
US 20200364614A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2020/0364614 A1

Trott et al . (43) Pub . Date : Nov. 19 , 2020

(54) SOLVING SPARSE REWARD TASKS USING
SELF - BALANCING SHAPED REWARDS

(52) U.S. CI .
CPC GO6N 20/00 (2019.01) ; G06F 17/18

(2013.01) ; G06K 9/6215 (2013.01)
(71) Applicant : salesforce.com , inc . , San Francisco , CA

(US) (57) ABSTRACT

(72) Inventors : Alexander Richard Trott , San
Francisco , CA (US) ; Stephan Tao
Zheng , Redwood City , CA (US)

(21) Appl . No .: 16 / 545,279
(22) Filed : Aug. 20 , 2019

Related U.S. Application Data
(60) Provisional application No. 62 / 852,179 , filed on May

23 , 2019 , provisional application No. 62 / 849,036 ,
filed on May 16 , 2019 .

Approaches for using self - balancing shaped rewards include
randomly selecting a start and goal state , traversing first and
second trajectories for moving from the start state toward the
goal state where a first terminal state of the first trajectory is
closer to the goal state than a second terminal state of the
second trajectory , updating rewards for the first and trajec
tories using a self - balancing reward function based the
terminal states of the other trajectory , determining a gradient
for the goal - oriented task module , and updating one or more
parameters of the goal - oriented task module based on the
gradient . The second trajectory contributes to the determi
nation of the gradient and the first trajectory contributes to
the determination of the gradient when the first terminal
state is within a first threshold distance of the second
terminal state or the first terminal state is within a second
threshold distance of the goal state .

Publication Classification
(51) Int . Ci .

GOON 20/00 (2006.01)
G06K 9/62 (2006.01)

300 310

Select a random start state and a random goal
state for a goal - oriented task module

320

Traverse a first trajectory from the start state
toward the goal state to a first terminal state

330

Traverse a second trajectory from the start state
toward the goal state to a second terminal state

340

Update the rewards for the first and second
trajectories using a self - balancing shaped reward

350

Determine which of the first and second terminal
states is closest to the goal state

360

Determine a gradient for the goal - oriented task
module based on the first and second trajectories

370
No

Update ?

Yes
380

Update one or more parameters of the goal
oriented task module

Computing Device 100

Memory 120

Patent Application Publication

Processor 110

Self - balancing Shaped Rewards Training Module 130

Goal - oriented Task Module 140

Nov. 19 , 2020 Sheet 1 of 9

Input 150

Result 160

US 2020/0364614 A1

FIG . 1

Toy Environment

F ($ T 9)

P

p ($ T 9,0)

220

230

240

Patent Application Publication

Optimum
250

Local Optimum Terminal State (phase)

Local Optimum Terminal State (phase)

7

210

260

FIG . 2

510

520

530

Nov. 19 , 2020 Sheet 2 of 9

All Rollouts

Farther Sibling (7)

Closer Sibling (7)

3

Local Optinum

Goal

Local Optinium

Local Optimum

US 2020/0364614 A1

250

Terminal State (phase) FIG . 5

Patent Application Publication Nov. 19 , 2020 Sheet 3 of 9 US 2020/0364614 A1

300 310

Select a random start state and a random goal
state for a goal - oriented task module

320

Traverse a first trajectory from the start state
toward the goal state to a first terminal state

330

Traverse a second trajectory from the start state
toward the goal state to a second terminal state

340

Update the rewards for the first and second
trajectories using a self - balancing shaped reward

350

Determine which of the first and second terminal
states is closest to the goal state

360

Determine a gradient for the goal - oriented task
module based on the first and second trajectories

370
No

Update ?

Yes
380

Update one or more parameters of the goal
oriented task module

FIG . 3

400

• Environment , Goal - reaching task w S.G 4.P $ 0.9) .d () . 3 and max episode length Policy & xGxA | 0.1) and Critic V.SxGxGR with parameters 0 and

Patent Application Publication

410

for episode s l ... M do

420 430

polite (...)

440

Relabel zuil reward using pur and wine Relabel z reward using yo ' and s firmou

if ds.9) < d4g) then

Nov. 19 , 2020 Sheet 4 of 9

450

if l { sip , p) << or dmg) < 8 then

460 470

Apply on - policy algorithm A to update 7 using examples in D

US 2020/0364614 A1

FIG . 4

O19

620

630

Terminal State Mas

Success Rate

PPO + SR

??? 0- SR

ET

ET

Patent Application Publication

DDPG + HER

Epoch

E

3.2

NA

!

PPO + ICM

PPO

FIG . 6

720

730

710
V

Nov. 19 , 2020 Sheet 5 of 9

PPO + SR

L 4

V - Shape Ant Maze

?

0

Episodes

US 2020/0364614 A1

PPO + ICM

PPO

DDPG + HER

FIG . 7

810

820

830

DQN + HER
PPO + SR

Success Rate

Agent State (location) (bitmap)

Episode Agent Actions
Goal

?

Patent Application Publication

DON PPO + ICM

PPO

FIG . 8

Nov. 19 , 2020 Sheet 6 of 9

920
V

930
V

910
V

Agent State (visual input) (structure)

Episode Goal

Agent Actions

f

US 2020/0364614 A1

FIG . 9

Patent Application Publication Nov. 19 , 2020 Sheet 7 of 9 US 2020/0364614 A1

FIG . 10
1010 1020 1030

9

Episodes

Episodes

*

Patent Application Publication Nov. 19 , 2020 Sheet 8 of 9 US 2020/0364614 A1

Hyperparameter PPO SR P10 / + SK

FIG . 11

Rollouts per Update

128

FIG . 12

Patent Application Publication Nov. 19 , 2020 Sheet 9 of 9 US 2020/0364614 A1

Bit flipping

FIG . 13

Setting

La 0.0
FIG . 14

US 2020/0364614 A1 Nov. 19 , 2020
1

DETAILED DESCRIPTION SOLVING SPARSE REWARD TASKS USING
SELF - BALANCING SHAPED REWARDS

RELATED APPLICATIONS

[0001] This application claims priority to U.S. Provisional
Patent Application No. 62 / 852,179 filed on May 23 , 2019
and U.S. Provisional Patent Application No. 62 / 849,036
filed on May 16 , 2019 , each of which is incorporated by
reference herein .

TECHNICAL FIELD

[0002] The present disclosure relates generally to training
and use of machine learning systems and more specifically
solving sparse reward tasks using self - balancing shaped
rewards .

BACKGROUND
[0003] While using shaped rewards can be beneficial when
solving sparse reward tasks , their successful application
often includes careful engineering and is problem specific .
For example , naive approaches based on distance - to - goal
reward functions often find solutions based on a local
optimum rather than a more desirable global optimum . To
address these issues , developers often enhance the reward
functions based on problem - specific knowledge . This
approach , however , does not generalize well and is only as
good as the problem - specific reward functions .
[0004] Accordingly , it would be advantageous to have
systems and methods for training deep learning systems for
sparse reward tasks that do not require specially crafted
problem - specific reward functions .

[0016] This application introduces a simple and effective
model - free method to learn from shaped distance - to - goal
rewards on tasks where success depends on reaching a goal
state . The described approaches introduce an auxiliary dis
tance - based reward based on pairs of rollouts to encourage
diverse exploration . These approaches effectively de - stabi
lize local optima induced by the naive distance - to - goal
reward shaping while enabling policies to efficiently solve
the sparse reward task . Using an augmented objective does
not involve any additional reward engineering or domain
expertise to implement . These approaches are able to suc
cessfully solve a variety of hard - exploration tasks , such as
maze navigation , 3D construction in a Minecraft environ
ment , and / or the like , where naive distance - based reward
shaping otherwise fails , and curiosity and reward relabeling
strategies exhibit poor performance .
[0017] Reinforcement Learning (RL) offers a powerful
framework for teaching an agent to perform some task using
only observations from its environment . The goal of RL is
to learn a policy that maximizes the reward received by the
agent ; for many real - world problems , this requires engineer
ing a reward function that aligns with the task at hand .
Designing a well - suited sparse reward function typically
includes defining the criteria for achieving the task for which
reward is provided if the criteria are met and withheld
otherwise .
[0018] While designing a suitable sparse reward may be
straightforward , learning from it within a practical amount
of time often is not and often requires exploration heuristics
to help discover a suitable sparse reward . Other approaches
use a shaped reward and can be used to express preference
over failed rollouts , based on which rollouts made more
progress towards a successful outcome . In some examples ,
this may simplify some aspects of learning , but whether the
learned behavior improves task performance depends on
careful design of the shaped reward . As such , shaped
rewards shift the burden to domain - expertise and are often
problem specific .
[0019] Goal - oriented tasks provide an interesting exten
sion of the traditional RL framework . Such tasks typically
require a goal - oriented task module to deal with episode
specific goals . In cases where each goal can be associated
with some state (s) of the environment , distance - to - goal
becomes a natural metric to express the success of a par
ticular episode or attempt to complete the task . Distance
to - goal can similarly be used as a shaped reward . In this
case , the sparse and shaped versions of the distance - to - goal
reward have equivalent requirements with regard to domain
expertise (namely , in choosing the distance metric) . How
ever , such shaped rewards introduce a new potential prob
lem : local optima . Because the locations and attractiveness
of local optima depend highly on the environment and task
definition , solutions to deal with them quickly become
problem specific
[0020] To address this , a simple and effective , generally
applicable , model - free approach to address the limitations of
using distance - to - goal as a shaped reward is described .
According to some embodiments , the naive distance - based
shaped reward (which renders learning vulnerable to local
optima) is extended to handle sibling trajectories , pairs of
independently sampled trajectories using the same policy ,
starting state , and goal . The approach , which is simple to
implement , may be interpreted as a type of self - balancing

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] FIG . 1 is a simplified diagram of a computing
device according to some embodiments .
[0006] FIG . 2 is a simplified diagram of a goal - oriented
task according to some embodiments .
[0007] FIG . 3 is a simplified diagram of a method of
training a goal - oriented task module according to some
embodiments .
[0008] FIG . 4 is a simplified diagram of the method of
FIG . 3 in algorithmic form according to some embodiments .
[0009] FIG . 5 is a simplified diagram of the impact of
training a goal - oriented task module for the goal - oriented
task of FIG . 2 according to the method of FIG . 3 and / or the
algorithm of FIG . 4 according to some embodiments .
[0010] FIGS . 6-9 are simplified diagrams of other goal
oriented tasks and the learning of corresponding goal
oriented task modules according to some embodiments .
[0011] FIG . 10 is a simplified diagram of the impact of the
inclusion threshold used in the method of FIG . 3 and / or the
algorithm of FIG . 4 according to some embodiments .
[0012] FIG . 11 is a simplified diagram of implementation
parameters for proximal policy optimization according to
some embodiments .
[0013] FIG . 12 is a simplified diagram of implementation
parameters for off - policy approaches according to some
embodiments .
[0014] FIGS . 13 and 14 are simplified diagrams of imple
mentation parameters for the goal - oriented tasks of FIGS . 2
and 5-9 according to some embodiments .
[0015] In the figures , elements having the same designa
tions have the same or similar functions .

US 2020/0364614 A1 Nov. 19 , 2020
2

reward that encourages behaviors that make progress
towards the goal and simultaneously use sibling rollouts to
estimate the local optima and encourage behaviors that
avoid the local optima , effectively balancing exploration and
exploitation . This objective helps to de - stabilize local
optima without introducing new stable optima , preserving
the task definition given by the sparse reward . According to
some embodiments , this approach combines the learnability
of shaped rewards with the generality of sparse rewards ,
which are demonstrated through its successful application
on a variety of environments that support goal - oriented
tasks .
[0021] FIG . 1 is a simplified diagram of a computing
device 100 according to some embodiments . As shown in
FIG . 1 , computing device 100 includes a processor 110
coupled to memory 120. Operation of computing device 100
is controlled by processor 110. And although computing
device 100 is shown with only one processor 110 , it is
understood that processor 110 may be representative of one
or more central processing units , multi - core processors ,
microprocessors , microcontrollers , digital signal processors ,
field programmable gate arrays (FPGAs) , application spe
cific integrated circuits (ASICs) , graphics processing units
(GPUs) , tensor processing units (TPUs) , and / or the like in
computing device 100. Computing device 100 may be
implemented as a stand - alone subsystem , as a board added
to a computing device , and / or as a virtual machine .
[0022] Memory 120 may be used to store software
executed by computing device 100 and / or one or more data
structures used during operation of computing device 100 .
Memory 120 may include one or more types of machine
readable media . Some common forms of machine readable
media may include floppy disk , flexible disk , hard disk ,
magnetic tape , any other magnetic medium , CD - ROM , any
other optical medium , punch cards , paper tape , any other
physical medium with patterns of holes , RAM , PROM ,
EPROM , FLASH - EPROM , any other memory chip or car
tridge , and / or any other medium from which a processor or
computer is adapted to read .
[0023] Processor 110 and / or memory 120 may be arranged
in any suitable physical arrangement . In some embodiments ,
processor 110 and / or memory 120 may be implemented on
a same board , in a same package (e.g. , system - in - package) ,
on a same chip (e.g. , system - on - chip) , and / or the like . In
some embodiments , processor 110 and / or memory 120 may
include distributed , virtualized , and / or containerized com
puting resources . Consistent with such embodiments , pro
cessor 110 and / or memory 120 may be located in one or
more data centers and / or cloud computing facilities .
[0024] As shown , memory 120 includes a self - balancing
rewards training module 130 and a goal - oriented task mod
ule 140. Self - balancing rewards training module 130 may be
used to supervise the training of goal - oriented task module
140 using a self - balancing rewards training approach .
According to some embodiments , self - balancing rewards
training module 130 may iteratively use a sibling rivalry
approach to control how the gradient for the goal - oriented
task module 140 is generated and then used to update the
parameters of goal - oriented task module 140. In some
examples , the sibling rivalry approach for each training
cycle selects a number of random start state and random goal
state pairs for a problem applicable to goal - oriented task
module 140. A pair of two sibling trajectories from the start
state toward the goal state are generated for each start state

and goal state pair . The terminal state for reach of the sibling
trajectories are then used to update (e.g. , relabel) the reward
of each of the sibling trajectories based on a self - balancing
reward function . A selective determination is made as to
which of the sibling trajectories are used to in the compu
tation of the gradient of the parameters of goal - oriented task
module 140 for the current training cycle as is described in
further detail below .
[0025] Goal - oriented task module 140 may be used to
solve any goal - oriented task . As shown , goal - oriented task
module 140 receives one or more inputs 150 and generates
one or more outputs 160. In some examples , the one or more
inputs 150 may correspond to a starting state and a desired
goal state and the one or more outputs 160 may correspond
to a trajectory , series of operations , and / or the like for
moving from the starting state toward the desired goal state
so as to maximize the reward for the task . In some examples ,
goal - oriented task module 140 may include one or more
neural networks . In some examples , goal - oriented task mod
ule 140 may solve goal - oriented tasks such as point - maze
navigation , ant maze navigation using hierarchical rein
forcement learning , image manipulation , 3D construction
using blocks , and / or the like as is described in further detail
below .
[0026] In some examples , memory 120 may include non
transitory , tangible , machine readable media that includes
executable code that when run by one or more processors
(e.g. , processor 110) may cause the one or more processors
to perform the methods described in further detail herein . In
some examples , self - balancing rewards training module 130
and / or goal - oriented task module 140 may be implemented
using hardware , software , and / or a combination of hardware
and software .
[0027] As discussed above and further emphasized here ,
FIG . 1 is merely an example which should not unduly limit
the scope of the claims . One of ordinary skill in the art would
recognize many variations , alternatives , and modifications .
According to some embodiments , self - balancing rewards
training module 130 and / or goal - oriented task module 150
may be located in separate computing devices . In some
examples , each of the separate computing devices may be
consistent with computing device 100 .
[0028] FIG . 2 is a simplified diagram of a goal - oriented
task according to some embodiments . As shown in FIG . 2 ,
a toy environment 210 includes a warped circular track 220 .
The goal of toy environment 210 is to navigate along track
220 from a random starting point on track 220 with a goal
of reaching a goal point 230. In some examples , toy envi
ronment 210 may be evaluated using a distance to goal
function (e.g. , a Euclidean distance between a point on track
220 and goal point 230) . Use of a distance to goal function ,
however , hampers navigation to goal point 230 because of a
local optimum 240 where navigation may become stuck
such that goal point 230 may not be reached . This is
especially true for starting points along the bottom half of
track 220. For example , a corresponding generic sparse
reward function for problems like the goal - orient task of toy
environment 210 may be the function r (s , g) as shown in
Equation 1 , where s is state (e.g. , a point on track 220) , g is
a goal state (e.g. , goal point 230) , dís , g) is a distance
measure , and d is a distance threshold indicating how close
to goal state g that state s must be to receive a sparse reward .
In some examples , dés , g) may be a Euclidean distance
measure in R + .

US 2020/0364614 Al Nov. 19 , 2020
3

Equation 1
r (s , 8) = { b , otherwise 1 , d (s , g) < 8

0 , otherwise

of a

[0029] In some examples , the distance function d may also
be used formulate a shaped reward function without any
domain - specific knowledge by adding a penalty to the
reward function of Equation 1 when a terminal state ST
navigation trajectory for the goal - oriented task does not get
sufficiently close to the goal state . An example of using the
distance function d in a shaped reward function is shown in
Equation 2

Equation 2
F (s , g) =

1 , d (s , g) so
1 - d (s , g) , otherwise

[0030] According to some embodiments , even when a
shaped reward function is used , this does not guarantee that
the impacts of local optima are properly accounted for . For
example , and as shown in FIG . 2 where reward function r (s ,
g) is shown by reward curve 250 , the terminal state for
starting points / states in the lower half of track 220 have a
strong tendency to cluster around local optimum 240 .
(0031] According to some embodiments , domain - specific
knowledge (e.g. , in the form of the location of local opti
mum 240) , may be used to develop a shaped reward function
that rewards progress towards a goal state while also reward
ing for staying away from a local optimum (e.g. as an
anti - goal) . An example of using the distance function d in a
shaped reward with an anti - goal is shown in Equation 3 ,
where 5 corresponds to the local optimum . In some
examples , Equation 3 could be modified to include addi
tional anti - goals by adding additional terms to avoid other
local optima . For example , and as shown in FIG . 2 where
reward function r ' (s , g) is shown by reward curve 260 , the
terminal state for starting points / states in the lower half of
track 220 initially cluster around local optimum 240 , but as
training of the goal - oriented task module continues , the
terminal states develop a strong tendency to drift away from
local optimum 240 and to eventually cluster around goal
point 230 .

a way to introduce anti - goals that do not require domain
specific knowledge of the goal - oriented task or the local
optima for the goal - oriented task . With sibling rivalry , two
trajectories from a randomly selected start state toward a
randomly selected goal state are traversed until a terminal
state is reached . The terminal states for each trajectory then
become the anti - goal for the other trajectory . In some
examples and under the assumption that the trajectory with
the terminal state closest to the goal state provides a good
estimate for a local optimum , allows the sibling rivalry
approach to make reasonable guesses regarding local optima
and to incorporate that into the training strategy for a
goal - oriented task in a generic fashion and without having to
develop domain - specific knowledge . In some examples , the
use of the sibling rivalry trajectories to provide the anti
goals for each other also turns the r ' (s , g) function of
Equation 3 into a self - balancing shaped reward function that
provides an effective balance between a tendency to exploit
an available reward (through –d (s , g)) and the exploring of
diverse states (through dís , S)) ,
[0034] FIG . 3 is a simplified diagram of a method 300 of
training a goal - oriented task module according to some
embodiments . One or more of the processes 310-380 of
method 300 may be implemented , at least in part , in the form
of executable code stored on non - transitory , tangible ,
machine - readable media that when run by one or more
processors may cause the one or more processors to perform
one or more of the processes 310-380 . In some embodi
ments , method 300 may correspond to the method used by
self - balancing rewards training module 130 to train a goal
oriented task module , such as goal - oriented task module
140. In some embodiments , method 300 may include addi
tional processes , which are not shown in FIG . 3. In some
embodiments , the order of processes 310-380 in method 300
may be different than is implied by FIG . 3. In some
examples , processes 320 and 330 may be performed con
currently and / or in a different order . In some examples ,
processes 340 and 350 may be performed concurrently
and / or in a different order .
[0035] At a process 310 , a random start state and a random
goal state for a goal - oriented task module are selected . The
goal - oriented task module is a trainable module for solving
a goal - oriented task . In some examples , the goal - oriented
task module may include one or more neural networks
and / or other trainable structure . In some examples , the
goal - oriented task may be the goal - oriented task of FIG . 2 ,
other goal - oriented tasks as described below , and / or the like .
In some examples , the random start state and the random
goal state provide a mechanism for effectively exploring the
solution space of the goal - oriented task .
[0036] At a process 320 , a first trajectory from the start
state toward the goal state is traversed to a first terminal
state . In some examples , the first trajectory is sometimes
referred to as a first rollout . The first trajectory is traversed
by applying a policy of the goal - oriented task module to take
iterative steps starting at the start state with a goal of
reaching the goal state . The first trajectory continues until
the first terminal state for the first trajectory is reached . In
some examples , the first terminal state may be reached after
a configurable number of iterations . In some examples , the
configurable number of iterations is five , although other
numbers of iterations are possible . In some examples , the
first terminal state may be reached after the first trajectory
converges to the first terminal state . In some examples , the

Equation 3
r (s , g) 8) = { min { minfo . -dis'e + d (5,5) , otherwise

[0032] According to some embodiments , discovering the
local optima for many goal - oriented tasks is not as simple as
the examples of toy environment 210. In some examples , the
local optima may be difficult to detect and / or may require
extensive domain - specific knowledge and engineering . In
some examples , when the anti - goals are not developed
carefully , they may introduce new local optima , which
further complicate the development of the shaped reward
function . Further , the reliance on domain - specific knowl
edge to develop anti - goals to avoid the local optima is not
conducive to a generic solution to goal - oriented tasks having
local optima .
[0033] According to some embodiments , a sibling rivalry
approach provides a generic solution for goal - oriented tasks
having local optima . The sibling rivalry approach provides

US 2020/0364614 A1 Nov. 19 , 2020
4

first trajectory and / or the first terminal state may be evalu
ated according to a goal such as distance function d , reward
function r , reward function ? , and / or the like .
[0037] At a process 330 , a second trajectory (or second
rollout) from the start state toward the goal state is traversed
to a second terminal state . In some examples , the second
trajectory is determined and / or evaluated using an approach
similar to process 320 until the second terminal state is
reached . In some examples , the second trajectory may be
different from the first trajectory and / or the second terminal
state may be different from the first terminal state because
the goal - oriented task module includes one or more proba
bilistic aspects such that with each iteration along a trajec
tory , the direction of the iteration is not entirely determin
istic . In some examples , the second trajectory is referred to
as a sibling of the first trajectory and vice versa .
[0038] At a process 340 , the rewards for the first and
second trajectories are updated using a self - balancing
shaped reward . In some examples , the updating of the
reward may be referred to as relabeling . In some examples ,
the self - balancing shaped reward introduces an anti - goal
based on the terminal state of the other of the trajectories .
That is , the first terminal state becomes an anti - goal for the
second trajectory and the second terminal state becomes an
anti - goal of the first trajectory . In some examples , function
r is used to determine the self - balancing shaped reward .
[0039] At a process 350 , it is determined which of the first
and second terminal states is closest to the goal state . In
some examples , the distance function d may be used to
determine how close each of the first and second terminal
states is to the goal state .
[0040] At a process 360 , a gradient for the goal - oriented
task module is determined based on the first and second
trajectories . The trajectory from among the first and second
trajectories whose terminal state is farthest from the goal
state is included in the determination of the gradient . In
some examples , when the first terminal state and the second
terminal state are within a configurable distance E of each
other (e.g. , using distance function d) , the trajectory from
among the first and second trajectories whose terminal state
is closest to the goal state is also included in the determi
nation of the gradient . In some examples , when the terminal
state that is closest to the goal state is within a configurable
distance d of the goal state (e.g. , using distance function d) ,
the trajectory from among the first and second trajectories
whose terminal state is closest to the goal state is also
included in the determination of the gradient . In some
examples , an appropriate loss function for the goal - oriented
task module is applied to a trajectory to determine its
contribution to the gradient .
[0041] At a process 370 , it is determined whether suffi
cient pairs of sibling trajectories have been examined to
provide a reasonable estimate of the gradient . In some
examples , processes 310-360 are repeated a configurable
number of times before the estimated gradient is used to
update the goal - oriented task module . When there are insuf
ficient pairs of sibling trajectories , method 300 returns to
process 310 to generate another pair of sibling trajectories .
When there are sufficient pairs of sibling trajectories , the
goal - oriented task module is updated using a process 380 .
[0042] At the process 380 , one or more parameters of the
goal - oriented task module are updated . In some examples ,
the one or more parameters may be updated using back
propagation based on the gradient determined during pro

cess 360. In some examples , the back propagation may be
implemented using a learning algorithm , such as stochastic
gradient descent (SGD) , adaptive moment estimation
(ADAM) , and / or the like .
[0043] After the one or more parameters of the goal
oriented task module are updated , method 300 may be
repeated for additional groups of random start and goal
states by returning to process 310 .
[0044] FIG . 4 is a simplified diagram of method 300 in
algorithmic form according to some embodiments . As
shown in FIG . 4 , an algorithm 400 corresponding to method
300 is shown for a goal - oriented task module applying a
policy a for a goal - oriented goal - reaching task . The max
episode length is the number of iterations for traversing a
trajectory until the terminal state for that trajectory is
reached . The parameter 6 corresponds to the distance thresh
old used by reward functions r , ? , and r ' and as used in
process 360 to determine whether to include the trajectory
from among the first and second trajectories whose terminal
state is closest to the goal state is also included in the
determination of the gradient . The inclusion threshold E
corresponds to the distance used to determine whether the
first terminal state and the second terminal state are suffi
ciently close together .
[0045] Line 410 of algorithm 400 corresponds to process
310 , where a random goal state g and a random start state so
are selected . Line 420 corresponds to process 320 , where a
first trajectory tº is traversed to a terminal state sq " . Line 430
corresponds to process 330 , where a second trajectory T? is
traversed to a terminal state sz . Lines 440 correspond to
process 340 , where the rewards for the first and second
trajectories are updated / relabeled . Lines 450 correspond to
process 350 , where the terminal states of the first trajectory
TQ and second trajectory d are examined to determine which
is closer to goal state g , with the trajectory having its
terminal state closest to goal g being identified by Te and the
trajectory having its terminal state farthest from goal g being
identified by . Lines 460 correspond to process 360 , where
the trajectory having the terminal state s . farthest from goal
g is included in the gradient (e.g. , included in buffer D) and
the trajectory having the terminal state sz " . closest to goal g
is included in the gradient when it is within the inclusion
threshold e of terminal states , or is within distance d of goal
g . Line 470 corresponds to process 380 , where the one or
more parameters of the goal - oriented task module are
updated using the gradient (e.g. , the examples in D) accord
ing to the learning algorithm 4 .
[0046] FIG . 5 is a simplified diagram of the impact of
training a goal - oriented task module for the goal - oriented
task of FIG . 2 according to method 300 and / or algorithm 400
according to some embodiments . As shown in FIG . 5 , plot
510 shows that the terminal state for both of the sibling
trajectories for starting points / states in the lower half of
track 220 initially cluster around local optimum 240 (but
more weakly so than in the examples of FIG . 2) , but as
training of the goal - oriented task module continues , the
terminal states develop a strong tendency to drift away from
local optimum 240 and to eventually cluster around goal
point 230. Plot 520 shows that the terminal states for the
trajectory (T) having a terminal state farther from the goal
cluster weakly around the goal state as training progresses .
Additionally , plot 520 shows that the terminal states for the
trajectory (TC) having a terminal state closest to the goal
cluster more strongly around the goal state as training

US 2020/0364614 A1 Nov. 19 , 2020
5

progresses . Thus , FIG . 5 shows that toy environment 210 ,
when trained according to method 300 and / or algorithm 400
and without any domain - specific knowledge regarding local
optimum 240 , is able to learn to avoid local optimum 240
and reach goal point 230 almost as well as reward curve 260 ,
which was developed using domain - specific knowledge
regarding local optimum 240 .
[0047] FIG . 6 is a simplified diagram of a 2D point maze
goal - oriented task 610 and learning by a corresponding
goal - oriented task module according to some embodiments .
As shown in FIG . 6 , for 2D point maze goal - oriented task
610 , the goal state is randomly selected from within the
shaded box in the upper right corner and the start state is
randomly selected from within the shaded box in the lower
left corner . The lines in plot 620 show the learning progress
for the success rate (e.g. , reaching the goal state) as learning
progresses over the training episodes and epochs for various
training algorithms , which are described in further detail
below . The shaded regions about the plot lines show a
distribution of the success rate corresponding to the average
plus up to one standard deviation about the average success
rate . The shaded points in diagram 630 illustrate the terminal
states achieved by the various algorithms after each of the
first 15 evaluation checkpoints .
[0048] According to some embodiments , 2D point maze
goal - oriented task 610 is implemented in a 10x10 environ
ment (arbitrary units) consisting of an array of pseudo
randomly connected 1x1 squares . The construction of the
maze ensures that all squares are connected to one another
by exactly one path . This is a continuous environment . The
goal - oriented task module sees as input its 2D coordinates
and well as the 2D goal coordinates , which are somewhere
near the top right corner of the maze . The goal - oriented task
module takes an action in a 2D space that controls the
direction and magnitude of the step it takes , with the
outcome of that step potentially affected by collisions with
walls . In some examples , the goal - oriented task module does
not observe the walls directly , creating a difficult exploration
environment . In some examples , the actor and critic net
works are learned with three hidden layers of size 128 and
rectified linear unit (ReLU) activation functions . According
to some embodiments , additional environment and task
details for 2D point maze goal - oriented task 610 are shown
in FIGS . 13 and 14 , respectively .
[0049] When a goal - oriented task module for 2D point
maze goal - oriented task 610 is trained using Proximal Policy
Optimization (PPO) and a shaped distance - to - goal reward ,
the goal - oriented task module consistently learns to exploit
the corridor at the top of the maze but never reaches the goal
state . PPO is described in further detail in Schulman , et al .
“ Proximal Policy Optimization Algorithms , ” 2017 , available
at https://arxiv.org/abs/1707.06347 , which is incorporated
by reference herein in its entirety . A goal - oriented task
module incorporating the sibling rivalry approach of method
300 and / or algorithm 400 (PPO - SR) avoids the local opti
mum of the corridor at the top of the maze (and well as other
local optima) and is able to discover the path to the goal
state , thus solving the maze . A goal - oriented task module
trained according to Hindsight Experience Replay (HER)
applies off - policy learning to relabel trajectories based on
achieved goals on a DDPG backbone (DDPG - HER) only
learns to reach the goal on 1 of the 5 experimental runs ,
suggesting a failure in exploration because the achieved
goals do not generalize to the task goals . HER is described

in further detail in Andrychowicz , et al . , “ Hindsight Expe
rience Replay , ” 2017 Conference on Neural Information
Processing Systems , and DDPG is described in further detail
in Lillicrap , et al . , “ Continuous Control with Deep Rein
forcement Learning , ” 2016 International Conference on
Learning Representations , each of with is incorporated by
reference herein in its entirety . A goal - oriented task module
trained according to curiosity - based intrinsic reward (PPO +
ICM) , which maintains a curriculum of exploration , fails to
discover the sparse reward at the same rate . ICM is
described in further detail in Pathak , et al . , “ Curiosity - driven
Exploration by Self - supervised Prediction , ” 2017 Interna
tional Conference on Machine Learning and Burda , et al . ,
“ Large - Scale Study of Curiosity - Driven Learning , " 2018 ,
available at https://arxiv.org/abs/1808.04355 , each of with is
incorporated by reference herein in its entirety . In addition
(although not shown) , when using the random network
distillation of Burda , the goal - oriented task module never
finds the goal . Thus , only the goal - oriented task module that
learns with PPO - SR is able to consistently and efficiently
solve the maze .
[0050] FIG . 7 is a simplified diagram of a U - shaped ant
maze goal - oriented task 710 and learning by a correspond
ing goal - oriented task module according to some embodi
ments . As shown in FIG . 7 , for U - shaped ant maze goal
oriented task 710 , the goal state is randomly selected from
within the shaded box in the upper left corner and the start
state is near the x in the lower left corner . The lines in plot
720 show the learning progress for the success rate (e.g. ,
reaching the goal state) as learning progresses over the
training episodes and epochs for various training algorithms
similar to those used for 2D point maze goal - oriented task
610 in FIG . 6. The shaded regions about the plot lines show
a distribution of the success rate corresponding to the
average plus up to one standard deviation about the average
success rate . The shaded points in diagram 730 illustrate the
terminal states achieved by the various algorithms after each
of the first 15 evaluation checkpoints .
[0051] According to some embodiments , U - shaped ant
maze goal - oriented task 710 uses a set - up similar to 2D point
maze goal - oriented task 610 , but trades complexity of the
maze for complexity in the navigation behavior . The goal
oriented task module is divided into a high - level policy and
low - level policy , where the high - level policy proposes sub
goals and the low - level policy rewards for reaching those
subgoals . The high - level policy is allowed to propose a new
subgoal of every 20 environment timesteps . From the per
spective of training the low - level policy , each of the 20
environment timesteps with a particular subgoal is treated as
its own mini - episode . At the end of the full episode , two
epochs of PPO training is performed to improve the low
level policy , using distance - to - subgoal as the reward .
[0052] In some examples , the limits of the maze are [-4 ,
20] in both height and width . In some examples , the goal
oriented task module starts at position (0,0) and attempts to
navigate to goal location g = (xg , yg) , with coordinates
sampled within the range of x , E [-3.5 , 3.5] and yg
19.5] . For the goal - oriented task module to see the sparse
reward , it must navigate from one end of the U - maze to the
other and cannot bootstrap this exploration by learning from
goals that occur along the way . In some examples , the
learning problem becomes considerably easier when this
broad goal distribution is used ; but this can be made more
difficult by not imposing the assumption that the goal

Yg E [12.5 ,

US 2020/0364614 A1 Nov. 19 , 2020
6

distribution will naturally tile goals from ones that are
trivially easy to reach to those that are difficult to reach .
[0053] In some examples , at timestep t , the high - level
policy provides a 2 - dimensional action a , El - 5 , 5] , which is
used to compute the subgoal g = m (s .) + at . In some
examples , the high - level policy specifies the relative coor
dinates that the low - level policy should achieve . From the
perspective of training the high - level policy , only the
timesteps where it takes an action and the result produced by
the low - level policy has the effect of having taken the
high - level action are considered .
[0054] In some examples , both the high - level and low
level actor and critic networks use 3 hidden layers of size
128 and ReLU activation functions . According to some
embodiments , additional environment and task details for
U - shaped ant maze goal - oriented task 710 are shown in
FIGS . 13 and 14 , respectively .
[0055] The sibling rivalry approach (PPO + SR) easily inte
grates with hierarchical reinforcement learning (HRL) ,
which can help to solve more difficult problems such as
navigation in a complex control environment . HRL is used
to solve the U - shaped ant maze goal - oriented task using a
MuJoCo ant agent requiring a higher - level policy to propose
subgoals based on the current state and the goal of the
episode as well as a low - level policy to control the ant agent
towards the given subgoal . The MuJoCo ant agent is
described in further detail in Todorov , et al . , “ MuJoCo : A
Physics Engine for Model - based Control , ” 2012 IEEE Inter
national Conference on Intelligent Robots and Systems ,
which is incorporated by reference herein in its entirety . The
results when learning to navigate the ant maze corroborate
those in the toy environment : learning from the naive
distance - to - goal shaped reward † fails because the wall
creates a local optimum that policy gradient is unable to
escape (PPO) . As with the 2D point maze goal - oriented task
610 , PPO + SR can exploit the optimum without becoming
stuck in it . This is visible in the terminal state patterns over
early training as shown in diagram 730. The PPO + ICM
trained goal - oriented task module stochastically discovers a
path to the goal but at a low rate (2 in 5 experiments) . The
DDPG + HER trained goal - oriented task module struggles to
generalize from its achieved goals to the task goals , perhaps
due in part to the difficulties of off - policy HRL . For
example , 3 of the 5 DDPG + HER runs eventually discover
the goal but do not reach a high level of performance .
[0056] FIG . 8 is a simplified diagram of a 2D discrete
pixel - grid goal - oriented task 810 and learning by a corre
sponding goal - oriented task module according to some
embodiments . As shown in FIG . 8 , for 2D discrete pixel - grid
goal - oriented task 810 , the start state is a random location in
a 13x13 grid with all the pixels turned off and the goal state
is to produce a desired bitmap of off and on pixels . During
the trajectories , the goal - oriented task module knows its
current location (e.g. , via a one - hot bitmap) , the current
bitmap , and the goal bitmap . The goal - oriented task module
succeeds when the bitmap exactly matches the goal bitmap .
Diagram 820 shows the possible actions of the goal - oriented
task module (toggle bit a current location or move in one of
eight directions one pixel) . The loss function used is the Li
distance based on the number of pixels that differ between
the current bitmap and the goal bitmap .
[0057] According to some embodiments , 2D discrete
pixel - grid goal - oriented task 810 uses a 2D environment in
which interaction with the bit array depends on location . In

this setting , the goal - oriented task module begins at a
random position on a 13x13 grid with none of its bit array
switched on . The goal of the goal - oriented task module is to
reproduce the bit array specified by the goal state . In some
examples , to develop the random goal states , goal arrays are
generating by simulating a simple agent that changes direc
tion every few steps and toggles bits it encounters along the
way .
[0058] In some examples , 2D convolution layers are used
to encode the states and goals . In some examples , the
convolution output is pooled using MaxPooling , layer norm
ing is applied , and the hidden state is passed through a fully
connected layer to get the actor and critic outputs . According
to some embodiments , additional environment and task
details for 2D discrete pixel - grid goal - oriented task 810 are
shown in FIGS . 13 and 14 , respectively .
[0059] In 2D discrete pixel - grid goal - oriented task 810 ,
the local optima do not result from having to increase
distance in order to ultimately reach the goal , but because
the goal - oriented task module tends to increase its distance
by toggling a bit from off to on , causing it to quickly avoid
taking this action . This has a pathological effect on the
learning dynamics and on - policy optimization with a naive
distance - based reward shaping never makes progress (PPO) .
This outcome can be prevented by allowing the goal
oriented task module to learn 2D discrete pixel - grid goal
oriented task 810 using PPO + SR . A deep Q - network (DON)
gradually learns the task when a densified reward is used to
augment the terminal state by providing shaped rewards at
each step along the trajectories with a discount rate y = 0.98 .
DQNs are described in further detail in Mnih , et al . ,
“ Human - level Control through Deep Reinforcement Learn
ing , ” Nature 7450 , pp . 529-33 , 2015 , which is incorporated
by reference herein in its entirety . Off - policy methods that
can accommodate forced exploration may avoid this issue ,
however , exploration alone is not sufficient on tasks like 2D
discrete pixel - grid goal - oriented task 810 because simply
achieving diverse states is unlikely to let the goal - oriented
task module discover the goal - oriented task so as to properly
relate states , goals , and rewards . This is shown by the failure
of PPO + ICM to enable learning in this setting . DQN + HER ,
however , learns the structure of 2D discrete pixel - grid
goal - oriented task 810 from failed trajectories and , as an
off - policy method , handles forced exploration , allowing it to
quickly learn 2D discrete pixel - grid goal - oriented task 810 .
In some examples , using distance as a reward function
automatically exposes the goal - oriented task structure but
often at the cost of unwanted local optima . PPO + SR avoids
that tradeoff , allowing efficient on - policy learning .
[0060] FIG . 9 is a simplified diagram of a construction in
Minecraft goal - oriented task 910 and learning by a corre
sponding goal - oriented task module according to some
embodiments . As shown in FIG . 9 , for construction in
Minecraft goal - oriented task 910 , the goal - oriented task
module controls both its location and orientation and then
breaks or places blocks in order to produce a goal structure .
The goal - oriented task module observes its first - person
visual input , the discrete 3D cuboid of the construction
arena , and the corresponding cuboid of the goal structure .
Goal structures vary in height , dimensions , and material
(yielding 4806 unique combinations) . A goal - oriented task is
considered complete when the structure exactly matches the
goal structure . In some examples , the goal - oriented task
module is trained against a loss function based on a differ

US 2020/0364614 A1 Nov. 19 , 2020
7

ence between correctly and incorrectly placed blocks
divided by the number of goal - structure blocks . As shown in
the Example of FIG . 9 , the goal - oriented task module has
nearly constructed the goal , which specifies a height - 2
diamond structure near the top left of the construction arena .
[0061] According to some embodiments , construction in
Minecraft goal - oriented task 910 includes the goal - oriented
task module placed at the center of a “ build arena ” ” which
is populated in one of several full Minecraft worlds . In some
examples , the goal - oriented task module has no task - specific
incentive to explore the outer world but is free to do so . The
goal - oriented task module navigates the build arena by
controlling its view and orientation in order to reproduce the
structure provided as a goal state (which is similar to a 3D
version of 2D discrete pixel - grid goal - oriented task 810 but
with richer mechanics and more than one type of block that
can be placed) . In some examples , each of the goal states
specifies a square structure made of a single block type that
is either 1 or 2 blocks high with corners at randomly chosen
locations in the build arena . In some examples , each
sampled goal is selected randomly , but is limited so that it
includes no more than 34 total blocks (to ensure that the goal
structure can be built within a 100 timestep episode) . The
goal - oriented task module begins each episode with the
necessary inventory to accomplish the goal . In some
examples , the goal structures are always composed of 1 of
3 block types and the goal - oriented task module and begins
with 64 blocks of each of those types . In some examples , the
goal - oriented task module may place other block types if it
finds them .
[0062] In some examples , the agent is able to observe the
first - person visual input of the character it controls as well
as the 3D cuboid of the goal structure and the 3D cuboid of
the current build arena . The goal - oriented task module , thus ,
has access to the structure it has accomplished but uses the
visual input to determine the next actions to direct further
progress toward the goal state .
[0063] In some examples , the visual input is processed
through a shallow convolution network . In some examples ,
the cuboids , which are represented as 3D tensors of block
type indices , are embedded through a learned lookup and
processed via 3D convolution . In some examples , the com
bined hidden states are used as inputs to the policy network .
In some examples , the value network uses separate weights
for 3D convolution (but it also takes the anti - goal cuboid as
input) but shares the visual encoder with the policy . In some
examples , the reward is computed as the change in the
distance produced by placing a single block . In some
examples , the reward uses a discount rate of y = 0.99 . In some
examples , this additional densification of the reward pro
duces faster training in this complex environment . Accord
ing to some embodiments , additional environment and task
details for construction in Minecraft goal - oriented task 910
are shown in FIGS . 13 and 14 , respectively .
[0064] Similar to 2D discrete pixel - grid goal - oriented task
810 , the goal - oriented task module produces a discrete goal
structure by placing and removing blocks . However , con
struction in Minecraft goal - oriented task 910 introduces the
challenge of a first - person 3D environment , combining
continuous and discrete inputs , and application of aggres
sively asynchronous training with distributed environments
using an IMPALA framework . The IMPALA framework is
described in further detail in Espeholt , et al . , “ IMPALA :
Scalable Distributed Deep - RL with Importance Weighted

Actor - Learner Architectures , ” 2018 International Confer
ence on Machine Learning , which is incorporated by refer
ence herein in its entirety . Because success requires exact
match between the goal and constructed cuboids , the
distance metric is based on a number of block - wise differ
ences relative to the goal structure . Using this distance
metric as a naive shaped reward causes the goal - oriented
task module to avoid ever placing blocks within roughly
1000 episodes , which is not shown for visual clarity . As
shown in plot 930 , by incorporating sibling rivalry into the
learning , the goal - oriented task module avoids this local
optimum and learns to achieve a high degree of construction
accuracy and rate of exact - match success .
[0065] FIG . 10 is a simplified diagram of the impact of the
inclusion threshold E used in method 300 and / or algorithm
400 according to some embodiments . The inclusion thresh
old E is the distance threshold for when to include the
trajectory (T) whose terminal state is closest to the goal state
in the determination of the gradient used to update the one
or more parameters of the goal - oriented task module . When
the inclusion threshold E = 0 , trajectory Tº is only included if
it reaches the goal state g . Conversely , when E = 00 , trajec
tory TC is always included in the determination of the
gradient , while still encouraging diversity through the aug
mented reward function r ' . In some examples , the inclusion
threshold E may be used to tune learning towards explora
tion or exploitation of the distance - to - goal reward .
[0066] This is most evident in the impact of the inclusion
threshold E on learning progress for the 2D point maze
goal - oriented task 610 , where local optima are numerous .
FIG . 10 shows the results of a set of experiments for each
value of inclusion threshold E in the range of 0 , 1 , 2 , ... ,
10 distance units . Because the 2D point maze is 10x10 , this
range of inclusion threshold E values , gives good coverage
of options one might consider for the 2D point maze
goal - oriented task 610. As shown in FIG . 10 , there are three
modes of learning : over - exploration E too low) , successful
learning , and under - exploration (E too high) . Over - explora
tion , occurs for the lower range of inclusion threshold E
where closer - to - goal trajectories are more aggressively dis
carded . Close inspection shows slow progress towards the
goal and a tendency to increase inter - sibling distance (the
latter trend appears to reverse near the end of the training
window) . Successful behavior occurs for the mid - range of
inclusion threshold , where the goal - oriented task module
may exploit the distance - to - goal signal but maintains
enough diversity in its state distribution to avoid commit
ment to local optima . Under - exploration , occurs for the
higher range of inclusion threshold E , where inclusion of the
closer - to - goal trajectory is more permissive . Under - explo
ration leads the goal - oriented task module to the same pitfall
that prevents learning from naive distance - to - goal shaped
rewards in that the goal - oriented task module quickly iden
tifies a low - distance local optimum (consistently , the top
corridor of the maze in toy environment 210) and does not
sufficiently explore in order to find a higher - reward region of
the maze .
[0067] As further shown in FIG . 10 , plot and heatmap
1010 shows that the average success rate is highest for
inclusion threshold E equal to 4 , 5 , or 6. Plot and heatmap
1020 shows that the average distance to goal is lowest for
inclusion threshold E equal to 4,5,6 , or 7. Plot and heatmap
1030 shows that the average distance to the anti - goal (e.g. ,
the terminal state of the sibling trajectory) is lowest for

US 2020/0364614 A1 Nov. 19 , 2020
8

inclusion threshold E equal to 4 , 5 , 6 , or 7. In some
examples , it is likely that a coarser search over possible
values of inclusion threshold Ewould be suitable to identify
the optimal range for inclusion threshold E.
[0068] Many of the results described with respect to FIG .
6-9 use PPO as the backbone learning algorithm . According
to some embodiments , PPO has strong performance and
because it is well suited for the constraints imposed by the
application of the sibling rivalry approach . More specifi
cally , the sibling rivalry approach examines the results for
multiple sibling rivalry trajectories (e.g. , M as shown in
algorithm 400) before updating one or more of the param
eters of the goal - oriented task module . PPO handles this well
as it is able to make multiple updates from a large batch of
trajectories . In some examples , while experimental variants
(e.g. , PPO , and PPO + ICM) that do not use the sibling rivalry
approach , may be implemented without scheduling updates
according to full trajectories , the comparisons of FIG . 6-9 do
not do so . More specifically , for the goal - oriented task
modules trained using PPO and PPO variants , there is a
general cycle between collection of full trajectories and
multiple optimization epochs over minibatches of transitions
within those trajectories . For comparison , a constant number
of optimization epochs and updates per epoch are used while
the sizes of the minibatches are varied based on the variable
length of trajectories (due to either episode termination after
goal - reaching or trajectory exclusion when using PPO - SR .
[0069] To avoid results due to edge - case hyperparameter
configurations , the PPO approach is standardized as much as
possible by using manual search to identify such generally
useful parameter settings . In the U - shaped ant maze goal
oriented task 710 , this standardized approach applies spe
cifically to training the high - level policy . PPO is also used
to train the low - level policy but a more specific approach for
that is adopted based on its unique role in the results of FIG .
6-9 .
[0070] For PPO variants , the output head of the policy
network specifies the ae R2 and BeR2 control parameters of
a Beta distribution to allow sampling actions within a
truncated range are used . These are described in further
detail in Chou , et al . , “ Improving Stochastic Policy Gradi
ents in Continuous Control with Deep Reinforcement Learn
ing using the Beta Distribution , " 2017 International Con
ference on Machine Learning , which is incorporated by
reference herein in its entirety . The samples values are
shifted and scaled to correspond to the task action range .
Entropy regularization is also used to prevent the policy
from becoming overly deterministic early during training .
[0071] ICM is implemented consistent with the guidelines
provided in Burda , et al . , “ Large - Scale Study of Curiosity
Driven Learning , ” 2018 , available at https://arxiv.org/abs/
1808.04355 , each of with is incorporated by reference herein
in its entirety . The curiosity - driven intrinsic reward is
weighted by 0.01 compared to the sparse reward . In some
examples , ICM is only accompanied by sparse extrinsic
rewards , meaning that ICM only experiences the intrinsic
rewards until it (possibly) discovers the goal region . During
optimization , the curiosity network modules (whose archi
tectures follow similar designs to the policy and value for the
given goal - oriented task) is trained at a rate of 0.05 com
pared to the policy and value network modules .
[0072] FIG . 11 is a simplified diagram of implementation
parameters for PPO and its variants according to some
embodiments . As shown in FIG . 11 , the various implemen

tation parameters for PPO , PPO - SR , and PPO - ICM for
goal - oriented tasks 610 , 710 , and 810 , as discussed with
respect to FIGS . 6-8 , are listed .
[0073] FIG . 12 is a simplified diagram of implementation
parameters for off - policy approaches according to some
embodiments . As shown in FIG . 12 , the various implemen
tation parameters for the off - policy approaches for DDPG +
HER and DQN + HER for goal - oriented tasks 610 , 710 , and
810 , as discussed with respect to FIGS . 6-8 , are listed .
[0074] Some examples of computing devices , such as
computing device 100 may include non - transitory , tangible ,
machine readable media that include executable code that
when run by one or more processors (e.g. , processor 110)
may cause the one or more processors to perform the
operations of method 300 and / or algorithm 400. Some
common forms of machine readable media that may include
the operations of method 300 and / or algorithm 400 are , for
example , floppy disk , flexible disk , hard disk , magnetic tape ,
any other magnetic medium , CD - ROM , any other optical
medium , punch cards , paper tape , any other physical
medium with patterns of holes , RAM , PROM , EPROM ,
FLASH - EPROM , any other memory chip or cartridge , and /
or any other medium from which a processor or computer is
adapted to read .
[0075] This description and the accompanying drawings
that illustrate inventive aspects , embodiments , implementa
tions , or applications should not be taken as limiting . Various
mechanical , compositional , structural , electrical , and opera
tional changes may be made without departing from the
spirit and scope of this description and the claims . In some
instances , well - known circuits , structures , or techniques
have not been shown or described in detail in order not to
obscure the embodiments of this disclosure Like numbers in
two or more figures represent the same or similar elements .
[0076] In this description , specific details are set forth
describing some embodiments consistent with the present
disclosure . Numerous specific details are set forth in order to
provide a thorough understanding of the embodiments . It
will be apparent , however , to one skilled in the art that some
embodiments may be practiced without some or all of these
specific details . The specific embodiments disclosed herein
are meant to be illustrative but not limiting . One skilled in
the art may realize other elements that , although not spe
cifically described here , are within the scope and the spirit
of this disclosure . In addition , to avoid unnecessary repeti
tion , one or more features shown and described in associa
tion with one embodiment may be incorporated into other
embodiments unless specifically described otherwise or if
the one or more features would make an embodiment
non - functional .
[0077] This application is further described with respect to
the attached documents (“ Keeping Your Distance : Solving
Sparse Reward Tasks using Self - Balancing Shaped
Rewards , ” 16 pp .) , which is considered part of this disclo
sure and the entirety of which is incorporated by reference .
[0078] Although illustrative embodiments have been
shown and described , a wide range of modification , change
and substitution is contemplated in the foregoing disclosure
and in some instances , some features of the embodiments
may be employed without a corresponding use of other
features . One of ordinary skill in the art would recognize
many variations , alternatives , and modifications . Thus , the
scope of the invention should be limited only by the fol
lowing claims , and it is appropriate that the claims be

US 2020/0364614 A1 Nov. 19 , 2020
9

construed broadly and in a manner consistent with the scope
of the embodiments disclosed herein .
What is claimed is :
1. A method comprising :
randomly selecting a start state and a goal state for a

goal - oriented task module ;
traversing a first trajectory for moving from the start state

toward the goal state , the first trajectory ending at a first
terminal state ;

traversing a second trajectory for moving from the start
state toward the goal state , the second trajectory ending
at a second terminal state , the first terminal state being
closer to the goal state than the second terminal state is
to the goal state ;

updating a first reward for the first trajectory using a
self - balancing reward function based on the second
terminal state ;

updating a second reward for the second trajectory using
the self - balancing reward function based on the first
terminal state ;

determining a gradient for the goal - oriented task module ,
wherein the second trajectory contributes to the deter
mination of the gradient and wherein

the first trajectory contributes to the determination of the
gradient when at least one of the following is true : (i)
the first terminal state and the second terminal state are
within a first threshold distance of each other , and (ii)
the first terminal state is within a second threshold
distance from the goal state ; and

updating one or more parameters of the goal - oriented task
module based on the gradient .

2. The method of claim 1 , wherein the first terminal state
is an anti - goal for the second trajectory .

3. The method of claim 1 , wherein the first terminal state
provides an estimate of a local optimum .

4. The method of claim 1 , wherein updating the first
reward for the first trajectory using the self - balancing reward
function comprises rewarding the first trajectory when the
first terminal state is within the second threshold distance of
the goal state .

5. The method of claim 1 , wherein updating the first
reward for the first trajectory using the self - balancing reward
function comprises :

penalizing the first trajectory based on a distance between
the first terminal state and the goal state ; and

rewarding the first trajectory based on how close the first
terminal state is to the second terminal state .

6. The method of claim 1 , further comprising iteratively
determining the first threshold distance .

7. The method of claim 1 , wherein traversing the first
trajectory comprises iterating along the first trajectory for a
configurable number of iterations .

8. The method of claim 1 , wherein traversing the first
trajectory comprises iterating along the first trajectory until
the first trajectory converges at the first terminal state .

9. The method of claim 1 , further comprising selecting
multiple start and goal state pairs and evaluating multiple
first and second trajectory pairs before updating the one or
more parameters of the goal - oriented task module .

10. A non - transitory machine - readable medium compris
ing executable code which when executed by one or more
processors associated with a computing device are adapted
to cause the one or more processors to perform a method
comprising :

randomly selecting a start state and a goal state for a
goal - oriented task module ;

traversing a first rollout for moving from the start state
toward the goal state , the first rollout ending at a first
terminal state ;

traversing a second rollout for moving from the start state
toward the goal state , the second rollout ending at a
second terminal state , the first terminal state being
closer to the goal state than the second terminal state is
to the goal state ;

updating a first reward for the first rollout using a self
balancing reward function based on the second terminal
state ;

updating a second reward for the second rollout using the
self - balancing reward function based on the first ter
minal state ;

determining a gradient for the goal - oriented task module ,
wherein the second rollout contributes to the determi
nation of the gradient and wherein

the first rollout contributes to the determination of the
gradient when at least one of the following is true : (i)
the first terminal state and the second terminal state are
within a first threshold distance of each other , and (ii)
the first terminal state is within a second threshold
distance from the goal state ; and

updating one or more parameters of the goal - oriented task
module based on the gradient .

11. The non - transitory machine - readable medium of
claim 10 , wherein the first terminal state is an anti - goal for
the second rollout .

12. The non - transitory machine - readable medium of
claim 10 , wherein the first terminal state provides an esti
mate of a local optimum .

13. The non - transitory machine - readable medium of
claim 10 , wherein updating the first reward for the first
rollout using the self - balancing reward function comprises
rewarding the first rollout when the first terminal state is
within the second threshold distance of the goal state .

14. The non - transitory machine - readable medium of
claim 10 , wherein updating the first reward for the first
rollout using the self - balancing reward function comprises :

penalizing the first rollout based on a distance between the
first terminal state and the goal state ; and

rewarding the first rollout based on how close the first
terminal state is to the second terminal state .

15. The non - transitory machine - readable medium of
claim 10 , further comprising iteratively determining the first
threshold distance .

16. The non - transitory machine - readable medium of
claim 10 , wherein traversing the first rollout comprises :

iterating along the first rollout for a configurable number
of iterations ; or

iterating along the first rollout until the first rollout
converges at the first terminal state .

17. A device comprising :
memory storing executable code ; and
one or more processors configured to execute the execut

able code to perform a method of training a goal
oriented task module , the method comprising :
randomly selecting a start state and a goal state for a

goal - oriented task ;

US 2020/0364614 A1 Nov. 19 , 2020
10

traversing , using the goal - oriented task module , a first
trajectory for moving from the start state toward the
goal state , the first trajectory ending at a first terminal
state ;

traversing , using the goal - oriented task module , a sec
ond trajectory for moving from the start state toward
the goal state , the second trajectory ending at a
second terminal state , the first terminal state being
closer to the goal state than the second terminal state
is to the goal state ;

updating a first reward for the first trajectory using a
self - balancing reward function based on the second
terminal state ;

updating a second reward for the second trajectory
using the self - balancing reward function based on
the first terminal state ;

determining a gradient for the goal - oriented task mod
ule , wherein the second trajectory contributes to the
determination of the gradient and wherein

the first trajectory contributes to the determination of
the gradient when at least one of the following is
true : (i) the first terminal state and the second ter
minal state are within a first threshold distance of

each other , and (ii) the first terminal state is within a
second threshold distance from the goal state ; and

updating one or more parameters of the goal - oriented
task module based on the gradient .

18. The device of claim 17 , wherein to update the first
reward for the first trajectory using the self - balancing reward
function , the one or more processors are configured to
reward the first trajectory when the first terminal state is
within the second threshold distance of the goal state .

19. The device of claim 17 , wherein to update the first
reward for the first trajectory using the self - balancing reward
function , the one or more processors are configured to :

penalizing the first trajectory based on a distance between
the first terminal state and the goal state ; and

rewarding the first trajectory based on how close the first
terminal state is to the second terminal state .

20. The device of claim 17 , wherein to traverse the first
trajectory , the goal - oriented task module is configured to :

iterate along the first trajectory for a configurable number
of iterations ; or

iterate along the first trajectory until the first trajectory
converges at the first terminal state .

