a2 United States Patent

Mallikarjuna Durga Lokanath et al.

US011764978B2

US 11,764,978 B2
Sep. 19, 2023

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

METHOD AND SYSTEM FOR CERTIFICATE
MANAGEMENT

Applicant: Salesforce, Inc., San Francisco, CA
us)

Inventors: Savithru Mallikarjuna Durga

Lokanath, San Jose, CA (US);

Vaishnavi Vithal Galgali, San Jose,

CA (US); Arpeet Kale, San Jose, CA

us)

Salesforce, Inc., San Francisco, CA
us)

Assignee:

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 14 days.

Appl. No.: 17/160,335

Filed: Jan. 27, 2021

Prior Publication Data

US 2022/0239503 Al Jul. 28, 2022

Int. CL.

HO4L 9/32 (2006.01)

HO4L 9/08 (2006.01)

U.S. CL

CPC HO4L 9/3268 (2013.01); HO4L 9/083

(2013.01); HO4L 9/0891 (2013.01); HO4L
9/0894 (2013.01); HO4L 9/3265 (2013.01)
Field of Classification Search

CPC ... GOGF 21/62; GOG6F 21/6218; HO4L 63/08;
HOAL 63/0823; HO4L 63/10; HOAL
63/101; HOAL 9/08; HO4L 9/0894; HO4L
9/083; HO4L 9/3268

See application file for complete search history.

Foe=mem—mecmcecmcomcomm——-
I
1

(56) References Cited

U.S. PATENT DOCUMENTS

7,730,478 B2 6/2010 Weissman
10,382,201 Bl* 82019 Allocouevvvnnnnnn. GOGF 21/575
11,444,785 B2* 9/2022 Vaddiceeevrnen. HO04L 9/321

11,445,021 B2 9/2022 Mallikarjuna Durga Lokanath
et al.

2011/0239004 Al* 9/2011 Hayashi HO04L 9/3263
713/189
2017/0338968 Al* 11/2017 Feng ..o HO04W 12/04
2018/0145971 Al* 5/2018 Mistry HOAL 63/0823
2019/0349357 Al* 11/2019 Shukla HO04L 63/20

2021/0241241 Al 8/2021 Lokanath
2021/0377054 Al* 12/2021 Mahajan GOGF 9/455
2022/0263655 Al* 82022 Murray HO04L 63/0823

OTHER PUBLICATIONS

“AWS Certificate Manager,” Amazon Web Services, Inc., User
Guide, Version 1.0, Aug. 17, 2020, 127 pages.

“AWS Secrets Manager,” Amazon Web Services, Inc., API Refer-
ence, API Version Oct. 17, 2017, 117 pages.

(Continued)

Primary Examiner — Shaqueal D Wade-Wright
(74) Attorney, Agent, or Firm — Nicholson, De Vos,
Webster & Elliott, LLP

(57) ABSTRACT

A method and system for certificate management for ser-
vices in a container orchestrator. The method includes
requesting a certificate for a service from a cloud certificate
manager, in response to detecting a request from a control
plane of the container orchestrator for the certificate for the
service, receiving the certificate from the cloud certificate
manager, storing the certificate in a secret storage, and
returning the location of the secret storage to a requester of
the certificate.

24 Claims, 5 Drawing Sheets

CONTROL PLANE RECEIVES REQUEST TO OBTAINPDATE CERTIFICATE | 20!

FOR SERVICE

1 CONTROL PLANE REQUESTS CREATION/UPDATE OF CUSTOM

| RESOURCE FOR THE CERTIFICATE 1

205
| DETECT CREATION/UPDATE OF CUSTOM RESOURCE FOR CERTIFICATE |’\/

¥

| REQUEST CERTIFICATE FROM CLOUD CERTIFICATE MANAGER

207

RECEIVE CERTIFICATE, CERTIFICATE CHAIN, KEYS FROM CLOUD
CERTIFICATE MANAGER

N

SECRET
STORAGE EXISTS
FOR SERVICE?

YES

213

REQUEST SECRET STORAGE FROM CLOUD SECRETS MANAGER |’V

¥

215

]

217

STORE CERTIFICATE AND KEYS IN SECRET STORAGE FOR SERVICE |’\'/¢_

v

| RECEIVE LOCATION OF SECRET STORAGE
| RETURN LOCATION OF SECRET STORAGE TO REQUESTOR

R

US 11,764,978 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

“Controllers,” Kubernetes Documentation, The Kubernetes Authors,
CC BY 4.0, The Linux Foundation, downloaded from https://
kubernetes.io/docs/concepts/architecture/controller/#:~:text=In%
20Kubernetes%2C%?20controllers%20are%20control,closer%20to%
20the%620desired%20state on Jan. 25, 2021, last modified Jan. 20,
2021, 3 pages.

“Custom Resources,” Kubernetes Documentation, The Kubernetes
Authors, CC BY 4.0, The Linux Foundation, downloaded from
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/
custom-resources/ on Jan. 25, 2021, last modified Oct. 13, 2020, 7
pages.

* cited by examiner

U.S. Patent Sep. 19, 2023 Sheet 1 of 5 US 11,764,978 B2

({Eb&f/ﬂ&éri ORCHESTRATION CONTROL PLANE !
| 101 |
! |
!]
& ICREATE/UPDATE/DELETE> |
| APl CICD '
ADMIN ! APISERVER || ETCD E
! 103 o 105 |
1OO< smoMN = 00000 J
Lid
...... t
Frey L]
% _____________________
. CUSTOM RESOURCES 109 :
D -* & & @
POD |
CERTIFICATE ORCHESTRATQR ! CERTIFICATE KEYSTORE TRUSTSTORE|
\ el
107 1\ """ TTmmmmmm s s m e
G ‘>< READ/CREATE/UPDATE
CLOUD) m _________________)
N4 SECRET STORAGE |

x CERTIFICATE SECRETS
MANAGERZ oD

{

{

i

CERTIFICATE r© B

MANAGER A% e i | @@ @

i
]
L}

111 !
| CONFERENCECHAIN 5 KEYSTORE TRUSTSTORE

: PRIVATEKEY

DOWNLOAD/
GET

SERVICE POD
121

FIG. 1

U.S. Patent Sep. 19, 2023 Sheet 2 of 5 US 11,764,978 B2

{ CONTROL PLANE RECEIVES REQUEST TO OBTAIN/UPDATE CERTIFICATE | 20"

FOR SERVICE I

CONTROL PLANE REQUESTS CREATION/UPDATE OF CUSTOM -i/\/
RESOURCE FOR THE CERTIFICATE I

—————————————————————— ;——————————————————————J

205

DETECT CREATION/UPDATE OF CUSTOM RESOURCE FOR CERTIFICATE [

t 20

REQUEST CERTIFICATE FROM CLOUD CERTIFICATE MANAGER |- %"
v 209

RECEIVE CERTIFICATE, CERTIFICATE CHAIN, KEYS FROMCLOUD |~

CERTIFICATE MANAGER
211
SECRET
STORAGE EXISTS N\ YES
FOR SERVICE?

213

REQUEST SECRET STORAGE FROM CLOUD SECRETS MANAGER [
v 215

RECEIVE LOCATION OF SECRET STORAGE .y
v 217

STORE CERTIFICATE AND KEYS IN SECRET STORAGE FOR SERVICE [«
L 219

RETURN LOCATION OF SECRET STORAGE TO REQUESTOR ~—

FIG. 2

U.S. Patent Sep. 19, 2023 Sheet 3 of 5 US 11,764,978 B2

301

CONTROL PLANE RECEIVES REQUEST TO DELETE CERTIFICATEFOR ~ |~_/
SERVICE

v 303

CONTROL PLANE REQUEST TO DELETE CUSTOM RESOURCE FOR THE p—~_/
CERTIFICATE

l 305

DETECT DELETION OF CUSTOM RESOURCE FOR CERTIFICATE —~/

v 307
L/
DETERMINE SECRET STORAGE LOCATION FOR SERVICE
l 309
L~/

DELETE CERTIFICATE IN SECRET STORAGE FOR SERVICE

l 311

RETURN NOTIFICATION OF DELETION TO REQUESTOR —~/

FIG. 3

US 11,764,978 B2

Sheet 4 of 5

Sep. 19, 2023

a j
JUYMLA0S
T 0z
VIQ3N 3OVHOLS F18VaYIH-INIHOVIN AMOLISNYHL-NON > FUYMONYH
(747
(S)30V443LINI ¥HOM L3N
447
(S)40SS3004d y
o o
| YIAYTNOILYZITVNLYIA |
\sZIIIIITIITICIIIIICIITIIIIIICCIICCIoIICCIIIIICIIIIICIIIIICIIIICIIICY 20
i | o B ETEY
| |
i X JONVISNI | [FVILOS
Iy I
T | ! Vi0v "
L Ny
00¥
30I1A30 OINOYLOT T3

U.S. Patent

U.S. Patent Sep. 19, 2023 Sheet 5 of 5 US 11,764,978 B2

SERVICE(S) SYSTEM
LT T TS s ﬁ oo T T TS N m
| |
| MULTI-TENANT DB | | SYSTEM DATA !
| 446 1 1 STORAGE 1 ————— = —— -
| == ' | 450 Lo '
! ! ! 220 ! |1 PROGRAM 1
| == | I mm-——e | CODE
O T B I B A 7 S
S - - N - | 1
_______ | I TTTTTTT T
| APPLICATION |
| PLATFORM !
| 444 '
NETWORK
482
USER ELECTRONIC DEVICE | ..o | USER ELECTRONIC DEVICE
480A 480S

USER USER
484A ooe 484S

FIG. 4B

US 11,764,978 B2

1
METHOD AND SYSTEM FOR CERTIFICATE
MANAGEMENT

TECHNICAL FIELD

One or more implementations relate to the field of cer-
tificate management; and more specifically, to a component
of'a container orchestration system to manage certificates for
services in conjunction with a cloud computing environ-
ment.

BACKGROUND ART

In computing and networking, cryptography is used to
protect information and secure it from unwanted access.
When computer programs communicate with one another
locally or over a network, the messages between the com-
puter programs can be encrypted to protect the information
being exchanged. To facilitate such secure communications,
security certificates such as public key certificates are uti-
lized.

Public key certificates are also known as digital certifi-
cates or identity certificates. Public key certificates are data
structures used to verify the ownership of a public key. The
public key certificate includes information about the public
key, information about the identity of the owner (referred to
as the ‘subject’) of the public key, and a digital signature of
the issuer of the public key certificate. The issuer of the
public key certificate is an entity that has verified the public
key certificate’s contents. A computer program can validate
the digital signature of the issuer by contacting the issuer to
establish trust in the public key certificate. Once the public
key certificate is trusted, then it can be used to communicate
securely with the subject of the public key certificate using
the associated public key. In many use cases a subject of the
public key certificate is a person or organization. However,
in other use cases such as use in transport layer security (US)
a subject of the public key certificate can be a specific
computing device or program executed by the computing
device.

Public key certificates and similar types of security cer-
tificates can have different formats and include different
types of data. In one example, a public key infrastructure
(PKI) scheme, the certificate issuer is a certificate authority
(CA), that is a company that charges customers to issue
certificates for them. The most common format for public
key certificates is defined by the X.509 standard by the
International Telecommunication Union.

BRIEF DESCRIPTION OF THE DRAWINGS

The following figures use like reference numbers to refer
to like elements. Although the following figures depict
various exemplary implementations, alternative implemen-
tations are within the spirit and scope of the appended
claims. In the drawings:

FIG. 1 is a diagram of one example implementation of a
cloud computing environment including a container orches-
trator with a certificate orchestrator.

FIG. 2 is a flowchart of one example implementation of
a process of the certificate orchestrator for creating or
updating certificates for services.

FIG. 3 is a flowchart of one example implementation of
a process of the certificate orchestrator for deleting certifi-
cates for services.

FIG. 4A is a block diagram illustrating an electronic
device according to some example implementations.

10

20

40

45

50

65

2

FIG. 4B is a block diagram of an environment where a
container orchestration system including a certificate
orchestrator may be deployed, according to some implemen-
tations.

DETAILED DESCRIPTION

The following description describes methods and appa-
ratus for managing public key certificates in a container
orchestration system. In particular, the methods and appa-
ratus provide a certificate orchestrator that monitors for
requests for public key certificates, herein referred to as
certificates, and in response, obtains the certificates from the
associated cloud computing environment, stores the related
data in a secret storage provided by the cloud computing
environment, and provides the location of the certificate and
related information to the requestor. The certificate orches-
trator can facilitate the operation of services that are man-
aged by the container orchestration system, by enabling the
provision and configuration of certificates for the services
and related functions.

In this manner, the certificate orchestrator enables all
services in the container orchestrations system to use public
and private certificates to encrypt the communication
amongst the services, as well as microservices. The certifi-
cates are generated by an underlying cloud certificate man-
ager (e.g., an amazon web services (AWS) certificate man-
ager ACM where the cloud computing environment is
AWS). The certificates are stored in a secret storage pro-
vided and managed by the cloud computing environment
(e.g., AWS Secrets Manager in the AWS environment). The
secret storage can be organized as a set of keystores and
truststores where private keys and the corresponding public
keys of trusted services are stored, respectively.

Without the availability of a certificate orchestrator, the
creation of certificates is manual and due to the permission
model of the container orchestration system, the certificates
can only be provisioned/de-provisioned for services therein
by an infrastructure engineer or similar administrator of the
container orchestration system.

Certificate management by the certificate orchestrator
includes provisioning certificates, monitoring the expiration
of'the certificates, which typically have a fixed duration, and
renewal of the certificates. The cloud certificate manager
(e.g., AWS ACM) provides functions for generating and
renewing certificates, but does not interface with services
supported in the container orchestration system, and thus
cannot be utilized directly by services for certificate creation
or renewal.

The services run on the container orchestration system
(e.g., in an elastic container service for Kubernetes (EKS) in
AWS). Thus, the services have a scope that is limited to
operation within the set of resources within the container
orchestration system. Hence, the certificate management
features provided by the cloud certificate manager cannot be
accessed by these services. In order to support certificate
provisioning and management and provide a self-serve
model for carrying out such activities, the certificate orches-
trator is utilized, which is a specialized controller in the
container orchestration system (e.g., a custom Kubernetes
controller where the container orchestration system is
Kubernetes). The certificate orchestrator provides functions
related to managing and accessing certificates, keystores and
truststores by services in the container orchestration system
including functions for checking certificate expiry, alerts on
expiration of certificates, and similar functions.

US 11,764,978 B2

3

FIG. 1 is a diagram of one example implementation of a
container orchestration system including the certificate
orchestrator. Containers are similar to virtual machines, but
have relaxed isolation properties. Containers share the Oper-
ating System (OS) among the applications that are executed
within the containers. Containers are considered light-
weight, because they do not include a separate operating
system. Fach container has its own filesystem. Also, each
container has a separate share of computing resources, such
as processors, memory, process space, and similar resources.
Containers are decoupled from the underlying computing
infrastructure, which makes containers portable in distrib-
uted processing environments such as cloud computing
environments.

Containers are instantiated and managed by container
orchestration systems 100. In the container orchestration
system 100, containers are utilized to execute applications.
The container orchestration system 100 manages the con-
tainers that run the applications and ensure that there is no
downtime. If a container fails, then the container orchestra-
tion system 100 instantiates another container. Examples of
container orchestration systems include Kubernetes, which
is utilized by way of example herein and not limitation. The
container orchestrations system 100 handles scaling and
failover for containers and applications. A container orches-
tration system 100 such as Kubernetes can also handle
service discovery and load balancing where the container
orchestration system 100 can expose a container using the
domain name service (INS) name or using an Internet
Protocol (PP) address.

Container orchestration systems 100 also manage storage
orchestration, rollouts and rollbacks of container state,
resource Management, container configuration, secret man-
agement, and similar functions. A container orchestration
system 100 can be composed of a set of workers, referred to
as nodes, which run containerized applications. Groups of
nodes managed by the container orchestration system 100
can be referred to as a cluster. The nodes can host ‘pods’ that
are the components of the application workload. The con-
tainer orchestration system 100 includes a control plane 101
that manages the nodes and the pods in the cluster. The
control plane 101 usually runs across multiple computing
devices and a cluster usually runs multiple nodes, providing
fault-tolerance and high availability.

The control plane 101 of the container orchestration
system 100 includes a set of components that make deci-
sions about the operation of cluster (e.g., resource allocation,
scheduling, and similar functions), and responding to cluster
events. Control plane 101 components can execute on any
computing device association with the cluster. The container
orchestration system 100 runs applications by placing appli-
cations in containers, which are placed into pods to run on
nodes. A node may be a virtual or physical machine,
depending on the cluster. Each node contains the functions
necessary to run pods, managed by the control plane. The
control plane 101 can include an application programming
interface (API) server 103, and etcd 105, amongst other
components. The API server 103 can provide an interface for
programs and administrators to communicate with the con-
trol plane 101. The etcd is a distributed key-value store that
can be utilized by the container orchestration system 100.

In a Kubernetes implementation, pods are the smallest
deployable units of computing that can be generated and
managed. A pod is a group of one or more containers, with
shared storage and network resources, and a specification for
how to run the containers. The certificate orchestrator 107
operates as a controller, part of the control plane 100, or with

10

15

20

25

30

35

40

45

50

55

60

65

4

similar properties. In a Kubernetes implementation, the
certificate orchestrator 107 is implemented as a Kubernetes
Controller. In Kubernetes, controllers are control loops that
watch the state of the cluster, then make or request changes
where needed. Each controller tries to move the current
cluster state closer to a desired state. A Kubernetes controller
tracks at least one Kubernetes resource type. These objects
have a spec field that represents the desired state. The
Kubernetes controller(s) for that resource are responsible for
making the current state come closer to that desired state.
The Kubernetes API can be extended to create an applica-
tion-specific controller to create, configure and manage
instances of complex stateful applications on behalf of a
Kubernetes user. The custom Kubernetes controller builds
upon Kubernetes resource and controller concepts and
includes domain or application-specific knowledge to auto-
mate common tasks better managed by computers. The
certificate orchestrator 107 can be implemented as such a
custom Kubernetes controller.

The certificate orchestrator 107 can be configured so
monitor custom resource definition (CRD) 109. A resource
is an endpoint in the Kubernetes API that stores a collection
of API objects of a certain kind. A custom resource is an
extension of the Kubernetes API that is not available in a
default Kubernetes installation. It represents a customization
of a particular Kubernetes installation. Custom resources
can appear and disappear in a running cluster through
dynamic registration, and cluster administrators can update
custom resources independently of the cluster itself. Once a
custom resource is installed, users can create and access its
objects, just as they do for built-in resources like Pods. The
certificate orchestra car 107 can be an implementation of an
extension to Kubernetes API to satisfy an application spe-
cific use-case for managing the certificate lifecycle.

The certificate orchestrator 107 is a custom (e.g., Kuber-
netes) controller which monitors custom resources 109 of
kind certificates, keystores and truststores for the create,
delete, and update events and takes a defined action based on
those events. The certificate orchestrator interacts with a
cloud certificate manager 111 for requesting and download-
ing certificates to create secret storage custom resources 109,
such as key stores and trust stores. After creating key stores
and trust stores as custom resources, the certificate orches-
trator 107 initiates a session with the secrets manager 113 to
upload the key stores and trust stores to the secret storage of
the cloud computing environment.

As illustrated in FIG. 1, the certificate orchestrator 101
monitors the custom resources 109 (i.e., certificates, key-
stores and truststores) for associated create and update
events. When a create event for certificate occurs, the
certificate orchestrator 107 captures the create event and
requests a new certificate from the cloud certificate manager
111. When the create event for the keystore occurs, then the
certificate orchestrator 107 downloads the service’s certifi-
cate bundle from the cloud certificate manager, creates a
keystore and uploads it to cloud secrets manager 113. When
the create event for trust store occurs, then the certificate
orchestrator 101 downloads the service’s certificate bundle
along with upstream and downstream service’s certificates
from the cloud certificate manager 111. The certificate
orchestrator 101 then builds a truststore as part of the custom
resources 109 which includes the service certificate chain
along with upstream and downstream service certificates and
uploads the truststore to cloud secrets manager 113.

Certificate orchestrators 107 can execute in an adminis-
trative or control plane space within the container orches-
tration system. Since the certificate orchestrator 107 handles

US 11,764,978 B2

5

sensitive data including certificates, keystores and trust-
stores for services, it is important that the certificate orches-
trator 107 is secure. The certificate orchestrator 107 can be
deployed in its own namespace where the namespace
resources can be accessed only by cluster administrators.
The certificate orchestrator 107 needs access to CRD objects
109 of certificates, keystore and truststore which can be
deployed in any service specific namespace. Since the
certificate orchestrator 107 needs to watch all namespaces it
can be provided high level access privileges such as Clus-
terRole privileges in Kubernetes. The certificate orchestrator
also needs access to the cloud certificate manager 11 for
requesting new certificates and the cloud secrets manager
113 for uploading keystores and truststores. In a Kubernetes
implementation, this access to the certificate orchestrator
107 is provided using identity and access management
(IAM) roles.

The certificate CRD in the custom resources 109 is a
custom resource that defines the metadata required to
request a certificate from the cloud certificate manager 111.
The metadata of the certificate CRD includes the certificate
of the fully qualified domain name (FQDN) and type of
certificate. The keystore CRD is a custom resource 109 that
defines the keystore resource. The resource specification
accepts metadata for generating new keystores for a par-
ticular service. The certificate orchestrator 107 uploads the
metadata to the cloud secrets manager 113. The truststore
CRD is a custom resource that defines the truststore
resource. The resource specification accepts service meta-
data along with the upstream and downstream services. The
certificate orchestrator 107 creates the keystore and trust-
store and uploads them to the cloud secrets manager 113. In
some implementations, the certificate orchestrator 107 can
handle protection of services in the case of a breach in an
upstream or downstream service. In response to detecting
the breach, the certificate orchestrator 107 can update the
CRD resources to generate new keystores and truststores
with new certificates and restart the associated service pods.
In some implementations, the certificate orchestrator 107
can remove the names of services that are compromised
from the metadata of the truststore CRD of the upstream or
downstream services.

The service 117 is a set of functions implemented in a set
of containers that can be a part of a larger application with
additional functions also implemented in a related set of
containers. The service 117 can be assigned to a specific
node or distributed over multiple nodes depending on the
implementation. The service 117 functions can be imple-
mented as a set of pods, e.g., where the container orches-
tration system is Kubernetes. The service 117 or specific
service pod 121 can be provided the location information for
the secret storage in the cloud computing environment
where the certificate information (e.g., public/private keys,
certificate chain, and similar information) is stored. The
administrator, certificate orchestrator 107, or similar com-
ponent of the control plane 101 can provide the location
information to the service 117.

FIG. 2 is a flowchart of one example implementation of
the process of the certificate orchestrator to create or update
a certificate. In one example, an application, includes several
services, including a test-service, which talks to a proxy
service and database service. To have encrypted service-to-
service communication for this application, certificates are
needed for each service along with associated keystores
and/or truststores. The certificate orchestrator has access to

10

15

20

25

30

35

40

45

50

55

60

65

6

or creates keystores and truststores for each service using an
underlying secrets manager in the cloud computing envi-
ronment.

In the example, to create certificates for the three services
the certificate orchestrator or similar component can create
certificate objects for all three services. This process can be
triggered by a request received from an administrator, the
service, associated application or similar source in the
control plane to create the certificates (Block 201). The
process operates similarly for updates such as renewals of
certificates and the processes are described together in
reference to FIG. 2. In response, the control plane requests
the creation or update of the custom resources that represent
the respective certificates for each of the services (Block
203). The certificate orchestrator monitors the custom
resources related to certificates, keystores, and truststores
and detects the creation or update of these custom resources
(Block 205).

In response to detecting the creation or update of the
custom resources, the certificate orchestrator requests a
certificate for renewal from the cloud certificate manager of
the cloud computing environment (Block 207). In response,
a certificate and associated information such as the public
and private keys and chain of the certificate are returned to
the certificate orchestrator (Block 209).

The custom resources and associated objects are updated
by the certificate orchestrator with information related to the
certificate. A check can then be made to determine whether
a secret store has been established for each service (Block
211). If a secret store already exists for the service, then the
certificate and/or the public/private keys can be stored in the
secret store within the cloud computing environment (Block
217). The secret store can include keystores and/or trust-
stores, where separate keystores and/or truststores are estab-
lished for each service, or separate locations (e.g., entries)
are utilized in a larger structure for each service. Information
relating to the services utilizing the certificates and keys can
be stored in the secret storage as well as the associated
custom resources for the certificates. Similarly, the chain of
authentication of the certificate can be stored in the secrete
store. Access to and storage into the secret storage can be by
way of the secrets manager of the cloud computing envi-
ronment.

If a secret storage has not been established for the service,
then the certificate orchestrator can request the establish a
secret storage location for the service (Block 213). In
response, the cloud secrets manager establishes the secret
storage for the service and returns the location of the secret
storage for the service to the container orchestrator (Block
215). The container orchestrator can then store the certificate
and/or the public/private keys in the secret store within the
cloud computing environment (Block 217). The secret store
can include keystores and/or truststores, where separate
keystores and/or truststores are established for each service,
or separate locations (e.g., entries) are utilized in a larger
structure for each service. Information relating to the ser-
vices utilizing the certificates and keys can be stored in the
secret storage as well as the associated custom resources for
the certificates. Similarly, the chain of authentication of the
certificate can be stored in the secret store. Access to and
storage into the secret storage can be by way of the secrets
manager of the cloud computing environment.

FIG. 3 is a flowchart of one example implementation of
the process of the certificate orchestrator to delete a certifi-
cate. In one example, an application includes several ser-
vices, including a test-service, which talks to a proxy service
and database service. The test service completes and no

US 11,764,978 B2

7

longer needs to utilize the proxy service, such that the
certificate can be deleted. The certificate orchestrator can
manage the removal of certificate information in keystores
and truststores for each service using an underlying secrets
manager in the cloud computing environment.

In the example, to delete a certificate the certificate
orchestrator or similar component can delete or modify a
certificate object for the affected services. This process can
be triggered by a request received from an administrator, the
service, associated application or similar source in the
control plane to delete the certificates (Block 301). In
response, the control plane requests the deletion of the
custom resources that represent the respective certificates for
each of the services (Block 303). The certificate orchestrator
monitors the custom resources related to certificates, key-
stores, and truststores and detects the deletion or similar
modification of these custom resources (Block 305).

In response to detecting the creation or update of the
custom resources, the certificate orchestrator determines a
location of the certificates or related information using
information from the monitored custom resource or similar
sources (Block 307). The certificate orchestrator can then
request that the secret storage manager of the cloud com-
puting environment delete the certificate information from
the identified secret storage location, e.g., deleting informa-
tion from the associated keystores or truststores (Block 309).
The cloud secrets manager deletes the certificates or asso-
ciated information and notifies the certificate orchestrator. In
turn, the certificate orchestrator notifies the requester of the
deletion of the certificate that the process has completed and
the information has been removed from the secret storage
(Block 311). In some cases, the secret storage for the
services is also removed.

The term “user” is a generic term referring to an entity
(e.g., an individual person) using a system and/or service. A
multi-tenant architecture provides each tenant with a dedi-
cated share of a software instance and the ability (typically)
to input tenant specific data for user management, tenant-
specific functionality, configuration, customizations, non-
functional properties, associated applications, etc. Multi-
tenancy contrasts with multi-instance architectures, where
separate software instances operate on behalf of different
tenants. A tenant includes a group of users who share a
common access with specific privileges to a software
instance providing a service. A tenant may be an organiza-
tion (e.g., a company, department within a company, etc.). A
tenant may have one or more roles relative to a system
and/or service. For example, in the context of a customer
relationship management (CRM) system or service, a tenant
may be a vendor using the CRM system or service to
manage information the tenant has regarding one or more
customers of the vendor. As another example, in the context
of Data as a Service (DAAS), one set of tenants may be
vendors providing data and another set of tenants may be
customers of different ones or all of the vendors® data. As
another example, in the context of Platform as a Service
(PAAS), one set of tenants may be third party application
developers providing applications/services and another set
of tenants may be customers of different ones or all of the
third-party application developers. A user may have one or
more roles relative to a system and/or service. To provide
some examples, a user may be a representative (sometimes
referred to as an “end user”) of a tenant (e.g., a vendor or
customer), a representative (e.g., an administrator) of the
company providing the system and/or service, and/or a
representative (e.g., a programmer) of a third-party appli-

5

10

15

20

25

30

35

40

45

50

55

60

65

8

cation developer that is creating and maintaining an appli-
cation(s) on a Platform as a Service (PAAS).

Exemplary Electronic Devices

Electronic Device and Machine-Readable Media

One or more parts of the above implementations may
include software and/or a combination of software and
hardware. An electronic device (also referred to as a com-
puting device, computer, etc.) includes hardware and soft-
ware, such as a set of one or more processors coupled to one
or more machine-readable storage media (e.g., magnetic
disks, optical disks, read only memory (ROM), Flash
memory, phase change memory, solid state drives (SSDs)) to
store code (which is composed of software instructions and
which is sometimes referred to as computer program code or
a computer program) for execution on the set of processors
and/or to store data. For instance, an electronic device may
include non-volatile memory (with slower read/write times,
e.g., magnetic disks, optical disks, read only memory
(ROM), Flash memory, phase change memory, SSDs) and
volatile memory (e.g., dynamic random access memory
(DRAM), static random access memory (SRAM)), where
the non-volatile memory persists code/data even when the
electronic device is turned off or when power is otherwise
removed, and the electronic device copies that part of the
code that is to be executed by the set of processors of that
electronic device from the non-volatile memory into the
volatile memory of that electronic device during operation
because volatile memory typically has faster read/write
times. As another example, an electronic device may include
a non-volatile memory (e.g., phase change memory) that
persists code/data when the electronic device is turned off,
and that has sufficiently fast read/write times such that,
rather than copying the part of the code/data to be executed
into volatile memory, the code/data may be provided directly
to the set of processors (e.g., loaded into a cache of the set
of processors); in other words, this non-volatile memory
operates as both long term storage and main memory, and
thus the electronic device may have no or only a small
amount of volatile memory for main memory. In addition to
storing code and/or data on machine-readable storage media,
typical electronic devices can transmit code and/or data over
one or more machine-readable transmission media (also
called a carrier) (e.g., electrical, optical, radio, acoustical or
other form of propagated signals—such as carrier waves,
infrared signals). For instance, typical electronic devices
also include a set of one or more physical network
interface(s) to establish network connections (to transmit
and/or receive code and/or data using propagating signals)
with other electronic devices. Thus, an electronic device
may store and transmit (internally and/or with other elec-
tronic devices over a network) code and/or data with one or
more machine-readable media (also referred to as computer-
readable media).

Electronic devices are used for a variety of purposes. For
example, an electronic device (sometimes referred to as a
server electronic device) may execute code that cause it to
operate as one or more servers used to provide a service to
another electronic device(s) (sometimes referred to as a
client electronic device, a client computing device, or a
client device) that executes client software (sometimes
referred to as client code or an end user client) to commu-
nicate with the service. The server and client electronic
devices may be operated by users respectively in the roles of
administrator (also known as an administrative user) and end
user.

FIG. 4A is a block diagram illustrating an electronic
device 400 according to some example implementations.

US 11,764,978 B2

9

FIG. 4A includes hardware 420 comprising a set of one or
more processor(s) 422, a set of one or more network
interfaces 424 (wireless and/or wired), and non-transitory
machine-readable storage media 426 having stored therein
software 428 (which includes instructions executable by the
set of one or more processor(s) 422). Each of the previously
described end user clients and the certificate orchestration
service may be implemented in one or more electronic
devices 400. In one implementation: 1) each of the end user
clients is implemented in a separate one of the electronic
devices 400 (e.g., in user electronic devices operated by
users where the software 428 represents the software to
implement end user clients to interface with the certificate
orchestration service (e.g., a web browser, a native client, a
portal, a command-line interface, and/or an application
program interface (API) based upon protocols such as
Simple Object Access Protocol (SOAP), Representational
State Transfer (REST), etc.)); 2) the certificate orchestration
service is implemented in a separate set of one or more of the
electronic devices 400 (e.g., a set of one or more server
electronic devices where the software 428 represents the
software to implement the certificate orchestration service);
and 3) in operation, the electronic devices implementing the
end user clients and the certificate orchestration service
would be communicatively coupled (e.g., by a network) and
would establish between them (or through one or more other
layers) connections for submitting request to the certificate
orchestration service and returning the location of the secret
storage to the end user clients. Other configurations of
electronic devices may be used in other implementations
(e.g., an implementation in which the end user client and the
certificate orchestration service are implemented on a single
electronic device 400).

In electronic devices that use compute virtualization, the
set of one or more processor(s) 422 typically execute
software to instantiate a virtualization layer 408 and soft-
ware container(s) 404A-R (e.g., with operating system-level
virtualization, the virtualization layer 408 represents the
kernel of an operating system (or a shim executing on a base
operating system) that allows for the creation of multiple
software containers 404A-R (representing separate user
space instances and also called virtualization engines, virtual
private servers, or jails) that may each be used to execute a
set of one or more applications; with full virtualization, the
virtualization layer 408 represents a hypervisor (sometimes
referred to as a virtual machine monitor (VMM)) or a
hypervisor executing on top of a host operating system, and
the software containers 404A-R each represent a tightly
isolated form of a software container called a virtual
machine that is run by the hypervisor and may include a
guest operating system; with para-virtualization, an operat-
ing system or application running with a virtual machine
may be aware of the presence of virtualization for optimi-
zation purposes). Again, in electronic devices where com-
pute virtualization is used, during operation an instance of
the software 428 (illustrated as instance 406A) is executed
within the software container 404A on the virtualization
layer 408. In electronic devices where compute virtualiza-
tion is not used, the instance 406 A on top of a host operating
system is executed on the “bare metal” electronic device
400. The instantiation of the instance 406A, as well as the
virtualization layer 408 and software containers 404A-R if
implemented, are collectively referred to as software
instance(s) 402.

Alternative implementations of an electronic device may
have numerous variations from that described above. For

20

25

35

40

45

50

55

60

65

10

example, customized hardware and/or accelerators might
also be used in an electronic device.

Network Device

A network device (ND) is an electronic device that
communicatively interconnects other electronic devices on
the network (e.g., other network devices, user electronic
devices, server electronic devices). Some network devices
are “multiple services network devices™ that provide support
for multiple networking functions (e.g., routing, bridging,
switching, Layer 2 aggregation, session border control,
Quality of Service, and/or subscriber management), and/or
provide support for multiple application services (e.g., data,
voice, and video).

Exemplary Environment

FIG. 4B is a block diagram of an environment where a
certificate orchestrator may be deployed, according to some
implementations. A system 440 includes hardware (a set of
one or more electronic devices) and software to provide
service(s) 442, including the certificate orchestration ser-
vice. The system 440 is coupled to user electronic devices
480A-S over a network 482. The service(s) 442 may be
on-demand services that are made available to one or more
of the users 484 A-S working for one or more other organi-
zations (sometimes referred to as outside users) so that those
organizations do not need to necessarily be concerned with
building and/or maintaining a system, but instead makes use
of the service(s) 442 when needed (e.g., on the demand of
the users 484 A-S). The service(s) 442 may communication
with each other and/or with one or more of the user
electronic devices 480A-S via one or more Application
Programming Interface(s) (APIs) (e.g., a Representational
State Transfer (REST) API). The user electronic devices
480A-S are operated by users 484A-S.

In one implementation, the system 440 is a multi-tenant
cloud computing architecture supporting multiple services,
such as a container orchestration system including a certifi-
cate orchestrator, a customer relationship management
(CRM) service (e.g., Sales Cloud by salesforce.com, Inc.), a
contracts/proposals/quotes service (e.g., Salesforce CPQ by
salesforce.com, Inc.), a customer support service (e.g., Ser-
vice Cloud and Field Service Lightning by salesforce.com,
Inc.), a marketing service (e.g., Marketing Cloud, Salesforce
DMP, and Pardot by salesforce.com, Inc.), a commerce
service (e.g., Commerce Cloud Digital, Commerce Cloud
Order Management, and Commerce Cloud Store by sales-
force.com, Inc.), communication with external business data
sources (e.g., Salesforce Connect by salesforce.com, Inc.), a
productivity service (e.g., Quip by salesforce.com, Inc.),
database as a service (e.g., Database.com™ by salesforce.
com, Inc.), Data as a Service (DAAS) (e.g., Data.com by
salesforce.com, Inc.), Platform as a Service (PAAS) (e.g.,
execution runtime and application (app) development tools;
such as, Heroku™ Enterprise, Thunder, and Force.com®
and Lightning by salesforce.com, Inc.), an analytics service
(e.g., Einstein Analytics, Sales Analytics, and/or Service
Analytics by salesforce.com, Inc.), a community service
(e.g., Community Cloud and Chatter by salesforce.com,
Inc.), an Internet of Things (IoT) service (e.g., Salesforce
IoT and IoT Cloud by salesforce.com, Inc.), industry specific
services (e.g., Financial Services Cloud and Health Cloud by
salesforce.com, Inc.), and/or Infrastructure as a Service
(IAAS) (e.g., virtual machines, servers, and/or storage). For
example, system 440 may include an application platform
444 that enables PAAS for creating, managing, and execut-
ing one or more applications developed by the provider of
the application platform 444, users accessing the system 440
via one or more of user electronic devices 480A-S, or

US 11,764,978 B2

11

third-party application developers accessing the system 440
via one or more of user electronic devices 480A-S.

In some implementations, one or more of the service(s)
442 may utilize one or more multi-tenant databases 446 for
tenant data 448, as well as system data storage 450 for
system data 452 accessible to system 440. In certain imple-
mentations, the system 440 includes a set of one or more
servers that are running on server electronic devices and that
are configured to handle requests for any authorized user
associated with any tenant (there is no server affinity for a
user and/or tenant to a specific server). The user electronic
device 480A-S communicate with the server(s) of system
440 to request and update tenant-level data and system-level
data hosted by system 440, and in response the system 440
(e.g., one or more servers in system 440) automatically may
generate one or more Structured Query Language (SQL)
statements (e.g., one or more SQL queries) that are designed
to access the desired information from the one or more
multi-tenant database 446 and/or system data storage 450.

In some implementations, the service(s) 442 are imple-
mented using virtual applications dynamically created at run
time responsive to queries from the user electronic devices
480A-S and in accordance with metadata, including: 1)
metadata that describes constructs (e.g., forms, reports,
workflows, user access privileges, business logic) that are
common to multiple tenants; and/or 2) metadata that is
tenant specific and describes tenant specific constructs (e.g.,
tables, reports, dashboards, interfaces, etc.) and is stored in
a multi-tenant database. To that end, the program code 460
may be a runtime engine that materializes application data
from the metadata; that is, there is a clear separation of the
compiled runtime engine (also known as the system kernel),
tenant data, and the metadata, which makes it possible to
independently update the system kernel and tenant-specific
applications and schemas, with virtually no risk of one
affecting the others. Further, in one implementation, the
application platform 444 includes an application setup
mechanism that supports application developers’ creation
and management of applications, which may be saved as
metadata by save routines. Invocations to such applications,
including the container orchestration system including the
certificate orchestration service, may be coded using Proce-
dural Language/Structured Object Query Language (PL/
SOQL) that provides a programming language style inter-
face. A detailed description of some PL/SOQL language
implementations is discussed in U.S. Pat. No. 7,730,478
entitted, METHOD AND SYSTEM FOR ALLOWING
ACCESS TO DEVELOPED APPLICATIONS VIA A
MULTI-TENANT ON-DEMAND DATABASE SERVICE,
by Craig Weissman, filed Sep. 21, 2007. Invocations to
applications may be detected by one or more system pro-
cesses, which manages retrieving application metadata for
the tenant making the invocation and executing the metadata
as an application in a software container (e.g., a virtual
machine).

Network 482 may be any one or any combination of a
LAN (local area network), WAN (wide area network),
telephone network, wireless network, point-to-point net-
work, star network, token ring network, hub network, or
other appropriate configuration. The network may comply
with one or more network protocols, including an Institute
of Electrical and Electronics Engineers (IEEE) protocol, a
3rd Generation Partnership Project (3GPP) protocol, or
similar wired and/or wireless protocols, and may include
one or more intermediary devices for routing data between
the system 440 and the user electronic devices 480A-S.

10

15

20

25

30

35

40

45

50

55

60

65

12

Each user electronic device 480A-S (such as a desktop
personal computer, workstation, laptop, Personal Digital
Assistant (PDA), smart phone, etc.) typically includes one or
more user interface devices, such as a keyboard, a mouse, a
trackball, a touch pad, a touch screen, a pen or the like, for
interacting with a graphical user interface (GUI) provided on
a display (e.g., a monitor screen, a liquid crystal display
(LCD), etc.) in conjunction with pages, forms, applications
and other information provided by system 440. For example,
the user interface device can be used to access data and
applications hosted by system 440, and to perform searches
on stored data, and otherwise allow a user 484 to interact
with various GUI pages that may be presented to a user 484.
User electronic devices 480A-S might communicate with
system 440 using TCP/IP (Transfer Control Protocol and
Internet Protocol) and, at a higher network level, use other
networking protocols to communicate, such as Hypertext
Transfer Protocol (HTTP), FTP, Andrew File System (AFS),
Wireless Application Protocol (WAP), File Transfer Proto-
col (FTP), Network File System (NFS), an application
program interface (API) based upon protocols such as
Simple Object Access Protocol (SOAP), Representational
State Transfer (REST), etc. In an example where HTTP is
used, one or more user electronic devices 480A-S might
include an HTTP client, commonly referred to as a
“browser,” for sending and receiving HTTP messages to and
from server(s) of system 440, thus allowing users 484 of the
user electronic device 480A-S to access, process and view
information, pages and applications available to it from
system 440 over network 482.

CONCLUSION

In the above description, numerous specific details such
as resource partitioning/sharing/duplication implementa-
tions, types and interrelationships of system components,
and logic partitioning/integration choices are set forth in
order to provide a more thorough understanding. It will be
appreciated, however, by one skilled in the art, that the
invention may be practiced without such specific details. In
other instances, control structures, logic implementations,
opcodes, means to specify operands, and full software
instruction sequences have not been shown in detail since
those of ordinary skill in the art, with the included descrip-
tions, will be able to implement what is described without
undue experimentation.

References in the specification to “one implementation,”
“an implementation,” “an example implementation,” etc.,
indicate that the implementation described may include a
particular feature, structure, or characteristic, but every
implementation may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same implementation.
Further, when a particular feature, structure, or characteristic
is described in connection with an implementation, it is
submitted that it is within the knowledge of one skilled in the
art to affect such feature, structure, or characteristic in
connection with other implementations whether or not
explicitly described.

Bracketed text and blocks with dashed borders (e.g., large
dashes, small dashes, dot-dash, and dots) may be used herein
to illustrate optional operations and/or structures that add
additional features to some implementations. However, such
notation should not be taken to mean that these are the only
options or optional operations, and/or that blocks with solid
borders are not optional in certain implementations.

US 11,764,978 B2

13

In the following description and claims, the term
“coupled,” along with its derivatives, may be used.
“Coupled” is used to indicate that two or more elements,
which may or may not be in direct physical or electrical
contact with each other, co-operate or interact with each
other.

The operations in the flow diagrams are be described with
reference to the exemplary implementations in the other
figures. However, the operations of the flow diagrams can be

5

performed by implementations other than those discussed 10

with reference to the other figures, and the implementations
discussed with reference to these other figures can perform
operations different than those discussed with reference to
the flow diagrams.

While the flow diagrams in the figures show a particular
order of operations performed by certain implementations, it
should be understood that such order is exemplary (e.g.,
alternative implementations may perform the operations in a
different order, combine certain operations, overlap certain
operations, etc.).

While the above description includes several exemplary
implementations, those skilled in the art will recognize that
the invention is not limited to the implementations described
and can be practiced with modification and alteration within
the spirit and scope of the appended claims. The description
is thus illustrative instead of limiting.

What is claimed is:

1. A method for certificate management for services in a
container orchestration system, the method comprising:

responsive to detecting a request for a certificate-related

resource from one of the services implemented in a set

of containers in the container orchestration system, the

certificate-related resource associated with at least one

of a certificate, keystore and truststore, a controller of

the container orchestration system performing the fol-

lowing:

requesting the certificate-related resource from a cloud
certificate manager for the one of the services;

receiving the certificate-related resource from the cloud
certificate manager;

storing the certificate-related resource in a secret stor-
age; and

returning a location of the secret storage for provision
to the one of the services.

2. The method of claim 1, further comprising:

monitoring a custom resource definition to detect the

request for the certificate-related resource.

3. The method of claim 1, further comprising:

requesting the secret storage be established by a cloud

secrets manager, in response to determining that the
secret storage is unavailable for the one of the services.

4. The method of claim 1, further comprising:

receiving a private key from the cloud certificate man-

ager; and

storing the private key in the secret storage.

5. The method of claim 1, wherein the secret storage
includes at least one of a key store and a trust store.

6. The method of claim 1, wherein the location of the
secret storage is a pointer to a location in a cloud computing
environment.

7. The method of claim 1, wherein the container orches-
tration system is Kubernetes, and wherein the one of the
services is a pod.

8. The method of claim 1, further comprising:

requesting to delete a certificate associated with a certifi-

cate-related resource for the one of the services from a
cloud secrets manager, in response to detecting a

15

20

25

30

35

40

45

50

55

60

65

14

request from a control plane of the container orches-
tration system to delete the certificate for the one of the
services;

receiving confirmation of deletion of the certificate from

the cloud secrets manager; and

returning the confirmation of the deletion to a requester of

the deletion of the certificate.

9. A non-transitory machine-readable storage medium that
provides instructions that, if executed by a processor, will
cause said processor to perform operations of a method for
certificate management for services in a container orches-
tration system, the operations comprising:

responsive to detecting a request for a certificate-related

resource from one of the services implemented in a set

of containers in the container orchestration system, the

certificate-related resource associated with at least one

of a certificate, keystore and truststore, a controller of

the container orchestration system performing the fol-

lowing:

requesting the certificate-related resource from a cloud
certificate manager for the one of the services;

receiving the certificate-related resource from the cloud
certificate manager;

storing the certificate-related resource in a secret stor-
age; and

returning a location of the secret storage for provision
to the one of the services.

10. The non-transitory machine-readable storage medium
of claim 9, having further instructions for operations further
comprising:

monitoring a custom resource definition to detect the

request for the certificate-related resource.

11. The non-transitory machine-readable storage medium
of claim 9, having further instructions for operations further
comprising:

requesting the secret storage be established by a cloud

secrets manager, in response to determining that the
secret storage is unavailable for the one of the services.

12. The non-transitory machine-readable storage medium
of claim 9, having further instructions for operations further
comprising:

receiving a private key from the cloud certificate man-

ager; and

storing the private key in the secret storage.

13. The non-transitory machine-readable storage medium
of claim 9, wherein the secret storage includes at least one
of a key store and a trust store.

14. The non-transitory machine-readable storage medium
of claim 9, wherein the location of the secret storage is a
pointer to a location in a cloud computing environment.

15. The non-transitory machine-readable storage medium
of claim 9, wherein the container orchestration system is
Kubernetes, and wherein the one of the services is a pod.

16. The non-transitory machine-readable storage medium
of claim 9, having further instruction for operations further
comprising:

requesting to delete a certificate associated with a certifi-

cate-related resource from a cloud secrets manager, in
response to detecting a request from a control plane of
the container orchestration system to delete the certifi-
cate for the one of the services;

receiving confirmation of deletion of the certificate from

the cloud secrets manager; and

returning the confirmation of the deletion to a requester of

the deletion of the certificate.

US 11,764,978 B2

15

17. A computing system comprising:

a non-transitory machine-readable medium having stored

therein a certificate orchestrator; and

a processor, coupled to the non-transitory machine-read-

able medium, to execute the certificate orchestrator to
perform certificate management for services in a con-
tainer orchestration system, the certificate orchestrator
configurable to cause the processer to:
responsive to detecting a request for a certificate-
related resource from one of the services imple-
mented in a set of containers in the container orches-
tration system, the certificate-related resource
associated with at least one of a certificate, keystore
and truststore, a controller of the container orches-
tration system performing the following:
request the certificate-related resource from a cloud
certificate manager for the one of the services,
receive the certificate-related resource from the
cloud certificate manager,
store the certificate-related resource in a secret stor-
age, and
return a location of the secret storage for provision to
the one of the services.

18. The computing system of claim 17, wherein the
certificate orchestrator is further configurable to monitor a
custom resource definition to detect the request for the
certificate-related resource.

19. The computing system of claim 17, wherein the
certificate orchestrator is further configurable to request the

10

15

20

25

16

secret storage be established by a cloud secrets manager, in
response to determining that the secret storage is unavailable
for the one of the services.

20. The computing system of claim 17, wherein the
certificate orchestrator is further configurable to receive a
private key from the cloud certificate manager, and store the
private key in the secret storage.

21. The computing system of claim 17, wherein the secret
storage includes at least one of a key store and a trust store.

22. The computing system of claim 17, wherein the
location of the secret storage is a pointer to a location in a
cloud computing environment.

23. The computing system of claim 17, wherein the
container orchestration system is Kubernetes, and wherein
the one of the services is a pod in Kubernetes.

24. The computing system of claim 17, wherein the
certificate orchestrator is further configurable to:

request to delete a certificate associated with a certificate-

related resource from a cloud secrets manager, in
response to detecting a request from a control plane of
the container orchestration system to delete the certifi-
cate for the one of the services,

receive confirmation of deletion of the certificate from the

cloud secrets manager, and

return the confirmation of the deletion to a requester of the

deletion of the certificate.

#* #* #* #* #*

