
(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2017/0046126A1

KULKARN

US 201700.46126A1

(54) ELEMENTS OF PROCESSOR SOFTWARE

(71)

(72)

(21)

(22)

(86)

(60)

Applicant: Ranganath Gururaj KULKAR
Jamkhandi, Karnataka State (IN)

Inventor: Ranganath Gururaj KULKAR
Jamkhandi, Karnataka State (IN)

Appl. No.: 15/118,732

PCT Fed: Feb. 16, 2015

PCT No.: PCT/B2O15/051132

S 371 (c)(1),
(2) Date: Aug. 12, 2016

Related U.S. Application Data
Provisional application No. 61/941,681, filed
19, 2014.

NI,

NI,

On Feb.

START

l

(43) Pub. Date: Feb. 16, 2017

Publication Classification

(51) Int. Cl.
G06F 7/00 (2006.01)
HO3K (9/20 (2006.01)

(52) U.S. Cl.
CPC G06F 7700 (2013.01); H03K 19/20

(2013.01)
(57) ABSTRACT
An arithmetic formula is discovered that can be used to
reduce logic to arithmetic. The formula enables a logic
algorithm to be reduced to an arithmetic algorithm without
the use of logical trees, thereby converting a logical opera
tion to an arithmetic operation. The use of the arithmetic
formula enables the computation of functions that use Bool
ean logic. The operation of a computer program relies on
logic circuits, which in turn implement Boolean logic.
Considering that a computer program requires a minimum of
one or more logic circuits to execute, it now becomes
possible to replace the functions of these logic circuits by a
computer program implementing the arithmetic formula.
Therefore, it is possible to develop software that functions
similar to a real processor.

Input x and d

l

Patent Application Publication Feb. 16, 2017 Sheet 1 of 2 US 2017/0046126 A1

Compute fx'd
Z1=f

Compute g=x+d
Z2=g

Compute h=x-d
Z3=h

Patent Application Publication Feb. 16, 2017 Sheet 2 of 2 US 2017/0046126 A1

START

Input x and d

Compute f=x"d
g=x+d
hX-d

Compute
Z=af+bg+ch

S

t

FIG. 2

US 2017/0046126 A1

ELEMENTS OF PROCESSOR SOFTWARE

BACKGROUND OF THE INVENTION

0001. The field of invention is related to the elements
required for the development of processor software. The
elements are computer programming techniques and the
computation of Boolean logic functions using a new arith
metic formula.
0002. It was proven by Church and Turing that there is no
general solution for a decision problem. For n number of
inputs does any single mathematical formula capable of
affirming or not affirming an output exist? Would it be
possible to express the decidable fragments of full first order
logic as a single mathematical formula'? Numerous pub
lished research efforts indicate that decision trees can be
replaced by Succinct arithmetic formulas. In our work, we
apply a new arithmetic formula to reduce logic to arithmetic,
which is essential to elucidate the elements required for the
development of processor Software. As a logical algorithm
can be reduced to an arithmetic algorithm without using
logical trees, logical programming can be replaced by
simple arithmetic programming. In other words, it is pos
sible to convert a logical operation to an arithmetic opera
tion. A program containing millions of if-else logical tests
can therefore be replaced by a single arithmetic formula.
Thus, an ordinary processor could be used to run programs
that have been designed elegantly and efficiently.
0003 Microprocessors contain both combinational and
sequential logic circuits. Physical logic gates contain
elementary logic gates, which can be used to design logic
circuits to perform specific Boolean operations. A computer
program functions by using logic circuits, which implement
Boolean logic. Furthermore, the functionality of software
depends on the capability of the processor, which in turn
depends on the number of logic gates it contains and on the
extent to which the design of the logic circuits enables them
to perform specified Boolean operations. It is known that
Boolean logic is decidable; hence, for a given number of
inputs the output would be either True or False. The question
is whether it would be possible to develop software capable
of performing the functions of logic circuits or processors.
Our work confirms that it is possible to develop processor
software with this capability.

BRIEF SUMMARY OF THE INVENTION

0004. An arithmetic formula is discovered that can be
used to reduce logic to arithmetic. By using this arithmetic
formula I have made two inventions, one of which is related
to computer programming techniques for which it is known
that decision trees can be replaced by Succinct arithmetic
formulas. The other invention is related to new processor
software that can either perform the functions of logic
circuits or a hardware processor. In this work, we studied the
elements required for the development of processor soft
ware. The use of an arithmetic formula enables a logical
algorithm to be reduced to an arithmetic algorithm without
the use of logical trees, thereby converting a logical opera
tion into an arithmetic operation. It is known that the
processing speed of an arithmetic operation exceeds that of
a logical operation; therefore, the conversion of a logical
operation to an arithmetic operation leads to an increase in
processing speed. A computer program containing millions
of logical tests can be replaced by a simple arithmetic

Feb. 16, 2017

program, enabling us to perform elegant and efficient pro
gramming using an ordinary processor.
0005. A computer program functions by using logic cir
cuits, which implement Boolean logic. Functions relying on
Boolean logic can be computed using arithmetic formulas by
reducing the Boolean logic to simple arithmetic. This indi
cates that by employing an arithmetic formula in a computer
program, it would enable us to compute Boolean logic
functions. The logic circuits are designed with the purpose
of performing the specified Boolean operations. The mini
mum requirement to execute a computer program is the
presence of one or more logic circuits, the function of which
can be replaced by using an arithmetic formula in the
computer program. This indicates that there is no necessity
for logic circuits. Thus, the task that is usually performed by
logic circuits can be accomplished by employing a computer
program using the arithmetic formula. Therefore, it is pos
sible to develop software capable of performing the func
tions of logic circuits or a hardware processor.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 FIG. 1 is a flowchart of the computer program
presented in example 1. In this case, the computer program
contains a logical test.
0007 FIG. 2 is a flowchart of the computer program
presented in example 1. In this case, the decision trees have
been replaced by the new arithmetic formula, which con
verts the logical operation shown in FIG. 1 to an arithmetic
operation.

DETAILED DESCRIPTION

0008. The following description is divided into two parts.
Part I describes the computer programming techniques
based on the new arithmetic formula in which the decision
trees have been replaced by succinct arithmetic formulas.
Part II describes the computation of Boolean logic functions
using the new arithmetic formula. These two parts comprise
the essential elements required for the development of
processor Software.
0009 Part I: Reduction of Logic to Arithmetic
0010 For n number of inputs, is there any single math
ematical formula capable of providing an affirmative or non
affirmative output? As a result of our work, this has become
possible because a mathematical formula has been found
that can be used to reduce a logical algorithm to a simple
algorithm that does not use logical trees, thereby converting
a logical operation to an arithmetic operation. The formula
enables us to express the decidable fragments of full first
order logic as a single mathematical formula. Therefore, in
a computer program, logical tests containing thousands of
if-else statements can be replaced by a single mathematical
equation using the proposed formula, which enables us to
convert a decision algorithm into an algebraic manipulation
or a mathematical equation. This changes the way in which
algorithms, and hence programs, are designed.
0011 Consider the function Y=(x|+|d+x)/(x|+|d+d).
(1/e), where -OO<d-OO.
Now, Y1=IY/log YI and Y2=Y1/log Y11, which for n
number of terms becomes

Taking the limit as n->OO yields, for x>d then Yn=e and Z=f.
For X=d then Yn=1/e and Zg, for x<d then Yn=0 and Z=h.

US 2017/0046126 A1

0012. This result can be proven, but it is related to
mathematics. We call Yn as a fundamental logic function
and consider Yin as standard math library function. The
function Z is given by

Which can be written as Zaf-bg+ch,
where a=(Yn-1/e)Yn/(e-1/e)e, b=(Yn-e)Yn/(1/e-e)(1/
e), and c=(Yn-e)(Yn-1/e).
0013 Heref, g, and h are functions of X. This formula can
be used to replace a decision algorithm by a simple algo
rithm, which does not use decision trees. The fundamental
logic function Yn(X, d), which depends on variable X and
constant d, has the functions a, b, and c. Therefore, a, b, and
c are also logic functions, i.e., they can only assume two
values: either 0 or 1. Logic functions a, b, and c are
considered standard math library functions and their use
enables us to replace logical trees by a single mathematical
equation.
0014. If x>d then a-1, b=0, c=0 and Z becomes Z=f
0015. If x d then b=1, c=0, a=0 and Z becomes Z=g
0016. If x<d then c=1, a0, b=0 and Z becomes Z=h
This indicates that the logical test has three possible out
comes: greater than, equal to, or less than, where the term a
indicates greater than, b indicates equal to, and c indicates
less than.
0017. If a program contains many logical tests then these
can be converted into a single mathematical equation by
replacing f, g, and h by Z1, Z2, and Z3, respectively, where
Z1, Z2, and Z3 are of the same form as function Z. This can
be clearly explained as follows.
0018. The function Z has the independent variable x,
which is compared with the constant d. In this case, the
corresponding logic function is Yn, which depends on both
X and d. The mathematical formula Z is expressed in terms
of f, g, and h with logic function Yn, where f, g, and h are
functions of X. Similarly, for the functions Z1, Z2, and Z3
the independent variables are X1, X2, and X3 and the con
stants are d1 d2, and d3, respectively. The corresponding
logic functions are Yi, Y, and Yk, respectively. Now the
function Z can be expressed as

0019 where f1, g1, and h1 are functions of x1 and the
logic function Yi depends on x1 and d1, respectively. The
same applies to the formulas for Z2 and Z3:

0020. The application of these principles to a program
containing many logical tests can be illustrated with the
following example. In the above formula for Z, if x>d is true
then Z becomes Z=Z1 in which case the formula Z1 under
goes a logical test as a result of the comparison of indepen
dent variable X1 with constant d1. The final result will be
Z=f1 or Z= g1 or Z=h1 depending upon the value of x1 and

Feb. 16, 2017

d1. This demonstrates that it is possible to replace a program
containing many logical tests with a single mathematical
equation.
0021 Programming techniques based on logic functions:
0022. The C programming language was used to create
examples to demonstrate the replacement of a logical test by
a single mathematical equation.

Example 1

0023 Consider a program, written using C, in which f, g,
and h are functions of X. This can be written as:

main()

0024. The flowchart representing this computer program
is shown in FIG. 1. The use of the mathematical formula
enables us to replace the logical if-else test by a single
mathematical equation. The function Yn, which only has
three values, namely e, 1/e, and 0 for the values x>d, X=d,
and x<d, respectively, is responsible for the reduction of the
logic to the arithmetic. This function is called as a logic
function and, to ensure the simplicity of the program, the
logic function Yin is considered a standard math library
function.

main()

0025. The flowchart representing this computer program
is shown in FIG. 2 Unlike the program shown in FIG. 1, this
program does not contain a logical test. The fundamental
logic function Yn converts a logical operation to an alge
braic manipulation or mathematical equation.

Example 2

0026 Consider a program written in the C language in
which p, q, r, s, and t are functions of X, and d1 d2, and d3
are constants, where d1 >d2>.d3. In this program d1 d2, and
d3 are not initially declared, because they are constant
numbers.

US 2017/0046126 A1

0027 Programming can easily be accomplished by using
logic functions a, b and c, which either have the value 0 or
1. In the program presented above, the first logical test
determines if x>d1, in which case the fundamental logic
function for the variable x and constant d1 is Yi(x, d1). The
corresponding logic functions are a1, b1, and c1, in which
case if x>d1 then a1 =1, b1 =0, and c1 =0 else a1 =0. Similarly,
in the second logical test, which determines if x=d1, then
b1 =1, c1 =0, and a1 =0 else b1–0. In the third logical test,
which determines if X >d2, the fundamental logic function
for the variable x and constant d2 is Y(X, d2) and the
corresponding logic functions are a2, b2, and c2. In this case
if x>d2 then a2=1, b2–0, c2=0 else a2–0. The fourth logical
test determines if x>d3, in which case the fundamental logic
function for the variable x and constant d3 is Yk(x, d3) and
the corresponding logic functions are a3, b3, and c3. In this
case, if x>d3 then a3=1, b3=0, c3=0 else a3=0.
0028. The logical trees in the above mentioned program
can be replaced by a single mathematical equation which is
given by Z=(a1p--b1c)+c1a2r+(b2+c2)(a35+(b3+c3)t)
0029. Although this equation appears complicated, it is
simple to formulate. Now, it becomes obvious how the
functions in the program can be expressed as a single
mathematical equation, which can be written as

0030 The equations Z, h, and I assume the form of the
reduction formula Zaf-bg+ch, which has three terms, and
where the term a indicates greater than, b indicates equal to,
c indicates less than.

0031. In the above mentioned program, the first logical
test determines if X >d1. If this is true then a1 =1, b1 =0, and
c1=0; therefore, the first term of equation Z is alp. The
second logical test determines if x=d 1 in which case b1 =1.
c1=0, a 1–0; thus, the second term is big. If both of these tests
are false, the third term clh is determined. In this case, the
function h contains a logical test; hence, if X >d2 is true then
the first term is a2r, but if X >d2 is not true then the next
logical test determines if either X=d2 or x<d2. However,
there is no logical test to determine if both of these functions
are true. Therefore, the second and third terms are b2I and
c2I, respectively. In the third term the function 1 contains a
logical test to determine if x>d3 is true, in which case the
first term is a35. If this test fails, then the next logical test

Feb. 16, 2017

determines if either X=d3 or x<d3. However, there again is
no logical test to determine if both of these functions are
true. Therefore, the second and third terms are b3t and c3t,
respectively. As the function t does not contain a logical test,
the program finally terminates.
0032 Consequently, it is possible to write a program in C
using a single mathematical statement by using logic func
tions (a1, b1, c1), (a2, b2, c2), and (a3, b3, c3):

main()

Example 3

0033. In this example, the C language is used to demon
strate a method in which a single mathematical statement
containing AND and OR operations is used. The program
uses functions p, q, r, and S, all of which are functions of X.
The variables are X, X1, X2, X3, and X4, whereas d, d1 d2.
d3, and d4 are constants. In this program, d, d1 d2, d3, and
d4 are not declared in the initial statement, because they are
COnStantS.

main()

0034. Now, the program provided above can be rewritten
by using logic functions. The fundamental logic functions
for the logical tests x>d, x1dd1, x2-d2, X3>d3, and X4-d4
are Yi(x, d), Y(x1, d1), Yk(x2, d2), Y1(x3, d3), and Ym(x4,
d4), respectively. The corresponding logic functions are (a,
b,c), (a1, b1, c1), (a2, b2. c2), (a3, b3, c3), and (a4, b4, ca),
respectively.
0035 Consider the first logical test in the above men
tioned program, which is if x>d && x1dd1). In this state
ment, if both logical tests are true then the result of the whole
statement is true. The comparison X >d represents a and
x1dd 1 represents a1. Therefore, the overall result, which is
true, is given by aa1. This is the only valid term for the AND
operation. However, the logical test has three possible
outcomes: greater than, equal to, or less than. Therefore, a

US 2017/0046126 A1

0036. In this case the only term that is true if both logical
tests are true, is aal, which means that, for the remaining
terms, of the outcome of the AND operation is false. In
combination, the true and false results of the AND operation
can be expressed as

0037 Here the function h contains a logical test consist
ing of an OR operation: if (x2-d2x3>d3), for which the
comparison X2>d2 represents a2 and the comparison X3>d3
represents a3. The result of this OR operation is true if either
or both of the logical tests is true.
0038 Assuming the outcome of the first logical test a2 of

this OR operation is true, the second logical test of this
operation has three possible outcomes: a3 or b3 or c3. For
this combination, the true result of the OR operation has the
terms a2(a3+b3+c3). Now, assuming a3 is true, then the first
logical test of the OR operation has three possible outcomes:
a2 orb2 or c2. For this combination, the true result of the OR
operation contains the terms a3(a2+b2+c2). Therefore, the
terms of the OR operation for which the result is true are
given by a2(a3+b3+c3)+a3 (a2+b2+c2)
0039. As the term a2a3 occurs twice in this result, it is
only necessary to use it once; therefore, the terms become

0040 All the terms, both true and false, resulting from
the OR operation are obtained by expanding a2a3 to (a2+
b2+c2)(a3+b3+c3)-a2(a3+b3+c3)+a3(b2+c2)+(b2+c2)(b3+
c3), in which case it becomes possible to express the
function h for both true and false results of the OR operation
aS

0041. In equation (2) the function I contains the logical
test if x4-d4). The comparison X4->d4 indicates a4. If a4 is
true then the result is given by a4r, but if the result of this
test is false, then the logical test has two possible outcomes:
either b4 or cA. However, there is no logical test to determine
if both of these outcomes are true. Therefore, if X4-d4 is not
true then the result is given by (b4+c4)s. Now, we can
express the function I for both the true and false results of
the logical test by

0042. In equation (3), the functions does not contain a
logical test. Therefore, the program finally terminates. Sub
stituting function I in equation (2) and then Substituting
function h in equation (1) leads to a single mathematical
statement for the computer program given above:

0.043 Again using the C language to reformulate the
above mentioned program using a single mathematical equa
tion, gives the following:

main()
{

float X, X1, X2, X3, X4, p, q, r, S, Z:
printf(“Enter the numbers x, x1, x2, X3, X4'');
scanf(“%fyofofofof, &X, &X1, &X2, &X3, &X4);

Feb. 16, 2017

-continued

0044) Therefore, the use of the proposed formula together
with optimization techniques enables us to design elegant
and efficient programs in which logical operations are
reduced to arithmetic operations. This makes it possible to
execute a complex program using an ordinary processor;
hence, the Software can be developed to run on an ordinary
processor. This approach to designing software would there
fore be useful for tablet computers and other computing
devices with ordinary processors.
0045 Part II: Computation of Boolean Logic Functions
Using Arithmetic Formulas
0046. The computation of Boolean logic functions can be
performed using an arithmetic formula. An arithmetic for
mula capable of computing Boolean functions was found
and its development is described in this part of the docu
ment. This approach can also be used to solve the satisfi
ability (SAT) problem. Simple logic circuits can be used to
perform complex Boolean operations. Physical logic gates
contain elementary logic gates that can be used to construct
logic circuits to perform specified Boolean operations. As
shown in Part I of this document, the use of an arithmetic
formula enables us to perform AND, OR, and NOT elemen
tary logical operations. The logic circuits implement Bool
ean logic. The procedure for computing the Boolean func
tion using an arithmetic formula involves the conversion of
the binary input (O or 1) to decimal input, which is also
provided in the format 0 or 1. With the aid of an arithmetic
formula, a computer program can be used to compute the
output in the same decimal format, namely 0 or 1. This
decimal output is Subsequently converted back into binary
form. In this procedure, the function performed by logic
circuits is therefore replaced by the computation of an
arithmetic formula.

0047. The arithmetic formula can be used to perform
Boolean operations ranging from elementary to complex.
The purpose of designing combinational and sequential
logic circuits, both of which are found in microprocessors,
is to perform specified Boolean operations. It is possible to
compute any Boolean logic function by using an arithmetic
formula; in other words, an arithmetic formula can be used
to perform the same Boolean operation that is performed by
combinational and sequential logic circuits. All that is
required to accomplish the task of logic circuits is a com
puter program in which the arithmetic formula is imple
mented. A computer program requires a minimum of one or
more logic circuits to enable it to execute and the functions
of these logic circuits can be replaced by an arithmetic
formula in the computer program. Therefore, computer
software can be developed to perform the functions of logic
circuits, that is, to perform the function of the processor. This
new kind of software is referred to as processor software.
The functionality of any software depends on the capability
of the processor on which the software is executed. In turn,
the capability of the processor depends on the design of the
logic circuits and the number of logic gates it contains. The
use of processor software therefore enables us to develop

US 2017/0046126 A1

software for devices that do not necessarily have a powerful
processor, such as mobile tablet computers and other similar
computing devices.
0.048 Consider the function

where f, g, and h are functions of X. Setting fig enables us
to express the arithmetic formula as

where a={(Yn-1/e)Yn/(e-1/e)e}+{(Yn-e)Yn/(1/e-e)1/e}
and b=(Yn-e)(Yn-1/e)
Setting d=1 we find that for x>1, a-1, b=0; thus, Zg.
Further, for x<1, a0, b=1; thus, Z=h.
0049 Calling a and b as logic functions which depend on
the fundamental logic function Yn(X, d), means the value of
a and b can either be 0 or 1 (the binary number system only
has only two values: 0 and 1 and the conversion of 0 and 1
to decimal numbers also produces the values 0 and 1.) In this
case, the decimal input is represented by X, which can either
assume the value 0 or 1, which implies that there is no
number greater than 1. In other words, X has a discrete value,
which can be either 0 or 1.
0050. Using logic functions a and b, we can express the
Boolean function as an arithmetic formula. Next, the imple
mentation of the arithmetic formula of a and b is demon
strated for both combinational and sequential logic circuits.
0051) NOT gate:
0052. The Boolean function for a NOT gate is given by
Q=A', where the binary input A has two values: either 0 or
1. Using an arithmetic formula enables us to express the
NOT function as Z-aF+bT, where g F and h-T. In this case,
the decimal input is X, which either has the value 0 or 1. In
the function, F represents false with a value of 0, whereas T
represents true with a value of 1. The values of T and F are
in the decimal number system; therefore, the output Z is also
a decimal number.
0053. The result of the operation is verified next. For
binary input A=0 the binary output is Q=1 Converting the
binary input A=0 to decimal input, which is x=0, the values
a=0, b=1 are obtained for X=0, in which case Z=T. However,
T=1, which means that Z=1, for which the decimal output is
Z=1. After converting the decimal output to a binary num
ber, the binary output is obtained as 1.
0054 Similarly, for binary input A=1 the binary output is
Q=0. Converting the binary input A=1 to decimal input,
which is X=1, for which a-1, b=0; thus, Z=F. However, F=0,
which means that Z=0, for which the decimal output is Z=0.
After converting the decimal output to a binary number, the
binary output is obtained as 0.
0.055 AND gate:
0056. The AND operation for two binary inputs A and B
is given by Q=AB. The truth table for this Boolean function
is given below in Table 1.

TABLE 1.

A. B Q = AB

O O O
O 1 O
1 O O
1 1 1

Feb. 16, 2017

0057. It now becomes possible to compute this Boolean
function by using an arithmetic operation. The decimal input
corresponding to binary input A is X. The fundamental logic
function for the variable x and constant d=1 is Yn(x,1). The
corresponding logic functions are (a, b). The decimal input
corresponding to binary input B is X1. The fundamental
logic function for the variable x1 and constant d=1 is Ym(x1,
1). The corresponding logic functions are (a1, b1).
0058. In a logical AND operation, if both of the binary
inputs are true then the result is also true. Furthermore, in the
decimal number system the binary inputs for A=1 and B=1
are X=1 and x1=1, respectively. The values of the corre
sponding logic functions are a=1, b=0 and a1 =1, b1 =0,
respectively.
0059. The output of the AND operation for Q=AB, which
in this case is true, is therefore given by aal. Expansion of
the term a by (a+b) and a1 by (a1+b1) means that aa1
becomes (a+b)(a1+b1)=aa1 +b(a1+b1)+ab 1. In this case the
output term, which is true, is given by aal, whereas both of
the remaining terms produce a false result for the AND
operation. The arithmetic expression for the AND operation
is given by:

0060 For the expression Z, the values of T and F are
expressed as decimal numbers. The values of T and F are 1
and 0, respectively. The NAND operation can be expressed
arithmetically by interchanging T and F: thus, Zaal F+
ab1+b(a1+b1) IT.
0061 OR gate:
0062. The OR operation for two binary inputs A and B is
given by Q=A+B. The truth table for this Boolean function
is given below in Table 2.

TABLE 2

A. B Q = A + B

O O O
O 1 1
1 O 1
1 1 1

0063. This OR Boolean function is computed using an
arithmetic operation. The decimal input corresponding to
binary input A is variable x. The fundamental logic function
for this variable and constant d=1 is Yn(x,1), for which the
corresponding logic functions are (a, b). The decimal input
corresponding to binary input B is X1. The fundamental
logic function for variable x1 and constant d=1 is Ym(x1, 1),
which has the corresponding logic functions (a1, b1).
0064. In a logical OR operation, if both of the binary
inputs are false then the overall result is false, otherwise the
result is true. In the decimal number system the binary inputs
for A=0 and B=0 are X=0 and x1=0, respectively. The values
of the corresponding logic functions are b=1, a0 and b1 =1.
a 1–0, respectively.
0065. In this case, the output of the OR operation for
Q=A+B, which is false, is given by bb1, which is expanded
to give (a+b)(a1+b1)=bb1+a(a1+b1)+bal. Here, the output
term, which is false, is given by bbl and the remaining terms
represent the true results of the OR operation. The arithmetic
expression for OR operation is given by

US 2017/0046126 A1

0066 Interchanging T and F leads to the arithmetic
expression for the NOR operation, which is given by
Z=alb+a(a1+b1)F +bb1T
0067 Full Adder:
0068. The Full Adder operation has binary inputs, namely
A, B, and carry C. The operation has two outputs given by
S=A+B+C, and CAB+C(A+B) The truth table of these data

Boolean functions is given below in Table 3.

TABLE 3

A. B Cin Cout S

O O O O O
1 O O O 1
O 1 O O 1
1 1 O 1 O
O O 1 O 1
1 O 1 1 O
O 1 1 1 O
1 1 1 1 1

0069. The two Boolean functions S and C are com
puted using an arithmetic operation. The decimal inputs
corresponding to binary inputs A, B, and C are X, X1, and
x2, respectively. The fundamental logic functions for the
variables x, x1, and x2 and constant d=1 are Y1(x,1), Ym(x1,
1), and Yn(X2, 1), respectively, for which the corresponding
logic functions are (a,b), (al, b1), and (a2, b2), respectively.
0070 The binary numbers are 0 and 1, and have equiva
lent values in the decimal number system of 0 and 1.
Considering the inputs in the truth table for which the output
of S is 1, the values x=1, x1=0, and x2=0 produce the output
1, with the corresponding term of the true result given by
ab1b2. The other inputs that also produce the output S=1, are
x=0, x1 =1, and X2=0; x=0, x1=0, and X2=1; and X=1, X1 =1,
and x2=1, with the corresponding terms of the true result
given by ba1b2, bb1a2, and aa1a2, respectively.
0071 Expanding aa1a2 to (a+b)(a1 +b1)(a2+b2), fol
lowed by the grouping of the terms with true and false
outcomes leads to the arithmetic expression for the Boolean
function S:

Similarly, the arithmetic expression for the Boolean function
C is given by

0072 JK FlipFlop:
0073. The JK FlipFlop operation has two binary inputs J
and K, and one clock signal Q. Its output is given by the
Boolean function Q, JQ'+K'Q, the truth table of which is ext

given below in Table 4.

TABLE 4

J K Q Qext

O O O O
O O 1 1
O 1 O O
O 1 1 O
1 O O 1
1 O 1 1
1 1 O 1
1 1 1 O

Feb. 16, 2017

0074 The Boolean function Q, is computed by using
an arithmetic operation. The decimal inputs corresponding
to the binary inputs J, K, and Q are X, X1, and X2, respec
tively, and the fundamental logic functions for the variables
X, X1, and x2 and constant d=1 are Y1(x,1), Ym(x1, 1), and
Yn(X2, 1), respectively. The corresponding logic functions
are (a,b), (a1, b1), and (a2, b2), respectively. The arithmetic
expression for the Boolean function Q, is given by:

0075. The above mentioned examples of combinational
and sequential logic demonstrates that the function of com
binational and sequential logic circuits can be replaced by
computer programming by using arithmetic formulas a and
b. The sequential logic is time dependent; hence, the output
not only depends on the present value of its input signals but
also on the past history of its inputs. It is also possible to
express both the combinational and sequential logic as an
arithmetic expression by observing the truth table of the
function. If the Boolean formula it not known, but the truth
table is available, then that Boolean function can be
expressed as an arithmetic formula by grouping the terms
with true and false outcomes together and using logic
functions a and b; in other words, the SAT problem is solved.
Thus, the use of simple logic circuits enables us to perform
complex Boolean operations.

0076. A microprocessor contains combinational and
sequential logic circuits. We construct logic circuits to
perform specified Boolean operations. In general, logic
circuits perform both arithmetic and logical operations. A
computer program functions by using logic circuits, which
in turn implement Boolean logic. An arithmetic formula is
found that can be used to reduce logic to arithmetic; in other
words, we can compute Boolean functions using an arith
metic formula. A computer program requires a minimum of
one or more logic circuits to enable it to execute, and the
functions of these logic circuits can be replaced by a
computer program using an arithmetic formula. This obvi
ates the need for logic circuits to perform a required Boolean
operation. We have demonstrated that it is possible to
replace the functions of logic gates and logic circuits. Such
as Full Adder and JK FlipFlop, by arithmetic formulas. All
that is required to accomplish the task of these elementary
logic gates and circuits is a computer program using an
arithmetic formula. Therefore, it becomes possible to
develop software capable of performing the functions of
logic circuits or the processor. This new type of Software is
referred to as processor software. The capability of a pro
cessor depends on the design of the logic circuits and the
number of logic gates the processor contains. Similarly, the
capability of processor Software depends on the way in
which the software was developed and thus its ability to
perform all the specified Boolean operations. In other words,
the ability of processor software to perform all the specified
Boolean operations is a measure of the capability of the
processor software. Processors used in mobile tablets and
computers have different capabilities. The use of arithmetic
formulas to replace the function performed by logic circuits
and logic gates therefore enables us to develop processor
software for devices of any size, such as mobile, tablet
computers, and all other computing devices.

US 2017/0046126 A1

REFERENCES

0077. 1. Turing, A. M. “On Computable Numbers, with
an Application to the Entscheidungsproblem”. Proceed
ings of the London Mathematical Society, series 2, 42
(1936-37), 230-265.

0078 2. Church, A. “A Note on the Entscheidungsprob
lem.” J. Symb. Logic 1 (1936) 40-41.

0079. 3. Gödel, K. “On Formally Undecidable Proposi
tions of Principia Mathematica and Related Systems I”.
Monatshefte firMathematik und Physik 38 (1931), 173
198.

0080. 4. Kulkarni, R. G. “Expression for the Mathemati
cal Constant e”. viXra: 1109.0054 (see, http://vixra.orq/
abs/1109.0054)(September 2011).

I0081 5. Copeland, B.J. (editor) “The Essential Turing.
Clarendon Press, 2004.

0082 6. Hilbert, D. “Mathematical Problems”. Lecture
delivered before the International Congress of Mathema
ticians at Paris in 1900, English translation by Mary W.
Newson, Bull. Amer. Math. Soc. 8 (1902), 437-479
1. A method to replace a decision algorithm by a simple

algorithm, which does not use decision trees; comprises
implementing logic functions, wherein the output of said
logic functions have two values either 0 or 1.

2. The method as claimed in claim 1, computation of
Boolean logic functions can be made using an arithmetic
formula.

3. The method of claim 1, wherein the conversion of a
logical operation to an arithmetic operation leads to an
increase in the processing speed.

Feb. 16, 2017

4. (canceled)
5. (canceled)
6. (canceled)
7. (canceled)
8. (canceled)
9. The method of claim 1, wherein the use of logic

functions enables us to develop efficient programs capable
of running on an ordinary processor.

10. The method of claim 2, wherein the Boolean formula
it not known, but comprises the truth table; then that
Boolean function can be expressed as an arithmetic formula
by grouping the terms with true and false outcomes together
and using logic functions a and b.

11. A method to replace the functions of logic circuits by
a computer program using the arithmetic formula, comprises
a minimum of one or more logic circuits to execute a
computer program; this enables us to develop software
capable of performing the functions of logic circuits or
hardware processors.

12. The method of claim 11, wherein the different types of
processor software that can be developed are determined by
the capability of the processor, for these reasons, it is
possible to develop processor software for mobile, tablet
computers and any other computing devices.

13. The method of claim 11, wherein the processor
Software increases the performance of logic circuits or
hardware processor.

