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(57) ABSTRACT

An electronic device includes a processor configured to
perform operations including inputting an image into an
encoder to generate a feature map including information
about an illumination present in the input image, iteratively
updating a plurality of slot vectors using the calculated
feature map to calculate a plurality of predicted illumination
vectors, calculating, using the calculated plurality of pre-
dicted illumination vectors, a plurality of mixture maps
representing respective effects of a plurality of virtual illu-
minations on pixels in the input image and a plurality of
illumination color vectors representing respective color val-
ues of the plurality of virtual illuminations, and generating
an illumination map using the calculated plurality of mixture
maps and the calculated plurality of illumination color
vectors.
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Calculate feature map including information about illumination present in
input image based on inputting input image into encoder
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Calculate plurality of predicted illumination vectors by iteratively updating
plurality of slot vectors using calculated feature map

130

Calculate, using calculated plurality of predicted illumination vectors,
plurality of mixture maps representing effects of plurality of virtual illuminations,
which can be present in input image, on pixels in input image and plurality of
illumination color vectors representing respective color values of plurality of
virtual illuminations

140

Generate illumination map using calculated plurality of mixture maps and
calculated plurality of illumination color vectors
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METHOD AND APPARATUS WITH WHITE
BALANCING

CROSS-REFERENCE TO RELATED
APPLICATIONS

[0001] This application claims the benefit under 35 USC §
119(a) of Korean Patent Application No. 10-2023-0026937,
filed on Feb. 28, 2023, and Korean Patent Application No.
10-2023-0038178, filed on Mar. 23, 2023, in the Korean
Intellectual Property Office, the entire disclosures, all of
which, are incorporated herein by reference for all purposes.

BACKGROUND

1. Field

[0002] The following disclosure relates to method and
apparatus with white balancing.

2. Description of Related Art

[0003] White balance may refer to a technique for cor-
recting the effect of illumination in a captured environment
on pixels so that a white object appears white in an image.
Conventional white balance was performed by correcting
the colors of an image under the assumption that a single
illumination is present in the image. However, in an actual
environment where an image capture takes place, there may
not be a single source of illumination but rather a plurality
of illumination sources that may be distributed in a space.
Conventional white balance estimates the chromaticity of a
single illumination source and corrects the colors of an
image according to the estimated chromaticity under the
assumption that a single illumination source is present in the
image.

SUMMARY

[0004] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used as an aid
in determining the scope of the claimed subject matter.
[0005] In a general aspect, here is provided a processor-
implemented method including inputting an image into an
encoder to generate a feature map including information
about an illumination present in the input image, iteratively
updating a plurality of slot vectors using the calculated
feature map to calculate a plurality of predicted illumination
vectors, calculating, using the calculated plurality of pre-
dicted illumination vectors, a plurality of mixture maps
representing respective effects of a plurality of virtual illu-
minations on pixels in the input image and a plurality of
illumination color vectors representing respective color val-
ues of the plurality of virtual illuminations, and generating
an illumination map using the calculated plurality of mixture
maps and the calculated plurality of illumination color
vectors.

[0006] Respective dimensions of each of the plurality of
slot vectors are equal to a number of channels of the
calculated feature map.

[0007] The iteratively updating the plurality of slot vectors
includes updating the plurality of slot vectors a preset
number of times through a neural network model.
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[0008] The iteratively updating the plurality of slot vectors
further may include inputting the calculated feature map into
a multi-layer perceptron to calculate a key and a value
having a same size as the calculated feature map and setting
the plurality of slot vectors as a query.

[0009] The iteratively updating the plurality of slot vectors
may include applying a softmax function to a result of a dot
product between the query and the key along a channel axis
to calculate a plurality of attention maps, normalizing the
calculated plurality of attention maps along a spatial axis
and then multiplying the normalized plurality of attention
maps by the value to calculate a plurality of candidate
vectors, and inputting the calculated plurality of candidate
vectors into the neural network model to update the plurality
of slot vectors with output values of the neural network
model.

[0010] The neural network model may be one of a decoder
of a transformer model, a long short-term memory (LSTM)
model, and a gated recurrent unit (GRU) model.

[0011] The calculating of the plurality of mixture maps
and the plurality of illumination color vectors may include
applying a softmax function to results of dot products
between the calculated plurality of predicted illumination
vectors and the key along a channel axis to calculate the
plurality of mixture maps and inputting the calculated plu-
rality of predicted illumination vectors into a linear layer to
calculate the plurality of illumination color vectors.

[0012] The generating of the illumination map may
include setting weights respectively for the plurality of
illumination color vectors corresponding to the plurality of
virtual illuminations, multiplying, for each of the plurality of
virtual illuminations, a result of applying a weight, set for an
illumination color vector corresponding to a corresponding
virtual illumination, to the corresponding illumination color
vector by a mixture map corresponding to the corresponding
virtual illumination to calculate a candidate map, and sum-
ming a plurality of candidate maps calculated respectively
for the plurality of virtual illuminations along a channel axis
to generate the illumination map.

[0013] The method may include training an illumination
decomposition framework for generating the illumination
map from the input image based on training data including
a training input image, a ground truth illumination map
mapped with the training input image, a plurality of ground
truth illumination color vectors mapped with the training
input image, and a plurality of ground truth mixture maps
mapped with the training input image.

[0014] The training of the illumination decomposition
framework may include inputting the training input image
into the encoder to calculate a temporary feature map,
calculating a plurality of temporary mixture maps and a
plurality of temporary illumination color vectors from the
calculated temporary feature map, calculating a temporary
illumination map using the calculated plurality of temporary
mixture maps and the calculated plurality of temporary
illumination color vectors, calculating an illumination map
loss based on the temporary illumination map and the
ground truth illumination map, calculating an illumination
color loss based on the plurality of temporary illumination
color vectors and the plurality of ground truth illumination
color vectors, and training the illumination decomposition
framework based on a total loss including the calculated
illumination map loss and the calculated illumination color
loss.
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[0015] The calculating of the illumination color loss may
include determining a temporary illumination color vector
matching an individual ground truth illumination color vec-
tor among the plurality of temporary illumination color
vectors and calculating the illumination color loss using the
plurality of ground truth illumination color vectors and
temporary illumination color vectors respectively matching
the plurality of ground truth illumination color vectors.
[0016] The determining of the temporary illumination
color vector matching the individual ground truth illumina-
tion color vector may include calculating a distance between
any temporary mixture map among the plurality of tempo-
rary mixture maps and any ground truth mixture map among
the plurality of ground truth mixture maps, setting a plurality
of distances calculated between the plurality of temporary
mixture maps and the plurality of ground truth mixture maps
as costs and applying a Hungarian matching algorithm to the
set costs to determine a temporary mixture map matching an
individual ground truth mixture map by, and matching a
ground truth illumination color vector corresponding to the
individual ground truth mixture map and a temporary illu-
mination color vector corresponding to a temporary mixture
map matching the individual ground truth mixture map.
[0017] The training of the illumination decomposition
framework may include calculating a mixture map loss
based on the plurality of temporary mixture maps and the
plurality of ground truth mixture maps and training the
illumination decomposition framework based on the total
loss including the calculated illumination map loss, the
calculated illumination color loss, and the calculated mix-
ture map loss.

[0018] In a general aspect, here is provided an electronic
device including a processor configured to calculate a fea-
ture map including information about an illumination pres-
ent in an input image based on inputting the input image into
an encoder, calculate a plurality of predicted illumination
vectors by iteratively updating a plurality of slot vectors
using the calculated feature map, calculate, using the cal-
culated plurality of predicted illumination vectors, a plural-
ity of mixture maps representing respective effects of a
plurality of virtual illuminations on pixels in the input image
and a plurality of illumination color vectors representing
respective color values of the plurality of virtual illumina-
tions, and calculate an illumination map using the calculated
plurality of mixture maps and the calculated plurality of
illumination color vectors.

[0019] The processor may be further configured to calcu-
late a key and a value having a same size as the calculated
feature map by inputting the calculated feature map into a
multi-layer perceptron, and set the plurality of slot vectors as
a query.

[0020] The processor may be further configured to calcu-
late a plurality of attention maps by applying a softmax
function to a result of a dot product between the query and
the key along a channel axis, calculate a plurality of candi-
date vectors by normalizing the calculated plurality of
attention maps along a spatial axis and then multiplying the
normalized plurality of attention maps by the value, and
update the plurality of slot vectors with output values of the
neural network model based on inputting the calculated
plurality of candidate vectors into the neural network model.
[0021] The processor may be further configured to calcu-
late the plurality of mixture maps by applying a softmax
function to results of dot products between the calculated
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plurality of predicted illumination vectors and the key along
a channel axis and calculate the plurality of illumination
color vectors by inputting the calculated plurality of pre-
dicted illumination vectors into a linear layer.

[0022] The processor may be further configured to set
weights respectively for the plurality of virtual illumina-
tions, generate, for each of the plurality of virtual illumina-
tions, a candidate map by multiplying a result of applying a
weight, set for an illumination color vector corresponding to
a corresponding virtual illumination, to the corresponding
illumination color vector by a mixture map corresponding to
the corresponding virtual illumination, and generate the
illumination map by summing a plurality of candidate maps
calculated respectively for the plurality of virtual illumina-
tions along a channel axis.

[0023] The processor may be further configured to train an
illumination decomposition framework for generating the
illumination map from the input image based on training
data including a training input image, a ground truth illu-
mination map mapped with the training input image, a
plurality of ground truth illumination color vectors mapped
with the training input image, and a plurality of ground truth
mixture maps mapped with the training input image.

[0024] The processor may be further configured to calcu-
late a temporary feature map based on inputting the training
input image into the encoder, calculate a plurality of tem-
porary mixture maps and a plurality of temporary illumina-
tion color vectors from the calculated temporary feature
map, calculate a temporary illumination map using the
calculated plurality of temporary mixture maps and the
calculated plurality of temporary illumination color vectors,
calculate an illumination map loss based on the temporary
illumination map and the ground truth illumination map,
calculate an illumination color loss based on the plurality of
temporary illumination color vectors and the plurality of
ground truth illumination color vectors, and train the illu-
mination decomposition framework based on a total loss
including the calculated illumination map loss and the
calculated illumination color loss.

[0025] In a general aspect, here is provided a processor
implemented method including generating, by an encoder
employing a neural network, a feature map according to
lamination information of an input image, iteratively updat-
ing slot vectors of a plurality of slot vectors using the feature
map to predict illumination vectors from the feature map,
calculating, using the illumination vectors, a plurality of
mixture maps representing representative effects of virtual
illumination sources, and generating an illumination map for
the input image based on the representative effects and the
plurality of mixture maps.

[0026] The representative effects of the virtual illumina-
tion sources may include effects on respective pixels in the
input image and a plurality of color vectors from respective
virtual illumination sources.

[0027] The method may include performing white balanc-
ing on the input image by blending the representative effects
and the plurality of mixture maps.

[0028] A number of the plurality of slot vectors may be
greater than or equal to a number of light sources present in
the input image.

[0029] A number of channels of the feature map may be
equal to a fourth number of dimensions of the feature map.
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[0030] The iterative updating of the plurality of slot vec-
tors may be generated by a slot attention model calculating
a key and a value, the value being a size of the feature map.
[0031] The slot attention model may calculate a query
based on the plurality of slot vectors and the calculating the
plurality of mixture maps by applying a softmax function to
a dot product between the key and the query.

[0032] Other features and aspects will be apparent from
the following detailed description, the drawings, and the
claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0033] FIG. 1 illustrates an example method with white
balancing according to one or more embodiments.

[0034] FIG. 2 illustrates an example process of extracting
a feature map corresponding to an input image according to
one or more embodiments.

[0035] FIGS. 3 and 4 illustrate an example process of
calculating predicted illumination vectors using a feature
map according to one or more embodiments.

[0036] FIG. 5 illustrates an example process of generating
an illumination map according to one or more embodiments.
[0037] FIG. 6 illustrates an example process of performing
white balancing on an input image using an illumination
map according to one or more embodiments.

[0038] FIG. 7 illustrates an example process of training an
illumination decomposition framework according to one or
more embodiments.

[0039] FIG. 8 illustrates an example process of calculating
an illumination color loss and a mixture map loss according
to one or more embodiments.

[0040] FIG. 9 illustrates an example process of calculating
an illumination color loss and a mixture map loss according
to one or more embodiments.

[0041] FIG. 10 illustrates an example process of calculat-
ing an illumination map from a low-resolution feature map
according to one or more embodiments.

[0042] FIG. 11 illustrates an example electronic apparatus
with white balancing according to one or more embodi-
ments.

[0043] Throughout the drawings and the detailed descrip-
tion, unless otherwise described or provided, the same, or
like, drawing reference numerals may be understood to refer
to the same, or like, elements, features, and structures. The
drawings may not be to scale, and the relative size, propor-
tions, and depiction of elements in the drawings may be
exaggerated for clarity, illustration, and convenience.

DETAILED DESCRIPTION

[0044] The following detailed description is provided to
assist the reader in gaining a comprehensive understanding
of the methods, apparatuses, and/or systems described
herein. However, various changes, modifications, and
equivalents of the methods, apparatuses, and/or systems
described herein will be apparent after an understanding of
the disclosure of this application. For example, the
sequences within and/or of operations described herein are
merely examples, and are not limited to those set forth
herein, but may be changed as will be apparent after an
understanding of the disclosure of this application, except
for sequences within and/or of operations necessarily occur-
ring in a certain order. As another example, the sequences of
and/or within operations may be performed in parallel,
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except for at least a portion of sequences of and/or within
operations necessarily occurring in an order, e.g., a certain
order. Also, descriptions of features that are known after an
understanding of the disclosure of this application may be
omitted for increased clarity and conciseness.

[0045] The features described herein may be embodied in
different forms, and are not to be construed as being limited
to the examples described herein. Rather, the examples
described herein have been provided merely to illustrate
some of the many possible ways of implementing the
methods, apparatuses, and/or systems described herein that
will be apparent after an understanding of the disclosure of

this application.

[0046] Throughout the specification, when a component or
element is described as being “on”, “connected to,”
“coupled to,” or “joined to” another component, element, or
layer it may be directly (e.g., in contact with the other
component or element) “on”, “connected to,” “coupled to,”
or “joined to” the other component, element, or layer or
there may reasonably be one or more other components,
elements, layers intervening therebetween. When a compo-
nent or element is described as being “directly on”, “directly
connected to,” “directly coupled to,” or “directly joined” to
another component or element, there can be no other ele-
ments intervening therebetween. Likewise, expressions, for
example, “between” and “immediately between” and “adja-
cent to” and “immediately adjacent to” may also be con-
strued as described in the foregoing.

[0047] Although terms such as “first,” “second,” and
“third”, or A, B, (a), (b), and the like may be used herein to
describe various members, components, regions, layers, or
sections, these members, components, regions, layers, or
sections are not to be limited by these terms. Each of these
terminologies is not used to define an essence, order, or
sequence of corresponding members, components, regions,
layers, or sections, for example, but used merely to distin-
guish the corresponding members, components, regions,
layers, or sections from other members, components,
regions, layers, or sections. Thus, a first member, compo-
nent, region, layer, or section referred to in the examples
described herein may also be referred to as a second mem-
ber, component, region, layer, or section without departing
from the teachings of the examples.

[0048] The terminology used herein is for describing
various examples only and is not to be used to limit the
disclosure. The articles “a,” “an,” and “the” are intended to
include the plural forms as well, unless the context clearly
indicates otherwise. As non-limiting examples, terms “com-
prise” or “comprises,” “include” or “includes,” and “have”
or “has” specify the presence of stated features, numbers,
operations, members, elements, and/or combinations
thereof, but do not preclude the presence or addition of one
or more other features, numbers, operations, members, ele-
ments, and/or combinations thereof, or the alternate pres-
ence of an alternative stated features, numbers, operations,
members, elements, and/or combinations thereof. Addition-
ally, while one embodiment may set forth such terms “com-
prise” or “comprises,” “include” or “includes,” and “have”
or “has” specify the presence of stated features, numbers,
operations, members, elements, and/or combinations
thereof, other embodiments may exist where one or more of
the stated features, numbers, operations, members, elements,
and/or combinations thereof are not present.

29 <
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[0049] As used herein, the term “and/or” includes any one
and any combination of any two or more of the associated
listed items. The phrases “at least one of A, B, and C”, “at
least one of A, B, or C”, and the like are intended to have
disjunctive meanings, and these phrases “at least one of A,
B, and C”, “at least one of A, B, or C”, and the like also
include examples where there may be one or more of each
of A, B, and/or C (e.g., any combination of one or more of
each of A, B, and C), unless the corresponding description
and embodiment necessitates such listings (e.g., “at least one
of A, B, and C”) to be interpreted to have a conjunctive
meaning.

[0050] Unless otherwise defined, all terms, including tech-
nical and scientific terms, used herein have the same mean-
ing as commonly understood by one of ordinary skill in the
art to which this disclosure pertains and based on an under-
standing of the disclosure of the present application. Terms,
such as those defined in commonly used dictionaries, are to
be interpreted as having a meaning that is consistent with
their meaning in the context of the relevant art and the
disclosure of the present application and are not to be
interpreted in an idealized or overly formal sense unless
expressly so defined herein. The use of the term “may”
herein with respect to an example or embodiment, e.g., as to
what an example or embodiment may include or implement,
means that at least one example or embodiment exists where
such a feature is included or implemented, while all
examples are not limited thereto.

[0051] In a typical process of generating an illumination
map for an image, if a plurality of illumination sources are
present in that image, a typical white balance approach may
provide unsatisfactory white balancing results because the
typical results may fail to accurately estimate the effect of
the actual illumination being provided by the plurality of
illumination sources in any area of the image.

[0052] FIG. 1 illustrates an example method with white
balancing according to one or more embodiments.

[0053] Referring to FIG. 1, in a non-limiting example, in
operation 110, an electronic device (e.g., electronic device
1100 of FIG. 11) may calculate a feature map including
information about an illumination present in an input image
based on providing the input image into an encoder.
[0054] In an example, the encoder may employ machine
learning. For example, the encoder may train a convolu-
tional neural network (CNN) or a structure of a U-Net. When
the input image is input into the encoder, the encoder may
generate a feature map by expanding the input image along
a channel axis while maintaining the resolution of the input
image the same.

[0055] In operation 120, the electronic device may calcu-
late a plurality of predicted illumination vectors by itera-
tively updating a plurality of slot vectors using the calcu-
lated feature map.

[0056] In an example, the electronic device may preset a
number of the plurality of slot vectors to be more than or
equal to the number of illumination sources present in the
input image. For ease of description, examples in which a
plurality of illuminations (e.g., illumination sources) are
present in an input image are mainly described, but
examples are not limited thereto, and a single illumination
(e.g., light source) may be present in an input image.
[0057] In operation 130, the electronic device may calcu-
late, using the calculated plurality of predicted illumination
vectors, a plurality of mixture maps representing the respec-
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tive effects of a plurality of virtual illumination sources,
which may be present in the input image, on pixels in the
input image and a plurality of illumination color vectors
representing respective color values of the plurality of
virtual illumination sources.

[0058] In operation 140, the electronic device may gen-
erate an illumination map using the calculated plurality of
mixture maps and the calculated plurality of illumination
color vectors. The electronic device may generate the illu-
mination map to perform white balancing on the input image
by blending the calculated plurality of mixture maps and the
calculated plurality of illumination color vectors.

[0059] In an example, the electronic device may perform
white balancing on the input image using the generated
illumination map. The electronic device may adjust a color
value of a target pixel in the input image using a color value
of a pixel at a same position as a position of the target pixel
of the input image in the illumination map.

[0060] FIG. 2 illustrates an example process of extracting
a feature map corresponding to an input image using an
encoder according to one or more embodiments.

[0061] Referring to FIG. 2, in a non-limiting example, an
electronic device (e.g., the electronic device 1100 of FIG.
11) may calculate a feature map 230 including information
about an illumination source present in an input image 210
based on inputting the input image 210 into an encoder 220.
Here, the encoder 220 may employ machine learning (e.g.,
a neural network).

[0062] In an example, based on the input image 210,
where the input image 210 includes a first number of
channels (e.g., “3” channels) and is input into the encoder
220, the electronic device may calculate the feature map 230
including a second number of channels (e.g., “64” channels)
that is greater than the first number of channels. In an
example, when the encoder 220 receives a HxWx3 input
image 210 having “3” channels (e.g., a red channel, a blue
channel, and a green channel) and a resolution of HxW, the
encoder 220 may output a HxWxD feature map 230 that is
expanded along the channel axis while maintaining a reso-
lution of HxW which is the same resolution as the resolution
of the input image 210. In an example, D may be an integer
greater than or equal to “3”.

[0063] FIGS. 3 and 4 illustrate example processes of
calculating predicted illumination vectors using a feature
map according to one or more embodiments.

[0064] Referring to FIG. 3, in a non-limiting example, an
electronic device (e.g., electronic device 1100 of FIG. 11)
may calculate a plurality of predicted illumination vectors
330-1, 330-2, and 330-3 based on inputting a feature map
230 extracted from an encoder (e.g., the encoder 220 of FIG.
2) and a plurality of slot vectors 310-1, 310-2, and 310-3 into
a slot attention module 320. The slot attention module 320
may generate the plurality of predicted illumination vectors
330-1, 330-2, and 330-3 by iteratively updating the plurality
of'slot vectors 310-1, 310-2, and 310-3 using the feature map
230 through an attention mechanism.

[0065] The electronic device may generate a preset num-
ber of slot vectors 310-1, 310-2, and 310-3. The electronic
device may generate slot vectors to be more than or equal to
the number of illumination sources present in an input image
(e.g., the input image 210 of FIG. 2). In example, when a
maximum of two illumination sources are present in the
input image, the electronic device may generate three slot
vectors 310-1, 310-2, and 310-3.
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[0066] The electronic device may generate the plurality of
slot vectors 310-1, 310-2, and 310-3 so that a slot vector
(e.g., the slot vector 310-1) may have a dimension equal to
the number of channels of the feature map 230 (e.g., D). In
other words, the dimension of each of the plurality of slot
vectors 310-1, 310-2, and 310-3 may be equal to the number
of channels of the feature map 230.

[0067] For example, when the feature map 230 includes
“64” channels, the electronic device may generate the slot
vector (e.g., the slot vector 310-1) as a 64-dimensional
vector. After generating the plurality of slot vectors 310-1,
310-2, and 310-3, the electronic device may initialize each
of the generated plurality of slot vectors 310-1, 310-2, and
310-3 with learnable parameters.

[0068] In an example, the slot attention model 320 may
use machine learning (e.g., a neural network model) in the
process of updating the plurality of slot vectors 310-1,
310-2, and 310-3 using the feature map 230 corresponding
to the input image. The slot attention model 320 may
calculate the plurality of predicted illumination vectors
330-1, 330-2, and 330-3 by updating the plurality of slot
vectors 310-1, 310-2, and 310-3 a preset number of times
through a neural network model. The slot attention model
320 may generate a predicted illumination vector (e.g., the
predicted illumination vector 330-1) in a dimension the
same as that of the slot vector (e.g., the slot vector 310-1)
(e.g., D-dimension).

[0069] Referring to FIG. 4, in a non-limiting example, the
slot attention model 320 of FIG. 3 may iteratively update a
plurality of slot vectors 410-1, 410-2, and 410-3 using an
attention mechanism. The slot attention model 320 may
calculate a query, a key (e.g., key 401), and a value (e.g.,
value 402) to apply the attention mechanism.

[0070] The slot attention model 320 may calculate a key
401 and a value 402 having the same size (HxWxD) as the
feature map 230 by inputting the HxWxD feature map 230
into a multi-layer perceptron (MLP). The slot attention
model 320 may set the plurality of slot vectors 410-1, 410-2,
and 410-3 as a query.

[0071] In a non-limiting example, the slot attention model
320 may calculate a plurality of attention maps 420-1,
420-2, and 420-3 by applying a softmax function to results
of dot products between the plurality of slot vectors 410-1,
410-2, and 410-3 and the key 401 along the channel axis. In
an example, the softmax function may normalize an atten-
tion weight calculated by the query and the key 401. For
example, the slot attention model 320 may apply the sofimax
function to the result of a dot product between the query and
the key 401 along the channel axis in a manner of adjusting
the sum of weights of pixels to be “1”. For example, the slot
attention model 320 may generate the HxWx3 attention
maps 420-1, 420-2, and 420-3 by applying the softmax
function to the results of dot products between the 3xD slot
vectors 410-1, 410-2, and 410-3 and the HxWxD key 401.
In other words, the size of one slot vector (e.g., the slot
vector 410-1) may be 1xD, and the size of one attention map
(e.g., the attention map 420-1) may be HxW.

[0072] After generating the plurality of attention maps
420-1, 420-2, and 420-3, the slot attention model 320 may
normalize each of the plurality of attention maps 420-1,
420-2, and 420-3 along a spatial axis. In other words, the slot
attention model 320 may perform normalization so that the
sum of weights of all pixels in each attention map (e.g., the
attention map 420-1) may be “1”.
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[0073] The slot attention model 320 may generate a plu-
rality of candidate vectors 430-1, 430-2, and 430-3 by
normalizing the plurality of attention maps 420-1, 420-2,
and 420-3 along the spatial axis and then multiplying the
normalized plurality of attention maps 420-1, 420-2, and
420-3 by the value 402. In an example, the slot attention
model 320 may generate the 1xD candidate vector 430-1 by
normalizing the HxW attention map 420-1 and then multi-
plying the normalized attention map 420-1 by the HxWxD
value 402. In an example, the slot attention model 320 may
generate the 1xD candidate vector 430-2 by normalizing the
HxW attention map 420-2 and then multiplying the normal-
ized attention map 420-2 by the HxWxD value 402.
[0074] The slot attention model 320 may update the plu-
rality of slot vectors 410-1, 410-2, and 410-3 with output
values of a neural network model 440 based on inputting the
plurality of candidate vectors 430-1, 430-2, and 430-3 into
the neural network model 440. In an example, the neural
network model 440 may be one of a decoder of a transformer
model, a long short-term memory (LSTM) model, and a
gated recurrent unit (GRU) model.

[0075] The slot attention model 320 may update the plu-
rality of slot vectors 410-1, 410-2, and 410-3 a preset
number of times through the attention mechanism. The slot
attention model 320 may calculate a plurality of predicted
illumination vectors (e.g., the plurality of predicted illumi-
nation vectors 330-1, 330-2, and 330-3 of FIG. 3) by
updating the slot vectors 410-1, 410-2, and 410-3 the preset
number of times through the neural network model 440.
[0076] The slot attention model 320 may fix the key 401
and the value 402 while iteratively updating the plurality of
slot vectors 410-1, 410-2, and 410-3. The slot attention
model 320 may iteratively update the plurality of slot
vectors 410-1, 410-2, and 410-3 in the same manner. The
slot attention model 320 may iteratively update the plurality
of slot vectors 410-1, 410-2, and 410-3 a preset number of
times and then, set the updated plurality of slot vectors
410-1, 410-2, and 410-3 as a plurality of predicted illumi-
nation vectors (e.g., the plurality of predicted illumination
vectors 330-1, 330-2, and 330-3 of FIG. 3).

[0077] FIG. 5 illustrates an example process of generating
an illumination map according to one or more embodiments.
[0078] Referring to FIG. 5, in a non-limiting example, an
electronic device (e.g., the electronic device 1100 of FIG.
11) may calculate, using a plurality of predicted illumination
vectors 510-1, 510-2, and 510-3 calculated by a slot atten-
tion model (e.g., the slot attention model 320 of FIG. 3), a
plurality of mixture maps 520-1, 520-2, and 520-3 repre-
senting the respective effects of a plurality of virtual illu-
mination sources, which can be present in an input image, on
pixels in the input image. The electronic device 500 may
generate the virtual illumination sources, which can be
present in the input image, as many as the number of
pre-generated slot vectors (e.g., “3”). Each of the plurality of
predicted illumination vectors 510-1, 510-2, and 510-3
calculated by the slot attention model may correspond to one
virtual illumination source, which can be present in the input
image.

[0079] In an example, the electronic device may calculate
a plurality of mixture maps 520-1, 520-2, and 520-3 by
applying the softmax function to the results of dot products
between the plurality of predicted illumination vectors 510-
1, 510-2, and 510-3 and a key derived from the feature map
230 (e.g., the key 401 of FIG. 4) along the channel axis. For
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example, the mixture map 520-1 may represent the effect of
a virtual illumination source corresponding to the predicted
illumination vector 510-1 on the pixels in the input image.
A weight value of a pixel in the mixture map 520-1 may
represent the effect of the virtual illumination source corre-
sponding to the predicted illumination vector 510-1 on a
pixel at the same position as the corresponding pixel of the
mixture map 520-1 in the input image.

[0080] Inan example, the electronic device may calculate,
using the plurality of predicted illumination vectors 510-1,
510-2, and 510-3 calculated by the slot attention model, a
plurality of illumination color vectors 530-1, 530-2, and
530-3 representing the respective color values of the plu-
rality of virtual illumination sources, which can be present
in the input image.

[0081] In an example, the electronic device may calculate
the plurality of illumination color vectors 530-1 and 530-2,
and 530-3 by inputting the plurality of predicted illumina-
tion vectors 510-1, 510-2, and 510-3 into a linear layer. The
linear layer may convert the plurality of predicted illumi-
nation vectors 510-1, 510-2, and 510-3 into the plurality of
illumination color vectors 530-1, 530-2, and 530-3, respec-
tively. In other words, the linear layer may generate a
two-dimensional illumination color vector (e.g., the illumi-
nation color vector 530-1) by performing a linear transform
on a D-dimensional predicted illumination vector (e.g., the
predicted illumination vector 530-1).

[0082] The two-dimensional illumination color vector
may include the red value and the blue value of a virtual
illumination source as elements. Since the electronic device
presets the green value of a virtual illumination source to a
predetermined value (e.g., “17), the green value of a virtual
illumination source may not be calculated as an illumination
color vector. This is because intensity information of virtual
illumination sources is removed and normalized values are
provided in an illumination map 550.

[0083] In an example, the electronic device may generate
the illumination map 550 using the plurality of mixture maps
520-1, 520-2, and 520-3 and the plurality of illumination
color vectors 530-1, 530-2, and 530-3. The electronic device
may perform white balancing on the input image using the
generated illumination map 550. Hereinafter, a method of
generating the illumination map 550 using the plurality of
mixture maps 520-1, 520-2, and 520-3 and the plurality of
illumination color vectors 530-1, 530-2, and 530-3 by the
electronic device will be described in greater detail below
with reference to FIG. 6.

[0084] FIG. 6 illustrates an example process of performing
white balancing on an input image using an illumination
map according to one or more embodiments.

[0085] Referring to FIG. 6, in a non-limiting example, an
electronic device (e.g., electronic device 1100 of FIG. 11)
may perform white balancing on an input image 610 using
an illumination map (e.g., the illumination map 550 of FIG.
5) generated by blending a plurality of mixture maps (e.g.,
the plurality of mixture maps 520-1, 520-2, and 520-3 of
FIG. 5) and a plurality of illumination color vectors (e.g., the
plurality of illumination color vectors 530-1, 530-2, and
530-3).

[0086] In an example, the electronic device may perform
white balancing to remove all illumination sources present
in the input image 610. In this case, the electronic device
may calculate, for each of the plurality of virtual illumina-
tion sources, a result of multiplying an illumination color
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vector (e.g., the illumination color vector 530-1) corre-
sponding to the corresponding illumination color vector by
a mixture map (e.g., the mixture map 520-1) corresponding
to the corresponding virtual illumination source. The elec-
tronic device may generate the illumination map by sum-
ming a calculated plurality of results along a channel axis.
As described above, the electronic device may adjust a color
value of a target pixel in the input image 610 using a color
value of a pixel at the same position as the target pixel of the
input image 610 in the illumination map. In an example, the
electronic device may convert the red value of the target
pixel in the input image 610 into a value obtained by
dividing an existing red value by the red value of a pixel at
the same position as the target pixel of the input image 610
in the illumination map and convert the blue value of the
target pixel into a value obtained by dividing an existing
blue value by the blue value of the pixel at the same position
as the target pixel of the input image 610 in the illumination
mayp, thereby performing white balancing on the input image
610. In an example, an image 620 of FIG. 6 may be a result
of performing white balancing to remove all illumination
sources present in the input image 610.

[0087] In another example, the electronic device may
perform white balancing to individually adjust the illumi-
nation sources present in the input image 610. In this case,
the electronic device may apply a weight to each of the
plurality of illumination color vectors (e.g., the plurality of
illumination color vectors 530-1, 530-2, and 530-3 of FIG.
5) corresponding to the plurality of virtual illumination
sources. Here, the weight applied to each illumination color
vector may correspond to the intensity of a virtual illumi-
nation corresponding to the corresponding illumination
color vector in the input image 610 to be changed through
white balancing. In an example, referring to FIG. 5, to
reduce the intensity of a virtual illumination corresponding
to the illumination color vector 530-1 in the input image 610
by 50% of the existing intensity through white balancing, the
weight applied to the illumination color vector 530-1 may be
set to “0.5”. As another example, to reduce the intensity of
the virtual illumination corresponding to the illumination
color vector 530-1 in the input image 610 by 70% of the
existing intensity through white balancing, the weight
applied to the illumination color vector 530-1 may be set to
“0.7”. In other words, to change the intensity of the virtual
illumination corresponding to the illumination color vector
530-1 in the input image 610 to 30% of the existing intensity
through white balancing, the weight applied to the illumi-
nation color vector 530-1 may be set to “0.7”. As an
example, the virtual illumination sources corresponding to
the illumination color vectors 530-1 and 530-2 among the
plurality of virtual illumination sources in the input image
610 may be removed through white balancing, and to
maintain the virtual illumination corresponding to the
remaining illumination color vector 530-3 with the same
intensity, the electronic device may apply a weight of “1” to
each of the illumination color vectors 530-1 and 530-2 and
apply a weight of “0” to the remaining illumination color
vector 530-3.

[0088] The electronic device may calculate, for each of the
plurality of virtual illumination sources, a candidate map by
multiplying a result of applying a weight corresponding to
an illumination color vector (e.g., the illumination color
vector 530-1) corresponding to the corresponding virtual
illumination to the illumination color vector, by a mixture
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map (e.g., the mixture map 520-1) corresponding to the
corresponding virtual illumination. The electronic device
may generate the illumination map by summing a calculated
plurality of candidate maps along a channel axis. The
electronic device may adjust the color values of pixels in the
input image 610 using the generated illumination map.
[0089] FIG. 7 illustrates an example process of training an
illumination decomposition framework according to one or
more embodiments.

[0090] Referring to FIG. 7, in a non-limiting example, an
electronic device (e.g., electronic device 1100 of FIG. 11)
may train an illumination decomposition framework 700 to
generate an illumination map based on an input image. The
electronic device may train a machine learning model (e.g.,
the neural network 440 of FIG. 4) on the illumination
decomposition framework 700 based on a total loss £ ,,,,;
including a plurality of losses. In an example, the electronic
device may train the illumination decomposition framework
700 based on training data including a pair of training input
data (e.g., a training input image 701) and training output
data (e.g., a ground truth illumination map 751 mapped with
the training input image 701, a plurality of ground truth
illumination color vectors 731-1 and 731-2 mapped with the
training input image 701, and a plurality of ground truth
mixture maps 721-1 and 721-2 mapped with the training
input image 701). The electronic device may train the
illumination decomposition framework 700 to output the
training output data from the training input data. When the
total loss L, ,,; decreases to be less than a threshold loss
during training of the illumination decomposition frame-
work 700 using the plurality of training data, the electronic
device may terminate the training of the illumination decom-
position framework 700.

[0091] In an example, the electronic device may calculate
a temporary feature map 703 based on inputting the training
input image 701 into an encoder 702. The electronic device
may calculate a plurality of temporary mixture maps 720-1,
720-2, and 720-3 and a plurality of temporary illumination
color vectors 730-1, 730-2, and 730-3 from the calculated
temporary feature map 703. In an example, the electronic
device may calculate a plurality of temporary predicted
illumination vectors 710-1, 710-2, and 710-3 by iteratively
updating a plurality of slot vectors 704-1, 704-2, and 704-3
using the calculated temporary feature map 703. The elec-
tronic device may calculate the plurality of temporary pre-
dicted illumination vectors 710-1, 710-2, and 710-3 based
on inputting the calculated temporary feature map 703 and
the plurality of slot vectors 704-1, 704-2, and 704-3 into a
slot attention model (e.g., the slot attention model 320 of
FIG. 3) including a machine learning model (e.g., the neural
network model 440 of FIG. 4). The electronic device may
calculate the plurality of temporary mixture maps 720-1,
720-2, and 720-3 and the plurality of temporary illumination
color vectors 730-1, 730-2, and 730-3 using the plurality of
temporary predicted illumination vectors 710-1, 710-2, and
710-3. The electronic device may generate a temporary
illumination map 750 using the plurality of temporary
mixture maps 720-1, 720-2, and 720-3 and the plurality of
temporary illumination color vectors 730-1, 730-2, and
730-3.

[0092] In an example, the electronic device may train the
illumination decomposition framework 700 based on the
training data including the training input image 701, the
ground truth illumination map 751 mapped with the training
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input image 701, the plurality of ground truth illumination
color vectors 731-1 and 731-2 mapped with the training
input image 701, and the plurality of ground truth mixture
maps 721-1 and 721-2 mapped with the training input image
701.

[0093] In an example, the total loss £ ,,,,; for training the
illumination decomposition framework 700 may include an
illumination map 108s L,;,..iazi0n map 752 and an illumina-
tion color loss £ .., 732. For example, the total loss
L, .., may be calculated as the sum of the illumination map
loss 752 and the illumination color loss 732, but is not
limited thereto.

[0094] The electronic device may calculate the illumina-
tion map loss 752 based on the temporary illumination map
750 and the ground truth illumination map 751 mapped with
the training input image 701. The illumination map loss 752
may be a loss function based on the distance between the
temporary illumination map 750 and the ground truth illu-
mination map 751.

[0095] The electronic device may calculate the illumina-
tion color loss 732 based on the temporary illumination
color vectors 730-1, 730-2, and 730-3 and the ground truth
illumination color vectors 731-1 and 731-2 mapped with the
training input image 701. The electronic device may calcu-
late the illumination color loss 732 based on matching the
temporary illumination color vectors 730-1, 730-2, and
730-3 and the ground truth illumination color vectors 731-1
and 731-2. The calculation of the illumination color loss 732
will be described in greater detail below with reference to
FIGS. 8 and 9.

[0096] Inanother example, the total loss £, for training
the illumination decomposition framework 700 may include
the illumination map 10ss L,;,inavion map 752, the illumina-
tion color loss L .., 732, and a mixture map loss L, /,,.0
map T122. For example, the total loss £ ,,,,; may be calculated
as the sum of the illumination map loss 752, the illumination
color loss 732, and the mixture map loss 722, but is not
limited thereto.

[0097] The electronic device may calculate the mixture
map loss 722 based on the plurality of temporary mixture
maps 720-1, 720-2, and 720-3 and the plurality of ground
truth mixture maps 721-1 and 721-2 matching the training
input image 701. The electronic device may calculate the
mixture map loss 722 based on matching the plurality of
temporary mixture maps 720-1, 720-2, and 720-3 and the
plurality of ground truth mixture maps 721-1 and 721-2. The
calculation of the mixture map loss 722 will be described in
greater detail below with reference to FIGS. 8 and 9.

[0098] In an example, an electronic device may calculate
the illumination color loss 732 based on the plurality of
temporary illumination color vectors 730-1, 730-2, and
730-3 and the plurality of ground truth illumination color
vectors 731-1 and 731-2. The number of ground truth
illumination color vectors matching the training input image
701 (e.g., “2”) may be equal to the number of actual
illumination sources present in the training input image 701.
Since the electronic device generates a number of the slot
vectors 704-1, 704-2, and 704-3 to be greater than or equal
to the number of actual illumination sources present in an
input image (e.g., the training input image 701), the number
of temporary illumination color vectors (e.g., “3”) may be
greater than or equal to the number of ground truth illumi-
nation color vectors (e.g., “2”).
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[0099] Inanexample, the electronic device may determine
a temporary illumination color vector matching a ground
truth illumination color vector among the plurality of tem-
porary illumination color vectors 730-1, 730-2, and 730-3,
to calculate the illumination color loss 732. The electronic
device may determine the temporary illumination color
vector matching the ground truth illumination color vector,
based on comparing a temporary mixture map (e.g., the
temporary mixture map 720-1) corresponding to the tem-
porary illumination color vector (e.g., the temporary illumi-
nation color vector 730-1) with a ground truth mixture map
(e.g., the ground mixture map 731-1) corresponding to the
ground truth illumination color vector (e.g., the ground truth
illumination color vector 731-1).

[0100] FIG. 8 illustrates an example process of calculating
an illumination color loss and a mixture map loss according
to one or more embodiments.

[0101] Referring to FIG. 8, in a non-limiting example, the
electronic device may calculate the distance between any
temporary mixture map (e.g., the temporary mixture map
720-1) among the plurality of temporary mixture maps
720-1, 720-2, and 720-3 and any ground truth mixture map
(e.g., the ground truth mixture map 721-1) among the
plurality of last 721-1 and 721-2. The distance between two
mixture maps may be calculated based on a difference
between the color values of corresponding pixels in one
mixture map and the other mixture map. For example, the
distance between the temporary mixture map 720-1 and the
ground truth mixture map 721-1 may be calculated as
“0.18”, and the distance between the temporary mixture map
720-1 and the ground truth mixture map 721-2 may be
calculated as “0.57”.

[0102] The electronic device may calculate the distance
between a temporary mixture map and a ground truth
mixture map as a cost. The electronic device may set a
plurality of distances calculated between the plurality of
temporary mixture maps and the plurality of ground truth
mixture maps as costs, and, in a non-limiting example, apply
a Hungarian matching algorithm to the set costs. In an
example, a 3x2 cost array may be formed. The electronic
device may determine a temporary mixture map that
matches an individual ground truth mixture map by applying
the Hungarian matching algorithm to the set costs. The
electronic device may apply the Hungarian matching algo-
rithm such that the sum of the distances between ground
truth mixture maps and temporary mixture maps matching
each other may be minimized. In an example, through the
Hungarian matching algorithm, the electronic device may
match the ground truth mixture map 721-1 and the tempo-
rary mixture map 720-1, and match the ground truth mixture
map 721-2 and the temporary mixture map 720-3.

[0103] Referring to FIG. 7, in a non-limiting example, the
electronic device may match a ground truth illumination
color vector (e.g., the ground truth illumination color vector
731-1) corresponding to an individual ground truth mixture
map (e.g., the ground truth mixture map 721-1) and a
temporary illumination color vector (e.g., the temporary
illumination color vector 730-1) corresponding to a tempo-
rary mixture map (e.g., the temporary mixture map 720-1)
matching the individual ground truth mixture map (e.g., the
ground truth mixture map 721-1).

[0104] In an example, the electronic device may calculate
the illumination color loss 732 using the ground truth
illumination color vectors 731-1 and 731-2 and the tempo-
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rary illumination color vectors 730-1 and 730-3 respectively
matching the ground truth illumination color vectors 731-1
and 731-2. In an example, the electronic device may calcu-
late, for each of the ground truth illumination color vectors
731-1 and 731-2, an error between a corresponding ground
truth illumination color vector (e.g., the ground truth illu-
mination color vector 731-1) and a temporary illumination
color vector (e.g., the temporary illumination color vector
730-1) matching the corresponding ground truth illumina-
tion color vector (e.g., the ground truth illumination color
vector 731-1), and calculate the illumination color loss 752
based on a calculated plurality of errors. In an example,
referring to FIG. 7, the electronic device may calculate the
illumination color loss 752 based on a difference between
the color values of the ground truth illumination color vector
731-1 and the temporary illumination color vector 730-1 and
a difference between the color values of the ground truth
illumination color vector 731-2 and the temporary illumi-
nation color vector 730-3.

[0105] Inanexample, the electronic device may determine
a temporary mixture map that matches a ground truth
mixture map, to calculate the mixture map loss 722. The
electronic device may determine the temporary mixture map
that matches the ground truth mixture map, based on com-
paring the temporary mixture map (e.g., the temporary
mixture map 720-1) with the ground truth mixture map (e.g.,
the ground truth mixture map 721-1). The method of deter-
mining a temporary mixture map (e.g., the temporary mix-
ture map 720-1) that matches an individual ground truth
mixture map (e.g., the ground truth mixture map 721-1) may
be the same as the method described above.

[0106] In an example, the electronic device may calculate
the mixture map loss 722 using the ground truth mixture
maps 721-1 and 721-2 and the temporary mixture maps
720-1 and 720-3, respectively, to match the ground truth
mixture maps 721-1 and 721-2. For example, the electronic
device may calculate, for each of the ground truth mixture
maps 721-1 and 721-2, an error between a corresponding
ground truth mixture map (e.g., the ground truth mixture
map 721-1) and a temporary mixture map (e.g., the tempo-
rary mixture map 720-1) that matches the corresponding
ground truth mixture map (e.g., the ground truth mixture
map 721-1), and calculate the mixture map loss 722 based
on a calculated plurality of errors. In an example, referring
to FIG. 7, the electronic device may calculate the mixture
map loss 722 based on the distance between the ground truth
mixture map 721-1 and the temporary mixture map 720-1
and the distance between the ground truth mixture map
721-2 and the temporary mixture map 720-3.

[0107] FIG. 9 illustrates an example process of calculating
an illumination color loss and a mixture map loss according
to one or more embodiments.

[0108] Referring to FIG. 9, in a non-limiting example, the
plurality of slot vectors 704-1, 704-2, and 704-3 may be
generated to be more than the number of actual illumination
sources present in the training input image 701. In other
words, the number of temporary illumination color vectors
may exceed the number of ground truth illumination color
vectors. Because of this example with a mismatch between
the number of temporary illumination color vectors and the
number ground truth illumination color vectors, among the
plurality of temporary illumination color vectors 730-1,
730-2, and 730-3, at least one temporary illumination color
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vector 730-2 may not be match the ground truth illumination
color vectors 731-1 and 731-2.

[0109] In an example, an electronic device may calculate
an illumination color loss 932 using all the ground truth
illumination color vectors 731-1 and 731-2, the temporary
illumination color vectors 730-1 and 730-3, respectively,
that matches the ground truth illumination color vectors
731-1 and 731-2, and the temporary illumination color
vector 730-2 that does not match the ground truth illumi-
nation color vectors 731-1 and 731-2. The electronic device
may generate a zero vector 930 corresponding to the tem-
porary illumination color vector 730-2 not matching the
ground truth illumination color vectors 731-1 and 731-2.
Here, the zero vector 930 may be a two-dimensional vector
in which all elements are “0”. The electronic device may
calculate the illumination color loss 932 based on an error
between each ground truth illumination color vector (e.g.,
the ground truth illumination color vector 731-1) and a
matching temporary illumination color vector (e.g., the
temporary illumination color vector 730-1) and an error
between the temporary illumination color vector 730-1 that
does not match the ground truth illumination color vectors
731-1 and 731-2 and the zero vector 930.

[0110] Similarly, in an example, the electronic device may
calculate a mixture map loss 922 using the ground truth
mixture maps 721-1 and 721-2, the temporary mixture maps
720-1 and 720-3, respectively, that matches the ground truth
mixture maps 721-1 and 721-2, and the temporary mixture
map 720-2 that does not match the ground truth mixture
maps 721-1 and 721-2. The electronic device may generate
a zero map 920 corresponding to the temporary mixture map
720-2 that does not match the ground truth mixture maps
721-1 and 721-2. Here, the zero map 920 may be a mixture
map that has the same size as a ground truth mixture map
(e.g., the ground truth mixture map 721-1) and in which the
weight values of pixels are all “0”. The electronic device
may calculate the mixture map loss 922 based on an error
between each ground truth mixture map (e.g., ground truth
mixture map 721-1) and a matching temporary mixture map
(e.g., the temporary mixture map 720-1) and an error
between the temporary mixture map 720-2 that does not
match the ground truth mixture maps 721-1 and 721-2 and
the zero map 920.

[0111] FIG. 10 illustrates an example process of calculat-
ing an illumination map from a low-resolution feature map
according to one or more embodiments.

[0112] Referring to FIG. 10, in a non-limiting example, an
electronic device (e.g., the electronic device 1110 of FIG.
11) may calculate a feature map 1030 including information
about an illumination present in an input image 1010 based
on inputting the input image 1010 into an encoder 1021. In
an example, the feature map 1030 may have a second
resolution lower than a first resolution (e.g., HxW) of the
input image 1010. The electronic device may calculate an
illumination map 1070 from the feature map 1030 having
the second resolution lower than the first resolution of the
input image 1010, thereby reducing the amount of compu-
tation compared to calculating an illumination map from a
feature map (e.g., the feature map 230 of FIG. 2) having the
first resolution which is the same as the first resolution of an
input image (e.g., the input image 210 of FIG. 2).

[0113] In an example, the electronic device may calculate
a plurality of predicted illumination vectors by iteratively
updating a plurality of slot vectors using the feature map
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1030 having the second resolution. The electronic device
may calculate the plurality of predicted illumination vectors
based on inputting the feature map 1030 having the second
resolution and the plurality of slot vectors into a slot
attention model (e.g., the slot attention model 320 of FIG. 3).
The slot attention model may generate the plurality of
predicted illumination vectors by iteratively updating the
plurality of slot vectors using the feature map 1030 having
the second resolution through an attention mechanism. The
predicted illumination vectors may be two-dimensional vec-
tors. In this case, an illumination decomposition framework
1000 may perform the attention calculation process, which
occupies a large portion of the amount of calculation, using
the feature map 1030 of the second resolution lower than the
first resolution, which may reduce the amount of computa-
tion required.

[0114] In an example, the electronic device may calculate
a plurality of mixture maps 1050-1 and 1050-2 and a
plurality of illumination color vectors 1040-1 and 1040-2
using the calculated plurality of predicted illumination vec-
tors. A mixture map (e.g., the mixture map 1050-1) may
have the same size as the second resolution of the feature
map 1030. Accordingly, the electronic device may input
each of the plurality of mixture maps 1050-1 and 1050-2 into
a decoder 1022 and upscale each of the plurality of mixture
maps 1050-1 and 1050-2 to the first resolution that is the
same as the resolution of the input image 1010. The elec-
tronic device may generate the illumination map 1070 using
upscaled mixture maps 1061 and 1062 and the plurality of
illumination color vectors 1040-1 and 1040-2.

[0115] FIG. 11 illustrates an example electronic apparatus
1100 with white balancing according to one or more
embodiments.

[0116] Referring to FIG. 11 in a non-limiting example, an
electronic apparatus 110 may include a processor 1110, a
memory 1120, and bus 1130. In an example, the electronic
apparatus 1100 may be the electronic devices described
above with reference to FIGS. 1-10. The processor 1110 may
be configured to execute computer-readable instructions,
which when executed by the processor 1110, configure the
processor 1110 to perform one or more or all operations
and/or methods involving the white balancing operations or
perform any one or any combination of the operations and/or
methods described herein. The processor 1110 may include
any one or a combination of two or more of, for example, a
central processing unit (CPU), a graphic processing unit
(GPU), a neural processing unit (NPU) and tensor process-
ing units (TPUs), but is not limited to the above-described
examples. In an example, the processor 1110 may perform
the operations of the neural network 440 of FIG. 4. The
processor 1110 may also execute other computer-readable
instructions, programs, or applications to control other func-
tionalities of the electronic device.

[0117] The memory 1120 may be configured to store, or
store, any of the computer-readable instructions described
herein. The memory 1120 may be a volatile or nonvolatile
memory.

[0118] The memory 1120 may include, for example, ran-
dom-access memory (RAM), dynamic random-access
memory (DRAM), static random-access memory (SRAM),
or other types of non-volatile memory known in the art.
[0119] The processors, electronic devices, neural net-
works, electronic apparatus 1100, processor 1110, memory
1120, described herein and disclosed herein described with
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respect to FIGS. 1-11 are implemented by or representative
ot hardware components. As described above, or in addition
to the descriptions above, examples of hardware compo-
nents that may be used to perform the operations described
in this application where appropriate include controllers,
sensors, generators, drivers, memories, comparators, arith-
metic logic units, adders, subtractors, multipliers, dividers,
integrators, and any other electronic components configured
to perform the operations described in this application. In
other examples, one or more of the hardware components
that perform the operations described in this application are
implemented by computing hardware, for example, by one
or more processors or computers. A processor or computer
may be implemented by one or more processing elements,
such as an array of logic gates, a controller and an arithmetic
logic unit, a digital signal processor, a microcomputer, a
programmable logic controller, a field-programmable gate
array, a programmable logic array, a microprocessor, or any
other device or combination of devices that is configured to
respond to and execute instructions in a defined manner to
achieve a desired result. In one example, a processor or
computer includes, or is connected to, one or more memo-
ries storing instructions or software that are executed by the
processor or computer. Hardware components implemented
by a processor or computer may execute instructions or
software, such as an operating system (OS) and one or more
software applications that run on the OS, to perform the
operations described in this application. The hardware com-
ponents may also access, manipulate, process, create, and
store data in response to execution of the instructions or
software. For simplicity, the singular term “processor” or
“computer” may be used in the description of the examples
described in this application, but in other examples multiple
processors or computers may be used, or a processor or
computer may include multiple processing elements, or
multiple types of processing elements, or both. For example,
a single hardware component or two or more hardware
components may be implemented by a single processor, or
two or more processors, or a processor and a controller. One
or more hardware components may be implemented by one
or more processors, or a processor and a controller, and one
or more other hardware components may be implemented by
one or more other processors, or another processor and
another controller. One or more processors, or a processor
and a controller, may implement a single hardware compo-
nent, or two or more hardware components. As described
above, or in addition to the descriptions above, example
hardware components may have any one or more of different
processing configurations, examples of which include a
single processor, independent processors, parallel proces-
sors, single-instruction single-data (SISD) multiprocessing,
single-instruction multiple-data (SIMD) multiprocessing,
multiple-instruction single-data (MISD) multiprocessing,
and multiple-instruction multiple-data (MIMD) multipro-
cessing.

[0120] The methods illustrated in FIGS. 1-11 that perform
the operations described in this application are performed by
computing hardware, for example, by one or more proces-
sors or computers, implemented as described above imple-
menting instructions or software to perform the operations
described in this application that are performed by the
methods. For example, a single operation or two or more
operations may be performed by a single processor, or two
or more processors, or a processor and a controller. One or
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more operations may be performed by one or more proces-
sors, or a processor and a controller, and one or more other
operations may be performed by one or more other proces-
sors, or another processor and another controller. One or
more processors, or a processor and a controller, may
perform a single operation, or two or more operations.

[0121] Instructions or software to control computing hard-
ware, for example, one or more processors or computers, to
implement the hardware components and perform the meth-
ods as described above may be written as computer pro-
grams, code segments, instructions or any combination
thereof, for individually or collectively instructing or con-
figuring the one or more processors or computers to operate
as a machine or special-purpose computer to perform the
operations that are performed by the hardware components
and the methods as described above. In one example, the
instructions or software include machine code that is directly
executed by the one or more processors or computers, such
as machine code produced by a compiler. In another
example, the instructions or software includes higher-level
code that is executed by the one or more processors or
computer using an interpreter. The instructions or software
may be written using any programming language based on
the block diagrams and the flow charts illustrated in the
drawings and the corresponding descriptions herein, which
disclose algorithms for performing the operations that are
performed by the hardware components and the methods as
described above.

[0122] The instructions or software to control computing
hardware, for example, one or more processors or comput-
ers, to implement the hardware components and perform the
methods as described above, and any associated data, data
files, and data structures, may be recorded, stored, or fixed
in or on one or more non-transitory computer-readable
storage media, and thus, not a signal per se. As described
above, or in addition to the descriptions above, examples of
a non-transitory computer-readable storage medium include
one or more of any of read-only memory (ROM), random-
access programmable read only memory (PROM), electri-
cally erasable programmable read-only memory (EE-
PROM), random-access memory (RAM), dynamic random
access memory (DRAM), static random access memory
(SRAM), flash memory, non-volatile memory, CD-ROMs,
CD-Rs, CD+Rs, CD-RWs, CD+RWs, DVD-ROMs, DVD-
Rs, DVD+Rs, DVD-RWs, DVD+RWs, DVD-RAMs, BD-
ROMs, BD-Rs, BD-R LTHs, BD-REs, blue-ray or optical
disk storage, hard disk drive (HDD), solid state drive (SSD),
flash memory, a card type memory such as multimedia card
micro or a card (for example, secure digital (SD) or extreme
digital (XD)), magnetic tapes, floppy disks, magneto-optical
data storage devices, optical data storage devices, hard disks,
solid-state disks, and/or any other device that is configured
to store the instructions or software and any associated data,
data files, and data structures in a non-transitory manner and
provide the instructions or software and any associated data,
data files, and data structures to one or more processors or
computers so that the one or more processors or computers
can execute the instructions. In one example, the instructions
or software and any associated data, data files, and data
structures are distributed over network-coupled computer
systems so that the instructions and software and any
associated data, data files, and data structures are stored,
accessed, and executed in a distributed fashion by the one or
more processors or computers.
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[0123] While this disclosure includes specific examples, it
will be apparent after an understanding of the disclosure of
this application that various changes in form and details may
be made in these examples without departing from the spirit
and scope of the claims and their equivalents. The examples
described herein are to be considered in a descriptive sense
only, and not for purposes of limitation. Descriptions of
features or aspects in each example are to be considered as
being applicable to similar features or aspects in other
examples. Suitable results may be achieved if the described
techniques are performed in a different order, and/or if
components in a described system, architecture, device, or
circuit are combined in a different manner, and/or replaced
or supplemented by other components or their equivalents.
[0124] Therefore, in addition to the above and all drawing
disclosures, the scope of the disclosure is also inclusive of
the claims and their equivalents, i.e., all variations within the
scope of the claims and their equivalents are to be construed
as being included in the disclosure.

What is claimed is:

1. A processor-implemented method, the method com-
prising:

inputting an image into an encoder to generate a feature

map including information about an illumination pres-
ent in the input image;

iteratively updating a plurality of slot vectors using the

calculated feature map to calculate a plurality of pre-
dicted illumination vectors;

calculating, using the calculated plurality of predicted

illumination vectors, a plurality of mixture maps rep-
resenting respective effects of a plurality of virtual
illuminations on pixels in the input image and a plu-
rality of illumination color vectors representing respec-
tive color values of the plurality of virtual illumina-
tions; and

generating an illumination map using the calculated plu-

rality of mixture maps and the calculated plurality of
illumination color vectors.

2. The method of claim 1, wherein respective dimensions
of each of the plurality of slot vectors are equal to a number
of channels of the calculated feature map.

3. The method of claim 1, wherein the iteratively updating
the plurality of slot vectors comprise updating the plurality
of slot vectors a preset number of times through a neural
network model.

4. The method of claim 3, wherein the iteratively updating
the plurality of slot vectors further comprises:

inputting the calculated feature map into a multi-layer

perceptron to calculate a key and a value having a same
size as the calculated feature map; and

setting the plurality of slot vectors as a query.

5. The method of claim 4, wherein the iteratively updating
the plurality of slot vectors further comprises:

applying a softmax function to a result of a dot product

between the query and the key along a channel axis to
calculate a plurality of attention maps;

normalizing the calculated plurality of attention maps

along a spatial axis and then multiplying the normal-
ized plurality of attention maps by the value to calcu-
late a plurality of candidate vectors; and

inputting the calculated plurality of candidate vectors into

the neural network model to update the plurality of slot
vectors with output values of the neural network model.
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6. The method of claim 3, wherein the neural network
model comprises one of a decoder of a transformer model,
a long short-term memory (LSTM) model, and a gated
recurrent unit (GRU) model.

7. The method of claim 4, wherein the calculating of the
plurality of mixture maps and the plurality of illumination
color vectors comprises:

applying a softmax function to results of dot products

between the calculated plurality of predicted illumina-
tion vectors and the key along a channel axis to
calculate the plurality of mixture maps; and

inputting the calculated plurality of predicted illumination

vectors into a linear layer to calculate the plurality of
illumination color vectors.

8. The method of claim 1, wherein the generating of the
illumination map comprises:

setting weights respectively for the plurality of illumina-

tion color vectors corresponding to the plurality of
virtual illuminations;

multiplying, for each of the plurality of virtual illumina-

tions, a result of applying a weight, set for an illumi-
nation color vector corresponding to a corresponding
virtual illumination, to the corresponding illumination
color vector by a mixture map corresponding to the
corresponding virtual illumination to calculate a can-
didate map; and

summing a plurality of candidate maps calculated respec-

tively for the plurality of virtual illuminations along a
channel axis to generate the illumination map.

9. The method of claim 1, further comprising:

training an illumination decomposition framework for

generating the illumination map from the input image
based on training data comprising a training input
image, a ground truth illumination map mapped with
the training input image, a plurality of ground truth
illumination color vectors mapped with the training
input image, and a plurality of ground truth mixture
maps mapped with the training input image.

10. The method of claim 9, wherein the training of the
illumination decomposition framework comprises:

inputting the training input image into the encoder to

calculate a temporary feature map;

calculating a plurality of temporary mixture maps and a

plurality of temporary illumination color vectors from
the calculated temporary feature map;

calculating a temporary illumination map using the cal-

culated plurality of temporary mixture maps and the
calculated plurality of temporary illumination color
vectors;

calculating an illumination map loss based on the tem-

porary illumination map and the ground truth illumi-
nation map;

calculating an illumination color loss based on the plu-

rality of temporary illumination color vectors and the
plurality of ground truth illumination color vectors; and
training the illumination decomposition framework based
on a total loss comprising the calculated illumination
map loss and the calculated illumination color loss.

11. The method of claim 10, wherein the calculating of the
illumination color loss comprises:

determining a temporary illumination color vector match-

ing an individual ground truth illumination color vector
among the plurality of temporary illumination color
vectors; and
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calculating the illumination color loss using the plurality
of ground truth illumination color vectors and tempo-
rary illumination color vectors respectively matching
the plurality of ground truth illumination color vectors.

12. The method of claim 11, wherein the determining of
the temporary illumination color vector matching the indi-
vidual ground truth illumination color vector comprises:

calculating a distance between any temporary mixture

map among the plurality of temporary mixture maps
and any ground truth mixture map among the plurality
of ground truth mixture maps;

setting a plurality of distances calculated between the

plurality of temporary mixture maps and the plurality
of ground truth mixture maps as costs and applying a
Hungarian matching algorithm to the set costs to deter-
mine a temporary mixture map matching an individual
ground truth mixture map by; and

matching a ground truth illumination color vector corre-

sponding to the individual ground truth mixture map
and a temporary illumination color vector correspond-
ing to a temporary mixture map matching the indi-
vidual ground truth mixture map.

13. The method of claim 10, wherein the training of the
illumination decomposition framework comprises:

calculating a mixture map loss based on the plurality of

temporary mixture maps and the plurality of ground
truth mixture maps; and

training the illumination decomposition framework based

on the total loss comprising the calculated illumination
map loss, the calculated illumination color loss, and the
calculated mixture map loss.

14. An electronic device, the device comprising:

a processor configured to:

calculate a feature map comprising information about
an illumination present in an input image based on
inputting the input image into an encoder;

calculate a plurality of predicted illumination vectors
by iteratively updating a plurality of slot vectors
using the calculated feature map;

calculate, using the calculated plurality of predicted
illumination vectors, a plurality of mixture maps
representing respective effects of a plurality of vir-
tual illuminations on pixels in the input image and a
plurality of illumination color vectors representing
respective color values of the plurality of virtual
illuminations; and

calculate an illumination map using the calculated
plurality of mixture maps and the calculated plurality
of illumination color vectors.

15. The device of claim 14, wherein the processor is
further configured to calculate a key and a value having a
same size as the calculated feature map by inputting the
calculated feature map into a multi-layer perceptron, and set
the plurality of slot vectors as a query.

16. The device of claim 15, wherein the processor is
further configured to:

calculate a plurality of attention maps by applying a

softmax function to a result of a dot product between
the query and the key along a channel axis;

calculate a plurality of candidate vectors by normalizing

the calculated plurality of attention maps along a spatial
axis and then multiplying the normalized plurality of
attention maps by the value; and
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update the plurality of slot vectors with output values of
the neural network model based on inputting the cal-
culated plurality of candidate vectors into the neural
network model.

17. The device of claim 15, wherein the processor is
further configured to:

calculate the plurality of mixture maps by applying a

softmax function to results of dot products between the
calculated plurality of predicted illumination vectors
and the key along a channel axis; and

calculate the plurality of illumination color vectors by

inputting the calculated plurality of predicted illumi-
nation vectors into a linear layer.

18. The device of claim 14, wherein the processor is
further configured to:

set weights respectively for the plurality of virtual illu-

minations;

generate, for each of the plurality of virtual illuminations,

a candidate map by multiplying a result of applying a
weight, set for an illumination color vector correspond-
ing to a corresponding virtual illumination, to the
corresponding illumination color vector by a mixture
map corresponding to the corresponding virtual illumi-
nation; and

generate the illumination map by summing a plurality of

candidate maps calculated respectively for the plurality
of virtual illuminations along a channel axis.

19. The device of claim 14, wherein the processor is
further configured to train an illumination decomposition
framework for generating the illumination map from the
input image based on training data comprising a training
input image, a ground truth illumination map mapped with
the training input image, a plurality of ground truth illumi-
nation color vectors mapped with the training input image,
and a plurality of ground truth mixture maps mapped with
the training input image.

20. The device of claim 19, wherein the processor is
further configured to:

calculate a temporary feature map based on inputting the

training input image into the encoder;

calculate a plurality of temporary mixture maps and a

plurality of temporary illumination color vectors from
the calculated temporary feature map;

calculate a temporary illumination map using the calcu-

lated plurality of temporary mixture maps and the
calculated plurality of temporary illumination color
vectors;

calculate an illumination map loss based on the temporary

illumination map and the ground truth illumination
map;
calculate an illumination color loss based on the plurality
of temporary illumination color vectors and the plural-
ity of ground truth illumination color vectors; and

train the illumination decomposition framework based on
a total loss comprising the calculated illumination map
loss and the calculated illumination color loss.

21. A processor-implemented method, the method com-
prising:

generating, by an encoder employing a neural network, a

feature map according to lamination information of an
input image;

iteratively updating slot vectors of a plurality of slot

vectors using the feature map to predict illumination
vectors from the feature map;
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calculating, using the illumination vectors, a plurality of
mixture maps representing representative effects of
virtual illumination sources; and

generating an illumination map for the input image based

on the representative effects and the plurality of mix-
ture maps.

22. The method of claim 21, wherein the representative
effects of the virtual illumination sources include effects on
respective pixels in the input image and a plurality of color
vectors from respective virtual illumination sources.

23. The method of claim 21, further comprising perform-
ing white balancing on the input image by blending the
representative effects and the plurality of mixture maps.

24. The method of claim 21, wherein a first number of the
plurality of slot vectors is greater than or equal to a second
number of light sources present in the input image.

25. The method of claim 24, wherein a third number of
channels of the feature map is equal to a fourth number of
dimensions of the feature map.

26. The method of claim 21, wherein the iterative updat-
ing of the plurality of slot vectors is generated by a slot
attention model calculating a key and a value, the value
being a size of the feature map.

27. The method of claim 26, wherein the slot attention
model further calculates a query based on the plurality of
slot vectors, and

wherein the calculating the plurality of mixture maps by

applying a softmax function to a dot product between
the key and the query.
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