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(57) ABSTRACT 

Method(s) for identifying rDNA sequences from a sample 
containing plurality of unknown DNA sequences are 
described herein. The method includes selecting one or more 
target clusters, from a plurality of reference clusters, corre 
sponding to the query sequence. The target clusters are 
selected based on a composition based analysis. A proportion 
of probable rDNA clusters from the target clusters is identi 
fied. Based on the proportion of the probable rDNA clusters, 
the query sequence is identified as an rDNA. 

17 Claims, 4 Drawing Sheets 
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1. 

IDENTIFICATION OF RIBOSOMAL DNA 
SEQUENCES 

CLAIM OF PRIORITY 

The present patent application claims the benefit of priority 
under 35 U.S.C. S 119 to Indian Patent Application No. 1629/ 
MUM/2010, filed May 26, 2010, the entire contents of which 
is incorporated herein by reference in its entirety. 

TECHNICAL FIELD 

The present Subject matter relates, in general, to deoxyri 
bonucleic acid (DNA) sequences and, in particular, identifi 
cation of ribosomal DNA (rDNA) sequences. 

BACKGROUND 

Generally, ribosomal DNA sequences, such as 16S rDNA, 
are conserved across all bacterial and archaeal species and 
therefore, ribosomal DNA sequences are analyzed for esti 
mating taxonomic diversity of a given environmental sample, 
Such as a metagenome. Subsequent to analysis, enumeration 
of the number of ribosomal DNA sequences assigned to vari 
ous taxonomic groups, such as species, genus, family, order, 
class or phylum, helps in quantifying the relative abundance 
of various organisms or taxa present in the environmental 
sample. 

Since, the analysis of the ribosomal DNA sequences is 
expected to provide a comprehensive Snapshot of taxonomic 
diversity, a majority of projects spend considerable resources 
(in terms of time, cost, and labor) in carrying out experiments 
that amplify, clone, and sequence ribosomal DNA sequences 
present in a given environmental sample. The ribosomal DNA 
sequences obtained from these experiments are then analyzed 
to get estimates of taxonomic diversity. In order to further 
characterize the given environmental sample, the entire 
genomic content of the environmental sample under study is 
Subsequently extracted, fragmented, and sequenced. Millions 
of DNA sequences, originating from the genomes of various 
microbes in the environmental sample, are thus obtained. 
Given that the entire genomic content of an environmental 
sample is fragmented and sequenced, a Subset of these 
sequenced DNA fragments corresponds to partial and com 
plete portions of ribosomal gene sequences originating from 
various organisms in that sample. This Subset of DNA frag 
ments can thus be referred to as ribosomal DNA fragments. 

With the recent advance in technology, and availability of 
faster and cheaper sequencing techniques, the taxonomic 
diversity of an environmental sample can alternatively be 
ascertained by identifying and Subsequently analyzing these 
ribosomal DNA fragments. Obtaining estimates of taxo 
nomic diversity using this alternative approach, therefore, 
does not depend on experimental procedures related to ampli 
fication, cloning, and sequencing of ribosomal DNA 
sequences. Instead, it depends on the following two factors. 
First is the cost of fragmenting and sequencing the entire 
genomic content of an environmental sample. Second is the 
efficiency of the in silico' method that is employed for iden 
tification of ribosomal DNA fragments from amongst the 
entire set of DNA fragments (obtained by fragmenting and 
sequencing the entire genomic content of an environmental 
sample). Given the current availability of efficient and cost 
effective sequencing technologies, the applicability of the 
alternative approach thus depends to a large extent on the 
availability of in silico techniques, that can efficiently identify 
ribosomal DNA fragments from amongst the entire set of 
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2 
DNA fragments. Employing Such in silico techniques is thus 
expected to save considerable amounts of time, efforts, and 
COSt. 

However, currently available in silico techniques for iden 
tification of ribosomal DNA sequences amongst millions of 
DNA sequences are not efficient in terms of computational 
time and sensitivity. Consequently, these in silico techniques 
have found little or no application in projects for direct iden 
tification of ribosomal DNA sequences from the sequenced 
genomic content of a given environmental sample. 

SUMMARY 

This Summary is provided to introduce concepts related to 
identification of partial or complete ribosomal deoxyribo 
nucleic acid (rDNA) sequences from a sample containing 
unknown DNA sequences, which are further described below 
in the detailed description. This summary is not intended to 
identify essential features of the claimed subject matter nor is 
it intended for use in determining or limiting the scope of the 
claimed Subject matter. 

Method(s) and a system(s) for identification of rDNA 
sequences from a sample containing a plurality of unknown 
DNA sequence are described herein. In one implementation, 
one or more target clusters, from amongst a plurality of ref 
erence clusters, corresponding to a query sequence are 
selected. The target clusters may be selected based on a com 
position based analysis. Subsequent to selection of the target 
clusters, the proportion of pre-tagged probable rDNA clus 
ters within the selected target clusters is determined. Based 
on the proportion of probable rDNA clusters, the query 
sequence is identified as the rDNA sequence. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The detailed description is described with reference to the 
accompanying figures. In the figures, the left-most digit(s) of 
a reference number identifies the figure in which the reference 
number first appears. The same numbers are used throughout 
the drawings to reference like features and components. 

FIG. 1 illustrates an exemplary system for identification of 
ribosomal deoxyribonucleic acid (rDNA) sequences from a 
sample containing unknown deoxyribonucleic acid DNA 
sequences, in accordance with an embodiment of the present 
Subject matter. 

FIG. 2 illustrates an exemplary method for identification of 
rDNA sequences from a sample containing unknown DNA 
sequences, in accordance with an implementation of the 
present Subject matter. 

FIG. 3 illustrates an exemplary method to classify refer 
ence sequences into reference clusters, in accordance with an 
implementation of the present Subject matter. 

FIG. 4 illustrates an exemplary method to identify probable 
rDNA clusters from amongst reference clusters in a reference 
database, in accordance with an implementation of the 
present Subject matter. 

DETAILED DESCRIPTION 

Method(s) and a system(s) to identify a query sequence, 
from a sample containing unknown Deoxyribonucleic acid 
(DNA) sequences, as a ribosomal DNA (rDNA) sequence are 
described herein. The rDNA sequence can be identified as a 
partial or complete rDNA sequence. The rDNA sequence 
includes sequences derived from, for example, 5S rDNA, 16S 
rDNA, 23S rNA, 5.8S rDNA 18S rDNA and 28S rDNA. 
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In one implementation, the identification of the query 
sequence as an rDNA sequence is performed with respect to 
a reference database having a plurality of reference clusters, 
which are created by classifying a plurality of reference 
sequences. The reference sequences may be grouped into 
corresponding reference clusters based on one or more com 
positional characteristics of the plurality of reference 
sequences. In one implementation, the reference sequences 
may be clustered based on compositional characteristics, 
Such as oligonucleotide frequency. The oligonucleotide fre 
quency may be defined as the number of occurrences of all 
possible oligonucleotides of a given length in the query 
Sequence. 

Alternatively, other compositional characteristics, for 
example, guanine-cytosine (GC) content, which is the per 
centage of nucleobases in a query sequence that are either 
guanine or cytosine, may also be used for clustering the 
reference sequences. 

Further, one or more probable rDNA clusters may be iden 
tified from the plurality of reference clusters based on an 
rDNA analysis. For the purposes of explanation, the probable 
rDNA clusters may be understood as those reference clusters 
in which rDNA fragments, i.e. genome fragments encom 
passing partial or complete portions rNA sequences, such as 
16S rDNA, 23S rDNA, 18S rDNA, and 28S rDNA sequences, 
occur in high frequency. In one implementation, rDNA analy 
sis can include identifying and pre-tagging a set of reference 
clusters as the probable rDNA clusters. For the purpose, ref 
erence vectors corresponding to a plurality of reference 
rDNA sequences are generated. Subsequently, the frequency 
of hits of each of the reference clusters with respect to the 
reference rDNA sequences is computed. The hits are identi 
fied based on the distance between each of the rDNA vectors 
and cluster centroids corresponding to each of the reference 
clusters. A reference cluster is then tagged as a probable 
rDNA cluster if the frequency of hits for that reference clus 
ter, with respect to the reference rDNA sequences, exceeds a 
predetermined threshold. 

In order to identify a query sequence as an rDNA sequence, 
one or more target clusters, from the reference clusters, cor 
responding to the query sequence may be selected based on a 
composition based analysis. In one implementation, the 
selection of the target clusters is based on distance, Such as 
non-Euclidean distance, between the vector corresponding to 
the query sequence and the cluster centroids of each of the 
reference clusters. In another implementation, the composi 
tion based analysis computes a distance between a query 
vector corresponding to the query sequence and the cluster 
centroids of each of the reference clusters. Accordingly, one 
or more target cluster is selected based on the computed 
distances. 

Subsequent to the selection of the target clusters, the pro 
portion of target clusters which are pre-tagged as the probable 
rDNA clusters, is computed. In one implementation, this 
computed proportion may be compared with a predetermined 
threshold, and if the computed proportion exceeds the prede 
termined threshold, the query sequence may be identified as 
an rDNA sequence. 

Since present identification technique employs a reference 
database that is grouped into a plurality of clusters and the 
query sequence is identified as an rDNA sequence based on 
the distances between the query sequence and the reference 
clusters, followed by computation of the proportion of the 
probable rDNA clusters, the efficiency of the present identi 
fication technique, in terms of computational time, and sen 
sitivity is considerably improved. 
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4 
While aspects of described systems and methods for the 

identification of the rDNA sequences from a sample contain 
ing unknown DNA sequences can be implemented in any 
number of different computing systems, environments, and/ 
or configurations, the embodiments are described in the con 
text of the following exemplary system(s). 

Exemplary Systems 

FIG. 1 illustrates an exemplary rDNA sequence identifica 
tion system 100, according to an implementation of the 
present subject matter. The rDNA sequence identification 
system 100 can be implemented in systems that include, but 
are not limited to, desktop computers, hand-held devices, 
multiprocessor Systems, personal digital assistants (PDAs), 
laptops, network computers, minicomputers, mainframe 
computers, and the like. In one implementation, the rDNA 
sequence identification system 100 includes interface(s) 105, 
one or more processor(s) 110, and a memory 115 coupled to 
the processor(s) 110. 
The interfaces 105 may include a variety of software and 

hardware interfaces, for example, interfaces for peripheral 
device(s). Such as a keyboard, a mouse, an external memory, 
and a printer. Further, the interfaces 105 may enable the 
rDNA sequence identification system 100 to communicate 
with other computing systems, such as web servers and exter 
nal databases. The interfaces 105 can facilitate multiple com 
munications within a wide variety of networks and protocol 
types, including wired networks, for example local area net 
work (LAN), cable, etc., and wireless networks such as Wire 
less LAN (WLAN), cellular, or satellite. For the purpose, the 
interfaces 105 may include one or more ports for connecting 
a number of computing systems to each other or to another 
server computer. In one implementation, a taxonomic classi 
fication server communicates with the reference database via 
the interfaces 105. 
The processor 110 can be a single processing unit or a 

number of units, all of which could include multiple comput 
ing units. The processor 110 may be implemented as one or 
more microprocessors, microcomputers, microcontrollers, 
digital signal processors, central processing units, state 
machines, logic circuitries, and/or any devices that manipu 
late signals based on operational instructions. Among other 
capabilities, the processor 110 is configured to fetch and 
execute computer-readable instructions and data stored in the 
memory 115. 
The memory 115 may include any computer-readable 

medium known in the art including, for example, Volatile 
memory such as static random access memory (SRAM) and 
dynamic random access memory (DRAM), and/or non-vola 
tile memory, such as read only memory (ROM), erasable 
programmable ROM, flash memories, hard disks, optical 
disks, and magnetic tapes. 
The memory 115 includes program module(s) 120 and 

program data 125. The program modules 120, amongst other 
things, include routines, programs, objects, components, data 
structures, etc., which perform particular tasks or implement 
particular abstract data types. The program data 125 serves, 
amongst other things, as a repository for storing data pro 
cessed, received and generated by one or more of the program 
modules 120. The program modules 120 further include, for 
example, a cluster creation module 130, an identification 
module 135, and other module(s) 140. The other modules 140 
may include programs that Supplement applications on the 
rDNA sequence identification system 100, for example, pro 
grams in the operating system. The program data 125 
includes, for example, analysis data 145 and other data 150. 
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The other data 150 includes data generated as a result of the 
execution of one or more modules in the other modules 140. 
The rDNA sequence identification system 100 may be 

associated with a reference database 155. The reference data 
base 155 can either be external or internal to the rDNA 
sequence identification system 100. The reference database 
155 includes a plurality of reference sequences 160-1A . . . 
160-ZN, hereinafter referred to as reference sequence(s) 160. 
The reference sequences 160 can be classified into a plurality 
of reference clusters 165-1 ... 165-Z, hereinafter referred to 
as reference cluster(s) 165. In one implementation, the cluster 
creation module 130 may categorize the reference sequences 
160 into the reference clusters 165 based on the composi 
tional characteristics of the reference sequences 160. 
Although, the clustering of the reference sequences 160 is 
explained in considerable details with reference to oligo 
nucleotide frequency as a compositional characteristics; 
however it will be appreciated that the other compositional 
characteristics, for example, GC content or other composi 
tional characteristics may also be used. 

In an implementation, the reference sequences 160 may 
include completely sequenced genomes of prokaryotic 
organisms downloaded from a database, such as GenBank, 
National Center of Biotechnology Information (NCBI), etc. 
These genome sequences are split into fragments of prede 
termined length, for example 1000 base pairs (bp). Subse 
quent to splitting, each of the fragments is treated as a refer 
ence sequence 160. In one implementation, the cluster 
creation module 130 computes frequencies of all possible 
tetranucleotides in each of the reference sequences 160 and 
accordingly generates a reference vector corresponding to 
each of the reference sequences 160. The reference vectors 
may be stored as 256-dimensional vectors. Subsequently, 
reference sequences 160, based on the corresponding refer 
ence vectors, may be classified into the reference clusters 165 
using conventional clustering techniques, such as k-means 
clustering technique that partitions in number of observations 
into k number of clusters in which each observation belongs 
to the cluster with the nearest mean. 

In an implementation, for forming the reference clusters 
165, the cluster creation module 130 selects a predetermined 
number of the reference clusters 165 and then randomly tags 
the reference clusters 165 with a plurality of cluster centroids 
170-1... 170-Z, hereinafter referred to as cluster centroid(s) 
170. For each of the reference vectors, the cluster centroid 
170 closest to the reference sequence 160 is determined and 
accordingly the reference sequence 160 is moved to the cor 
responding reference cluster 165. 
The closest reference cluster 165 may be determined based 

on a distance between the reference vector and the cluster 
centroids 170. The distance, for example, may be a Euclidean 
metric or a non-Euclidean distance metric, such as Manhattan 
distance (L1 norm). Further, if the reference sequence 160 
under consideration is moved to a reference cluster, the clus 
ter centroids 170 are computed again. The cluster centroid 
170 represents the mean value of the reference vectors corre 
sponding to the reference sequences 160 present in the refer 
ence cluster 165. In one implementation, the process of form 
ing the reference clusters 165 can be performed repeatedly till 
the reference clusters 165 become stable or some maximum 
number of iterations have been performed. In one implemen 
tation, the cluster centroids 170 may be tagged to the corre 
sponding reference clusters 165. 
The cluster creation module 130 may also identify one or 

more probable rDNA clusters from amongst the reference 
clusters 165. For the purpose of identification of the probable 
rDNA clusters, a plurality of reference rDNA sequences may 
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6 
be downloaded from a database. Such as the ribosomal data 
base project (RDP) database. Further, for each of the rDNA 
sequence, an rDNA vector, indicative of oligonucleotide fre 
quency, Such as frequencies of all possible tetranucleotides is 
generated. The rDNA vector may be in the form of a 256 
dimensional vector. 
A distance, such as the Manhattan distance, between each 

of the rDNA vectors and each of the cluster centroids 170 is 
computed. In one implementation, the cluster creation mod 
ule 130 may identify the reference clusters 165 that have the 
distance less than a threshold distance, for example, a dis 
tance less than or equal to 0.9 unit. A hit may be understood to 
have occurred when the distance between a reference cluster 
and an rDNA vector is less than the threshold distance. The 
frequency of hits of each of the reference cluster with respect 
to the rDNA vectors, and accordingly reference rDNA 
sequences, is determined based on the computed distances. 
Further, the frequency of hits may be compared with a pre 
determined frequency and the reference clusters with the 
frequency of hits in excess to the predetermined frequency 
may be tagged as the probable rDNA clusters. 

In another implementation, instead of considering the 
threshold distance, for each of the rDNA sequences, a set of 
the closest reference clusters 165 having a cumulative 
sequence count of at least a threshold sequence count, for 
example 50000 sequences, may be identified as hits to the 
given rDNA sequence. Subsequently, a subset of the identi 
fied reference clusters 165 are tagged as probable rDNA 
clusters if the frequency of hits is in excess to the predeter 
mined frequency. 

For the purpose of explanation, and not as a limitation, to 
identify a set of the closest reference clusters a distance 
between each of the reference clusters 165 and the reference 
rDNA sequences is determined. Subsequently, the reference 
cluster with a minimum distance between its cluster centroid 
and an rDNA sequence is identified. If the identified reference 
cluster has a sequence count greater than or equal to the 
threshold sequence count, the identified reference cluster 165 
is considered as the closest reference cluster 165. However, if 
the identified reference cluster 165 has a sequence countless 
than the threshold sequence count, the next closest reference 
cluster 165 is identified. 
The next closest cluster 165 is the reference cluster 165 

with second minimum distance between its cluster centroid 
170 and the rDNA sequence. Further, if the cumulative 
sequence count of these two identified reference clusters 165 
is of at least the threshold sequence count, the two reference 
clusters 165 are identified as a set of closest reference clusters 
165. Otherwise, next closest reference cluster 165 is identi 
fied and the process is repeated until the cumulative sequence 
count, i.e., the cumulative count of all the reference sequences 
160 in the set of the closest reference clusters 165, is greater 
than or equal to the threshold sequence count. 
The process is repeated for each of the reference rDNA 

sequences and the set of closest reference clusters 165 is 
identified for each of the reference rDNA sequences. Subse 
quently, from these set of closest reference clusters, one or 
more closest reference clusters are identified, i.e., a sub-set of 
the closest reference clusters. The sub-set of closest reference 
clusters is identified based on the frequency of hits of the 
reference clusters 165 in the set of closest reference clusters 
165. In said implementation, a hit may be considered to have 
occur if the reference cluster 165 is identified as the closest 
reference cluster 165 with respect to a given rDNA sequence. 
Further, the frequency of hits may be compared with a pre 
determined frequency and the reference clusters 165 with the 
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frequency of hits in excess to the predetermined frequency 
may be tagged as the probable rDNA clusters. 
The information pertaining to the reference clusters tagged 

as probable rDNA clusters may be stored in probable rDNA 
clusters tags 175. For example, the probable rDNA clusters 
tags 175 may include an index of all the reference clusters 165 
that are identified as the probable rDNA clusters. Conversely, 
the reference clusters 165 not identified as probable rDNA 
clusters are not indexed in the probable rDNA cluster tags 
175. The threshold distance, predetermined frequency, and 
threshold sequence count may be stored in the analysis data 
145. 

In another implementation, the reference database 155 
may be a pre-configured database, which includes the refer 
ence sequences 160 grouped into reference clusters 165, 
based on one or more compositional characteristics of the 
reference sequences 160. Further, the reference clusters 165 
that are probable rDNA clusters may be pre-tagged as prob 
able rDNA clusters by way of the probable rDNA cluster tags 
175. 

In one implementation, the identification module 135 
selects one or more target clusters, from the reference clusters 
165 based on a composition based analysis. The selection of 
the target cluster is based on composition of the query 
sequence. To select the target clusters, the identification mod 
ule 135 initially generates a query vector corresponding to the 
query sequence. The query vector may be generated based on 
one or more compositional characteristics, such as frequen 
cies of all possible tetranucleotides in the query sequence. It 
will be understood that compositional characteristics used for 
generating the query vector would be similar to the compo 
sitional characteristics used for generating the reference vec 
tOrS. 

Subsequently, distances such as Euclidean distances or 
non-Euclidean distances like the Manhattan distance (L1 
norm), between the query vector and each of the cluster 
centroids 170 can be evaluated. The identification module 
135 then selects one or more of the reference clusters 165 as 
the target clusters corresponding to the query vector. In one 
implementation, the selection of target clusters for a query 
vector may be based on either a threshold distance (for 
example, 0.9) or a threshold cumulative sequence count (for 
example, 50000) of the closest reference clusters or both. In 
an example, one or more of the reference clusters 165 having 
a distance, from the query vector, less than the threshold 
distance may be selected as the target clusters. Further, the 
selection of the target clusters based on the threshold 
sequence count is similar to as described for identification of 
a set of the closest reference clusters 165. Additionally, the 
identification module 135 may determine the proportion of 
probable rDNA clusters from the target clusters. For the pur 
pose, the target clusters, which are tagged as the probable 
rDNA clusters may be identified and accordingly the propor 
tion of probable rDNA clusters from the target clusters may 
be computed. 

The identification module 135 may be configured to com 
pare the proportion of probable rDNA clusters with a prede 
termined proportion. Based on the comparison, the identifi 
cation module 135 may identify the query sequence as an 
rDNA sequence, for example, when the proportion of prob 
able rDNA clusters is in excess to the predetermined propor 
tion, the query sequence may be identified as an rDNA 
sequence. In one implementation, the predetermined portion 
is 24" of the target clusters or in otherwords, 66% of the target 
clusters. In said implementation, the query sequence is iden 
tified as the rDNA sequence, if at least 66% of the target 
clusters are tagged as probable rDNA clusters. 
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8 
The provision of having the reference database 155 includ 

ing the reference sequences 160 classified into plurality of the 
reference clusters 165 and tagging a subset of these reference 
clusters 165 as the probable rDNA clusters provides for a 
reduction in computing time and resources. 

Validation and Results 

The present identification technique has been validated 
with reference to the reference database 155 including the 
reference clusters 165 with a subset of the reference clusters 
165 tagged as the probable rDNA clusters. Subsequent to 
creation of the reference clusters 165 and tagging a Subset of 
the created reference clusters 165 as probable rDNA clusters, 
the present identification technique, illustrated as embodi 
ments of the present Subject matter, is validated using query 
sequences of varying lengths. The present identification tech 
nique has been validated for identification of 16S rDNA 
sequences, 18S rDNA sequences, 23S rDNA sequences, and 
28S rDNA sequences. 

For the identification of probable 16S rDNA clusters, 
63,325 16S rDNA sequences from fully sequenced prokary 
otic genomes were obtained from the Ribosomal Database 
Project (RDP) database as accessible through the URL rdp.c- 
me.msu.edu. The downloaded 16S rDNA sequences may be 
understood as the reference rDNA sequences. For every 
rDNA sequence, a rDNA vector representing the frequencies 
of all 256 tetranucleotides was generated. The Manhattan 
distance (L1 norm) of each vector to all pre-computed cluster 
centroids of the reference clusters 165, was obtained. The 
reference clusters 165 having the least distance with the 
rDNA vector and having a cumulative sequence count of 
50000 fragments were identified. This process was repeated 
using rDNA vectors corresponding to each of the 63.325 16S 
rDNA sequences. The frequency with which each cluster is 
picked up by these sequences was calculated. 
The reference clusters 165 having the frequency of hits 

greater than the predetermined frequency were identified and 
tagged as the probable 16S rDNA clusters. The predeter 
mined frequency of hits was chosen as 10000 hits. Accord 
ingly, a reference cluster, say, the reference cluster 165-1 was 
selected as a probable 16S rDNA cluster, ifat least 1000016S 
rDNA vectors (one-sixth of the total 16S rDNA sequences) 
have hits with that reference cluster 165-1. 

For the purpose of identification of 16S rRNA sequences, 
query sequences of varying lengths were generated by ran 
domly fragmenting 16S rDNA sequences (downloaded from 
the Ribosomal Database Project; rdp.cme.msu.edu) belong 
ing to 1616 distinct genera. Based on the lengths of the query 
sequences, the query sequences were divided into four vali 
dation data sets, termed as 16S rDNA-Sanger data set, 16S 
rDNA-454:400 data set, 16S rRNA-454:250 dataset, and 16S 
rDNA-454:100 data set. Each of these data sets contained 
1,00,000 reads. Further, a query sequence was identified as a 
16S rDNA sequence when at least 66% of the target clusters 
corresponding to the query sequence belonged to the pre 
tagged set of probable 16S rDNA clusters. 
The query sequences constituting these four data sets simu 

lated typical sequence lengths obtained from commonly used 
sequencing techniques. For example, query sequences con 
stituting the 16S rRNA-Sanger data set, having sequence 
length centered around 800 base pairs, simulated reads or 
sequences obtained using Sanger sequencing technology: 
query sequences constituting 16S rDNA-454:400 data set, 
having sequence length centered around 400 base pairs, simu 
lated reads or sequences obtained using 454-GS-FLX-Tita 
nium sequencing technology; query sequences constituting 
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the 16S rDNA-454:250 data set, having sequence length cen 
tered around 250 base pairs, simulated reads or sequences 
obtained using 454-GS-FLX-Standard sequencing technol 
ogy, and 16S rDNA-454: 100 data set, having sequence length 
centered around 100 base pairs, simulated reads or sequences 5 
obtained using Roche-454-GS20 sequencing technology. 
The present identification technique was applied to these 

validation datasets and the percentage of the query sequences 
in each data set, which were classified by the technique as a 
16S rDNA sequence, was recorded. Table 1 illustrates results 
of the validation of the present identification technique 
obtained with four validation data sets, namely, 16S rRNA 
Sanger data set, 16S rDNA-454:400 data set, 16S rDNA-454: 
250 data set, and 16S rDNA-454:100 data set. 

10 

15 

TABLE 1. 

Length of Query % of query sequences 
Sequence correctly identified as 

Validation Data Set (in base pairs) 16S rDNA sequence 2O 

16S rDNA-Sanger 800 96.5 
16S rRNA-454:400 400 96.2 
16S rNA-454:2SO 250 93 
16S rRNA-454:100 100 90.7 

25 

As seen from Table 1, the present identification technique 
is able to detect 16S rDNA sequences from the 16S rDNA 
validation data sets with high sensitivity. It may also be 
observed, that the sensitivity of identifying 16S rDNA 30 
sequences by the present identification technique increases as 
the length of the query sequences increases. 

In order to quantify the false positive rate of the present 
identification technique, four validation data sets were gen 
erated by randomly fragmenting 1000 completely sequenced 
genomes downloaded from the NCBI database. It was 
ensured that none of the fragments in the validation data sets 
contained 16S rDNA sequences. The validation data sets, 
mimicking those obtained using the same four sequencing 
technologies, were termed as non-16S rDNA-Sanger data set, 
non-16S rRNA-454:400 data set, non-16S-454:250 data set, 
non-16S-454:100 data set. 
The non-16S rDNA query sequences in these validation 

data sets were also given as input, and the percentage of 
sequences in each data set, misclassified by the present iden 
tification technique as a probable 16S rDNA sequence was 
recorded. Table 2 illustrates validation of the present identi 
fication technique with respect to four validation data sets, 
namely, non-16S rDNA-Sanger data set, non-16S rDNA-454: 
400 data set, non-16S rRNA-454:250 data set, and non-16S 
rDNA-454:100 data set. 
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TABLE 2 

Length of Query % of query sequences 
Sequence wrongly identified as 55 

Validation Data Set (in base pairs) 16S rDNA sequence 

Non-16S rDNA-Sanger 800 4.5 
Non-16S rRNA-454:400 400 8 
Non-16S rRNA-454:250 250 8.2 
Non-16S rRNA-454:100 100 9.8 

60 

Table 2 depicts that the false positive rate is below 10% 
indicating a high specificity of the present identification tech 
nique. Further, it may also be observed that the number of 
false positives identified by the present identification tech- 65 
nique also decreases with increasing lengths of the query 
Sequences. 

10 
The results of present identification technique have also 

been validated using a “leave one clade out' strategy. In Such 
as a strategy, identifying and pre-tagging probable 16S rRNA 
clusters is done using a modified set of 16S rDNA sequences. 
This modified set does not contain 16S rDNA sequences 
belonging to the removed clade. A clade may correspond to a 
genus or a family or an order or a class or a phylum. Subse 
quently, the query 16S rDNA sequences derived from the 
removed clade are analyzed using the re-computed set of 
tagged probable 16S rDNA clusters. Such a strategy was 
intended to closely mimic sequences derived from a typical 
metagenomic scenario, where majority of sequences belong 
to hitherto unknown or new clades. For example, to mimic a 
new species scenario, the probable rDNA cluster tags 175 are 
re-computed using a modified set of 16S rDNA sequences, 
which do not include 16S rDNA sequences belonging to this 
species. Further, the query 16S rDNA sequences derived from 
this species were used for validating the new species scenario. 
Table 3 shows the performance of the present identification 
technique with the 16S rDNA sequences originating from 
new species, genus, family, order, class, and phylum respec 
tively. 

TABLE 3 

Source of % of sequences identified as 16S rDNA sequences 
the query Length of the query Sequences 

Sequence 800 bp 400 bp 250 bp 100 bp 

Known Species 96.5 96.2 93 90.7 
New Species 96.4 94.1 91.3 85.3 
New Genus 94.5 91.3 85.3 71.2 
New Family 93.5 90.2 84.1 70.6 
New Order 92.3 90.1 84.8 70.6 
New Class 91.0 90.0 83.8 70.O 
New Phylum 89.2 88.4 82.4 69.5 

Results illustrated in table 3 indicate that the present iden 
tification technique is able to detect 16S rDNA sequence from 
new organisms, belonging to even an entirely new phylum 
with greater than 80% sensitivity if the query sequence length 
is greater than 250 base pairs. Even with the weak composi 
tion signal obtained from the query sequences with length as 
low as 100 base pairs, the present identification technique is 
able to achieve a sensitivity of greater than 70%. Thus, the 
present identification technique can be used for detecting the 
16S rRNA sequence in typical metagenomes, wherein major 
ity of organisms belong to entirely new species, genus, fam 
ily, order, class and phyla. 

Similar to the process used for the identification of the 16S 
rDNA sequences, for the purpose of identification of probable 
23S rDNA clusters 2700 23S rDNA sequences from fully 
sequenced prokaryotic genomes were obtained from the 
NCBI database. Likewise, for identification of probable 18S 
rDNA and 28S rDNA clusters, 7070 18S rDNA sequences 
and 2051 28S rRNA sequences from eukaryotic genomes 
were obtained from the NCBI database. As mentioned previ 
ously, the downloaded 23S rDNA sequences, 18S rDNA 
sequences, and 28S rRNA sequences, can be understood as 
the reference rDNA sequences. For every 23S rDNA, 18S 
rDNA, and 28S rDNA sequence, a corresponding rDNA vec 
tor representing the frequencies of all 256 tetranucleotides in 
the respective sequences were generated. The Manhattan dis 
tance (L1 norm) of each vector to all pre-computed cluster 
centroids of the reference clusters 165, was obtained. The 
reference clusters 165 having the least distance with the 23S 
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rDNA, 18S rDNA, and 28S rDNA vectors respectively, and 
having a cumulative sequence count of 50000 fragments were 
identified. 

This process was repeated using 23S rDNA, 18S rDNA, 
and 28S rRNA vectors corresponding to each of the 2700 23S 
rDNA sequences, 7070 18S rDNA, and 2051 28S rDNA 
sequences respectively. The frequency with which each clus 
ter is picked up by these sequences was calculated. The ref 
erence clusters 165 having the frequency of hits greater than 
the predetermined frequency of hits were identified and 
tagged as the probable 23S rDNA, 18S rDNA and 28S rDNA 
clusters respectively. The predetermined frequency of hits 
was chosen as 450 hits for 23S rDNA, 1180 hits for 18S rDNA 
sequences, and 342 hits for 28S rDNA sequences. Accord 
ingly, a reference cluster was selected as a probable 23S 
rDNA cluster, if at least 450 23S rDNA vectors (one-sixth of 
the total 23S rDNA sequences) have hits with that cluster. 
Likewise, a reference cluster was selected as a probable 18S 
rDNA cluster, if at least 1180 18S rDNA vectors (one-sixth of 
the total 18S rDNA sequences) have hits with that cluster and 
a reference cluster was selected as a probable 28S rDNA 
cluster, ifat least 34228S rDNA vectors (one-sixth of the total 
28S rDNA sequences) have hits with that cluster. 

Further, for the identification of 23S rRNA, query 
sequences of varying lengths were generated by randomly 
fragmenting 23S rDNA sequences belonging to 566 distinct 
genera. Similarly, for the identification of 18S rDNA, query 
sequences of varying lengths were generated by randomly 
fragmenting 18S rDNA sequences belonging to 2472 distinct 
genera; and for the identification of 28S rDNA, query 
sequences of varying lengths were generated by randomly 
fragmenting 28S rRNA sequences belonging to 517 distinct 
genera. The 23S rDNA, 18S rDNA, and 28S rDNA 
sequences, which were randomly fragmented, were down 
loaded from the NCBI database. Based on the lengths of the 
query sequences, the query sequences were divided into four 
validation data sets, termed as rDNA-Sanger data set, rDNA 
454:400 data set, rDNA-454:250 data set, and rDNA-454:100 
data set. For example, for 23S rDNA, the four validation data 
sets were 23S rDNA-Sanger data set, 23S rDNA-454:400 
data set, 23S rDNA-454:250 data set, and 23S rDNA-454:100 
data set. Similarly, for 18S rDNA the four validation data sets 
were 18S rDNA-Sanger dataset, 18S rDNA-454:400 dataset, 
18S rDNA-454:250 data set, and 18S rDNA-454:100 dataset; 
and for 28S rDNA the four validation data sets were 28S 
rDNA-Sanger data set, 28S rDNA-454:400 data set, 28S 
rDNA-454:250 data set, and 28S rDNA-454:100 data set. 
Each of these data sets contained 25,000 reads. The query 
sequences corresponding to 23S rDNA, 28S rDNA, and 18S 
rDNA constituting the four data sets simulated typical 
sequence lengths obtained from commonly used sequencing 
techniques, as explained previously with respect to 16S 
rDNA. Further, a query sequence was identified as a 23S 
rDNA, a 18S rDNA, or a 28S rDNA sequence when at least 
66% of the target clusters corresponding to the query 
sequence belonged to the pre-tagged set of probable 23S 
rDNA clusters, probable 18S rDNA clusters, or probable 
28S rDNA clusters, respectively. 
The present identification technique was applied to these 

validation data sets and the percentage of query sequences in 
each data set, which were classified by the present identifica 
tion technique as a 23S rDNA sequence, 18S rDNA sequence, 
and 28S rDNA sequence were recorded. Table 4a, 4b, and 4c 
illustrate results of the validation of the present identification 
technique obtained with four validation data sets for 23S 
rDNA sequence, 18 S rDNA sequence, and 28 rDNA 
sequence respectively. 
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As previously mentioned, Table 4a illustrates the results 

obtained with the four 23S rRNA validation data sets namely, 
23S rDNA-Sanger data set, 23S rDNA-454:400 data set, 23S 
rDNA-454:250 data set, and 23S rDNA-454:100 data set. 

TABLE 4a 

Length of Query % of query sequences 
Sequence correctly identified as 

Validation Data Set (in base pairs) 23S rDNA sequence 

23S rDNA-Sanger 800 99.3 
23S rRNA-454:4OO 400 97.5 
23S rNA-454:2SO 250 91.8 
23S rRNA-454:1OO 100 77.5 

Similarly, Table 4b illustrates the results obtained with the 
four 18S rDNA validation data sets namely, 18S rNA 
Sanger data set, 18S rDNA-454:400 data set, 18S rDNA-454: 
250 data set, and 18S rDNA-454:100 data set. 

TABLE 4b. 

Length of Query % of query sequences 
Sequence correctly identified as 

Validation Data Set (in base pairs) 18S rDNA sequence 

18S rDNA-Sanger 800 87 
18S rRNA-454:4OO 400 9 O.S 
18S rNA-454:2SO 250 87.5 
18S rRNA-454:1OO 100 SO.2 

Similarly, Table 4c illustrates the results obtained with the 
four 28S rDNA validation data sets, namely, 28S rNA 
Sanger data set, 28S rDNA-454:400 data set, 28S rDNA-454: 
250 data set, and 28S rDNA-454:100 data set. 

TABLE 4c 

Length of Query % of query sequences 
Sequence correctly identified as 

Validation Data Set (in base pairs) 28S rDNA sequence 

28S rDNA-Sanger 800 85.8 
28S rRNA-454:4OO 400 86.5 
28S rNA-454:2SO 250 84.8 
28S rRNA-454:1OO 100 59.3 

As seen from Tables 4a, 4b, and 4c, the present identifica 
tion technique is able to detect 23S rDNA, 18S rDNA, and 
28S rDNA sequences from the corresponding validation data 
sets with high sensitivity. It may also be observed, that the 
sensitivity of identifying rDNA sequences by the present 
identification technique increases as the length of the query 
sequences increases. 
As previously mentioned, in order to quantify the false 

positive rate of the present identification technique, four vali 
dation data sets corresponding to 23S rDNA (were generated 
by randomly fragmenting 1000 completely sequenced 
genomes downloaded from the NCBI database. Likewise, 
eight more validation data sets (four each for 18S rDNA and 
28S rDNA respectively) were generated by randomly frag 
menting 15 completely sequenced eukaryotic genomes 
downloaded from the NCBI database. Similar to validation 
results with respect to 16S rDNA, it was ensured that none of 
the fragments in the validation data sets contained 23S rDNA, 
18S rDNA or 28S rDNA sequences respectively. The valida 
tion data sets, mimicking those obtained using the same four 
sequencing technologies, were termed as non-rDNA-Sanger 
data set, non-r)NA-454:400 data set, non-454-250 data set, 
non-454-100 data set. For example, for the 23S rRNA the four 
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validation data sets were non-23 S rDNA-Sanger data set, 
non-23S rDNA-454:400 data set, non-23S-454:250 data set, 
non-23S-454:100 data set. Similarly, for 18S rDNA the four 
validation data sets were non-18S rDNA-Sanger data set, 
non-18S rDNA-454:400 data set, non-18S rDNA-454:250 
data set, and non-18S rRNA-454:100 data set; and for non 
28S rRNA the four validation data sets were non-28S rRNA 
Sanger data set, non-28S rDNA-454:400 data set, non-28S 
rDNA-454:250 data set, and non-28S rDNA-454:100 data 
Set. 

The non-23S rDNA, non-18S rDNA, and non-28S rDNA 
query sequences in the corresponding validation data sets 
were also given as input, and the percentage of sequences in 
each data set, misclassified by the present identification tech 
nique as a probable 23S rDNA, 18S rDNA, or 28S rDNA 
sequence respectively, was recorded. Table 5a, 5b, and 5c 
illustrates validation of the present identification technique 
with respect to four validation data sets for each of 23S rDNA 
sequences, 18S rDNA sequences, and 28S rDNA sequences 
respectively. 
As previously mentioned, table 5a illustrates the results 

obtained with the four non-23S rRNA validation data sets 
namely, non-23S rRNA-Sanger data set, non-23S rRNA-454: 
400 data set, non-23S rRNA-454:250 data set, and non-23S 
rDNA-454:100 data set. 

TABLE 5a 

Length of Query % of query sequences 
Sequence wrongly identified as 

Validation Data Set (in base pairs) 23S rDNA sequence 

Non-23S rRNA-Sanger 800 3.29 
Non-23S rRNA-454:400 400 8.64 
Non-23S rRNA-454:250 250 8.27 
Non-23S rRNA-454:100 100 14.6 

Similarly, table 5b illustrates the results obtained with the 
four non-18S rDNA validation data sets namely, non-18S 
rDNA-Sanger data set, non-18S rDNA-454:400 data set, non 
18S rDNA-454:250 data set, and non-18S rDNA-454:100 
data set. 

TABLE Sb 

Length of Query % of query sequences 
Sequence wrongly identified as 

Validation Data Set (in base pairs) 18S rDNA sequence 

Non-18S rDNA-Sanger 800 16.7 
Non-18S rRNA-454:400 400 12.4 
Non-18S rRNA-454:250 250 22.9 
Non-18S rRNA-454:100 100 24 

Likewise, table 5c illustrates the results obtained with the 
four non-28S rDNA validation data sets namely, non-28S 
rDNA-Sanger data set, non-28S rDNA-454:400 data set, non 
28S rDNA-454:250 data set, and non-28S rDNA-454:100 
data set. 

TABLE 5c 

Length of Query % of query sequences 
Sequence wrongly identified as 

Validation Data Set (in base pairs) 28S rDNA sequence 

Non-28S rDNA-Sanger 800 16.5 
Non-28S rRNA-454:400 400 16.6 
Non-28S rRNA-454:250 250 18.5 
Non-28S rRNA-454:100 100 18.9 
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Table 5a depicts that the false positive rate is below 15%, 

table 5b depicts that the false positive rate is below 24%, and 
table 5c depicts that the false positive rate is below 19%, 
indicating the high accuracy of the present identification tech 
nique. As it was observed for 16S rDNA data sets, the number 
of false positives identified by the present identification tech 
nique for 23S rDNA, 18S rDNA, and 28S rDNA datasets also 
decreases with increasing length of the query sequence. 
The results of present identification technique for identifi 

cation of 23S rDNA, 18S rDNA, and 28S roNA have also 
been validated using the “leave one clade out' strategy, as 
explained previously. Table 6a, 6b, and 6c show the perfor 
mance of the present identification technique with 23S rDNA, 
18S rDNA, and 28S rDNA sequences originating from new 
species, genus, family, order, class, and phylum respectively. 

TABLE 6a 

Source of % of sequences identified as 23S rDNA sequences 
the query Length of the query Sequences 

Sequence 800 bp 400 bp 250 bp 100 bp 

Known Species 99.9 97.5 91.8 86.2 
New Species 94.9 834 76.5 70.7 
New Genus 93.3 83.2 75.7 65.2 
New Family 93.1 82.3 75.4 64.8 
New Order 93.1 82.3 75.2 64.7 
New Class 92.9 82.O 75.2 64.7 
New Phylum 92.5 82.O 74.6 64 

Results illustrated in table 6a indicate that the present iden 
tification technique is able to detect 23S rDNA sequence from 
new organisms, belonging to even an entirely new phylum 
with greater than 80% sensitivity if the query sequence length 
is greater than 250 base pairs. Even with the weak composi 
tion signal obtained from the query sequences with length as 
low as 100 base pairs, the present identification technique is 
able to achieve a sensitivity of greater than about 65%. 

TABLE 6b 

Source of % of sequences identified as 18S rDNA sequences 
the query Length of query sequences 

Sequence 800 bp 400 bp 250 bp 100 bp 

Known Species 87 9 O.S 87.5 SO.2 
New Species 84.3 86.5 72.6 46.2 
New Genus 82.8 74.9 S3.6 40.3 
New Family 82.7 74.8 53.4 36.9 
New Order 82.7 74.6 53.4 35.2 
New Class 82.2 73.1 53.3 30.1 
New Phylum 81.1 72.6 52.5 29 

Results illustrated in table 6b indicate that the present 
identification technique is able to detect 18S rDNA sequence 
from new organisms, belonging to even an entirely new phy 
lum with greater than 72% sensitivity if the query sequence 
length is greater than 400 base pairs. 

TABLE 6c 

Source of % of sequences identified as 28S rDNA sequences 
the query Length of query sequences 

Sequence 800 bp 400 bp 250 bp 100 bp 

Known Species 85.8 86.5 84.8 59.2 
New species 80.3 84.3 80.2 55.2 
New Genus 74.2 74.1 73.1 46.3 
New Family 73.5 72.3 55.8 42.1 
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TABLE 6c-continued 

Source of % of sequences identified as 28S rDNA sequences 
the query Length of query sequences 

Sequence 800 bp 400 bp 250 bp 100 bp 

New Order 64.6 69.7 544 40.1 
New Class 61.2 66.9 54.1 37.4 
New Phylum 57.5 66.8 SO.2 37 

Results illustrated in table 6c indicate that the present iden 
tification technique is able to detect 28S rDNA sequence from 
new organisms, belonging to even an entirely new phylum 
with greater than 66% sensitivity if the query sequence length 
is greater than 400 base pairs. 

Thus, the present identification technique can be used for 
detecting 23S rDNA, 18S rDNA, 28S rDNA sequences in 
typical metagenomes, wherein majority of organisms belong 
to entirely new species, genus, family, order, class and phyla. 

Table 7 shows that the present identification technique 
achieves approximately 233 fold reduction in the computa 
tional time over conventional technique, rna-hmm algorithm 
(Ying Huang et al., 2009). These time estimates were 
obtained using a desktop computer with 2.33 GHz central 
processing unit (CPU) with 2 GB random access memory 
(RAM). 

TABLE 7 

Time taken (in minutes) for 
analyzing 1 million 16S rDNA 

Technique 23S rDNA query sequences 

Present Identification S4 
Technique 

rna-hmm (Ying Huang 12400 
et al., 2009) 

Thus, it can be observed from table 7 that the present 
identification technique can process a million sequences in 
less than an hour as compared to more than 8 days taken by 
hmm-fs program (Ying Huang et al., 2009). In addition, the 
high sensitivity values obtained with the present identifica 
tion technique using exhaustive validation sets at all taxo 
nomic levels, as illustrated in Table 1, 2, and 3, indicate that 
this technique can be applied to any metagenomic data set for 
facilitating quick estimation of taxonomic diversity. Since the 
current in-silico identification technique is able to detect 16S 
rDNA, 23S rDNA, 18S rDNA and 28S rDNA sequences from 
fragments of genomic DNA of various lengths with high 
sensitivity and faster speed, the entire experimental step of 
primer based rNA amplification, cloning and sequencing 
can be bypassed thereby saving a considerable amount of 
time, efforts, and resources. 

FIG. 2 illustrates an exemplary method 200 for identifica 
tion of rDNA sequences from a sample containing unknown 
DNA sequences, FIG. 3 illustrates an exemplary method 300 
for classification of reference sequences into reference clus 
ters, in accordance with an implementation of the present 
subject matter, and FIG. 4 illustrates an exemplary method 
400 for identifying probable rDNA clusters from reference 
clusters in a reference database, in accordance with an imple 
mentation of the present Subject matter. 
The exemplary methods may be described in the general 

context of computer executable instructions. Generally, com 
puter executable instructions can include routines, programs, 
objects, components, data structures, procedures, modules, 
functions, etc., that perform particular functions or imple 
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ment particular abstract data types. The methods may also be 
practiced in a distributed computing environment where 
functions are performed by remote processing devices that 
are linked through a communications network. In a distrib 
uted computing environment, computer executable instruc 
tions may be located in both local and remote computer 
storage media, including memory storage devices. 
The order in which the methods are described is not 

intended to be construed as a limitation, and any number of 
the described method blocks can be combined in any order to 
implement the method, or an alternative method. Addition 
ally, individual blocks may be deleted from the methods 
without departing from the spirit and scope of the Subject 
matter described herein. Furthermore, the methods can be 
implemented in any suitable hardware, software, firmware, or 
combination thereof. The method is presently provided for a 
query sequence. It would be appreciated that the same method 
can also be implemented for a plurality of query sequences 
without deviating from the scope of the present Subject mat 
ter. 

At block 205, a query sequence from a sample containing 
unknown DNA sequences, such as a metagenome, may be 
received. For example, the query sequence from a metage 
nome can be received by an identification module, such as 
identification module 135. The query sequence may be in the 
form of a nucleic acid sequence. 
At block 210, a query vector corresponding to the query 

sequence is generated, based on a composition based analysis 
of the query sequence. For example, the identification module 
135 on receiving the query sequence performs a composition 
based analysis to generate the query vector. The composition 
based analysis is performed based on compositional charac 
teristics, such as oligonucleotide frequencies and GC content 
of the query sequence. 
At block 215, one or more target clusters are identified, 

based on the query vector, from the plurality of reference 
clusters. For example, the identification module 135 may 
identify one or more target clusters from the plurality of 
reference clusters 165 in the reference database 155. In one 
implementation, the reference database 155 may be a pre 
configured database having the pre-configured reference 
clusters 165. Alternately, the reference sequences may be 
classified into the reference clusters 165 using a cluster cre 
ation module 130, as will be explained in detail with reference 
to description of FIG. 3. 

In an implementation, one or more target clusters may be 
identified based on the composition-based analysis of the 
query sequence. For example, a non-Euclidean distance met 
rics, such as Manhattan distance (L1 norm), may be com 
puted between the query vector and the respective cluster 
centroid 170 associated with each of the reference clusters 
165 in the reference database. Based on the computed non 
Euclidean distances the target clusters may be selected. In one 
example, the reference clusters 165 at non-Euclidean distance 
less than a predetermined distance may be selected as the 
target clusters. In another example, the reference clusters 165 
being closest to the query sequence and having a cumulative 
sequence count greater than or equal to the threshold 
sequence count are tagged as the target clusters. 
At block 220, the proportion of probable rDNA clusters 

from the target clusters may be determined. For example, the 
identification module 135 may determine the proportion of 
probable rDNA clusters from the target clusters. For this 
purpose, target clusters, which are tagged as the probable 
rDNA clusters may be identified and accordingly the propor 
tion of probable rDNA clusters from the target clusters may 
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be determined. In one implementation, the predetermined 
distance may be stored in analysis data, such as the analysis 
data 145. 
At block 225, the query sequence is identified as the rDNA 

sequence, based on the proportion of target clusters, which 
belong to the pre-tagged set of probable rDNA clusters. For 
example, the identification module 135 compares the propor 
tion of the identified probable rDNA clusters with a predeter 
mined proportion and based on the comparison identifies the 
query sequence as the rDNA sequence. In one implementa 
tion, the query sequence is identified as the rDNA sequence, 
if the proportion of the probable rDNA clusters exceeds the 
predetermined proportion. Further, the predetermined pro 
portion may be stored in the analysis data, Such as the analysis 
data 145. 

Since, the present identification technique is able to iden 
tify rNA sequences from a sample containing unknown 
DNA sequences with high sensitivity and low computational 
time, the present identification technique, which is an in 
silico technique, may be used to bypass the experimental step 
of primer based amplification, cloning and sequencing of the 
rDNA sequences, such as, 16S rRNA sequences, 23S rDNA 
sequences, 18S rDNA sequences and 28S rDNA sequences. 
Thus, the present identification technique saves a consider 
able amount of time, efforts, and resources. 

Referring to FIG.3, the method 300 classifies a plurality of 
reference sequences, such as the reference sequences 160, 
into a plurality of reference clusters, such as the reference 
clusters 165, according to an implementation of the present 
subject matter. The reference sequences 160 may be classified 
using a cluster creation module. Such as the cluster creation 
module 130 of the rDNA sequence identification system 100. 
At block 305, genome sequences may be retrieved and 

saved in a reference database, such as the reference database 
155. In one implementation, the genome sequences may be 
retrieved in the form of completely sequenced prokaryotic 
genomes. For example, the rDNA sequence identification 
system 100 may communicate with an external database, 
such as GenBank or NCBI, and retrieve the reference 
sequences in the form of completely sequenced prokaryotic 
genomes from this external database. The genome sequences 
may be retrieved in the form of nucleic acid sequences cor 
responding to the genomes of completely sequenced prokary 
otic organisms. Further, the reference database may contain 
reference sequences corresponding to the genomes of com 
pletely sequenced prokaryotic organisms or to the genomes 
corresponding to eukaryotic organisms or both. 

At block 310, the genome sequences are be split into frag 
ments of a predetermined length, for example, fragments with 
lengths of 1000 base pairs. Further, each of the fragment 
sequence may be considered as a reference sequence. 
At block 315, a reference vector corresponding to each of 

the reference sequences may be generated. The reference 
vectors may be generated based on one or more composi 
tional characteristics of the reference sequences. For 
example, the reference vectors may be generated based on 
frequencies of all possible oligonucleotides of a chosen 
length in the reference sequence. 

At block 320 the reference sequences may be classified 
into the reference clusters using a clustering technique. Such 
as k-means clustering technique, based on the reference vec 
tors. In one implementation, the reference sequences with 
similar nucleotide composition may be classified together in 
one reference cluster. 
At block 325, a cluster centroid may be assigned to each of 

the reference clusters. The cluster centroid may be computed 
based on the reference sequences, which are in that cluster. 
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For example, the cluster centroid may be computed as the 
mean value of the reference vectors corresponding to the 
reference sequences included in a particular reference cluster. 

Referring to FIG.4, the method 400 identifies a plurality of 
probable rDNA clusters, from a plurality of reference clus 
ters, such as the reference clusters 165, according to an imple 
mentation of the present subject matter. The probable rDNA 
clusters may be identified and tagged using a cluster creation 
module, such as the cluster creation module 130 of the rDNA 
sequence identification system 100. 
At block 405, reference rDNA sequences may be retrieved 

from a database, such as the RDP database. In one implemen 
tation, the cluster creation module 130 may store these rDNA 
sequences in the analysis data 145. 
At block 410, an rDNA vector corresponding to each of the 

reference rDNA sequences may be generated. The rDNA 
vectors may be generated based on one or more composi 
tional characteristics of the reference sequences. For 
example, the rDNA vectors may be generated based on fre 
quencies of all possible oligonucleotides of chosen length in 
the reference sequence. 
At block 415, a distance, such as Manhattan distance, 

between each of the rDNA vectors and a cluster centroid of 
each of the reference clusters may be determined. In one 
implementation, each of the reference clusters 165 may be 
tagged with the cluster centroid 170 as explained in descrip 
tion of FIG. 3. 
At block 420, a frequency of hit for each of the reference 

cluster may be computed based on the distances between the 
rDNA vectors and the clustercentroids corresponding to each 
of the reference clusters. In one implementation, the cluster 
creation module 130 may compare the distances of each of the 
reference clusters 165, from the rDNA vectors, with a thresh 
old distance. Thus, a hit may be understood to have occurred 
when the distance between a reference cluster and an rDNA 
vector is less than the threshold distance, such as 0.9. Further, 
the frequency of hits of each of the reference cluster with 
respect to the rDNA vectors, and accordingly referencerDNA 
sequences, may be determined based on the computed non 
Euclidean distances. In another implementation, for each 
rDNA sequence, a set of the closest reference clusters 165 
having a cumulative sequence count of at least a threshold 
sequence count, for example 50000 sequences, may be iden 
tified as hits to the given rDNA sequence. In said implemen 
tation, a hit may be considered to have occurred if the refer 
ence cluster 165 is identified as the closest reference cluster 
165 with respect to the given rDNA sequence. The threshold 
distance, the threshold sequence count, and the distances 
determined at the block 415 may be stored in the analysis data 
145. 
At block 425, the probable rDNA clusters from the refer 

ence clusters may be identified based on the frequency of hits. 
In one implementation, the frequency of hits may be com 
pared with a predetermined frequency and the reference clus 
ters 165 with the frequency of hits in excess to the predeter 
mined frequency may be identified and tagged as the probable 
rDNA clusters. In another implementation, a set of the refer 
ence clusters 165 having a cumulative sequence count greater 
than a threshold sequence count, for example greater than 
50000 sequences and each of the reference clusters 165 in the 
set having the frequency of hits in excess to the predetermined 
frequency may be tagged as the probable rDNA clusters. 

Although embodiments for identification of rDNA 
sequences from a sample containing unknown DNA 
sequences have been described in language specific to struc 
tural features and/or methods, it is understood that the inven 
tion is not necessarily limited to the specific features or meth 
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ods described. Rather, the specific features and methods are identifying the query sequence as a rNA sequence, 
disclosed as exemplary embodiments for identification of when the computed proportion of the pre-tagged 
rDNA sequences from the sample containing unknown DNA probable rDNA clusters exceeds a predetermined 
Sequences. proportion. 

5 2. The computer implemented method as claimed in claim 
We claim: 1 further comprising classifying said plurality of reference 
1. A computer implemented method for pre-tagging a Sub 

set of reference clusters from amongst a plurality of reference 
clusters as probable rDNA clusters and using information 
obtained by pre-tagging for identification of ribosomal deox- 10 
yribonucleic acid (rDNA) sequences from a sample contain 
ing a plurality of unknown DNA sequences, the method com 

sequences, into the plurality of reference clusters, based on 
similarity in at least one compositional characteristic of the 
plurality of reference sequences. 

3. The computer implemented method as claimed in claim 
2, wherein the at least one compositional characteristic is one 
of an oligonucleotide frequency and a guanine-cytosine (GC) 

1S19. 

p Saining a plurality of reference sequences from a refer- COntent. 
ence database; is 4. The computer implemented method as claimed in claim 

creating said plurality of reference clusters using said plu- 1, wherein computing the proportion of pre-tagged probable 
rality of reference sequences; rDNA clusters comprises: 

performing a rDNA analysis to pre-tag said Subset of ref- identifying a number of target clusters pre-tagged as prob 
erence clusters, from amongst the plurality of reference able rDNA clusters; and 
clusters, as the probable rDNA clusters, wherein the 20 comparing the number of the one or more identified target 
rDNA analysis comprises: clusters pre-tagged as the probable rDNA clusters with 
obtaining a plurality of the reference rDNA sequences the number of target clusters. 

from the reference database; 5. The computer implemented method as claimed in claim 
generating a plurality of rDNA vectors corresponding to 1, wherein the rDNA sequence is at least one of a 5S rDNA, 

a plurality of reference rDNA sequences: 25 a 16S rNA, a 23S rNA, a 5.8S rDNA, a 18S rNA, and a 
computing a frequency of hits of each of said plurality of 28S rDNA sequence. 

reference clusters corresponding to said plurality of 6. The computer implemented method as claimed in claim 
reference rDNA sequences, wherein the frequency of 
hits is computed based on at least one of a threshold 
distance and a threshold sequence count; 30 

comparing for each of the plurality of reference clusters, 
the computed frequency of hits with a predetermined 
frequency; 

pre-tagging the Subset of reference clusters from said 
plurality of reference clusters as the probable rDNA 35 
clusters, when the computed frequency of hits 
exceeds the predetermined frequency; and 

1, wherein the query sequence has a length of one of 800 base 
pairs, 400 base pairs, 250 base pairs, and 100 base pairs. 

7. The computer implemented method as claimed in claim 
1, wherein the selecting further comprises: 

comparing the distance between the query vector and the 
cluster centroid of each of the plurality of reference 
clusters with the threshold distance; and 

selecting a reference cluster as a target cluster, when the 
distance between the query vector and the cluster cen 

identifying a plurality of ribosomal deoxyribonucleic troid is greater than the threshold distance. 
acid (rDNA) sequences from a sample containing a 8. The computer implemented method as claimed in claim 
plurality of unknown DNA sequences based on the 40 1, wherein the Selecting further comprises: 
information obtained from pre-tagging, wherein the identifying a reference cluster at a minimum distance from 
identifying includes: the query vector, based on computed distances, the one 
creating a plurality of query sequences corresponding or more reference clusters comprising the identified ref 

to said plurality of unknown DNA sequences by erence cluster; 
sequencing genetic material obtained from the 45 determining a sequence count of the identified reference 
sample: cluster; and 

computing a distance between a query vector corre- comparing the sequence count with the threshold sequence 
sponding to each query sequence and a cluster cen- count; 
troid of each of the plurality of reference clusters, select the identified reference cluster as target cluster, when 
wherein each of the plurality of reference clusters 50 the sequence count is greater than or equal to the thresh 
include said plurality of reference sequences, and old sequence count; 
wherein said plurality of reference sequences with iteratively identifying one or more next closest reference 
similar composition are classified into at least one clusters, based on the computed distances, wherein the 
reference cluster; one or more reference clusters comprise the identified 

selecting one or more target clusters corresponding to 55 reference cluster and the one or more next closest refer 
the query sequence from the plurality of reference ence clusters, and wherein the one or more next closest 
clusters, wherein the one or more target clusters are reference clusters are identified till a cumulative 
Selected based on, sequence count of the one or more reference clusters is 
a comparison of the distance of each of the plurality greater than or equal to the threshold sequence count; 

of reference clusters with the threshold distance; 60 and 
and selecting the one or more reference clusters as the target 

a comparison of a cumulative sequence count of clusters, when the cumulative sequence count is greater 
said plurality of reference clusters with the than or equal to the threshold sequence count. 
threshold sequence count; 9. A computer implemented system for pre-tagging a Sub 

computing the proportion of pre-tagged probable 65 set of reference clusters from amongsta plurality of reference 
rDNA clusters within the one or more target clus- clusters as probable rDNA clusters and using information 
ters, and obtained from pre-tagging for identification of ribosomal 



US 9,342,653 B2 
21 

deoxyribonucleic acid (rDNA) sequences from a sample con 
taining a plurality of unknown DNA sequences, the system 
comprising: 

a processor; and 
a memory coupled to the processor, wherein the processor 

is capable of executing the plurality of modules Stored in 
the memory, said processor configured to, 
obtain a plurality of reference sequences from a refer 

ence database using a cluster creation module: 
create said plurality of reference clusters using said plu 

rality of reference sequences; 
perform a rDNA analysis to pre-tag said subset of refer 

ence clusters from amongst the plurality of reference 
clusters as said probable rDNA clusters; 

obtain a plurality of reference rDNA sequences from the 
reference database based on said rDNA analysis; 

generate a plurality of rDNA vectors corresponding to a 
plurality of reference rDNA sequences, based on said 
rDNA analysis; 

compute a frequency of hits of each of said plurality of 
reference clusters corresponding to said plurality of 
reference rDNA sequences, wherein the frequency of 
hits is computed based on at least one of a threshold 
distance and a threshold sequence count; 

compare for each of the plurality of reference clusters, 
the computed frequency of hits with a predetermined 
frequency; 

pre-tag said plurality of reference clusters from said 
plurality of reference clusters as the probable rDNA 
clusters, when the computed frequency of hits 
exceeds the predetermined frequency; 

and said processor further configured to: 
identify a plurality of ribosomal deoxyribonucleic 

acid (rDNA) sequences from a sample containing a 
plurality of unknown DNA sequences based on the 
information obtained from pre-tagging; 

create a plurality of query sequences corresponding to 
said plurality of unknown sequences by sequencing 
genetic material obtained from the sample: 

compute a distance between a query vector corre 
sponding to each query sequence and a cluster cen 
troid of each of a plurality of reference clusters, 
wherein each of the plurality of reference clusters 
include said plurality of reference sequences, and 
wherein said plurality of reference sequences with 
similar composition are classified into at least one 
reference cluster; 

select one or more target clusters corresponding to the 
query sequence from the plurality of reference 
clusters, wherein the one or more target clusters are 
Selected based on, 
a comparison of the distance of each of the plurality 

of reference clusters with the threshold distance; 
and 

a comparison of a cumulative sequence count of the 
plurality of reference clusters with the threshold 
Sequence count; 

compute the proportion of the pre-tagged probable 
rDNA clusters within the one or more target clus 
ters; and 

identify the query sequence as a rDNA sequence, 
when the computed proportion of the pre-tagged 
probable rDNA clusters exceeds a predetermined 
proportion. 

10. The computer-implemented system as claimed in claim 
9, wherein the plurality of modules stored in the memory 
includes an identification module further configured to: 
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compare the distance between the query vector and the 

cluster centroid of each of the plurality of reference 
clusters with the threshold distance; and 

select a reference cluster as a target cluster, when the dis 
tance between the query vector and the cluster centroid 
is greater than the threshold distance. 

11. The system as claimed in claim 10, wherein the iden 
tification module is further configured to: 

identify a target cluster, from among the one or more target 
clusters, pre-tagged as a probable rDNA cluster, and 

compute a proportion of the one or more target clusters 
pre-tagged as the probable rDNA clusters to determine 
the proportion of the probable rDNA clusters. 

12. The system as claimed in claim 10, wherein the plural 
ity of modules stored in the memory include a cluster creation 
module configured to classify a plurality of reference 
sequences into the plurality of reference clusters, based on 
similarity in at least one compositional characteristic of the 
plurality of reference sequences. 

13. The computer-implemented system as claimed in claim 
9, wherein the plurality of modules stored in the memory 
includes an identification module further configured to: 

identify a reference cluster at a minimum distance from the 
query vector, based on computed distances, the one or 
more reference clusters comprising the identified refer 
ence cluster, 

determine a sequence count of the identified reference 
cluster; and 

compare the sequence count with the threshold sequence 
count; 

select the identified reference cluster as a target cluster, 
when the sequence count is greater than or equal to the 
threshold sequence count; 

iteratively identify one or more next closest reference clus 
ters, based on the computed distances, wherein the one 
or more reference clusters comprise the identified refer 
ence cluster and the one or more next closest reference 
clusters, and wherein the one or more next closest ref 
erence clusters are identified till a cumulative sequence 
count of the one or more reference clusters is greater 
than or equal to the threshold sequence count; and 

select the one or more reference clusters as the target clus 
ters, when the cumulative sequence count is greater than 
or equal to the threshold sequence count. 

14. A non-transitory computer readable medium having 
computer executable instructions which when executed, 
implement a method for pre-tagging a Subset of reference 
clusters from amongst a plurality of reference clusters as 
probable rDNA clusters and using information obtained from 
pre-tagging for identification of ribosomal deoxyribonucleic 
acid (rDNA) sequences from a sample containing a plurality 
of unknown DNA sequences, the method comprising: 

performing a rNA analysis to pre-tag said plurality of 
reference clusters from amongst the plurality of refer 
ence clusters as said probable rDNA clusters, wherein 
the rDNA analysis comprises: 
obtaining a plurality of reference rDNA sequences from 

the reference database; 
generating a plurality of rDNA vectors corresponding to 

a plurality of reference rDNA sequences: 
computing a frequency of hits of each of said plurality of 

reference clusters corresponding to said plurality of 
reference rDNA sequences, wherein the frequency of 
hits is computed based on at least one of a threshold 
distance and a threshold sequence count; 
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comparing for each of the plurality of reference clusters, 
the computed frequency of hits with a predetermined 
frequency; 

pre-tagging said subset of reference clusters from said 
plurality of reference clusters as the probable rDNA 
cluster, when the computed frequency of hits exceeds 
the predetermined frequency; 

identifying a plurality of ribosomal deoxyribonucleic 
acid (rDNA) sequences from a sample containing a 
plurality of unknown DNA sequences based on the 
information obtained from pre-tagging, wherein the 
identifying includes: 
creating a plurality of query sequences corresponding 

to said plurality of unknown DNA sequences by 
sequencing genetic material obtained from the 
sample: 

computing a distance between a query vector corre 
sponding to beach query sequence and a cluster 
centroid of each of a plurality of reference clusters, 
wherein each of the plurality of reference clusters 
includes said plurality of reference sequences, and 
wherein said plurality of reference sequences with 
similar composition are classified into at least one 
reference cluster; 

Selecting one or more target clusters corresponding to 
the query sequence from the plurality of reference 
clusters, wherein the one or more target clusters are 
selected based on 
a comparison of the distance of each of the plurality 

of reference clusters with the threshold distance; 
and 

a comparison of a cumulative sequence count of the 
plurality of reference clusters with the threshold 
sequence count; 

computing the proportion of pre-tagged probable rDNA 
clusters within the one or more target clusters; and 
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identifying the query sequence as a rDNA sequence, 
when the computed proportion of the pre-tagged 
probable rDNA clusters exceeds a predetermined pro 
portion. 

15. The non-transitory computer readable medium as 
claimed in claim 14 further comprising classifying a plurality 
of reference sequences, into the plurality of reference clus 
ters, based on similarity in at least one compositional charac 
teristic of the plurality of reference sequences. 

16. The non-transitory computer readable medium as 
claimed in claim 14, for identifying the one or more probable 
rDNA clusters further comprises instructions for: 

generating a plurality of rDNA vectors corresponding to a 
plurality of reference rDNA sequences: 

computing a frequency of hits of each of the plurality of 
reference clusters with respect to the plurality of the 
reference rDNA sequences, wherein the frequency of 
hits is computed based on the threshold distance and the 
threshold sequence count; 

comparing, for each of the plurality of reference clusters, 
the frequency of hits with a predetermined frequency; 
and 

pre-tagging a reference cluster from the plurality of refer 
ence clusters as a probable rDNA cluster, when the fre 
quency of hits is in excess to the predetermined fre 
quency. 

17. The non-transitory computer readable medium as 
claimed in claim 14, further comprising instructions for com 
puting proportion of pre-tagged probable rDNA clusters, 

30 wherein the computing comprises: 

35 

identifying number of target clusters, pre-tagged as prob 
able rDNA clusters; and 

comparing the number of the one or more identified target 
clusters pre-tagged as the probable rDNA clusters with 
the number of target clusters. 


