(19)中华人民共和国国家知识产权局

(12)发明专利

(10)授权公告号 CN 108125272 B (45)授权公告日 2020.05.22

- (21)申请号 201711324768.4
- (22)申请日 2017.12.13
- (65)同一申请的已公布的文献号 申请公布号 CN 108125272 A
- (43)申请公布日 2018.06.08
- (73)专利权人 江西中烟工业有限责任公司 地址 330096 江西省南昌市高新开发区京 东大道201号金圣工业科技园
- (72)**发明人** 谭明杰 苏加坤 徐达 罗娟敏 范安平
- (51) Int.CI.

A24B 3/14(2006.01) *A24B* 15/30(2006.01)

(56)对比文件

CN 101283837 A,2008.10.15,

- CN 106820244 A,2017.06.13,
- CN 1957777 A,2007.05.09,
- CN 105326086 A,2016.02.17,
- US 3513857 A,1970.05.26,

审查员 朱丽华

权利要求书1页 说明书5页

(54)发明名称

一种造纸法再造烟叶的制备方法

(57)摘要

本发明提供了一种造纸法再造烟叶的制备方法,包括以下步骤:将烟梗、茶叶渣和苍术混合搅碎,用水浸泡,萃取得固体和提取液,将固体打磨成浆,得浆料,将浆料加入葡萄糖氧化酶和果胶酶发酵12~72小时,置入抄片机,得片基,向提取液中加入丙二醇和脯氨酸,浓缩,得涂布液,将涂布液涂布于片基上,烘干得造纸法再造烟叶,原料选用烟梗、茶叶渣和苍术,能有效改善制得卷烟的感官质量,同时降低烟气中的有害物质,在制成片基前同时加入葡萄糖氧化酶和果胶酶发酵,能大大降低所制得的卷烟烟气中的有害物质。

- 1.一种造纸法再造烟叶的制备方法,其特征在于,包括以下步骤:
- (1)将烟梗、茶叶渣和苍术混合搅碎,用水浸泡,萃取得固体和提取液,将固体打磨成浆,得浆料;
 - (2)将浆料加入葡萄糖氧化酶和果胶酶发酵12~72小时,置入抄片机,得片基;
 - (3) 向提取液中加入丙二醇和脯氨酸,浓缩,得涂布液;
 - (4) 将涂布液涂布于片基上,烘干得造纸法再造烟叶;

所述步骤(1)中的烟梗、茶叶渣和苍术的质量比为10~20:10~20:2~5:

所述步骤(2)中的葡萄糖氧化酶和果胶酶的总质量为浆料质量的0.5%~1%,葡萄糖氧化酶和果胶酶的质量比为1:3;

所述步骤(3)中丙二醇和脯氨酸的总质量为提取液的10~20%,丙二醇和脯氨酸的质量 比为1:1。

- 2.根据权利要求1所述的一种造纸法再造烟叶的制备方法,其特征在于,所述步骤(1)中的打磨成浆的打磨度为25~30°SR。
- 3.根据权利要求1所述的一种造纸法再造烟叶的制备方法,其特征在于,所述步骤(2)中的发酵温度为30~60℃。

一种造纸法再造烟叶的制备方法

技术领域

[0001] 本发明属于再造烟叶技术领域,具体涉及一种造纸法再造烟叶的制备方法。

背景技术

[0002] 再造烟叶又称重组烟叶、烟草薄片、均质烟叶等,主要原料是烟梗、水平、烟末等,通过回收再利用制得再造烟叶。造纸法再造烟叶是卷烟配方中的重要配方之一,作为一种卷烟减害降焦的有效辅料,在卷烟配方中的掺配使用比例已经高达15~30%。

[0003] 授权号CN 105661621B公开了一种全梗造纸法再造烟叶的制备方法,其原料完全采用梗物,降低了原料成本,但所得再造烟叶制得的卷烟口感较差,且烟气中有害物质含量较高。申请号201010524106.3公开了降低造纸法再造烟叶一氧化碳释放量的方法,通过添加碱金属无机盐实现降低一氧化碳释放量的目的,但其降低的幅度较小,并不能解决烟气中一氧化碳含量较高的问题。授权号CN103251125B公开了一种优质功能性造纸法再造烟叶的制造方法,对再造烟叶浆料制备时进行生物酶处理,使烟草纤维素完整,同时降低浆液中蛋白质和果胶的含量,利于薄片的生产,但其所得卷烟烟气中的有害物质含量较高。

发明内容

[0004] 为了解决现有技术中的不足,本发明提供一种造纸法再造烟叶的制备方法。

[0005] 本发明采用的技术方案是:一种造纸法再造烟叶的制备方法,包括以下步骤:

[0006] (1)将烟梗、茶叶渣和苍术混合搅碎,用水浸泡,萃取得固体和提取液,将固体打磨成浆,得浆料:

[0007] (2) 将浆料加入葡萄糖氧化酶和果胶酶发酵12~72小时,置入抄片机,得片基;

[0008] (3)向提取液中加入丙二醇和脯氨酸,浓缩,得涂布液:

[0009] (4) 将涂布液涂布于片基上,烘干得造纸法再造烟叶。

[0010] 进一步地,所述步骤 (1) 中的烟梗、茶叶渣和苍术的质量比为 $10\sim20:10\sim20:2\sim5$ 。

[0011] 进一步地,所述步骤(1)中的打磨成浆的打磨度为25~30°SR。

[0012] 进一步地,所述步骤(2)中的葡萄糖氧化酶和果胶酶的总质量为浆料质量的0.5% ~1%,葡萄糖氧化酶和果胶酶的质量比为1:3。

[0013] 进一步地,所述步骤(2)中的发酵温度为30~60℃。

[0014] 进一步地,所述步骤(3)中丙二醇和脯氨酸的总质量为提取液的 $10\sim20\%$,丙二醇和脯氨酸的质量比为1:1。

[0015] 与现有技术相比,本发明的有益效果是:

[0016] (1) 原料选用烟梗、茶叶渣和苍术,能有效改善制得卷烟的感官质量,同时降低烟气中的有害物质:

[0017] (2) 在制成片基前同时加入葡萄糖氧化酶和果胶酶发酵,能大大降低所制得的卷烟烟气中的有害物质:

[0018] (3)通过丙二醇和脯氨酸能进一步改善所制得的卷烟的感官质量。

具体实施方式

[0019] 以下结合实施例对本发明作进一步详细描述。

[0020] 实施例1

[0021] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0022] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为10:10:2,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为25°SR,得浆料:

[0023] (2)将浆料加入葡萄糖氧化酶和果胶酶发酵12小时,葡萄糖氧化酶和果胶酶的总质量为浆料质量的0.5%,质量比为1:3,发酵温度为30℃,发酵结束置入抄片机,得片基;

[0024] (3) 向提取液中加入丙二醇和脯氨酸,丙二醇和脯氨酸的总质量为提取液的10%,质量比为1:1,浓缩,得涂布液;

[0025] (4) 将涂布液涂布于片基上,烘干得造纸法再造烟叶。

[0026] 实施例2

[0027] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0028] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为20:20:5,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为30°SR,得浆料;

[0029] 步骤(2)(3)(4)与实施例1相同。

[0030] 实施例3

[0031] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0032] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为18:13:3,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27°SR,得浆料;

[0033] 步骤(2)(3)(4)与实施例1相同。

[0034] 对照例1

[0035] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0036] (1) 将烟梗搅碎,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27° SR,得浆料:

[0037] 步骤(2)(3)(4)与实施例1相同。

[0038] 对照例2

[0039] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0040] (1)将烟梗和茶叶渣混合搅碎,烟梗和茶叶渣质量比为18:13,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27°SR,得浆料;

[0041] 步骤(2)(3)(4)与实施例1相同。

[0042] 实施例4

[0043] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0044] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为18:13:3,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27°SR,得浆料:

[0045] (2) 将浆料加入葡萄糖氧化酶和果胶酶发酵72小时,葡萄糖氧化酶和果胶酶的总质量为浆料质量的1%,质量比为1:3,发酵温度为60℃,发酵结束置入抄片机,得片基;

[0046] 步骤(3)(4)与实施例1相同。

[0047] 实施例5

[0048] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0049] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为18:13:3,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27°SR,得浆料;

[0050] (2) 将浆料加入葡萄糖氧化酶和果胶酶发酵58小时,葡萄糖氧化酶和果胶酶的总质量为浆料质量的0.6%,质量比为1:3,发酵温度为55℃,发酵结束置入抄片机,得片基;

[0051] 步骤(3)(4)与实施例1相同。

[0052] 对照例3

[0053] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0054] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为18:13:3,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27°SR,得浆料;

[0055] (2) 将浆料置入抄片机,得片基;

[0056] 步骤(3)(4)与实施例1相同。

[0057] 对照例4

[0058] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0059] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为18:13:3,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27°SR,得浆料;

[0060] (2) 将浆料加入果胶酶发酵58小时,果胶酶的质量为浆料质量的0.6%,发酵温度为55℃,发酵结束置入抄片机,得片基:

[0061] 步骤(3)(4)与实施例1相同。

[0062] 实施例6

[0063] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0064] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为18:13:3,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27°SR,得浆料;

[0065] (2) 将浆料加入葡萄糖氧化酶和果胶酶发酵58小时,葡萄糖氧化酶和果胶酶的总质量为浆料质量的0.6%,质量比为1:3,发酵温度为55℃,发酵结束置入抄片机,得片基;

[0066] (3) 向提取液中加入丙二醇和脯氨酸,丙二醇和脯氨酸的总质量为提取液的20%,质量比为1:1,浓缩,得涂布液;

[0067] 步骤(4)与实施例1相同。

[0068] 实施例7

[0069] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0070] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为18:13:3,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27°SR,得浆料;

[0071] (2) 将浆料加入葡萄糖氧化酶和果胶酶发酵58小时,葡萄糖氧化酶和果胶酶的总质量为浆料质量的0.6%,质量比为1:3,发酵温度为55℃,发酵结束置入抄片机,得片基;

[0072] (3) 向提取液中加入丙二醇和脯氨酸,丙二醇和脯氨酸的总质量为提取液的17%,质量比为1:1,浓缩,得涂布液;

[0073] 步骤(4)与实施例1相同。

[0074] 对照例5

[0075] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0076] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为18:13:3,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27°SR,得浆料;

[0077] (2) 将浆料加入葡萄糖氧化酶和果胶酶发酵58小时,葡萄糖氧化酶和果胶酶的总质量为浆料质量的0.6%,质量比为1:3,发酵温度为55℃,发酵结束置入抄片机,得片基;

[0078] (3) 向提取液中加入丙二醇,丙二醇的总质量为提取液的17%,浓缩,得涂布液;

[0079] 步骤(4)与实施例1相同。

[0080] 对照例6

[0081] 一种造纸法再造烟叶的制备方法,包括以下步骤:

[0082] (1) 将烟梗、茶叶渣和苍术混合搅碎,烟梗、茶叶渣和苍术质量比为18:13:3,用水浸泡,萃取得固体和提取液,将固体打磨成浆,打磨度为27°SR,得浆料;

[0083] (2) 将浆料加入葡萄糖氧化酶和果胶酶发酵58小时,葡萄糖氧化酶和果胶酶的总质量为浆料质量的0.6%,质量比为1:3,发酵温度为55℃,发酵结束置入抄片机,得片基;

[0084] (3) 向提取液中加入乙醇,乙醇的总质量为提取液的17%,浓缩,得涂布液;

[0085] 步骤(4)与实施例1相同。

[0086] 对上述实施例和对照例所得再造烟叶制得的卷烟测定焦油、CO和烟碱的含量,并评价其感官质量,结果见表1和表2。

[0087] 如表1和表2所示,原料选用烟梗、茶叶渣和苍术,能有效改善制得卷烟的感官质量,同时降低烟气中的有害物质;在制成片基前同时加入葡萄糖氧化酶和果胶酶发酵,能大大降低所制得的卷烟烟气中的有害物质;通过丙二醇和脯氨酸能进一步改善所制得的卷烟的感官质量。实施例7相比对照例1烟气中的焦油、CO和烟碱的含量分别降低了41.0%、35.5%和35.7%,相比对照例3分别降低了36.1%、22.3%和18.2%。

[0088] 表1

[0089]

分组	甜味 (0~5)	酸味 (0~5)	苦味 (0~5)	凉味 (0~5)
对照例1	3.3	3.0	0	3.2
对照例3	2.6	2.2	0	2.9
实施例7	3.9	3.6	0	3.7

[0090] 表2

[0091]

分组	焦油 (mg/支)	CO (mg/支)	烟碱 (mg/支)
实施例1	5.9	10.3	1.09
实施例2	5.8	11.0	1.14
实施例3	5.1	9.8	0.95
对照例1	7.8	13.5	1.26
对照例2	7.2	11.8	1.13
实施例4	5.5	10.5	1.04
实施例5	5.0	9.3	0.87
对照例3	7.2	11.2	0.99
对照例4	6.8	10.4	0.92

实施例6	5.3	9.4	0.95	
实施例7	4.6	8.7	0.81	
对照例5	5.8	9.4	0.92	
对照例6	6.4	10.1	1.16	

[0092] 以上依据本发明的理想实施例为启示,通过上述的说明内容,相关人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定技术性范围。