinary processor. 

10. The method of claim 2, wherein the Boolean formula 
it not known, but comprises the truth table; then that 
Boolean function can be expressed as an arithmetic formula 
by grouping the terms with true and false outcomes together 
and using logic functions a and b. 

11. A method to replace the functions of logic circuits by 
a computer program using the arithmetic formula, comprises 
a minimum of one or more logic circuits to execute a 
computer program; this enables us to develop software 
capable of performing the functions of logic circuits or 
hardware processors. 

12. The method of claim 11, wherein the different types of 
processor software that can be developed are determined by 
the capability of the processor, for these reasons, it is 
possible to develop processor software for mobile, tablet 
computers and any other computing devices. 

13. The method of claim 11, wherein the processor 
Software increases the performance of logic circuits or 
hardware processor. 


