US 20060155692A1

a2y Patent Application Publication (o) Pub. No.: US 2006/0155692 A1l

a9y United States

Dettinger et al.

43) Pub. Date: Jul. 13, 2006

(54) DEALING WITH COMPOSITE DATA
THROUGH DATA MODEL ENTITIES
(76) Inventors: Richard D. Dettinger, Rochester, MN
(US); Jennifer L. LaRocca, Rochester,
MN (US); Richard J. Stevens,
Mantorville, MN (US); Jeffrey W.
Tenner, Rochester, MN (US)
Correspondence Address:
IBM Corporation
Dept. 917
Intellectual Property Law
3605 Highway 52 North
Rochester, MN 55901 (US)
(21) Appl. No.: 11/360,353
(22) Filed: Feb. 23, 2006
Related U.S. Application Data
(62) Division of application No. 10/403,356, filed on Mar.

31, 2003, now Pat. No. 7,054,877.

Publication Classification

(51) Int. CL

GOG6F 17/30 (2006.01)
(52) US. €l oo 70773
(57) ABSTRACT

The present invention is generally directed to a system,
method and article of manufacture for accessing data rep-
resented abstractly through an abstraction model. In one
embodiment, a data repository abstraction layer provides a
logical view of an underlying data repository that is inde-
pendent of the particular manner of data representation. A
query abstraction layer is also provided and is based on the
data repository abstraction layer. A runtime component
performs conversion of an abstract query (i.e., a request for
results or a request to modify data) into a form that can be
used against a particular physical data representation.
Abstract and/or physical queries are transformed according
to model entities which define a relationship between logical
fields of the data repository abstraction layer.

— 102
110~ cPU 04— 30—~ CPU b
MEMORY 126 — MAIN MEMORY 4132
ROWSER -1z (TSR] 150~ rorara]
PROGRAM HTTP SERVER 160 ~ HTML FORMS
124 146 152 136
LOPERATING SYSTEM] ABSTRACT QUERY I/F
112 DATA REPOSITORY
ABSTRACTION COMPONENT
114 —~| STORAGE
16— NPUT BEVICE | RUNTIME COMPONENT | 150
119 ~| OUTPUT DEVICE APPLICATION
140
118 ——1 NETWORK I/F |_ | APPLICATION QUERY SPECIFICATION r—142
OPERATING SYSTEM 138
157 1575
102 102
100—" i { 156, 156N
126 e
— 134
1/26 NETWORK DBMS [154

US 2006/0155692 A1

Patent Application Publication Jul. 13,2006 Sheet 1 of 29

s1—H SWed
pET —
N9ST Togr
se1 WILSAS ONILYHILO
ZvT — NOILYDIJID3dS A¥IND NOILYDINddV
or1 -
NOILYDITddY
0ST— ININOJWOD IWILNNY
1IN3INOJWOD NOILOVH1SEY
A¥OLISOd3Y Yiva
N gp]
4/l AY3ND LOVHLSaY
L 9¢7 S TSI~ S~ 9pl
ﬁ W04 AL |— o091 HIAYIS dLLH
cel AHOWIW NIVIN
Ndd | o¢T

NzgT

— v0I
a0l

=P

Ay

]] 001

2ot coi1

3/ YHOMLIN

— 811

3DIA2A 1Nd1NO

— 611

30IA3A LNdNI

— 911

JOVHOLS

~— vl

il

W3ILSAS ONILYHALO

A

— 9C1

WVHOO¥Hd
ccl ¥3asmousg

AJOW3IN

Ndo

01T

US 2006/0155692 A1

Patent Application Publication Jul. 13,2006 Sheet 2 of 29

VZ 81

NOILY.LNISI™LTY V1va HIHLO

NOILV.INISTIH4T
VivQa TVNOILV13Y

urep
29 {Auy | LopL |uooon | Aep [sin

_NpIZ "
’ i
|
|
|
JOVNONYT |
AH3NO ¥IHLO !
_
JINILNNY
o8 NOILND3X3 0s1

AY3NO

CpIz

abe | Ayo |yeans| sweu| [aweu™} |om

AY3N0D TAX

NOILVINISIHdIY YLV TNX

<SSaIppY/>

<9p0oadiz/>6Z8yE<apoodizs
<9)BIS/>ON<Ie}s>
<A)19/><umOojAuY <AJj0>
<]93lS/>}89.1S Ule| LOYL<laans>
<3WeU-JSe}/>U009IN <3 WEBU-ISE[>
<dweu-jsi/>AlBN<aWweU-ISll>
<o[/> "SIN <sj>

<auweus

<Ssalppe>

— IpIC

-

1
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
I
|
1
|

NOILVINISIHd3Y | NOILVINISIHLIY

ANILNNY TTYOISAHd | LOVYHLSEY / VIID01

00z —"

NOLLOVYLSaY
AdOLISOd3d viva

A

20T

AY3ND0 LOVHlsay
A

L Op]

NOILVDIdJIO3dS
\HIND NOILVIINddY

7
ert NOILVOINddV

Patent Application Publication Jul. 13,2006 Sheet 3 of 29 US 2006/0155692 A1

ABSTRACT QUERY ' 1202

Selection:— 204
FirstName="Mary" AND
LastName="McGoon"OR
State=NC

Result:— 206
FirstName,
LastName,
Street

i
DATA REPOSITORY ABSTRACTION 1~ 148

Field
Name="First Name"— 210,
Access Method="Simple"—212, 1208,

Table="contact"
Column="f_name"

. Field
F 1 g . 2 B Name="Last Name" — 210, |
Access Method="Simple"—212, 12082
Table="contact"
Column="l_name"

Field
Name="AnytownLastName"— 2104
Access Method="Filtered"—212; 12083

Table="contact"
Column="l_name"
Filter="contact.city=Anytown"

Field
Name="AgelnDecades"— 2104 12084
Access Method="Composed" — 2124

Expression="AgelnYears / 10"

Field
Name="AgelnYears"— 2105
Access Method="Simple"—2125; 12085
Table="contact"
Column="age"

Patent Application Publication Jul. 13,2006 Sheet 4 of 29

32— START)

300
{
304 — READ ABSTRACT
QUERY DEFINITION
322 — EXECUTE QUERY
)
|
306 ~ 314
FOR EACH MORE
QUERY \ DONE , RESULTS
SELECTION / FIELDS
YES ?
308~ 16 YES
GET QUERY FIELD N
DEFINITION FROM GET RESULT FIELD
REPOSITORY DEFINITION FROM
ABSTRACTION REPOSITORY
ABSTRACTION
T : 318
BUILD CONCRETE QUERY BN |
CONTRIBUTION FOR FIELD BUILD CONCRETE QUERY
CONTRIBUTION FOR FIELD
22 320
ADD TO CONCRETE ek NI |
QUERY STATEMENT ADD TO CONCRETE
QUERY STATEMENT

Fig. 3

US 2006/0155692 A1

US 2006/0155692 A1

Patent Application Publication Jul. 13,2006 Sheet S of 29

(_anNNod)

(anNNoD)

A

9IY —

NOISS3HdX3
NOILISOdWOD ANV
NOILYOOT TVOISAHd ONISN
NOILNGIYLINOD 31VH3IN3O

NOILISOdINOD NI
Sd7314 40 NOILYDO01
TVOISAHd IAIIHLIY

— Pl

AQOHL3INW
S$S300V
d3SOdNOD

ONISS300¥d AOHLIN
SS30DV Y3IHLO

— 81

NOILO313S ¥311d HLIM
NOILNGIYLNOD aN3LX3

A

NOILYOO1
an3id TvOISAHd
NO a3svg
NOILNEIYLNOD

— 80P

AY3ND aling

¢
AQOHL3IN
$§300V
da3y3aLid

— 0" (" 3nNiNo0D)
|

NOILYDOO1
a131d IvOISAHd
NO g3svd
NOILNEIIINOD
Ad3ND aling

— vOv

é
QOHL3IN
SS300V
INdNIS

ooy

a73id ¥Od4 NOILNAGIMLNOD
AY3N0 3134ONOD a1ing

US 2006/0155692 A1

Jul. 13,2006 Sheet 6 of 29

Patent Application Publication

[p1d] ojupooy <-[pi] (1)osunusned (AMVYANODIS <- AUVININD) |
[p1d] ojupsa) <-[pi] (1)ojupusyed SdIHSNOLLY13Y [— 92§
[pid] ojuissaippy <-[pi] (1)ojupusied ALILNT TVOISAHd
|||||||| LINIWAVd OL SAYA S 9701¢
N o TN 31va 3ng MWSR
E0/E0/60 | ~SE'V0T | Z8BYS +—-+BRE~~_ _ |
P R p— od | upoe 1 - ¥I§—03y) 30NvIVe —*Ip]S
ooy | & ~11.(034) HISWNN ONLINNODOV |—£TgTs
£ [PISN. ©NILNNOOOV |—$80¢
e~ =TT T _ uun_m -4=-_| (o3v) 18313500019 |—2/0TS
pee \ Sechd jopsewereRE | W | 1 (31va INSudno=d3aH——8IS
{eA odAn { ejep) re-—prd— % alva ls3at —org
ojupsa) W _ 1831 _‘v%om.
rz¢ e — & -1 #1$—(034) 3000 vLSOd |[—07g1¢
N = T T W 13 v16—(03y) 3LvLS [—60]¢§
109t ~HT b\omu_a.r 1Si G0 | Z86bed = -y bl (03 P
dz| ewes Ao sl pd]| =z ——O3d) MIO [—°0I¢
asseppe [3 "1 133418 401§
3 $834aav — €805
oz : T ST H3AN39 (—90I§
/ - QO\ \\\\ m I..I/ Jov .“.ﬂhQNW
u\:ﬁqwm 65/10/60 [YOSOON | bt d 31va ALE 2 s
puab Pl sjepq | eweu | eweu | O
1 PIS—(03d) INYN 1SV —E0] S
N ojupusned |~ »
S 4 PIS—03y) INVYN LsHld —20]S
bos —" T — - JNYN — 2808
vcs— dOLVHINIO INTVA — (3Lv¥3IN39) A INTILVL 0TS
916~ | aHdvaoowaa —Igos
CI$—{ ALLLNT ONLLS3ND3Y ™ 'd3¥ 1314 1OVH1SavY/ IvIID01

— 20S

UNO2oY
£90s
- 1sa)
£90s
Juaned
190
NOILVIN3SIHdIY ALILNT
1OVH1S8Y / IVDID0T
N~ ¢S
ws S O

Patent Application Publication Jul. 13,2006 Sheet 7 of 29 US 2006/0155692 A1

Model Entity (name = 'Patient') 4—602

Query
Field = 'Demographic/Patient ID’ (required)/—610
Field = 'Demographic/Name/First Name'
Field = 'Demographic/Name/Last Name'
Field = 'Demographic/Birth Date'

Field = 'Demographic/Age'

Field = ‘Demographic/Gender’

Field = 'Demographic/Address/Street’
Field = 'Demographic/Address/City'
Field = 'Demographic/Address/State’ 4—0604;
Field = 'Demographic/Address/Postal Code'

Le— 506

Insert
Field = 'Demographic/Name/Last Name' 4—606
Field = 'Demographic/Address/Street’ '

Delete
Field = 'Demographic/Name/Last Name' 4608
Field = 'Demographic/Address/Street’

Model Entity (name = 'Test') 4—602,

Query
Field = 'Test/Test Date' 16042

Field = 'Test/Glucose Test'

La— 5067
Insert
Field = 'Test/Test Date' 4—606>
Delete
Field = 'Test/Test Date' 4—6082

Fig. 6

Patent Application Publication Jul. 13,2006 Sheet 8 of 29 US 2006/0155692 A1

EFFECT OF MODEL ENTITY
ON QUERY RESULT FIELDS

ABSTRACT QUERY (INITIAL)
Model Entity = 'Patient'— 702

Query Conditions
Gender = 'Female' AND
Glucose Test > 10 — 700

Result Fields
Gender
Glucose Test
Age

ABSTRACT QUERY (EFFECTIVE)
Model Entity = 'Patient'

Query Conditions
Gender = 'Female' AND
Glucose Test > 10

Result Fields — 704
Gender
Glucose Test
Age
Patient ID

Fig. 7

Patent Application Publication Jul. 13,2006 Sheet 9 of 29 US 2006/0155692 A1

800
CREATE ABSTRACT QUERY
ELECT F
?ROMCugTU- FRYFOCUS [account
: Patient
Test
NEXT >>
804 — 802 —
Fig. 8
900
CREATE ABSTRACT QUERY
Query Conditions
QUERY FOCUS:; Patient
ADD ... NEXT >>
Fig. 9
— 900
CREATE ABSTRACT QUERY
Query Conditions

QUERY FOCUS: Patient [~ —— =

Glucose Test > 10

ADD ... NEXT >>
1004 — 1002 —

Fig. 10

Patent Application Publication Jul. 13,2006 Sheet 10 of 29 US 2006/0155692 A1

— 1100

CREATE ABSTRACT QUERY
Query Conditions Result Fields

Gender = 'Female' AND Patient ID
Glucose Test > 10

QUERY FOCUS: Patient

ADD ...

<< BACK FINISH

1002 —" 1102
Fig. 11
1100
CREATE ABSTRACT QUERY
Query Conditions Result Fields
QUERY FOCUS: Patient " Female' AND | [Patient ID
ADD Glucose Test> 10 Gender
Glucose Test
Age
<< BACK FINISH
1002 — 1102~

Fig. 12

Patent Application Publication Jul. 13,2006 Sheet 11 of 29 US 2006/0155692 A1

(' QUERY AUGMENTATION PROCESS) 1300

_—1304A

INITIAL
ABSTRACT
QUERY

y
1302 — GET ABSTRACT QUERY |-

Y

1306 — SET EFFECTIVE QUERY
TO INITIAL QUERY

1308

REFERENCE
TO MODEL

ENTITY
?

RETRIEVE MODEL

ENTITY DEFINITION| 1310

DEFINITION

1

1312 FOR EACH
REQUIRED DONE

v\ QUERY FIELD DONE

IN MODEL
ENTITY

1314

FIELD
IN INITIAL QUERY
RESULT LIST

YES

ADD FIELD TO EFFECTIVE Y
QUERY RESULT LIST

<—-—————-——---—-————————f—-———-————————-———-————--—-—-———--—-—-—-——'—j

/

EFFECTIVE
ABSTRACT
QUERY

1304B

Fig. 13

Patent Application Publication Jul. 13,2006 Sheet 12 of 29 US 2006/0155692 A1

EFFECT OF MODEL ENTITY ON CONCRETE
QUERY GENERATION (SQL EXAMPLE)

ABSTRACT QUERY
Model Entity = ‘Patient'— 1406

-

Query Conditions
Gender = 'Female' AND 1402
Glucose Test=5AND L 1400
Glucose Test > 10)

Result Fields
Gender
Age r 1404
Patient ID

CONVERSION BY
APPLICATION OF
MODEL ENTITY AND
RELATIONSHIP
LOGIC

Y
CONCRETE QUERY (SQL Example)

Select T1.gend, T1.age, T1.id from
Patientinfo T1,
Testinfo T2,
Testinfo T3

Where — 1408
T1.id = T2.id AND
T1.id = T3.id AND } 1410
T2.id = T3.id AND
T1.gend = 'Female' AND
T2.val > 5 AND
T3.val > 10

Fig. 14

Patent Application Publication Jul. 13,2006 Sheet 13 of 29

CCONCRETE QUERY GENERATION PROCESS)

Y

1502 —

GET ABSTRACT QUERY

A

|

~\ QUERY CONDITION

_/ FOREACH ABSTRACT \DONE

/

1504 —

NO

1506

> 1 ANDed
CONDITION FOR

FIELD
?

1510 —| DETERMINE PHYSICAL
ENTITY FOR FIELD
1512~

DETERMINE PHYSICAL
ENTITIES FOR MODEL ENTITY

Y

GENERATE RESULT
FIELD CONTRIBUTION
FOR QUERY

Y

GENERATE
CORRELATION

LOGIC BETWEEN EACH
PHYSICAL ENTITY
INVOLVED IN QUERY
USING RELATION DATA
FROM DRA

I NO

GENERATE QUERY
CONTRIBUTION
AGAINST SINGLE
INSTANCE OF
PHYSICAL ENTITY

1-M
RELATION
BETWEEN MODEL ENTITY
AND ENTITY FOR

FIELD
2

YES

|

1514

1500

GENERATE QUERY CONTRIBUTION AGAINST

NEW INSTANCE OF PHYSI

CAL ENTITY

— 1516

US 2006/0155692 A1

Patent Application Publication Jul. 13,2006 Sheet 14 of 29 US 2006/0155692 A1

USE OF MODEL / ENTITY TO REPRESENT
SET OF QUERY RESULT FIELDS

ABSTRACT QUERY (INITIAL)
Model Entity = 'Patient’

Query Conditions —— 1602
Gender = 'Female' AND
Glucose Test > 10 L 1600

| Result Fields— 1604
Glucose Test
ModelEntity(Patient)

1606

AUGMENTATION

Y
ABSTRACT QUERY (EFFECTIVE)

Model Entity = 'Patient’

Query Conditions
Gender = 'Female' AND
Glucose Test > 10 — 1608

Result Fields
Glucose Test
Patient ID
First Name
Last Name
Age
Gender
Street
City
State
Postal Code

FULL COMPLIMENT
OF LOGICAL FIELDS
FOR "PATIENT"
MODEL ENTITY

s

Fig. 16

Patent Application Publication Jul. 13,2006 Sheet 15 of 29 US 2006/0155692 A1

(' RESULT FIELD EXPANSION PROCESS) 1790
1704A
y INIT?L
1702 —| GET ABSTRACT QUERY | INTIAL o7 -
QUERY
Y o

1706 — SET EFFECTIVE QUERY
TO INITIAL QUERY

Lot

1708

MODEL
ENTITY AS RESULT

FIELD
?

gﬁﬁ% RETRIEVE MODEL | _ 1710
DEFINITION ENTITY DEFINITION

\

1712 FOR EACH
‘ REQUIRED

DONE
o i (Coone

IN MODEL
ENTITY

1714

FIELD
IN INITIAL QUERY
RESULT LIST

YES

ADD FIELD TO EFFECTIVE Y
QUERY RESULT LIST

e = e e e e e e e e e e e e e e A i e i i o

Y

EFFECTIVE
ABSTRACT
QUERY

1704B

Fig. 17

US 2006/0155692 A1

Jul. 13,2006 Sheet 16 of 29

Patent Application Publication

[pid] ojuppooy <-[p1] (})ojupuened

(AYVANODIS <- AHVININA)

[pid] opusaL <-[pi] (1)ojupusneq SdIHSNOILY13Y [— 92§
[pid] ouissaippy <-[pi] (})ojupusied ALILN3 TVYOISAHd
€25 —_ P — — IN3WAVd OL SAVQ .Uuﬁs 01s
c0rc0r60 |, 58°10z | zssve] —veezt~_ _ | 31va3ana —<IgJs
ejeponp | eouejeq pd | uele 1Y~ PIS—03d) 30NVIVE [—PIQIS
oumy | - 1Y (934) 438WNN ONILNNODDY —£19]¢
2 [PISN ONLLNNO2OY |—$80s
fe~ = =TT S, S (03¥) 1531 3800N19 [— 101§
) B o A (31va INFWUNO=d30H—81¢
el S| eERipe—dr- gy 3Lva is3at —Tgr¢
ojufisa % _ b
o i1s3L 80S
|||||||| = W-14 7~——(034) 3000 WiIsod |—0Ig[s
Ies e T L x_ o) s
oo | A oo s s3] |m§m..-w_ : PI1S—(03y) 31VIS [—60]¢
A A Lis pd| = |1 p16—(03n) ALID —80]¢
Sc_m&ug{..lW:.. 133y41s —<4901¢
x ss3xyAAv — £80¢
|||||||| e ¥3aN3o |9
QN%.I/ \\\\\\ ‘‘‘‘‘‘ A =] QNW
- - o-{_ 39V 301S
4 | zeevE | ssnomegludooow | Aew| @ ~ e ;)
pueb WPl ogpq | ewauy I.m\E.M:lu.vlvHul. 3Lvd H1dIE —*01S
ﬂ// ojupusped /n/r 1 PIS—(D3y) IWWN 1SV —£071¢
p0s — N~ T _PIS—{03u) IWVN Lsuld (2016
g I INVN 2805
PTE— YOLVHINIO INTVA = (31VH3INIO) Q) LN3ILYd |— 0TS
915" [omdvaoowaa | I80¢
00§ vya

ANV 286%€ = Qi jualied

JHIHM
(pees) souejeg

rzosi

(paunbay) 109y, = @po) |EISOd

(poag) 1xa] asoan|e
RCTETg|

2z081 —"

(pasnbay) ,opajoy, = A1D
(leuondQ) st 502, = 19848
(Hasut Jasn ul paajoAul JoN) 8By
(leuondQ) ,oleWa4, = 18pUas)
(leuondo) 6S/10/60 = 3jeq yuig
(pajeIBUaD) Z861E = O uned
(palinbay) Asepy, = aweN 1sdi4
(pe8s) ,UCODIWN, = 2WEN 1SeT
:posuy|

SNOILVYOI3103dS
NOILLVY3dO LovyLsay

— 208

US 2006/0155692 A1

Patent Application Publication Jul. 13,2006 Sheet 17 of 29

NOILVYOIdIO3dS
L¥3SNI 1OV LS8V

1905 —

61 31

0061

S3ANTVA A3NddNS HLIM
LY3SNI LOVH1S8Y 31vadn

0z61 — A

Sa131d TYNOILdO
? 3HINO3IY NINL3Y

Py

Sa13i4 ¥o4
S3ANTVA Ad4IO3dS

[

, N-8161

p161—" |

SA13i4 TYNOILLJO/A3™IND3Y
HLIM LH3SNI 10Vvd1SdaY 31vadn

zi6r —)

«] [LY3SNI ¥0O4 SA13id TVNOILDO

'® A3HIND3Y 3ININY313a

SA7314 ¥O4 SINTVA
QINOHd/HOd LdINOXd

N~ 9161

0161 —"

,, Q1314 d33S M3IN HLIM
JH3SNI LOVH1SaY 31vadn

Sa13i4"
ANV @3din

YNOILJO

03y 139

N— 9061

8061 —

20s—"

ﬁzo_._.oé._.wmd. AHOLISOd3d Viva v

1H3SNI LOVH1savY
Ol @131d d33s aav

]
od

N~ p061

Ad103dS Ol sai3id

(ALILN3 ONILS3NDIY)

N~ZIs

3SYO LYISNI :NOILOVYHILNI NOILVIITddV

od

(ALLLNE HOV3 ¥O4 va_.v

0102—"

US 2006/0155692 A1

8007 — ALILN3 TVYOISAHd LNIHHND HO4 SA1314 ¥3HLO ININYIL3IA
)

ole
INOG_)=————{ ALIIN3 HOV3 ¥O4)
- 9002
- \
V0Z 31 SQ71314 A33S ¥O4 SIILILNT VOISAH INIWYILIA
-~ $00T

NOILVOId103dS |
1¥3SNI LOVHLSay Sa131d4 d33s 3IAIZ03Y

709 905~ - 200z

ﬁ JU3SNI ¥O4 SAT31d TVNOILJO ANY d3diN03Y wz_S_mw._.va

V - dSVO LY3SNI ‘NOILOVHILNI NOILVOI1ddVY

Patent Application Publication Jul. 13,2006 Sheet 18 of 29

US 2006/0155692 A1

Patent Application Publication Jul. 13,2006 Sheet 19 of 29

q0z 314
SQ13ld |- 1817 @314 TYNOILJO OL aav
TYNOILDO ot0r—"
ze0z—" sai3i4
[a3yINo3y
N~ $20Z
3NTVA TINN 3N1VA @3LVH3INIO 3INTVA LINY43a 1snaiais |
HLIM 3ZIVILINI HLIM JZITVILINI HLIM 3ZITVILINI a3yINw3aY oL aav
N~ 8£07 N 2207
S3A
) .
Q3Lv¥3IN3D 1INv43a ¢ d1id
ON SYGER SYH Q1314 d3diNoO3y

II\II
sg13id
LIDNdNI
8102~ w
!
wsnanEd uondwi | | g1314 aalviay wo-
ol ai3i4 aav 1¥H1 OL 3NTVA 138
910z —" v102—" .

020c

¢
d3ss3aooud
AQV3HIV 1314 HLIM
dIHSNOILV13Y
A3 SVH _
41174

Patent Application Publication Jul. 13,2006 Sheet 20 of 29

US 2006/0155692 A1

(CONVERT ABSTRACT INSERT TO PHYSICAL INSERT)

i
GROUP FIELDS BY PHYSICAL ENTITY

2104 2100
N \
2130
2106~ Vel 2132
DONE || ORDER INSERT
(FOR EACH ENTlWP STATEMENT ~| EXECUTE
DO
INSERT
2128 ADD TO INSERT N
‘ STATEMENT [+~ STATEMENT LIST
| LIST :
2108 2124
FOR EACH FIELD \ DONE BUILD PHYSICAL INSERT FROM
FOR ENTITY , LOCATION AND VALUE LIST
DO 4 }
21 10 ~ L 502 // .‘
DETERMINE PHYSICAL| ____ | DRA Y, [
LOCATION FROM DRA /
/
202~ 214~/
UPDATE PHYSICAL PHYSICAL
LOCATION LIST *| LOCATION LIST

2116

FIELD
HAS INTERNAL

NO

2118~ 2120~
UPDATE VALUE LIST UPDATE VALUE LIST
WITH INTERNAL VALUE | | WITH GIVEN VALUE
\\\\\\ ' \\\\
- . ~— . |\ _~2122

- VALUE LIST
Fig. 21

Patent Application Publication Jul. 13,2006 Sheet 21 of 29 US 2006/0155692 A1

Fig. 22

2200

C SORT INSERT STATEMENT LIST)

Y
SET SORTED FLAG TO FALSE |—2202

DONE
(Do UNTIL SORTED FLAG = TRUE DONE

DO

y
SET SORTED FLAG TO TRUE [2208

i

221
DONE 2210 1
<———(FOR EACH INSERT STATEMENT)

DO

DETERMINE ENTITY FOR CURRENT STATEMENT

o)

COR EACH SUBSEQUENT STATEMENT WITH ENTITY \ DONE

RELATED TO CURRENT STATEMENT ENTITY

CURRENT
ENTITY SECONDARY IN
RELATIONSHIP

NO

MOVE CURRENT INSERT STATEMENT |—52;8
AFTER INSERT FOR RELATED ENTITY

US 2006/0155692 A1

Patent Application Publication Jul. 13,2006 Sheet 22 of 29

€7 ‘L]

sz —"

'§Q7314 @310313S

aouejeg
JaquinN Junoooy
18| 8s00n|9)
sleqisal
apo) |e1sod
TS

Ao

LTS
lapusg

8jeq yuig
awep jseT
aweN 3sdi4
al yuaned

20s7—"

<< 1X3N

90¢£C

-LYd3SNI OL1 SAT131d IVILINI @310313S

LH3ISNI 1OVH1SEY 31V3HD

US 2006/0155692 A1

Patent Application Publication Jul. 13,2006 Sheet 23 of 29

pZ "SI

aels
awep jsel

v0sz —"

‘8Q7314 @312313S

aoueleg
Jaquinp junoaay
1S3] 8s0on|9)
djeq isaL
2po) |eysod
9jels

Ao

Jesng
lapuag

8jeq yuig
aweN Jse
aweN 1si14
al jusped

z0£7—"

<< 1X3N

90€C

LY¥3SNI OL SAT3id VILINI d3133713S

LH3ISNI 10VH1S8Y 31V3HO

US 2006/0155692 A1

1205¢C
HZosC
DC0sT
41194
q208C
acosc
041194
q205C
vaose

<< 1X3N

apo) |ejsod

Ao

lsalg

lapuag

sjeq uuig

c86v¢E ai jusijed

() sweN jsii4

(x) o118

(.) @WeN jse’

((d3¥INDIY = ,) LYISNI OL SANTVA ¥ILN3

JHISNI LOVHLISEY 31v3H0

Patent Application Publication Jul. 13,2006 Sheet 24 of 29

Sz S

US 2006/0155692 A1

<< 1X3N

L09EY 8poQ |eysod
opsjoL | . Ao
1| 602 Josss
a|eway 19puan
65/10/60 8jeq yuig
286v¢E ai juajed
Aep | (,) swen jsig
olyO (x) B1B)S
uoodN | (.) swep ise

(@391INO3Y =) LY3ISNI OL SINTVA ¥IINI

183SNI 1OV LSEY 3LVIYO

Patent Application Publication Jul. 13,2006 Sheet 25 of 29

9z ‘31

US 2006/0155692 A1

Patent Application Publication Jul. 13,2006 Sheet 26 of 29

NOILVYDId103dS
313730 10vdlsay

£90s —

00LT

LT S

31vadn Lovy1Ssav 40 NOILYOd
---1 NOILO313S Ol SNOILIANOD aay

01—

~J 41314 d33S A3NddNs HLIM
313730 10vdlsayv 31vaddn

313734 01 vV1vd 40 NOILD313S |
H04 SNOILIANOD A4103dS

N—80.2

3137130 LOvd1sav

90L2—"

(NOILOVHLSEY ANOLISOdTY VLVa)

20—

Ol Q1314 a33s aav

N~ t0L2

od

Ad103dS Ol sai3ld
a33S FHONW 3TTHM

z0Lz—""

(_ ALILN3 ONILSANOTY)
N-zIS

3SVI 313130 :NOILOVYEILNI NOILVYIIddV

dNOd

US 2006/0155692 A1

Patent Application Publication Jul. 13,2006 Sheet 27 of 29

1811
Cl8C— INIWILVLS

Y

3137130

-—-4 1SI7 INIWILVLS 31371330 0L aav
| b S~z

219071 NOILO313S WO¥4H 31313a TVIISAHL a1ing
‘ b N 808z

SNOILIANOD FHIHM LoV 1S8V
WOY4 J19071 NOILO313S 31VHINIO

_ b N~ 908z
1S INIW3ALVLS | od
1
(anvoa —O—| ‘35 a umans oNOg NS ﬂu«@mﬁ)
/‘“lmw p08C 4
| | :\
3.n03x3
=978z | ALILN3 TVDISAHd A€ SA13I4 dNOYD
t N 2082

q 313730 TVIISAHd Ol 313730 10vy1S9V 143ANOD v

008Z

gz S

Patent Application Publication Jul. 13,2006 Sheet 28 of 29 US 2006/0155692 A1

(' ENTER) p— 2922
i
FOR EACH QUERY \ DONE
< SELECTION EXIT
1YES

GET QUERY FIELD
DEFINITION FROM [—2904
REPOSITORY

ABSTRACTION

l

BUILD CONCRETE QUERY | _ 2006
CONTRIBUTION FOR FIELD |

1

| ADD TO CONCRETE |__ 299
QUERY STATEMENT

Fig. 29

Patent Application Publication Jul. 13,2006 Sheet 29 of 29 US 2006/0155692 A1

- Fig. 30

3000

C SORT DELETE STATEMENT LIST)

]
SET SORTED FLAG TO FALSE |[—3002

Yy

{ DO UNTIL SORTED FLAG = TRUE

DO

Y
SET SORTED FLAG TO.TRUE [—3008

Y

g

DON
<—-—(FOR EACH DELETE STATEMENT)
DO

DETERMINE ENTITY FOR CURRENT STATEMENT

Y

_—3014

A
FOR EACH SUBSEQUENT STATEMENT WITH ENTITY
RELATED TO CURRENT STATEMENT ENTITY

DONE

3030

CURRENT
ENTITY PRIMARY IN
RELATIONSHIP

NO

MOVE CURRENT DELETE STATEMENT {— 3018
AFTER DELETE FOR RELATED ENTITY

US 2006/0155692 Al

DEALING WITH COMPOSITE DATA THROUGH
DATA MODEL ENTITIES

REFERENCE TO PARENT APPLICATION

[0001] This patent application is a divisional application
of co-pending patent application Ser. No. 10/403,356 filed
by Dettinger, et al, on Mar. 31, 2003, entitled “Dealing with
Composite Data Through Data Model Entities”, which is
incorporated herein by reference.

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0002] This application is related to the following com-
monly owned applications assigned to International Busi-
ness Machines, Inc.: U.S. patent application Ser. No. 10/083,
075, filed Feb. 22, 2002, entitled “IMPROVED
APPLICATION FLEXIBILITY THROUGH DATABASE
SCHEMA AND QUERY ABSTRACTION”; U.S. patent
application Ser. No. 10/403,366 (Atty. Docket Number
ROC920030005), filed on Mar. 31, 2003 and entitled
“MODIFICATION OF A DATA REPOSITORY BASED
ON AN ABSTRACT DATA REPRESENTATION”; U.S.
patent application Ser. No. 10/403,960 (Atty. Docket Num-
ber ROC920030006), filed on Mar. 31, 2003 and entitled
“SEQUENCED MODIFICATION OF MULTIPLE ENTI-
TIES BASED ON AN ABSTRACT DATA REPRESENTA-
TION”; U.S. patent application Ser. No. 10/132,228, entitled
“DYNAMIC END USER SPECIFIC CUSTOMIZATION
OF AN APPLICATION’S PHYSICAL DATA LAYER
THROUGH A DATA REPOSITORY ABSTRACTION
LAYER”; and U.S. patent application Ser. No. 10/131,984,
entitled “REMOTE DATA ACCESS AND INTEGRATION
OF DISTRIBUTED DATA SOURCES THROUGH DATA
SCHEMA AND QUERY ABSTRACTION”, which are
hereby incorporated herein in their entirety.

BACKGROUND OF THE INVENTION
[0003]

[0004] The present invention generally relates to data
processing, and more particularly, to the accessing data
through a logical framework.

[0005] 2. Description of the Related Art

[0006] Incommonly assigned U.S. patent application Ser.
No. 10/083,075 (the *075 application), filed Feb. 22, 2002,
entitled “Improved Application Flexibility Through Data-
base Schema and Query Abstraction”, a framework is dis-
closed for logically/abstractly viewing physical data. The
framework of the 075 application provides a requesting
entity (i.e., an end-user or application) with an abstract
representation of physical data. In this way, the requesting
entity is decoupled from the underlying physical data to be
accessed. Logical queries based on the framework can be
constructed without regard for the makeup of the physical
data. Further, changes to the physical data do not necessitate
changes to applications accessing the physical data.

1. Field of the Invention

[0007] However, even an abstract view of an underlying
data environment can be complex, in particular when the
physical data repository contains large volumes of informa-
tion that span a number of usage scenarios. For instance, the
data warehouse for a large, clinical institution may contain
1000s of fields spanning patient demographic, test and

Jul. 13,2006

diagnosis information as well as information concerning the
operational aspects of the clinic: appointment records,
patient loads for physicians and lab test accuracy and turn
around time metrics. Representing this environment in a
data abstraction model as a set of individual logical fields
may be insufficient for a number of usage scenarios. Con-
sider, for example, situations where different user commu-
nities have different focus areas of interest. Some users may
be solely interested in patients and their records. Others may
be concerned with distribution of lab test values or usage
data for various types of lab equipment. There may be
overlap in the individual fields for each area of interest;
however, the method used to correlate data may vary
depending on whether the focus is on patient or lab tests. An
abstraction model defining individual logical fields may also
be insufficient in cases where users are inserting new content
or deleting content from the warehouse, for example, adding
anew patient to the warehouse or deleting an existing patient
from the warehouse. In a basic data abstraction model
approach, such as is described in the *075 application, the
complete details concerning a patient may be defined by a
set of logical fields. Without additional information, it would
be difficult, if not impossible, for a user to know which set
of logical fields constitutes the concept of a patient. In this
case, “patient” represents a higher level view of the infor-
mation in the warehouse and can be thought of as a com-
posite of individual logical fields defined by the abstract data
model. Another limitation of such an abstraction model
occurs in situations requiring unique identification of entities
in the underlying model. Additional information is required
to understand the set of logical fields that together uniquely
identify each entity, such as patient, within the underlying
data environment. For example, it may be desirable or even
required to always include a patient identifier (id) in results
of queries designed to return patient information.

[0008] Possible solutions to these types of scenarios,
would require the user or data access application to have
specific knowledge of the make-up of the underlying data
environment, enough knowledge to understand what con-
stitutes an entity (such as patient) and how to uniquely
identify each entity in the underlying data model. In essence,
the application is hard coded to deal with a particular data
environment. This approach works if the underlying data
environment is static and known in advance, but does not
address the more general situation where the data environ-
ment is changing over time and/or the situation where the
details of the underlying schema are not known in advance.
These would be the types of situations that a general
purpose, data update and query application would encounter.

[0009] Therefore, what is needed is the logical represen-
tation of entities defined by one or more logical fields, and
in particular a plurality of logical fields.

SUMMARY OF THE INVENTION

[0010] The present invention provides a method, system
and article of manufacture for accessing physical data
through an abstraction model. The abstraction model
includes metadata describing and defining a plurality of
logical fields. The metadata also describes associations
between sets of logical fields each of which may correspond
to (i.e.,, point to) separate physical entities. The sets of
logical fields are referred to as model entities, which facili-

US 2006/0155692 Al

tate accessing physical data. In some cases, a model entity
may also be defined by a single logical field corresponding
to a single physical entity.

[0011] One embodiment provides a method of providing a
logical framework for defining abstract operations for
accessing physical data comprising a plurality of physical
entities each comprising a plurality of physical fields. The
method includes providing an abstract model for defining
abstract operation specifications logically describing opera-
tions to access the data. The abstract model may include a
plurality of logical fields; a mapping rule for each of the
plurality of logical fields, which map each of the plurality of
logical fields to at least one of the physical entities of the
data; and a plurality of model entity definitions, each com-
prising at least one logical field corresponding to a physical
entity. In one embodiment, the model entity definition
comprises at least two logical fields each corresponding to a
separate physical entity. The method further includes pro-
viding an interface from which each of the plurality of model
entity definitions is selectable in generating an abstract
operation specification to access the data; and providing a
run-time component to transform, according to the abstract
model, the abstract operation specifications into physical
operation specifications consistent with the physical data.

[0012] Another method is provided for constructing
abstract queries defined by a plurality of logical fields which
map to a plurality of physical entities of physical data having
a particular physical data representation in a database. In one
embodiment, the method includes receiving user input via a
user interface, the input comprising a reference to a model
entity definition comprising at least one logical field corre-
sponding to a physical entity. Based on the model entity
definition, at least one of the two or more logical fields is
programmatically added to an abstract query.

[0013] Yet another method provides for constructing
abstract queries defined by a plurality of logical fields which
map to a plurality of physical entities of physical data having
a particular physical data representation in a database. In one
embodiment, the method includes receiving, via a user
interface, an abstract query comprising a selection of a
model entity definition comprising two or more logical fields
each corresponding to a separate physical entity; a plurality
of query conditions defined by selected logical fields and a
corresponding value for each of the selected logical fields;
and at least one result field defined by selected logical fields.
A determination is then made as to whether the abstract
query includes more than one ANDed query condition for a
given logical field corresponding to a physical entity. If so,
a further determination is made as to whether a one-to-many
relationship exists between the model entity definition and
the physical entity corresponding to the given logical field.

[0014] Yet another embodiment provides a method for
modifying physical data comprising a plurality of physical
entities and having a particular physical data representation
in a database. The method includes receiving a selection of
an abstract modification operation and receiving a selection
of'a model entity definition on which to perform the abstract
modification operation, the model entity definition compris-
ing two or more logical fields each corresponding to a
separate physical entity. Based on at least the received
selections, at least two physical modification statements are
generated, each modifying one of the two separate physical

Jul. 13,2006

entities of the physical data. To ensure the integrity of data
the at least two physical modification statements are
ordered. The modification operations are then executed
according to the physical modification statements, whereby
the data is modified.

[0015] Yet another embodiment provides a computer-
readable medium containing a program which, when
executed by a processor, performs operations for modifying
physical data comprising a plurality of physical entities and
having a particular physical data representation in a data-
base. The operation includes identifying two or more logical
fields defined for a specified model entity definition on
which to perform an abstract modification operation, the two
or more logical fields each corresponding to a separate
physical entity of the physical data. The operation further
includes generating a single abstract modification specifica-
tion abstractly defining modification operations to modify
the data, wherein the abstract modification specification
comprises at least the two or more logical fields. The
operation further includes transforming the abstract modi-
fication specification into at least two physical modification
statements consistent with the particular physical data rep-
resentation according to mapping rules which map the
logical fields of the abstract modification specification to
their corresponding physical entities, wherein each of the at
least two physical modification statements modifies a dif-
ferent physical entity of the data. The operation further
includes ordering the at least two physical modification
statements and then executing the modification operations
according to the physical modification statements, whereby
the data is modified.

[0016] Yet another embodiment provides a computer-
readable medium containing a program which, when
executed by a processor, provides a logical framework for
defining abstract query operations. The program includes an
abstract model for defining abstract queries logically
describing operations to query the data. In one embodiment,
the abstract model comprises (i) a plurality of logical fields;
(i1) a mapping rule for each of the plurality of logical fields,
which map the plurality of logical fields to physical entities
of the data; and (iii) a plurality of model entity definitions,
each comprising at least two logical fields each correspond-
ing to a separate physical entity. The program further
includes a run-time component configured with transforma-
tion instructions to transform an abstract query, comprising
logical fields selected according to a selected model entity
definition, into a physical query consistent with the physical
data.

[0017] Yet another embodiment provides a computer-
readable medium containing a program which, when
executed by a processor, provides a logical framework for
defining abstract modification operations for modifying
physical data. In one embodiment, the framework includes
an abstract model for defining an abstract modification
specification logically describing operations to access the
data, the abstract model comprising: (i) a plurality of logical
fields; (i1) a mapping rule for each of the plurality of logical
fields, which map the plurality of logical fields to physical
entities of the data; (iii) a plurality of model entity defini-
tions, each comprising at least two logical fields each
corresponding to a separate physical entity; and (iv) a
physical entity relationships specification defining interre-
lationships between the physical entities of the data. The

US 2006/0155692 Al

framework further includes a run-time component config-
ured with: (i) transformation instructions to transform an
abstract modification specification, comprising logical fields
selected according to a selected model entity definition, into
at least two physical modification statements consistent with
the physical data, wherein each of the at least two physical
modification statements modifies a different physical entity
of the data; and (ii) ordering instructions to order the at least
two physical modification statements according to the physi-
cal entity relationships specification.

[0018] Still another embodiment provides a computer
comprising a memory and at least one processor, and further
comprising a logical framework for defining abstract modi-
fication operations for modifying physical data, the logical
framework comprising

[0019] an abstract model for defining an abstract modifi-
cation specification logically describing an operation to
modify the data. The abstract model may include (i) a
plurality of logical fields; (ii) a mapping rule for each of the
plurality of logical fields, which map the plurality of logical
fields to physical entities of the data; and (iii) a plurality of
model entity definitions, each comprising at least two logical
fields each corresponding to a separate physical entity. A
user interface is provided from which each of the plurality
of model entity definitions is selectable. A run-time compo-
nent transforms an abstract query, comprising logical fields
selected according to a selected model entity definition, into
a physical query consistent with the physical data.

[0020] Still another embodiment provides a computer
comprising a memory and at least one processor, and further
comprising a logical framework for defining abstract modi-
fication operations for modifying physical data, the logical
framework comprising an abstract model for defining an
abstract modification specification logically describing an
operation to modify the data. The abstract model may
include (i) a plurality of logical fields; (ii) a mapping rule for
each of the plurality of logical fields, which map the
plurality of logical fields to physical entities of the data; (iii)
a plurality of model entity definitions, each comprising at
least two logical fields each corresponding to a separate
physical entity; and (iv) a physical entity relationships
specification defining interrelationships between the physi-
cal entities of the data. A user interface is provided from
which each of the plurality of model entity definitions is
selectable. A run-time component transforms the abstract
modification specification into at least two physical modi-
fication statements consistent with the physical data and to
order the at least two physical modification statements
according to the physical entity relationships specification,
wherein each of the at least two physical modification
statements modifies a different physical entity of the data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0021] So that the manner in which the above recited
features, advantages and objects of the present invention are
attained and can be understood in detail, a more particular
description of the invention, briefly summarized above, may
be had by reference to the embodiments thereof which are
illustrated in the appended drawings.

[0022] 1t is to be noted, however, that the appended
drawings illustrate only typical embodiments of this inven-

Jul. 13,2006

tion and are therefore not to be considered limiting of its
scope, for the invention may admit to other equally effective
embodiments.

[0023] FIG. 1 is a block diagram of an illustrative com-
puter architecture.

[0024] FIG. 2 is a relational view of software components
of one embodiment of the invention configured to process
queries against a physical data source through an abstract
representation of the physical data source.

[0025] FIG. 3 is a flow chart illustrating the operation of
a runtime component.

[0026] FIG. 4 is a flow chart illustrating the operation of
a runtime component.

[0027] FIG. 5 is a view of an abstraction layer defining
model entities having physical counterparts in a physical
data source.

[0028] FIG. 6 is an illustrative model entity specification
for a Patient entity and a Test entity.

[0029] FIG. 7 illustrates the augmentation of result fields
of an initial abstract query according to a specified model
entity.

[0030] FIGS. 8-12 are illustrative user interface screens
for creating an abstract query using model entities.

[0031] FIG. 13 is a flow chart for augmenting query result
fields according to a specified model entity.

[0032] FIG. 14 illustrates the generation of a physical
query based on the specification of a model entity.

[0033] FIG. 15 is a flow chart of a method for generating
a physical query based on the specification of a model entity.

[0034] FIG. 16 illustrates the use of a model entity to
represent a set of query result fields.

[0035] FIG. 17 is a flow chart of a method for expanding
the result fields of an abstract query based on the specifi-
cation of a model entity.

[0036] FIG. 18 is a simplified view of the environment
shown in FIG. 5, and illustrating the modification of a data
source by abstract modification operations constructed
based on model entities

[0037] FIG. 19 is a flow chart illustrating the generation
of an abstract insert specification used to implement an
insert operation against physical data.

[0038] FIG. 20 is a flow chart illustrating the determina-
tion of required and optional fields in an insert operation.

[0039] FIG. 21 is a flow chart illustrating the conversion
of an abstract insert operation to a physical insert operation.

[0040] FIG. 22 is a flow chart illustrating sorting of an
insert statement list to ensure a proper order of execution.

[0041] FIG. 23 is a user interface screen configured for
building abstract queries.

[0042] FIG. 24 is the user interface screen of FIG. 23 after
being populated with selections of model entities made from
a model entities selection menu.

US 2006/0155692 Al

[0043] FIG. 25 is a screen configured with a plurality of
input fields selected according to the model entities selec-
tions made from the user interface screen of FIG. 24.

[0044] FIG. 26 is the screen of FIG. 25 after having been
populated with values input by a user, as well as a generated
value.

[0045] FIG. 27 is a flow chart illustrating generation of an
abstract delete specification used to implement a delete
operation against physical data delete operation.

[0046] FIG. 28 is a flow chart illustrating the conversion
of an abstract delete operation to a physical delete operation.

[0047] FIG. 29 is a flow chart illustrating the generation
of selection logic for an abstract update operation.

[0048] FIG. 30 is a flow chart illustrating sorting of a
delete statement list to ensure a proper order of execution.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Introduction

[0049] The present invention provides a method, system
and article of manufacture for accessing physical data
through an abstraction model.

[0050] One embodiment of the invention is implemented
as a program product for use with a computer system and
described below. The program(s) of the program product
defines functions of the embodiments (including the meth-
ods described herein) and can be contained on a variety of
signal-bearing media. Illustrative signal-bearing media
include, but are not limited to: (i) information permanently
stored on non-writable storage media (e.g., read-only
memory devices within a computer such as CD-ROM disks
readable by a CD-ROM drive); (ii) alterable information
stored on writable storage media (e.g., floppy disks within a
diskette drive or hard-disk drive); or (iii) information con-
veyed to a computer by a communications medium, such as
through a computer or telephone network, including wire-
less communications. The latter embodiment specifically
includes information downloaded from the Internet and
other networks. Such signal-bearing media, when carrying
computer-readable instructions that direct the functions of
the present invention, represent embodiments of the present
invention.

[0051] In general, the routines executed to implement the
embodiments of the invention, may be part of an operating
system or a specific application, component, program, mod-
ule, object, or sequence of instructions. The software of the
present invention typically is comprised of a multitude of
instructions that will be translated by the native computer
into a machine-readable format and hence executable
instructions. Also, programs are comprised of variables and
data structures that either reside locally to the program or are
found in memory or on storage devices. In addition, various
programs described hereinafter may be identified based
upon the application for which they are implemented in a
specific embodiment of the invention. However, it should be
appreciated that any particular nomenclature that follows is
used merely for convenience, and thus the invention should
not be limited to use solely in any specific application
identified and/or implied by such nomenclature.

Jul. 13,2006

[0052] In one embodiment, a particular data definition
framework (also referred to herein as a data repository
abstraction (DRA) layer/component) is provided for access-
ing and moditying data independent of the particular manner
in which the data is physically represented. The data may be
located in a single repository (i.e., source) of data or a
plurality of different data repositories. Thus, the DRA may
provide a logical view of one or more underlying data
repositories. By using an abstract representation of a data
repository, the underlying physical representation can be
more easily changed or replaced without affecting the appli-
cation making the changes. Instead, the abstract represen-
tation is changed with no changes required by the applica-
tion. In addition, multiple abstract data representations can
be defined to support different applications against the same
underlying database schema that may have different default
values or required fields.

[0053] The abstraction model (DRA) includes metadata
describing and defining a plurality of logical fields. The
metadata also describes associations between sets of logical
fields. The sets of logical fields are referred to as model
entities. The model entities are used to access data through
queries and modification operations. In one aspect, model
entities define required output fields for queries involving
the model entity. In another aspect, model entities establish
a focal point within the data environment that can be used to
implement the appropriate logic needed to correlate infor-
mation that spans multiple physical entities (e.g. tables) in
the underlying physical data repository. In still another
aspect, model entities define a minimal set of fields used to
derive the complete set of fields involved in data insert and
delete operations for an instance of the model entity.

Physcial View of Environment

[0054] FIG. 1 depicts a block diagram of a networked
system 100 in which embodiments of the present invention
may be implemented. In general, the networked system 100
includes a client (i.e., generally any requesting entity such as
a user or application) computer 102 (three such client
computers 102 are shown) and at least one server computer
104 (one such server computer 104 is shown). The client
computer 102 and the server computer 104 are connected via
a network 126. In general, the network 126 may be a local
area network (LAN) and/or a wide area network (WAN). In
a particular embodiment, the network 126 is the Internet.
However, it is noted that aspects of the invention need not
be implemented in a distributed environment. As such, the
client computers 102 and the server computer 104 are more
generally representative of any requesting entity (such as a
user or application) issuing queries and a receiving entity
configured to handle the queries, respectively.

[0055] The client computer 102 includes a Central Pro-
cessing Unit (CPU) 110 connected via a bus 130 to a
memory 112, storage 114, an input device 116, an output
device 119, and a network interface device 118. The input
device 116 can be any device to give input to the client
computer 102. For example, a keyboard, keypad, light-pen,
touch-screen, track-ball, or speech recognition unit, audio/
video player, and the like could be used. The output device
119 can be any device to give output to the user, e.g., any
conventional display screen. Although shown separately
from the input device 116, the output device 119 and input
device 116 could be combined. For example, a display

US 2006/0155692 Al

screen with an integrated touch-screen, a display with an
integrated keyboard, or a speech recognition unit combined
with a text speech converter could be used.

[0056] The network interface device 118 may be any
entry/exit device configured to allow network communica-
tions between the client computer 102 and the server com-
puter 104 via the network 126. For example, the network
interface device 118 may be a network adapter or other
network interface card (NIC).

[0057] Storage 114 is preferably a Direct Access Storage
Device (DASD). Although it is shown as a single unit, it
could be a combination of fixed and/or removable storage
devices, such as fixed disc drives, floppy disc drives, tape
drives, removable memory cards, or optical storage. The
memory 112 and storage 114 could be part of one virtual
address space spanning multiple primary and secondary
storage devices.

[0058] The memory 112 is preferably a random access
memory sufficiently large to hold the necessary program-
ming and data structures of the invention. While the memory
112 is shown as a single entity, it should be understood that
the memory 112 may in fact comprise a plurality of modules,
and that the memory 112 may exist at multiple levels, from
high speed registers and caches to lower speed but larger
DRAM chips.

[0059] Tllustratively, the memory 112 contains an operat-
ing system 124. Illustrative operating systems, which may
be used to advantage, include Linux and Microsoft’s Win-
dows®. More generally, any operating system supporting
the functions disclosed herein may be used.

[0060] The memory 112 is also shown containing a
browser program 122 that, when executed on CPU 110,
provides support for navigating between the various servers
104 and locating network addresses at one or more of the
servers 104. In one embodiment, the browser program 122
includes a web-based Graphical User Interface (GUI), which
allows the user to display Hyper Text Markup Language
(HTML) information. More generally, however, the browser
program 122 may be any GUI-based program capable of
rendering the information transmitted from the server com-
puter 104.

[0061] The server computer 104 may be physically
arranged in a manner similar to the client computer 102.
Accordingly, the server computer 104 is shown generally
comprising a CPU 130, a memory 132, and a storage device
134, coupled to one another by a bus 136. Memory 132 may
be a random access memory sufficiently large to hold the
necessary programming and data structures that are located
on the server computer 104.

[0062] The server computer 104 is generally under the
control of an operating system 138 shown residing in
memory 132. Examples of the operating system 138 include
IBM 0S/400®, UNIX, Microsoft Windows®, and the like.
More generally, any operating system capable of supporting
the functions described herein may be used.

[0063] The memory 132 further includes one or more
applications 140 and an abstract query interface 146. The
applications 140 and the abstract query interface 146 are
software products comprising a plurality of instructions that
are resident at various times in various memory and storage

Jul. 13,2006

devices in the computer system 100. When read and
executed by one or more processors 130 in the server 104,
the applications 140 and the abstract query interface 146
cause the computer system 100 to perform the steps neces-
sary to execute steps or elements embodying the various
aspects of the invention. The applications 140 (and more
generally, any requesting entity, including the operating
system 138 and, at the highest level, users) issue queries
against a database. [llustrative sources against which queries
may be issued include local databases 56, . . . 156y, and
remote databases 157, . . . 157, collectively referred to as
database(s) 156-157). Illustratively, the databases 156 are
shown as part of a database management system (DBMS)
154 in storage 134. More generally, as used herein, the term
“databases” refers to any collection of data regardless of the
particular physical representation. By way of illustration, the
databases 156-157 may be organized according to a rela-
tional schema (accessible by SQL queries) or according to
an XML schema (accessible by XML queries). However, the
invention is not limited to a particular schema and contem-
plates extension to schemas presently unknown. As used
herein, the term “schema” generically refers to a particular
arrangement of data which is described by a data definition
framework such as the DRA described herein.

[0064] In one embodiment, the queries issued by the
applications 140 are defined according to an application
query specification 142 included with each application 140.
The queries issued by the applications 140 may be pre-
defined (i.e., hard coded as part of the applications 140) or
may be generated in response to input (e.g., user input). In
either case, the queries (referred to herein as “abstract
queries”) are composed using logical fields defined by the
abstract query interface 146. In particular, the logical fields
used in the abstract queries are defined by a data repository
abstraction component 148 of the abstract query interface
146. The abstract queries are executed by a runtime com-
ponent 150 which transforms the abstract queries into a form
(referred to herein as a concrete query) consistent with the
physical representation of the data contained in one or more
of the databases 156-157. The queries may be configured to
access the data and return results, or to modify (i.e., insert,
delete or update) the data. The application query specifica-
tion 142 and the abstract query interface 146 are further
described with reference to FIGS. 2A-B.

[0065] In one embodiment, elements of a query are speci-
fied by a user through a graphical user interface (GUI). The
content of the GUIs is generated by the application(s) 140.
In a particular embodiment, the GUI content is hypertext
markup language (HTML) content which may be rendered
on the client computer systems 102 with the browser pro-
gram 122. Accordingly, the memory 132 includes a Hyper-
text Transfer Protocol (http) server process 138 (e.g., a web
server) adapted to service requests from the client computer
102. For example, the process 138 may respond to requests
to access a database(s) 156, which illustratively resides on
the server 104. Incoming client requests for data from a
database 156-157 invoke an application 140. When executed
by the processor 130, the application 140 causes the server
computer 104 to perform the steps or elements embodying
the various aspects of the invention, including accessing the
database(s) 156-157. In one embodiment, the application
140 comprises a plurality of servlets configured to build GUI
elements, which are then rendered by the browser program
122. Where the remote databases 157 are accessed via the

US 2006/0155692 Al

application 140, the data repository abstraction component
148 is configured with a location specification identifying
the database containing the data to be retrieved. This latter
embodiment will be described in more detail below.

[0066] FIG. 1 is merely one hardware/software configu-
ration for the networked client computer 102 and server
computer 104. Embodiments of the present invention can
apply to any comparable hardware configuration, regardless
of whether the computer systems are complicated, multi-
user computing apparatus, single-user workstations, or net-
work appliances that do not have non-volatile storage of
their own. Further, it is understood that while reference is
made to particular markup languages, including HTML, the
invention is not limited to a particular language, standard or
version. Accordingly, persons skilled in the art will recog-
nize that the invention is adaptable to other markup lan-
guages as well as non-markup languages and that the
invention is also adaptable future changes in a particular
markup language as well as to other languages presently
unknown. Likewise, the http server process 138 shown in
FIG. 1 is merely illustrative and other embodiments adapted
to support any known and unknown protocols are contem-
plated.

Logical/Runtime View of Environment

[0067] FIGS. 2A-B show a plurality of interrelated com-
ponents of the invention. The requesting entity (e.g., one of
the applications 140) issues a query 202 as defined by the
respective application query specification 142 of the request-
ing entity. The resulting query 202 is generally referred to
herein as an “abstract query” because the query is composed
according to abstract (i.e., logical) fields rather than by direct
reference to the underlying physical data entities in the
databases 156-157. As a result, abstract queries may be
defined that are independent of the particular underlying
data representation used. In one embodiment, the application
query specification 142 may include both criteria used for
data selection (selection criteria 204) and an explicit speci-
fication of the fields to be returned (return data specification
206) based on the selection criteria 204.

[0068] The logical fields specified by the application query
specification 142 and used to compose the abstract query
202 are defined by the data repository abstraction compo-
nent 148. In general, the data repository abstraction com-
ponent 148 exposes information as a set of logical fields that
may be used within a query (e.g., the abstract query 202)
issued by the application 140 to specify criteria for data
selection and specify the form of result data returned from
a query operation. The logical fields are defined indepen-
dently of the underlying data representation being used in
the databases 156-157, thereby allowing queries to be
formed that are loosely coupled to the underlying data
representation.

[0069] In general, the data repository abstraction compo-
nent 148 comprises a plurality of field specifications 208,
208,, 208, 208, and 208 (five shown by way of example),
collectively referred to as the field specifications 208. Spe-
cifically, a field specification is provided for each logical
field available for composition of an abstract query. Each
field specification comprises a logical field name 210,, 210,
2105, 210,, 2105 (collectively, field name 210) and an
associated access method 212, 212,, 212;, 212,, 212,
(collectively, access method 212). The access methods asso-

Jul. 13,2006

ciate (i.e., map) the logical field names to a particular
physical data representation 214,, 214, . . . 214 in a
database (e.g., one of the databases 156). By way of illus-
tration, two data representations are shown, an XML data
representation 214, and a relational data representation
214,. However, the physical data representation 214, indi-
cates that any other data representation, known or unknown,
is contemplated.

[0070] Any number of access methods are contemplated
depending upon the number of different types of logical
fields to be supported. In one embodiment, access methods
for simple fields, filtered fields and composed fields are
provided. The field specifications 208, 208, and 208 exem-
plify simple field access methods 212, 212,, and 2124,
respectively. Simple fields are mapped directly to a particu-
lar entity in the underlying physical data representation (e.g.,
a field mapped to a given database table and column). By
way of illustration, the simple field access method 212,
shown in FIG. 2B maps the logical field name 210, (“First-
Name”) to a column named “f _name” in a table named
“contact”. The field specification 208, exemplifies a filtered
field access method 212;. Filtered fields identify an associ-
ated physical entity and provide rules used to define a
particular subset of items within the physical data represen-
tation. An example is provided in FIG. 2B in which the
filtered field access method 212, maps the logical field name
210, (“AnytownLastName”) to a physical entity in a column
named “I_name” in a table named “contact” and defines a
filter for individuals in the city of Anytown. Another
example of a filtered field is a New York ZIP code field that
maps to the physical representation of ZIP codes and
restricts the data only to those ZIP codes defined for the state
of New York. The field specification 208, exemplifies a
composed field access method 212,. Composed access
methods compute a logical field from one or more physical
fields using an expression supplied as part of the access
method definition. In this way, information which does not
exist in the underlying data representation may computed. In
the example illustrated in FIG. 2B the composed field access
method 212, maps the logical field name 210, “AgelnDe-
cades” to “AgelnYears/10”. Another example is a sales tax
field that is composed by multiplying a sales price field by
a sales tax rate.

[0071] 1t is noted that the data repository abstraction
component 148 shown in FIG. 2B is merely illustrative of
selected logical field specifications and is not intended to be
comprehensive. As such, the abstract query 202 shown in
FIG. 2B includes some logical fields for which specifica-
tions are not shown in the data repository abstraction com-
ponent 148, such as “State” and “Street”.

[0072] Tt is contemplated that the formats for any given
data type (e.g., dates, decimal numbers, etc.) of the under-
lying data may vary. Accordingly, in one embodiment, the
field specifications 208 include a type attribute which
reflects the format of the underlying data. However, in
another embodiment, the data format of the field specifica-
tions 208 is different from the associated underlying physi-
cal data, in which case an access method is responsible for
returning data in the proper format assumed by the request-
ing entity. Thus, the access method must know what format
of data is assumed (i.e., according to the logical field) as well
as the actual format of the underlying physical data. The

US 2006/0155692 Al

access method can then convert the underlying physical data
into the format of the logical field.

[0073] By way of example, the field specifications 208 of
the data repository abstraction component 148 shown in
FIG. 2A are representative of logical fields mapped to data
represented in the relational data representation 214,. How-
ever, other instances of the data repository abstraction
component 148 map logical fields to other physical data
representations, such as XML. Further, in one embodiment,
a data repository abstraction component 148 is configured
with access methods for procedural data representations.
One embodiment of such a data repository abstraction
component 148 is described below with respect to FIG. 8.

[0074] An illustrative abstract query corresponding to the
abstract query 202 shown in FIG. 2 is shown in Table I
below. By way of illustration, the data repository abstraction
148 is defined using XML. However, any other language
may be used to advantage.

TABLE 1

QUERY EXAMPLE

001 <?xml version="1.0"?>
002 <!--Query string representation: (FirstName = “Mary”
AND LastName =
003 “McGoon”) OR State = “NC”-->
004 <QueryAbstraction>
005 <Selection>
006 <Condition internallD="4">
007 <Condition field=“FirstName” operator="EQ”
value="“Mary”
008 internalID="1"/>
009 <Condition field=*LastName” operator="EQ”

value="McGoon”
010 internalID="3" relOperator="AND”></Condition>
011 </Condition>
012 <Condition field=*State” operator="EQ” value=“NC”
internalID="2"
013 relOperator="OR”></Condition>

014 </Selection>

015 <Results>

016 <Field name="“FirstName”/>
017 <Field name=“LastName”/>
018 <Field name="State”/>

019 </Results>

020 </QueryAbstraction>

Iustratively, the abstract query shown in Table I includes a
selection specification (lines 005-014) containing selection
criteria and a results specification (lines 015-019). In one
embodiment, a selection criterion consists of a field name
(for a logical field), a comparison operator (=, >, <, etc) and
a value expression (what is the field being compared to). In
one embodiment, result specification is a list of abstract
fields that are to be returned as a result of query execution.
A result specification in the abstract query may consist of a
field name and sort criteria.

[0075] Anillustrative instance of a data repository abstrac-
tion component 148 corresponding to the abstract query in
Table I is shown in Table II below. By way of illustration, the
data repository abstraction component 148 is defined using
XML. However, any other language may be used to advan-
tage.

Jul. 13,2006

TABLE 1I

DATA REPOSITORY ABSTRACTION EXAMPLE

001 <?xml version="1.0"?>
002 <DataRepository>
003 <Category name="Demographic’>
004 <Field queryable=“Yes” name="FirstName”
displayable="Yes”>
005 <AccessMethod>
006 <Simple columnName=“f_ name”
tableName="contact”></Simple>
007 </AccessMethod>
008 <Type baseType="char”></Type>
009 </Field>
010 <Field queryable=“Yes” name="LastName”
displayable="Yes”>
011 <AccessMethod>
012 <Simple columnName="]_ name”
tableName="contact”></Simple>
013 </AccessMethod>
014 <Type baseType="char”></Type>
015 </Field>
016 <Field queryable=*Yes” name="State”
displayable="Yes”>
017 <AccessMethod>
018 <Simple columnName="state”
tableName="contact”></Simple>
019 </AccessMethod>
020 <Type baseType="char”></Type>
021 </Field>
022 </Category>
023 </DataRepository>
[0076] Note that lines 004-009 correspond to the first field

specification 208, of the DRA 148 shown in FIG. 2B and
lines 010-015 correspond to the second field specification
208,. For brevity, the other field specifications defined in
Table I have not been shown in FIG. 2B. Note also that
Table I illustrates a category, in this case “Demographic”. A
category is a grouping of one or more logical fields. In the
present example, “First Name”, “Last Name” and “State”
are logical fields belonging to the common category,
“Demographic”.

[0077] FIG. 3 shows an illustrative runtime method 300
exemplifying one embodiment of the operation of the runt-
ime component 150. The method 300 is entered at step 302
when the runtime component 150 receives as input an
instance of an abstract query (such as the abstract query 202
shown in FIG. 2). At step 304, the runtime component 150
reads and parses the instance of the abstract query and
locates individual selection criteria and desired result fields.
At step 306, the runtime component 150 enters a loop
(comprising steps 306, 308, 310 and 312) for processing
each query selection criteria statement present in the abstract
query, thereby building a data selection portion of a Con-
crete Query. In one embodiment, a selection criterion con-
sists of a field name (for a logical field), a comparison
operator (=, >, <, etc) and a value expression (what is the
field being compared to). At step 308, the runtime compo-
nent 150 uses the field name from a selection criterion of the
abstract query to look up the definition of the field in the data
repository abstraction 148. As noted above, the field defi-
nition includes a definition of the access method used to
access the physical data associated with the field. The
runtime component 150 then builds (step 310) a Concrete
Query Contribution for the logical field being processed. As
defined herein, a Concrete Query Contribution is a portion
of a concrete query that is used to perform data selection

US 2006/0155692 Al

based on the current logical field. A concrete query is a query
represented in languages like SQL and XML Query and is
consistent with the data of a given physical data repository
(e.g., a relational database or XML repository). Accordingly,
the concrete query is used to locate and retrieve data from a
physical data repository, represented by the databases 156-
157 shown in FIG. 1. The Concrete Query Contribution
generated for the current field is then added to a Concrete
Query Statement. The method 300 then returns to step 306
to begin processing for the next field of the abstract query.
Accordingly, the process entered at step 306 is iterated for
each data selection field in the abstract query, thereby
contributing additional content to the eventual query to be
performed.

[0078] After building the data selection portion of the
concrete query, the runtime component 150 identifies the
information to be returned as a result of query execution. As
described above, in one embodiment, the abstract query
defines a list of abstract fields that are to be returned as a
result of query execution, referred to herein as a result
specification. A result specification in the abstract query may
consist of a field name and sort criteria. Accordingly, the
method 300 enters a loop at step 314 (defined by steps 314,
316, 318 and 320) to add result field definitions to the
concrete query being generated. At step 316, the runtime
component 150 looks up a result field name (from the result
specification of the abstract query) in the data repository
abstraction 148 and then retrieves a Result Field Definition
from the data repository abstraction 148 to identify the
physical location of data to be returned for the current
logical result field. The runtime component 150 then builds
(as step 318) a Concrete Query Contribution (of the concrete
query that identifies physical location of data to be returned)
for the logical result field. At step 320, Concrete Query
Contribution is then added to the Concrete Query Statement.
Once each of the result specifications in the abstract query
has been processed, the query is executed at step 322.

[0079] One embodiment of a method 400 for building a
Concrete Query Contribution for a logical field according to
steps 310 and 318 is described with reference to FIG. 4. At
step 402, the method 400 queries whether the access method
associated with the current logical field is a simple access
method. If so, the Concrete Query Contribution is built (step
404) based on physical data location information and pro-
cessing then continues according to method 300 described
above. Otherwise, processing continues to step 406 to query
whether the access method associated with the current
logical field is a filtered access method. If so, the Concrete
Query Contribution is built (step 408) based on physical data
location information for some physical data entity. At step
410, the Concrete Query Contribution is extended with
additional logic (filter selection) used to subset data associ-
ated with the physical data entity. Processing then continues
according to method 300 described above.

[0080] Ifthe access method is not a filtered access method,
processing proceeds from step 406 to step 412 where the
method 400 queries whether the access method is a com-
posed access method. If the access method is a composed
access method, the physical data location for each sub-field
reference in the composed field expression is located and
retrieved at step 414. At step 416, the physical field location
information of the composed field expression is substituted
for the logical field references of the composed field expres-

Jul. 13,2006

sion, whereby the Concrete Query Contribution is generated.
Processing then continues according to method 300
described above.

[0081] If the access method is not a composed access
method, processing proceeds from step 412 to step 418. Step
418 is representative of any other access methods types
contemplated as embodiments of the present invention.
However, it should be understood that embodiments are
contemplated in which less then all the available access
methods are implemented. For example, in a particular
embodiment only simple access methods are used. In
another embodiment, only simple access methods and fil-
tered access methods are used.

[0082] As described above, it may be necessary to perform
a data conversion if a logical field specifies a data format
different from the underlying physical data. In one embodi-
ment, an initial conversion is performed for each respective
access method when building a Concrete Query Contribu-
tion for a logical field according to the method 400. For
example, the conversion may be performed as part of, or
immediately following, the steps 404, 408 and 416. A
subsequent conversion from the format of the physical data
to the format of the logical field is performed after the query
is executed at step 322. Of course, if the format of the logical
field definition is the same as the underlying physical data,
no conversion is necessary.

Other Embodiments of Data Repository Abstraction Com-
ponents

[0083] In one embodiment, a different single data reposi-
tory abstraction component 148 is provided for each sepa-
rate physical data representation 214. In an alternative
embodiment, a single data repository abstraction component
148 contains field specifications (with associated access
methods) for two or more physical data representations 214.
In yet another embodiment, multiple data repository abstrac-
tion components 148 are provided, where each data reposi-
tory abstraction component 148 exposes different portions of
the same underlying physical data (which may comprise one
or more physical data representations 214). In this manner,
a single application 140 may be used simultaneously by
multiple users to access the same underlying data where the
particular portions of the underlying data exposed to the
application are determined by the respective data repository
abstraction component 148. This latter embodiment is
described in more detail in U.S. patent application Ser. No.
10/132,228, entitled “DYNAMIC END USER SPECIFIC
CUSTOMIZATION OF AN APPLICATION’S PHYSICAL
DATA LAYER THROUGH A DATA REPOSITORY
ABSTRACTION LAYER” and assigned to International
Business Machines, Inc.

[0084] In any case, a data repository abstraction compo-
nent 148 contains (or refers to) at least one access method
which maps a logical field to physical data. To this end, as
illustrated in the foregoing embodiments, the access meth-
ods describe a means to locate and manipulate the physical
representation of data that corresponds to a logical field. In
one embodiment, the access methods are further configured
with a location specification defining a location of the data
associated with the logical field. In this way, the data
repository abstraction component 148 is extended to include
description of a multiplicity of data sources that can be local
and/or distributed across a network environment. The data

US 2006/0155692 Al

sources can be using a multitude of different data represen-
tations and data access techniques. In this manner, an
infrastructure is provided which is capable of capitalizing on
the distributed environments prevalent today. One approach
for accessing a multiplicity of data sources is described in
more detail in U.S. patent application Ser. No. 10/131,984,
entitled “REMOTE DATA ACCESS AND INTEGRATION
OF DISTRIBUTED DATA SOURCES THROUGH DATA
SCHEMA AND QUERY ABSTRACTION” and assigned to
International Business Machines, Inc.

[0085] In various embodiments, numerous advantages
over the prior art are provided. In one aspect, advantages are
achieved by defining a loose coupling between the applica-
tion query specification and the underlying data representa-
tion. Rather than encoding an application with specific table,
column and relationship information, as is the case where
SQL is used, the application defines data query requirements
in a more abstract fashion that are then bound to a particular
physical data representation at runtime. The loose query-
data coupling of the present invention enables requesting
entities (e.g., applications) to function even if the underlying
data representation is modified or if the requesting entity is
to be used with a completely new physical data representa-
tion than that used when the requesting entity was devel-
oped. In the case with a given physical data representation
is modified or restructured, the corresponding data reposi-
tory abstraction is updated to reflect changes made to the
underlying physical data model. The same set of logical
fields are available for use by queries, and have merely been
bound to different entities or locations in physical data
model. As a result, requesting entities written to the abstract
query interface continue to function unchanged, even though
the corresponding physical data model has undergone sig-
nificant change. In the event a requesting entity is to be used
with a completely new physical data representation different
than that used when the requesting entity was developed, the
new physical data model may be implemented using the
same technology (e.g., relational database) but following a
different strategy for naming and organizing information
(e.g., a different schema). The new schema will contain
information that may be mapped to the set of logical fields
required by the application using simple, filtered and com-
posed field access method techniques. Alternatively, the new
physical representation may use an alternate technology for
representing similar information (e.g., use of an XML based
data repository versus a relational database system). In either
case, existing requesting entities written to use the abstract
query interface can easily migrate to use the new physical
data representation with the provision of an alternate data
repository abstraction which maps fields referenced in the
query with the location and physical representation in the
new physical data model.

[0086] In another aspect, the ease-of-use for the applica-
tion builder and the end-user is facilitated. Use of an
abstraction layer to represent logical fields in an underlying
data repository enables an application developer to focus on
key application data requirements without concern for the
details of the underlying data representation. As a result,
higher productivity and reduced error rates are achieved
during application development. With regard to the end user,
the data repository abstraction provides a data filtering
mechanism, exposing pertinent data and hiding nonessential
content that is not needed by a particular class end-user
developing the given query.

Jul. 13,2006

[0087] Solutions implementing the present model use the
provided abstract query specification to describe its infor-
mation requirements, without regard for the location or
representation of the data involved. Queries are submitted to
the runtime component which uses the data repository
abstraction component to determine the location and method
used to access each logical piece of information represented
in the query. In one embodiment, the runtime component
also includes the aforementioned data caching function to
access the data cache.

[0088] In one aspect, this model allows solutions to be
developed independent of the physical location or represen-
tation of the data used by the solution, making it possible to
easily deploy the solution to a number of different data
topologies and allowing the solution to function in cases
where data is relocated or reorganized over time. In another
aspect, this approach also simplifies the task of extending a
solution to take advantage of additional information. Exten-
sions are made at the abstract query level and do not require
addition of software that is unique for the location or
representation of the new data being accessed. This method
provides a common data access method for software appli-
cations that is independent of the particular method used to
access data and of the location of each item of data that is
referenced. The physical data accessed via an abstract query
may be represented relationally (in an existing relational
database system), hierarchically (as XML) or in some other
physical data representation model. A multitude of data
access methods are also supported, including those based on
existing data query methods such as SQL and XQuery and
methods involving programmatic access to information such
as retrieval of data through a Web Service invocation (e.g.,
using SOAP) or HTTP request.

Model Entities

[0089] Aspects of the present invention provide data
abstraction model entities that serve to identify a higher
level abstraction of the underlying data by representing a
composite of individual logical fields. Model entities pro-
vide end users and applications a higher level conceptual
view of the underlying data that can simplify data query and
modification tasks (i.e., insert and deletion). Rather than
having to understand all of the individual fields that make up
entities such as a patient or a lab test result, the user/
application can work at the more conceptual model entity
level. As will be described below in more detail, the defi-
nition of a model entity contains sufficient metadata to
streamline and simplify transactions performed against
instances of a model entity.

[0090] In the current embodiment, model entities are
defined via additional metadata to that already found in an
abstract data model representation (i.e., the DRA). More
generally, however, model entities can be defined within an
abstract data model definition or could be defined external to
an abstract data model definition.

[0091] Further, embodiments are described with reference
to relational databases. However, the invention is applicable
to any other data representation including, for example,
markup languages such as XML..

[0092] Referring now to FIG. 5, an environment 500
includes a representative data repository abstraction com-
ponent (DRA) 502 configured to support accesses (i.e.,

US 2006/0155692 Al

queries and modification operations) of a physical data
source. By way of illustration only, the physical data source
being accessed via the data repository abstraction compo-
nent 502 is a relational data source 504 containing a plurality
of tables 520-523. However, as described above, any data
type is contemplated.

[0093] The data repository abstraction component 502
generally includes a plurality of categories 508, s, a plurality
of logical fields specifications 510, ,,, a model entity speci-
fication 525 and a physical entity relationship specification
526. The categories 508 may be defined for a single logical
field or, more commonly, relate two or more logical field
specifications 510. The logical fields specifications 510
includes the metadata described above with respect to FIG.
2, which is not shown for simplicity. Some aspects of the
logical fields specifications described above with respect to
FIG. 2 are shown in a simplified form. For example,
reference to logical fields used in defining composed fields
is represented by arrows, such as in the case of the “Age”
logical field specification 5105 and the “Days to Payment”
logical field specification 510, .

[0094] 1Inaddition, logical fields specifications 510 include
supplemental metadata used to implement aspects of the
invention. For example, selected logical fields are config-
ured with various attributes including a “required” attribute
514, a “generate” attribute 516 and a “default” attribute 518.
Iustratively, the “First Name” logical field specification
510,, the “Last Name” logical field specification 510, the
“City” logical field specification 5104, the “State” logical
field specification 510,, the “Postal Code” logical field
specification 510,,, the “Glucose Test” logical field speci-
fication 510 ,, the “Account Number” logical field specifi-
cation 510, and the “Balance” logical field specification
510, are configured with the “Required” attribute 514. The
“Patient ID” logical field specification 510, is configured
with the “Generate” attribute 516 and the Test Date logical
field specification 510,; is configured with the “Default
Value” attribute 518, where the default value is specified as
“Current_Date”.

[0095] The model entity specification 525 defines a plu-
rality of model entities 506, _; (illustratively three are shown;
however, any number of model entities may be defined).
Each model entity has a name. Illustratively, a “Patient”
model entity 506,, a “Test” model entity 506, and an
“Account” model entity 506, are defined by the DRA 502.

[0096] By way of illustration, additional details of the
Patient and Test model entities 506, , are now described
with reference to FIG. 6. Although not shown, the details of
the “Account” model entity 506, may have a similar com-
position. In addition to a name 602, each model entity
defines multiple sets of fields used to implement query,
insert and delete operations against the physical data corre-
sponding to the model entity. Specifically, each model entity
506 is partitioned to include a query portion 604, ,, the
insert portion 606, , and a delete portion 608, ,. The appro-
priate portion is accessed according to the type of operation
being run against the model entity 506. Note that for queries,
the full complement of fields defining a model entity (e.g.,
Patient) is specified, while in the case of inserts and deletes
a subset of all the fields defining the model entity is
specified. As will be described in more detail below, the
subset of fields include a “seed” field for each corresponding

Jul. 13,2006

physical entity of a model entity. In any case, it should be
clear that a portion of a model entity 506 may include only
a single logical field pointing to a single physical entity.
Further, a model entity 506 may itself only have a single
logical field pointing to a single physical entity. The model
entities provide a particular advantage, however, when they
span multiple fields/entities since in this case users are able
to work with a singular abstract representation rather than
being burdened with knowing what logical fields make up an
abstract entity. In this regard, it is noted that, in practice,
each portion (query, insert and delete) of a model entity 506
is itself a model entity in that the portions each define an
abstract entity for a given operation, whether the abstract
entity spans multiple logical fields and/or multiple physical
fields.

[0097] In addition to the model entity metadata, aspects of
the invention are implemented by the physical entity rela-
tionships specification 526, which is now described with
reference to FIG. 5. The physical entity relationships speci-
fication 526 defines the hierarchical relationships between
entities in a physical model (i.e., the relational database
520). By way of illustration, the physical entity relationships
specification 526 shown in FIG. 5 relates the patient infor-
mation table 520 to each of the other tables 521-523 in the
data source 504. In each case, the patient information table
520 is primary with respect to a secondary table. Although
not illustrated in the physical entity relationships specifica-
tion 526 of FIG. 5, it is contemplated that additional levels
of hierarchy may be defined. For example, the address
information table 521 may be defined as a primary entity
with respect to some other secondary table (referred to for
convenience as “Table A”) not shown in FIG. 5. In this case,
a three-tiered hierarchy is defined in which the patient
information table 520 is the primary entity, the address
information table 521 is the secondary entity, and Table A is
the tertiary entity. In such an arrangement, the patient
information table 520 and the address information table 521,
and the address information table 521 and Table A are
explicitly in a primary-secondary relationship, and by syl-
logism, the patient information table 520 and Table A are in
a primary-secondary relationship.

[0098] The physical entity relationships specification 526
also indicates the basis for a primary-secondary relationship
between entities. Specifically, the field (i.e., column) on
which the relationship is based is specified in brackets []. In
the present illustration, the entity relationships are defined
for the patient identifier (“ID” and “PID”, respectively).
Although only one field name is shown specified for each
entity, two or more may be specified such that each entity is
related by two or more pairs of fields. Consider the follow-
ing example of a relationship: Entity 1 [field 1, field 3, field
6]—=Entity 2 [field 2, field 3, field 4]. In this example, the
fields 1, 3 and 6 of the primary entity, Entity 1, are related
to fields 2, 3 and 4, respectively, of the secondary entity,
Entity 2.

[0099] The physical entity relationships specification 526
also specifies whether a relationship between two entities is
one-to-one, one-to-many many-to-one or many-to-many.
This relationship is specified in parentheses () for each
entity. For example, the entities “PatientInfo” and “Address-
Info” are in a one-to-one relationship, while the entities
“PatientInfo” and “TestInfo” are in a one-to-many relation-
ship.

US 2006/0155692 Al

[0100] The DRA 502 allows a requesting entity 512 (e.g.,
application 140 of FIG. 1) to access the data source 504 by
issuing a request for results from the data source 504 or by
issuing a request to modify data in the data source 504.
Generally, both of these requests may be referred to as
“queries”. However, for convenience, only a request for
results will be referred to as a query in the following
description.

Query Operations Using Model Entities

[0101] In the case of query operations, a set of fields
defined by the model entity 506 in the query portion 604
serves a variety of purposes. First, the query portion 604
specifies those fields that are required output from queries
involving the model entity. Required fields for query results
are identified in the query portion of the model entity by a
“required” attribute. For example, the “patient” model entity
506, defines “patient id” as a required field with the provi-
sion of a required attribute 610 in the query portion 604,
thereby ensuring that all query results for patients will
include patient id.

[0102] As an example of how the required attribute 610 is
applied, consider the initial Abstract Query 700 shown in
FIG. 7. The Abstract Query 700 represents the initial form
of'an abstract query as specified by a user, for example. Note
the explicit reference 702 to the “Patient” model entity 506, .
As a result of this reference, the logic of the DRA 502,
specifically the metadata of the Patient model entity 506, is
applied to convert the initial Abstract Query 700 into an
effective Abstract Query 704. In this case, “Patient ID” was
added to the result fields specified in the effective Abstract
Query 704 because the “patient” model entity 506, defines
“Patient id” as a required field with the provision of a
required attribute 610.

[0103] The augmentation of the effective Abstract Query
704 from an end-user’s perspective is described with refer-
ence to FIGS. 8-12, which show a series of user interface
screens. Referring first to FIG. 8, a screen 800 is configured
with a selection menu 802 from which a user selects a query
focus. Each of the available selections corresponds to one of
the defined model entities 506. Illustratively, the user selects
“Patient” as the query focus and clicks the “Next” button
804, which causes the user interface to display the next
screen 900 shown in FIG. 9. That is, the user has elected to
craft a query which invokes the “Patient” model entity 506, .
The user then specifies various query conditions in an input
field 1002 as shown in FIG. 10. Clicking the “Next” button
1004 causes the user interface to display the next screen
1100 shown in FIG. 11. The screen 1100 includes a Result
Fields input field 1102. Ilustratively, the input field 1102 is
primed with the “Patient ID” field. That is, the “Patient ID”
field is automatically added to the Result Fields input field
1102 because the “Patient” model entity 506, defines
“Patient ID” as a required field with the provision of a
required attribute 610 (shown in FIG. 6). The user may then
specify additional result fields as shown in FIG. 12. In an
alternative embodiment, the “Patient ID” is not added to the
result fields of the query until submitted for execution by the
user.

[0104] Referring now to FIG. 13, one embodiment of a
method 1300 illustrating the result field augmentation of a
query is described. The augmentation process begins with
receipt of an initial abstract query 1304A (step 1302), such

Jul. 13,2006

as the initial Abstract Query 700 described with reference to
FIG. 7. An effective query 1304B (such as the effective
Abstract Query 704 described with reference to FIG. 7) is
then set to the initial query 1304 A (step 1306). At this point,
the composition of the effective abstract query 1304B is the
same as the initial abstract query 1304A. The effective
abstract query is then examined for a reference to a model
entity (step 1308). In the absence of such a reference,
processing is complete and the method 1300 exits. If,
however, the effective abstract query 1304B includes a
reference to a model entity the appropriate model entity
definition 506 is retrieved from the data repository abstrac-
tion component 502. For each required query field (indicated
by the required attribute 610) in the model entity (loop
entered at step 1312), the method 1300 determines whether
the required field is already specified as a result field in the
initial abstract query 1304 A (step 1314). If not, the required
field is added to the result fields of the effective abstract
query 1304B.

[0105] In another aspect, model entities establish a focal
point within the data environment that can be used to
implement the appropriate logic needed to correlate infor-
mation that spans multiple entities (e.g. tables) in the under-
lying physical data repository. From this focal point, a
direction to interpret relationships between tables can be
established. For example, the physical entity relationships
specification 526 describes a 1-to-many relationship
between the PatientInfo table 520 and the TestInfo table 521,
since each patient can have multiple lab test results. A model
entity focused on the patient entity would establish a point
of reference to correlate patient information with lab test
results. For example, in the case of a relational database, the
model entity for “patient” would be used to determine
optimal table join logic. Since each patient can have multiple
lab test results, a query looking for patients with multiple
test results would join the lab test table multiple times to
enable selection of patients with all of the desired test
results. However, a model entity focused on lab tests would
only join the patient information table once since the focus
is on lab tests and the relationship in the direction “lab
test”-to-“patient information” is degree one (1).

[0106] The effect of a model entity on query construction
can be illustrated with respect to FIG. 14. An illustrative
abstract query 1400 includes a plurality of query conditions
1402, result fields 1404 and a reference 1406 to a model
entity, in this case “Patient”. That is, the ‘“Patient” model
entity 506, is specified as the focal point of the query 1400.
The query conditions 1402 include two conditions with
respect to a Glucose Test, where the two conditions are
logically ANDed together. Since the “Patient” entity is the
focus, the query conditions 1402 are interpreted to mean
“find patients having both a glucose test value=5 AND a
glucose test value=10". Further, the relationship defined in
the physical entity relationships specification 526 between
the “PatientInfo” table 520 and the “TestInfo” table 521 is
one-to-many, indicating that a patient can have more than
one test result. Given this information, it is determined that
a physical query 1408 (illustratively an SQL query) corre-
sponding to the abstract query 1400 will require two
instances of the “TestInfo” table 521 in order to compare two
test results for the same patient. The two instances of the
“TestInfo” table 521 are identified as T2 and T3 in the
selection clause of the physical query 1408. Further, the
physical entity relationships specification 526 is used to

US 2006/0155692 Al

generate the necessary correlation logic 1410 between each
physical entity involved in the query. In a relational model,
the correlation logic is join logic specifying how tables are
joined.

[0107] Referring now to FIG. 15, a physical query gen-
eration process 1500 is described for generating a physical
query based on abstract query reference in a model entity.
The process 1500 is initiated when a completed abstract
query is received (step 1502). For each abstract query
condition in the abstract query (step 1504), a series of steps
is performed. Specifically, for a given abstract query con-
dition, the process 1500 determines whether more than one
ANDed condition is specified for the field of the given
abstract query condition (step 1506). If not, a physical query
contribution is generated against a single instance of the
physical entity corresponding to the field of the given
abstract query condition (step 1508). If, however, step 1506
is answered affirmatively, the physical entity corresponding
to the field for the given abstract query condition is deter-
mined (step 1510). In addition, the physical entities corre-
sponding to the specified model entity are determined (step
1512). The physical entity relationships specification 526 is
then examined to determine whether a one-to-many rela-
tionship exists between any of the physical entities corre-
sponding to the model entity and the physical entity for the
field of the given abstract query condition. If not, a physical
query contribution is generated against a single instance of
the physical entity corresponding to the field of the given
abstract query condition (step 1508). If, however, step 1514
is answered affirmatively, a physical query contribution is
generated against another instance of the physical entity
corresponding to the field of the given abstract query con-
dition (step 1516).

[0108] After having processed each abstract query condi-
tion, the result fields contribution for the query is generated
(step 1518). Finally, correlation logic between each physical
entity involved in the query is generated using the relation-
ship metadata contained in the physical entity relationships
specification 526 (step 1520). The resulting physical query
can then be executed.

[0109] In still another aspect, model entities 506 can be
used to represent a set of query result fields. By abstracting
groups of logical fields (and, hence, physical fields) appli-
cations and users are able to deal with higher level entities
(e.g., a patient), without having to understand the details of
what constitutes the entity.

[0110] An illustration of using model entities to represent
a set of query result fields is described with reference to
FIG. 16. An initial Abstract Query 1600 is shown with
illustrative query conditions 1602 and result fields 1604. In
this example, the initial Abstract Query 1600 includes a
reference 1604 to the “Patient” model entity 506,. As a
result of this reference 1604, steps are taken to expand the
result fields 1604 to include all of the logical fields defined
for the “Patient” model entity 506, resulting in the effective
Abstract Query 1608.

[0111] A result fields augmentation process 1700 is
described with reference to FIG. 17. For a given an initial
abstract query 1704A (step 1702), a corresponding effective
query 1704B is set (step 1706). The result fields of the query
1704A are then examined to determine a reference to a
model entity (step 1708). If no such reference is identified,

Jul. 13,2006

the process 1700 is complete. If a model entity reference is
present in the query, the model entity definition 506 is
retrieved (step 1710). For each required field in the model
entity (step 1712), the process 1700 determines whether the
required field is in the specified result fields of the initial
abstract query 1704A (step 1714). If not, the required field
is added to the result fields of the effective abstract query
1704B (step 1716). At the conclusion of this processing for
each required field, the effective abstract query 1704B
includes the full complement of logical fields for the speci-
fied model entity definition 506.

[0112] It should be noted that the individual aspects sepa-
rately described with reference to FIGS. 13, 15 and 17 (and
related figures) may be used in combination. For example,
assume that the initial Abstract Query 1400 shown in FIG.
14 does not include the “Patient id” field in the result fields
1404. A first stage of processing may be performed accord-
ing to the method 1300 whereby the “Patient id” field is
added to the result fields 1404. A second stage of processing
is then performed according to the process 1500 to generate
the physical query 1408. Persons skilled in the art will
recognize other process combinations which may be per-
formed.

Modification Operations Using Model Entities

[0113] Aspects of the invention are described above with
reference to accessing data for the purpose of returning
results. In the case of SQL, these are SELECTION opera-
tions. However, modification operations are also supported,
including well-known modification operations such as
INSERT and DELETE and the like. Accordingly, the fol-
lowing describes embodiments extending and enhancing the
functionality of the abstract framework described above to
support modification operations using model entities.

[0114] Since a model entity may span multiple physical
entities (e.g., tables), multiple database operations may be
needed to implement a modification operation. That is,
embodiments are provided for modifying physical data via
a single logical operation spanning multiple statements (e.g.,
multiple SQL statements) issued against the physical data.
To this end, model entities define a minimal set of fields used
to derive the complete set of fields involved in data insert
and delete operations for an instance of the model entity. For
example, patient information spans two tables (e.g., the
“PatientInfo” table 520 and the “AddressInfo” table 521) in
the relational data source 504 implementation shown in
FIG. 5. To implement inserts and deletes, the model entity
for patient identifies at least one field in each table to serve
as a “seed” in determining the complete set of fields that are
needed to insert a new patient into the database, as well as
the complete set of tables that are involved to delete a patient
from the database. Specifically, the seed fields are specified
in insert portion 606, and delete portions 608, of the model
entity definition 506, for “Patient” in the DRA 502 shown in
FIG. 6. In the case of the insert portion 606, the seed field
corresponding to the “PatientInfo” table 520 is “Last Name”
and the seed field corresponding to the “AddressInfo” table
521 is “Street”. Each model entity 506 defined in the DRA
502 may have a similar portions specifying seed fields.

[0115] Based on the seed fields, multiple physical opera-
tions are performed against the data repository to implement
a single abstract operation. For inserting into a relational
data source 504, for example, this would involve creation of

US 2006/0155692 Al

multiple physical SQL INSERT statements for the tables
involved. The application/user need only specify a model
entity, which is then used to identify the corresponding
physical entities and related logical fields involved in the
modification operation. The model entity may be selected
from a drop-down menu of an HTML form, for example.
Further, deletes allow for conditions to be specified that can
be used to target the changes required in the physical data
repository.

[0116] FIG. 18 shows a simplified view of the environ-
ment 500 and includes an illustrative abstract insert opera-
tion specification 1802, and a delete operation specification
1802, (collectively, abstract operation specifications 1802)
used to implement an insert operation and a delete operation,
respectively, against the relational data source 504. The
abstract operation specifications 1802 are composed via the
data repository abstraction component 502 according to
specifications provided by a requesting entity 512 (e.g., a
user/application). In each case, the abstract operation speci-
fications 1802 specify a seed value for each affected physical
entity. The seed values are retrieved from the appropriate
portion of the model entity 506 selected by the requesting
entity 512. Based on the seed values, related logical fields
are determined and made a part of the abstract operation
specifications 1802. Thus, as in the case of queries, the
framework of the present application will provide the
requesting entity 512 with the related fields according to the
specified model entity 506, rather than requiring that knowl-
edge about a database schema at the application level or end
user. Values may then be supplied for each of the fields,
either from the requesting entity 512 (e.g., a user) or from
some other source such as the value generator 524.

[0117] Although in the present examples, each abstract
operation includes two seed fields, an abstract operation may
also be implemented with only a single seed field. For
example, the seed field may be a primary key having an
associated foreign key. In this case, an abstract operation
specifying the seed field may affect the physical data on
which the foreign key is defined. It should be noted that in
some cases this result may not be desirable. That is, it may
be undesirable to propagate changes based on primary
key/foreign key relationships. If propagation is desired, only
one statement directed to modifying the table containing the
primary key is needed. The DBMS will handle modifications
to the related tables. In some instances the DBMS may not
support propagation, in which case multiple statements are
needed. Although not shown the data repository abstraction
component may include an attribute specifying whether
propagation is desired or not for a given logical field.

[0118] In addition to seed fields, the DRA defines other
field types used to implement modification operations. Gen-
erally, such fields may be required or optional. “Required”
means that the requesting entity must supply a value for the
field because there is no suitable default value, no algorithm
to generate a value and the field cannot be null. Required
fields are defined by the required attribute 514, shown in
FIG. 5. An optional field is one which does not require
specification of a value by the requesting entity. Optional
fields include: 1) fields that can be assigned the value of
NULL; 2) fields that have an algorithm that can be used to
generate a value for that field (referred to herein as “gener-
ated fields™); and 3) fields that have a defined default value
in the DRA (referred to herein as “default fields™). Generated

Jul. 13,2006

field values are generated by a value generator 524 (i.e., an
algorithm). Generated fields are defined by the generated
attribute 516, shown in FIG. 5. Default values are used
where no name/value pair was specified for a particular field
related to the entity defined by a seed field. Default fields are
defined by the default attribute 518. Default values may be
statically defined or generated. As an example of a generated
default value, the Test Date value in the illustrative abstract
delete specification 506, defaults to the current date. The
requesting entity (e.g., user) may be given the option of
supplying a different value.

[0119] As an example of required and optional fields,
consider the logical fields corresponding to the patient entity.
It was noted above that the patient entity is logically defined
by the “Patient ID” logical field specification 510, the “First
Name” logical field specification 510, and the “Last Name”
logical field specification 510;. The “First Name” logical
field specification 510, and the “Last Name” logical field
specification 5105 include the required attribute and are
required fields. In contrast, the other logical fields defining
the patient entity (i.e., birth date and gender) are optional.

[0120] Accordingly, inserts and updates to the data source
504 provide for identification of the actual fields (i.e. col-
umns) that are to be modified along with the new value to be
put in the data source. A set of name/value pairs represents
the fields/values within the data repository abstraction com-
ponent 502 that correspond to the physical fields/values to
be modified. The name represents the abstract name for the
logical field that is mapped via the data repository abstrac-
tion component 502 to its underlying physical representa-
tion. The value is the abstract value to be inserted or updated
in the data source for that field. In one aspect, using an
abstract data model (i.e., the data repository abstraction
component 502) allows for automatic conversion of abstract
values to the correct physical values to be inserted into the
database. For example, the data repository abstraction com-
ponent 502 can be defined to use values such as “Male” and
“Female” for gender when the underlying physical data
repository may use values of “F”” and “M” to represent those
values, as illustrated by the patient information table 520,
which contains a record having the value “F” in the gender
(gend) column. Input values for an insert operation take
advantage of those abstract value specifications to provide
further cushion for changes to the underlying physical
representation of not only the structure of the underlying
data repository, but also from the physical form of the data
contained within the data repository.

[0121] Some situations require special considerations. In
many cases, a logical field may be physically represented in
multiple fields in a physical data repository. One example
would be the case in the relational data source 504 where a
column in one table was defined as a foreign key to a column
in another database table. For example, a patient ID may be
a primary key within the patient information table 520 and
may also be defined as a foreign key within the test infor-
mation table 522. Although this is a typical example, an
abstract relationship between two fields does not necessarily
have to be enforced by a physical relationship (such as
primary/foreign key) in the underlying data repository.
Using metadata about the relationship between the two
physical locations (i.e., relationship between column(s) in a
first table to column(s) in a second table), a single field
within the abstract data representation can be used to handle

US 2006/0155692 Al

both physical locations for the field. The application is
shielded from the knowledge of the various places a par-
ticular value is used within the database schema.

[0122] Special considerations must be taken into account
when these related fields are included on an insert or delete
operation. When performing an insert operation, the runt-
ime/DRA logic must recognize the various physical repre-
sentations for the single abstract data field. The correct
physical representation must be used based on the focus item
of the insert operation. For example, if the patient identifier
was represented as column “ID” in the patient information
table 520 and as column “PID” in the test information table
522, the correct column name must be identified based on
the table defined for the insert operation by the focus item.
Additionally, these additional forms of the physical repre-
sentation must be taken into account when determining
default values and required values for the insert operation.
For example, if the focus item identified that the underlying
physical table for the operation was the test information
table 522, the runtime/DRA logic must recognize that the
abstract patient 1D field (“PID”) must be considered when
looking for default and required values. That is, a new
patient ID cannot be generated.

[0123] Additional considerations must be given to delete
operations when dealing with abstract fields that represent
multiple locations in the physical data repository to ensure
that data integrity is maintained. The underlying data reposi-
tory may enforce additional restrictions on these types of
fields. Relational databases provide aspects such as restrict-
ing updates or deletes to columns defined with a primary
key/foreign key relationship or cascading those updates and
deletes through the foreign key tables. That is, a delete
against a primary table such as the patient information table
520 could be set up to indicate that the delete should cascade
and delete the corresponding rows from the test information
table 522 based on the primary key/foreign key relationship
based on patient ID. Using an abstract representation of the
data repository, the implementation can choose whether to
restrict these operations or attempt to propagate the changes
through the various physical entities based on the definition
of the relationships for the abstract field.

[0124] Since a modification based on specification of a
model entity may involve multiple physical operations, the
sequence in which the operations should be performed must
also be considered. In the current data mining applications
based on SQL, for example, the application is required to
have the knowledge of order dependencies between opera-
tions. An aspect of the present invention decouples this
knowledge from the application. In one embodiment, order
dependencies between operations are specified in the physi-
cal entity relationships specification 526.

[0125] Referring now to FIG. 19, a method 1900 illus-
trates the interaction between requesting entity 512 and the
data repository abstraction component 502 in the case of
composing an abstract insert specification. For purposes of
illustration it will be assumed that the requesting entity 512
is representative of the application 140 (FIG. 1), which
receives input from a user via a user interface (e.g. the
browser program 122FIG. 1). Initially, the user selects a
model entity (step 1902). The seed fields for the selected
model entity are then determined and the abstract insert
specification 2402, is updated with the seed field (step

Jul. 13,2006

1906). Once each of the seed fields has been determined, the
requesting entity 512 issues a request for the required and
optional fields according to the specified seed fields (step
1908). The data repository abstraction component 502 is
invoked to determine required and optional fields for the
insert operation (step 1910). An illustrative representation of
the processing occurring at step 1910 is described below
with reference to FIG. 20. Having made the determination
at step 2510, the abstract insert specification 2402, is ini-
tialized with the required and optional fields (step 1912).
The required and optional fields are then returned to the
requesting entity (step 1914), which prompts the user to
provide values for each of the fields (step 1916). Well-
known techniques in the art of user interfaces may be used
to identify and distinguish for the user required fields and
optional fields. For example, required fields may be high-
lighted in red, marked with an asterisk, or include a paren-
thetical comment indicating that the field is required. In an
alternative embodiment, the application 140 itself may pro-
vide all or some of the values. Once values for at least each
of the required fields (and any optional fields) has been
specified (step 1918), the abstract insert specification 2402,
is populated with the specified values (step 1920).

[0126] Referring now to FIG. 20, one embodiment of step
1910 for determining required and optional fields is shown.
After accessing the abstract insert specification 2402, to
retrieve the seed fields (step 2002) specified by the request-
ing entity 512, the appropriate logical field specification of
the data repository abstraction component 502 is referred to
in order to determine the physical entities (e.g., tables in the
relational data source 504 shown in FIG. 5) corresponding
to the seed fields (step 2004). In the case of an insert
operation, for each identified physical entity, the data reposi-
tory abstraction is used to determine other logical fields
associated with the same physical entity (steps 2006 and
2008). A loop is then entered (at step 2010) for each of the
determined related logical fields that define a particular
physical entity referenced by a seed field. That is, a series of
steps is performed for each of the related logical fields of
each physical entity. For a given logical field of a given
physical entity, a determination is made as to whether a key
relationship for the given logical field has already been
processed (step 2012). For the first iteration of the loop
entered at step 2006 the determination made at step 2012 is
answered in the negative. During subsequent iterations, step
2012 ensures that once a value has been specified for a field,
a subsequent and conflicting value will not be specified.
Processing is then performed to determine whether the field
is a required field (at step 2020), whether the field is a default
value field (step 2026), or whether the field is a generated
value field (step 2034). The field type is determined accord-
ing to the attribute (i.e., the required attribute 514, the
generate attribute 516 or the default attribute 518) present in
the logical field specification for the current field being
processed by the loop. If the field is required (step 2020), the
field is added (step 2022) to a required field list 2024. In the
case of a default attribute (step 2026), the field value is
initialized with a default value (step 2028). Where the
logical field specification includes a generate attribute 518
(step 2034), the field is initialized with a generated value
(step 2036). In the case of both generated values and default
values, the corresponding fields are added (step 2030) to an
optional fields list 2032. If the field is not defined as any one
of required, default or generated, then the field is initialized

US 2006/0155692 Al

with a NULL value (step 2038) and then added (step 2030)
to the optional field list 2032.

[0127] Returning to step 2012, if the current field being
processed is in a key relationship (e.g., primary key/foreign
key relationship) with another field which has already been
processed, then the value for the current field is set to the
value of the previously processed related field (step 2014).
The current field is then added to an implicit field list 2018
(step 2016). Accordingly, implicit fields are created with
multiple physical entities are involved in the abstract opera-
tion and those entities have key relationships. In this case,
only one field and one value is exposed through the inter-
face. The other field in the pair of key fields is considered
implicit; it does not have to be specified as part of the
abstract insert and will take on the same value as the
corresponding key in the pair. The implicit fields are not
exposed to the requesting entity, but are accounted for when
the abstract insert is converted into a concrete (i.e., execut-
able) insert statement, as will be described below with
reference to FIG. 21.

[0128] Once each identified related field is processed
according to the loop entered at step 2010, the processing is
repeated for the next entity (step 2006). Once each entity has
been processed, the processing to determine required and
optional fields is complete. Accordingly, the abstract insert
specification 2402, is updated according to the required
fields list 2014 and optional fields list 2022 (step 1912), and
the required fields and optional fields are then provided to
the requesting entity 512 (step 1914), as shown in FIG. 19.

[0129] Having composed the abstract insert specification
2402,, the insert operation may be executed. FIG. 21 shows
one embodiment of a method 2100 for executing the insert
operation according to the abstract insert specification
2402,. Generally, upon submission of a request to execute
the insert from the requesting entity 512, the run-time
component 150 (described above with reference to FIG. 1)
is invoked convert the abstract insert specification 2402, to
a physical insert operation. The physical insert operation is
then executed.

[0130] Conversion of the abstract insert specification
2402 to a physical insert operation is initiated by grouping
fields (from the implicit field list 2018, the required field list
2024, and the optional field list 2032) according to their
respective physical entities (2104). In particular, the run-
time component 150 then enters a loop (step 2106) for each
physical entity and a sub-loop (step 2108) for each logical
field of a given physical entity. For a given logical field, the
physical location of the field is determined from the data
repository abstraction component 502 (step 2110). A physi-
cal location list 2114 is then updated with the determined
physical location (step 2112). In some cases, the logical field
may have an internal value (determined at step 2116). That
is, the value of the logical field may be different from the
value for the physical field. For example, the logical field
name may be “Male” while the physical field name is “M”.
In this case, the value must be made consistent with physical
value. This is done by updating a value list 2122 with the
internal value (step 2118). If the field values are not different
(i.e., step 2116 is answered negatively), the value list 2122
is updated with the given value for the physical field (step
2120).

[0131] Once the processing for the loop entered at step
2108 has been performed for each logical field in the abstract

Jul. 13,2006

insert specification 2402,, for a given physical entity, a
physical insert statement is built from the location list 2114
and the value list 2122 (step 2124). The physical insert
statement is then added to an insert statement list 2122 (step
2126). The foregoing processing is then repeated succes-
sively for each entity (step 2106). Subsequently, an ordering
algorithm is performed on the insert statement list 2128 (step
2130). One embodiment of the ordering algorithms is
described with reference to FIG. 22. The physical insert
operation is then executed (step 2132).

[0132] Referring now to FIG. 22, an embodiment of the
ordering algorithm performed at step 2130 is described.
Initially, a “sorted flag” is set to False (step 2202). A series
of steps are then performed for each insert statement in the
insert statement list 2128 until the “sorted flag” is set to True
(steps 2206, 2208 and 2210). Specifically, for a given insert
statement in the insert statement list 2128 (beginning with
the first insert statement in the list), the corresponding entity
is determined (step 2212). Then, the relationship between
the corresponding entity of the given insert statement and
each related entity of the remaining insert statements in the
insert statement list 2128 is determined (step 2214 and
2216). Specifically, the run-time component 150 determines
(with respect to the physical entity relationships specifica-
tion 526) whether the entity of the given insert statement is
a secondary entity with respect to a primary related entity of
another insert statement (step 2216). If so, the given insert
statement is moved to a position after the insert statement of
the related entity (step 2218). This process is repeated until
the insert statement list 2128 can be traversed without
encountering a current entity which is secondary with
respect to an entity of a subsequent statement in the insert
statement list 2128. At this point, the physical insert state-
ments in the insert statement list 2128 are ordered according
to the hierarchical relationship specified in the physical
entity relationships specification 526. This process ensures
that a primary entity containing a primary key of a primary/
foreign key pair is inserted into first, before the secondary
entity (containing the foreign key) is modified.

[0133] As noted above, aspects of the invention may
“guide” the requesting entity 512 (i.e., the application 140)
through the process of building an abstract modification
operation. This aspect can be illustrated for an insert opera-
tion with reference to FIGS. 23-26 where HTML forms 160
(shown in FIG. 1) are intelligently populated to indicate
characteristics of various fields. Referring first FIG. 23, a
user interface screen 2300 is shown which may be displayed
when a user elects create an abstract insert. The screen 2300
includes a menu 2302 of available logical fields which may
be inserted into. The fields selected by the user from the
menu 2302 are displayed in a “Selected Fields” field 2304,
as shown in FIG. 24. In this example, the user has selected
“Last Name” and “State”. Upon making the desired selec-
tions, the user clicks the “Next” button 2306 to submit the
selections and proceed to the next screen 2500 shown in
FIG. 25. The screen 2500 is formatted with a plurality of
input fields 2502A-1 which are selected according to the
logical fields specified by the user in the “Selected Fields”
field 2304. That is, the selected fields “Last Name” and
“State” are used as seed fields in determining which fields to
display in the screen 2500. In this case, “Last Name” is a
logical field 510, corresponding to the “PatientInfo” table
520 for which the “First Name” logical field 510,, “Birth
Date” logical field 510, and “Gender” logical field 510, are

US 2006/0155692 Al

also specified as related logical fields. As such, each of these
logical fields is displayed as an input field (input fields
2502C, 2502E and 2502F, respectively) in the screen 2500.
Similarly, the seed field “State” is used to identify the
corresponding physical entity (i.e., Addressinfo table 521)
and its related logical fields. Further, required fields (as
defined by the presence of a required attribute 514 in the
DRA 502) are marked with an asterisk (*). In this case, the
input fields 2502A, 2502B and 2502C are marked as
required fields. Further, generated in default fields are
primed with the appropriate values. In the present example,
the “Patient ID” input field 2502D is primed with a gener-
ated value. A default values not shown because none of the
input fields 2502 correspond logical field specifications
having a default attribute 518.

[0134] The user is then free to enter the desired values. An
illustration of the input fields 2502 after having been popu-
lated with values is shown in FIG. 26. In this case, the user
provided values for the required fields, and also elected to
provide values for the optional fields.

[0135] Referring now to FIG. 27 an abstract delete
method 2700 is described. Generally, the method 2700
describes the interaction between the requesting entity 512
and the data repository abstraction 502, which implements
the abstract delete. As in each of the previous abstract
modification operations, the abstract delete requires com-
posing an abstract specification. To this end, the requesting
entity 512 specifies a model entity to delete (step 2702). The
seed fields for the selected model entity are then determined
(step 2704) which the data repository abstraction component
502 uses to create/update abstract delete logic of the abstract
delete specification 2402, (step 2706). The requesting entity
512 then provides selection conditions for selection of data
to delete (step 2708). The selection conditions are added to
the selection portion of the abstract delete specification
2402, (step 2710).

[0136] The abstract delete specification is then used by the
run-time component 150 to generate an executable physical
delete specification. One conversion method 2800 for con-
verting the abstract delete to a physical delete is described
with reference to FIG. 28. The conversion process is initi-
ated when the requesting entity 512 submits a request to
execute the delete operation. The run-time component 150
first groups the specified seed fields according to their
respective physical entity (step 2802). That is, the run-time
component 150 uses the seed value (specified by the request-
ing entity 512 at step 2702) and the data repository abstrac-
tion component 502 to locate the physical entity to delete
from. In particular, the logical field specification of the data
repository abstraction component 502 corresponding to the
seed field is identified. The identified logical field specifi-
cation provides the necessary logic (i.e., the appropriate
access method) to access the physical entity to delete from.
For each physical entity (step 2804), the run-time compo-
nent 150 generates selection logic according to the selection
conditions specified in the abstract delete specification 2402,
(step 2806). Using the determined physical entity and the
generated selection logic, the run-time component 150
builds a physical delete statement (step 2808) which is
added to a delete statement list 2812 (step 2810). The
statements in the delete statement list 2812 are then ordered
(step 2814) and executed (step 2816).

Jul. 13,2006

[0137] One embodiment for generating the selection logic
at step 2806 of the method 2800 is shown in FIG. 29. It is
noted that step 2806 substantially involves performing steps
306, 308, 310 and 312 of FIG. 3. Accordingly, for each
selection criterion (step 2902), the specified field definition
is retrieved from the abstraction component 502 (step 2904).
A concrete/physical selection contribution is built (step
2906) and then added to the selection portion of the update
statement (step 2908). The logic for building the concrete/
physical selection contribution is substantially the same as
was described for queries with respect to FIG. 4 and,
therefore, will not be described again in detail here.

[0138] One embodiment of the ordering performed at step
2814 is described with reference to FIG. 30. Initially, a
“sorted flag” is set to False (step 3002). A series of steps are
then performed for each delete statement in the delete
statement list 2812 until the “sorted flag™ is set to True (steps
3006, 3008 and 3010). Specifically, for a given delete
statement in the delete statement list 2812 (beginning with
the first delete statement in the list), the corresponding entity
is determined (step 3012). Then, the relationship between
the corresponding entity of the given insert statement and
each related entity of the remaining delete statements in the
delete statement list 2812 is determined (step 3014 and
3016). Specifically, the run-time component 150 determines
(with respect to the physical entity relationships specifica-
tion 526) whether the entity of the given delete statement is
a primary entity with respect to a secondary related entity of
another delete statement (step 3016). If so, the given delete
statement is moved to a position after the delete statement of
the related entity (step 3018). This process is repeated until
the delete statement list 2812 can be traversed without
encountering a current entity which is primary with respect
to an entity of a subsequent statement in the delete statement
list 2812. At this point, the physical delete statements in the
delete statement list 2812 are ordered according to the
interrelationship specified in the physical entity relation-
ships specification 526. This process ensures that a primary
entity containing a primary key of a primary/foreign key pair
is deleted last, after the secondary entity (containing the
foreign key) is deleted.

[0139] It should be noted that the embodiments described
above are merely illustrative and not exclusive. Persons
skilled in the art will recognize other embodiments within
the scope of the invention. For example, the foregoing
describes an embodiment in which order dependencies are
defined as part of the abstract data representation component
148 (i.e., order dependencies are defined in the physical
entity relationships specification 526). Thus, changes in
order dependencies require changes in the abstract data
representation, but allow the application to be used without
changes. An alternative embodiment provides for a less rigid
definition of order dependencies by allowing for a higher
degree of automation in the determination dependencies.
That is, given the physical entity relationships specification
526 defined in an abstract data representation, the sequenc-
ing of operations could be determined dynamically by
applying a rule set such as the following: (i) insert operations
involving a key field need to insert into the primary entity
before any related entities; (ii) update operations involving
a key field could be restricted or automatically propagated
from the primary entity first followed by all related entities;
(iii) delete operations involving a row that includes a key
field could be restricted or automatically propogated from

US 2006/0155692 Al

the secondary entities to the primary entity; and (iv) opera-
tions for completely unrelated entities would be executed in
any order.

[0140] Instill another embodiment, it is contemplated that
the database is checked for referential integrity cascade
operations. In this case, the database itself handles some of
the work and allows DRA 148 to effectively ‘ignore’ those
low level operations, and only perform the high level ones.
As such, this invention can ‘patch’ referential integrity holes
in legacy databases that may no longer be fixable at the
database layer because of assumptions built into legacy
applications that use the database.

[0141] While the foregoing is directed to embodiments of
the present invention, other and further embodiments of the
invention may be devised without departing from the basic
scope thereof, and the scope thereof is determined by the
claims that follow.

What is claimed is:

1. A method for constructing abstract queries defined by
a plurality of logical fields which map to a plurality of
physical entities of physical data having a particular physical
data representation in a database, the method comprising:

receiving user input via a user interface, the input com-
prising a reference to a model entity definition com-
prising two or more logical fields each corresponding to
a separate physical entity; and

based on the model entity definition, selectively adding at
least one of the two or more logical fields to an abstract
query.
2. The method of claim 1, wherein each of the plurality of
physical entities is a table in a database.
3. The method of claim 1, wherein selectively adding the
at least one of the two or more logical fields comprises:

determining whether the at least one logical field is a
required field; and

if so, adding the at least one logical field to the abstract
query.
4. The method of claim 1, wherein selectively adding the
at least one of the two or more logical fields comprises:

determining whether the at least one logical field is
already present in the abstract query; and

if not, adding the at least one logical field to the abstract
query.
5. The method of claim 1, wherein receiving the user input
via the user interface further comprises:

receiving a plurality of abstract query contributions for
the abstract query, wherein the plurality of abstract
query contributions are defined by selected logical
fields and a corresponding value for each of the
selected logical fields; and

Jul. 13,2006

receiving a plurality of result fields for the abstract query,
wherein the plurality of result fields is defined by
selected logical fields.

6. The method of claim 5, further comprising:

converting the abstract query into a physical query con-
sistent with the particular physical data representation
of the data; and

executing the physical query.

7. The method of claim 6, wherein converting the abstract
query into the physical query comprises mapping each of the
logical fields of the abstract query to respective physical
entities of the physical data.

8. A method for constructing abstract queries defined by
a plurality of logical fields which map to a plurality of
physical entities of physical data having a particular physical
data representation in a database, the method comprising:

receiving, via a user interface, an abstract query compris-
ing;
a selection of a model entity definition comprising two

or more logical fields each corresponding to a sepa-
rate physical entity;

a plurality of query conditions defined by selected
logical fields and a corresponding value for each of
the selected logical fields; and

at least one result field defined by selected logical
fields;

determining whether the abstract query includes more
than one ANDed query condition for a given logical
field corresponding to a physical entity; and

if so, determining whether a one-to-many relationship

exists between the model entity definition and the

physical entity corresponding to the given logical field.

9. The method of claim 8, further comprising, if the

one-to-many relationship exists, generating a query contri-

bution against an additional instance of the physical entity
corresponding to the given logical field.

10. The method of claim 8, further comprising:

generating a result field contribution for the abstract
query; and

generating correlation logic between each physical entity

involved in the abstract query.

11. The method of claim 10, wherein each physical and
the involved in the abstract query is a table in the database
and wherein generating correlation logic comprises joining
each table.

