US 20230195462A1

a9y United States

a2y Patent Application Publication (o) Pub. No.: US 2023/0195462 Al

Guim Bernat 43) Pub. Date: Jun. 22,2023
(54) GLOBAL UNIFIED INTERDEPENDENT (52) US. CL
MULTI-TENANT QUALITY-OF-SERVICE CPC GO6F 9/3016 (2013.01); GOGF 9/30018
PROCESSOR SCHEME (2013.01); GO6F 11/3051 (2013.01); GO6F
) 9/5077 (2013.01); GOGF 2209/508 (2013.01);
(71) Applicant: g}tse)l Corporation, Santa Clara, CA GOGF 2209/501 (2013.01)
(72) Inventor: Francesc Guim Bernat, Barcelona
(ES) 57 ABSTRACT
(73) Assignee: Intel Corporation, Santa Clara, CA
(us) Embodiments of apparatuses, methods, and systems for a
hierarchical multi-tenant processor scheme are disclosed. In
(21) Appl. No.: 17/559,969 an embodiment, a processor includes circuitry to execute
(22) Filed: Dec. 22, 2021 threads, registers to store first values to define a tenant
hierarchy, registers to store second values to specify a
Publication Classification location of a thread corresponding to a tenant within the
(51) Int. CL tenant hierarchy, and circuitry to include the second values
GO6F 9/30 (2006.01) in a request to access a resource. Use of the resource is to be
GO6F 11/30 (2006.01) monitored or controlled based on the location of the tenant
GO6F 9/50 (2006.01) within the tenant hierarchy.

Method 390

Define topology of tenant hierarchy 390A

v

Assign an ID to a thread to map it to a tenant 390B

<

Associate resources and tenants 390C

<

Set up monitoring use of resources by tenants 390D

<

Associate QoS policy with tenant use of resource 390E

<

Concatenate tenant ID with address in a request 390F

v

Use tenant ID to check for QoS policy 390G

Patent Application Publication Jun. 22, 2023 Sheet 1 of 10 US 2023/0195462 A1

System 100
PROCESSOR/SOC 102
CORE 110 [y <
al |o MSRs
<T <
HRE 106
I I
~ [
L2$ UNCORE 104
120
RATE
LIMITER | — — —|_| |
150 RATE LIMIT 166 -
CONTROLLER
W/BW SETPOINT —
164 i
RATE SELECTOR
160
\ 4
LLC
130
MEMORY BW
MONITORING (MBM): LLC |
_ - MISS FEEDBACK
| - 162
MEM
140

FIG. 1

US 2023/0195462 Al

Jun. 22,2023 Sheet 2 of 10

Patent Application Publication

A
INYN3L INYN3L INYN3L INYN3L INVN3L
7S¢ 44 eiz4 e e
NOILILMYd || NOILILYYd NOILILYYd || NOILILYVd || NOILILMvd)
€02 T3AT
052 NOILILYYd dSO 072 NOLLILYYd dSO ¢0¢ AT
f _ ; I
052 NOILILYYd 022 NOILI LHvd 0l¢ NOLLILHYd 102 TAATT
002 Ndo
¢ DIAd

US 2023/0195462 Al

Jun. 22, 2023 Sheet 3 of 10

Patent Application Publication

V¢ DId
s89§ £655X0
INO VL
VIS | 9VLLINVNIL WOHOUYNIH
s89 1 £E55X0 :
IND V1 %)
INNOD INFHIND | VL LNYNIL TWOIHOMVYIIH
! ONIDH04NI SO0
wo_ || , OEE VS| ONIIOLINOW QNY SO0
O7E OIDOTONIHOLINOH INVNALILINW TYOHONYYIH
ONILNNOD -} —
\\\\\ g POE LNIOV NdD

Vd+ digliueus + Jj ¢7jUeUS | + (] | TiUBUS| &

AvOTIAVd HAAv@D3Y $

0C€ VSI ONIYOLINOW ANV SOD
INYNILILINW TWOIHOHYH3IH

0l€ 84315103

B80T AMLINOYID
NOLLYHINIO s834aav

20 3400 g0E

ALLINDOHIO NOILNDIXA

“. T T VIS SayoYL SO INYNAL m@%ﬂﬂ&ﬁm@.ﬁ
QI"S3Y 'OVL ONIYOILINOW LNYNTL Be] "jueus| ~H uol| ieisibay _
NOILINIFZQ INYNIL MSVIN~LIg dsey g us] "H Jeisibey

L

Nuo_z.m>m.~1®mm.“

£X0=0 INYNIL 93 _
mwvxouo<.~|Is._.z<zm»r|Om_m._

A
00¢

Patent Application Publication Jun. 22, 2023 Sheet 4 of 10 US 2023/0195462 A1

Method 390

Define topology of tenant hierarchy 390A

v

Assign an ID to a thread to map it to a tenant 390B

<«

Associate resources and tenants 390C

«

Set up monitoring use of resources by tenants 390D

<«

Associate QoS policy with tenant use of resource 390E

<«

Concatenate tenant ID with address in a request 390F

v

Use tenant ID to check for QoS policy 390G

FIG. 3B

US 2023/0195462 Al

Jun. 22,2023 Sheet 5 of 10

Patent Application Publication

g — —

-
4]
| LINWOD

o, vy _
<b| LNN 1NN FHOYD Yiva| O0ZF LINN
JHOVD v AYON3N
Al 1INN 91LV1Va
&)
097 (S)43LSN1D NOILNDIXT
797 (S)LINN or
$S300V (S)LINN
AHOW3IN NOILND3X3
ry vy
f p -]
|
857 (S)LINN S3714 ¥ALSIDTY WOISAHd "
——A | R
P e - 75y | av ol
_II@WEE%ﬁ%%%II;_FZ:EEEEm_
r—— — — = -
57 LINN _
_ e 5% LINN
= — HOLYOOTIY (NI _ INIONI NOLLNDIXT
— (157
A
[BeFHOL34 NOILONYISNI] 4/ __
2 067 34090
957 LINN 971L NOILONYLSNI 267 LINN
ﬁ 7€V LINN FHOVO NOILONYLSNI NOILDIQIYd HONYYE
557 8Iy - 1 - - “ 0 |
onranvH| 3L O] aQvay Adonwan ZTv 0% | 87 | Q07 [~o-oq| TOF
NOLLTOxg| AdOVEN | 39v18 31n03X3 /av3ay 37NA3HIS PNINYNIY D01V [Aa003a HIONTT [HoLE4
~ P OYE I REI =T I | e
Vv 9ld 007 aNM3dld ~——

US 2023/0195462 Al

Jun. 22, 2023 Sheet 6 of 10

Patent Application Publication

915 (S)LINN
¥377048.LNOD
sng

G 'old
JEe T mow
IT oo
adowan | _ 90 (S.LINN 3HOYO A34vHS _
_EROEN) T eE T T |
| (SILINN " |ema| |[(OLNN]| | TToLO0T |
075 LINN | 3HOYO | 3HOVO 350d¥nd |
INIOY W3LSAS | NZ0G 300 | VZ0S OO | TWI03dS |
,/ oG
¥0SSI00Nd

Patent Application Publication Jun. 22, 2023 Sheet 7 of 10 US 2023/0195462 A1
615
A 77
| == 8
— I_ — PROCESSOR |7 — 71
- -1
CONTROLLER
co. HUB 620 MEMORY
PROCESSOR | N U |
| avcrg || | MEMORY |
I I | TEST
| | MODULE
660
~ |— - | 640A |
S -
0 . loHgs0 |
' |
I

FIG. 6

Patent Application Publication

(o
M~

&
E‘.'&
=
[{e]
~
Q O
E‘I S -
[a'd <f for!
z3 g g [T
3 @ R \
Lo
S 2 A
e a o |g o
o O K
© ~
L]
o o
(o)
= N
p“ll TR
= |
T
&)
oI L
= E
OC fow) L
(@} P~ _L’
(73] P~ N
%5} o
LLl o a |Q
Q [\cL a
g:) — \
o o ‘E
[
O\I o =
= ~
g
[ap
N
> N
£ | 3
g 2
Y o8
o
o
L O
o

Jun. 22, 2023 Sheet 8 of 10

US 2023/0195462 Al

w 8
% s
< [T
= W<
< |23
z 313
A
u.lﬁl
¢ I~
Q
@
a. gi
I~
O
faN|
o T~
2 N~
O
P~ { 1
g
e
o @
Q =u
S — =9
L o>
(=) o
Q (]
X
N
I~
g —
S
2 o = W
o $—HOT>D
%) Qo
= EE
m ~

Patent Application Publication

Jun. 22, 2023 Sheet 9 of 10

>_
X o
EO’)
LIJ'\
=
—
S 3
3 [
o [N N~ ™~
—_— % M~ =
|2 S L 2
i 8 o o ~
&) o o
= o
ool | 2
a® ~
Qo I/n_
|~ a
L o
8| o~
M~ I 0
o ° S ™
o < n > o —4
N 03| = O = LL
o o ™~ Q
3 S \ \ =
cI.I’j o o
Q |\¢ o
o -
o4
o o~ ©
SIS
_J~J 2
(] M~

US 2023/0195462 Al

[
0

0
MEMORY
132

US 2023/0195462 Al

Jun. 22, 2023 Sheet 10 of 10

Patent Application Publication

26 (S)40SS3004d0D

6 Old
71S (S)LINN
076 — 0¢6 Y¥31704.INOD
LINN AVdSIa ¢£6 LINN VWA LINN NYYHS AHOWIW
EINEREIY
971G (S)LINN
Y3TI0H1INOD —
sng — 206 (S)LINN LOANNODYILNI —
_
_ _
_ 90S (S)LINN IHOVO AIHVHS _
| | WoS | v70S
IN3OV WALSAS _. ¢0G 3400 ._ ¥¢05 3400
076 ¥0SS300¥d NOILYOI1ddY

X o

dIHO ¥V NO W3LSAS

US 2023/0195462 Al

GLOBAL UNIFIED INTERDEPENDENT
MULTI-TENANT QUALITY-OF-SERVICE
PROCESSOR SCHEME

FIELD OF INVENTION

[0001] The field of invention relates generally to computer
architecture, and, more specifically, to allocating shared
resources.

BACKGROUND

[0002] Processor cores in multicore processors may use
shared system resources such as caches (e.g., a last level
cache or LLC), system memory, input/output (I/O) devices,
and interconnects. The quality of service provided to appli-
cations may be unpredictable and/or suboptimal due to
contention for these or other shared resources.

[0003] Some processors include technologies, such as
Resource Director Technology (RDT) from Intel Corpora-
tion, who enable visibility into and/or control over how
shared resources such as LL.C and memory bandwidth are
being used by different applications executing on the pro-
cessor. For example, such technologies may provide for
system software to monitor resource usage, allocate different
amounts of a resource to different applications, and/or and
limit or otherwise control access to a resource.

BRIEF DESCRIPTION OF THE DRAWINGS

[0004] The present invention is illustrated by way of
example and not limitation in the figures of the accompa-
nying drawings, in which like references indicate similar
elements and in which:

[0005] FIG. 1 is a block diagram of a system in which a
processor-level QoS technique may be extended within a
hierarchical tenancy scheme according to embodiments;
[0006] FIG. 2 is block diagram representing a tenant
hierarchy supported by a CPU according to embodiments;
[0007] FIG. 3A is a block diagram representing an archi-
tecture according to embodiments;

[0008] FIG. 3B is a flow diagram illustrating a method
illustrating the establishment and use of a hierarchical

multi-tenant quality-of-service scheme according to
embodiments;
[0009] FIG. 4A is a block diagram illustrating both an

example in-order pipeline and an example register renam-
ing, out-of-order issue/execution pipeline according to
embodiments;

[0010] FIG. 4B is a block diagram illustrating both an
example embodiment of an in-order architecture core and an
example register renaming, out-of-order issue/execution
architecture core to be included in a processor according to
embodiments;

[0011] FIG. 5 is a block diagram of a processor that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments;

[0012] FIG. 6 is a block diagram of a system according to
embodiments;

[0013] FIG. 7 is a block diagram of a system according to
embodiments;

[0014] FIG. 8 is a block diagram of a system according to
embodiments; and

[0015] FIG. 9 is a block diagram of a system-on-a-chip
according to embodiments.

Jun. 22, 2023

DETAILED DESCRIPTION

[0016] Embodiments, including an embodiment referred
to as a GUIM QoS CPU Scheme (Global Unified Interde-
pendent Multitenant quality-of-service central-processing-
unit scheme) are described.

[0017] In the following description, numerous specific
details are set forth. However, it is understood that embodi-
ments may be practiced without these specific details. In
other instances, well-known circuits, structures, and tech-
niques have not been shown in detail in order not to obscure
the understanding of this description.

[0018] References in the specification to “one embodi-
ment,” “an embodiment,” “an example embodiment,” etc.,
indicate that the embodiment described may include a
particular feature, structure, or characteristic, but every
embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases
are not necessarily referring to the same embodiment. Fur-
ther, when a particular feature, structure, or characteristic is
described in connection with an embodiment, it is submitted
that it is within the knowledge of one skilled in the art to
effect such feature, structure, or characteristic in connection
with other embodiments whether or not explicitly described.
[0019] As used in this specification and the claims and
unless otherwise specified, the use of the ordinal adjectives
“first,” “second,” “third,” etc. to describe an element merely
indicates that a particular instance of an element or different
instances of like elements are being referred to, and is not
intended to imply that the elements so described must be in
a particular sequence, either temporally, spatially, in rank-
ing, or in any other manner. Also, as used in descriptions of
embodiments, a “/”” character between terms may mean that
what is described may include or be implemented using,
with, and/or according to the first term and/or the second
term (and/or any other additional terms).

[0020] Also, the terms “bit,” “flag,” “field,” “entry,” “indi-
cator,” etc., may be used to describe any type or content of
a storage location in a register, table, database, or other data
structure, whether implemented in hardware or software, but
are not meant to limit embodiments to any particular type of
storage location or number of bits or other elements within
any particular storage location. For example, the term “bit”
may be used to refer to a bit position within a register and/or
data stored or to be stored in that bit position. The term
“clear” may be used to indicate storing or otherwise causing
the logical value of zero to be stored in a storage location,
and the term “set” may be used to indicate storing or
otherwise causing the logical value of one, all ones, or some
other specified value to be stored in a storage location;
however, these terms are not meant to limit embodiments to
any particular logical convention, as any logical convention
may be used within embodiments.

[0021] In this specification and its drawings, the term
“thread” and/or a block labeled “thread” may mean and/or
represent an application, software thread, process, virtual
machine, container, etc. that may be executed, run, pro-
cessed, created, assigned, etc. on, by, and/or to a core.
[0022] The term “core” may mean any processor or execu-
tion core, as described and/or illustrated in this specification
and its drawings and/or as known in the art, and the terms
“processor core,” “execution core,” and “core” are meant to
be synonymous. The term “uncore” may mean any circuitry,
logic, sub-systems, etc. (e.g., an integrated memory control-
ler (iMC), power management unit, performance monitoring

US 2023/0195462 Al

unit, system and/or 1/O controllers, etc.) in/on a processor or
system-on-chip (SoC) but not within a core, as described
and/or illustrated in this specification and its drawings
and/or as known in the art (e.g., by the name uncore, system
agent, etc.). However, use of the terms core and uncore in in
the description and figures does not limit the location of any
circuitry, hardware, structure, etc., as the location of cir-
cuitry, hardware, structure, etc. may vary in various embodi-
ments.

[0023] For example, the term “MSR” may be used as an
acronym for model or machine specific register, but may be
used more generally to refer to and/or represent one or more
registers or storage locations, one or more of which may be
in a core, one or more of which may be in an uncore, etc.
MSRs included in embodiments, as described below, may
correspond to any one or more model specific registers,
machine specific registers, etc. to control and report on
processor performance, handle system related functions, etc.
Accordingly, descriptions of embodiments including MSRs
may not be limited to the use of MSRs as described;
embodiments may in addition or instead use any other
storage for control, configuration, state, etc. information. In
various embodiments, MSRs (or any set or subset of MSRs)
may or may not be accessible to application and/or user-
level software. In various embodiments, MSRs (or any set or
subset of MSRs) may be within and/or accessible by a core
(core-scoped) or within an uncore and/or accessible by more
than one core (package-scoped).

[0024] The term “quality of service” (or QoS) may be used
to mean or include any measure of quality of service
mentioned in this specification and/or known in the art, to an
individual thread, group of threads (including all threads),
type of thread(s), including measures of and/or related to
performance, predictability, etc. The term “memory band-
width monitoring” (or MBM) may be used to refer to a
technique or the use of a technique to monitor memory
bandwidth use (MBM may also be used to refer to a memory
bandwidth monitor, hardware/firmware/software to perform
memory bandwidth monitoring, as described below. The
term “memory bandwidth allocation” (or MBA) may be
used to refer to a technique or the use of a technique to
allocate memory bandwidth and/or a quantity of memory
bandwidth allocated, provided available, etc. or to be allo-
cated, etc.

[0025] Embodiments of the invention may be used to in
computer and information processing systems to allocate
and/or enforce allocation of shared resources, such as caches
and memory, and may provide improved performance and/
or QoS when multiple tenants and/or threads with differing
priorities are being and/or waiting to be executed. Embodi-
ments may provide for monitoring and/or allocating any
and/or any combination of shared core resources (e.g.,
simultaneous multithreading (SMT) resources, a cache dedi-
cated to a core (e.g., a level 2 (L2) cache to which cache
allocation technology (CAT) and/or code/data prioritization
(CDP) techniques may be applied), a shared translation
lookaside buffer (STLB)) and/or shared uncore resources
(e.g., resources that may be shared/allocated according to
any novel or known (RDT, etc.) techniques).

[0026] Embodiments may be used to provide a hierarchi-
cal scheme for resource monitoring, resource allocation,
and/or any other QoS measurements and/or settings by a
single central processing unit (CPU) or processor for any
number of partitions, tenancy levels, and/or tenants. Aspects

Jun. 22, 2023

of embodiments may be implemented and/or included in a
processor whether central or not; accordingly, the terms
CPU and processor may be used interchangeably. Aspects of
embodiments may be implemented and/or included in a
CPU/processor in an SoC or any other system, such as, but
not limited to, an SoC or system as shown in the drawings.
Desirable features of embodiments may include a CPU-level
approach to defining and supporting a tenant hierarchy for
flexible tagging, monitoring, and allocating of resources;
applying QoS techniques and policies; tracking usage for
billing and liability purposes; etc.

[0027] As an example of a processor-level QoS technique
that may be extended within a hierarchical tenancy scheme
according to embodiments, FIG. 1 shows a block diagram of
system 100, which includes a processor/SoC 102 and in
which the allocated shared resource may be memory band-
width (e.g., between a last level cache (LLC) and memory).
In embodiments, the LLC may be fabricated on the same
substrate (e.g., semiconductor chip or die, SoC, etc.) as
processor/SoC 102 and the memory may be on one or more
separate substrates and/or in one or more packages separate
from the package containing the shared LLC; however, any
arrangement and/or integration of shared resources (e.g.,
cache and/or memory) and users (e.g., cores and/or threads)
in/on a substrate, chiplet, multichip module, package, etc. is
possible in various embodiments.

[0028] The blocks shown in FIG. 1 may be implemented
in logic gates and/or any other type of circuitry, all or parts
of which may be integrated into the circuitry of a processing
device or any other apparatus in a computer or other
information processing system. For example, blocks shown
in FIG. 1 may correspond to and/or be implemented in any
of core 490 in FIG. 4B, processor 500 in FIG. 5, processors
610/615 in FIG. 6, processors 770/780 in FIGS. 7 and 8,
and/or application processor 910 in FIG. 9, each as
described below.

[0029] FIG. 1 shows threads 112 and 114 in/on core 110.
LLC 130 and memory 140 may be shared by threads 112 and
114 and accessed by core 110 and its threads through level
2 (L2) cache 120. Embodiments may include any number of
cores of any architecture (e.g., an embodiment may include
a heterogeneous processor or system having cores of differ-
ent architectures), with any number of threads per core (e.g.,
an embodiment may include a first core with and/or sup-
porting a first number of threads and a second core with
and/or supporting a second (which may be different from the
first) number of threads.

[0030] FIG. 1 also shows MSRs 106, which may corre-
spond to any one or more model specific registers, machine
specific registers, etc., some of which may be specific to a
processor or processor architecture (e.g., Intel® 64 and/or
1A32) and some of which may be more specifically
described below. For example, MSRs 106 may include one
or more platform QoS registers (PQRs), each of which may
be programmed/configured to be associated with threads
(e.g., one core-scoped PQR per thread, with other core-
scoped PQRs per logical processor in other cores). Each
such PQR may also be programmed by software with a class
of service (CLOS or COS) to be associated with a corre-
sponding thread and to be used according to known tech-
niques (e.g., as an RDT resource control tag) and/or as
described below.

[0031] In embodiments, any individual, subset, or set of
PQRs may be programmed and/or re-programmed (e.g.,

US 2023/0195462 Al

during context switches) to provide for desired configura-
tions to be applied (e.g., per thread to be executed). Software
may program each PQR with a CLOS value, which may be
the same as or different from any of the other CLOS values,
such that resources may be controlled based on CLOS
values. To provide for this resource control, a processor may
also include one or more programmable MSRs per CLOS
that software may also program to define control policies per
CLOS. As an example, a first set of MSRs (e.g., capacity
bitmask or CBM MSRs) may be programmed to define
which ways of a shareable cache (e.g., and last-level cache
(LLC) or level 3 (L3) cache) may be used by threads of each
CLOS. As another example, a second set of MSRs (e.g.,
MBA delay MSRs) may be programmed to define which
MBA values (e.g., levels of delay or throttling) are to be used
for threads of each CLOS. Other uses of CLOS values for
resource control are possible.

[0032] FIG. 1 also shows a rate limiter 150, which may be
programmable. Embodiments may include any number of
rate limiters within any number of cores or within an uncore.
In embodiments, rate limiters may limit use of a resource
(e.g., memory bandwidth) by a corresponding core and/or
thread, for example by limiting access by the core/thread to
the resource based on time, based on a crediting scheme, etc.
In embodiments, a throttling technique may be used to
restrict or prevent access during one or more first periods
within a second (larger than the first) period, while allowing
or providing access during the remainder of the second
period. Embodiments may provide for various granularities
at which access may be restricted/prevented, for example,
embodiments may provide for a throttling granularity of
10% such that a rate limiter may perform throttling to reduce
MBA to any of 90%, 80%, 70%, etc. of full capacity.
[0033] In embodiments, for example in embodiments in
which cores are connected through a mesh interconnect on
which messaging may be managed or controlled using a
crediting scheme, the crediting scheme may be used to limit
the rate at which cores are able to pass messages such as
memory access requests toward a memory controller. In
these and/or other embodiments, as may be true of any
circuitry included in embodiments, circuitry that performs
rate limiting may be integrated into or with other circuitry of
a processor, such as circuitry in or at an interface between a
core and a mesh that connects to an integrated memory
controller (e.g., indirectly through such interfaces associated
with other cores) but be conceptually represented as a
separate block in a drawing.

[0034] In these and/in other embodiments, throttling
granularity as described above may be provided for con-
figuration purposes and may be applied using a control
mechanism that approximates the granularity, based on time,
number of credits, etc. In embodiments, rate limit settings
(e.g., throttling levels, delay values) may be applied to
threads or cores through configuration or MSRs that may be
configured by system software to map threads or cores to a
CLOS and a CLOS to a rate limit setting. For example,
throttling may be applied through a first MSR (e.g., I[A32_
PQR_ASSOC) that maps a thread to a CLOS and through a
second MSR (e.g., IA32_1.2_QoS_Ext_Thrtl_n) that maps a
CLOS to a delay value.

[0035] In embodiments, a rate limiter may be set and/or
provided with a setting (e.g., of a rate limit, throttling level,
or delay value) by a rate selector 160. As is the case for rate
limiters, embodiments may include any number of rate

Jun. 22, 2023

selectors. In embodiments, rate selectors may include cir-
cuitry and/or other hardware which may be configured by,
programmed by, and/or used with and/or instead of software/
and or firmware.

[0036] In embodiments, a rate selector may include hard-
ware, firmware, and/or software providing a monitoring
capability (further described below) to determine whether its
associated core/thread is overutilizing memory bandwidth
and hardware and/or software providing a rate setting capa-
bility to set and adjust rate limits for cores/threads that are
overusing bandwidth or consuming less than they are allo-
cated. For example, if a measurement from the monitoring
capability indicates that memory bandwidth demand is
higher than a prescribed memory bandwidth demand, a first
MBA rate setting may be selected, where the first MBA rate
setting is limited and slower than a second MBA rate setting
(e.g., unlimited, unthrottled), that may be otherwise selected
and/or used.

[0037] In embodiments, settings (e.g., delay values) may
be determinable and/or selectable per thread and/or per core
(e.g., depending on the placement of the rate limiter).
Embodiments may provide for determining and/or selecting
settings per thread and per core and may provide program-
mability for software to choose from a number of ways to
select a per core setting based on determined/desired per
thread settings. For example, the per core setting may be the
maximum determined/desired per thread setting for any in
the core (e.g., max(delayValue(CLOS[threadO]),delay Value
(CLOS[threadl]))), the minimum determined/desired per
thread setting for any in the core (e.g., max(delayValue
(CLOS[thread0]), delayValue(CLOS[threadl]))), etc. Such
embodiments may provide a default (e.g., the maximum).
[0038] In embodiments, a rate selector may be part of a
feedback loop that includes input to the rate selector from a
point downstream of (i.e., further from the source than) the
rate limiter. For example, a rate selector may receive input
from and/or related to an interface between an LLC and
memory, as shown in FIG. 1.

[0039] In FIG. 1, rate selector 160 includes memory
bandwidth monitor (MBM) 162 to monitor (e.g., using a
technology, such as RDT, that enables visibility into how
LLC and/or memory bandwidth are being used by different
applications executing on the processor) one or more indi-
cators of memory bandwidth demand and/or use per thread
and/or per core, such as an LL.C cache miss rate. MBM 162
may provide this information to controller 164. Controller
164 may use this information along with a bandwidth
setpoint to determine rate limit 166, which may be provided
to a rate limiter for use as described above.

[0040] An MBM and its use are described above as an
example; however, MBMs and their use according to
embodiments is not limited to the above description. Fur-
thermore, embodiments are not limited to monitoring and/or
allocation memory bandwidth; they may include monitoring
and/or allocating of and/or any combination of resources
and/or applying and supporting any QoS techniques.
Embodiments may be implemented in CPUs, processors,
and cores that support any new or existing instruction set
architecture (ISA) and/or may include one or more new
instructions in and/or extensions to an existing ISA.
[0041] Embodiments may provide a CPU-level approach
to defining and supporting a tenant hierarchy for flexible
monitoring/allocating of resources and/or applying QoS
techniques/policies. As an example of a tenant hierarchy

US 2023/0195462 Al

according to embodiments, FIG. 2 shows three levels of
tenancy that may be supported by a single CPU 200.
[0042] In this example, the owner and/or operator of the
system may divide the system into partitions. Partition 210
may include resources to rent to third parties. Partition 220
may be used to execute the owner/operator’s own workloads
such as operating and managing the system and its traffic.
Partition 230 may be used to execute workloads for cus-
tomers/tenants to be directly managed by the owner/opera-
tor.

[0043] The tenant hierarchy includes three levels of ten-
ancy that may exist within partitions, shown as first level
201, second level 202, and third level 203. First level 201
may be available to be used (e.g., partition 220) or managed
(e.g., partitions 210 and 230) by the owner/operator. As
such, first level 201 is shown as overlapping with second
level 202 and third level 203 because the owner/operator
owns the end-to-end infrastructure, including real state,
networking, and compute.

[0044] Second level 202 may be available to or for cus-
tomers/tenants. For example, second level 202 within par-
tition 210 may be divided into sub-partitions, such as
sub-partitions 240 and 250. Sub-partitions may be rented to
tenants such as a cloud service provider (CSP). A CSP may
further divide a sub-partition (e.g., sub-partition 240 or 250)
to provide, within third level 203, resources, services, etc. to
its own customers/tenants (e.g., sub-partitions 242, 244, and
246 of sub-partition 240; sub-partitions 252 and 254 of
sub-partition 250). Similarly, second level 202 within par-
tition 230 may be rented to providers of specific edge
services such as content delivery and augmented reality.
[0045] A tenant hierarchy scheme such as shown in FIG.
200 and/or other tenant hierarchy schemes according to
embodiments provide for a system owner/operator to man-
age (e.g., monitor/allocate resources, apply QoS techniques/
policies), with a single CPU, all tenancy levels in the system,
and/or for a tenant to own/operate/manage a virtual system
(e.g., resources and/or a partition or sub-partitions) at its
own tenancy level and all tenancy levels below it.

[0046] In this description, an owner/operator of a partition
at the highest tenancy level may be referred to as the tenant
of the partition and also as the owner of the tenant(s) in
sub-partition(s) directly below it. As such, a single owner/
operator of a system may be considered to be multiple
tenants and/or owners. For example, in FIG. 2, the owner/
operator of the system may be considered to be a first tenant
(the first level (or level 1) tenant of partition 210), a second
tenant (the first level tenant of partition 220), a third tenant
(the first level tenant of partition 230), and the owner of the
tenants in partitions 240 and 250. Each tenant at levels
below the highest level may be considered to be a tenant of
its owner, and if it has its own tenant(s), the owner of its
tenant(s). For example, in FIG. 2, the tenant in sub-partition
240 may be considered to be a tenant of the first level tenant
of partition 210, and the owner of the tenants in sub-
partitions 242, 244, and 246.

[0047] Aspects of embodiments are shown in FIG. 3A,
which represents architecture 300 including core 302 and
CPU agent 304. The blocks shown in FIG. 3A may be
implemented in logic gates and/or any other type of cir-
cuitry, all or parts of which may be integrated into the
circuitry of a processing device or any other apparatus in a
computer or other information processing system. For
example, blocks shown in FIG. 3A may correspond to and/or

Jun. 22, 2023

be implemented in any of core 490 in FIG. 4B, processor
500 in FIG. 5, processors 610/615 in FIG. 6, processors
770/780 in FIGS. 7 and 8, and/or application processor 910
in FIG. 9, each as described below

[0048] In FIG. 3A, core 302 includes execution circuitry
306, address generation circuitry 308, and registers 310, and
supports ISA 320 according to embodiments. CPU agent
304 may represent any agent to and/or in which to imple-
ment aspects of embodiments, such as but not limited to a
last level cache (LLC), an Intel® Data Streaming Accelera-
tor (DSA), or a memory controller (MC), and includes
hierarchical multi-tenant QoS logic 330 and monitoring
logic 340.

[0049] Registers 310 may represent one or more MSRs or
any other registers or other storage and may correspond to
MSRs 106 in FIG. 1 or a subset or superset of MSRs 106 in
FIG. 1. Registers 310 may include a register to store a
definition of the topology of the tenant hierarchy. This
register may be referred to as a tenant mask register. It may
be writable with a dedicated instruction to define the topol-
ogy of the tenant hierarchy, with an MSR write instruction,
or with another type of write instruction.

[0050] In embodiments, the topology of the tenant hier-
archy may be defined with a bitmask that specifies the
different levels or tiers of tenancy and a maximum number
of tenants per level. Within the bitmask, consecutive bits of
the same value may correspond to a particular level and a
change from one value to a different value may indicate a
change to a different level. The number of consecutive bits
of the same value may correspond to the maximum number
of tenants per level per owner (e.g., for ‘n’ consecutive bits
per level, the maximum number of tenants in the first level
is 2 to the nth power (2'n), and the maximum number or
tenants per owner in the other levels is 2'n minus 1, as
further described below.

[0051] For example, using a bitmask having a length of
nine (with a bit order from lowest on the right to highest on
the left), a bitmask value of ‘111001111’ defines three levels,
wherein a first or highest level (e.g., for a system owner/
operator) uses three bits (indicated by the highest order
string of ones), a second or middle level (e.g., for a CSP,
other service provider, or other virtual system owner/opera-
tor) uses two bits (indicated by the string of zeroes), and a
third or lowest level (e.g., for tenants of a CSP) uses four bits
(indicated by the lowest order string of ones). In this
example, the maximum number of tenants in the first level
is eight (2 3), the maximum number of second level tenants
per owner (i.e., per first level tenant) is three (2 2 minus 1),
and the maximum number of third level tenants per owner
(i.e., per second level tenant) is fifteen (2 4 minus 1).
[0052] In this description, the bits in the bitmask corre-
sponding to a first level may be referred to as tenant L1 bits
(in the example above, bit positions 8:6, having a value of
‘111°), the bits corresponding to a second level may be
referred to as tenant L2 bits (in the example above, bit
positions 5:4, having a value of ‘00”), the bits corresponding
to a third level may be referred to as tenant L3 bits (in the
example above, bit positions 3:0, having a value of ‘1111°),
etc.

[0053] As another example, using a bitmask having a
length of seven, a bitmask value of ‘1110000’ defines two
levels, wherein a first or highest level uses three L1 bits (the
string of ones) and a second or lowest level uses two L2 bits
(the string of zeroes). In this example, the maximum number

US 2023/0195462 Al

of tenants in the first level is eight (2 3) and the maximum
number of second level tenants per owner (i.e., per first level
tenant) is fifteen (2 4 minus 1).
[0054] In embodiments, a thread may be mapped to an
owner (e.g., with a tag) and assigned a unique identifier (ID)
within a tenancy level (as further described below). The
owner tags and thread IDs are used to identify each thread
and its owner in the tenancy hierarchy. For convenience, an
owner tag concatenated with the thread identifier may be
referred to as a tenant ID.
[0055] For example, for a nine-bit bitmask that specifies
the topology of the tenant hierarchy as described above, a
tenant ID may have a length of nine bits, with bits 8:6 (L1
bits) available to uniquely identify eight first level tenants,
bits 5:4 (L2 bits) available to uniquely identify three second
level tenants per first level tenant, and bits 3:0 (L3 bits)
available to uniquely identify fifteen third level tenants per
second level tenant. For each of the second and third levels,
one bitstring value may be reserved to indicate that the
tenant 1D is to uniquely identify a tenant one level above the
reserved bitstring, as described by example below.
[0056] Continuing this example with more specific
examples, where the reserved bitstring value described
above is all zeroes, the three L1 bits in a tenant ID may be
used to identify one of eight possible first level tenants (from
‘000’ to “111°). Each first level tenant may have up to three
second level tenants, with each second level tenant assigned
atenant ID having the L1 bits of its owner concatenated with
its own L2 bits (from ‘01" to “11°). For convenience,
concatenation may be indicated with the ‘+” symbol (e.g.,
L1+L2 or 001+01)
[0057] The L2 bit value ‘00’ is reserved to indicate that a
corresponding tenant ID refers to a first level tenant alone
(and not to any of its tenants, if any) and may be used, for
example, to associate that tenant with a QoS policy (e.g., a
service-level agreement (SLA), such as an SLA specifying
a resource or share of a resource) at the first level. Examples
of tenant IDs, with the L3 bits as described below), are:
[0058] 000+01+L3 refers to the second level tenant 01
owned by first level tenant 000
[0059] 000+10+L3 refers to the second level tenant 10
owned by first level tenant 000
[0060] 001+00+L3 refers to the first level tenant 000 alone
[0061] 001+01+4L3 refers to the second level tenant 01
owned by first level tenant 001
[0062] 001+00+L3 refers to the first level tenant 001 alone
[0063] Each second level tenant may have up to fifteen
third level tenants, with each third level tenant assigned a
tenant ID having the L1+L.2 bits of its owner concatenated
with its own L3 bits (from ‘0001’ to ‘1111”). The L3 bit
value ‘0000’ is reserved to indicate that a corresponding
tenant 1D refers to a second level tenant alone and may be
used, for example, to associate that tenant with a QoS policy
at the second level. Examples of tenant IDs are:
[0064] 000+01+0001 refers to the third level tenant
0001 of second level tenant 01 of first level tenant 000
[0065] 000+01+0010 refers to the third level tenant
0010 of second level tenant 01 of first level tenant 000
[0066] 000+01+0000 refers to the second level tenant
01 of first level tenant 000, alone
[0067] The tenant bitmask and ID scheme described above
may be used, according to embodiments, to define a tenant
hierarchy, to uniquely identify every tenant within the hier-
archy, to identify the owner of every tenant (and the owner

Jun. 22, 2023

of each owner), to associate each tenant and/or each tenant’s
owner with resources and QoS policies, and to identify each
separate QoS policy applicable to each tenant and each
owner above it in the hierarchy. This scheme is an example
that may be used in one or more embodiments. Other
schemes, aspects of which may be described below, are
possible in other embodiments.

[0068] A core (e.g., core 302) generating a request (e.g., to
access memory) to or through an uncore will include a tenant
ID concatenated with the address (e.g., physical address) for
the request. The concatenation of tenant IDs with addresses
is performed by hardware (e.g., address generation circuitry
308) in the core, so application software does not need to be
aware of its tenancy level or tenant ID.

[0069] In embodiments, system software (e.g., an operat-
ing system (OS)) may register different levels of QoS
enforcement (which may be incremental) within the levels
of tenancy for different CPU resources. For example, a
partition within a first tenancy level may be allocated 10 GB
per second (GB/s) of memory bandwidth, divided into two
sub-partitions in a second tenancy level (e.g., a first sub-
partition with 8 GB/s of the partition’s 10 GB/s and a second
sub-partition with the remaining 2 GB/s or the partition’s 10
GB/s), with the first sub-partition further divided into two
sub-partitions in a third tenancy level (e.g., a third sub-
partition with 6 GB/s of the first sub-partition’s 8 GB/s and
a fourth sub-partition with the remaining 2 GB/s of the first
sub-partition’s 8 GB/s).

[0070] In embodiments, when a request from a core (e.g.,
core 302) arrives at a resource or an agent (e.g., CPU agent
304) controlling a resource, QoS logic 330 checks the tenant
ID in the request’s address to determine if a QoS policy (e.g.,
an SLA specifying the share of the resource (e.g., memory
bandwidth) allocated to the tenant) is established for any of
the levels associated with the request and applies enforce-
ment if needed. If a QoS policy is established for more than
one of the associated levels, the most restrictive policy is
used. For example, for a three-level hierarchy, the QoS logic
will check for a first level SLA using the tenant ID L1 bits
from the address used in the request, check for a second level
SLA using the tenant ID L1 and [.2 bits from the address,
and check for a third level SLA using the tenant ID L1, L2,
and L3 bits from the address.

[0071] In embodiments, demand for and/or use of a
resource by a tenant, group of tenants, level or tier of
tenancy, partition, etc. may be monitored/measured dynami-
cally with hardware (e.g., a leaky bucket controller in or
accessible to QoS logic 330). For example, QoS logic 330
may include a leaky bucket counter which may generate an
output signal to indicates whether a usage threshold or
allocation of usage credits for a resource has been exceeded.
The leaky bucket counter may receive an input signal that
indicates whether an access to or usage of a resource (e.g.,
from/by a tenant) has occurred, such that the leaky bucket
counter may be incremented for each such occurrence (thus
“adding water to the bucket”). The leaky bucket counter may
also be decremented (by the same or a different amount
with/than which it is incremented) for each occurrence of the
expiration of a time window (thus “leaking water from the
bucket”). Therefore, a leaky bucket counter may provide a
dynamic indication of use/demand, which may be used to
determine/select/adjust a rate used or to be used by a tenant,
group of tenants, level or tier of tenancy, partition, etc. One

US 2023/0195462 Al

or more leaky bucket counters may be used with one or more
programmable values per counter.

[0072] Alternative tenant bitmask and ID schemes in
which all bit combinations in all tenancy levels are available
to identify tenants (i.e., no values are reserved) may be
possible by providing for instructions or functions to use
(e.g., as operands) variable length tenant IDs or tags such
that the level to which the instruction or function applies is
implied by the length of the ID or tag. For example, with the
nine-bit mask (111001111) described above, the use of a
three-bit ID or tag (L1 bits) may correspond to performing
the function (e.g., associating a thread and a resource,
associating a thread and a QoS, etc.) at or based on the first
level only, the use of a five-bit ID or tag (L1+L2 bits) may
correspond to performing the function at or based on the first
and second level only, and the use of a nine-bit ID or tag
(L1+L2+L3 bits) may correspond to performing the function
at or based on all three levels.

[0073] Alternative tenant and bitmask ID schemes in
which all bit combinations in all tenancy levels are available
to identify tenants (i.e., no values are reserved) may be
possible by concatenating, along with a tenant ID, a tenancy
level with the address of a request, such that the tenancy
level may be used to determine at which level or levels a
function (e.g., determining which QoS policy applies and/or
enforcing it) is to be performed.

[0074] Registers 310 may also include any number of
registers which may be programmed/configured to be asso-
ciated with any number of threads or thread contexts, in
order to specify, for each of any number of threads, the
tenancy level of the thread, the ownership hierarchy above
the thread, and/or the tenant ID of the thread. The informa-
tion in these registers is used by hardware in the core to
generate the corresponding address (i.e., including the tenant
ID) for requests, as described above. In embodiments, any
individual, subset, or set of these registers may be pro-
grammed and/or re-programmed (e.g., to provide for desired
configurations to be applied and/or changed) and/or may be
saved and restored (e.g., in connection with context
switches).

[0075] For example, as shown in FIG. 3A:

[0076] REG_TENANT_H_TAG includes all the bits
that identify the hierarchical tenant trace for that par-
ticular thread. For instance, if this thread is mapped into
level three of tenancy, this TAG will include Tenant
Level 1 ID+Tenant Level 2 ID.

[0077] REG_TENANT_ID includes the ID for the ten-
ant on the level of the hierarchy where it is mapped.

[0078] REG_LEVEL_ID identifies the current level
where the tenant belongs.

[0079] In embodiments, a thread may access REG_TEN-
ANT_ID and REG_LEVEL_ID but not REG_TENANT _
H_TAG, and only privileged software or a privileged soft-
ware stack may access REG_TENANT_H_TAG. In
embodiments, a baseboard management controller (BMC)
could modify REG_TENANT _ID, REG_LEVEL_ID, and/
or REG_TENANT_H_TAG via an out-of-bound manage-
ment architecture.

[0080] Embodiments may include new instructions and/or
an ISA extension (e.g., ISA 320 in FIG. 3A) to allow for
software (e.g., system or other privileged software) to pro-
gram the tenant mask register, the tenant ID registers,
registers to associate each tenant with resources and QoS
policies, registers to associate resources with QoS policies,

Jun. 22, 2023

etc. Instead of or in addition to such instructions, embodi-
ments may provide for hardware to perform functions such
defining the topology of the tenant hierarchy, assign tenant
IDs, associate tenants with resources and QoS policies,
associate resources with QoS policies, etc. in response to
other events, such as the programming of one or more MSRs
(e.g., by system or other privileged software). Some
examples of such instructions, shown in FIG. 3A, and/or
functions are described below.

[0081] A first instruction may have a ‘Register_ H_Ten_
Bit_Mask BIT_MASK TENANT_DEFINITION’ format,
wherein ‘Register_H_Ten_Bit_Mask’ represents an opcode
and ‘BIT_MASK_TENANT_DEFINITION’ represents an
operand or operand location to specify or indicate a bitmask.
This instruction or function may be used to define the
topology of the hierarchy (e.g., by programming the tenant
mask register).

[0082] A second instruction may have a ‘Register_Mon_
H_Tenant_Tag TENANT_MONITORING_TAG, RES_ID’
format, wherein ‘Register_Mon_H_Tenant_Tag’ represents
an opcode, “TENANT_MONITORING_TAG’ represents a
first operand or operand location to specify or indicate a
monitoring tag, and ‘RES_ID’ represents a second operand
or operand location to specity or indicate a resource ID. This
instruction or function may be used to register a monitoring
tag identifying a tenant in a level for a resource ID. The
resource ID is a unique identifier that identifies a resource
within the CPU (e.g., LLC, memory bandwidth, etc.)

[0083] In embodiments, the monitoring tag may be a
tenant ID. In embodiments, the monitoring tag may imply
that monitoring is to be performed up to a certain level of
tenancy by including all the tenant hierarchical IDs up to a
certain point. For example:

[0084] Monitoring Tenant (and all its subtenants) 0x43
at Level 2 corresponds to registering a tag created by
Level 1 ID Tenant (that owns Tenant 0x43)+0x43.

[0085] Note that this implies that all the traffic generated
by any subtenant for 0x43 will be accumulated in a single
monitoring entry. If, for instance, the tenant with ID 0x51
(belonging to the partition of tenant 0x43) mapped at Level
3 is to be specifically monitored, the following tag may be
registered:

[0086] Level 1 ID Tenant (that owns Tenant 0x43)+0x43+
0x51
[0087] A third instruction may have a ‘Register_QoS_H_

Tenant_Tag TENANT_QOS_TAG, RES_ID, SLA’ format,
wherein ‘Register_QoS_H_Tenant_Tag’ represents an
opcode, ‘TENANT_QOS_TAG’ represents a first operand
or operand location to specify or indicate a QoS tag,
‘RES_ID’ represents a second operand or operand location
to specify or indicate a resource 1D, and ‘SLA’ represents a
third operand to operand location to specify or indicate an
SLA or other QoS policy. This instruction or function may
be used to register a QoS to a tag identifying a tenant in a
level for a resource ID. The resource ID is a unique identifier
that identifies a resource within the CPU (e.g., LLC,
memory bandwidth, etc.)

[0088] For instance, building on the example above, to
enforce 10 GB/s of memory bandwidth to Tenant (and all its
subtenants) 0x43 at Level 2:

US 2023/0195462 Al

[0089] TENANT_QOS_TAG=Level 1 ID Tenant (that
owns Tenant 0x43)+0x43

[0090] SLA=10 GB/s

[0091] Note that this implies that all the traffic generated
by any subtenant for 0x43 will be controlled and/or throttled
as a single tenant. If] for instance, the tenant with ID 0x51
(belonging to the partition of tenant 0x43) mapped at Level
3 is to have a specific SLA, the following tag may be
registered:

[0092] TENANT_QOS_TAG=Level 1 ID Tenant (that
owns Tenant 0x43)+0x43+0x51

[0093] SLA=6 GB/s

[0094] Note that in this later case, at this particular level
the rest of the tenants will have to share the other 4 GB/s of
memory bandwidth unless it is divided using other registra-
tions. Hardware (e.g., automatically) and/or software (e.g.,
by programming model restrictions) may prevent a regis-
tration from violating the ones at higher levels in the
hierarchy. For instance, the total of memory bandwidth
divided among subtenants at Level N+1 may not be allowed
to be higher than the amount of memory bandwidth allo-
cated to the Level N owner of these subtenants.

[0095] Note that multiple registrations may match a tenant
request. For instance, in the previous example, for tenant
0x51 the QoS rules that would be applied for QoS is the later
one because it is specific to that tenant.

[0096] In embodiments, each of the agents, resource con-
trollers, and/or resources (represented as CPU agent 304 in
FIG. 3A) within the CPU (e.g., memory controller, intra-
die-interconnect (IDI) interface, LL.C, etc.) that can poten-
tially track tenant access to resources (e.g., memory band-
width, caches misses, etc.) may include telemetry circuitry
and/or logic (represented as monitoring logic 340 in FIG.
3A) to perform such tracking. Such circuitry/logic may
include circuitry/logic to track requests from a tenant to the
resource and update the corresponding performance moni-
toring data for that function (each resource will have dif-
ferent metrics).

[0097] Such circuitry/logic may also include circuitry/
logic to store the telemetry data per each of the tenants. For
example, this circuitry/logic may be a content-addressable
memory (CAM) based type of structure indexed by the
function ID and the particular metric to be tracked. In case
of overflow for a particular metric and function, the tracking
logic may generate an overflow signal back to the perfor-
mance monitoring logic.

[0098] In embodiments, telemetry data of a tenant may or
may not be accessible by other tenants, and/or a tenant may
be able to specify whether/which other tenants (e.g., an
owner of the tenant) may have access to telemetry data of the
tenant. For example, telemetry data of a CSP tenant may not
be accessible to the CSP, or the CSP tenant may be able to
specify whether or not it is accessible to the CSP.

[0099] This tracking is performed based on registration
(e.g., as described above). Hence, when a request arrives
with memory address, the logic will find all the different
entries that may match that request. For instance, for a tenant
at the third level, the logic will look for three tags (one at
each level) by extracting the following bits (e.g., from the
tenant 1D using the tenant mask):

[0100] Level 1 ID bits

[0101] Level 1 ID bits+Level 2 ID bits

[0102] Level 1 ID bits+Level 2 ID bits+Level 3 ID bits

Jun. 22, 2023

[0103] The logic will update any monitoring entry match-
ing any of the three previous entries.

[0104] In embodiments, each of the agents, resource con-
trollers, and/or resources (represented as CPU agent 304 in
FIG. 3A) within the CPU (e.g., memory controller, IDI
interface, LLC, etc.) that can potentially control or affect
access to resources (e.g., memory bandwidth, etc.) may
include QoS circuitry and/or logic (represented as QoS logic
330 in FIG. 3A) to perform enforcement of QoS policies.
Such circuitry/logic may include circuitry/logic to track
requests from a tenant to the resource and update the
corresponding performance monitoring data for that func-
tion (each resource will have different metrics).

[0105] For example, QoS logic 330 may include circuitry/
logic to check the tenant ID in a request’s address to
determine if a QoS policy is established for the tenant at any
of the levels associated with the request (e.g., by extracting
the applicable bits as described above for monitoring logic
340) and circuitry/logic to apply enforcement if needed. If a
QoS policy is established for more than one of the associated
levels, the most restrictive policy is used. Enforcement may
include holding requests (e.g., in a request queue) until
allocation of the resource becomes available to a tenant (and
possibly all of its subtenants).

[0106] In embodiments, the CPU propagates the tenant
IDs to the various resources and/or controllers of resources
that may be monitored, allocated, etc. Intra-die and inter-die
interconnect request formats, packet formats, protocols, etc.
may be expanded and/or changed in order to propagate
tenant IDs as part of requests.

[0107] In some embodiments, a hierarchical tenancy
architecture may be managed by the system software stack.
In other embodiments, a virtualized nested approach is
possible. For example, each partition may be allowed to
manage the partitions underneath it. In this approach, hard-
ware and/or software may be used to prevent tenants under
a given partition from violating policies enforced by upper
tenants (e.g., the operator).

[0108] FIG. 3B is a flow diagram of method 390, an
example of a method illustrating the establishment and use
of a CPU-based hierarchical multi-tenant QoS scheme
according to embodiments, which may be used to illustrate
the operation of one or more units, elements, blocks, etc. of
hardware according to embodiments such as that shown in
FIG. 3A. The numbering and arrows in FIG. 3B are for ease
of description and do not necessarily require particular
ordering, sequencing, or correspondence of blocks and/or
items.

[0109] In method block 390A, the topology of a tenant
hierarchy is defined, e.g., by programming a CPU register
with a tenancy bitmask. In method block 390B, a thread is
assigned an ID to map it to a partition and/or level within the
tenant hierarchy, e.g., by programming one or more CPU
registers with one or more specification/indication of an
owner tag, thread or tenant IDs, and/or a tenancy level. In
method block 390C, one or more resources are associated
and/or allocated to one or more threads, tenants, and/or
tenancy levels/partitions, e.g., by programming one or more
CPU registers with one or more specifications/indications of
a thread/tenant ID and a resource ID. In method block 390D,
monitoring use of one or more resources by one or more
threads/tenants/levels/partitions is set up, e.g., by program-
ming one or more CPU registers with one or more specifi-
cations/indications of a thread/tenant ID and a resource 1D.

US 2023/0195462 Al

In method block 390E, one or more QoS policies are
associated with the use or allocation of one or more
resources by one or more threads/tenants/levels/partitions,
e.g., by programming one or more CPU registers with one
or more specifications/indications of a thread/tenant 1D, a
resource 1D, and a QoS policy or SLA.

[0110] In method block 390F, a tenant ID is concatenated
(e.g., by processor core 302) with an address for (or other
identification of a resource to fulfill) a request (e.g., a request
involving use of a resource). In method block 390G, the
tenant ID and/or the tenant hierarchy is used to check (e.g.,
by CPU agent 304) for one or more monitoring, usage,
allocation, or other policies associated with the use of the
resource by the tenant or any other relevant tenant (e.g., the
owner of the tenant, a different tenant of the owner, the
owner of the owner). In method block 390H, monitoring is
performed and/or usage allocation is enforced (e.g., by CPU
agent 304) according to the tenant hierarchy (e.g., monitor-
ing is performed at one or more particular tenancy levels, the
most restrictive policy is enforced, etc.).

[0111] In various embodiments, any one or more method
blocks may be rearranged, added, omitted, etc. For example,
embodiments may include, in various orders, any of asso-
ciating one or more threads/tenants/levels/partitions with
one or more resources, associating one or more threads/
tenants/levels/partitions with one or more resource monitor-
ing policies, associating one or more threads/tenants/levels/
partitions with one or more resource allocation policies,
associating one or more threads/tenants/levels/partitions
with one or more QoS policies and/or SLAs, associating one
or more resources with one or more resource monitoring
policies, associating one or more resources with one or more
resource allocation policies, associating one or more
resources with one or more QoS policies and/or SLAs,
monitoring use of one or more resources by one or more
threads/tenants/levels/partitions, enforcing allocation of one
or more resources to one or more threads/tenants/levels/
partitions, etc.

[0112] In embodiments, a processor includes circuitry to
execute threads, registers to store first values to define a
tenant hierarchy, registers to store second values to specify
a location of a thread corresponding to a tenant within the
tenant hierarchy, and circuitry to include the second values
in a request to access a resource. Use of the resource is to be
monitored or controlled based on the location of the tenant
within the tenant hierarchy.

[0113] Any such embodiments may include any or any
combination of the following aspects. At least one of the
second one or more values may be to identify the tenant. At
least one of the second one or more values may be to identify
an owner of the tenant. At least one of the second one or
more values may be to identify a level in the tenant hierarchy
of'the tenant. At least one of the first one or more values may
include a plurality of bitstrings, wherein each of the plurality
of bitstrings corresponds to a level in the tenant hierarchy.
The plurality of bitstrings may include at least one bitstring
of consecutive ones and at least one bitstring of consecutive
zeroes. The one or more second values included in the
request may be to be used by an agent to determine the
location of the tenant in the tenant hierarchy, wherein the
agent is to monitor use of the resource by the thread. The one
or more second values included in the request may be to be
used by an agent to determine the location of the tenant in
the tenant hierarchy, wherein the agent is to control use of

Jun. 22, 2023

the resource by the thread. The processor may also include
a decoder to decode an instruction to program the first one
or more registers, the instruction having a format including
an operand to indicate at least one of the first one or more
values. The processor may also include a decoder to decode
an instruction to associate the tenant and the resource for
monitoring, the instruction having a format including a first
operand to indicate a level in the tenant hierarchy at which
to monitor the resource and a second operand to indicate the
resource. The processor may also include a decoder to
decode an instruction to associate the tenant and the resource
for controlling, the instruction having a format including a
first operand to indicate a level in the tenant hierarchy at
which to control the resource, a second operand to indicate
the resource, and third operand to indicate a quality-of-
service policy to apply to controlling the resource. Control-
ling the resource may be based on a more restrictive of a first
allocation at a level in the tenant hierarchy of the tenant and
a second allocation at a level of the tenant hierarchy of an
owner of the tenant.

[0114] In embodiments, a method includes storing a first
one or more values in a first one or more registers of a
processor to define a tenant hierarchy; storing a second one
or more values in a second one or more registers of the
processor to specify a location of a thread corresponding to
a tenant within the tenant hierarchy; including, by circuitry
in a core of the processor, the second one or more values in
a request to access a resource; and monitoring or controlling
use of the resource based on the location of the tenant within
the tenant hierarchy.

[0115] Any such embodiments may include any or any
combination of the following aspects. The method may also
include associating the tenant and the resource for monitor-
ing, including indicating a level in the tenant hierarchy at
which to monitor the resource. The method may also include
associating the tenant and the resource for controlling,
including indicating a level in the tenant hierarchy at which
to control the resource. The method may also include
associating the tenant and the resource for controlling,
including indicating a quality-of-service policy to apply to
controlling the resource. Controlling the resource is based
on a more restrictive of a first allocation at a level in the
tenant hierarchy of the tenant and a second allocation at a
level in the tenant hierarchy of an owner of the tenant.
[0116] In embodiments, a system includes a processor
having circuitry to execute threads, registers to store first
values to define a tenant hierarchy, registers to store second
values to specify a location of a thread corresponding to a
tenant within the tenant hierarchy, and circuitry to include
the second values in a request to access a resource; and an
agent to monitor or control use of the resource based on the
location of the tenant within the tenant hierarchy.

[0117] Any such embodiments may include any or any
combination of the following aspects. The agent may be to
determine the location of the tenant within the tenant hier-
archy based on the second one or more values in the request.
The agent may be to control the resource based on a more
restrictive of a first allocation at a level in the tenant
hierarchy of the tenant and a second allocation at a level in
the tenant hierarchy of an owner of the tenant.

[0118] In embodiments, an apparatus may include means
for performing any function disclosed herein. In embodi-
ments, an apparatus may include a data storage device that
stores code that when executed by a hardware processor

US 2023/0195462 Al

causes the hardware processor to perform any method
disclosed herein. In embodiments, an apparatus may be as
described in the detailed description. In embodiments, a
method may be as described in the detailed description. In
embodiments, a non-transitory machine-readable medium
may store instructions that when executed by a machine
causes the machine to perform a method including any
method disclosed herein. Embodiments may include any
details, features, etc. or combinations of details, features,
etc. described in this specification.

Example Core Architectures, Processors, and Computer
Architectures

[0119] The figures below detail example architectures and
systems to implement embodiments of the above.

[0120] Processor cores may be implemented in different
ways, for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high-performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Example core
architectures are described next, followed by descriptions of
example processors and computer architectures.

Example Core Architectures

In-Order and Out-of-Order Core Block Diagram

[0121] FIG. 4A is a block diagram illustrating both an
example in-order pipeline and an example register renam-
ing, out-of-order issue/execution pipeline according to
embodiments of the invention. FIG. 4B is a block diagram
illustrating both an example embodiment of an in-order
architecture core and an example register renaming, out-of-
order issue/execution architecture core to be included in a
processor according to embodiments of the invention. The
solid lined boxes in FIGS. 4A-B illustrate the in-order
pipeline and in-order core, while the optional addition of the
dashed lined boxes illustrates the register renaming, out-of-
order issue/execution pipeline and core. Given that the
in-order aspect is a subset of the out-of-order aspect, the
out-of-order aspect will be described.

[0122] In FIG. 4A, a processor pipeline 400 includes a
fetch stage 402, a length decode stage 404, a decode stage

Jun. 22, 2023

406, an allocation stage 408, a renaming stage 410, a
scheduling (also known as a dispatch or issue) stage 412, a
register read/memory read stage 414, an execute stage 416,
a write back/memory write stage 418, an exception handling
stage 422, and a commit stage 424.

[0123] FIG. 4B shows processor core 490 including a
front-end unit 430 coupled to an execution engine unit 450,
and both are coupled to a memory unit 470. The core 490
may be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long
instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 490 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, COprocessor core,
general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.

[0124] The front-end unit 430 includes a branch prediction
unit 432, which is coupled to an instruction cache unit 434,
which is coupled to an instruction translation lookaside
buffer (TLB) 436, which is coupled to an instruction fetch
unit 438, which is coupled to a decode unit 440. The decode
unit 440 (or decoder) may decode instructions, and generate
as an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decode
unit 440 may be implemented using various different mecha-
nisms. Examples of suitable mechanisms include, but are not
limited to, look-up tables, hardware implementations, pro-
grammable logic arrays (PLAs), microcode read only
memories (ROMs), etc. In one embodiment, the core 490
includes a microcode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit
440 or otherwise within the front-end unit 430). The decode
unit 440 is coupled to a rename/allocator unit 452 in the
execution engine unit 450.

[0125] The execution engine unit 450 includes the rename/
allocator unit 452 coupled to a retirement unit 454 and a set
of one or more scheduler unit(s) 456. The scheduler unit(s)
456 represents any number of different schedulers, including
reservations stations, central instruction window, etc. The
scheduler unit(s) 456 is coupled to the physical register
file(s) unit(s) 458. Each of the physical register file(s) units
458 represents one or more physical register files, different
ones of which store one or more different data types, such as
scalar integer, scalar floating point, packed integer, packed
floating point, vector integer, vector floating point, status
(e.g., an instruction pointer that is the address of the next
instruction to be executed), etc. In one embodiment, the
physical register file(s) unit 458 comprises a vector registers
unit, a write mask registers unit, and a scalar registers unit.
These register units may provide architectural vector regis-
ters, vector mask registers, and general-purpose registers.
The physical register file(s) unit(s) 458 is overlapped by the
retirement unit 454 to illustrate various ways in which
register renaming and out-of-order execution may be imple-
mented (e.g., using a reorder buffer(s) and a retirement
register file(s); using a future file(s), a history buffer(s), and
a retirement register file(s); using a register map and a pool
of registers; etc.). The retirement unit 454 and the physical
register file(s) unit(s) 458 are coupled to the execution
cluster(s) 460. The execution cluster(s) 460 includes a set of
one or more execution units 462 and a set of one or more
memory access Units 464. The execution units 462 may

US 2023/0195462 Al

perform various operations (e.g., shifts, addition, subtrac-
tion, multiplication) and on various types of data (e.g., scalar
floating point, packed integer, packed floating point, vector
integer, vector floating point). While some embodiments
may include a number of execution units dedicated to
specific functions or sets of functions, other embodiments
may include only one execution unit or multiple execution
units that all perform all functions. The scheduler unit(s)
456, physical register file(s) unit(s) 458, and execution
cluster(s) 460 are shown as being possibly plural because
certain embodiments create separate pipelines for certain
types of data/operations (e.g., a scalar integer pipeline, a
scalar floating point/packed integer/packed floating point/
vector integer/vector floating point pipeline, and/or a
memory access pipeline that each have their own scheduler
unit, physical register file(s) unit, and/or execution cluster—
and in the case of a separate memory access pipeline, certain
embodiments are implemented in which only the execution
cluster of this pipeline has the memory access unit(s) 464).
It should also be understood that where separate pipelines
are used, one or more of these pipelines may be out-of-order
issue/execution and the rest in-order.

[0126] The set of memory access units 464 is coupled to
the memory unit 470, which includes a data TLB unit 472
coupled to a data cache unit 474 coupled to a level 2 (L2)
cache unit 476. In one example embodiment, the memory
access units 464 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 472 in the memory unit 470. The instruction
cache unit 434 is further coupled to a level 2 (1.2) cache unit
476 in the memory unit 470. The 1.2 cache unit 476 is
coupled to one or more other levels of cache and eventually
to a main memory.

[0127] By way of example, the example register renaming,
out-of-order issue/execution core architecture may imple-
ment the pipeline 400 as follows: 1) the instruction fetch 438
performs the fetch and length decoding stages 402 and 404;
2) the decode unit 440 performs the decode stage 406; 3) the
rename/allocator unit 452 performs the allocation stage 408
and renaming stage 410; 4) the scheduler unit(s) 456 per-
forms the schedule stage 412; 5) the physical register file(s)
unit(s) 458 and the memory unit 470 perform the register
read/memory read stage 414; the execution cluster 460
perform the execute stage 416; 6) the memory unit 470 and
the physical register file(s) unit(s) 458 perform the write
back/memory write stage 418; 7) various units may be
involved in the exception handling stage 422; and 8) the
retirement unit 454 and the physical register file(s) unit(s)
458 perform the commit stage 424.

[0128] The core 490 may support one or more instructions
sets (e.g., the x86 instruction set (with some extensions that
have been added with newer versions); the MIPS instruction
set of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 490 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the
operations used by many multimedia applications to be
performed using packed data.

[0129] It should be understood that the core may support
multithreading (executing two or more parallel sets of
operations or threads), and may do so in a variety of ways
including time sliced multithreading, simultaneous multi-

Jun. 22, 2023

threading (where a single physical core provides a logical
core for each of the threads that physical core is simultane-
ously multithreading), or a combination thereof (e.g., time
sliced fetching and decoding and simultaneous multithread-
ing thereafter such as in the Intel® Hyperthreading technol-
ogy).

[0130] While register renaming is described in the context
of out-of-order execution, it should be understood that
register renaming may be used in an in-order architecture.
While the illustrated embodiment of the processor also
includes separate instruction and data cache units 434/474
and a shared L2 cache unit 476, alternative embodiments
may have a single internal cache for both instructions and
data, such as, for example, a Level 1 (L1) internal cache, or
multiple levels of internal cache. In some embodiments, the
system may include a combination of an internal cache and
an external cache that is external to the core and/or the
processor. Alternatively, all of the cache may be external to
the core and/or the processor.

[0131] FIG. 5 is a block diagram of a processor 500 that
may have more than one core, may have an integrated
memory controller, and may have integrated graphics
according to embodiments of the invention. The solid lined
boxes in FIG. 5 illustrate a processor 500 with a single core
502A, a system agent 510, a set of one or more bus controller
units 516, while the optional addition of the dashed lined
boxes illustrates an alternative processor 500 with multiple
cores 502A-N, a set of one or more integrated memory
controller unit(s) 514 in the system agent unit 510, and
special purpose logic 508.

[0132] Thus, different implementations of the processor
500 may include: 1) a CPU with the special purpose logic
508 being integrated graphics and/or scientific (throughput)
logic (which may include one or more cores), and the cores
502A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 502A-N being a large number of special purpose cores
intended primarily for graphics and/or scientific (through-
put); and 3) a coprocessor with the cores 502A-N being a
large number of general purpose in-order cores. Thus, the
processor 500 may be a general-purpose processor, copro-
cessor, or special-purpose processor, such as, for example, a
network or communication processor, compression engine,
graphics processor, GPGPU (general purpose graphics pro-
cessing unit), a high-throughput many integrated core (MIC)
coprocessor (including 30 or more cores), embedded pro-
cessor, or the like. The processor may be implemented on
one or more chips. The processor 500 may be a part of
and/or may be implemented on one or more substrates using
any of a number of process technologies, such as, for
example, BICMOS, CMOS, or NMOS.

[0133] The memory hierarchy includes one or more levels
of cache within the cores, a set or one or more shared cache
units 506, and external memory (not shown) coupled to the
set of integrated memory controller units 514. The set of
shared cache units 506 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring-
based interconnect unit 512 interconnects the integrated
graphics logic 508 (integrated graphics logic 508 is an
example of and is also referred to herein as special purpose
logic), the set of shared cache units 506, and the system

US 2023/0195462 Al

agent unit 510/integrated memory controller unit(s) 514,
alternative embodiments may use any number of well-
known techniques for interconnecting such units. In one
embodiment, coherency is maintained between one or more
cache units 506 and cores 502A-N.

[0134] In some embodiments, one or more of the cores
502A-N are capable of multi-threading. The system agent
510 includes those components coordinating and operating
cores 502A-N. The system agent unit 510 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 502A-N and the
integrated graphics logic 508. The display unit is for driving
one or more externally connected displays.

[0135] The cores 502A-N may be homogenous or hetero-
geneous in terms of architecture instruction set; that is, two
or more of the cores 502A-N may be capable of execution
the same instruction set, while others may be capable of
executing only a subset of that instruction set or a different
instruction set.

Example Computer Architectures

[0136] FIGS. 6-9 are block diagrams of example computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, serv-
ers, network devices, network hubs, switches, embedded
processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, handheld devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

[0137] Referring now to FIG. 6, shown is a block diagram
of a system 600 in accordance with one embodiment of the
present invention. The system 600 may include one or more
processors 610, 615, which are coupled to a controller hub
620. In one embodiment, the controller hub 620 includes a
graphics memory controller hub (GMCH) 690 and an Input/
Output Hub (IOH) 650 (which may be on separate chips);
the GMCH 690 includes memory and graphics controllers to
which are coupled memory 640 and a coprocessor 645; the
IOH 650 couples input/output (I/O) devices 660 to the
GMCH 690. Alternatively, one or both of the memory and
graphics controllers are integrated within the processor (as
described herein), the memory 640 and the coprocessor 645
are coupled directly to the processor 610, and the controller
hub 620 in a single chip with the IOH 650.

[0138] The optional nature of additional processors 615 is
denoted in FIG. 6 with broken lines. Each processor 610,
615 may include one or more of the processing cores
described herein and may be some version of the processor
500.

[0139] The memory 640 may be, for example, dynamic
random-access memory (DRAM), phase change memory
(PCM), or a combination of the two. For at least one
embodiment, the controller hub 620 communicates with the
processor(s) 610, 615 via a multi-drop bus, such as a
frontside bus (FSB), point-to-point interface such as Quick-
Path Interconnect (QPI), or similar connection 695.

[0140] In one embodiment, the coprocessor 645 is a spe-
cial-purpose processor, such as, for example, a high-
throughput MIC processor, a network or communication

Jun. 22, 2023

processor, compression engine, graphics processor, GPGPU,
embedded processor, or the like. In one embodiment, con-
troller hub 620 may include an integrated graphics accel-
erator.

[0141] There can be a variety of differences between the
physical resources 610, 615 in terms of a spectrum of
metrics of merit including architectural, microarchitectural,
thermal, power consumption characteristics, and the like.
[0142] In one embodiment, the processor 610 executes
instructions that control data processing operations of a
general type. Embedded within the instructions may be
coprocessor instructions. The processor 610 recognizes
these coprocessor instructions as being of a type that should
be executed by the attached coprocessor 645. Accordingly,
the processor 610 issues these coprocessor instructions (or
control signals representing coprocessor instructions) on a
coprocessor bus or other interconnect, to coprocessor 645.
Coprocessor(s) 645 accept and execute the received copro-
cessor instructions.

[0143] Referring now to FIG. 7, shown is a block diagram
of a first more specific example system 700 in accordance
with an embodiment of the present invention. As shown in
FIG. 7, multiprocessor system 700 is a point-to-point inter-
connect system, and includes a first processor 770 and a
second processor 780 coupled via a point-to-point intercon-
nect 750. Each of processors 770 and 780 may be some
version of the processor 500. In one embodiment of the
invention, processors 770 and 780 are respectively proces-
sors 610 and 615, while coprocessor 738 is coprocessor 645.
In another embodiment, processors 770 and 780 are respec-
tively processor 610 and coprocessor 645.

[0144] Processors 770 and 780 are shown including inte-
grated memory controller (IMC) units 772 and 782, respec-
tively. Processor 770 also includes as part of its bus con-
troller unit’s point-to-point (P-P) interfaces 776 and 778;
similarly, second processor 780 includes P-P interfaces 786
and 788. Processors 770, 780 may exchange information via
a point-to-point (P-P) interface 750 using P-P interface
circuits 778, 788. As shown in FIG. 7, IMCs 772 and 782
couple the processors to respective memories, namely a
memory 732 and a memory 734, which may be portions of
main memory locally attached to the respective processors.
[0145] Processors 770, 780 may each exchange informa-
tion with a chipset 790 via individual P-P interfaces 752, 754
using point to point interface circuits 776, 794, 786, 798.
Chipset 790 may optionally exchange information with the
coprocessor 738 via a high-performance interface 792. In
one embodiment, the coprocessor 738 is a special-purpose
processor, such as, for example, a high-throughput MIC
processor, a network or communication processor, compres-
sion engine, graphics processor, GPGPU, embedded proces-
sor, or the like.

[0146] A shared cache (not shown) may be included in
either processor or outside of both processors, yet connected
with the processors via P-P interconnect, such that either or
both processors’ local cache information may be stored in
the shared cache if a processor is placed into a low power
mode.

[0147] Chipset 790 may be coupled to a first bus 716 via
an interface 796. In one embodiment, first bus 716 may be
a Peripheral Component Interconnect (PCI) bus, or a bus
such as a PCI Express bus or another third generation 1/0
interconnect bus, although the scope of the present invention
is not so limited.

US 2023/0195462 Al

[0148] As shown in FIG. 7, various /O devices 714 may
be coupled to first bus 716, along with a bus bridge 718
which couples first bus 716 to a second bus 720. In one
embodiment, one or more additional processor(s) 715, such
as coprocessors, high-throughput MIC processors,
GPGPU’s, accelerators (such as, e.g., graphics accelerators
or digital signal processing (DSP) units), field program-
mable gate arrays, or any other processor, are coupled to first
bus 716. In one embodiment, second bus 720 may be a low
pin count (LPC) bus. Various devices may be coupled to a
second bus 720 including, for example, a keyboard and/or
mouse 722, communication devices 727 and a storage unit
728 such as a disk drive or other mass storage device which
may include instructions/code and data 730, in one embodi-
ment. Further, an audio /O 724 may be coupled to the
second bus 720. Note that other architectures are possible.
For example, instead of the point-to-point architecture of
FIG. 7, a system may implement a multi-drop bus or other
such architecture.

[0149] Referring now to FIG. 8, shown is a block diagram
of'a second more specific example system 800 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 7 and 8 bear like reference numerals, and certain
aspects of FIG. 7 have been omitted from FIG. 8 in order to
avoid obscuring other aspects of FIG. 8.

[0150] FIG. 8 illustrates that the processors 770, 780 may
include integrated memory and 1/O control logic (“CL”) 772
and 782, respectively. Thus, the CL 772, 782 include inte-
grated memory controller units and include I/O control
logic. FIG. 8 illustrates that not only are the memories 732,
734 coupled to the CL 772, 782, but also that I/O devices
814 are also coupled to the control logic 772, 782. Legacy
1/0 devices 815 are coupled to the chipset 790.

[0151] Referring now to FIG. 9, shown is a block diagram
of a SoC 900 in accordance with an embodiment of the
present invention. Similar elements in FIG. 5 bear like
reference numerals. Also, dashed lined boxes are optional
features on more advanced SoCs. In FIG. 9, an interconnect
unit(s) 902 is coupled to: an application processor 910 which
includes a set of one or more cores 502A-N, which include
cache units 504A-N, and shared cache unit(s) 506; a system
agent unit 510; a bus controller unit(s) 516; an integrated
memory controller unit(s) 514; a set or one or more copro-
cessors 920 which may include integrated graphics logic, an
image processor, an audio processor, and a video processor;
a static random access memory (SRAM) unit 930; a direct
memory access (DMA) unit 932; and a display unit 940 for
coupling to one or more external displays. In one embodi-
ment, the coprocessor(s) 920 include a special-purpose
processor, such as, for example, a network or communica-
tion processor, compression engine, GPGPU, a high-
throughput MIC processor, embedded processor, or the like.
[0152] Embodiments of the mechanisms disclosed herein
may be implemented in hardware, software, firmware, or a
combination of such implementation approaches. Embodi-
ments of the invention may be implemented as computer
programs or program code executing on programmable
systems comprising at least one processor, a storage system
(including volatile and non-volatile memory and/or storage
elements), at least one input device, and at least one output
device.

[0153] Program code, such as code 730 illustrated in FIG.
7, may be applied to input instructions to perform the
functions described herein and generate output information.

Jun. 22, 2023

The output information may be applied to one or more
output devices, in known fashion. For purposes of this
application, a processing system includes any system that
has a processor, such as, for example; a digital signal
processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[0154] The program code may be implemented in a high-
level procedural or object-oriented programming language
to communicate with a processing system. The program
code may also be implemented in assembly or machine
language, if desired. In fact, the mechanisms described
herein are not limited in scope to any particular program-
ming language. In any case, the language may be a compiled
or interpreted language.

[0155] One or more aspects of at least one embodiment
may be implemented by representative instructions stored on
a machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations (known as “IP
cores”) may be stored on a tangible, machine readable
medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually
make the logic or processor.

[0156] Such machine-readable storage media may
include, without limitation, non-transitory, tangible arrange-
ments of articles manufactured or formed by a machine or
device, including storage media such as hard disks, any
other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact
disk rewritables (CD-RWs), and magneto-optical disks,
semiconductor devices such as read-only memories
(ROMs), random access memories (RAMs) such as dynamic
random access memories (DRAMs), static random access
memories (SRAMs), erasable programmable read-only
memories (EPROMs), flash memories, electrically erasable
programmable read-only memories (EEPROMs), phase
change memory (PCM), magnetic or optical cards, or any
other type of media suitable for storing electronic instruc-
tions.

[0157] Accordingly, embodiments of the invention also
include non-transitory, tangible machine-readable media
containing instructions or containing design data, such as
Hardware Description Language (HDL), which defines
structures, circuits, apparatuses, processors and/or system
features described herein. Such embodiments may also be
referred to as program products.

[0158] In this specification, operations in flow diagrams
may have been described with reference to example embodi-
ments of other figures. However, it should be understood
that the operations of the flow diagrams may be performed
by embodiments of the invention other than those discussed
with reference to other figures, and the embodiments of the
invention discussed with reference to other figures may
perform operations different than those discussed with ref-
erence to flow diagrams. Furthermore, while the flow dia-
grams in the figures show a particular order of operations
performed by certain embodiments of the invention, it
should be understood that such order is for example (e.g.,
alternative embodiments may perform the operations in a
different order, combine certain operations, overlap certain
operations, etc.).

[0159] While the invention has been described in terms of
several embodiments, those skilled in the art will recognize

US 2023/0195462 Al

that the invention is not limited to the embodiments
described, can be practiced with modification and alteration
within the spirit and scope of the appended claims. The
description is thus to be regarded as illustrative instead of
limiting.

What is claimed is:

1. A processor comprising:

execution circuitry to execute one or more threads;

a first one or more registers to store a first one or more
values to define a tenant hierarchy;

a second one or more registers to store a second one or
more values to specify a location of a thread corre-
sponding to a tenant within the tenant hierarchy; and

address generation circuitry to include the second one or
more values in a request to access a resource, wherein
use of the resource is to be monitored or controlled
based on the location of the tenant within the tenant
hierarchy.

2. The processor of claim 1, wherein at least one of the

second one or more values is to identify the tenant.

3. The processor of claim 2, wherein at least one of the
second one or more values is to identify an owner of the
tenant.

4. The processor of claim 2, wherein at least one of the
second one or more values is to identify a level in the tenant
hierarchy of the tenant.

5. The processor of claim 1, wherein at least one of the
first one or more values includes a plurality of bitstrings,
wherein each of the plurality of bitstrings corresponds to a
level in the tenant hierarchy.

6. The processor of claim 5, wherein the plurality of
bitstrings includes at least one bitstring of consecutive ones
and at least one bitstring of consecutive zeroes.

7. The processor of claim 1, wherein the one or more
second values included in the request is to be used by an
agent to determine the location of the tenant in the tenant
hierarchy, wherein the agent is to monitor use of the resource
by the thread.

8. The processor of claim 1, wherein the one or more
second values included in the request is to be used by an
agent to determine the location of the tenant in the tenant
hierarchy, wherein the agent is to control use of the resource
by the thread.

9. The processor of claim 1, further comprising a decoder
to decode an instruction to program the first one or more
registers, the instruction having a format including an oper-
and to indicate at least one of the first one or more values.

10. The processor of claim 1, further comprising a
decoder to decode an instruction to associate the tenant and
the resource for monitoring, the instruction having a format
including a first operand to indicate a level in the tenant
hierarchy at which to monitor the resource and a second
operand to indicate the resource.

11. The processor of claim 1, further comprising a decoder
to decode an instruction to associate the tenant and the
resource for controlling, the instruction having a format
including a first operand to indicate a level in the tenant
hierarchy at which to control the resource, a second operand

Jun. 22, 2023

to indicate the resource, and third operand to indicate a
quality-of-service policy to apply to controlling the
resource.

12. The processor of claim 1, wherein controlling the
resource is to be based on a more restrictive of a first
allocation at a level in the tenant hierarchy of the tenant and
a second allocation at a level of the tenant hierarchy of an
owner of the tenant.

13. A method comprising:

storing a first one or more values in a first one or more

registers of a processor to define a tenant hierarchy;

storing a second one or more values in a second one or
more registers of the processor to specity a location of

a thread corresponding to a tenant within the tenant

hierarchy;

including, by circuitry in a core of the processor, the

second one or more values in a request to access a

resource; and

monitoring or controlling use of the resource based on the

location of the tenant within the tenant hierarchy.

14. The method of claim 13, further comprising associ-
ating the tenant and the resource for monitoring, including
indicating a level in the tenant hierarchy at which to monitor
the resource.

15. The method of claim 13, further comprising associ-
ating the tenant and the resource for controlling, including
indicating a level in the tenant hierarchy at which to control
the resource.

16. The method of claim 13, further comprising associ-
ating the tenant and the resource for controlling, including
indicating a quality-of-service policy to apply to controlling
the resource.

17. The method of claim 13, wherein controlling the
resource is based on a more restrictive of a first allocation at
a level in the tenant hierarchy of the tenant and a second
allocation at a level in the tenant hierarchy of an owner of
the tenant.

18. A system comprising:

a processor including:

execution circuitry to execute one or more threads;

a first one or more registers to store a first one or more
values to define a tenant hierarchy;

a second one or more registers to store a second one or
more values to specify a location of a thread corre-
sponding to a tenant within the tenant hierarchy; and

address generation circuitry to include the second one
or more values in a request to access a resource; and

an agent to monitor or control use of the resource based
on the location of the tenant within the tenant hierarchy.

19. The system of claim 18, wherein the agent is to
determine the location of the tenant within the tenant hier-
archy based on the second one or more values in the request.

20. The system of claim 18, wherein the agent is to control
the resource based on a more restrictive of a first allocation
at a level in the tenant hierarchy of the tenant and a second
allocation at a level in the tenant hierarchy of an owner of
the tenant.

