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ABSTRACT

The methods and systems provided can automatically deter-
mine an Arteriolar-to-Venular diameter Ratio, AVR, in blood
vessels, such as retinal blood vessels and other blood vessels
in vertebrates. The AVR is an important predictor of
increases in the risk for stroke, cerebral atrophy, cognitive
decline, and myocardial infarct.
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AUTOMATED DETERMINATION OF
ARTERIOVENOUS RATIO IN IMAGES OF
BLOOD VESSELS

CROSS REFERENCE TO RELATED PATENT
APPLICATION

[0001] This application is a continuation of U.S. Non-
Provisional application Ser. No. 15/936,162, filed on Mar.
26, 2018, which is a continuation of U.S. Non-Provisional
application Ser. No. 13/355,386, filed on Jan. 20, 2012, and
issued as U.S. Pat. No. 9,924,867 on Mar. 27, 2018, which
claims priority to U.S. Provisional Application No. 61/434,
551, filed on Jan. 20, 2011, each of which are incorporated
by reference in their entireties herein.

GOVERNMENT LICENSE RIGHTS

[0002] This invention was made with government support
under EY017066 awarded by the National Institutes of
Health. The government has certain rights in the invention.

SUMMARY

[0003] The methods and systems provided can automati-
cally determine an Arteriolar-to-Venular diameter Ratio,
AVR, in blood vessels, such as retinal blood vessels and
other blood vessels in vertebrates. The AVR is an important
predictor of increases in the risk for stroke, cerebral atrophy,
cognitive decline, and myocardial infarct. It can thus be used
to perform risk analysis of (a) cardiovascular events in
patients already undergoing fundus imaging for other rea-
sons, such as diabetic retinopathy screening, (b) risk analysis
for patients undergoing fundus imaging for specifically that
reason, or (c) risk analysis in other situations.

[0004] The methods and systems provided can predict
cardiovascular events. In different embodiments, the meth-
ods and systems provided can be applicable in many areas
including Medicine, Neurology, Primary Care, Ophthalmol-
ogy, as well as other applications to determine properties of
blood vessels in other parts of the body that are suitable for
multi-wavelength imaging, such as the iris, the skin, the
eardrum, as well as other organs in albino animals.

[0005] Until now, the AVR has always been determined
manually from retinal color fundus images, which is a time
consuming process requiring an expert. Though clinicians
look at the retina, they can only perform gross estimates for
substantially abnormal a/v ratios, and are incapable of
determining numeric ratios.

[0006] A decreased ratio of the width of retinal arteries to
veins (Arteriolar-to-Venular diameter Ratio, AVR), can be
predictive of medical conditions such as cerebral atrophy,
stroke and other cardiovascular events. Tortuous and dilated
arteries and veins, as well as decreased AVR can also be a
marker for Plus disease in retinopathy of prematurity. In an
aspect, the methods and systems provided can estimate the
AVR in retinal color images by detecting the location of the
optic disc, determining an appropriate region of interest
(ROI), classifying vessels as arteries or veins, estimating the
widths and calculating the AVR. In a further aspect, after
vessel segmentation and vessel width determination, the
optic disc is located and the system can eliminate all vessels
outside the AVR measurement ROI. A skeletonization opera-
tion can be applied to the remaining vessels after which
vessel crossings and bifurcation points can be removed,
leaving a set of vessel segments that are vessel centerline
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pixels. Features can be extracted from each centerline pixel
in order to assign these a soft label indicating the likelihood
the pixel is part of a vein. As all centerline pixels in a
connected vessel segment should be the same type, the
median soft label can be assigned to each centerline pixel in
the segment. Artery/vein pairs can be matched using an
iterative algorithm, and the widths of the vessels used to
calculate the AVR.

[0007] The automated method and systems provided for
determination of the AVR can have substantial impact on
clinical practice, and an improved assessment for patients at
risk for cardiovascular and brain disease.

[0008] Additional advantages will be set forth in part in
the description which follows or may be learned by practice.
The advantages will be realized and attained by means of the
elements and combinations particularly pointed out in the
appended claims. It is to be understood that both the
foregoing general description and the following detailed
description are exemplary and explanatory only and are not
restrictive, as claimed.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The accompanying drawings, which are incorpo-
rated in and constitute a part of this specification, illustrate
embodiments and together with the description, serve to
explain the principles of the methods and systems:

[0010] FIG. 1 shows an image overlaid with an automati-
cally determined ROI region;

[0011] FIG. 2A shows a color fundus image;
[0012] FIG. 2B shows a vessel likelihood map;
[0013] FIG. 2C shows a splat map, the borders of the

individual splats are shown;

[0014] FIG. 2D shows a processed vessel likelihood map;
[0015] FIG. 2E shows vessel centerlines where each cen-
terline pixel has been assigned the likelihood it is inside a
vein (dilated for display);

[0016] FIG. 2F shows final width measures overlaid on the
original image shown in FIG. 2A;

[0017] FIG. 3A shows a retinal image;

[0018] FIG. 3B shows an artery vein centerline classifi-
cation result overlaid on the retinal image shown in FIG. 3A;
[0019] FIG. 4 shows a detail of a fundus photograph
showing the measurement diameters and the vessel cross-
ings where width measurements are obtained;

[0020] FIG. 5A shows a color fundus image;

[0021] FIG. 5B shows the corresponding vesselness image
of the color fundus image shown in FIG. 5A;

[0022] FIG. 6A shows a small segment of a vessel
extracted from FIG. 5A or FIG. 5B;

[0023] FIG. 6B shows a vessel probability image of FIG.
6A;

[0024] FIG. 6C shows a vessel centerline image of FIG.
6A;

[0025] FIG. 6D shows vessel growing directions;

[0026] FIG. 6E shows a graph depiction of vessel growing
directions;

[0027] FIG. 7A shows an enlarged part of a channel
image;

[0028] FIG. 7B shows an orientation sensitive 1D deriva-

tive of Gaussian result;

[0029] FIG. 8 shows an exemplary flowchart illustrating
steps of a method;

[0030] FIG. 9 shows a curve from a ROC analysis;
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[0031] FIG. 10A provides Bland-Altman plots or the
agreement between an automatic system and a reference
standard;
[0032] FIG. 10B provides Bland-Altman plots or the
agreement between a second observer and the reference
standard;

[0033] FIG. 11A shows an image from the CLRIS data-
base;
[0034] FIG. 11B shows an enlarged part of the image

shown in FIG. 11A;

[0035] FIG. 12 shows a correlation of predicted vessel
width and a mean of the observers’ measurement for HRIS;
[0036] FIG. 13 illustrates a relationship between vessel
width and distance to optic disc;

[0037] FIG. 14A shows a test vessel segment from HRIS
[0038] FIG. 14B shows a test vessel segment from KPIS;
[0039] FIG. 14C shows the vessel width measurement

result of FIG. 14A;

[0040] FIG. 14D shows the vessel width measurement
result of FIG. 14B;

[0041] FIG. 14E shows the cross-sectional view of vessel
intensity with regard to the distance to the centerline for
FIG. 14A;

[0042] FIG. 14F shows a cross-sectional view of vessel
intensity with regard to a distance to a centerline of the test
vessel segment shown in FIG. 14B; and

[0043] FIG. 15 is an exemplary operating environment.
DETAILED DESCRIPTION
[0044] Before the present methods and systems are dis-

closed and described, it is to be understood that the methods
and systems are not limited to specific methods, specific
components, or to particular configurations. It is also to be
understood that the terminology used herein is for the
purpose of describing particular embodiments only and is
not intended to be limiting.

[0045] As used in the specification and the appended
claims, the singular forms “a,” “an” and “the” include plural
referents unless the context clearly dictates otherwise.
Ranges may be expressed herein as from “about” one
particular value, and/or to “about” another particular value.
When such a range is expressed, another embodiment
includes from the one particular value and/or to the other
particular value. Similarly, when values are expressed as
approximations, by use of the antecedent “about,” it will be
understood that the particular value forms another embodi-
ment. It will be further understood that the endpoints of each
of the ranges are significant both in relation to the other
endpoint, and independently of the other endpoint.

[0046] “Optional” or “optionally” means that the subse-
quently described event or circumstance may or may not
occur, and that the description includes instances where said
event or circumstance occurs and instances where it does
not.

[0047] Throughout the description and claims of this
specification, the word “comprise” and variations of the
word, such as “comprising” and “comprises,” means
“including but not limited to,” and is not intended to
exclude, for example, other additives, components, integers
or steps. “Exemplary” means “an example of” and is not
intended to convey an indication of a preferred or ideal
embodiment. “Such as™ is not used in a restrictive sense, but
for explanatory purposes.
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[0048] Disclosed are components that can be used to
perform the disclosed methods and systems. These and other
components are disclosed herein, and it is understood that
when combinations, subsets, interactions, groups, etc. of
these components are disclosed that while specific reference
of each various individual and collective combinations and
permutation of these may not be explicitly disclosed, each is
specifically contemplated and described herein, for all meth-
ods and systems. This applies to all aspects of this applica-
tion including, but not limited to, steps in disclosed methods.
Thus, if there are a variety of additional steps that can be
performed it is understood that each of these additional steps
can be performed with any specific embodiment or combi-
nation of embodiments of the disclosed methods.

[0049] The present methods and systems may be under-
stood more readily by reference to the following detailed
description of preferred embodiments and the Examples
included therein and to the Figures and their previous and
following description.

[0050] As will be appreciated by one skilled in the art, the
methods and systems may take the form of an entirely
hardware embodiment, an entirely software embodiment, or
an embodiment combining software and hardware aspects.
Furthermore, the methods and systems may take the form of
a computer program product on a computer-readable storage
medium having computer-readable program instructions
(e.g., computer software) embodied in the storage medium.
More particularly, the present methods and systems may
take the form of web-implemented computer software. Any
suitable computer-readable storage medium may be utilized
including hard disks, CD-ROMs, optical storage devices, or
magnetic storage devices.

[0051] Embodiments of the methods and systems are
described below with reference to block diagrams and
flowchart illustrations of methods, systems, apparatuses and
computer program products. It will be understood that each
block of the block diagrams and flowchart illustrations, and
combinations of blocks in the block diagrams and flowchart
illustrations, respectively, can be implemented by computer
program instructions. These computer program instructions
may be loaded onto a general purpose computer, special
purpose computer, or other programmable data processing
apparatus to produce a machine, such that the instructions
which execute on the computer or other programmable data
processing apparatus create a means for implementing the
functions specified in the flowchart block or blocks.
[0052] These computer program instructions may also be
stored in a computer-readable memory that can direct a
computer or other programmable data processing apparatus
to function in a particular manner, such that the instructions
stored in the computer-readable memory produce an article
of manufacture including computer-readable instructions for
implementing the function specified in the flowchart block
or blocks. The computer program instructions may also be
loaded onto a computer or other programmable data pro-
cessing apparatus to cause a series of operational steps to be
performed on the computer or other programmable appara-
tus to produce a computer-implemented process such that
the instructions that execute on the computer or other
programmable apparatus provide steps for implementing the
functions specified in the flowchart block or blocks.
[0053] Accordingly, blocks of the block diagrams and
flowchart illustrations support combinations of means for
performing the specified functions, combinations of steps
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for performing the specified functions and program instruc-
tion means for performing the specified functions. It will
also be understood that each block of the block diagrams and
flowchart illustrations, and combinations of blocks in the
block diagrams and flowchart illustrations, can be imple-
mented by special purpose hardware-based computer sys-
tems that perform the specified functions or steps, or com-
binations of special purpose hardware and computer
instructions.

[0054] In certain aspects, the accurate estimation of AVR
can comprise one or more of the following, optic disc
detection, vessel segmentation, vessel width measurement,
vessel network analysis, and artery/vein classification. Optic
disc detection can determine the location of the Region of
Interest (ROI) where the measurements are obtained. Vessel
segmentation can be used to find the vessels themselves and,
depending on the method that is used, the width of the
vessels. The methods and systems can then identify which
vessels are arteries and which are veins with high accuracy.
Small classification errors can have a large influence on the
final AVR.

[0055] A protocol has been established for the measure-
ment of the AVR. The protocol defines where and how
measurements should be obtained. The automated methods
and systems described herein follow this protocol whenever
possible. In an aspect, the methods and systems can by
pre-process an image to remove the gradient around the
border of the field of view (FOV) as well as to remove slow
intensity variations in the image. Further pre-processing can
be focused on the detection of anatomical landmarks. These
can comprise the optic disc, the landmark on the retina
around which the measurements are obtained and the vas-
culature, the structure that is actually being measured. Vessel
width measurements can be obtained and the vessels within
the measurement area can be classified into arteries and
veins. Finally, the artery vein ratio can be determined.
[0056] A. Preprocessing

[0057] The methods and systems can implement one or
more preprocessing techniques. For example, Field of View
mirroring and background removal. Digital color fundus
photographs have a black border around the FOV. The large
gradient can disturb feature measurements near the FOV
border. It can be removed by applying a mirroring technique.
This method mirrors pixel values from within the circular
field of view to outside the FOV. This operation can be
performed at the original image resolution. Slow back-
ground variations can be removed by blurring the image
with a Gaussian filter with a large standard deviation and
subtracting the blurred image from the original. The value of
the standard deviation of the Gaussian filter is not a critical
parameter as long as it is large enough to ensure the blurred
image contains no visible structures such as vessels. This
procedure can be performed on both the Red as well as the
Green color planes separately. From here, whenever the
Green and Red plane is mentioned, it refers to the pre-
processed versions. The Blue color plane is not used.

[0058] In an aspect, pixel classification can be used to
segment the retinal vasculature. The filter outputs of a
Gaussian filter bank can be used as features to train a
kNN-classifier to detect the vasculature. This method is not
scale independent as the Gaussian filterbank features are
extracted at particular scales. Additionally, the images with
which the vessel segmentation method can be trained (for
example, the DRIVE database as is known to one of skill in
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the art) have a particular resolution and therefore a particular
range of vessel widths (measured in pixels). In a further
aspect, images can be downsampled before applying the
vessel segmentation, for example with a factor 4.

[0059] In an aspect, the vessel segmentation method can
assign each pixel in the image a likelihood between 0 and 1
that the pixel is within a vessel. This results in a “vesselness
map” that can be thresholded to produce a binary vessel
segmentation. In an aspect, prior to thresholding the vessel-
ness map can be up sampled back to the resolution of the
original image, for example by using quintic spline inter-
polation. To analyze the vessel network a skeletonization
method can be applied to the thresholded likelihood map,
reducing all vessels to a single centerline. In an aspect, the
centerline can be one or more pixels wide. After the skel-
etonization of the segmented vessels, cross-over and bifur-
cation points can be removed by counting the number of
neighbors for all centerline pixels and removing those with
more than two neighbors. This operation subdivides the
vascular network into a collection of vessel segments that
can be individually analyzed.

[0060] In an aspect, a supervised position regression
method can be used to detect the centerpoint of the optic
disc. This method can estimate how far a certain position in
the image is from the optic disc center. This estimation can
be based on measurements obtained in the image and from
the vessel segmentation. The target location can be found by
obtaining estimates in many locations in the image, elimi-
nating those locations that are estimated to be far from the
optic disc and searching around the locations estimated to be
close to the optic disc center. The method can first be trained
using a large set of images for which the location of the optic
disc is known. As this method does not provide an estimate
of the size of the optic disc, a more or less constant size can
be assumed. For example, a value of 360 pixels can be used
for the diameter of the optic disc (DD). Other diameters can
be used and determined by those of skill in the art.

[0061] The AVR calculation protocol defines the region of
interest (ROI) in which the AVR should be measured. This
ROl is centered on the optic disc (see FIG. 1). FIG. 1 shows
an image overlaid with the automatically determined ROI
region. The region labeled “B” is where AVR measurements
are taken. The ROI comprises several circular regions whose
size is based on the approximate diameter of the optic disc.
Region A is between 0.5 and 1 DD from the optic disc center
and region B, where vessel measurements are taken, is
between 1DD and 1.5DD from the optic disc center. In an
aspect, all analysis and evaluation performed by the methods
and systems is within region B, however, it may be advan-
tageous to expand or contract the region within which the
methods and systems can operate.

[0062] B. Vessel Width Measurement

[0063] In an aspect, after preprocessing, the vasculature
can be thinned and subdivided into a set of vessel segments.
All vessel segments that are not (partly) inside region B
(FIG. 1) can be removed as they are not used in the AVR
analysis. Even though the vessel segmentation method pro-
vided can successfully localize most vessels, i.e. wide and
narrow ones, choosing a single threshold to produce a binary
segmentation of the vasculature that can be used to deter-
mine the local vessel width is difficult. The values in the
likelihood map, as produced by the vessel segmentation
method, tend to zero as one moves away from the vessel
border into the retinal background. This effect is also depen-
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dent on the vessel width with narrower vessels having an
overall lower likelihood response than wider vessels. Con-
sequently, relatively small variations in the applied threshold
result in substantial vessel width differences and thresholds
that give visually pleasing results for wider vessels com-
pletely miss smaller vessels. This is further complicated by
the fact that the vessel detection is performed at a lower
resolution resulting in larger errors after upsampling.

[0064] Inan aspect, a technique referred to as tobogganing
can be combined with vessel segmentation. This has the
added benefit that vessel width analysis can be performed on
the original images in their original resolution. Tobogganing
is a segmentation technique that subdivides the image into
areas (i.e. “splats™) that are homogeneous based on a certain
criterion. The technique’s results are analogous to the
“catchment basins” in watershed segmentation. The multi-
scale gradient magnitude image can be used to define
homogeneity. To calculate the gradient magnitude, the
image can be convolved with a first derivative of Gaussian
filter in both the x and y direction after which the magnitude
of the gradient is obtained for each pixel. The gradient
magnitude at various scales (i.e. various standard deviations
0) tends to have a maximum at the border of high contrast
structures such as the vasculature. A lower scale filter can
give more response at the border of small vessels and a
higher scale filter can give more response at the border of
wider vessels. To obtain the multiscale gradient magnitude
image the scale-normalized gradient magnitude can be cal-
culated at scales 0=1,2,3,4,5,6 and the maximum value over
scale for each of the pixels in the image can be used. After
applying the tobogganing method, a splat map (see FIG. 2¢)
can be obtained. The likelihood map produced by the vessel
segmentation algorithm can now be used to determine for
each splat the likelihood it is inside a vessel. This can be
accomplished by assigning to each splat the median likeli-
hood value of all the pixels that are part of the splat. It can
be assumed the splats are either inside or outside the vessel
(note that this assumption does not always hold in the case
of low contrast, narrow vessels). Given a correct likelihood
map, this results in the splats inside the vessel being
assigned a higher likelihood than those outside the vessel. In
the resulting vessel map, the borders of the vessels are better
defined and the widths of the vessels become less dependent
on the chosen vessel segmentation threshold. This enhanced
vessel map can be used to determine the vessel width. FIG.
2 shows the process in more detail on a small subimage.

[0065] FIG. 2 is an image showing various processing
steps described herein on a small sub-image. FIG. 2q, the
color fundus image. FIG. 24, the vessel likelihood map. A
higher pixel value in this image means a higher vessel
likelihood. FIG. 2¢, the splat map, the borders of the
individual splats are shown. FIG. 2d, the processed vessel
likelihood map each splat has been assigned the median
vessel likelihood value under the splat. FIG. 2e, the vessel
centerlines where each centerline pixel has been assigned
the likelihood it is inside a vein (dilated for display). FIG. 2f,
the final width measures overlaid on the original image.
Only every third measurement was plotted.

[0066] In an aspect, measurement of the local vessel width
can be performed perpendicular to the local vessel angle in
order to minimize errors during the measurement process.
The local vessel angle can be determined for all centerline
pixels in every vessel segment. The local vessel angle can be
defined as the direction of the largest eigenvector of the
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covariance matrix of the coordinate of the centerline pixel
along with the coordinates of its seven connected neighbors
to both sides (i.e. 15 coordinates in total). As it is unknown
where the vessel begins or ends, the range of the angles is
[0...mx]. Near the end of the vessel segment only centerline
coordinates inside the vessel are used, 8 for the end pixel.
Other values can be determined and used by those of skill in
the art. FIG. 3 illustrates an artery vein centerline classifi-
cation result (FIG. 3b) overlaid on a retinal image (FIG. 3a).
A centerline pixel with higher pixel intensity can have a
higher likelihood to be a vein.

[0067] In an aspect, for each centerline pixel, the local
vessel width can be measured by finding the left and right
vessel edges in the enhanced vessel map and calculating the
distance between them. To determine the locations of the
edges of the vessel, the likelihood can be measured along a
line through the centerline pixel and perpendicular to the
local vessel angle. Starting from the centerline pixel, the
vessel border can be found in both left and right direction.
The likelihood threshold at which a splat is no longer part of
a vessel can be a critical parameter in this algorithm. As the
likelihood assigned to vessel splats varies over the image
and is dependent on local vessel contrast and vessel width,
a local vessel threshold can be determined for every cen-
terline pixel. The vessel likelihood under the centerline pixel
can be multiplied with a ratio, for example 0.7, to determine
the appropriate value for the vessel threshold.

[0068] In an aspect, after vessel widths for a vessel seg-
ment are determined, error correction can be performed by
finding sudden, local changes in the vessel width. A sudden
change can be defined as more than a pre-determined
number of pixels from one centerline pixel to the other, for
example, 3. A sudden change can happen when a vessel splat
is not or a background splat is included in the vessel width
measurement. The ratio threshold can be varied locally until
the width measurement is similar (<3 pixels difference) to
the average width at the preceding vessel centerline pixels,
for example 8 preceding vessel centerline pixels. If the
vessel width can not be adjusted to match the mean width,
the originally detected vessel width can be used. FIG. 2
shows width measurement results in a small sub-image. In
addition to measuring the vessel width, the location of the
left and right vessel boundary for each centerline pixel can
be stored. Using these two points, a profile across the vessel
can be defined and then used to extract feature data from
across the vessel. FIG. 4 is a detail of a fundus photograph
showing the measurement diameters and the vessel cross-
ings where width measurements are obtained. The white
dots indicate the points on the vessels where measurements
are obtained.

[0069] In a further aspect, a graph based approach can be
used for vessel boundary delineation. A vessel centerline
image can be derived from the vesselness map, and the two
borders of the vessel can then be segmented simultaneously
by transforming the first derivative of the vessel’s pixels
intensities into a two-slice three-dimension surface segmen-
tation problem. In retinal images, the boundaries of the
blood column form a reliable proxy for vessel diameter.
While the splat based approach provides reliable results, a
graph-based approach to determine the location of the vessel
boundary can provide greater speed and accuracy, as graph-
based approaches are known to be globally optimal. In
addition to AVR analysis, automated determination of vessel
width measurement based on segmentation of both vessel
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boundaries can also allow the geometry of the retinal vessels
to be quantified, as the geometry is also affected by cardio-
vascular disease, diabetes, and retinal disease. Finally, accu-
rate determination of the vessel boundary may allow local
pathologic vascular changes such as tortuosity and vessel
beading to be measured accurately.

[0070] In order to detect both boundaries simultaneously,
a two-slice 3-D graph can be built and a smoothness
constraint between the two slices can be applied. Thus, a
simultaneous two-D boundary segmentation is transformed
into a two-slice 3-D surface segmentation problem. This
problem is then further converted into the problem of
computing a minimum closed set in a node-weighted graph.

[0071] An initial segmentation is needed to build the
graph. The vesselness map can be used as the initial seg-
mentation. One example image is shown in FIG. 5. FIG. 5a
is a color fundus image. The white rectangular is enlarged
and used for illustration in FIG. 6. FIG. 5b is the corre-
sponding vesselness image. By thresholding the gray scale
image, a binary vessel segmentation can be generated. A
(constant) low threshold can be selected to better maintain
the continuity of blood vessels. The trade-off is that small
regions of noise may not be suppressed adequately. In order
to solve this problem, the vessel regions with an area smaller
than a pre-determined number (for example, 20) pixels can
be erased from the thresholded image. A sequential thinning
approach can then be applied to the binary vessel segmen-
tation to find the vessel centerlines. In an alternative aspect,
vessel width can be measured directly from the vesselness
map. The vesselness image can be thresholded, generating a
binary vessel segmentation. By way of example, a fixed
threshold of 190 can be used. Widths can then be measured
on this binary vessel map.

[0072] From the vessel centerline image, the bifurcation
points and crossing points can be excluded. A bifurcation
point can be defined as a centerline pixel with three eight-
connected neighbors and a crossing point can be defined as
a centerline pixel with four or more eight-connected neigh-
bors. Hence, the vessel centerline image can be scanned first
to get the centerline pixels that have three or more neigh-
bors. By deleting the bifurcation points and crossing points,
the vessel trees can be cut into vessel segments. From these
vessel segments, the end points which have only one neigh-
bor pixel can be found by scanning the image again. Starting
from one end point, the vessel segment can be traced until
the other end point is reached. In this way, all the vessel
segments on the image are traced and labeled.

[0073] For each labeled vessel segment, the growing
direction for every centerline pixel can be calculated. n
adjacent centerline pixels can be used on both sides of the
target centerline pixel and principal component analysis can
be applied on the resulting vessel segment. The value of n
can be a parameter of the image size, which is approximately
0.005 times the first dimension of the image size. For
example, if the first dimension of an image is 600 pixels, the
value of n would be three pixels, resulting in a total vessel
segment length of seven pixels. In an aspect, the minimum
value of n can be two. The first principal component can
correspond to the growing direction of the pixel. An end
point that does not have enough neighboring centerline
pixels to define the vessel growing direction can be deter-
mined to have the direction of the nearest centerline pixel
that has a definition of a vessel growing direction.
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[0074] For the vessel growing direction, a counter-clock-
wise 90 degree is regarded as the normal direction for this
point. Using the centerline pixels as the base nodes, profiles
on the positive direction of the normals can be built as one
slice and profiles on the negative direction can be built as
another slice, as shown in FIG. 6.

[0075] FIG. 6 is an illustration of how to luxate the vessel
normal profiles into a graph. FIG. 6a, a small segment of
vessel extracted from FIG. 5. FIG. 65, the vessel probability
image of FIG. 6a. FIG. 6c, the vessel centerline image of
FIG. 6a. FIG. 6d, the vessel growing directions are calcu-
lated and node normal profile perpendicular to the vessel
growing direction are constructed. FIG. 6e, red normal
profiles in FIG. 6d are used to build the red graph slice and
the green normal profiles in FIG. 6d are used to build the
green graph slice. The black nodes represent base nodes,
corresponding to the black centerline pixels in FIG. 6d.
Consequently, the red slice represents one boundary in FIG.
64 and the green slice represents the other boundary in FIG.
6d. Smoothness constraints (controlled by the arcs between
adjacent columns) are applied differently to control the
boundary smoothness within one boundary and between the
two boundaries.

[0076] Along each normal profile Col (x, y) every node V
(X, ¥, z)(z>0) has a directed arc to the node V(x, y, z—1).
Along the x-direction, meaning along the same boundary,
for each node, a directed arc is constructed from V (x, y, z)
E Col (x, y) to V (x+1, y, max(0, z—A ))eCol (x+1, y).
Similarly, arcs from V (x, y, z)eCol (x, y) to V (x—1, v,
max(0, z-A ))eCol (x—1, y, z) are constructed. A, is the
maximum difference allowed between two adjacent normal
profiles within one boundary. Along the y—direction, mean-
ing between the two slices, arcs from V (x, y, z)e Col (X, y)
to V (x, y+1, max (0, Z—Ay))e E Col (x, y+1, z) and arcs from
V (x,y, 2)eCol (%, y) to V (x, y—1, max (0, Z—Ay))e Col (x,
y—1, z) are constructed. Ay is the maximum difference
allowed between two corresponding normal profiles
between the two boundaries. The base nodes are all con-
nected. A surface is regarded feasible if it satisfies the
smoothness constraint defined by A, and A,. An optimal
surface is defined as the surface with the minimum cost
among all feasible surfaces defined in the 3-D volume.
[0077] The cost image can be generated from the orien-
tation sensitive 1D first order derivative of Gaussian of the
green channel. The green channel of the color image usually
shows the highest contrast between the blood vessels and
background. In order to find the gradient of vessels specified
at different locations with different orientations, a discrete
convolution with the 1D derivative of Gaussian can be
applied along the direction perpendicular to the vessel
growing direction (as shown in FIG. 7). The derivative of
Gaussian kernel is shown in Equation 1:
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where G is the only parameter in the first order derivative of
Gaussian. FIG. 7 is an example. FIG. 7a shows an enlarged
part of the green channel image. FIG. 756 shows the orien-
tation sensitive 1D derivative of Gaussian result.

[0078] The value of A, can be set to one to maintain the
smoothness within one boundary and A, can be set to two so
that a difference is allowed between widths from the cen-
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terline to the left edge and from the centerline to the right
edge, in case the centerline is not exactly at the center of the
two edges. After the node-weighted directed graph is con-
structed, the optimal surface can be determined. To deter-
mine the vessel width, the coordinate difference between the
two corresponding nodes on the optimal surface from the
two slices can be calculated. To show the boundary on the
image, the nearest integer coordinate of every node on the
optimal surface can be calculated and shown on the image.

[0079]

[0080] To enable separate analysis of the arteries and the
veins in the image, the previously detected vessel segments
can be assigned to one of these two classes. In an aspect, a
supervised system, i.e. trained with examples, can be used.
After a training procedure, the classification method can be
used to classify previously unseen centerline pixels into
either artery or vein (AV classification). The pre-processing
procedure and vessel width measurements can be applied to
all images in the training set. An expert can indicate whether
a given major vessel was an artery or vein for each of the
training images.

[0081] In the training phase, a classifier can be trained
using the expert labeled vessels in the training set in order
to distinguish between both classes of centerline pixels. As
not all vessels in the training set will be marked as artery or
vein, centerline pixels from unmarked vessels are not
included in the training dataset. For all remaining centerline
pixels in the training images, a set of local features was
extracted. Table I shows a list of exemplary extracted
features that can be used. In general the features characterize
the color as well as the color variation in the vessel. All
features that are measured across the vessel can be measured
on the profiles as previously determined.

C. Classification into Arteries and Veins

TABLE 1

Nr.  Feature description

1-3  Normalized Mean Hue, Saturation and Intensity across vessel.
4-5  Normalized Mean Red and Green plane intensities across the
vessel.
6-8  Standard deviation of Hue, Saturation and Intensity across the
vessel.
9-10 Standard deviation of Red and Green plane intensities across the
vessel.
11-13 Normalized Hue, Saturation and Intensity under the centerline
pixel.
14-15 Normalized Red and Green plane intensity under the centerline
pixel.
16-19 Normalized highest and lowest intensity in the Red and Green
plane across the vessel.
20-27 Intensity under the centerline pixel in a Gaussian blurred
(o =2,4,8, 16) version of the Red and Green plane.

[0082] The absolute color of the blood in the vessels can
vary between images and across subjects. This variation can
have several causes. Primarily, the amount of hemoglobin
oxygen saturation influences the reflectivity of the blood
column, and this difference allows the difference between
higher saturation arterial from lower saturation venous blood
to be visualized. Next, lens absorption for different wave-
lengths is influenced by aging and the development of
cataract, causing shifts in the spectral distribution of light
reflected by blood. Individual difference in pigmentation of
the retinal pigment epithelium below the blood vessels also
influence the spectrum of reflected light. Finally, across
examinations, even from the same subject, differences in
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flash intensity, flash spectrum, nonlinear optical distortions
of the camera, flash artifacts, and focus also cause consid-
erable variability. These factors complicate classification
substantially, and normalization to zero mean and unit
standard deviation of the vessel color features for every
individual image can improve classification. After sampling
the features for each centerline pixel, the appropriate labels
can be assigned based on the reference standard and all
training samples can be stored in a training dataset. This
sampling process can be repeated for all images in the
training set.

[0083] The training set can then be split into a separate
classifier selection training and test set. Several different
classifiers can be used, for example: k-Nearest Neighbor
Classifier, Support Vector Machine Classifier, Linear Dis-
criminant Classifier, or a Quadratic Discriminant Classifier.
The classifier that maximizes the area under the Receiver
Operator Characteristic (ROC) curve can be selected.

[0084] After the training phase is complete, the trained
classifier can be applied to the images in the test set. All the
test images can be preprocessed similarly to the training
images. For each centerline pixel the complete set of 27
features was extracted, however fewer and/or different fea-
tures can be used. The trained classifier can then be used to
assign a soft label 1, [0 . . . 1]. Here, a label close to O means
the pixel was likely in an artery and a label close to 1 means
a pixel was likely in a vein. It can be assumed that all pixels
in a vessel segment are either in an artery or a vein. Each soft
label assigned to a centerline pixel can be regarded as a vote
for the label of the complete segment. Combining these
votes can be done in many different ways including taking
the median label for the entire vessel segment.

[0085] Due to variation in the local image characteristics,
the soft labels assigned to each of the segments can vary
over the image. A global threshold will not always success-
fully separate the arteries from the veins within a single
subject and will vary between subjects. To perform the final
classification the prior knowledge that arteries and veins
usually come in pairs can be used. This means that, when
going around the optic disc in a circle in region B of the ROI,
one will generally encounter an artery after first encounter-
ing a vein and vice versa. Since this rule does not always
hold and since finding the matching vessel segment for a
particular different vessel segment is non-trivial, a voting
procedure can be implemented.

[0086] During a voting procedure, all vessel segments
intersecting with a circle of a certain diameter around the
optic disc and within region B of the ROI can be eligible for
matching. Finding the nearest neighbor vessel segment on a
circle is straightforward and can be done by finding the
nearest intersection point on the circle. The soft AV labels of
both points can be compared and the vessel segment with the
highest soft label can receive a vote for “vein” and the other
can receive an “artery” vote. Then the next nearest unpaired
vessel can be selected and the procedure repeated. The
outcome of this procedure is dependent on the starting vessel
segment. By picking a different vessel segment as the
starting segment, the distribution of the AV votes amongst
the vessel segments will vary. All vessel segments eligible
for matching can therefore be selected once as the starting
vessel and the matching procedure repeated. Finally, the
votes can be counted and each of the vessel segments
assigned a hard label (i.e. either artery or vein based on the
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received votes). Vessel segments with an equal number of
artery and vein votes can be excluded from analysis.
[0087] D. Determining the AVR

[0088] In an aspect, the arteriolar-to-venular ratio can be
defined as

where CRAB is the Central Retinal Artery Equivalent and
CRVE is the Central Retinal Vein Equivalent. To calculate
these numbers, an iterative process for matching up vessels
and calculating the CRAE and CRVE can be used. The
widest 6 veins and arteries (these do not have to be paired)
can be used although fewer total number of widths can be
used in case not enough measurement points are available.
Algorithm 1 shows an exemplary implementation.

Algorithm 1 The algorithm used to calculate the AVR

Input: Vector A of length Al containing the widths of the found arteries
and vector V of length VI containing the widths of the found veins.
Output: The AVR.
Sort A and V in decreasing order and set the length of both vectors to
min(IALIVL]6).
while Al > 1 do
Select and remove the first element f and last element 1 from A
Store V(f2+1%) * 0.88 in vector C
if IAl equals 1 then
Remove the last remaining element from A and store it in C
end if
A=C
Sort A from large to small
end while
Clear C
while IVl > 1 do
Select and remove the first element f and last element 1 from V
Store V(f2 +12) * 0.95 in vector C
if IVl equals 1 then
Remove the last remaining element from V and store it in C
end if
v=C
Sort V from large to small
end while
Divide the remaining element in A by the remaining element in V to
obtain the final AVR.

[0089] In an aspect, the final voting procedure can be
based on measurements obtained on a circle with a certain
diameter. The chance that all vessel segments in the ROI will
intersect with a circle of any particular diameter is small.
Therefore, the voting procedure and AVR calculation should
be repeated at various diameters within the AVR ROI (see
FIG. 4). By way of example, the diameters can be from 1 DD
to 1.5 DD in steps of 0.1 DD where DD was 360 pixels, so
the voting and AVR calculation procedure can be repeated 6
times. Note that this samples the AVR ROI equidistantly. For
each circle diameter, the AV voting procedure can be per-
formed, the local vessel width can be measured and stored
in two vectors, A for arteries and V for veins. Next, Algo-
rithm 1 can be used to calculate the AVR. The resulting six
AVR values can be averaged to arrive at the final AVR
estimate for the complete image.

[0090] In an aspect, illustrated in FIG. 8, provided are
methods and systems for automatic determination of arte-
riovenous ratio (AVR), comprising receiving an image at
801, detecting a region of interest in the image at 802,
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identifying arteries and veins in the region of interest at 803,
determining vessel width measurements for the identified
arteries and veins at 804, and estimating an arteriovenous
ratio (AVR), from the vessel width measurements at 805. In
an aspect, decreased AVR indicates higher propensity for a
disease. For example, decreased from a “normal” AVR or
decreased from a previous AVR. Thus, the methods and
systems provide a novel quantitative approach to early
detection of retinal and cardiovascular disease.

[0091] In an aspect, detecting a region of interest in the
image can further comprise detecting an optic disc in the
image. Identifying arteries and veins in the region of interest
can comprise performing vessel segmentation on the image.
Performing vessel segmentation on the image can further
comprise utilizing a trained classifier to classify pixels in the
image as artery or vein pixels.

[0092] In an aspect, the image can be one or more of, a
color image, a multispectral image, an Optical Coherence
Tomography image. The image can be of the retina, iris,
skin, brain surface, or any tissue with visible blood vessels
imaged using any two different wavelength imaging process.
[0093] The trained classifier can use a feature vector
comprising one or more of, derivatives, texture, and color
properties.

[0094] In an aspect, determining vessel width measure-
ments for the identified arteries and veins comprises using
one or more of, a graph search, a multiscale pixel feature
based tobogganing method and splats. The graph search can
use a multiscale cost function. The multiscale cost function
can be derived from some combination of wavelet kernel
lifting including Gabor, Gaussian derivative and Difference
of Gaussians kernels.

[0095] The methods and systems provided can be applied
to other two-dimensional blood vessel projections such as
cardiac and brain angiograms.

[0096] In a further aspect, the methods and systems can be
utilized to provide an indicator of disease propensity. The
methods and systems can be applied to large quantities of
images for batch processing and determination of a disease
propensity for a group of persons.

[0097] In an aspect, provided are methods and systems to
automatically determine artery/vein measures in an image
region in an image. The methods and systems can utilize disc
detection, disc centerpoint determination and disc diameter
measurement to identify the image region. Pixel classifica-
tion and mathematical morphology can be used to determine
the artery/vein measures. The image can be a color image.
The image can be a multispectral image. The image can be
a combination of an OCT image and a multispectral image.
The image can be of the retina, the iris, the skin, the brain
surface, or of another tissue with visible blood vessels
imaged using any two different wavelength imaging process.
[0098] In an aspect, the methods and systems can classify
pixels in an image using artery and vein measurements. The
classification can use a feature vector containing derivatives,
texture and color properties. The color features can be
normalized for each individual image. By way of example,
a knn classifier or a support vector machine can be used to
classify the pixels. The centerline of one or a plurality of
vessels can be assigned a classification.

[0099] In a further aspect, provided are methods and
systems to accurately measure local vessel parameters to
supply features to the methods disclosed. In a further aspect,
the methods and systems can measure local vessel texture
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patterns using filters. The filters can be, for example, Gauss-
ian derivatives, Gabor filters or wavelet filters based filter-
bank, or a combination thereof. The filters can be obtained
using image samples and a transform such as principal
component analysis thereof.

[0100] In a still further aspect, provided are methods and
systems to propagate pixel based artery vein classifications
over the complete vessel to classify the entire vessels
themselves. In a further aspect, provided are methods and
systems to perform accurate width measurements of the
retinal vessel between the boundaries of the vessel. The
vessel boundaries can be determined using graph search.
The graph search can use a multiscale cost function. The
multiscale cost function can be derived from some combi-
nation of wavelet kernel lifting including Gabor, Gaussian
derivative and Difference of Gaussians kernels. The bound-
aries can be determined using a multiscale pixel feature
based tobogganing method and splats.

[0101] In an aspect, the methods and systems disclosed
can analyze local vessel structure to determine how the
vascular network is connected. In a further aspect, the
methods and systems disclosed can determine the locations
in the image where width measurements need to be obtained
in order to calculate the AV-ratio. Disc detection, disc
centerpoint determination and disc diameter measurement
can be used to identify the image locations. The features can
be normalized to all vessel pixels. The features can be
normalized to all disc vessel pixels. The features can be
normalized to all background pixels.

[0102] The following examples are put forth so as to
provide those of ordinary skill in the art with a complete
disclosure and description of how the compounds, compo-
sitions, articles, devices and/or methods claimed herein are
made and evaluated, and are intended to be purely exem-
plary and are not intended to limit the scope of the methods
and systems. Efforts have been made to ensure accuracy
with respect to numbers (e.g., amounts, temperature, etc.),
but some errors and deviations should be accounted for.
Unless indicated otherwise, parts are parts by weight, tem-
perature is in ° C. or is at ambient temperature, and pressure
is at or near atmospheric.

[0103] In a first experiment, sixty-five digital color fundus
photographs were acquired for training and testing. All
images were obtained from patients with primary open angle
glaucoma at the University of lowa Hospitals and Clinics
using a 30° degree Zeiss fundus camera (Carl Zeiss Meditec,
Dublin, Calif.), with digital back (OIS systems, Sacramento,
Calif.). The images were centered on the disc. The dimen-
sions of the images are 2392x2048 pixels with 8-bits per
pixel per color plane, and stored in JPEG format for export.
To train the AV classification component and determine the
parameters for the algorithm, 25 digital color fundus pho-
tographs were randomly selected from the set of 65. The
remaining 40 images were assigned to the test set and were
only used to evaluate the complete system.

[0104] An ophthalmologist (AVD) labeled the major ves-
sels in the images of the training set as either artery or vein
to train the artery vein classification method. As only the
vessel centerlines needed to be labeled, precise vessel seg-
mentation was not needed. Labeling was done by manually
drawing a line over the major vessels using a standard
painting program. The colors blue and red were used for
veins and arteries respectively.
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[0105] Two components of the presented method were
evaluated on the test images, the AV classification and the
AVR determination. To evaluate the AV classification, the
vessels in each of the images in the test set were manually
labeled as either artery or vein by an ophthalmologist
(AVD). In contrast to the way the major arteries and veins
were labeled in the training set, only those parts of all vessels
(i.e. including the small vessels) that were inside the AVR
ROI were labeled in the test set. The expert labeled all
vessels in the ROI as either an artery or a vein.

[0106] To set the AVR reference standard, a semi-auto-
mated computer program developed by the University of
Wisconsin in Madison, Wis., USA was used (IVAN). Two
ophthalmologists processed the images in the test set using
this software. Both ophthalmologists were instructed in the
use of the software using the protocols defined by the
software developers. IVAN is semi-automated; the AVR ROI
localization, the vessel width measurements and the artery
vein classification require manual adjustment. On average a
human observer takes around 10 minutes per image to
perform the analysis. The software is capable of producing
several different AVR measures. The ratios obtained by the
first ophthalmologist (MDA) were used as the reference
standard and the second ophthalmologist’s (AVD) ratios
were used to determine the variability between experts.
[0107] The methods and systems provided herein were
applied to all 40 test images. The system was able to find the
optic disc and successfully placed the AVR in all 40 images.
This was verified by visual inspection and the AVR ROI was
centered on the optic disc in all 40 images.

[0108] To compare the artery/vein classification with the
labeling by the human expert we performed an ROC analy-
sis with class 0 being artery and class 1 being vein. Note that
this analysis was performed on the vessel centerline pixels
only. The proposed classification system assigned each
centerline pixel a likelihood value that it was inside of a
vein. That is, a value of 0 indicates a centerline pixel likely
inside an artery and a value of 1 indicates a centerline pixel
likely in a vein. A ROC analysis was performed and the
resulting curve is shown in FIG. 9. The system attained an
area under the curve of 0.84. This means that, given a
randomly selected artery pixel and a randomly selected vein
pixel, in 84% of cases the automatic system will correctly
assign a higher likelihood to the vein centerline pixel.
[0109] To evaluate the ability of the system to assign an
artery vein ratio to an image the AVRs as produced by the
system and the second observer were directly compared with
the reference standard. Paired t-test showed that there was
no significant difference between the reference standard and
the system’s measurements (p=0.66). The same holds for the
second observer’s measurements (p=0.59). Table 2 shows
the results for the individual image. The “Reference” col-
umn contains the reference standard for reading, “System”
is the output from the automatic system, and “Obs. 2”
contains the reading from the second observer. All number
in italics represent differences between the first and second.
To visually asses the agreement between both the automatic
system and the second observer and the reference standard
the results are plotted in Bland-Altman plots in FIG. 10. This
graph plots the mean of two AVR measurements against the
difference between them and allows a visual assessment of
the distribution of errors and the agreement between the two
methods. FIG. 10 provides the Bland-Altman plots or the
agreement between the automatic system and the reference
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standard FIG. 10a and between the second observer and the
reference standard FIG. 105. The red lines represent the 95%
limits or agreement. The dotted line represents the mean
difference between AVR measurements.

TABLE 2
Image Reference System Error Obs. 2 Error
1 0.70 0.62 0.08 0.71 0.01
2 0.76 0.81 0.05 0.75 0.01
3 0.66 0.81 0.15 0.69 0.03
4 0.75 0.76 0.01 0.75 0.00
5 0.53 0.59 0.06 0.61 0.08
6 0.93 0.80 0.13 0.76 0.17
7 0.63 0.70 0.07 0.68 0.05
8 0.70 0.59 0.11 0.65 0.05
9 0.65 0.68 0.03 0.64 0.01
10 0.78 0.74 0.04 0.75 0.03
11 0.65 0.58 0.07 0.65 0.00
12 0.67 0.74 0.07 0.65 0.02
13 0.64 0.68 0.04 0.71 0.07
14 0.69 0.77 0.08 0.76 0.07
15 0.56 0.57 0.01 0.85 0.29
16 0.64 0.70 0.06 0.74 0.10
17 0.57 0.60 0.03 0.62 0.05
18 0.62 0.59 0.03 0.58 0.04
19 0.64 0.67 0.03 0.61 0.03
20 0.68 0.67 0.01 0.68 0.00
21 0.52 0.55 0.03 0.45 0.07
22 0.62 0.58 0.04 0.63 0.01
23 0.67 0.71 0.04 0.63 0.04
24 0.71 0.67 0.04 0.62 0.09
25 0.57 0.59 0.02 0.58 0.01
26 0.72 0.74 0.02 0.76 0.04
27 0.65 0.63 0.02 0.64 0.01
28 0.56 0.69 0.13 0.49 0.07
29 0.73 0.60 0.13 0.61 0.12
30 0.64 0.66 0.02 0.63 0.01
31 0.63 0.61 0.02 0.68 0.05
32 0.72 0.68 0.04 0.70 0.02
33 0.59 0.61 0.02 0.61 0.02
34 0.61 0.71 0.10 0.59 0.02
35 0.65 0.68 0.03 0.61 0.04
36 0.74 0.59 0.15 0.64 0.10
37 0.69 0.64 0.05 0.62 0.07
38 0.82 0.72 0.10 0.79 0.03
39 0.61 0.70 0.09 0.64 0.03
40 0.74 0.81 0.07 0.62 0.12
mean 0.67 0.67 0.06 0.66 0.05
SD 0.08 0.07 0.04 0.08 0.05
min 0.52 0.55 0.01 0.45 0.00
max 0.93 0.81 0.15 0.85 0.29
[0110] This study showed that a completely automatic

method can estimate the AVR in retinal color images with a
mean error similar to that of a human expert who was using
the reference standard system IVAN. The automatic method
also successtfully classified retinal vessel pixels into being
part of an artery or vein.

[0111] Compared to previously presented methods the
area under the ROC curve for the AV classification may not
seem an improvement. However, it is important to note that,
in contrast with previously presented methods, all detected
vessel centerline pixels inside region B of the ROI were
classified. This includes vessels for which the observers
were not able to see whether they were an artery or a vein
without tracing the vessel back to its source. The prior
methods have used clustering instead of classification to
overcome the challenges presented by the high variability
between fundus images. The use of color features that are
normalized for each individual image, combined with a
supervised classification approach, leads to better results
than using clustering.
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[0112] Table 2 shows the error with respect to the refer-
ence standard of the automated system for each image. The
mean AVR values and their standard deviations of the
reference standard are very close between the automated
system and observer 2, a statistical test showed there was no
significant difference between the means. Nevertheless,
there are 8 AVR measurements by the automated system that
have an error above 0.10 when compared with the reference
standard. However, of these, 5 show a relatively good
agreement with the measurement done by the second
observer. The Bland-Altman plots (see FIG. 10) show that
both the automated system and the second observer have no
bias as the mean difference between the AVR measurements
is close to 0. The 95% limits of agreement for both the
automated and second observer are also almost the same.
However, the second observer has two large outliers without
which the 95% limits of agreement would have moved
somewhat closer to 0.

[0113] In a second experiment, to evaluate our method
further, the relationship between the average vessel width
(both arteries and veins) and the distance to the optic disc
was determined in a sample of 600 composite color fundus
images, each consisting of two registered and blended
fundus images.

[0114] The REVIEW database was used to validate the
correctness of the methods and systems. Each profile in the
REVIEW database consists of 15 numbers: series number,
image number, segment number and four data for each of
three observers. The three observers are denoted as O,, O,
and Oj;. For each observer, there are four measurements for
two points on each edge (x, y,, X, and y,). The vessel
centerline is defined as (x,-X,)*+(y,-y,)* and the vessel
width as (x,-X,)*+(y,-y,)* for each observer (http://Re-
viewDB lincoln.ac.uk). A reference standard, denoted by
RS, is then created by averaging the manual results of the
three observers.

[0115] The vessel centerlines were determined as
described herein and mapped to the centerlines in the RS, so
that only those vessel centerline pixels were analyzed that
also occurred in the RS. Otherwise the centerline pixel was
labeled as absent.

[0116] The methods and systems described herein were
compared with the results of prior methods, where 1DG and
2DG mean 1-D Gaussian model-fitting and 2-D Gaussian
model-fitting, respectively.

[0117] To determine this relationship on the dataset of 600
registered fundus images the vessel widths of all vessels was
obtained as described herein. Circular regions of interest one
pixel wide were centered on the optic disc center. The
average width of all vessels in each region of interest (i.e.
both arteries and veins) was then plotted in a graph, as well
as the 95% confidence interval (CI) of the average width.
Centerline pixels with a distance larger than 450 pixels from
the disc were too close to the edge of the image—Iless than
2.1% of all centerline pixels—and were eliminated from
further analysis.

[0118] An example of the quality of the obtained vessel
boundary detection is shown in FIG. 11. Good performance
is obtained on even the smallest vessels, which have low
contrast. FIG. 11a is one image from the CLRIS database.
Image size is 2160x1440, a=4. FIG. 115 is an enlarged part
of image FIG. 11a.

[0119] The methods and systems provided herein were
compared to other known algorithms in Table 3 to Table 6.



US 2023/0255478 Al

The first three rows are the manual result from the observers.
Rows 4-8 show the results of the other algorithms. The last
row shows the result of the presently disclosed methods and
systems. The first column is the success rate. Every center-
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TABLE 5

VESSEL WIDTH MEASUREMENT ACCURACY
OF VDIS (SUCCESS RATE IN PERCENTAGE,
MEAN p AND STANDARD DEVIATION

line pixel that had corresponding ground truth profiles as a o IN PIXEL)

“success measurement”, irrespective of the estimate of the )

. . . Success Measurement Difference
width. Therefore all measurements with a corresponding

ground truth profile were included even if the measurements Method Name Rate % n o n N

did not result in a meaningful estimation. The columns 2-3

h d dard deviati £ all Observer 1 (O;) 100 8.50  2.54 -035 0.543

are the mean and standard deviation of all measurements Observer 2 (O,) 100 891  2.69 006 0.621

labeled as ‘success measurement’. Columns 4-5 are the Observer 3 (O3) 100 9.15 267 030 0.669

signed mean and standard deviation of the point-by-point Gregson’s Algorithm 100 10.07 - 1.2z 1.494

il Half-height full-width 78.4 7.94 — 091 0.879

ifferences. (FHFW)

1-D Gaussian Model- 99.9 5.78 — -3.07 2.110

TABLE 3 fitting
2-D Gaussian Model- 77.2 6.59 — -2.26 1.328
fitting

VESSEL WIDTH MEASUREMENT ACCURACY Extraction of Segment 99.6 8.80 —  -005 0.766
OF HRIS (SUCCESS RATE IN PERCENTAGE, Profiles (ESP)
MEAN 11 AND STANDARD DEVIATION Proposed Method 96.0 8.35 3.00 -0.53 143
o IN PIXEL)
Success Measurement Difference TABLE 6
VESSEL WIDTH MEASUREMENT ACCURACY OF KPIS (SUCCESS
Method Name Rate % n o n o RATE IN PERCENTAGE, MEAN . AND STANDARD
DEVIATION o IN PIXEL)

Observer 1 (0,) 100 412 125 -023  0.288 Success  Measurement Difference

Observer 2 (05) 100 435 135 0.002  0.256

Observer 3 (O) 100 458 126 023 0.285 Method Name Rate % B o B o

Gregson’s Algorithm 100 7.64 — 329 2841 Observer 1 (O,) 100 797 047 045 0234

Half-height full-width 88.3 4.97 — 0.62 0926 Observer 2 (05) 100 7.60 042 008 0213
Observer 3 (O3) 100 7.00 052 -0.52 0.233

(HHFW) Gregson’s Algorithm 100 7.29 — 023 0.602

1-D Gaussian Model- 99.6 3.81 — 054 4137 Half-height full-width 96.3 6.47 —  -1.05 0.389

fitting (HHFW)

1-D Gaussian Model- 100 4.95 — -2.57 0.399

2-D Gaussian Model- 98.9 4.18 — -0.17 6.019 fitting

fitting 2-D Gaussian Model- 100 5.87 — -1.65 0.337

. fitting

Extraction of Segment 99.7 4.63 — 0.28 0.42 Extraction of Segment 100 6.56 o _0.96 0.328

Profiles (ESP) Profiles (ESP)

Proposed Method 100 4.56 1.30 021  0.567 Proposed Method 99.4 6.38 059 -1.14 0.67
[0120] Among the four datasets, the HRIS dataset has the
highest image resolution (3584x2438 pixels). The perfor-

TABLE 4 g g ( pixels). The p

VESSEL WIDTH MEASUREMENT ACCURACY
OF CLRIS (SUCCESS RATE IN PERCENTAGE,
MEAN 1 AND STANDARD DEVIATION

o IN PIXEL)

Success Measurement Difference
Method Name Rate % m 3] m 3]
Observer 1 (O)) 100 13.19 401 -0.61 0.566
Observer 2 (0,) 100 13.69 422  -0.11 0.698
Observer 3 (O3) 100 14.52 4.26 072 0.566
Gregson’s Algorithm 100 12.8 — -1.0 2.841
Half-height full-width 0 — — — —
(HHFW)
1-D Gaussian Model- 98.6 6.3 — -7.5 4.137
fitting
2-D Gaussian Model- 26.7 7.0 — -6.8 6.019
fitting
Extraction of Segment 93.0 15.7 — -1.90 1.469
Profiles (ESP)
Proposed Method 94.1 14.05 447 0.08 1.78

mance of the vessel width detection is comparable to the
observers.

[0121] The CLRIS dataset images have a resolution of
2160x1440 pixels. The mean vessel with and the point-by-
point difference mean are very close to the observers’
performance. But the point-by-point difference standard
deviation is high. The VDIS dataset has a resolution of
1360x1024 pixels. The mean vessel width is 0.53 pixels
smaller than the ground truth. The KPIS dataset has the
smallest image resolution, 288x119 pixels and 170x92 pix-
els.

[0122] Testing indicates that fundus images with a higher
resolution can be measured more accurately with a larger o.
The final choice of a is o=7 for HRIS dataset, c=4 for
CLRIS and VDIS, o=1 for KPIS.

[0123] FIG. 12 shows the correlation of predicted vessel
width and the mean of the observers’ measurement for
HRIS. The regression line shows the prediction tends to give
a smaller measurement for vessels with fine vessels while a
larger measurement for large vessels, compared to the
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observers’ measurements. Each point represent one profile.
The red line is the y=x line. The black line is the regression
line (y=0.87x+1.56).

[0124] The relationship between vessel width and distance
from the optic disc center is shown in FIG. 13. A total of
2,936,749 center line pixels were extracted from the 600
images. If the pixels near the center of optic disc are not
considered, where the blood vessels show a very compli-
cated structure, the average vessel width shows a monotonic
decrease from a distance of 20 pixels to 450 pixels, with a
sudden slope change at a distance of 300 pixels to the optic
disc. For vessels near the optic disc border, the average
vessel width is about 5.0 pixels (approximately 75 microns)
while the vessels that have a distance of 450 pixels to the
optic disc have an average vessel width of 3.5 pixels
(approximately 52.5 microns).

[0125] FIG. 13 illustrates relationship between vessel
width and distance to optic disc. The black circle marks a
400 pixels to the optic disc center. The vessel width analysis
starts from the optic disc center and ends at a distance of 450
pixels (the x-axis). The y-axis shows the vessel width in
pixels. The green line is the average vessel width. The black
lines are the 95% confidence interval lines. Image resolution
is about 800x700 pixels. Scale parameter (J=4 pixels was
used.

[0126] The methods and systems provided can identify the
retinal blood vessel boundaries using a graph-based
approach. The results of the evaluation show that the blood
vessel boundaries are accurate, and that the methods and
systems outperform the prior algorithm on two datasets of
standard retinal image resolution. The presently disclosed
methods and systems allow for the identification of retinal
vessel boundaries of even small vessels on standard poste-
rior pole images as used in diabetic retinopathy screening
programs around the world.

[0127] The results indicate that the relationship between
vessel width with distance and the optic disc center is
inverse and monotonous. Using this method, the relationship
between the average retinal vessel diameter and the distance
from the optic disc from 600 patients with diabetes was
reliably determined. Except for the vessel pixels near the
center of the optic disc (about 20 pixels), the blood vessel
width shows a monotonic decrease considering the distance
from the optic disc to the center. This is most likely caused
by branching—if it is assumed that the blood vessel volume
to be unchanged. If the number of blood vessels is kept
constant, the higher the branch frequency with increasing
distance to the optic disc the larger the slope of the width
decrease. At a distance of around 300 pixels, there is a slight
slope change in average vessel width, most likely caused by
the fact that this is where the image centered on the optic
disc ends and transitions to the fovea centered image that is
registered to it in our dataset.

[0128] FIG. 14 illustrates vessel width measurement on
vessel segments with different resolutions, FIG. 144, one test
vessel segment from HRIS. The length of the vessel segment
is 173 pixels. FIG. 145 one test vessel segment from KPIS.
The length of the vessel segment is 226 pixels. FIG. 14¢ the
vessel width measurement result of (a). If the detected edge
is not at an integer location, the nearest integer coordinate is
shown. FIG. 14d the vessel width measurement result of (b).
If the detected edge is not at an integer location, the nearest
integer coordinate is shown. FIG. 14e the cross-sectional
view of vessel intensity with regard to the distance to the
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centerline for (a). The black curve is the average of 173
normal profiles in the vessel segment. Intensities at non-
integer locations are linearly interpolated. The red star is the
average vessel width across the whole vessel segment
marked by observers. The green star is the average vessel
width across the whole vessel segment measured by pro-
posed method. The two boundaries are flipped and shown in
one figure. FIG. 14f the cross-sectional view of vessel
intensity with regard to the distance to the centerline for
FIG. 14b. The black curve is the average of 226 normal
profiles in the vessel segment. Intensities at non-integer
locations are linearly interpolated. The red star is the average
vessel width across the whole vessel segment marked by
observers. The green star is the average vessel width across
the whole vessel segment measured by proposed method.
The two boundaries are flipped and shown in one figure.
[0129] The methods provided have high computational
performance. For a retinal image of size 2160x1440 pixels,
vesselness map creation takes about 110 seconds, and this is
an operation O(n), where n is the number of pixels. The
image skeletonization and small region removal takes about
120 seconds, and this is also an operation i(n). The total
number of centerline pixels is around 20000 pixels (or
0.0064n) and the total number of vessel segments is 160.
Consequently the average length of the graph is around 125
pixels. The average size of the graph would be slice number
x height of graph x length of graph, which is 45000 (or
0.0145n) in this case. It takes around 9 seconds to build all
the graphs in the image. The method we used to solve the
max-flow problem is a pseudoflow algorithm. The running
time is O(n>) [23]. It takes about 41 seconds to solve all the
graphs in the example image.

[0130] The method and systems provided for retinal vessel
boundary detection based on graph search have been vali-
dated it on a publicly available dataset of expert annotated
vessel widths. An advantage is in the detection of both
boundaries simultaneously, and is therefore more robust
than methods which detect the boundaries one at a time. The
simultaneous detection of both borders makes the accurate
detection possible even if one boundary is of low contrast or
blurred. Overall, the method is robust as the only algorith-
mic parameter is o in the cost function, and the final
measurement is insensitive to the choice of o.

[0131] One skilled in the art will appreciate that provided
is a functional description and that the respective functions
can be performed by software, hardware, or a combination
of software and hardware. In one exemplary aspect, the
methods and systems can comprise a computer 1501 as
illustrated in FIG. 15 and described below.

[0132] FIG. 15 is a block diagram illustrating an exem-
plary operating environment for performing the disclosed
methods. This exemplary operating environment is only an
example of an operating environment and is not intended to
suggest any limitation as to the scope of use or functionality
of operating environment architecture. Neither should the
operating environment be interpreted as having any depen-
dency or requirement relating to any one or combination of
components illustrated in the exemplary operating environ-
ment.

[0133] The present methods and systems can be opera-
tional with numerous other general purpose or special pur-
pose computing system environments or configurations.
Examples of well known computing systems, environments,
and/or configurations that can be suitable for use with the
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systems and methods comprise, but are not limited to,
personal computers, server computers, laptop devices, and
multiprocessor systems. Additional examples comprise set
top boxes, programmable consumer electronics, network
PCs, minicomputers, mainframe computers, distributed
computing environments that comprise any of the above
systems or devices, and the like.

[0134] The processing of the disclosed methods and sys-
tems can be performed by software components. The dis-
closed systems and methods can be described in the general
context of computer-executable instructions, such as pro-
gram modules, being executed by one or more computers or
other devices. Generally, program modules comprise com-
puter code, routines, programs, objects, components, data
structures, etc. that perform particular tasks or implement
particular abstract data types. The disclosed methods can
also be practiced in grid-based and distributed computing
environments where tasks are performed by remote process-
ing devices that are linked through a communications net-
work. In a distributed computing environment, program
modules can be located in both local and remote computer
storage media including memory storage devices.

[0135] Further, one skilled in the art will appreciate that
the systems and methods disclosed herein can be imple-
mented via a general-purpose computing device in the form
of' a computer 1501. The components of the computer 1501
can comprise, but are not limited to, one or more processors
or processing units 1503, a system memory 1512, and a
system bus 1513 that couples various system components
including the processor 1503 to the system memory 1512. In
the case of multiple processing units 1503, the system can
utilize parallel computing.

[0136] The system bus 1513 represents one or more of
several possible types of bus structures, including a memory
bus or memory controller, a peripheral bus, an accelerated
graphics port, and a processor or local bus using any of a
variety of bus architectures. By way of example, such
architectures can comprise an Industry Standard Architec-
ture (ISA) bus, a Micro Channel Architecture (MCA) bus, an
Enhanced ISA (EISA) bus, a Video Electronics Standards
Association (VESA) local bus, an Accelerated Graphics Port
(AGP) bus, and a Peripheral Component Interconnects
(PCI), a PCI-Express bus, a Personal Computer Memory
Card Industry Association (PCMCIA), Universal Serial Bus
(USB) and the like. The bus 1513, and all buses specified in
this description can also be implemented over a wired or
wireless network connection and each of the subsystems,
including the processor 1503, a mass storage device 1504,
an operating system 1505, image analysis software 1506,
image analysis data 1507, a network adapter 1508, system
memory 1512, an Input/Output Interface 1510, a display
adapter 1509, a display device 1511, and a human machine
interface 1502, can be contained within one or more remote
computing devices 1514a,b,¢ at physically separate loca-
tions, connected through buses of this form, in effect imple-
menting a fully distributed system.

[0137] The computer 1501 typically comprises a variety of
computer readable media. Exemplary readable media can be
any available media that is accessible by the computer 1501
and comprises, for example and not meant to be limiting,
both volatile and non-volatile media, removable and non-
removable media. The system memory 1512 comprises
computer readable media in the form of volatile memory,
such as random access memory (RAM), and/or non-volatile
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memory, such as read only memory (ROM). The system
memory 1512 typically contains data such as image analysis
data 1507 and/or program modules such as operating system
1505 and image analysis software 1506 that are immediately
accessible to and/or are presently operated on by the pro-
cessing unit 1503.

[0138] In another aspect, the computer 1501 can also
comprise other removable/non-removable, volatile/non-
volatile computer storage media. By way of example, FIG.
15 illustrates a mass storage device 1504 which can provide
non-volatile storage of computer code, computer readable
instructions, data structures, program modules, and other
data for the computer 1501. For example and not meant to
be limiting, a mass storage device 1504 can be a hard disk,
a removable magnetic disk, a removable optical disk, mag-
netic cassettes or other magnetic storage devices, flash
memory cards, CD-ROM, digital versatile disks (DVD) or
other optical storage, random access memories (RAM), read
only memories (ROM), electrically erasable programmable
read-only memory (EEPROM), and the like.

[0139] Optionally, any number of program modules can be
stored on the mass storage device 1504, including by way of
example, an operating system 1505 and image analysis
software 1506. Each of the operating system 1505 and image
analysis software 1506 (or some combination thereof) can
comprise elements of the programming and the image
analysis software 1506. Image analysis data 1507 can also
be stored on the mass storage device 1504. Image analysis
data 1507 can be stored in any of one or more databases
known in the art. Examples of such databases comprise,
DB2®, Microsoft® Access, Microsoft® SQL Server,
Oracle®, mySQL, PostgreSQL, and the like. The databases
can be centralized or distributed across multiple systems.
[0140] Inanother aspect, the user can enter commands and
information into the computer 1501 via an input device (not
shown). Examples of such input devices comprise, but are
not limited to, a keyboard, pointing device (e.g., a “mouse”),
a microphone, a joystick, a scanner, tactile input devices
such as gloves, and other body coverings, and the like These
and other input devices can be connected to the processing
unit 1503 via a human machine interface 1502 that is
coupled to the system bus 1513, but can be connected by
other interface and bus structures, such as a parallel port,
game port, an IEEE 1394 Port (also known as a Firewire
port), a serial port, or a universal serial bus (USB).

[0141] In yet another aspect, a display device 1511 can
also be connected to the system bus 1513 via an interface,
such as a display adapter 1509. It is contemplated that the
computer 1501 can have more than one display adapter 1509
and the computer 1501 can have more than one display
device 1511. For example, a display device can be a monitor,
an LCD (Liquid Crystal Display), or a projector. In addition
to the display device 1511, other output peripheral devices
can comprise components such as speakers (not shown) and
a printer (not shown) which can be connected to the com-
puter 1501 via Input/Output Interface 1510. Any step and/or
result of the methods can be output in any form to an output
device. Such output can be any form of visual representa-
tion, including, but not limited to, textual, graphical, ani-
mation, audio, tactile, and the like.

[0142] The computer 1501 can operate in a networked
environment using logical connections to one or more
remote computing devices 1514a,b,c. By way of example, a
remote computing device can be a personal computer,
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portable computer, a server, a router, a network computer, a
peer device or other common network node, and so on.
Logical connections between the computer 1501 and a
remote computing device 1514a,b,c can be made via a local
area network (LAN) and a general wide area network
(WAN). Such network connections can be through a net-
work adapter 1508. A network adapter 1508 can be imple-
mented in both wired and wireless environments. Such
networking environments are conventional and common-
place in offices, enterprise-wide computer networks,
intranets, and the Internet. Any type of network 1515 can be
used.

[0143] For purposes of illustration, application programs
and other executable program components such as the
operating system 1505 are illustrated herein as discrete
blocks, although it is recognized that such programs and
components reside at various times in different storage
components of the computing device 1501, and are executed
by the data processor(s) of the computer. An implementation
of image analysis software 1506 can be stored on or trans-
mitted across some form of computer readable media. Any
of the disclosed methods can be performed by computer
readable instructions embodied on computer readable
media. Computer readable media can be any available media
that can be accessed by a computer. By way of example and
not meant to be limiting, computer readable media can
comprise “computer storage media” and “communications
media.” “Computer storage media” comprise volatile and
non-volatile, removable and non-removable media imple-
mented in any methods or technology for storage of infor-
mation such as computer readable instructions, data struc-
tures, program modules, or other data. Exemplary computer
storage media comprises, but is not limited to, RAM, ROM,
EEPROM, flash memory or other memory technology, CD-
ROM, digital versatile disks (DVD) or other optical storage,
magnetic cassettes, magnetic tape, magnetic disk storage or
other magnetic storage devices, or any other medium which
can be used to store the desired information and which can
be accessed by a computer.

[0144] While the methods and systems have been
described in connection with preferred embodiments and
specific examples, it is not intended that the scope be limited
to the particular embodiments set forth, as the embodiments
herein are intended in all respects to be illustrative rather
than restrictive.

[0145] Unless otherwise expressly stated, it is in no way
intended that any method set forth herein be construed as
requiring that its steps be performed in a specific order.
Accordingly, where a method claim does not actually recite
an order to be followed by its steps or it is not otherwise
specifically stated in the claims or descriptions that the steps
are to be limited to a specific order, it is no way intended that
an order be inferred, in any respect. This holds for any
possible non-express basis for interpretation, including: mat-
ters of logic with respect to arrangement of steps or opera-
tional flow; plain meaning derived from grammatical orga-
nization or punctuation; the number or type of embodiments
described in the specification.

[0146] Throughout this application, various publications
are referenced. The disclosures of these publications in their
entireties are hereby incorporated by reference into this
application in order to more fully describe the state of the art
to which the methods and systems pertain.
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[0147] It will be apparent to those skilled in the art that
various modifications and variations can be made without
departing from the scope or spirit. Other embodiments will
be apparent to those skilled in the art from consideration of
the specification and practice disclosed herein. It is intended
that the specification and examples be considered as exem-
plary only, with a true scope and spirit being indicated by the
following claims.

1. A method for automatic determination of arteriovenous
ratio (AVR) in tissue, comprising:

receiving an image;

determining a region of interest (ROI) in the image,

wherein the ROI comprises a plurality of centerline
pixels;

determining, by a trained classifier, for each of the plu-

rality of centerline pixels within the ROI, a label
indicative of the centerline pixel comprising either an
artery or a vein;

identifying, based on a voting procedure and the label for

each of the plurality of centerline pixels, arteries and
veins in the ROI, the ROI having a given diameter,
wherein the voting procedure is repeated for ROIs at a
plurality of different diameters comprising the given
diameter, and wherein the voting procedure votes each
centerline pixel as an artery or a vein;

determining vessel width measurements for the identified

arteries and veins in the ROI; and

estimating, based on the vessel width measurements for

the identified arteries and veins in the ROI, the AVR.

2. The method of claim 1, wherein identifying arteries and
veins in the ROI comprises performing vessel segmentation
on the image.

3. The method of claim 2, wherein performing vessel
segmentation on the image further comprises utilizing the
trained classifier to classify vessel pixels or vessel segments
in the image.

4. The method of claim 3, wherein vessel tree analysis is
used to classify the vessel pixels or vessel segments.

5. The method of claim 3, wherein blood flow is used to
classify the vessel pixels or vessel segments.

6. The method of claim 1, wherein decreased AVR indi-
cates higher propensity for a disease.

7. The method of claim 1, wherein the image is one or
more of a color image, a multispectral image, or an Optical
Coherence Tomography image.

8. The method of claim 1, wherein the image depicts at
least one of: a retina, an iris, skin, a brain surface, or a
portion of tissue with visible blood vessels.

9. The method of claim 1, wherein determining vessel
width measurements for the identified arteries and veins
comprises using one or more of a graph search, a multiscale
pixel feature based tobogganing method and splats, or
profile fitting.

10. The method of claim 9, wherein the graph search uses
a multiscale cost function derived from a combination of
wavelet kernel lifting.

11. The method of claim 1, wherein the ROI is encapsu-
lated by two concentric circles having diameters derived
from a diameter of an optic disc.

12. A system for automatic determination of arteriovenous
ratio (AVR), comprising:

memory comprising instructions encoded thereon; and

one or more processors that, when executing the instruc-

tions, are caused to perform operations comprising:
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receiving an image;

determining a region of interest (ROI) in the image,
wherein the ROI comprises a plurality of centerline
pixels;

determining, by a trained classifier each of the plurality
of centerline pixels within the ROI, a label indicative
of the centerline pixel comprising either an artery or
a vein;

identifying, based on a voting procedure and the label
for each of the plurality of centerline pixels, arteries
and veins in the ROI, the ROI having a given
diameter, wherein the voting procedure is repeated
for ROIs at a plurality of different diameters com-
prising the given diameter, and wherein the voting
procedure votes each centerline pixel as an artery or
a vein;

determining vessel width measurements for the identi-
fied arteries and veins in the ROI; and

estimating, based on the vessel width measurements for
the identified arteries and veins in the ROI, the AVR.

13. The system of claim 12, wherein identifying arteries
and veins in the ROI comprises performing vessel segmen-
tation on the image.

14. The system of claim 13, wherein performing vessel
segmentation on the image further comprises utilizing the
trained classifier to classify vessel pixels or vessel segments
in the image.

15. The system of claim 14, wherein vessel tree analysis
is used to classify the vessel pixels or vessel segments.

16. The system of claim 14, wherein blood flow is used to
classify the vessel pixels or vessel segments.
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17. The system of claim 12, wherein decreased AVR
indicates higher propensity for a disease.
18. The system of claim 12, wherein the image is one or
more of a color image, a multispectral image, or an Optical
Coherence Tomography image.
19. The system of claim 12, wherein the image depicts at
least one of: a retina, an iris, skin, a brain surface, or a
portion of tissue with visible blood vessels.
20. A non-transitory computer-readable medium compris-
ing processor-executable instructions for automatic determi-
nation of arteriovenous ratio (AVR) in tissue that, when
executed by at least one processor of a computing device,
cause the computing device to:
receive an image;
determine a region of interest (ROI) in the image, wherein
the ROI comprises a plurality of centerline pixels;

determine, by a trained classifier each of the plurality of
centerline pixels within the ROI, a label indicative of
the centerline pixel comprising either an artery or a
vein;

identify, based on a voting procedure and the label for

each of the plurality of centerline pixels, arteries and
veins in the ROI, the ROI having a given diameter,
wherein the voting procedure is repeated for ROIs at a
plurality of different diameters comprising the given
diameter, and wherein the voting procedure votes each
centerline pixel as an artery or a vein;

determine vessel width measurements for the identified

arteries and veins in the ROI; and

estimate, based on the vessel width measurements for the

identified arteries and veins in the ROI, the AVR.
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