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DETAILED DESCRIPTION SOLVING SPARSE REWARD TASKS USING 
SELF - BALANCING SHAPED REWARDS 

RELATED APPLICATIONS 

[ 0001 ] This application claims priority to U.S. Provisional 
Patent Application No. 62 / 852,179 filed on May 23 , 2019 
and U.S. Provisional Patent Application No. 62 / 849,036 
filed on May 16 , 2019 , each of which is incorporated by 
reference herein . 

TECHNICAL FIELD 

[ 0002 ] The present disclosure relates generally to training 
and use of machine learning systems and more specifically 
solving sparse reward tasks using self - balancing shaped 
rewards . 

BACKGROUND 
[ 0003 ] While using shaped rewards can be beneficial when 
solving sparse reward tasks , their successful application 
often includes careful engineering and is problem specific . 
For example , naive approaches based on distance - to - goal 
reward functions often find solutions based on a local 
optimum rather than a more desirable global optimum . To 
address these issues , developers often enhance the reward 
functions based on problem - specific knowledge . This 
approach , however , does not generalize well and is only as 
good as the problem - specific reward functions . 
[ 0004 ] Accordingly , it would be advantageous to have 
systems and methods for training deep learning systems for 
sparse reward tasks that do not require specially crafted 
problem - specific reward functions . 

[ 0016 ] This application introduces a simple and effective 
model - free method to learn from shaped distance - to - goal 
rewards on tasks where success depends on reaching a goal 
state . The described approaches introduce an auxiliary dis 
tance - based reward based on pairs of rollouts to encourage 
diverse exploration . These approaches effectively de - stabi 
lize local optima induced by the naive distance - to - goal 
reward shaping while enabling policies to efficiently solve 
the sparse reward task . Using an augmented objective does 
not involve any additional reward engineering or domain 
expertise to implement . These approaches are able to suc 
cessfully solve a variety of hard - exploration tasks , such as 
maze navigation , 3D construction in a Minecraft environ 
ment , and / or the like , where naive distance - based reward 
shaping otherwise fails , and curiosity and reward relabeling 
strategies exhibit poor performance . 
[ 0017 ] Reinforcement Learning ( RL ) offers a powerful 
framework for teaching an agent to perform some task using 
only observations from its environment . The goal of RL is 
to learn a policy that maximizes the reward received by the 
agent ; for many real - world problems , this requires engineer 
ing a reward function that aligns with the task at hand . 
Designing a well - suited sparse reward function typically 
includes defining the criteria for achieving the task for which 
reward is provided if the criteria are met and withheld 
otherwise . 
[ 0018 ] While designing a suitable sparse reward may be 
straightforward , learning from it within a practical amount 
of time often is not and often requires exploration heuristics 
to help discover a suitable sparse reward . Other approaches 
use a shaped reward and can be used to express preference 
over failed rollouts , based on which rollouts made more 
progress towards a successful outcome . In some examples , 
this may simplify some aspects of learning , but whether the 
learned behavior improves task performance depends on 
careful design of the shaped reward . As such , shaped 
rewards shift the burden to domain - expertise and are often 
problem specific . 
[ 0019 ] Goal - oriented tasks provide an interesting exten 
sion of the traditional RL framework . Such tasks typically 
require a goal - oriented task module to deal with episode 
specific goals . In cases where each goal can be associated 
with some state ( s ) of the environment , distance - to - goal 
becomes a natural metric to express the success of a par 
ticular episode or attempt to complete the task . Distance 
to - goal can similarly be used as a shaped reward . In this 
case , the sparse and shaped versions of the distance - to - goal 
reward have equivalent requirements with regard to domain 
expertise ( namely , in choosing the distance metric ) . How 
ever , such shaped rewards introduce a new potential prob 
lem : local optima . Because the locations and attractiveness 
of local optima depend highly on the environment and task 
definition , solutions to deal with them quickly become 
problem specific 
[ 0020 ] To address this , a simple and effective , generally 
applicable , model - free approach to address the limitations of 
using distance - to - goal as a shaped reward is described . 
According to some embodiments , the naive distance - based 
shaped reward ( which renders learning vulnerable to local 
optima ) is extended to handle sibling trajectories , pairs of 
independently sampled trajectories using the same policy , 
starting state , and goal . The approach , which is simple to 
implement , may be interpreted as a type of self - balancing 

BRIEF DESCRIPTION OF THE DRAWINGS 

[ 0005 ] FIG . 1 is a simplified diagram of a computing 
device according to some embodiments . 
[ 0006 ] FIG . 2 is a simplified diagram of a goal - oriented 
task according to some embodiments . 
[ 0007 ] FIG . 3 is a simplified diagram of a method of 
training a goal - oriented task module according to some 
embodiments . 
[ 0008 ] FIG . 4 is a simplified diagram of the method of 
FIG . 3 in algorithmic form according to some embodiments . 
[ 0009 ] FIG . 5 is a simplified diagram of the impact of 
training a goal - oriented task module for the goal - oriented 
task of FIG . 2 according to the method of FIG . 3 and / or the 
algorithm of FIG . 4 according to some embodiments . 
[ 0010 ] FIGS . 6-9 are simplified diagrams of other goal 
oriented tasks and the learning of corresponding goal 
oriented task modules according to some embodiments . 
[ 0011 ] FIG . 10 is a simplified diagram of the impact of the 
inclusion threshold used in the method of FIG . 3 and / or the 
algorithm of FIG . 4 according to some embodiments . 
[ 0012 ] FIG . 11 is a simplified diagram of implementation 
parameters for proximal policy optimization according to 
some embodiments . 
[ 0013 ] FIG . 12 is a simplified diagram of implementation 
parameters for off - policy approaches according to some 
embodiments . 
[ 0014 ] FIGS . 13 and 14 are simplified diagrams of imple 
mentation parameters for the goal - oriented tasks of FIGS . 2 
and 5-9 according to some embodiments . 
[ 0015 ] In the figures , elements having the same designa 
tions have the same or similar functions . 
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reward that encourages behaviors that make progress 
towards the goal and simultaneously use sibling rollouts to 
estimate the local optima and encourage behaviors that 
avoid the local optima , effectively balancing exploration and 
exploitation . This objective helps to de - stabilize local 
optima without introducing new stable optima , preserving 
the task definition given by the sparse reward . According to 
some embodiments , this approach combines the learnability 
of shaped rewards with the generality of sparse rewards , 
which are demonstrated through its successful application 
on a variety of environments that support goal - oriented 
tasks . 
[ 0021 ] FIG . 1 is a simplified diagram of a computing 
device 100 according to some embodiments . As shown in 
FIG . 1 , computing device 100 includes a processor 110 
coupled to memory 120. Operation of computing device 100 
is controlled by processor 110. And although computing 
device 100 is shown with only one processor 110 , it is 
understood that processor 110 may be representative of one 
or more central processing units , multi - core processors , 
microprocessors , microcontrollers , digital signal processors , 
field programmable gate arrays ( FPGAs ) , application spe 
cific integrated circuits ( ASICs ) , graphics processing units 
( GPUs ) , tensor processing units ( TPUs ) , and / or the like in 
computing device 100. Computing device 100 may be 
implemented as a stand - alone subsystem , as a board added 
to a computing device , and / or as a virtual machine . 
[ 0022 ] Memory 120 may be used to store software 
executed by computing device 100 and / or one or more data 
structures used during operation of computing device 100 . 
Memory 120 may include one or more types of machine 
readable media . Some common forms of machine readable 
media may include floppy disk , flexible disk , hard disk , 
magnetic tape , any other magnetic medium , CD - ROM , any 
other optical medium , punch cards , paper tape , any other 
physical medium with patterns of holes , RAM , PROM , 
EPROM , FLASH - EPROM , any other memory chip or car 
tridge , and / or any other medium from which a processor or 
computer is adapted to read . 
[ 0023 ] Processor 110 and / or memory 120 may be arranged 
in any suitable physical arrangement . In some embodiments , 
processor 110 and / or memory 120 may be implemented on 
a same board , in a same package ( e.g. , system - in - package ) , 
on a same chip ( e.g. , system - on - chip ) , and / or the like . In 
some embodiments , processor 110 and / or memory 120 may 
include distributed , virtualized , and / or containerized com 
puting resources . Consistent with such embodiments , pro 
cessor 110 and / or memory 120 may be located in one or 
more data centers and / or cloud computing facilities . 
[ 0024 ] As shown , memory 120 includes a self - balancing 
rewards training module 130 and a goal - oriented task mod 
ule 140. Self - balancing rewards training module 130 may be 
used to supervise the training of goal - oriented task module 
140 using a self - balancing rewards training approach . 
According to some embodiments , self - balancing rewards 
training module 130 may iteratively use a sibling rivalry 
approach to control how the gradient for the goal - oriented 
task module 140 is generated and then used to update the 
parameters of goal - oriented task module 140. In some 
examples , the sibling rivalry approach for each training 
cycle selects a number of random start state and random goal 
state pairs for a problem applicable to goal - oriented task 
module 140. A pair of two sibling trajectories from the start 
state toward the goal state are generated for each start state 

and goal state pair . The terminal state for reach of the sibling 
trajectories are then used to update ( e.g. , relabel ) the reward 
of each of the sibling trajectories based on a self - balancing 
reward function . A selective determination is made as to 
which of the sibling trajectories are used to in the compu 
tation of the gradient of the parameters of goal - oriented task 
module 140 for the current training cycle as is described in 
further detail below . 
[ 0025 ] Goal - oriented task module 140 may be used to 
solve any goal - oriented task . As shown , goal - oriented task 
module 140 receives one or more inputs 150 and generates 
one or more outputs 160. In some examples , the one or more 
inputs 150 may correspond to a starting state and a desired 
goal state and the one or more outputs 160 may correspond 
to a trajectory , series of operations , and / or the like for 
moving from the starting state toward the desired goal state 
so as to maximize the reward for the task . In some examples , 
goal - oriented task module 140 may include one or more 
neural networks . In some examples , goal - oriented task mod 
ule 140 may solve goal - oriented tasks such as point - maze 
navigation , ant maze navigation using hierarchical rein 
forcement learning , image manipulation , 3D construction 
using blocks , and / or the like as is described in further detail 
below . 
[ 0026 ] In some examples , memory 120 may include non 
transitory , tangible , machine readable media that includes 
executable code that when run by one or more processors 
( e.g. , processor 110 ) may cause the one or more processors 
to perform the methods described in further detail herein . In 
some examples , self - balancing rewards training module 130 
and / or goal - oriented task module 140 may be implemented 
using hardware , software , and / or a combination of hardware 
and software . 
[ 0027 ] As discussed above and further emphasized here , 
FIG . 1 is merely an example which should not unduly limit 
the scope of the claims . One of ordinary skill in the art would 
recognize many variations , alternatives , and modifications . 
According to some embodiments , self - balancing rewards 
training module 130 and / or goal - oriented task module 150 
may be located in separate computing devices . In some 
examples , each of the separate computing devices may be 
consistent with computing device 100 . 
[ 0028 ] FIG . 2 is a simplified diagram of a goal - oriented 
task according to some embodiments . As shown in FIG . 2 , 
a toy environment 210 includes a warped circular track 220 . 
The goal of toy environment 210 is to navigate along track 
220 from a random starting point on track 220 with a goal 
of reaching a goal point 230. In some examples , toy envi 
ronment 210 may be evaluated using a distance to goal 
function ( e.g. , a Euclidean distance between a point on track 
220 and goal point 230 ) . Use of a distance to goal function , 
however , hampers navigation to goal point 230 because of a 
local optimum 240 where navigation may become stuck 
such that goal point 230 may not be reached . This is 
especially true for starting points along the bottom half of 
track 220. For example , a corresponding generic sparse 
reward function for problems like the goal - orient task of toy 
environment 210 may be the function r ( s , g ) as shown in 
Equation 1 , where s is state ( e.g. , a point on track 220 ) , g is 
a goal state ( e.g. , goal point 230 ) , dís , g ) is a distance 
measure , and d is a distance threshold indicating how close 
to goal state g that state s must be to receive a sparse reward . 
In some examples , dés , g ) may be a Euclidean distance 
measure in R + . 
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Equation 1 
r ( s , 8 ) = { b , otherwise 1 , d ( s , g ) < 8 

0 , otherwise 

of a 

[ 0029 ] In some examples , the distance function d may also 
be used formulate a shaped reward function without any 
domain - specific knowledge by adding a penalty to the 
reward function of Equation 1 when a terminal state ST 
navigation trajectory for the goal - oriented task does not get 
sufficiently close to the goal state . An example of using the 
distance function d in a shaped reward function is shown in 
Equation 2 

Equation 2 
F ( s , g ) = 

1 , d ( s , g ) so 
1 - d ( s , g ) , otherwise 

[ 0030 ] According to some embodiments , even when a 
shaped reward function is used , this does not guarantee that 
the impacts of local optima are properly accounted for . For 
example , and as shown in FIG . 2 where reward function r ( s , 
g ) is shown by reward curve 250 , the terminal state for 
starting points / states in the lower half of track 220 have a 
strong tendency to cluster around local optimum 240 . 
( 0031 ] According to some embodiments , domain - specific 
knowledge ( e.g. , in the form of the location of local opti 
mum 240 ) , may be used to develop a shaped reward function 
that rewards progress towards a goal state while also reward 
ing for staying away from a local optimum ( e.g. as an 
anti - goal ) . An example of using the distance function d in a 
shaped reward with an anti - goal is shown in Equation 3 , 
where 5 corresponds to the local optimum . In some 
examples , Equation 3 could be modified to include addi 
tional anti - goals by adding additional terms to avoid other 
local optima . For example , and as shown in FIG . 2 where 
reward function r ' ( s , g ) is shown by reward curve 260 , the 
terminal state for starting points / states in the lower half of 
track 220 initially cluster around local optimum 240 , but as 
training of the goal - oriented task module continues , the 
terminal states develop a strong tendency to drift away from 
local optimum 240 and to eventually cluster around goal 
point 230 . 

a way to introduce anti - goals that do not require domain 
specific knowledge of the goal - oriented task or the local 
optima for the goal - oriented task . With sibling rivalry , two 
trajectories from a randomly selected start state toward a 
randomly selected goal state are traversed until a terminal 
state is reached . The terminal states for each trajectory then 
become the anti - goal for the other trajectory . In some 
examples and under the assumption that the trajectory with 
the terminal state closest to the goal state provides a good 
estimate for a local optimum , allows the sibling rivalry 
approach to make reasonable guesses regarding local optima 
and to incorporate that into the training strategy for a 
goal - oriented task in a generic fashion and without having to 
develop domain - specific knowledge . In some examples , the 
use of the sibling rivalry trajectories to provide the anti 
goals for each other also turns the r ' ( s , g ) function of 
Equation 3 into a self - balancing shaped reward function that 
provides an effective balance between a tendency to exploit 
an available reward ( through –d ( s , g ) ) and the exploring of 
diverse states ( through dís , S ) ) , 
[ 0034 ] FIG . 3 is a simplified diagram of a method 300 of 
training a goal - oriented task module according to some 
embodiments . One or more of the processes 310-380 of 
method 300 may be implemented , at least in part , in the form 
of executable code stored on non - transitory , tangible , 
machine - readable media that when run by one or more 
processors may cause the one or more processors to perform 
one or more of the processes 310-380 . In some embodi 
ments , method 300 may correspond to the method used by 
self - balancing rewards training module 130 to train a goal 
oriented task module , such as goal - oriented task module 
140. In some embodiments , method 300 may include addi 
tional processes , which are not shown in FIG . 3. In some 
embodiments , the order of processes 310-380 in method 300 
may be different than is implied by FIG . 3. In some 
examples , processes 320 and 330 may be performed con 
currently and / or in a different order . In some examples , 
processes 340 and 350 may be performed concurrently 
and / or in a different order . 
[ 0035 ] At a process 310 , a random start state and a random 
goal state for a goal - oriented task module are selected . The 
goal - oriented task module is a trainable module for solving 
a goal - oriented task . In some examples , the goal - oriented 
task module may include one or more neural networks 
and / or other trainable structure . In some examples , the 
goal - oriented task may be the goal - oriented task of FIG . 2 , 
other goal - oriented tasks as described below , and / or the like . 
In some examples , the random start state and the random 
goal state provide a mechanism for effectively exploring the 
solution space of the goal - oriented task . 
[ 0036 ] At a process 320 , a first trajectory from the start 
state toward the goal state is traversed to a first terminal 
state . In some examples , the first trajectory is sometimes 
referred to as a first rollout . The first trajectory is traversed 
by applying a policy of the goal - oriented task module to take 
iterative steps starting at the start state with a goal of 
reaching the goal state . The first trajectory continues until 
the first terminal state for the first trajectory is reached . In 
some examples , the first terminal state may be reached after 
a configurable number of iterations . In some examples , the 
configurable number of iterations is five , although other 
numbers of iterations are possible . In some examples , the 
first terminal state may be reached after the first trajectory 
converges to the first terminal state . In some examples , the 

Equation 3 
r ( s , g ) 8 ) = { min { minfo . -dis'e + d ( 5,5 ) , otherwise 

[ 0032 ] According to some embodiments , discovering the 
local optima for many goal - oriented tasks is not as simple as 
the examples of toy environment 210. In some examples , the 
local optima may be difficult to detect and / or may require 
extensive domain - specific knowledge and engineering . In 
some examples , when the anti - goals are not developed 
carefully , they may introduce new local optima , which 
further complicate the development of the shaped reward 
function . Further , the reliance on domain - specific knowl 
edge to develop anti - goals to avoid the local optima is not 
conducive to a generic solution to goal - oriented tasks having 
local optima . 
[ 0033 ] According to some embodiments , a sibling rivalry 
approach provides a generic solution for goal - oriented tasks 
having local optima . The sibling rivalry approach provides 
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first trajectory and / or the first terminal state may be evalu 
ated according to a goal such as distance function d , reward 
function r , reward function ? , and / or the like . 
[ 0037 ] At a process 330 , a second trajectory ( or second 
rollout ) from the start state toward the goal state is traversed 
to a second terminal state . In some examples , the second 
trajectory is determined and / or evaluated using an approach 
similar to process 320 until the second terminal state is 
reached . In some examples , the second trajectory may be 
different from the first trajectory and / or the second terminal 
state may be different from the first terminal state because 
the goal - oriented task module includes one or more proba 
bilistic aspects such that with each iteration along a trajec 
tory , the direction of the iteration is not entirely determin 
istic . In some examples , the second trajectory is referred to 
as a sibling of the first trajectory and vice versa . 
[ 0038 ] At a process 340 , the rewards for the first and 
second trajectories are updated using a self - balancing 
shaped reward . In some examples , the updating of the 
reward may be referred to as relabeling . In some examples , 
the self - balancing shaped reward introduces an anti - goal 
based on the terminal state of the other of the trajectories . 
That is , the first terminal state becomes an anti - goal for the 
second trajectory and the second terminal state becomes an 
anti - goal of the first trajectory . In some examples , function 
r is used to determine the self - balancing shaped reward . 
[ 0039 ] At a process 350 , it is determined which of the first 
and second terminal states is closest to the goal state . In 
some examples , the distance function d may be used to 
determine how close each of the first and second terminal 
states is to the goal state . 
[ 0040 ] At a process 360 , a gradient for the goal - oriented 
task module is determined based on the first and second 
trajectories . The trajectory from among the first and second 
trajectories whose terminal state is farthest from the goal 
state is included in the determination of the gradient . In 
some examples , when the first terminal state and the second 
terminal state are within a configurable distance E of each 
other ( e.g. , using distance function d ) , the trajectory from 
among the first and second trajectories whose terminal state 
is closest to the goal state is also included in the determi 
nation of the gradient . In some examples , when the terminal 
state that is closest to the goal state is within a configurable 
distance d of the goal state ( e.g. , using distance function d ) , 
the trajectory from among the first and second trajectories 
whose terminal state is closest to the goal state is also 
included in the determination of the gradient . In some 
examples , an appropriate loss function for the goal - oriented 
task module is applied to a trajectory to determine its 
contribution to the gradient . 
[ 0041 ] At a process 370 , it is determined whether suffi 
cient pairs of sibling trajectories have been examined to 
provide a reasonable estimate of the gradient . In some 
examples , processes 310-360 are repeated a configurable 
number of times before the estimated gradient is used to 
update the goal - oriented task module . When there are insuf 
ficient pairs of sibling trajectories , method 300 returns to 
process 310 to generate another pair of sibling trajectories . 
When there are sufficient pairs of sibling trajectories , the 
goal - oriented task module is updated using a process 380 . 
[ 0042 ] At the process 380 , one or more parameters of the 
goal - oriented task module are updated . In some examples , 
the one or more parameters may be updated using back 
propagation based on the gradient determined during pro 

cess 360. In some examples , the back propagation may be 
implemented using a learning algorithm , such as stochastic 
gradient descent ( SGD ) , adaptive moment estimation 
( ADAM ) , and / or the like . 
[ 0043 ] After the one or more parameters of the goal 
oriented task module are updated , method 300 may be 
repeated for additional groups of random start and goal 
states by returning to process 310 . 
[ 0044 ] FIG . 4 is a simplified diagram of method 300 in 
algorithmic form according to some embodiments . As 
shown in FIG . 4 , an algorithm 400 corresponding to method 
300 is shown for a goal - oriented task module applying a 
policy a for a goal - oriented goal - reaching task . The max 
episode length is the number of iterations for traversing a 
trajectory until the terminal state for that trajectory is 
reached . The parameter 6 corresponds to the distance thresh 
old used by reward functions r , ? , and r ' and as used in 
process 360 to determine whether to include the trajectory 
from among the first and second trajectories whose terminal 
state is closest to the goal state is also included in the 
determination of the gradient . The inclusion threshold E 
corresponds to the distance used to determine whether the 
first terminal state and the second terminal state are suffi 
ciently close together . 
[ 0045 ] Line 410 of algorithm 400 corresponds to process 
310 , where a random goal state g and a random start state so 
are selected . Line 420 corresponds to process 320 , where a 
first trajectory tº is traversed to a terminal state sq " . Line 430 
corresponds to process 330 , where a second trajectory T? is 
traversed to a terminal state sz . Lines 440 correspond to 
process 340 , where the rewards for the first and second 
trajectories are updated / relabeled . Lines 450 correspond to 
process 350 , where the terminal states of the first trajectory 
TQ and second trajectory d are examined to determine which 
is closer to goal state g , with the trajectory having its 
terminal state closest to goal g being identified by Te and the 
trajectory having its terminal state farthest from goal g being 
identified by . Lines 460 correspond to process 360 , where 
the trajectory having the terminal state s . farthest from goal 
g is included in the gradient ( e.g. , included in buffer D ) and 
the trajectory having the terminal state sz " . closest to goal g 
is included in the gradient when it is within the inclusion 
threshold e of terminal states , or is within distance d of goal 
g . Line 470 corresponds to process 380 , where the one or 
more parameters of the goal - oriented task module are 
updated using the gradient ( e.g. , the examples in D ) accord 
ing to the learning algorithm 4 . 
[ 0046 ] FIG . 5 is a simplified diagram of the impact of 
training a goal - oriented task module for the goal - oriented 
task of FIG . 2 according to method 300 and / or algorithm 400 
according to some embodiments . As shown in FIG . 5 , plot 
510 shows that the terminal state for both of the sibling 
trajectories for starting points / states in the lower half of 
track 220 initially cluster around local optimum 240 ( but 
more weakly so than in the examples of FIG . 2 ) , but as 
training of the goal - oriented task module continues , the 
terminal states develop a strong tendency to drift away from 
local optimum 240 and to eventually cluster around goal 
point 230. Plot 520 shows that the terminal states for the 
trajectory ( T ) having a terminal state farther from the goal 
cluster weakly around the goal state as training progresses . 
Additionally , plot 520 shows that the terminal states for the 
trajectory ( TC ) having a terminal state closest to the goal 
cluster more strongly around the goal state as training 
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progresses . Thus , FIG . 5 shows that toy environment 210 , 
when trained according to method 300 and / or algorithm 400 
and without any domain - specific knowledge regarding local 
optimum 240 , is able to learn to avoid local optimum 240 
and reach goal point 230 almost as well as reward curve 260 , 
which was developed using domain - specific knowledge 
regarding local optimum 240 . 
[ 0047 ] FIG . 6 is a simplified diagram of a 2D point maze 
goal - oriented task 610 and learning by a corresponding 
goal - oriented task module according to some embodiments . 
As shown in FIG . 6 , for 2D point maze goal - oriented task 
610 , the goal state is randomly selected from within the 
shaded box in the upper right corner and the start state is 
randomly selected from within the shaded box in the lower 
left corner . The lines in plot 620 show the learning progress 
for the success rate ( e.g. , reaching the goal state ) as learning 
progresses over the training episodes and epochs for various 
training algorithms , which are described in further detail 
below . The shaded regions about the plot lines show a 
distribution of the success rate corresponding to the average 
plus up to one standard deviation about the average success 
rate . The shaded points in diagram 630 illustrate the terminal 
states achieved by the various algorithms after each of the 
first 15 evaluation checkpoints . 
[ 0048 ] According to some embodiments , 2D point maze 
goal - oriented task 610 is implemented in a 10x10 environ 
ment ( arbitrary units ) consisting of an array of pseudo 
randomly connected 1x1 squares . The construction of the 
maze ensures that all squares are connected to one another 
by exactly one path . This is a continuous environment . The 
goal - oriented task module sees as input its 2D coordinates 
and well as the 2D goal coordinates , which are somewhere 
near the top right corner of the maze . The goal - oriented task 
module takes an action in a 2D space that controls the 
direction and magnitude of the step it takes , with the 
outcome of that step potentially affected by collisions with 
walls . In some examples , the goal - oriented task module does 
not observe the walls directly , creating a difficult exploration 
environment . In some examples , the actor and critic net 
works are learned with three hidden layers of size 128 and 
rectified linear unit ( ReLU ) activation functions . According 
to some embodiments , additional environment and task 
details for 2D point maze goal - oriented task 610 are shown 
in FIGS . 13 and 14 , respectively . 
[ 0049 ] When a goal - oriented task module for 2D point 
maze goal - oriented task 610 is trained using Proximal Policy 
Optimization ( PPO ) and a shaped distance - to - goal reward , 
the goal - oriented task module consistently learns to exploit 
the corridor at the top of the maze but never reaches the goal 
state . PPO is described in further detail in Schulman , et al . 
“ Proximal Policy Optimization Algorithms , ” 2017 , available 
at https://arxiv.org/abs/1707.06347 , which is incorporated 
by reference herein in its entirety . A goal - oriented task 
module incorporating the sibling rivalry approach of method 
300 and / or algorithm 400 ( PPO - SR ) avoids the local opti 
mum of the corridor at the top of the maze ( and well as other 
local optima ) and is able to discover the path to the goal 
state , thus solving the maze . A goal - oriented task module 
trained according to Hindsight Experience Replay ( HER ) 
applies off - policy learning to relabel trajectories based on 
achieved goals on a DDPG backbone ( DDPG - HER ) only 
learns to reach the goal on 1 of the 5 experimental runs , 
suggesting a failure in exploration because the achieved 
goals do not generalize to the task goals . HER is described 

in further detail in Andrychowicz , et al . , “ Hindsight Expe 
rience Replay , ” 2017 Conference on Neural Information 
Processing Systems , and DDPG is described in further detail 
in Lillicrap , et al . , “ Continuous Control with Deep Rein 
forcement Learning , ” 2016 International Conference on 
Learning Representations , each of with is incorporated by 
reference herein in its entirety . A goal - oriented task module 
trained according to curiosity - based intrinsic reward ( PPO + 
ICM ) , which maintains a curriculum of exploration , fails to 
discover the sparse reward at the same rate . ICM is 
described in further detail in Pathak , et al . , “ Curiosity - driven 
Exploration by Self - supervised Prediction , ” 2017 Interna 
tional Conference on Machine Learning and Burda , et al . , 
“ Large - Scale Study of Curiosity - Driven Learning , " 2018 , 
available at https://arxiv.org/abs/1808.04355 , each of with is 
incorporated by reference herein in its entirety . In addition 
( although not shown ) , when using the random network 
distillation of Burda , the goal - oriented task module never 
finds the goal . Thus , only the goal - oriented task module that 
learns with PPO - SR is able to consistently and efficiently 
solve the maze . 
[ 0050 ] FIG . 7 is a simplified diagram of a U - shaped ant 
maze goal - oriented task 710 and learning by a correspond 
ing goal - oriented task module according to some embodi 
ments . As shown in FIG . 7 , for U - shaped ant maze goal 
oriented task 710 , the goal state is randomly selected from 
within the shaded box in the upper left corner and the start 
state is near the x in the lower left corner . The lines in plot 
720 show the learning progress for the success rate ( e.g. , 
reaching the goal state ) as learning progresses over the 
training episodes and epochs for various training algorithms 
similar to those used for 2D point maze goal - oriented task 
610 in FIG . 6. The shaded regions about the plot lines show 
a distribution of the success rate corresponding to the 
average plus up to one standard deviation about the average 
success rate . The shaded points in diagram 730 illustrate the 
terminal states achieved by the various algorithms after each 
of the first 15 evaluation checkpoints . 
[ 0051 ] According to some embodiments , U - shaped ant 
maze goal - oriented task 710 uses a set - up similar to 2D point 
maze goal - oriented task 610 , but trades complexity of the 
maze for complexity in the navigation behavior . The goal 
oriented task module is divided into a high - level policy and 
low - level policy , where the high - level policy proposes sub 
goals and the low - level policy rewards for reaching those 
subgoals . The high - level policy is allowed to propose a new 
subgoal of every 20 environment timesteps . From the per 
spective of training the low - level policy , each of the 20 
environment timesteps with a particular subgoal is treated as 
its own mini - episode . At the end of the full episode , two 
epochs of PPO training is performed to improve the low 
level policy , using distance - to - subgoal as the reward . 
[ 0052 ] In some examples , the limits of the maze are [ -4 , 
20 ] in both height and width . In some examples , the goal 
oriented task module starts at position ( 0,0 ) and attempts to 
navigate to goal location g = ( xg , yg ) , with coordinates 
sampled within the range of x , E [ -3.5 , 3.5 ] and yg 
19.5 ] . For the goal - oriented task module to see the sparse 
reward , it must navigate from one end of the U - maze to the 
other and cannot bootstrap this exploration by learning from 
goals that occur along the way . In some examples , the 
learning problem becomes considerably easier when this 
broad goal distribution is used ; but this can be made more 
difficult by not imposing the assumption that the goal 
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distribution will naturally tile goals from ones that are 
trivially easy to reach to those that are difficult to reach . 
[ 0053 ] In some examples , at timestep t , the high - level 
policy provides a 2 - dimensional action a , El - 5 , 5 ] , which is 
used to compute the subgoal g = m ( s . ) + at . In some 
examples , the high - level policy specifies the relative coor 
dinates that the low - level policy should achieve . From the 
perspective of training the high - level policy , only the 
timesteps where it takes an action and the result produced by 
the low - level policy has the effect of having taken the 
high - level action are considered . 
[ 0054 ] In some examples , both the high - level and low 
level actor and critic networks use 3 hidden layers of size 
128 and ReLU activation functions . According to some 
embodiments , additional environment and task details for 
U - shaped ant maze goal - oriented task 710 are shown in 
FIGS . 13 and 14 , respectively . 
[ 0055 ] The sibling rivalry approach ( PPO + SR ) easily inte 
grates with hierarchical reinforcement learning ( HRL ) , 
which can help to solve more difficult problems such as 
navigation in a complex control environment . HRL is used 
to solve the U - shaped ant maze goal - oriented task using a 
MuJoCo ant agent requiring a higher - level policy to propose 
subgoals based on the current state and the goal of the 
episode as well as a low - level policy to control the ant agent 
towards the given subgoal . The MuJoCo ant agent is 
described in further detail in Todorov , et al . , “ MuJoCo : A 
Physics Engine for Model - based Control , ” 2012 IEEE Inter 
national Conference on Intelligent Robots and Systems , 
which is incorporated by reference herein in its entirety . The 
results when learning to navigate the ant maze corroborate 
those in the toy environment : learning from the naive 
distance - to - goal shaped reward † fails because the wall 
creates a local optimum that policy gradient is unable to 
escape ( PPO ) . As with the 2D point maze goal - oriented task 
610 , PPO + SR can exploit the optimum without becoming 
stuck in it . This is visible in the terminal state patterns over 
early training as shown in diagram 730. The PPO + ICM 
trained goal - oriented task module stochastically discovers a 
path to the goal but at a low rate ( 2 in 5 experiments ) . The 
DDPG + HER trained goal - oriented task module struggles to 
generalize from its achieved goals to the task goals , perhaps 
due in part to the difficulties of off - policy HRL . For 
example , 3 of the 5 DDPG + HER runs eventually discover 
the goal but do not reach a high level of performance . 
[ 0056 ] FIG . 8 is a simplified diagram of a 2D discrete 
pixel - grid goal - oriented task 810 and learning by a corre 
sponding goal - oriented task module according to some 
embodiments . As shown in FIG . 8 , for 2D discrete pixel - grid 
goal - oriented task 810 , the start state is a random location in 
a 13x13 grid with all the pixels turned off and the goal state 
is to produce a desired bitmap of off and on pixels . During 
the trajectories , the goal - oriented task module knows its 
current location ( e.g. , via a one - hot bitmap ) , the current 
bitmap , and the goal bitmap . The goal - oriented task module 
succeeds when the bitmap exactly matches the goal bitmap . 
Diagram 820 shows the possible actions of the goal - oriented 
task module ( toggle bit a current location or move in one of 
eight directions one pixel ) . The loss function used is the Li 
distance based on the number of pixels that differ between 
the current bitmap and the goal bitmap . 
[ 0057 ] According to some embodiments , 2D discrete 
pixel - grid goal - oriented task 810 uses a 2D environment in 
which interaction with the bit array depends on location . In 

this setting , the goal - oriented task module begins at a 
random position on a 13x13 grid with none of its bit array 
switched on . The goal of the goal - oriented task module is to 
reproduce the bit array specified by the goal state . In some 
examples , to develop the random goal states , goal arrays are 
generating by simulating a simple agent that changes direc 
tion every few steps and toggles bits it encounters along the 
way . 
[ 0058 ] In some examples , 2D convolution layers are used 
to encode the states and goals . In some examples , the 
convolution output is pooled using MaxPooling , layer norm 
ing is applied , and the hidden state is passed through a fully 
connected layer to get the actor and critic outputs . According 
to some embodiments , additional environment and task 
details for 2D discrete pixel - grid goal - oriented task 810 are 
shown in FIGS . 13 and 14 , respectively . 
[ 0059 ] In 2D discrete pixel - grid goal - oriented task 810 , 
the local optima do not result from having to increase 
distance in order to ultimately reach the goal , but because 
the goal - oriented task module tends to increase its distance 
by toggling a bit from off to on , causing it to quickly avoid 
taking this action . This has a pathological effect on the 
learning dynamics and on - policy optimization with a naive 
distance - based reward shaping never makes progress ( PPO ) . 
This outcome can be prevented by allowing the goal 
oriented task module to learn 2D discrete pixel - grid goal 
oriented task 810 using PPO + SR . A deep Q - network ( DON ) 
gradually learns the task when a densified reward is used to 
augment the terminal state by providing shaped rewards at 
each step along the trajectories with a discount rate y = 0.98 . 
DQNs are described in further detail in Mnih , et al . , 
“ Human - level Control through Deep Reinforcement Learn 
ing , ” Nature 7450 , pp . 529-33 , 2015 , which is incorporated 
by reference herein in its entirety . Off - policy methods that 
can accommodate forced exploration may avoid this issue , 
however , exploration alone is not sufficient on tasks like 2D 
discrete pixel - grid goal - oriented task 810 because simply 
achieving diverse states is unlikely to let the goal - oriented 
task module discover the goal - oriented task so as to properly 
relate states , goals , and rewards . This is shown by the failure 
of PPO + ICM to enable learning in this setting . DQN + HER , 
however , learns the structure of 2D discrete pixel - grid 
goal - oriented task 810 from failed trajectories and , as an 
off - policy method , handles forced exploration , allowing it to 
quickly learn 2D discrete pixel - grid goal - oriented task 810 . 
In some examples , using distance as a reward function 
automatically exposes the goal - oriented task structure but 
often at the cost of unwanted local optima . PPO + SR avoids 
that tradeoff , allowing efficient on - policy learning . 
[ 0060 ] FIG . 9 is a simplified diagram of a construction in 
Minecraft goal - oriented task 910 and learning by a corre 
sponding goal - oriented task module according to some 
embodiments . As shown in FIG . 9 , for construction in 
Minecraft goal - oriented task 910 , the goal - oriented task 
module controls both its location and orientation and then 
breaks or places blocks in order to produce a goal structure . 
The goal - oriented task module observes its first - person 
visual input , the discrete 3D cuboid of the construction 
arena , and the corresponding cuboid of the goal structure . 
Goal structures vary in height , dimensions , and material 
( yielding 4806 unique combinations ) . A goal - oriented task is 
considered complete when the structure exactly matches the 
goal structure . In some examples , the goal - oriented task 
module is trained against a loss function based on a differ 
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ence between correctly and incorrectly placed blocks 
divided by the number of goal - structure blocks . As shown in 
the Example of FIG . 9 , the goal - oriented task module has 
nearly constructed the goal , which specifies a height - 2 
diamond structure near the top left of the construction arena . 
[ 0061 ] According to some embodiments , construction in 
Minecraft goal - oriented task 910 includes the goal - oriented 
task module placed at the center of a “ build arena ” ” which 
is populated in one of several full Minecraft worlds . In some 
examples , the goal - oriented task module has no task - specific 
incentive to explore the outer world but is free to do so . The 
goal - oriented task module navigates the build arena by 
controlling its view and orientation in order to reproduce the 
structure provided as a goal state ( which is similar to a 3D 
version of 2D discrete pixel - grid goal - oriented task 810 but 
with richer mechanics and more than one type of block that 
can be placed ) . In some examples , each of the goal states 
specifies a square structure made of a single block type that 
is either 1 or 2 blocks high with corners at randomly chosen 
locations in the build arena . In some examples , each 
sampled goal is selected randomly , but is limited so that it 
includes no more than 34 total blocks ( to ensure that the goal 
structure can be built within a 100 timestep episode ) . The 
goal - oriented task module begins each episode with the 
necessary inventory to accomplish the goal . In some 
examples , the goal structures are always composed of 1 of 
3 block types and the goal - oriented task module and begins 
with 64 blocks of each of those types . In some examples , the 
goal - oriented task module may place other block types if it 
finds them . 
[ 0062 ] In some examples , the agent is able to observe the 
first - person visual input of the character it controls as well 
as the 3D cuboid of the goal structure and the 3D cuboid of 
the current build arena . The goal - oriented task module , thus , 
has access to the structure it has accomplished but uses the 
visual input to determine the next actions to direct further 
progress toward the goal state . 
[ 0063 ] In some examples , the visual input is processed 
through a shallow convolution network . In some examples , 
the cuboids , which are represented as 3D tensors of block 
type indices , are embedded through a learned lookup and 
processed via 3D convolution . In some examples , the com 
bined hidden states are used as inputs to the policy network . 
In some examples , the value network uses separate weights 
for 3D convolution ( but it also takes the anti - goal cuboid as 
input ) but shares the visual encoder with the policy . In some 
examples , the reward is computed as the change in the 
distance produced by placing a single block . In some 
examples , the reward uses a discount rate of y = 0.99 . In some 
examples , this additional densification of the reward pro 
duces faster training in this complex environment . Accord 
ing to some embodiments , additional environment and task 
details for construction in Minecraft goal - oriented task 910 
are shown in FIGS . 13 and 14 , respectively . 
[ 0064 ] Similar to 2D discrete pixel - grid goal - oriented task 
810 , the goal - oriented task module produces a discrete goal 
structure by placing and removing blocks . However , con 
struction in Minecraft goal - oriented task 910 introduces the 
challenge of a first - person 3D environment , combining 
continuous and discrete inputs , and application of aggres 
sively asynchronous training with distributed environments 
using an IMPALA framework . The IMPALA framework is 
described in further detail in Espeholt , et al . , “ IMPALA : 
Scalable Distributed Deep - RL with Importance Weighted 

Actor - Learner Architectures , ” 2018 International Confer 
ence on Machine Learning , which is incorporated by refer 
ence herein in its entirety . Because success requires exact 
match between the goal and constructed cuboids , the 
distance metric is based on a number of block - wise differ 
ences relative to the goal structure . Using this distance 
metric as a naive shaped reward causes the goal - oriented 
task module to avoid ever placing blocks within roughly 
1000 episodes , which is not shown for visual clarity . As 
shown in plot 930 , by incorporating sibling rivalry into the 
learning , the goal - oriented task module avoids this local 
optimum and learns to achieve a high degree of construction 
accuracy and rate of exact - match success . 
[ 0065 ] FIG . 10 is a simplified diagram of the impact of the 
inclusion threshold E used in method 300 and / or algorithm 
400 according to some embodiments . The inclusion thresh 
old E is the distance threshold for when to include the 
trajectory ( T ) whose terminal state is closest to the goal state 
in the determination of the gradient used to update the one 
or more parameters of the goal - oriented task module . When 
the inclusion threshold E = 0 , trajectory Tº is only included if 
it reaches the goal state g . Conversely , when E = 00 , trajec 
tory TC is always included in the determination of the 
gradient , while still encouraging diversity through the aug 
mented reward function r ' . In some examples , the inclusion 
threshold E may be used to tune learning towards explora 
tion or exploitation of the distance - to - goal reward . 
[ 0066 ] This is most evident in the impact of the inclusion 
threshold E on learning progress for the 2D point maze 
goal - oriented task 610 , where local optima are numerous . 
FIG . 10 shows the results of a set of experiments for each 
value of inclusion threshold E in the range of 0 , 1 , 2 , ... , 
10 distance units . Because the 2D point maze is 10x10 , this 
range of inclusion threshold E values , gives good coverage 
of options one might consider for the 2D point maze 
goal - oriented task 610. As shown in FIG . 10 , there are three 
modes of learning : over - exploration E too low ) , successful 
learning , and under - exploration ( E too high ) . Over - explora 
tion , occurs for the lower range of inclusion threshold E 
where closer - to - goal trajectories are more aggressively dis 
carded . Close inspection shows slow progress towards the 
goal and a tendency to increase inter - sibling distance ( the 
latter trend appears to reverse near the end of the training 
window ) . Successful behavior occurs for the mid - range of 
inclusion threshold , where the goal - oriented task module 
may exploit the distance - to - goal signal but maintains 
enough diversity in its state distribution to avoid commit 
ment to local optima . Under - exploration , occurs for the 
higher range of inclusion threshold E , where inclusion of the 
closer - to - goal trajectory is more permissive . Under - explo 
ration leads the goal - oriented task module to the same pitfall 
that prevents learning from naive distance - to - goal shaped 
rewards in that the goal - oriented task module quickly iden 
tifies a low - distance local optimum ( consistently , the top 
corridor of the maze in toy environment 210 ) and does not 
sufficiently explore in order to find a higher - reward region of 
the maze . 
[ 0067 ] As further shown in FIG . 10 , plot and heatmap 
1010 shows that the average success rate is highest for 
inclusion threshold E equal to 4 , 5 , or 6. Plot and heatmap 
1020 shows that the average distance to goal is lowest for 
inclusion threshold E equal to 4,5,6 , or 7. Plot and heatmap 
1030 shows that the average distance to the anti - goal ( e.g. , 
the terminal state of the sibling trajectory ) is lowest for 
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inclusion threshold E equal to 4 , 5 , 6 , or 7. In some 
examples , it is likely that a coarser search over possible 
values of inclusion threshold Ewould be suitable to identify 
the optimal range for inclusion threshold E. 
[ 0068 ] Many of the results described with respect to FIG . 
6-9 use PPO as the backbone learning algorithm . According 
to some embodiments , PPO has strong performance and 
because it is well suited for the constraints imposed by the 
application of the sibling rivalry approach . More specifi 
cally , the sibling rivalry approach examines the results for 
multiple sibling rivalry trajectories ( e.g. , M as shown in 
algorithm 400 ) before updating one or more of the param 
eters of the goal - oriented task module . PPO handles this well 
as it is able to make multiple updates from a large batch of 
trajectories . In some examples , while experimental variants 
( e.g. , PPO , and PPO + ICM ) that do not use the sibling rivalry 
approach , may be implemented without scheduling updates 
according to full trajectories , the comparisons of FIG . 6-9 do 
not do so . More specifically , for the goal - oriented task 
modules trained using PPO and PPO variants , there is a 
general cycle between collection of full trajectories and 
multiple optimization epochs over minibatches of transitions 
within those trajectories . For comparison , a constant number 
of optimization epochs and updates per epoch are used while 
the sizes of the minibatches are varied based on the variable 
length of trajectories ( due to either episode termination after 
goal - reaching or trajectory exclusion when using PPO - SR . 
[ 0069 ] To avoid results due to edge - case hyperparameter 
configurations , the PPO approach is standardized as much as 
possible by using manual search to identify such generally 
useful parameter settings . In the U - shaped ant maze goal 
oriented task 710 , this standardized approach applies spe 
cifically to training the high - level policy . PPO is also used 
to train the low - level policy but a more specific approach for 
that is adopted based on its unique role in the results of FIG . 
6-9 . 
[ 0070 ] For PPO variants , the output head of the policy 
network specifies the ae R2 and BeR2 control parameters of 
a Beta distribution to allow sampling actions within a 
truncated range are used . These are described in further 
detail in Chou , et al . , “ Improving Stochastic Policy Gradi 
ents in Continuous Control with Deep Reinforcement Learn 
ing using the Beta Distribution , " 2017 International Con 
ference on Machine Learning , which is incorporated by 
reference herein in its entirety . The samples values are 
shifted and scaled to correspond to the task action range . 
Entropy regularization is also used to prevent the policy 
from becoming overly deterministic early during training . 
[ 0071 ] ICM is implemented consistent with the guidelines 
provided in Burda , et al . , “ Large - Scale Study of Curiosity 
Driven Learning , ” 2018 , available at https://arxiv.org/abs/ 
1808.04355 , each of with is incorporated by reference herein 
in its entirety . The curiosity - driven intrinsic reward is 
weighted by 0.01 compared to the sparse reward . In some 
examples , ICM is only accompanied by sparse extrinsic 
rewards , meaning that ICM only experiences the intrinsic 
rewards until it ( possibly ) discovers the goal region . During 
optimization , the curiosity network modules ( whose archi 
tectures follow similar designs to the policy and value for the 
given goal - oriented task ) is trained at a rate of 0.05 com 
pared to the policy and value network modules . 
[ 0072 ] FIG . 11 is a simplified diagram of implementation 
parameters for PPO and its variants according to some 
embodiments . As shown in FIG . 11 , the various implemen 

tation parameters for PPO , PPO - SR , and PPO - ICM for 
goal - oriented tasks 610 , 710 , and 810 , as discussed with 
respect to FIGS . 6-8 , are listed . 
[ 0073 ] FIG . 12 is a simplified diagram of implementation 
parameters for off - policy approaches according to some 
embodiments . As shown in FIG . 12 , the various implemen 
tation parameters for the off - policy approaches for DDPG + 
HER and DQN + HER for goal - oriented tasks 610 , 710 , and 
810 , as discussed with respect to FIGS . 6-8 , are listed . 
[ 0074 ] Some examples of computing devices , such as 
computing device 100 may include non - transitory , tangible , 
machine readable media that include executable code that 
when run by one or more processors ( e.g. , processor 110 ) 
may cause the one or more processors to perform the 
operations of method 300 and / or algorithm 400. Some 
common forms of machine readable media that may include 
the operations of method 300 and / or algorithm 400 are , for 
example , floppy disk , flexible disk , hard disk , magnetic tape , 
any other magnetic medium , CD - ROM , any other optical 
medium , punch cards , paper tape , any other physical 
medium with patterns of holes , RAM , PROM , EPROM , 
FLASH - EPROM , any other memory chip or cartridge , and / 
or any other medium from which a processor or computer is 
adapted to read . 
[ 0075 ] This description and the accompanying drawings 
that illustrate inventive aspects , embodiments , implementa 
tions , or applications should not be taken as limiting . Various 
mechanical , compositional , structural , electrical , and opera 
tional changes may be made without departing from the 
spirit and scope of this description and the claims . In some 
instances , well - known circuits , structures , or techniques 
have not been shown or described in detail in order not to 
obscure the embodiments of this disclosure Like numbers in 
two or more figures represent the same or similar elements . 
[ 0076 ] In this description , specific details are set forth 
describing some embodiments consistent with the present 
disclosure . Numerous specific details are set forth in order to 
provide a thorough understanding of the embodiments . It 
will be apparent , however , to one skilled in the art that some 
embodiments may be practiced without some or all of these 
specific details . The specific embodiments disclosed herein 
are meant to be illustrative but not limiting . One skilled in 
the art may realize other elements that , although not spe 
cifically described here , are within the scope and the spirit 
of this disclosure . In addition , to avoid unnecessary repeti 
tion , one or more features shown and described in associa 
tion with one embodiment may be incorporated into other 
embodiments unless specifically described otherwise or if 
the one or more features would make an embodiment 
non - functional . 
[ 0077 ] This application is further described with respect to 
the attached documents ( “ Keeping Your Distance : Solving 
Sparse Reward Tasks using Self - Balancing Shaped 
Rewards , ” 16 pp . ) , which is considered part of this disclo 
sure and the entirety of which is incorporated by reference . 
[ 0078 ] Although illustrative embodiments have been 
shown and described , a wide range of modification , change 
and substitution is contemplated in the foregoing disclosure 
and in some instances , some features of the embodiments 
may be employed without a corresponding use of other 
features . One of ordinary skill in the art would recognize 
many variations , alternatives , and modifications . Thus , the 
scope of the invention should be limited only by the fol 
lowing claims , and it is appropriate that the claims be 
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construed broadly and in a manner consistent with the scope 
of the embodiments disclosed herein . 
What is claimed is : 
1. A method comprising : 
randomly selecting a start state and a goal state for a 

goal - oriented task module ; 
traversing a first trajectory for moving from the start state 

toward the goal state , the first trajectory ending at a first 
terminal state ; 

traversing a second trajectory for moving from the start 
state toward the goal state , the second trajectory ending 
at a second terminal state , the first terminal state being 
closer to the goal state than the second terminal state is 
to the goal state ; 

updating a first reward for the first trajectory using a 
self - balancing reward function based on the second 
terminal state ; 

updating a second reward for the second trajectory using 
the self - balancing reward function based on the first 
terminal state ; 

determining a gradient for the goal - oriented task module , 
wherein the second trajectory contributes to the deter 
mination of the gradient and wherein 

the first trajectory contributes to the determination of the 
gradient when at least one of the following is true : ( i ) 
the first terminal state and the second terminal state are 
within a first threshold distance of each other , and ( ii ) 
the first terminal state is within a second threshold 
distance from the goal state ; and 

updating one or more parameters of the goal - oriented task 
module based on the gradient . 

2. The method of claim 1 , wherein the first terminal state 
is an anti - goal for the second trajectory . 

3. The method of claim 1 , wherein the first terminal state 
provides an estimate of a local optimum . 

4. The method of claim 1 , wherein updating the first 
reward for the first trajectory using the self - balancing reward 
function comprises rewarding the first trajectory when the 
first terminal state is within the second threshold distance of 
the goal state . 

5. The method of claim 1 , wherein updating the first 
reward for the first trajectory using the self - balancing reward 
function comprises : 

penalizing the first trajectory based on a distance between 
the first terminal state and the goal state ; and 

rewarding the first trajectory based on how close the first 
terminal state is to the second terminal state . 

6. The method of claim 1 , further comprising iteratively 
determining the first threshold distance . 

7. The method of claim 1 , wherein traversing the first 
trajectory comprises iterating along the first trajectory for a 
configurable number of iterations . 

8. The method of claim 1 , wherein traversing the first 
trajectory comprises iterating along the first trajectory until 
the first trajectory converges at the first terminal state . 

9. The method of claim 1 , further comprising selecting 
multiple start and goal state pairs and evaluating multiple 
first and second trajectory pairs before updating the one or 
more parameters of the goal - oriented task module . 

10. A non - transitory machine - readable medium compris 
ing executable code which when executed by one or more 
processors associated with a computing device are adapted 
to cause the one or more processors to perform a method 
comprising : 

randomly selecting a start state and a goal state for a 
goal - oriented task module ; 

traversing a first rollout for moving from the start state 
toward the goal state , the first rollout ending at a first 
terminal state ; 

traversing a second rollout for moving from the start state 
toward the goal state , the second rollout ending at a 
second terminal state , the first terminal state being 
closer to the goal state than the second terminal state is 
to the goal state ; 

updating a first reward for the first rollout using a self 
balancing reward function based on the second terminal 
state ; 

updating a second reward for the second rollout using the 
self - balancing reward function based on the first ter 
minal state ; 

determining a gradient for the goal - oriented task module , 
wherein the second rollout contributes to the determi 
nation of the gradient and wherein 

the first rollout contributes to the determination of the 
gradient when at least one of the following is true : ( i ) 
the first terminal state and the second terminal state are 
within a first threshold distance of each other , and ( ii ) 
the first terminal state is within a second threshold 
distance from the goal state ; and 

updating one or more parameters of the goal - oriented task 
module based on the gradient . 

11. The non - transitory machine - readable medium of 
claim 10 , wherein the first terminal state is an anti - goal for 
the second rollout . 

12. The non - transitory machine - readable medium of 
claim 10 , wherein the first terminal state provides an esti 
mate of a local optimum . 

13. The non - transitory machine - readable medium of 
claim 10 , wherein updating the first reward for the first 
rollout using the self - balancing reward function comprises 
rewarding the first rollout when the first terminal state is 
within the second threshold distance of the goal state . 

14. The non - transitory machine - readable medium of 
claim 10 , wherein updating the first reward for the first 
rollout using the self - balancing reward function comprises : 

penalizing the first rollout based on a distance between the 
first terminal state and the goal state ; and 

rewarding the first rollout based on how close the first 
terminal state is to the second terminal state . 

15. The non - transitory machine - readable medium of 
claim 10 , further comprising iteratively determining the first 
threshold distance . 

16. The non - transitory machine - readable medium of 
claim 10 , wherein traversing the first rollout comprises : 

iterating along the first rollout for a configurable number 
of iterations ; or 

iterating along the first rollout until the first rollout 
converges at the first terminal state . 

17. A device comprising : 
memory storing executable code ; and 
one or more processors configured to execute the execut 

able code to perform a method of training a goal 
oriented task module , the method comprising : 
randomly selecting a start state and a goal state for a 

goal - oriented task ; 
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traversing , using the goal - oriented task module , a first 
trajectory for moving from the start state toward the 
goal state , the first trajectory ending at a first terminal 
state ; 

traversing , using the goal - oriented task module , a sec 
ond trajectory for moving from the start state toward 
the goal state , the second trajectory ending at a 
second terminal state , the first terminal state being 
closer to the goal state than the second terminal state 
is to the goal state ; 

updating a first reward for the first trajectory using a 
self - balancing reward function based on the second 
terminal state ; 

updating a second reward for the second trajectory 
using the self - balancing reward function based on 
the first terminal state ; 

determining a gradient for the goal - oriented task mod 
ule , wherein the second trajectory contributes to the 
determination of the gradient and wherein 

the first trajectory contributes to the determination of 
the gradient when at least one of the following is 
true : ( i ) the first terminal state and the second ter 
minal state are within a first threshold distance of 

each other , and ( ii ) the first terminal state is within a 
second threshold distance from the goal state ; and 

updating one or more parameters of the goal - oriented 
task module based on the gradient . 

18. The device of claim 17 , wherein to update the first 
reward for the first trajectory using the self - balancing reward 
function , the one or more processors are configured to 
reward the first trajectory when the first terminal state is 
within the second threshold distance of the goal state . 

19. The device of claim 17 , wherein to update the first 
reward for the first trajectory using the self - balancing reward 
function , the one or more processors are configured to : 

penalizing the first trajectory based on a distance between 
the first terminal state and the goal state ; and 

rewarding the first trajectory based on how close the first 
terminal state is to the second terminal state . 

20. The device of claim 17 , wherein to traverse the first 
trajectory , the goal - oriented task module is configured to : 

iterate along the first trajectory for a configurable number 
of iterations ; or 

iterate along the first trajectory until the first trajectory 
converges at the first terminal state . 


