
US 2005O147046A1

(19) United States
(12) Patent Application Publication (10) Pub. No.: US 2005/0147046A1

Boudou et al. (43) Pub. Date: Jul. 7, 2005

(54) METHOD AND SYSTEM FOR MODULE (30) Foreign Application Priority Data
CHAINING CONTROL IN A MODULAR
SOFTWARE ARCHITECTURE Dec. 12, 2001 (FR).. O116055

(75) Inventors: Alain Boudou, Louveciennes Cedex Publication Classification
(FR); Christoph Siegelin, Louveciennes
Cedex (FR); Jean-Claude Marchetaux, (51) Int. Cl. ... H04L 1100
Louveciennes Cedex (FR)

Correspondence Address: (52) U.S. Cl. .. 370/241
PEHRJANSSON, ATTORNEY AT LAW
7628 PARKVIEW CIRCLE
AUSTIN, TX 78731 (US) (57) ABSTRACT

(73) ASSignee: ylumberger Systemes, Montrouge The method to check module chaining in a modular Software
architecture located in an electronic unit with microproces

(21) Appl. No.: 10/497,647 Sor comprising, apart from the microprocessor, a memory
Space, uses an identification, Secured by the hardware, of the

(22) PCT Filed: Dec. 11, 2002 calling module. The invention also concerns an electronic
unit with microprocessor designed to implement the above

(86) PCT No.: PCT/IB02/05325 method.

inter-module call

CALL IDENTIFIEDAS
INTER-MODULE CALL Step 1

Step 2

SAVE DENTIFICATION
INFORMATION

IDENTIFICATION OF CALLING
Step 5 MODULE

SECOND CONSISTENCY
Step 6 CHECK

Patent Application Publication Jul. 7, 2005 Sheet 1 of 4 US 2005/0147046A1

EEPROM

INTERNAL BUS

Patent Application Publication Jul. 7, 2005 Sheet 2 of 4 US 2005/0147046A1

FG, 3 FIG. 3 bis

Patent Application Publication Jul. 7, 2005 Sheet 3 of 4 US 2005/0147046A1

inter-module call

CALL IDENTIFIED AS
Step 1. INTER-MODULE CALL

Step 2

Step 3 SAVE IDENTIFICATION
INFORMATION

f FIRST CONSISTENCY
Step 4. CHECK

IDENTIFICATION OF CALLING
Step 5 MODULE

SECOND CONSISTENCY
Step 6 CHECK

ACCESS CONTROL
Step 7

Patent Application Publication Jul. 7, 2005 Sheet 4 of 4

47

1

A3 49

E2

A4

TRAP(1A1)

TRAP(2,E1)
TRAP(3,E3)

Routine 3

Ify=E1 A5

F.G. 6

Module A Module B Module C

= ?

<--> B C

FIG. 7

US 2005/0147046A1

US 2005/0147046 A1

METHOD AND SYSTEM FOR MODULE
CHAINING CONTROL IN A MODULAR

SOFTWARE ARCHITECTURE

0001. This invention concerns the module chaining con
trol in a modular Software architecture located in an elec
tronic unit with microprocessor. The invention is for
example applicable to, but not limited to, electronic Smart
cards.

TECHNICAL FIELD

0002. A modular software architecture comprises several
modules defined according to the tasks they have to execute.
While executing its tasks, each module can call other
modules. These modules can be grouped in layers, and in
this type of model, the modules of a higher layer generally
call the modules of the layer immediately below to proceSS
Some of the tasks they must perform. In practice, for
example, in a Software architecture for Smartcard, all mod
ules can be grouped in three main layers called the “core”
layer interfacing directly with the hardware (in particular the
processor, memories and input/output interfaces), the “sys
tem’ layer concerning the operating System (OS) and the
“application' layer concerning the various Software appli
cations.

0003) To each module there corresponds a particular, well
identified memory area grouping memory Sections to Store
the corresponding program (non volatile memory), memory
Sections to store the data associated with this module (non
volatile memory) and memory Sections exclusively used by
this program for its execution (volatile memory). A unique
identifier designates both a module and the corresponding
memory area.

0004. When a module calls explicitly another module by
an inter-module call, execution of the calling module pro
gram is followed by execution of the called module pro
gram. Any other form of chaining the execution of programs
belonging to different modules is prohibited by hardware
mechanisms.

0005. It may be necessary, especially for security pur
poses, to only allow certain clearly Specified modules to call
a given module. For example, a certain module in the core
layer accessing the data memory can only be called by a
module in the System layer and never by a module in the
application layer, or a module in the application layer can
only be called by a particular module in the System layer and
never by another module in the same layer. Equally, accord
ing to another example, a module in the application layer,
Since it acts as card administrator, can request Services that
the other modules in the same layer are not allowed to
obtain.

0006. In the context of this type of limitation, since a
calling module can call any other module, it is the called
module or an intermediate System between the calling
module and the called module which applies a check of
program chaining. Consequently, the called module or the
intermediate System must be able to reliably and unambigu
ously identify the calling module. In addition, the behaviour
of the called module can be determined and configured
according to the identity of the calling module obtained.

Jul. 7, 2005

0007. The identification of the calling module is secured
if:

0008 firstly, it does not rely on the “good faith” of
the calling module (i.e. the information concerning
the identification of the calling module communi
cated by said calling module is checked); and

0009 secondly, the identification mechanism is pro
tected against modification attempts carried out by
malicious Software likely to produce incorrect iden
tification of the calling module.

PRIOR ART

0010 Software solutions to identify a calling module
have already been proposed, in which a variable is used in
the program to identify the active module. However, this
purely Software approach has certain disadvantages. Firstly,
it is easily compromised, due to its purely Software nature,
by an impostor Seeking to illegally benefit from the unau
thorised resources either by modifying the identification
variable in memory or by changing the program used to
manage this variable. Secondly, with organisation in layers,
although the operating System can easily identify applica
tions since applications are run by Said System, this is not the
case for other identifications Such as identification of mod
ules in the operating System itself by the core: in this case,
in fact, the information is not available.
0011. The most common solution is to use cryptography
to guarantee the identity declared by the calling module, i.e.
use an authentication mechanism. However, in this case
Significant resources are required: a key known by the
potentially called modules is required by each potentially
calling module, as well as a cryptographic calculation for
each call.

0012. The invention concerns a method for secured iden
tification of a calling module in a modular architecture
which avoids the disadvantages described whilst remaining
relatively simple.

SUMMARY OF THE INVENTION

0013 The invention therefore proposes a method to
check module chaining in a modular Software architecture
located in an electronic unit with microprocessor compris
ing, apart from the microprocessor, a memory Space, char
acterised in that the check is carried out using an identifi
cation, Secured by the hardware, of the calling module.
0014. The invention concerns a method for secured iden
tification of a calling module in a modular Software archi
tecture located in an electronic unit with microprocessor
comprising, apart from the microprocessor, a memory Space,
characterised in that it consists, during an inter-module call,
in Saving information used to identify the calling module in
protected memory before branching the execution to a
precise point in the program of the called module and using
the Saved information to identify the calling module.
0015. An inter-module call therefore triggers the execu
tion of a routine which writes in memory information
Sufficient to identify the calling module then manages the
jump to an address indexed by a parameter of the call. An
advantage as regards the Security is that any other type of
jump from one module to another module is prohibited by
the hardware.

0016. The calls for a given module are therefore chan
nelled into one or more Specified entry points in order to

US 2005/0147046 A1

Systematically check the identity of the calling module and
restrict access to authorised modules only, according to the
previously Stored check information.
0.017. The invention also concerns an electronic unit with
microprocessor comprising at least a microprocessor and a
memory Space, the unit comprising hardware and Software
means designed to implement the identification method
according to the invention as defined above in all its variants
and/or execution modes. In particular, the invention is most
Suitable for use in microcontrollers located in Smartcards.

0.018. The invention concerns an integrated circuit card
comprising an electronic unit with microprocessor designed
to implement the caller identification method according to
the invention.

0019. The invention concerns a computer program
including program code instructions for the execution of
Steps of Said method when Said program is executed in a
computer System.

BRIEF DESCRIPTION OF THE DRAWINGS

0020. Other purposes, features and advantages of the
invention will appear on reading the description which
follows of the implementation of the method according to
the invention and of a mode of realisation of an electronic
unit with microprocessor designed for this implementation,
given as a non-limiting example, and referring to the
attached drawings in which:
0021 FIG. 1 is a diagrammatic representation of a non
limiting mode of realisation of an electronic unit with
microprocessor designed to use the Secured identification
method according to the invention;
0022 FIG. 2 is a diagrammatic representation of the
central processing unit of the microprocessor shown on
FIG. 1;
0023 FIGS. 3 and 3b is are diagrammatic representa
tions of the modular Software architecture of the electronic
unit shown on FIG. 1;
0024 FIG. 4 is a diagrammatic representation of a first
form of realisation of the Steps in the method according to
this invention;
0.025 FIG. 5 is a flowchart representing the various steps
of the Secured identification method according to this inven
tion;
0.026 FIG. 6 is a diagrammatic representation of a sec
ond form of realisation of the Steps in the Secured identifi
cation method according to this invention;
0.027 FIG. 7 represents an optional step in the secured
identification method according to this invention.

BEST WAY OF REALISING THE INVENTION

0028. This invention belongs to the field of securing
electronic units comprising at least a microprocessor, a non
volatile memory of type ROM, EEPROM, Flash, FeRam
Storing at least a program to be executed, a volatile memory
of type RAM and input/output means to communicate with
the exterior. This type of unit is generally manufactured as
a monolithic integrated electronic circuit, or chip, which
once physically protected by any known means can be

Jul. 7, 2005

assembled on a portable object Such as, for example, a
Smartcard, integrated circuit card or Similar for use in
various fields, especially the bank and/or electronic payment
cards, mobile radio telephony, pay television, health and
transport.

0029. The monolithic electronic unit 10 with micropro
cessor illustrated on FIG. 1 and described as a non-limiting
example generally comprises a microprocessor CPU 11 with
two-way connection via an internal bus 12 to random access
memory RAM 14, read only memory ROM 16, memory
EEPROM 18 or similar and an input/output interface I/O 20.
The module 10 may comprise additional components not
shown, connected to the internal bus, Such as for example a
reversible counter or a pseudo-random number generator.
0030 Traditionally, the central processing unit of the
microprocessor CPU 11 illustrated on FIG. 2 comprises an
arithmetic and logic unit UAL 22, an instruction decoding
unit DECOD 24 and a set of working registers (such as for
example in the CISC-Complex Instruction Set Computer
architecture in particular an accumulator A 26, at least a
temporary storage register X and/or Y 28), a program
counter CO30 indicating the address of the next instruction
to be executed, a Stack pointer PP32 indicating the Storage
address of the top of the Stack of execution and a status
register RE 34 providing various types of information on the
instantaneous operational Status of certain registers or other
parts of the microprocessor CPU 11.
0031. The memory space of the electronic unit 10 con
sists of the memory RAM 14, the memory ROM 16 and the
memory EEPROM 18. This space stores various types of
Software organised as Software modules according to a
"modular architecture and often represented as Software
layers (see FIG. 3). From the hardware layer consisting of
the electronic unit 10, we can identify the “core” software
layer (“N” on FIG. 3) 36 concerning amongst other things
the microprocessor reset, input/output management, inter
rupt management, the operating System layer OS 38 con
cerning in particular the System configuration, organisation
of System operation regarding applications, organisation of
memory Space and addressing, management of peripherals,
and the “application” layer 40 with resident applications 41,
42 for example a program interpreter written in SUN
MICROSYSTEMS JAVA language and “user” applications
43, 44 and 45 corresponding to precise features (example:
bank card, health card, identity card).
0032. According to the example illustrated on FIG. 3b is,
the “application” layer 40 itself contains the services (S)
shared by Several applications and the “operating System”
layer 38 is divided into modules (M1 to M6) corresponding
to the major functions of this layer.
0033 Regarding the memory addressing, the non volatile
memory Space is divided into memory pages, for example of
128 bytes, with partitions between the various areas where
the various modules will be stored. Traditionally, the first
non volatile memory area available which is the lowest
addressing area is used to store an address table 46 (FIG. 6)
giving the entry points of the interrupt and reset manage
ment routines commonly called the “interrupt and reset
vector table'. Each application module or user module has
an addressing field Storing the corresponding programs of
the application as well as the fixed or variable data available
to the application. The “user” applications 43, 44 and 45 can

US 2005/0147046 A1

therefore be stored in the EEPROM memory. These appli
cations which share layer 40 often include confidential data
Specific to them and which must be protected, for example
payment codes for the bank cards, encryption keys for
electronic Signature payment cards or for pay television
cards, personal information for the health cards. The integ
rity of each application, and more generally of each module
including the OS and the core, must be protected by denying
any unauthorised memory access in case of inter-module
call. A patent application filed the same day as this appli
cation by the same applicant entitled “access control method
and device in an embedded System’ concerns this memory
access control during an inter-module call. This acceSS
control Starts with Secured identification of the calling
module.

0034. An inter-module call is a call from a module known
as the calling module to another module known as the called
module.

0.035 Generally, an inter-module call is made by an
instruction or executable procedure used to execute a resi
dent program in a memory area different from the memory
area of the calling module.

0.036 With modular architecture, the inter-module calls
are immediately recognised as Such being microprocessor
instructions.

0037. Once the call is recognised as being an inter
module call, information used for identification, hereafter
referred to as the identification information, is automatically
saved (step 3 on FIG. 5). The inter-module call triggers said
Save. The calling module identification information is saved
in protected memory before branching execution to a precise
point in the program of the called module. The memory is
protected as follows: The identification information is saved
in one or more memory fields accessible in read only mode
by programs Such as for example the called module, the
writes only being carried out by a save routine 47.

0.038. The information saved in the protected memory is
used to identify the calling module. An inter-module call
therefore triggers the execution of a routine which writes in
memory information Sufficient to identify the calling module
then manages the jump to an address indexed by a parameter
of the call. An advantage as regards the Security is that any
other type of jump from one module to another module is
prohibited by the hardware.

0.039 The calls for a given module are therefore chan
nelled into one or more Specified entry points in order to
Systematically identify (step 5) the calling module and check
the program chaining (step 7) according to previously stored
check information.

0040 According to several variants of the identification
information save operation (Step 3), the content of one or
more registers of the central processing unit in the micro
processor 11 is Stored. At least the contents of the program
counter CO 30 and/or CO'30' or of the Status counter RE 34
are Stored.

0041 Execution of the routine 47 saving the identifica
tion information, which is triggered by the inter-module call,
must not disturb said information and in particular the
content of the program counter or of the Status register.

Jul. 7, 2005

0042 Consequently, according to a first form of realisa
tion of the method illustrated on FIG. 4, the save routine is
executed in a mode different from that of the other modules:
the Save routine 47 is executed in privileged mode (or
system mode) (“priv mode” on FIG. 4), using a different
program counter 30'. The save routine 47 saves the identi
fication information by carrying out execution using the
program counter 30'. The memory used by the routine 47 to
Save the identification information is protected Since Said
routine works in privileged mode i.e. in a mode where the
code and the data cannot be accessed by programs which do
not execute in privileged mode, Such as the user programs
(for example the calling module). The routine 47 then
identifies the calling module and checks the program chain
ing. Note that the called module can carry out the identifi
cation and program chaining check Steps itself. Said form of
realisation is used to Save the identification information of
application modules executing in ordinary (or user) mode,
and therefore to identify them. However, it cannot be used
to identify modules which are executed in privileged mode.
0043 Consequently, according to a second preferred
form of realisation of the invention illustrated on FIG. 6, to
identify all types of software module, the execution of the
routine should be handled by the hardware, in particular the
inter-module call instruction should belong to the prepro
grammed microcode instruction Set of the microprocessor.
The whole checking method is performed automatically and
Secured by hardware means.
0044 According to a mode of realisation of the method
according to the invention, the inter-module call instruction
is based on a “TRAP type interrupt instruction or a similar
“capture” type instruction belonging to the preprogrammed
microcode instruction Set of the microprocessor. During an
inter-module call, the TRAP instruction is run automatically.
The TRAP or similar instruction saves the identification
information of Step 3 in a protected memory. AS indicated
above, the memory is protected Since it can only be accessed
in read mode, the writes only being authorised to the
microcode of the save routine 47 (TRAP).
0045 Advantageously, the TRAP instruction or the simi
lar instruction triggers the execution of a program interrupt
management routine 48 known as the identification and
program chaining check routine 48 specified in the Stored
predefined vector table 46 indicating the address of the entry
point of said routine 48.
0046) As shown on FIG. 6, the TRAP instruction or any
Similar instruction includes one or more call parameters (in
the example of FIG. 6, two parameters x,y, TRAP(x,y))
which Specifies the type of inter-module call, each call type
triggering the execution of different identification and pro
gram chaining check routines 48 whose entry points are
indexed in the vector table 46. The parameters x,y of the
TRAP instruction determine respectively the identification
and program chaining check routine 48 and the called
module 49 to which said routine branches or an entry point
in said called module 49 when there are several of them.

0047. In the example illustrated on FIG. 6, the first
parameter X indicates an entry in the vector table 46.
TRAP(1A1) points to entry 1 of table 46: entry 1 specifies
the address of the identification routine “Routine 1” i.e.
Adr1. Similarly, TRAP(2, E1) and TRAP(3, E2) point
respectively to entries 2 and 3 which Specify respectively the

US 2005/0147046 A1

addresses of “Routine 2' and “Routine 3’. The second
parameter is a variable used by the identification routine 48
to determine the called module or a particular entry point in
said called module; at the end of routine 48"Routine 1’, the
called module in which the program continues varies
depending on the value of the Second parameter. Conse
quently, in routine “Routine 1’, if the value of parametery is
A1, which is the case on FIG. 6, routine “Routine 1”
branches to module 49 called A1 in which the program
execution continues. If the value of parameter y is A2,
routine “Routine 1' branches to module 49 called A2. In
routine 48"Routine2”, if the value of parameter y is E1,
routine “Routine 2' branches to entry point E1 of module 49
called A3. If the value of parametery is E2, routine “Routine
2” branches to entry point E2 of the same module A3. In
routine 48"Routine3”, if the value of parameter y is E3,
routine 48"Routine 3' branches to entry point E3 of module
49 called A5. If the value of parameter y is E2, routine
“Routine 3' branches to entry point E2 of the same module
A5. If the value of parameter y is E1, routine “Routine 3”
branches to entry point E1 of another module called A4.

0.048 If the called module is not explicitly identified (for
example a module belonging to the core or to the OS), the
TRAP instruction points in the interrupt vector table 46 to a
default entry point.

0049. Note that the identification and program chaining
check routine 48 can belong to the called module. The TRAP
instruction points in the vector table 46 to a unique entry
point, Specific to a called module: Said entry Specifies the
address of an identification and program chaining check
routine Specific to the called module.
0050. The calling module identification and program
chaining check StepS 5 and 7 are carried out according to the
form of realisation described above either by the save
routine 47, by the identification and program chaining check
routine 48, or by the called module itself.
0051. The method according to the invention consists in
step 5 of identifying the calling module. Module identifica
tion is carried out by a unique identifier which characterises
firstly the tasks which can be executed by this module and
Secondly the memory area corresponding to this module.
Management of the association between addresses belong
ing to a memory area and identifier is either centralised in a
table, known as the identifier table, or decentralised as an
identification attribute including this identifier attached to
each address or group of contiguous addresses called a
memory page, the identification attribute showing the iden
tification of the module to which the address or the memory
page belongs.

0.052 According to one form of realisation of step 3 of
the method according to the invention, the information
saved used to identify the calling module in Step 5 (identi
fication information) consists in the content of at least one of
the following registers associated with the microprocessor:
the program counter CO, the Status register RE, Said iden
tification information Save operation consisting in Storage of
the content of at least one of Said registers.
0.053 According to a first realisation variant of identifi
cation Step 5, identification of the calling module is carried
out using the content of the program counter 30 which
indicates the address of the next instruction in the program

Jul. 7, 2005

currently being executed in the calling module. In case of
centralised management, with the identifier table indicating
the addressing areas of the various applications, using com
parison operations it is easy to find the addressing area of the
calling module and identify the corresponding application.
In case of decentralised management, identification is car
ried out by reading the identification attribute attached to the
address Saved.

0054) Note that, in the form of realisation illustrated on
FIG. 6, the content of the program counter 30 is stored in a
memory field accessible by the called module or the routine
48 in read only mode (write is only authorised for the TRAP
instruction microcode, i.e. the Save routine 47).
0055 According to a second realisation variant of step 5,
the calling module is identified by an identifier contained in
the Status register and Saved when the identification infor
mation is saved. In practice, the bits in the Status register not
used by the System are used to Store the calling module
identifier before Saving the content of the Status register.

0056. Note that, in the form of realisation illustrated on
FIG. 6, the content of the status register 34 (indicating the
calling module identifier directly) is stored in a memory field
accessible by the identification and program chaining check
routine 48 and by the called module in read only mode (write
is only authorised for the TRAP instruction microcode, i.e.
the save routine 47).
0057. As shown on FIG. 5, a second step consists in
updating the Status register before any identification. Step 2
is represented in dotted lines Since it only belongs to the
method according to the Second form of realisation. The
update of the Status register is activated by the inter-module
call. The identifier stored in the status register RE is auto
matically updated from an address in the calling module
program, either by comparison in the identifier table in case
of centralised management, or by reading the identification
attribute of the page containing the inter-module call instruc
tion in case of decentralised management of the association.
An advantage as regards the Security is that this address can
be that stored in the program counter CO at the time of the
inter-module call.

0058 Consequently, the second realisation variant allow
ing the hardware to update the identifier avoids code dupli
cation and the possibility of programming error and Simpli
fies the task of the called module which accesses the calling
module identifier directly.
0059. During a seventh step, the method according to the
invention checks whether the calling module identified in
Step 5 is authorised to access the called module. Depending
on the form of realisation, the program chaining check is
carried out:

0060 by the save routine 47;
0061 by the identification and program chaining
check routine 48;

0062 or by the called module.

0063 Routine 47 or 48 or possibly the called module
looks in a program chaining authorisation table amongst the
various modules whether the calling module is authorised to
call the called module. The program chaining authorisation

US 2005/0147046 A1

table is predefined and Stored in read only, except for a
particular module with administration rights and which has
write access to Said table.

0064. If program chaining is authorised, routines 47 and
48 branch to a specified point of a given called module from
which execution continues when said routine 47 or 48 is
finished. If a check is carried out by the called module itself,
execution of the module continues when Said check is
finished. In the event of failure, the program of the called
module is Stopped and a warning message is returned to the
calling module.
0065 Optionally (as indicated by the dotted lines on
FIG. 5) but advantageously for security reasons, in a fourth
Step the method according to the invention carries out a first
consistency check. The identification information is saved
both for the calling module and the called module. As shown
on FIG. 7, a calling module B calls a called module C, the
calling module B having been called by a calling module A.
Module B has two items of identification information, that
of the start (at the time of the inter-module call A/B, when
execution of module B starts) and that of the end (at the time
of the inter-module call B/C, when execution of module B
ends) of its continuous execution sequence. The consistency
check is carried out at the time of the inter-module call (in
this case the call B/C): the identification information regard
ing the Start and end of module B, and more especially the
identifier of module B at the Start and end of Sequence, are
compared. Any difference in identifier indicates inconsis
tency which could be due to external attack: as a result, the
current program is stopped automatically and a warning
message is output.
0.066 Optionally (as indicated by the dotted lines on
FIG. 5) and as a final check, in a sixth step a second
consistency check is carried out. The operation consists in
comparing the presumed identification of the calling module
obtained using Software (See above for example identifica
tion variable) and the identification of this module obtained
by reading the Saved identification information. Any dis
crepancy could be considered as a sign of external hardware
and/or Software attack and, as a result, program execution is
Stopped and/or an error message output.
0067. The method used to identify the calling module
which has just been described as a non-limiting example in
its two main variants (FIG. 4 and FIG. 6) can be modified
to Suit the requirements of the modular Software architecture
designer as long as the identification information is saved by
a privileged instruction, preferably microcoded in a memory,
properly protected against external attacks. In particular,
without leaving the Scope of the invention, it is possible to
limit the Save of the identification information to that of a
Single register, the program counter or the Status register,
depending on the location of the information concerning the
calling module to be retrieved for the remainder of the
processing.
0068 The invention also concerns the electronic units 10
with microprocessor, especially the microcontrollers, com
prising at least a microprocessor 11 and a memory ROM 16
and/or a non volatile memory 18 (for example EEPROM)
comprising at least an application program to be executed,
the unit 10 comprising the hardware and Software means
designed to implement the caller identification method
described above and the Smartcards in which these elec
tronic units are fitted.

Jul. 7, 2005

0069. The invention therefore concerns a method for
Secured identification of a calling module in a modular
Software architecture. The method consists, during an inter
module call, in Saving information used to identify the
calling module in protected memory before branching the
execution to a precise point in the program of the called
module and in using the Saved information to identify the
calling module and check the module chaining.
0070 The method consists in triggering the execution of
a routing 47 which writes in Said protected memory Said
identification information and manages alone or via a pro
gram interrupt management routine 48, known as an iden
tification and program chaining check routing, the jump to
the program of the called module.
0071. In this particular embodiment, the whole checking
method is carried out automatically and Secured by hardware
CS.

0072 The save routine 47 triggers execution of the
identification and program chaining check routine 48, Speci
fied in a stored predefined vector table 46 indicating the
address of the entry point of said routine 48.
0073. The saved information used to identify the calling
module consists in the content of the program counter which
indicates the address of the next instruction in the program
currently being executed in the calling module and in that
the method consists in:

0.074 in case of centralised management, finding
from Said address by comparison operations the
identification of the calling module using the address
field of the calling module in the memory Space, via
an identifier table;

0075 in case of decentralised management, finding
the identification of the calling module by reading an
identification attribute attached to Said address, the
attribute showing the identification of the calling
module.

0076 According to another form of realisation, the infor
mation Saved used to identify the calling module is an
identifier of the calling module Stored in the Status register
34 and updated before Saving Said identification information
as follows:

0077 in case of centralised management, using the
memory field of the calling module, Said field being
defined by pages of the memory Space associated
with an identifier Specific to the module considered,
the identifiers of all System modules being Stored in
an identifier table;

0078 in case of decentralised management, from the
attribute associated with the page Storing the inter
module call instruction, the attribute showing the
identification of the module to which the memory
page belongs.

0079 When the identification information is saved, a
consistency check consists in Saving both the identification
information of the called module and of the calling module
So that a module is characterised by information identifying
it at the Start and end of its execution and in comparing the
identifiers of the module characterising the Start and end of
its execution.

US 2005/0147046 A1

0080 A consistency check is carried out after identifying
the calling module between the identification obtained via
the Save of Said identification information and the identifi
cation obtained using Software via an identification variable.

1. Method to check module chaining in a modular Soft
ware architecture located in an electronic unit (10) with
microprocessor (11) comprising, apart from the micropro
cessor, a memory space (14, 16, 18), wherein the check is
carried out using an identification, Secured by the hardware,
of the calling module.

2. Method according to claim 1 or 12, wherein during an
inter-module call, Saving automatically with hardware
means information used to identify the calling module in
memory before branching the execution of the calling mod
ule to a precise point in the program of the called module.

3. Method according to claim 1 or 12, comprising trig
gering the execution of a routine (47) in preprogrammed
microcode activated by an inter-module call instruction
belonging to the microprocessor's instruction Set and, in that
Said routine writes in a memory Said identification informa
tion.

4. Method according to claim 3, wherein Said Save routine
(47) manages alone or via a program interrupt management
routine (48), known as an identification and program chain
ing check routing, the jump to the program of the called
module.

5. Method according to claim 1 to 12, wherein the check
is carried out and Secured with hardware means.

6. Method according to claim 1 or 12, wherein the save of
Said identification information is carried out by a Save
routine (47) executed in privileged mode.

7. Method according to claim 2, wherein during the Save,
Said identification information of the calling module is saved
in a protected memory, i.e. in one or more protected memory
fields accessible in read only mode, the writes only being
carried out by a routine (47) which saves said identification
information.

8. Method according to claim 1 or 12, wherein the saved
information used to identify the calling module consists in
the content of at least one of the following registers asso
ciated with the microprocessor (11): the program counter
CO (30), the status register (34), the inter-module call
triggering the Storage of Said identification information of
the calling module via the content of at least one of Said
registers.

9. Electronic unit (10) with microprocessor with modular
Software architecture comprising at least a microprocessor
(11), a memory space (14, 16, 18), comprising hardware
means to Secure the identification of a calling module in
order to check module chaining.

10. Unit according to claim 9, further comprising means
used, during an inter-module call, to Save automatically with
hardware means information used to identify the calling
module in protected memory before branching the execution
to a precise point in the program of the called module.

11. An integrated circuit card, comprising an electronic
unit with microprocessor according to claim 9 or 10.

12. Computer program including program code instruc
tions to implement the method according to claim 1 when
Said program is run in a data processing System.

13. Method according to claim 2, comprising triggering
the execution of a routine (47) in preprogrammed microcode
activated by an inter-module call instruction belonging to

Jul. 7, 2005

the microprocessor's instruction Set and, in that Said routine
writes in a memory Said identification information.

14. Method according to claim 13, wherein said save
routine (47) manages alone or via a program interrupt
management routine (48), known as an identification and
program chaining check routing, the jump to the program of
the called module.

15. Method according to claim 2, wherein the save of said
identification information is carried out by a Save routine
(47) executed in privileged mode.

16. Method according to claim 13, wherein during the
Save, Said identification information of the calling module is
Saved in a protected memory, i.e. in one or more protected
memory fields accessible in read only mode, the writes only
being carried out by a routine (47) which saves said iden
tification information.

17. Method according to claim 4, wherein during the Save,
Said identification information of the calling module is saved
in a protected memory, i.e. in one or more protected memory
fields accessible in read only mode, the writes only being
carried out by a routine (47) which saves said identification
information.

18. Method according to claim 2, wherein the saved
information used to identify the calling module consists in
the content of at least one of the following registers asso
ciated with the microprocessor (11): the program counter
CO (30), the status register (34), the inter-module call
triggering the Storage of Said identification information of
the calling module via the content of at least one of Said
registers.

19. Method according to claim 13, wherein the saved
information used to identify the calling module consists in
the content of at least one of the following registers asso
ciated with the microprocessor (11): the program counter
CO (30), the status register (34), the inter-module call
triggering the Storage of Said identification information of
the calling module via the content of at least one of Said
registers.

20. Method according to claim 4, wherein the saved
information used to identify the calling module consists in
the content of at least one of the following registers asso
ciated with the microprocessor (11): the program counter
CO (30), the status register (34), the inter-module call
triggering the Storage of Said identification information of
the calling module via the content of at least one of Said
registers.

21. Method according to claim 14, wherein the saved
information used to identify the calling module consists in
the content of at least one of the following registers asso
ciated with the microprocessor (11): the program counter
CO (30), the status register (34), the inter-module call
triggering the Storage of Said identification information of
the calling module via the content of at least one of Said
registers.

22. Method according to claim 7, wherein the saved
information used to identify the calling module consists in
the content of at least one of the following registers asso
ciated with the microprocessor (11): the program counter
CO (30), the status register (34), the inter-module call
triggering the Storage of Said identification information of
the calling module via the content of at least one of Said
registers.

