US009395952B2

a2 United States Patent

Olsen

US 9,395,952 B2
Jul. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54)

(71)
(72)

(73)

@
(22)

(65)

(63)

(1)

(52)

PRODUCT SUMMATION APPARATUS FOR A
RESIDUE NUMBER ARITHMETIC LOGIC
UNIT

Applicant: Eric B. Olsen, Las Vegas, NV (US)
Eric B. Olsen, Las Vegas, NV (US)

Inventor:

Assignee: QOlsen IP Reserve, LL.C, Henderson, NV

(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.

Appl. No.: 14/730,063

Filed: Jun. 3, 2015

Prior Publication Data
US 2015/0339103 Al Nov. 26, 2015

Related U.S. Application Data

Continuation of application No. 13/475,979, filed on
May 19, 2012, now Pat. No. 9,081,608.

Int. Cl1.

GO6F 7/72 (2006.01)

GO6F 7/483 (2006.01)

GO6F 9/30 (2006.01)

U.S. CL

CPC ... GO6F 7/483 (2013.01); GOGF 7/729

(2013.01); GOGF 9/30025 (2013.01)

(58) Field of Classification Search
CPC GOGF 7/72; GO6F 7/729
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

4,281,391 A * 7/1981 Huang HO3M 7/18
341/83
4,910,699 A * 3/1990 Cappsccccevvenee GOGE 1/065
708/191
5,107,451 A * 4/1992 Houkccccoeveenee. GOGF 7/729
708/191
5,117,383 A * 5/1992 Fujita ..c.ccoovvvvveennee. GOGF 7/729
708/491
2006/0184600 Al* 82006 Maruo GOGF 7/729
708/491
2011/0231465 Al* 9/2011 Phatak GOGF 7/729
708/235

* cited by examiner

Primary Examiner — Chuong D Ngo
(74) Attorney, Agent, or Firm — Lightbulb IP, LL.C

(57) ABSTRACT

Methods and systems for residue number system based
ALUgs, processors, and other hardware provide the full range
of arithmetic operations while taking advantage of the ben-
efits of the residue numbers in certain operations. In one or
more embodiments, an RNS AL U or processor comprises a
plurality of digit slices configured to perform modular arith-
metic functions. Operation of the digit slices may be con-
trolled by a controller. Residue numbers may be converted to
and from fixed or mixed radix number systems for internal
use and for use in various computing systems.

6 Claims, 99 Drawing Sheets

1 P Digits - 200 -
Port A Addrass and Contror ALU Controt Unit
. Part 8 Address and Contro: With embedded cross bar
l] 1 | I : 321 LIFO's
Toto i Ak A0 Tl T ; Tote T Adr. . T
Port & fert B H Port A Port B
Digit lReglsler File Digit Register File
tnou___oagay vas___ s LIFO Efement
Count A
278
= [Eri].
stz | LI T\[— L T
ot T AN A e N N o v . 275
f 277 ¥ Cross B‘? u.g A ‘
Dyt Mﬂ{uml...;mzlnzim 0,1Mo| 5o
318\ Cross Bar A : ! !
: e ! : ' L Cross Ber B Cross Bar LIFO 8"
L i - 319 L |
\ K_‘/ _/ _/ e Op [Moz [Dy 2] -+ | M| D [Me] D, MJEDE
QP Gade A 2776
OPCode8 | ~ Sommemee - 276
279
s LIFO Element
" o Count 8
¢ Skip Digit Fiags "A" /"~
ELedrdel - Jeds
ALU Status and
Comparison Logic
{ A" ZERO] COMPARE —
ALU "A/B” GOMPARS i F\] F‘[F\‘ -]F”J F””] Fﬂzip""‘
8" ZERO / COMPARE. Skip Digit Flags "B” - 281
-308

US 9,395,952 B2

Sheet 1 of 99

Jul. 19, 2016

U.S. Patent

SIOLIB JBYI0
Jole g Ag Alp
0Jaz

|[enba

19889|
Jeyealb
MO|JISAO
sbe|4 snie1s

1437

V1 84nbig

nsay
A
AN
L/
SPIAID
Ajdiyinwi
sledwoo
Juswiaioap
uswaIoul

oenqns
N ppe
suonespd)

0ot

il

) oLt

U.S. Patent

Jul. 19, 2016

Sheet 2 of 99

Register
A (operand) r 103
102 —
A B
100 Arithmetic Logic

Function unit

Accumulator

101

Figure 1B

US 9,395,952 B2

U.S. Patent Jul. 19, 2016 Sheet 3 of 99 US 9,395,952 B2

103b
r

Register
File
103
g (
102
A B
Arithmetic Logic
100 Function unit

Accumulator

101

Figure 1C

US 9,395,952 B2

Sheet 4 of 99

Jul. 19, 2016

U.S. Patent

ai ainbi4
g Y
Jo1eInwNooYy J01RINUUND0Y
™ ™
qLol BL0}
qo0l B0}
g Jun uopoung V U uopoung
01607 oWy 21507 oneWILINY
g NI Y NI Y NI g NI

9|14 Je)s1bay
5920V |Bng

US 9,395,952 B2

Sheet 5 of 99

Jul. 19, 2016

31 2anbig

g A4
Joye[nuwinooy Jojg|nwinoay

HUN uonoUN, JHUN UoHOUN 4
016077 OBy 016077 onaWpLY

a|i4 Joysibay
$S200Y [eng

U.S. Patent

US 9,395,952 B2

Sheet 6 of 99

Jul. 19, 2016

U.S. Patent

41 aunfbiy

Em/

g
JOJRINWINDOY

ubig N
GioL

Y
Joje|nwnooy

ybig

eL0L

eled g Hod

BleQ v Hod

lniod feng

(— SS9IPPY g Hod —

g Jno eeg

Y n0 ereg

9|14 JoisiBoy
$5320Y |en(]

g ui ejeq

v ui Bjleq

US 9,395,952 B2

Sheet 7 of 99

Jul. 19, 2016

U.S. Patent

o ¥

9} anbiy

g ubig
JOlBINWNDOY

v uBig
10leNWNosY

eleq g Hod gje v Hod

LNTucd leng

— $S91ppY g Hod [~ SS8IPpY ¥ Hod —

TR

j

LSRG AN N At =

SS8IpPY g Hod)

TV TR

gIno ele

g 1o gleqg v 1IN0 Bleq

a|t4 Jo)siboy
$S802Y [Bng

g ut ejeq Y uteieq

Ll

vZ a4nbi4

US 9,395,952 B2

Sheet 8 of 99

Jul. 19, 2016

60¢
002 3 s0¢ 0Le 1174
80¢ e S D
J { | T - T ”1.1.1.11\]]]]
SOVidd | k [Y §
SOV 3uvdNOD |] et] !
SOV Y !]) !
208 it fon e s i e
1 0107 I JLIO7 ' 10187

t

g Bay v By
uhin uha
3=Wnd 3= Nd
ElEp elen
8 ¥od Y Hod

{4
LA onswyiy 18iG

B R IpPY Y _J

| | |
_ ! |
, _ | _
, | | |
“ | | |
| | | |
, | " |
| | P
| | | |
| EEY™ | | | !
488IppEe sselppe sea1ppe ssaippe
g od v pod 0, / 10, H
Jo0usnbas . i w | ! »m:, i ,,,m» o
-0I0I UORNIDXD e . _ | ||
UORONIISUL '§ SINDID [FEpe a0] e, i
jojuoo NTY SNY | VORI O _ _ o
9l¢g :
AN U _ LN LN
61e~ | _ | _ _ _
grEgsy] _ [o= I I _ -
V Jeg $80J :
°7 | _ P
e _ “
_ P
. _ |
o eleg o ejeq _ _ no eleq o Bleg _ ” inaERg Hs Rz
w g yog v uog _ guod Y rod _ 1 fuad ¥ Mot
w A _M_w_mmx wbich _ a4 JaisiBoy 1A 1 2t 13150 WY
d=Wd f £=Wd fod 7= Wd
w w1 R | _ W ey W e P oG ey ey AP
w » 4 J » _ _ » [[» _ 1 » [A »
A '
0] f%<mJ m o, =
I _ .

U.S. Patent

[04U0D MY SN e T T _ : | |

ubia MY SN ,d W6 ATV SNY 2 uBIa NV SNY 54

US 9,395,952 B2

Sheet 9 of 99

Jul. 19, 2016

U.S. Patent

gz aunbi
80E
V8C- g, sBeiyuBi diig SVANOD 7O A,
; - —-1 HAVdNGD . aY. NV Y
Agledg e gt e e e T 0y
H IYVANGCD § Ou3Z » +
p : dunos v sredwog o
wog [gmm [el
YV ¥V ¥ Y YV ¥ 10iaz [oiZ joez
i 1 i
) 2ifior uosuedwon o ~ z08
pue smeis NV DK _ ._ A _
782 ot g % g v
A A L i A A A A) JORRINLINODY JOIBINUINDZY H05RINUNTIY JOEINUITNOUY
g whia g ihia
POl jedg (PO L HEg T by _ i G G
; a uad W Hod 104 v Hod
ogz - <¥»SPeIA 0 dvis : ()
107 dlowy; 181 1071 oWy #B1Q
g 1uno) d = sninpopy Z = snnpen
. ssamppe 8s3,ppe S2Ippe ssaippe
suBsid Q411 WS yiog Yo, wod
3 4 AA4 3
LEE . _
xxxxxxx - g 89P0 dO
, Y quz VP03 0
‘aw|te i faiw] - - 15a T :.DAIP~ \ll/ \! \ll/
6EE - _ M
1eg ss0l > A
.8, 04171 leg o] 855505
Y Jeg ssous
e o§ ‘a :2 e w_>~ NaO NaS_ _aO - H
: e, _
J N.Odegssoy 4 iz !
Gl T T o
v €1e
T bds
8.¢ T !
o H TIRG 10 e
wewer3 0417 T
a4 sasiBay WBiG oit4 ssibey 181q
d = sminpopy Z = shnpoyy
guod v U0 [-RiLR] Y 104
. u g upy ey ueleq ueieg upy Py WERg
| h 4
8.04I1 Lze I 4|» »l
4BQ SSOJO pappaqiie YA TCHUGH PUE $581PPY & 1Hod
Hun joluod MY JOIUCT PUE SS3IPPY ¥ HOA
- 00Z e §ifig g]

US 9,395,952 B2

Sheet 10 of 99

Jul. 19, 2016

U.S. Patent

SOvi4 8 4
FEVLWN0D 8V A
SOVI4Y »
10388 ediIo] 1938
ajeduod ary auedwo)
j0iaz / QIDZ

i

bt ¢

v
2OIRNWINOTY
18I

i

ejep elep
quod i ¥ 4od
»\.«f..«.v
107 onewiny #B1a
d = snnpow
SsRUpPE sSUPE
d uod ¥ HOd

L.

¥ [} ‘

Dz 2inbiy
A A
- A J 3
smelg JERITT) Smelg smetg Areduag smelg
asedwoe] any asedwog azedwioy an asedwio]
087 /087 1 0RZ 1 0RZ

!

bt

a Y
0je | nuUnooy
]
wep eep
8 ¥od ¥ Hod
()
L onswny ubig
¢ = SNINPOW
$SQIPPE ssoIppe
g ¥od ¥ Hod

A A A
- -

208~ _
g Y

JOIRINWINUDY IDJBINWINOTY
s
BlER elep
£ pod) Y Hod
A\..«,l,.-.v
AN onewuY 1610
2 = SIHDPOW
ssa.ppe £8BIPPE
3 kod Y 140d

%‘Z, 10e” A& »

49ep0d 40 .- .
Y 2poD 40
BULVAN s N
g Jeg $S0ID J . 'y A
-
Y Jeg ssolD w_‘Mk
l/ - gic
00€~
"o gyeg no vpd pigleR=ii-ly) NG Bleq ne e1eq o BEg
3 uod ¥ L0d g Wod Y Uod HHod Y Hod
aji4 ss1bey Ui a|id ses160y 1B 2|14 Jeisibay 61
d = sniNpop £ = SNINPOW Z = Shnpow
] U0t ¥ Hod a uod V HOd guo ¥ Hod
uf EJEQ PpY upy weleq ureeq oY Py uieeg T BIEQ LY ipy uejeg

%‘r ;wﬂ

j0AJUGY) PUE SS8IPPY g Hog

|0JJUOD) PUE SSBIPPY Y HOd

%b =»

I

 § F 3 »

US 9,395,952 B2

Sheet 11 of 99

Jul. 19, 2016

U.S. Patent

Qz a2inbi4

80€ -,
[R:7. TUVINCT 1 0932 &, N Y
» .4, sPeid uBia dvig > ;
[TAVANOD 8. 11V 3
jregiadgledglrdyl L., _mu_ zyltgioyg Tt
| H AAVANCD 7 OB32 .V, Dn_@\\\\ \\\\\\\\\\\\\\\\\\ *\\\J \\\\\\\\\\\\\\\\\\\\\\\ %\\\\
W IEAUIDg 2spdwo) u airdwoD TERUI00 a1edwoD
AR A ¥ Y ¥ ” o owr | Noer o “onz
B 01607 uospedwo) e \ » ; w
; pue smeig (Y TG | _ _ j _ 208 A —
282 -* | v “ g ¥
=24 !
Fy F'y A > A A A A i 0jenuunoy A0R|MUnoDy U JOIENMURTYY 10)E|nWInany
) ! ¥Bi eI
T;m 26 miu. ?au e 4174 _rn- _au _ ” M m—uN
' v U0 ; .
/¥, sBeid ubig dnig | i P
08z ” 107 oneunyY ¥6Ig . LA ot
! o = soppopy i ch Z = Shnpoyy)
g unog | ,
i ssaippe ssaippe § SSRIPPR SsaINpe
WwsWe{g o4l ! g L0 o U0} ! g U0, f 110
E ” Y A ; YYY _‘omk [
612 LIe -~ :
92~ ~ mmmm---= gop00do | T e
A Y quz [VePOdo u, e
salomita v falam] - P sa iTdwiveg ! \|.|./ I H \|.|./
6LE--_ | _ ; _
.8, Q417784 88010 » - !
RGN)] i i .o Y
WY, Q-1 Jeg ssa1g v 1B 5S040 ” ! // gLe
eatoniralw | caliant - - Naa 2ot 10 - ” u
posue W u,
S22 e m “
: : £le
::Ivnrm W :
8.2 “yyunes ” ; 00¢
! 7o eq o ered ! RO 2y 2
swielg 0411 i guod ¥ uod ' .n_ Moman_ tﬁ:,«in
” ajdq o] M ajy sifioy uBig
i 4 = sninpoi : Z = STnpo
aued v ; g 10d v pag
” u"eleq Upy PY i uTeleqy Upy Y L Beqg
8,040 e~ Lt | 1 I
18Q $SOI0 PSpPPagLUs UM T P R G o L.

HUM jo4uod NV

10UCD PUE SSAIPPY VY Hod

00¢

e sbfigg ———————

US 9,395,952 B2

Sheet 12 of 99

Jul. 19, 2016

U.S. Patent

3z aanbiy
SOVid g 4 A A
FHVYdNOD gV 4 - 4 [§
SOVIdY » * +
199195 Jeduwogy 109i8G smelg Aredwon smes smelg Jedwion snEs
aredwon \ ary asedwon aredwon an asedwion sledwos \ ans asedwon
1 0J87 J oz J o8z 1 Qinz J o7 {cinz
t oyt 1 I T I I R
o208~ _ qZ0¢-~, _ 208~
k3] v g v
Bﬁsﬂ:&« SOIBIMUINODY H01BIMUNTDY 1GjRUNoY JCIRIMUNOoY
Ba ubiq 1Bia fTe] pita]
ewp &Hn mHn mHv mHn m,Hv
grod vod guod v uod guod v Hod
{ry-+) s+ (rs~+)
107 onewipy 16i1g LT onswuy 16ia 1N onauigy 161
d = snnpopy £ = SNNPOW Z = SnINpow
ssasppe ssaippe ssaippe ssaipne ssauppe ssaippe
g viod ¥ uod 8 Mud vuod g Hod vod
%f :)‘ »: A =>» %: 4 Log” & ﬁ
g 9pod do =
¥ 9P0D dO
\nl/ uoﬁwLﬂ/ \ll/ SQIA/ \nl/ oi€
g feg ss01) Iy L] 4 A
A< ieg ss04) Iy
HEL x/ gie
i
-
4008~ 00€~
o B1eq no eleq no eleg Wo eleg N0 PR Wo ejeg
g rud vied gyod v Hod g uogd v uod
3|14 Jei8100y WO 8l Jesibey ubia aji4 Jasibey ubig
d = sninpopy £ = SNNPOY Z = Shnpon
¥ 10d guod ¥ 10d glod ¥ 40d
wf 10y upy ueeg ur eleq upy Py ueteq u eleQ Ipy Py W eleq

%‘ Iy 3 »

{ONUDT) PUE SS8IPPY g 1od
10NU0D) PUB $SB8iPPY V Hod

%;V

Ay

1

A A »

US 9,395,952 B2

Sheet 13 of 99

Jul. 19, 2016

U.S. Patent

4z ainbi
80¢
182 N g, sbeig 16iQ dbis TAVANGS 1 GEIZ .8, TV 1 3
T T T . FUVANOD BN, MY I} L \
[l - Talalal
FUVANOD T OEAZ . W ___ || __ i T T T i __
W stedumy TErTES) aeduiog u awdwoy) sedinog
v} wasues iv-1em) WEISUSD ! WLRISUOD Fy-e wesuas
y k 4 \ 4 y 4 y ! josaz /0507 u 1 o7 jolaz
B oo uospeduwio) 9% : » » ; » Zog »
o pue snIgIS Y D ; j _ N _
Z28¢ e X 2 . a v
A A & A A A A4 A - ! JOIR|NWINGOY Jolgnunady 5 J0§RIINISY 101 NWINDoY
; ubg) wBIg ¥BIg
T v u o
ragleegled :&u; e |E41EdA _f ! Bi6p ! YA BEp e
: i ! a0y ¥ Uod : . guad v Hod
osz- Y sbeid uHig dis ” o) .)
; 107 spewiuy 381 i S0z LA answguy wBig
, ' d = sninpo ; T = SNiNpopyy
€ unoy H ssaippe ssaippe U esasppe ssaippe
usuieg o4l ‘ g 10, yod ! 5 10 1oy
:] 3 ! 1YY Y 3
642 Lig- | |
942 - TS gep00do T e
: q/l¢ Y 8p0D dO i ' Lie
‘aiowitaliwl alaw] - Efam) a AJ w \I |/ \l hY \I I/
6LE— | |
~d. 0411 1eg 55015 > A _ ” |
giegssoiny i "o [
. 047 1eg 580.3 v ieg ssoin i /m_‘m
salomlralaw | zalzw| - - - [22a 7wl g - ;
" + i
T + LT i i
-7 A ! / -~
v | ” uﬂ ..
T bdeE | ;
8i¢ v Junon ! ! 00¢ \
i o Bjleq hoereq i N EIEQ moeE
usilaig o4 ! g uod v HOd U g 1od <:Wn_c
; 0|l soysiBen ubig w, 4 1818169y uBIQ
: d = snnpopy ! 7 = SNNPOY
, o4 v uog : gyod vuod
! uTejeg upy Py L eeq i Weeg wpy UPY Ul eleq
i 3 [! k
W.OH:J_ _\Nﬂ v “rl‘w‘»\\ “‘\\“\\‘W:\u L I, ‘\»\I
Jeq SS0.L0 pappaquis WM JOAUOD PUE SSEIPPY § 1iod En o

juny [oJuod NV

\

- 007

JORUCT) pue SSBIppY v 1od

I i T e P I !

U.S. Patent Jul. 19, 2016 Sheet 14 of 99 US 9,395,952 B2

320
Register File A Address /
3M5¢ Register File B Address
" : T3
¥ A \ A 314c
Data Adr Adr Data
Port A Port B
300
T Dual Port Memory
Common Register File
& Conversion LUT
Port A Port B
Data out Data out
315b 314b
--324 325
. ¢+ CrossBarA_
- A4 Cross Bar B
\d ¥ A v 319
/
310 / \ /311
316 ,
; OP Code A
OP Code B
315a Ma | 347
YyYyy Yyyy
Port A Port B
address address
301 RNS Digit Arithmetic LUT
e Dual Port Memory
h (+,-%1)
Port A Port B
data data
322 323
Y \d
392 PM Digit PM Digit 393
- Register Register
A B
3NS5 — 314
\A Y A A4
30\4 | Zero/One PM Digit Binary Zero [One 305
Detect N\ Compare Detect
i
306 | 308
Zero/One Detect |
309 -
307 N Greater / Equal -
| Zero/One Detect

Figure 3A

U.S. Patent

Jul. 19, 2016

Sheet 15 of 99

Register File A Address

US 9,395,952 B2

320

34 59 Register File B Address -
\ [321
v ¥ vy ¥ 314c
Data Adr Adr Dat
300 | pora Port
Register File
Modulus = p
Port A Port B
Data aut Data out
315b 314b
—324 325
313 312
‘ N Cross Bar A 318 _
< \ Cross Bar B .
! v 319
301b| mop =p MoD = p | 301¢
LuUT LUT
Y {
\7 ; """" 311
W =L 1
3106 A [Loga{p)i+ 311b 316
~— OP Code A}
OP Cecde B
31\53 31 ,43 3 17
301
A2 4 Yy VY ¥
Port A Port B
address address
RNS Digit Arithmetic LUT
Modulus = p
{+,-7.0)
Port A Port B
data data
—322 323
302 Digit Digit 303
] Accumutator Accumuiator -
A B
315 | 344

Figure 3B

U.S. Patent Jul. 19, 2016 Sheet 16 of 99 US 9,395,952 B2
-320
Register File A Address [
315¢ Register File B Address
. N
. 1 321
y ¥ v ¥ 314c
Data Adr Adr Data
300 Port A Port B
Dual Port Memory
Common Register File
& Conversion LUT
Port A Port B
Data out Data out
315b
: 324 325 S14b~ |
312
—— (N
\/ 313
< v 3/18 Cross BarA
<)\ Cross BarB
< T >
319
316
} OP Code A
OP Code B
j
315a /
\ 314a 317
yvyyy YYvy
Port A Port B
301 | address address
N
RNS Digit Arithmetic LUT
BCFR encoded resuits
{(+-1)
Port A Port B
data data
—322 323
A ¥
302 BCFR BCFR 303
330 -4 RNS Digit RNS Digit |-
: Register A Register B
Skip 315. | 314 skip | S
Digit Digit
A B
i Y ¥ ¥ ¥ ry
304 | Zerosiones RNS Digit Bina ZerosfOnes | 305
Detect A N, Compare Detect B
‘ 308 Digit B Ski
306 I ; igit ip
309 | Zeros/Ones Detect,
307 N Greater / Equal -
i Zeros/Ones Detect

Digit A Skip

Figure 3C

U.S. Patent Jul. 19, 2016 Sheet 17 of 99 US 9,395,952 B2
Register File A Address /"'/320
35¢ Register File B Address
: ; 321
vy v 34c
Data Adr Adr Data
300 Port A Port B
Dual Port Memory
Common Register File
& Conversion LUT
Port A Port B
Data out Data out
31 5b 310,
324
< 3/18 Cross Bar A
; y Cross Bar B ;
‘szsb Ml e
+ /-
335 317b
316
ol } OP Code A
: QP Code B
1337 317
\d \ A |
Port A Port B
address address
301
e RNS Digit Fused
Arithmetic LUT
(+ &~ -&/)
Port A Port 8
data data
—322 —-323
Y A
30? | RNS Digit RNS Digit | 3,03
Register A Register B
330
315. - 314
. . 331
Skip Skip |
Digit Digit
A ; Y 4 ¥ ¥ & B
) 39'% Zeros/Ones RNS Dight Binar Zeros/Ones | 309 4
Detect A N, Compare Detect B
366 "?,08 Digit B Skip
309 ' ! 7eros/Ones DeieCL
307 N Greater { Equal
| Zeros/Ones Detect=
Digit A Skip -

Figure 3D

U.S. Patent Jul. 19, 2016 Sheet 18 of 99 US 9,395,952 B2
310 \..,.‘; ; \ Z vvvvvv 311
316
) OP Code A
OP Code B
315a 314a 317
LA \AAi
Port A Port B
address address
301 RNS Digit Arithmetic LUT
e Dual Port Memory
o {+,-71)
Port A Port B
data data
302b 322 323
y [A4 \d 303b\ ¥
c Digit 302 | PM Digit PMDigit | 303 Digit
ompare 1 Register Register - Compare
Register 4 g Register
A A B B
315 - 314
305
¥ v ¥ ¥ 4 v/ y 306c
- Zero / One B Zero / One -
306b v, 366
308b | DigitB
304 4 Compare
308\ Zero/One Detect
Shared Greater / Equal
309 Zero/One Detect
3077 Digit A Compare
307bj

Figure 3E

U.S. Patent Jul. 19, 2016 Sheet 19 of 99 US 9,395,952 B2

Register File A Address 4 320
315¢ Register File B Address
: 321
LA | vy v 314c
300 | “heral Merst

Dual Port Memory
Common Regjister File
& Conversion LUT

Port A Port B
Data out Data out
324 325
41 4.2 43 -, 44
3\v 3\\1 33\17 3\\7
Sign A Sign A Sign B Sign B
Magnitude Valid Magnitude Valid

4 A

\d -

oo

3

346
Sign B Flag Status / Controt /

Sign A Flag Status / Control
\

~ 347

Figure 3F

U.S. Patent Jul. 19, 2016 Sheet 20 of 99 US 9,395,952 B2

. : 320
Register File A Address /
315¢ Register File B Address
‘ : 321
Yy v | A J 31dc
Data Adr Adr Data
300 Port A Port B
Duat Port Memory
Common Register File
& Conversion LUT
Port A Port B
Data out Data out
31 59 _324 325 31 4b
\
313 312
< 3/1 8 Cross Bar A
- A Cross Bar B
< ! >
LA / Y v 319
3103 / \ ‘/Z—SH
1
3 16 OP Code A
__OPGode B
3 53 314a 347
301
Yy vy ! Yvy
Port A Port B
32\5_ BCFR to Binary address address BCFR to Binary ?/2 7
Conversion . i Conversion
RNS Digit Arithmetic LUT
7y BCFR encoded results i
(+-,%0)
Port A Port B
328 | gcrR Digit gota data BCFRDigi | 329
Selector A Selector B
elector 322 323 elector
/S Y L 13
302 BCFR BCFR 303
“~{ RNS Digit RNS Digit |
330 Register A Register B 331
| 339 340 |
- 315 314
Zero/One | »| Zero/One
Detect |« » Detect
\ Y
33\7 Power Valid RNS Digit Binal Power Valid | 338
Count A . Compare Count B
: 338b
[} 306 T \
309 Power Valid Code B |
y Greater / Equal

Yyvy

Power Valid Code A
\
337b
Figure 3G

U.S. Patent

Jul. 19, 2016

Sheet 21 of 99

Register File A Address

US 9,395,952 B2

320
r

315¢ Register File B Address
\ [N
T 321
 ; J ¥ 314c
Data Adr Adr Data
3(&— Port A Port B
Register File
Port A Port B
Data out Data out
315b 324 325 314b
o]
313 312
- 3(1 8 Cross Bar A
P \d CrossBarB _
- } Lol
4 $ 319
3013)_ nMOD p nMODp | 301¢
LUT LUt
31%b
318b
314a
315 (s
a T |317b
Iy 4 J OP Cade A
OP Code B
334 3117
336
o e
Y ¥ Y v
Port A Port B
address address
301 o _]
_i{ RNS Digit Arithmetic LUT
Modulus = p
(* &)
Port A Port B
data data
— 322 L-323
\ y
302 Digit Digit 303
S Accumulator Accumulator +—'
A B

Figure 3H

U.S. Patent

Jul. 19, 2016 Sheet 22 of 99 US 9,395,952 B2
-320
Register File A Address 3
315¢ Register File B Address
: - " 321
\d ¥ A\ ¥ 314c
Data Adr Adr Data
300 Port A Port B
Dual Port Memory
Commeon Register File
& Conversion LUT
Part A Port B
Data out Data out
315b
324 a5 Sl4b
312
318
_ Cross Bar A’
- ¥ Cross BarB
31 0 N v " \‘\'_;] ------- 31 1 319
316
OP Code B}
OP Code A
31 5\3 31 4a 31’7
301
A\ \ YyvYgy
Port A Port B
address address
RNS Digit Arithmetic LUT
BCFR encoded results
(+-"0)
Port A Port B
data data
322 323
Y \d
3Q2 BCFR BCFR 393
“--— RNS Digit RNS Digit |-~
Register A Register B
330
N Y 315... - 314 ¥ 3/31
Skip Skip |
Digit Digit
A } Y Y ¥ ¥ " 8
3 394 Zeros/Ones RNS Digit Binar Zeros/Ones {305 i
Detect A A\, Compare Detect B
! 308 Digi .
306 - igit B Skip
309 | | Zeros/Ones Detect,
307 Y Greater / Equa_L'
[Zeros/Ones Detect;

Digit ASkip

Figure 3l

U.S. Patent Jul. 19, 2016 Sheet 23 of 99 US 9,395,952 B2

[400 / 410
405
Conventional L RNS ALU

CPU 1/ Co-Processor

Figure 4A

US 9,395,952 B2

Sheet 24 of 99

Jul. 19, 2016

U.S. Patent

\ oey

|

UOISIBAUDD
Areug <- SN
SNY <- Aseuiq

J0s$9901d-00
N1V SNY

N

1154

gy ainbiy

(018 ‘esnow

‘preoghay
‘1ounid) |/

ssonvag O/t T4
: 7 \ WIsAg
.......................... P NdO < ,]_ b Aeydsiq
“““ /7\\ ~NCO_.~C®>COO N I mOMEQmLmu
1411} 2 f
ooy

‘‘‘‘‘‘‘

weiboid
uolieoyddy
urep

Fm:‘

US 9,395,952 B2

Sheet 25 of 99

Jul. 19, 2016

U.S. Patent

Ot 8inbiy
J0SS80044-0D
N1V SN
9|14 Jo)s160y / SO
/

0sy \] f oLy

NdO

|BUOIIUBALOYD

114 4

obeio)g
apoo pue gjeq

(eydaaQ)
NVHQ

N

Svy

N

ooy

obeiqlg

8pos pue eleg

(eyaa)
NVHd

N

ovy

US 9,395,952 B2

Sheet 26 of 99

Jul. 19, 2016

U.S. Patent

ay aanbid
SNY <- Aeuig
B Areurg <- SNy jouos) VNG 8 2P0
| JUM UOISIBAUCD NIY SNY m uoyonasy|
SN N1 SNY
G6v K 00¢ \ 15214 \
{moyeno PUBIXT oUSIXT
‘< is = ‘019Z)
ubig ubig
. shEs v W SNY SNY
SN
| | ‘
1114 K Sly K oLy \
(dioor'/',~'+) (-+)
asedwon SIBWIYILY IET T
SNY jeuoijoes Jabaruy
SN SN

sor \

09y \

1144 \

11154 \

N1v SNY

U.S. Patent Jul. 19, 2016 Sheet 27 of 99 US 9,395,952 B2

K)1 4edssoi0 « Z[enb3piom |-
K N sngeleq b 1enb3 pIom | >
) Sng Jppv # OJSZ AUV {
= PIOM, BUQ | -
3 8poo do s PIOM 039Z |— .
4 = uoig dpig |
B zosedwon e
PICH Q | ssedwo)n 7t
#boy 3 semod o187 e
#0610 < ubig 087 |
0/
7
g Iy [] []
E E " LI
MM . p =
=
N
0
S
©
€l OSSOy o [enb3 piom | > =3
N R | lenb3piop > 2
sng ejeq _é 0197 Auy : > _\
sng Ippy ® PIOM BUD 7 - ©
- PIOA 0187 ol W0 o
spoodp = ‘ o 10
=y nhig dpig —» 0
............. % (X)d 1n.] D Z ajedwoo : - J
PIOH 3 } eredwio) |—— -
. Z
4oy <L 19MO 0167 fi—iml O z
ubiq oiez < 0
......... #6;0 2 s 3
* _ { a a
e B ol 8| £
SRR P
o & 2l T
[/} Mo ;o o
a1 o = 2
O E :§.] .
Q 8 a
NI N \ V. Yyyyy
© .88
age~ - w
n |25 5 e
NS

540 ~
@:;;

ALU Control
Unit

[500
Word
Status

Register
A

US 9,395,952 B2

Sheet 28 of 99

Jul. 19, 2016

U.S. Patent

gg anbiy

{-N dueg olez Auy
: be|4
0197 /mcm
L dueg o1a7 Auy Auy
L yjueg o1o7 Auy
LS
L-N Mueg piop (enb3 m Bel J
. PIOAA 20s
™ |enbg
L yueg piopn lenb3
0 Mueg piops jenbg /
q0v<S |)

L-N Yueg pIOpA 0io7 Bely j W
PIOA 105 |
0le7 /

| yueg piops 01o7 : 009
0 Mueg pPiop\ 0187
eovs Ja1s18ay sniejs pIopA

U.S. Patent Jul. 19, 2016 Sheet 29 of 99 US 9,395,952 B2

reqssoid - z Ienbg PIOA >
sngeleq = L BADIPIOM |7 b
sng IppY ® 0187 AUy |~ o
/ = DIOM BUQ |7 >
3 8pod dO g PIOAN 0187 -
41 = 6 diis >
¢ D zawedwon —
7 # PIOH Q } 2sedwo) |——wn
#Boy 3 Jemod oz ot
4610 < ubiq o7 -
0/
Y
M " .
» L] - L]
MM . =
A
=
o
10
Q
0
g
QZ —— 1BQSSOID o ¢ lenb3 piop 1~ » &>
| lenb3 piop 7 » i
< shy e1egd _é olaz7 AUV 7 > —\
sng PPy 8 PIOM BUD |7 > ©
c - D N
A spoodp % PIOM 0187 1= o 10
=] u6iq dnis > 0
= Ig G 7
M4 a Z 918dwo) |- S
™ # pioH 3 { asedwio) P -
6o < 19MOg 087 [w D %
#ooH wbig 087 e 0 @
@ #b @ @
> n W
=1 2/ 3 2l 2
0o 10 m| I 3
ol @ w| P w
D G 2 e g
2l 5o ¢
Ollw @ < =
O o)
Q g 0
N
NZXZ \ v Vv l l l ¥
= " |
% g _ % . 4 1 . Y A
= z 2 25 . A -
SE 38 Dol £5F 888 £BR8
= = g B8 | Nok EAL | BOn
3 o 5 3
= a
N~
) s g/ N/ ©_/
QD « A0 Ve I3
Iy

US 9,395,952 B2

Sheet 30 of 99

Jul. 19, 2016

U.S. Patent

Qg ainbiy

L-d 4bIq 0187 -
Z-d 1big o107 -
E—

. Japooug

Aoud

. — ™ ¥SS
| #BIg c1e7 > uBig Auy) . LMM@»WQ
K 0 HWOWD YEYA > # uBiq
mmm css

GSs \

Gig .J
A #0610

SEIIIE|
Yoles 1bIg

0SS

US 9,395,952 B2

Sheet 31 of 99

Jul. 19, 2016

U.S. Patent

3G @nbi

Be|4
0Jo7
Auy

. £08

20

Bej4
PIOA
jenb3

A
|

L-N H0Ig AUy

| ubig Auy

¥6G J oubig Auy

J \

4 4

s
~ 105

005 .

Bel4
PiOAA
0io7

L-N ubiq tenbg

L ubiq fenby

161 |enb
m%\ 0 BIg [enb3

&

. JaisiBay sniels piom

L-N 1Big ciez
} WBIJ oieZ
665 zeg -~ 0¥bigosez
oubia | 1 ubig L-N 16ia
- <1 dnjg dnis diys
Y 065
(shisisiboy ubIQ dpiS

U.S. Patent

N

D P

C

T

l<~ Registers —>*<—- Registers —>‘<— Registers —>‘<— Registers —>*4— Registers-»‘

Jul. 19, 2016 Sheet 32 of 99

300

US 9,395,952 B2

General Purpose
Program Registers

600
A

ALU Modulus Look
Up Table (LUT)

601

Integers from zero
to Max Digit

Constants, overflow,
positive range, negative
range, etc.

Number format
Conversion, important
tables, efc.

602

603

604

Figure 6A

US 9,395,952 B2

Sheet 33 of 99

Jul. 19, 2016

U.S. Patent

»

Sign
Flags

-

‘l
B

Digit Modulus (P)

apooa(] ssalppy 2|4 J81siBay

s
3
©
—— 4 2 T A A A A A
~ N Yy | v Y Y Y v Y \ \ ¥ 5
\T 2 L_ _' 3 _lll % aEx > ®an 2 > =B E
2| I 3 | £ - i I /
©] _
. w ‘_— Py W _-.l w LI M LI A w = o ® M " X B _
2\.,‘ 5 4‘_ __‘ o _ = & o < _
S| T . . - _—_—_—_ «
w
PR e
C
_ lm. “_ ﬂwv m..u _-... mP L] - XwR nw. L] " [_
_ - _ /_,I.!ll.1.|,x_l‘.llI‘1.|.I.‘II‘.II.I‘.II.‘II‘,|”. lllll I ’
_ -ﬂw_.. Am "v OD_,V _ PR] mD.. - I@. * x W le. [B 4m’_; e
_ | ! "
_ .mm Am Wv WMU _..-.. m. L] «m_ xax NVM - na ..N 50 x
i | ”
| | |
B s I R : : : : : : :
| || |
| | |
— ..03 A_ _v m‘w _ L] WJ xR o0 «noa ﬁawu LI} e)
| || |
_ sz A_ _v nnW _-Il m/_ B ES ™ e R n»VA e o & w A
| || m
_ -~ ‘_ _' -~ _I- o . e - 'R - 6 = a - a e a
_ o ‘_ _‘ o ~ & = [¢] ——
O\/ii\ e e =
[-
- .mf ~
[{]
m m © Tl sio1s1Boy IVT[sia)siBay [VTI siaysibay I.VTI sio)siBay lLA' siolsiBoy I.V_
22 N d a o) 1
o8
©
o

Figure 6B

U.S. Patent Jul. 19, 2016 Sheet 34 of 99 US 9,395,952 B2

700

701
Load value inio
accumulator A & Clear LIFO:
value > A
0> LIFO
\ J
70\2_ Start conversion with
Digit modulus Mg
0-> {i]
~ 711
increment index
pointer [{]
et
A
712
k_ \“' Push Dlglt dm
dy; > LIFO
710 v 706~
__| Push Modulus My, 705
to LIFO S;xbtrazt the va:lute dpy
rom Accumulator.
M 9“ LIFO A-dy-> A
| YES
708 V
__| Divide A accumulator
by Modulus My ©<
AlMy~> A ;
i '
7(38
~— Mark My, digit
as skipped

Figure 7A

US 9,395,952 B2

Sheet 35 of 99

Jul. 19, 2016

U.S. Patent

(xiprs poxiW 218 SYBIP JOUI0 e ‘paulIepUn BIR SanjeA sninpow ¥BIC)

g4 8inbiy

(A86 ui umoys aie paysnd sanjea Q-1 MaN) (pa10ubi Jo ‘paddivs st uBIP seEIpUl L) Moﬂc%m“m

UNLZ00GE | |G BPUSTG| | LE (N I P I B sww,“mm ﬁmwow%%
M o R R R R O A PO P
e | o Lo |l | e [

" H_ﬁ% 8 ol s | .| « 1 « | . ||wAsepng o.,m%ow%%

v | o el o]l s Sk

W m“ﬂwoz 9 0 z 0 . . . W Ag BpING oﬂo»wa%%%
awpung| | 8 o Jorfo o |] Qe |

“ m“ﬁws}_ 4 o {oL] o] 0 . . N Ag eping o@%o%%%

0P end ¢ 0 g 0 0 0 * mcMoWMzw m@hwo%m%
| clo |z |z o || gl [oeoose

“aﬁw ﬂw:m 4 4 8 4 12 | 0 uom._uu‘nwmw www %%M

Yevglz puesedo 0 0 0 0 0 0 0 0 0 0 ¢ 0 g | 0t} 9§ o 4 b om_mmem ,mmwwmm
v | |miovosm, oy | | *a ™ %0 W | o w v |a|w e I v 5|0 0 0]] e |
mE\ 85\. mﬁ\ siemod B sHBIQ xipey pexi - 041 Sv) J €L | 4 L S € z 108103 ez a.nbiy
052 NN T B I N gy / 0es”

20066 = L HZLZHELOHGA0HLAGH L LAGINMIND =SNG ‘0L ‘G ‘0 'Z '}) = %G¥8iT ,

522~

Auo subig ~ NIV SNY

ovl

J

U.S. Patent Jul. 19, 2016 Sheet 36 of 99 US 9,395,952 B2

800

~(Stjrt)

] Load LIFO
& Clear accumulator A

MRN - LIFO
0> A

802 i

\—_| Start conversion
with LIFO Count N

(I = N/2+1)
803
__ POp D!glt dm
from LIFO
dy+A-=> A
808
S 804 l
] Decrement
N
805
807
] Decrement NO < End >
N
YES
806
~— Pop Modulus Sp.q;
from LIFO
S{M] *A-2> A

Figure 8A

US 9,395,952 B2

Sheet 37 of 99

Jul. 19, 2016

U.S. Patent

gg anbidy

(xiped pexiw aie syBip Jaylo (e ‘pauepun aie sanjea sninpow 1Big)
(A24B Ui umoys aie sanjea O417)

sgpeLz | | Adwz 04N 0 ololo|ocilololoe}jo]oloio s |lo|siolz 1 ISy SNY ana T
918
/ ,
. Bio do S 508 708
wvw jilelie] & F w — m O_‘ m O N w xm_n EU{ »mcw ngm _V_‘W
A JEMOd R I~ ‘W 108
dog ¢ G v 8 b b 0 fqhdunn | gosdes
b d N 509 708
uoip dog € 4 4 1 4 z z ¢} 6P ppY ‘c08 daig
G Jemod W £08
dod v |8y 040010 Aq Admnw | °oos deig
16n do, B 508 ‘708
61 dog g o oL | 0} o T wBpppy | 00
W demod o 108
dod i G o 00 b b0 kgadunw | 90s dois
. — N 508 ‘Y08
#BIp ysnd L Ot 0 [4 0 £ [4 0 B PRY | o dorg
TN 19MO- A 108
dod 8 Ol e o e e 0] sqrdww | ‘e0g dois
61 do 5 508 “p08
UBi dog 6 ol s e v | zZzio WO PRY | o e
Spy Jomod W 108
dod o AN R A N I A U A Aqkdgnw | oos deig IW .
118 ubig dog 1 64 6 | 6 | 2 | v | 0| 1 uBig PPy wmw wmmm T
™y 4%
sneASNY | 208108
wi|Z0066 | | O417peOT 1 0 | 0 1 00| 0| 0 |loayouums| wosdais | g
snfen uondusssq | | unod 1 V z Z c ¢ v ¥ < s 9 {anjer; 1) | g 5 v ¢ z l days
jenoy uoHsE Qi o4 (¢ N (8] N a 4] a] 8] W (6] 1EGSSOID [&] a a a 8] Q uopdY jonu0a
7 ~ E 1ofuag eg ainig
55J J oss / cc) 4 siemod 3 sHBIQ XIPEY POXIN - Ol o2 Jolelw s]ele e
06. N SIN LTINS YN I G2 J 0is J
L SNG 0L 0T L) = O5h8IZ = LHE(ZHELOHEA0HLISH LB = ¥L20086 | Ao subid - v SNY

J
g/ o

U.S. Patent Jul. 19, 2016 Sheet 38 of 99 US 9,395,952 B2

Start)
3
Load value1 into accumulator A
Load value2 into accumulator B

valuet > A
value2 > B

900

90{ Start conversion with
digit modulus Mo

[]
= > Result Flag

902
‘i Compare digit d,

of Atodigitd,of B
Avs. B

903 ~)//'fk

<d§A"‘ de YES

\'?//

NO

905 ~

904~ <\ [SetResut| 1
dip > dg D-» Flagto >C)
? .~ A>B | i
Y AR

919 [no
- A

~ 908 g Result
N

Flag to

A<B

908~,

Subtract the value dy,
from Accumulator.

A-dy> A
914 ~
912 :
| Increment index 902M91 3y I\ YES Return N
pointer [l OFB A& B ~~~~~ » Resuit »()
Flag value h
/)y 1 No
L N
910
| Mark My as Return
skipped for A<B
A&B
A

911 S
| Divide
accumulator A
by Modutus My,
AlMy > A

Figure SA

US 9,395,952 B2

Sheet 39 of 99

Jul. 19, 2016

U.S. Patent

g6 ainbig
(pesoub) 1o ‘peddpis i NBIP soje0IpU; L)
Y66
5 IOV Y | powslea |ole'sie‘eie| 956
a8V N
265 dojg 0187 06 daig L
=q v=*a | 306'/06'C06| V96
omm\ g<v pupenang | | £} £] O -} o+ 4 o» B b < b L R N Supoenans | ‘zogdeis
085 -~ J s’ 16’1 16'016 | 296
£ £ : !
g>v W A9 opIng g 8 y “ . x 816 ¥ 2 ¥ « « . WAGOPING | g e |
- 0=%q _ 0=q l0e'cos | 096
gos | B0V weing S B R L 0 = o S L A R pesgns | ‘zogdeis |
, v, PR B 7
:] vi6 J/ 0LB ZL6116°0L6
N A z .
g>v W Aq eping L 2 g 0 . N 26 L [9 0 X « 7y Aq 2pIMG ‘606 deig
z=7q A . =g | oos'206c06 | V6
mwm\ 8y Bupenang || € | O | F 0O 1 D g s g > B 12 | 8 v 10 | 0 v |l pupenans | ‘zosdois |
N W 295 7 v9s W zi6'1i6'016 | 70
a=v 4q sping g b 3 4 4 . 296] 9 S 1 b . Aqeping | 'Go6deig -
o L=ta i 1='a | soe'z06'cos| <6
v | E°Y oenans o 2|8 r |40 } = b s |t teiz|zlo wenans | ‘zoadels | 116
. 7)
e B anEeA SNY 296 & 356 anjea SNy 106
205 | BV s Bueis i€ 0 0 z § 096 9 z 14 3 0 L Buelg ‘006 do1g €21
{ aiedwogn onjea 3 G v ¢ z ' esedwon s s v ¢ z . dogs anjen
| tonuos anmv Mo%“« a a;'a;*a a, *a g ubig v a | °a a a i “a a qu_du.u_« 10u1003 v Y
*] '] - v6 unbig
€l bl 2 G g 4 L
ov6 J 8E6 J 7 z€6 / 0es 7 gz 7 &t £ g £ ¢ 7 7 026 J
956 wE ms_ vE mE NE —E ws_ SIA iR mE i 1873 P26 - 276 -
Ao s3Bia ~ g NIV SN Ao subig ~ v NV SNA

/ /
Pe6 / 9z6 -

US 9,395,952 B2

Sheet 40 of 99

Jul. 19, 2016

U.S. Patent

i
J
~a>v|
66
la<v 2
066
7
a>v 166
lasv 0
886 .
gs>v 966
rya>v Z > v K
986
\‘ 7
g=v G66 996] s
lag=v| — 1 - e
¥86 ¥66 \ . N
- 856
8=V] 096
296 666 sve
ajedwo) aiedwon
|OAJUOD 2 ubig v
/
ov6 J £66 / 056 J 826

D6 aInbi
(peuouby Jo ‘paddiys st 1Bip seeoipuy)
66
 Peweea | aiesiecie | 956
0107 ‘606 daig |/
0 0 0 v='aQ | g06'206'c06 | V56
* * * Bugoenagng | ‘zosdeis |/
)) , e Zi6'L16'016 | €96
* * * Ag eping ‘sos delg L/
0=°Q L06'co6 | 096
S R peaans | ‘z06 dars |
N zi6 L1606 | 870
L 6 9 0 * * £g oping ‘606 dais
L=%a | sos'z06'c06 | IV
8 G ¥ 0 0 * Bugoengng | ‘zosdeis
"W zi6LL6016 | 770
6 9 g L L * Aq aping ‘606 doig |-
L='a | go06'z06'c06 | C7O
G i ¢ I z 0 oenqng ‘z06 daig |- i 348
anjeA SNY L06
g Z 14 ¢ 0 } Bunieis ‘006 delg eel
anjea
a|‘a|'a|fa| a|'d uopay _owmwu v :_._<
v Oy
et |1t | 2| s [¢ |z ve ol [
W W | YW SIN | N M 26 J 26 J
Ajuo spbig - v N1V SN

]
9z6 7

U.S. Patent Jul. 19, 2016 Sheet 41 of 99 US 9,395,952 B2

1000

~(Stjrt)

Perform RNS to
k mixed radix
conversion

A - LIFO

1002 l

Clear skipped digit flags
and clear accumulator

0-> SkipALL
0> A

1003 l

Perform mixed radix
to RNS conversion

LIFO=> A

1004 l

~(End)

Figure 10A

US 9,395,952 B2

Sheet 42 of 99

Jul. 19, 2016

U.S. Patent

go} smbiy
(xipes paxiul aie sybip J8YI0 (|8 ‘paulpepuUn aie senfea sninpow ¥Bia) (uoisuaixs aseq Bugpeau sybip sejeaIpUl OSlY
(A246 w1 umoys aue sanjea 041 ‘paiouby o ‘paddps s udip ss1edipUy)
LD Aydus S, ynsayy ang
L2} w3 g4 0 0 0] 0 0 0 o 0 0 0] ozaL 0| 9 ! F4 L L papuSXg
b S08 ‘$08
¥Bip dog b o {o|o|ole o Son el v iz WGP PRy 508 9IS
TVRE=V 02 S S A R A A R SN A S S NN s 5 I ; N £08
dog 4 0 0 0 0 0 0 s S G 0 L 0 0 Aq Aidmniy ‘908 dais
€601 daig
509 'v0g
¥bip dog £ ol oflo|o}fo] o ¢ |6t 0izc|o| o WBIp ppy ‘c0g daig
Pl JBMOd ; ™ W L08
dog ¥ 0 0 &} 0 0 g et € 6 0 4 0 Y Ko Admn ‘908 deis
508 ¥08
¥Bip dog S ol oo 0ojo0o]| o0 2 | 9| 9 vloo uBIp ppy ‘c0g doig
DHAN<-SNH pul z0e'108
auon § 0 o o 0 0 0 0 6 0 0 0 6 10 pug J0rdog | ‘og deig | EO0EISIS
. m 9=50 | 902’304 %04
Quep uend | g 0 0 o 0 0 0 g 0 Y * . * * wenans | ‘1Lz deig
A SPINPOIA A 012'602'80L
ysng 4 6y o0 000 L A N WILBPNG | T 0; daig
usi g="a G022 S04
QG UBIP yshg € 0 0 0 0 0 0 0 € 8 0 » * « Supenans | ‘112 doig
T N 012604604 +o0} ders
1 STIRpow i
iy 4 0 0 3} 0 0 0 P € € 6 0 * * * Aq aping ‘102 deig
e =0 90L ‘502
¥Biq usng 1 0 0 0 0 0 0 b 6 S 0 « Q B oeRgng ‘$07 doig
— snjea gNy £0L 204
o - , .
121 pueisdo o 6 ojojofoloiotol ool o Lo . { . Bupms | 104 8918
INJeA uondussag | JUN0Y L . P : e N ¥ v P s 9 usijdalp g S ¥ s z, v UoIOY dajs dais deys
feMOy uondY 04| 04N a W a W a w a W a n a janjea a a a a a a jonuog jonuos 1053U090 [oRuod
- N y] e |51 2 By
GoL 092 aos ~ s10M04 % SHBIG KIPEY POXIN - O4TT IBgSSOI] | oy 't / g € z mv . Bl 05_“_ eg oinbi4 | egl amnbig
A \
061 (5374 S SN OYIN G VA Gel [3174 0ig 0104
; Ao suBia - v SNY

L SNd(pL ‘9t 2L L) = 0tz = W09 = (S {0+ LN = SNE(oL ‘9L L L) P

G001 J

US 9,395,952 B2

Sheet 43 of 99

Jul. 19, 2016

U.S. Patent

V1| ainbiy
— T
A}_IQ | 1 [
_ _ ! _
_ .
_ _ ~ _ anNw
_ Q“ | b Jepooug
_ _] MUA‘ AjIoud
| _ i | (unoQ)
) 18O,
. = ooy
_ _ ! _ 808
| _ | gIPIg-anS 0z >
< _ ([_ & — [guBig 087 /Qwom
!ma..k J I B g (288 o
62¢ 4 @ <lsis s pewea gy, A NGoLL
‘G o'a fa g |z |5 | oz
g 401B[NWNDDY
16ig JOYIRBG BlED
(a) 1Bia prea
A “eoe ¥
Negze 8nw
azoLl Sy wrog
uBig dpis azd
N - “poLt
pLe R hiL NG
/ //
/ 19840 1€,
\\ m._..h||~_< / 18RO hm_sﬂp ™ u%meo
’ AN U ,/
R NS \ » 8011 8ee ~G0e
¥ ned
olez
6011
U
yYyYy » Loe /mvo: Em:\w\o alolsay ~
“prie he oumy | | /1%
X 011
- N5Le shg Jeqssol >
qeie aaddd
) + iy »

9|4 Jo)siboy woi4

-

SNNPOY JOMO

U.S. Patent Jul. 19, 2016 Sheet 44 of 99 US 9,395,952 B2
301 I |
S
N T T A /7
\ A /
\ 7
\ L. /
Y Digit LUT
\\ //
N /
BCFR formatted output
'HOSC\
Truncation
Count 303
ALUB | Digit Accumulator
B
2
1160~ eI~ a 2
Significant l. o '1! =
Digits l N]
<~—l—% 5 |
i~
I
| |
Significant e |
Digit Count [T\ _ P
Encoder l .
ALU B | |
(b
l
| |
-
| l

Leading Zero
Detect

Figure 11B

US 9,395,952 B2

Sheet 45 of 99

Jul. 19, 2016

U.S. Patent

Ol @b
Li
— ShLL vyLL
mi-, Ll Ao 0 0 S S T A D N O N U A
" SHg G SH] G SHG ¥ Sig § Siiq ¢ SHQ € Sig ¢ H{ORS)
m 8 A 9 g 1 € l A
| ubig ubiqg ubig 1oig w6ia 1bi1g 1lille wbiag
| 6L pow Ll PO €1 Pow L1 POW L PO G PO ¢ PO Z PO
“ sviL/ v/ I
| S
oviL/

s} G = (D) Uipim HBIp Aseuiq winwixep

subia g = (d) subip jo JequinN

{6L2L'€L L1 LG} = sSNINPON SNY

US 9,395,952 B2

Sheet 46 of 99

Jul. 19, 2016

U.S. Patent

ati enbi-g

0StL

W
[,\m .
4 4 4 4
6vLl
Y WY
ovii avil
- T
Yy LA YY Yy yvv *glgg ‘g 'g
‘g ‘a E ‘a ND
(suBip-gns 7) Amu_mﬁ-nsw. ¢) (subip-gns g)
feuing Akeulif Aeug
papoa Aueuig papoo Areulg
: 61 = PO L} = PO €L = PO L1 = PO L = POW (;8) = PO (c€) = PO (:Z) = PO
. agp/ 1skL 7 T

e/

SHG G = (D) Wipm 11Bip Aleulq wnwixep

s)bIa g = (d) subip jo JequinN

{61 2L ‘€L ‘L1 ‘LG ‘e '2} = sninpojy esed

{61 2L ‘gL "V ‘L 'SZ ‘12 ‘ZE} = sninpo 1B |Ind

qzyLL -

qaipiL

US 9,395,952 B2

Sheet 47 of 99

Jul. 19, 2016

U.S. Patent

344 ainbig
W| e — —
_ o
|.I.IIL.Q “ [
“
_ i anv
. c | %1 uepoou3
«] SN Awiold
) o [.o .o s . : o (junon) 280¢
S— _ . . . - _ 1BMOd 0187 o
| 1OMOd 0187
n “ g
- _ § ¢ g0 01e7
il I R <co 12 __J * 2 q80€
o120 “U6ZE © o 2g ... 22 109150 Sqg01 & | “agol
g | _ | 2o o £ =y 4
a L
Y
101B|RUNODY 10108}9S 9)e0)
Hlolll ubia piea mcmmw
A - £0e A - e ez
6et oLt
T INdINo JeLio) H409 g MY
1ojeq anwv
4 < \/ 4 ssssss PEEA - ™ ez |7 ubiq divg
, \ Lm\son_f - -
uonosung 10 11 uoloung 3o 117 , \
UOISISAUOD) UOISIGAUOD) S 1N u_m_D N 8ee q0e hee
Aieuig o} Y404 Aieuig o} ¥404 ’ AN qaioLL
“piit T Gl P e
o ::M\ w A80LL
Byle “ 108 v Y
enea unen
- lle pROBY bun} / oss7
®po0 40 1M1 “le P 6011
- ,/m Le g Jegq $soiD >
qzle
LLLL
-
A A A
in1 .

3|i4 J9)s16ay WOl

SNiNpopy Jemod

US 9,395,952 B2

Sheet 48 of 99

Jul. 19, 2016

U.S. Patent

oci
r

411 @inbi4

4

RV/

N

o
1

Joysibay
Aseuig

JsuaAuo) Areurg o) Aseunj ubig ¢

(47 B
Lieu-ug, whig ¢

U.S. Patent

Jul. 19, 2016

US 9,395,952 B2

1218
/V

1224

Sheet 49 of 99
1201
Load Dividend_Copy —
Load Divisor_Copy
'
1202
Divisor_Copy - Divisor L/
Dividend_Copy ~> Dividend
Dividend_Copy > Last_Dividend
0> Accum
Sign Flag = -1
1203 N
/"/ TN J— - 1204
< Bivi = 0 YES ; Stop ™ A
< Divisor = OW‘ L I3
? \ Divide by Zero Error /
d
I«o
\\
Y
12
. /05 1214
Y Toggle Accumulator Sign Flag L
< Divisor =1 > Sign Flag * (-1) > Sign Fi
“~ ?/ ign Flag * (- ign Flag
\P‘" 1207 ' " T
1206 \ Add / Subtract Working Dividend 1215
L e To / From Accumulator —
N
> Divisar Decrement N ivi
< Divisble by >"°_. reme Accum + {Sign Flag * Dividend) = Accum
\anyDM/ Divisor ;
N '
YES Calculate the Error Difference 1216
N Dif = Dividend * Divisor_Copy t—’
/ Y] Tesmnp = Last_Dividend + Divisor_Copy
o) Dif2 = Accum * Divisor_Copy
l/ Temp2 = Dividend_Copy
Fetch next i, 308 1217 /k Re-Load Divisor & Dividend
satisfying S s N yes Dif — Last_Dividend > Dif
DM=0 < Dif > Temp Dif <» Last_Dividend
1210 . 7/ Dif > Dividend
1209 N i Yo Divisor_Copy -> Divisor
\ // N 1219
< ls__ \L Dividend = Dividend - value{DM) \ /,//\\\
~ DM=0 LN ves increment Accum
~_ 7 < Dif = Temp Y= m
Iﬁs N, ? Accum + 1> Accum
. /
AN NO
l\/ /\ 1221 T
1211 \I/ / A 12’20
Decrement Accum | ves .~ 18 1325
Dividend = Dividend / DMi Accum—1-> Accum <‘?f2 > Jemez Remainder = 0 (——
Divisor = Divisor / DMi .
\{ND
! 1
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ 1212 N
Base Extend Dividend (DMi) |- L 1222
Base Extend Divisor {DMi) I |
Caiculate Remainder
/
1213

= Dividend_Copy - (Accum * Divisor_Copy)

)
1228

Store the Result

Result = Accum

Figure 12A

US 9,395,952 B2

Sheet 50 of 99

Jul. 19, 2016

U.S. Patent

gz1 8nbi4

doig ™~
0i2L
Adoo 69t @-v (@aa v \ (@ nav)
1 sosma REDLLIS OPING HRINPON ! apin teinpoyy
0gci N \ v 8 v 8 \ 8 v
(a-v) _ =~
S Lozt 6521 09z}
Adod wwenxy
anje,
pueping :%%
\ ™
LC7L VA YA
1m
opsleq b~
18810 tm_o o9z me_\ 1°818Q
Adop 017 2uQ
Josing)
Y iL 662 i yszl
1A
JO1B{NNAJE v Ja)sibed olBe g Je1sibas
puUSPIAIG BupOM puspIAIg ! a Bunpom Josing
98¢t £6ci 9621 M _ rASTA
10vdlans /II’ MMWW | Adoo UoISURIXT 0SBy Adon UOISUDIXT 95Eg
1 aav / agy _‘mm, puaping snnpop J0SIAIg snNpoyy
Goz1 L

\
y9Cl

-
€921

[

oSzl

\
zoct

U.S. Patent Jul.

1201
S

Load Dividend Copy Register |
Load Divisor Copy Register

'

Divisor Copy > Divisor
Dividend Copy - Dividend
Dividend_Copy -> Last_Dividend

19, 2016 Sheet 51 of 99

1202

US 9,395,952 B2

0> Accum
Sign Flag = -1
1203 - '
03 >//|\\\ 12}04
s - o
e oNYES s Stop T
\gtvxs;r 0/ N_Divide by Zero Error)
U
TNO
/i\
W
N
Y 1208 12426, 1214
/'/Is \\'/ ‘ Toggie Accumuiator Sign Flag -
Q)ivisor =1 »Y%5 . Base Extend Dividend
. ? Sign Flag * {-1) > Sign Flag
\;/NG H
1206 Y 1207 o 1218
L s~ Add / Subtract Working Dividend - 1228
/;Dieii;,:j:rb w0 Decrement i To / From Accumutlator g
<\ any DM y/)ﬂ Divisor | i Accum + (Sign Flag * Dividend) > Accum
o 7 g f T
\Kfss
v Calculate the Error Difference 1216
Dif = Dividend * Divisor_Copy L
Temp = Last_Dividend + Divisor_Copy
1 Dif2 = Accum * Divisor_Copy
Y Temp2 = Dividend_Copy 1218
Fetch next i, 1/208 § /
salistying 1~ 1217 1 Reload the Divisor & Dividend
3 1210 _/ s S Dif - Last_Dividend -> Dif
X ; {Dif> Temp >~ pif > Last_Dividend
1200 7 el Dif -> Dividend
\5’/ DN"S_ 0 . No Dividend = Dividend - o Bivisor Copy > Divisor
=v value(DM) 1219 :
~ A
s LIRS Increment Accum 1224
r < Dif = Temp s L=
(\ SO ? S Accum + 1> Accum
\,,,/ o
1211 i 1221
! 1] 1220
Dividend = Dividend / DM Decroment Accum yd 'ls\\/ 1228
] i vEs 4
Divisor = Divisor / DM oo <Dif2 >Temp2> Remainder=0 |
Accum -1 -> Accum ~. ? i
7 ~ !
}228 "1@
/Dehy </YES N
< B.E. / {)
Nz N 1222
1212 Vo 1229 | i
'] , /
B;::eEEx;f::dD[;‘i(\',?:::’ Mark (DMi) for Calcufate Remainder
| N = Divi _ € Pyi
Clear mark flags §Base Extension Dividend_Capy - (Accum * Divisor_Copy)
| |
1213
[’L 1226 | Store the Result

e
N/

Result = Accum

Figure 13A

U.S. Patent Jul. 19, 2016 Sheet 52 of 99 US 9,395,952 B2

1300 1305 - 1310 1315 1320 1325
/ / / f // l/
Primary . ModulusiModulusi{Modulus [Moduius ModulusiModutus|Modulus |Modulus
Control | Operation | Register | my=2 | Mi=3 | M5 | Ms=7 | Me=11 | Ms=13 | Me=17 | My=t0 | Value
Steps | Description| value {decimal)
(figure 13A) D() D1 DQ D3 D4 D5 Ds D7
Dividend 0 0 2 2 7 9 10 18 282
1530 S 501
N ' Divisor 1 2 4 3 4 7 8 2 59
1331 | siep 1205 After Dividend 0 0 2 2 7 9 10 16 282
, divisor
- 12061207 | 4o croment | Divisor | 0 | 1 | 3 | 2 | 3 | 6 | 7 | 1 58
1332 After divide | Dividend | > 0 1 1 9 | 11 5 8 141
| Step 1211 by M
¥ Vo Divisor * 2 4 1 7 3 12 10 29*
1333 After Base | Dividend 1 0 1 1 9 11 5 8 141
N Step 1212 Extend
ien Divisor 1 2 4 1 7 3 12 1 10 29
1334 | Step 1205 Alter Dividend 1 0 1 1 9 11 5 8 141
_} 1206, 1207{ dMsOr
decrement | Divisor 0 1 3 0 6 2 11 9 28
1335 | step 1208, Dli;’idendd Dividend | O 2 0 0 8 10 4 7 140
_} 1209, 1210 | Subtracte —
’ by Dy Divisor 0 1 3 0 6 2 11 9 28
1336 | Step 1211, | After divige | Dividend |~ 1 0 0 4 5 2 |13 70
N 1228, 12291 byMo | pigor | v 2 4 0 3 1 14 | 14 14*
1337 132186;3 1122%% After divide | Dividend * 1 0 * 10 10 10 10 10~
AN ’ ? by Ms o * * ¥
1209, 1211 Divisor 2 2 2 2 2 2 2
1338 132‘;}; After Base | Dividend 0 1 0 3 10 10 10 10 10
o212 | BXend M pisor [0 | 2 | 2 2 22| 2] 2 2
1339 132%2, 1122%55, After divide | Dividend * 2 0 5 5 5 5 5 5*
\A1200 1211] YM | pivisor | ¢ | 1 1 1 1 1 1 1 1*
1340 | Step | After Base | Dividend | 1 2 0 5 5 5 5 5 5
\f 122812121 Bxtend | pyjisor | 1 | 1 1 1 1 1 1 1 1
1341 Steps | Decrsment | Dividend | O 1 4 4 4 4 4 4 4
_} 1212 thru at post
1221 processing | Divisor - - - - - - - - -
RNS Integer Divide Number Sequence Example (Dividend / Divisor)

Figure 13B

U.S. Patent Jul. 19, 2016 Sheet 53 of 99 US 9,395,952 B2

/1300 ~1305 1310 -1316 ’/'1317(/1318 /1320/1325
L [H i
Primary Modulus | Modulus | Modulus |ModutusiModuius|Moduius|Moduus|Modulus| Value
Control | QOperation | Register Mo=2® | My=30 | Mp=52 | M= | Me=11 | Me=13 | Me=17 | M,=10 | (decimal)
Steps | Description| value
(figure 13A) DO D] DZ D_; D4 D5 De D',i
Dividend 11010 12 7 2 7 9 10 16 282
1550 s o
' Divisor 11011 5 9 3 4 7 8 2 59
1331 Step 1205 After Dividend 11010 12 7 2 7 g 10 16 282
\{ 1206, 1207 | dvisor
"7 { decrement | Divisor 11010 4 8 2 3 6 7 1 58
- Dividend 1101 3] 16 1 9 11 5 8 141*
133\2 Step 1211 Aft&t})r d2|\1/|de
~- 4 Divisor 1101 2 4 1 7 3 12 10 29
Dividend 01101 8 16 1 9 11 5 8 141
1333 top 1212 Af’tzer‘ Badsa
Xien Diviser 11101 2 4 1 7 3 12 10 29
1334 After Dividend 01101 6 16 1 9 11 5 8 141
Step 1205
L 1266 1‘207‘ divisor
' ' | decrement Divisor 11100 1 3 0 4] 2 11 9 28
1335 | step 1208, | Didend | Dividend | 01100 | § | 15 | 0 | 8 | 10 | 4 | 7 140
A 1209, 12104 Ty Diviser | 11100 1 3 0 6 2 | 1] 9 28
1336b Step 1211, | After divide Dividend **011 8 10 0 2 9 1 16 35*
s 2
{1228, 1228] by2 Diviser | 111 | 7 7 o |7 |7 |7 |7 7
1337 182%2 1122%58' After divide | Dividend | **101 5 5 * 5 5 5 5 5
1208, 1241] YMs | pivisor | *001 1 1 * 1 1 1 1 1*
1340 Step After Base | Dividend | 00101 5 5 5 5 5 5 5 5
" ;
> 1228, 1212} Extend | picor | 00001 1 1 1 1 1 1 1 1
1341 Steps | Decrement | Dividend | 00100 4 4 4 4 4 4 4 4
| 1212thru | atpost
1 1221 processing | Divisor - - - - - - _ - R
RNS integer Divide Number Sequence Example with Power Based Modulus (2°, 3%, 5%, 7, 11, 13, 17, 19)

Figure 13C

U.S. Patent Jul. 19, 2016 Sheet 54 of 99 US 9,395,952 B2

1300 1305 ~1310 -1316 ,1317/71318 1320 ~1325
a / / z 4 / [
Primary Modulus | Modulus | Madulus |ModulusfModutusiModulus{ModutusiModulus] Value
Control | Operation | Register Mg=2° M= [M=6% [Ma=7 | Mu=11 | Ms=13 | M=17 | Mr=19 | (decimal)
Steps | Description value
(ﬁgure 13A Do D1 Dz D3 D4 D5 DG D7
1330 § step 1201 Dividend | 11010 |110=12 | 12=7 | 2 7 10 | 18 282
: Start
41202, 1204 Divisor | 11011 | 012=5 | 14=9 | 3 4 7 8 2 59
1331 | siep 1205, | After | Dividend | 11010 |tl0=12| 1227 | 2 | 7 10 | 16 282
‘{1206, 1207 | dMsor
N ! decrement Divisor 11010 | 011 =4 | 13=8 2 3 6 7 1 58
1332 After divide | Dividend *1101 | 020=6 | 31 =16 1 9 11 5 g 141*
N Step 1211 by 2
” y Divisor *1101 002=2 | 04=4 1 7 3 12 10 29
1334 | giep 1205,| After | Dividend | *1101 | 020=6 | 31=t6| 1 9 | 11| 5| 8 1417
\{ 1208, 1207 divisor
: decrement | Divisor *1100 | 001 =1 | 03=3 0 6 2 11 9 28*
1335 | step 1208, | Dvidend | Dividend | *1100 | 012=5 | 30=15| 0 8 | 10 | 4 7 140
4 12081210 stubtracted — - - -
’ by 1 Divisor 1100 | 001 =1 | 03=3 0 6 2 11 9 28
1336b | step 1211, | After divide Dividend 41 | 022=8 | 20=10{ O 2 9 1 16 35*
~{ 1228, 1229} by Divisor | **11 jo2i=7 | 12=7 | 0 | 7 | 7 | 7 | 7 7
1337 18;32 1122%% After divide | Dividend **01 012=5 | 10=5 * 5 5 5 5 5*
S 1209’, 1211 BYMs Divisor ***01 | 001=1| 01=1 * 1 1 1 1 1*
1340 Step After Base | Dividend 00101 | 012=5 | 10=5 5 5 5 5 5 5
\1228,1212 | Extend Divisor | 00001 |oot=1| ot=1 | 1 i 1 1 1 q
1341 Steps | Decrement| Dividend | 00100 | 0t1=4 | 04 =4 4 4 4 4 4 4
N 1212 thru at post
1122 processing | Divisor - - - - - - - - -
RNS Integer Divide Number Sequence Example with Power Based Modulus (2°, 3%, 5%, 7, 11, 13, 17, 19)
and advanced delayed extension

Figure 13D

U.S. Patent Jul. 19, 2016 Sheet 55 of 99 US 9,395,952 B2

Modulus Value

23 119 | 17 | 13 | 11 7 5 3 2

operation| by | b |l | 1y Fq F, F3 F; | Fs Eq\&;;v‘ifnt

A g . 7, 7,5 0 1 0 0 0 117

B l2 6 3 7 0/ 0 2 0 0] 1

_ [10/13 1012 0 1 2 00| 12

Figure 14A

Modulus Value

23 119 | 17 | 18 | 11 7 5 3 2

Equivalent | Decimal
Fs

Operation| 4 I I3 l4 F,y F, Fi Fsq Value Equiv.

‘ .
A 2 7 16 5 5 3 2 1 1 |577/2310| 0.2498

4

B 11314 0 3 3 2 41 1 |289/2310 | 0.1251

_ |15 11,16 8 8 5 1 2 0 |866/2310| 03749

Figure 14B

Modulus Value

23 119 | 17 | 13 | 11 7 5 3 2

Operatio |1 |2 |3 |4 F1 FZ F3 F4 F5 Equivalent

n s Value
A |12 1 6 0 1.0 0 0] 3aw7
b

B |43/18 14 110 02 o0 0] 8&1s
- 5 1 5 7.0 1 2 0 0 |11&1235

Figure 14C

U.S. Patent Jul. 19, 2016 Sheet 56 of 99 US 9,395,952 B2

1500

{/ Start \/

RNS operand format: N
b, 1o, 05, vy Fo, Fo Fs, o Fy l

-

. X 1510
Create intermediate J

product by performing
Integer multiply on
operands

{
1550a Convert Intermediate | 1550
| , .

N product into mixed)
: radix digits, starting
: with first N fractional
; RNS digits.
|
i
|
i
|
i
|
i
|
i
|
i
|
i
|
i
|
i
|
i
|
i
|
i
|

l

Reconvert mixed radix 1530

digits to RNS, skipping |/
first N digits, where N=#
of fractional RNS digits

l

S amm e amm mme e mm aam mmm e mmn ame e amm mme amm e amm mme e mmm m mmn mme mmn amm e amm me amm e e e e

| 1540

Store RNS value _/

as resuit.

\
\ //
p . 1542
STOP S
\ //‘

Figure 15A

U.S. Patent

1510

Jul. 19, 2016

1500

N

¥

e Start)
1r g

Sheet 57 of 99

]

Perform Integer multiply
A*B>IP
iP->A

1650b N

Y
1511>

e

NoY

Is YES Complement the product
< 0 A-> A
?
Y

1512 -
\

US 9,395,952 B2

1513~ v

1514,

Y

SIGN = N

EGATIVE

] SIGN = POSITIVE

é‘ [1525

Y While converting A to MR,

Convert i compare 1° N digits to Re/2;
1 to mixed radix digits; i >, set round-up flag;

A2 MR (IMR]y > R/2)? > RU

1520

1530 Y
_| Reconvert MR to RNS, skipping
: first N digits converted;

pn[MR] > A

1533

fncrement A by RU;
A+RU> A

/ 1635 -,
1534} SIGlSN - . YES Complement the product
~

NEGATIVE -~ A3 A

. ?

\. /’/

Sign Flag = SIGN
Sign Valid = TRUE
A -> Result

1542 v
N osToP)

Figure 15B

U.S. Patent Jul. 19, 2016 Sheet 58 of 99 US 9,395,952 B2

1500
S Start
1510 Perform integer muitiply
- A*B>IP
P> A
1550¢ N
A
1515 Create alternate resuit:
.| Load complement to ALUB
iP>B
T
1519 ~, g
B e ettt 1
I I
1520a i 1520b |
Dy 15220 I
Convert 1P 526\ While converting to Mixed radax, : 1527 Convert {P
to mixed radix dxgxts A Vi Compare A to B, and set sign: '4 ,,,,,,, to mixed radix digits;
A MR, SIGN = (A > B)? B> MRs
I E— T ! T
) | 1
: 15258 ~, i
1525a \) ; i 3 v
While converting A to MR, While converting B to MR,
compare 1% N digits to Re/2; compare 1% N digits to Re/2;
Set round up flag; | Set round up flag;
(IMRAly » Re/2)? > RU, (IMRg]n > Ref2)7 > RUg
¥
1529, L
YES A0 NO
\\3///
1530a -, i 1530b ~
1]
Reconvert MR, to RNS, Reconvert MRg to RNS,
skipping 1% N digits converted; skipping 1 N digits converted;
pn[MRA] 2> A pn[MR} > 8
1532 4 ~ 1533a 15321)\ » 1533b |
P e SRS b . ;
f>/5 YES i Increment A by RU, D% \YES Increment B by RU; :
RU, > O i < RUg -
2 : A+RU,> A Py B+RUs > B
NO T NO
1\
(= =
1535 -, '
Complement B, Store in A
B> Temp
Temp > A
1513 ' . WHN v
Sign Flag = POSITIVE Sign Flag = NEGATIVE
ol g
[N
1540b I
\

{

Sign Valid = TRUE

1542)
~{8TOP)

Figure 15C

U.S. Patent Jul. 19, 2016 Sheet 59 of 99 US 9,395,952 B2
1500
~~(Start \
1510 ,
| Perform integer multiply
A*B>IP
P->A
1550d-,
1513 Y
*| SIGN = POSITIVE
5.
1512~ 1511 i\ 1515
: N ™. Create alternate result:
> s
Complenlent the product -0 sy >>!”E‘°.W”* — | Load complement to ALU B
A> A o —
‘ T P ? B
1514 YES 3
_~| SIGN = NEGATIVE | a
| L L A
1518~ T 151\7\ !
) 1520b - {
15208~ 1522 Ny
Convert {P While converting A to MR, GConvert 1P
to mixed radix digits; |/ 1521 | sign extend by comparing to to mixed radix digits;
71 intermediate positive range B > MR
A > MR, SIGN = ((Rp * R} > A)? e
1525h
1525a N l 0 f

While converting A to MR,
compare 1*' N digits to Rg/2;
Set round up flag;

(IMRaly > Re/2)? > RU,

1523

—

1529,

While converting B to MR,
compare 1% N digits to Re/2;
Set round up flag;

(IMRs]n > Re/2)? - RUs

1531\

RS
YES/ALSO\

1530a - v
Reconvert MR, to RNS3,
skipping 1% N digits converted;

s AlMRA] > A
RU. 2 RU

..
~2

1540b
N

)1"9»] SIGN = NEGATIVE —

15300 ~,

¥

Reconvert MRp to RNS, skipping
first N digits converted;

en[MRe]} > B
RUs 2> RU
B—>A
{
ol
'\1/4 —————————————— A
b4 r 1533
1532 }Qi\gt YES increment A by RU;
ﬁo
e
e
1534 j!\ 1535~
/ Is . N_YES Complement A
< SIGN = - —
S 2 // A2 A
NG]
o
3
Sign Flag = SIGN

Sign Valid = TRUE

1542 Y

—__sTOP)

Figure 15D

US 9,395,952 B2

Sheet 60 of 99

Jul. 19, 2016

U.S. Patent

351 8inbiy
009 V/N 9 1+|{19)%80}| D Yipim pueiadQ
60°SL V/N 7T+ITT0Y ("d 5)+ M vy a8ues YN
76°LE V/N 1T+32909'C M« 7Y Y Auun
€9°9L 81 €7+388TLT'T 3 MY s MY Ny a8ues suiyoep
60°6€ L TT+IE08Y8'S | TOx6GxETxLVxEV«IV4LE Y 23uel papuapg
15°SS V/N 9T+3ITVEIT'S (Y & ¢4) 9y aduel anisod ajeipawaly]
89'9€ 14 TT+38200°T z/*™ ! agues aAnisod
60°SL v/N 7T+ISYTTOY A x Y Y ,28ues ajqesn
q9LE 11 TT+39500°C MY « 7Y Ay agues ajqesn
86°8T v £9876¢€ TEx6TxET6T "y a8ues 198a3u)
96°8T L 0TS0TS LTAETATTALSxET Yy aduey jeuofely
”“_M__MMMNM sudiga SNY | s8uey jewpag uopenb3 sduey _MM”“_m uonduoasaqg aduey

e oygL- GpGL- ppgL- eysL/

US 9,395,952 B2

Sheet 61 of 99

Jul. 19, 2016

U.S. Patent

461 eanbiy
1 3 4 sBeyd . . aoval N
063} VLLLGE+ | 7 1249961¢EL ubig 185 3 ¢ 0 0 (4 4 o] 0 0 € 0z | 9z | 21 L 0 e € L ¥ | L€ ‘zeqy sdaig | €954
e . das 1 SNH 03 N : deyg | N
ooy | PHLLST | P8IRISSIEL 1P o | x O |02 200 |0 | B |02]9 || L |0 | ¥ E | v e @oesides]
@@S\ TISISIEL | poremmny o | x bbb le e by jadee o ool o o] o |@ends Vo
T oesissiesoise | NI DT gy oo 0o 0ojo o] e e v slee|o| o]0 o000 |y
651 - XIpEY PaXi ‘0zt sdeis | 6651
o jonpoid ~
e | TSI | o 0 | x 0 | 0| 0 0| 00| 0 ok |Zfa | €4z 0| € |G| 8|6 It osidas
Nmm\p Qo0e'8 /281981y | 8 pueiedg [X 4] 4] 4 0 0 4] 0 L ¥4 g 14 Z 4] € 35 0¢ i LS 001 daig r\./mmw
nmmxv\ gerie 4/ 09pp09L | ¥ puesedo 0 X [¢] 0 0 4 0 [¢] 0 G e 9 4 [er4 A i |44 ¥y i 8¢ 00§14 deig 'Wmmr
:h | e npoyy 16
IMEN anjep suyoew | uondussag i b SNINPON IPIG daig
pajasdaapuy jonRuon
7 7 7 AS | NS I IR IS B LE AP B i] % k¢ ‘g3 3|3z |°3Q agl ainbig
0661 G8gL - 0851 - .
sBe|g ubig S
r Tl e | 0§ L fwb ek |4y |6k | €26 b e iy | €V | ip | €5 | 65 | 19 BERE
5451 7
efues jeuo)joely sBuey sabayuf sybyq pepusa
j 7
UOLE0LG = i« B bl £ LA G €47 =7 OIOUM 0261 4 mmmw\ 09G4 -

SER0E =851 8. 41 E
‘wdiqold gjdwexy

T

1551 7

US 9,395,952 B2

Sheet 62 of 99

Jul. 19, 2016

U.S. Patent

961 2inbid
1 ieozoz+ | sBetd dag |
e VEOZ'GTH | "M/ ¥SBOLEEL | g ie ! 0 0 z ¥ € 8 (T N A S N 1A N T " N A W oz | 8L oz | o2 qorsidais |
1015018 | (auo ppe) £851 ~
guoy | < 62099 N/ VSERLEEE | 4 inoy 0 X 0 z 12 ¢ 8 @ p b v per e |02 L 2 6L T 0T | e e | pagt
e SN 0} N ydag |
g ¥ 1 €9692884 | T pateouny 0 X b L £ z L g oL | e st 2 |6 jort) 9 jori 1 |8l T -1 oegydeis | Ao
7 o NH - . - . . . - pderg |
e £5694581 pajeouns) 0 X € 10z | st Live | o 0 0 0 0 0 L I
1 s . () Ak G784 ‘TTGL
e BI6ZFOHO0BZHD | i Ceun o X 3 z v b 6 z {2t | g |oT| s Live] 0 0 0 0 0 0 0251 5495 | gsgl
By d
| ssezvmaoezss | SERC o | x bz vl ez | vl | a8 0zfez | bl er o 0s|ee || oigdas | o
€861 :
=
7851 GZe 414516591 | €@ pusiado o X i b z ¢ G 9 g b 9 6 g € 0Ll oz {0L]sk| 8|8 005 deig /hmﬁ
o m\ GZ90'8 | *u/.186Giiy | Vpumedo] X 1 z 4 { L ¢ jet | 2t jee || vzleclee szl o6 L |8} a 001 doig waﬁ
13
SRHEA anjep sulory | uondussag B o sninpoyy 16 dayg
pajasdiaiiy : o jonusy)
7 7 7 AS | NS Al S S A A a3 3 3] gopemby
o6st < 5851 0851 - . .
shBe|f ublg
y, 4 2 g Lobit | ev {2y | s lse |6z | VB ose || e 2b | €5 | 66 | 19 561 7
GG
aBue. (euonoel] abuey sebay subiq pepusixg
OLG0LG = LLEiabbolaGa8C = T BIBUMA 048 5964 095%

UPYSEQLEEL = H/LGIBGOL - TH/L86S LY
1S1 UOHB|NOJRS [ernoy

EL+% €918
10 uoneinojes selewxolddy | yggy

U.S. Patent Jul. 19, 2016 Sheet 63 of 99 US 9,395,952 B2

1604\ 50 000
. Perform: e
XYV +ZSA 1510 v

k Create intermediate product using
integer multiply on operands:

X*Y->A

1612 l

& Create scaled additive operand by
Muttiplying additive operand Z by Rg:

Z*Rg> B

1614 A4

k Create intermediate product and
sum by adding scaled additive

operand to intermediate product:

A+B-2>A

i 1. Convert intermediate product and sum to
u mixed radix format, and simultaneously
convert intermediate product and sum
complement to mixed radix format;

While converting, compare for sign detection;
Select smallest mixed radix quantity;
Determine round up;

Set result sign flags;

Truncate positive mixed radix value,
retaining most significant (P-N) digits;
Convert positive mixed radix to RNS;
Increment RNS by round up;

Complement if sign is negative;

0. Store result;

>k wnN

= © N

A > Temp; Temp - B;
B <> MR; A 2> MR;
If(A > B) then {
{MR] = B, B+RU = B;
B = Temp; Temp = A;
Sign Flag = NEGATIVE; }
Eise { [MR] > A, A+RU 2 A;
Sign Flag = POSITIVE; }
Sign Valid = TRUE;

Figure 16A

US 9,395,952 B2

Sheet 64 of 99

Jul. 19, 2016

U.S. Patent

894 andig
- i j sBeig ; ™
mw% . POEGOT+ | M/ VELIVIEL | g oo ! 0 0 0 | ¥ £ g8 {9 it o0t B |9 0 fe i |zelg |90 0K5L S | gooy
14z /015019 | 4, , , (auo ppe) eegl ™
mwmw ozagor | O VRLLVEEL | g o ool 0| X Q 0 ¥ € e 9 Lo 6 9 0 je ozl izl 9 o0 ze5) sdeis | pOG1
- s SN 01 NUW N
So\r W7 STLVGEL | penuny 0 | X ! z € z - T A TR A 8 | ¢ |oe it jezio|teig |¢gco oestdels | e,
\\ NG = . = = = . . a1 s N
e £TLIYSEL porestiny 0 | X 6 9 | 8z | ¥l |ve | © 0 0 o 0 0 ogsLdois | oo
e) (Nay) “Amb3 > §Z81 T2GL I
vy | CEITEN Lot oy 0| X ! z ¥ L 5 {z 12| 6 9 | 8Z | vL | ¥E | O 0 0 0 0 0 ‘0z5) sdats | BSL
7| essszizvesise | YW o | x szl vielzisl s iuletloz|nwliveizeie |4 iw|eic il nods ™
el eyeipauLEll ‘ agggL
¢m .
00298V£898 . 0 X 0 0|0 0 00 0 st | 6 |2t ieios L8 |1zioe| 5l L zi9) daig ™
2 pugiado jefeisiep)
R onped d AR
coms 6G6ZFIB306Z8Y | 1ot 0§ X ! z ¥ € z ¥ polsb b4 o8 Jozisz otk sl | ey iog | o0s | oge 0161 doig N
£ ogese o SM/04104L | D puesedy 0 X 0 13 0 0 0 0 0 9 gl | Lz | b Loz 8L |oE oy | ¥y 0051 dais U_Bf
1294
4 gge 9 £ 1516591 | g puesedo 0 X 1 3 4 € g 9 8 L 9 6 9 £ 413 z oL sy | 8L | 8L 006l dals |)
- 1651
7| 6zao'® | *M/.88SLiv | v puesdo 0 | X ! z |z { i G e |z |zz || veiee 8 }iz| 6 1 | 8z |z 00GL dais TN
185} 9551
ange prea | Bew snjnpoyy uBig
v@um._m_ws:_ onjep ouiydeyy | uopduossg huhm
AS | ws [z 3 ¥ <] L l 4 € v I [4 € ¥, H [L fosueg
: 7 7 s 4% A s e taia|tala| 3l al ve e
0651 7 5854 - 0851 - i :
, 0GOS = 21,88, 1eaGaE.Z = 2 9BUM | 4 €] Lobav el by 6L | gz | 62 | 1€} 48 | v | er | I¥ | €S | 85 | I8 5098 7
i I 71+11
BZLIVGEL = TW0LL0LL + JH/IGLES0) L fU/I86CELY aBue. [EyoleL sBuey saBoyu] sufig pepusyxa
'S1 UONE|NDjeS [Ny ! Wi P 7
04 G951 0954 -

e+ EL0LE
140 uoneinojeo saELxolddy | 0034

™

U.S. Patent

Jul. 19, 2016

1632

06 !

_| Clear product sum & clear index
0->8
1=2n

Sheet 65 of 99

Increment index
n+1=>n

1631

B
1610 \?

| Load operand pair for muiltiply

Xn-> A
Yn—>B
1620
\x Perform integer multiply
on operands
A*B-> A
1628] l ,,,,,,,,,,,,,,,,,,,,,,,,,,,
‘\ Add product to product sum
~ storage register
A+S >89
1630 l

NO / n*N\

1. Convertl intermediate sum of products fo

Oy O b DN

-0 0~

mixed radix format, and simultaneousty
convert intermediate sum of products
complement to mixed radix format;

. While converting, perform sign detection;

. Select positive mixed radix quantity;

. Determine round up;

. Set result sign flags;

. Truncate positive mixed radix value,
retaining most significant (P-N) digits;

. Convert positive mixed radix to RNS;

. Increment RNS by round up;

. Complement if sign is negative;

0. Store resuit;

S > A; A-> Temp; Temp > B;
B> MR; A 2> MR;
(A > B) then {
[MR] > B, B+RU > B;
B = Temp; Temp = A;
Sign Flag = NEGATIVE; }
Eise { [MR] > A, A+tRU > A;
Sign Flag = POSITIVE; }
Sign Valid = TRUE;

Figure 16C

US 9,395,952 B2

US 9,395,952 B2

Sheet 66 of 99

Jul. 19, 2016

U.S. Patent

Qg aindiy
- He|
/1 GPL6TLG+ |/ 9Z5EE59T cmanw ! 0 0 z 3 G 8 [N S A VA S A 9 |2 | 2 |2 | 6 {089y 1S ||aovsdag Joomr
zi91 9¢
(Z/015019) | 4 ” (auo ppe) . , 851 ™
ﬁoﬂ ~ azsgos | 81 9SEESOZT| g bine, o0 | X] z L g B g || 4 |8 ¢ 9 feh i LTS 08]9S | e e | posh
e SNM O NMW .)
oo o 1 STSEESIT | " peysouny o X L 1 0 14 L s ioLi 9 ta| v S | 4| 9 | el v 62| G| 0S 0EgH daIS | Joo,
1 NN } } } } } } } ™~
%m) SZGEES9T | poeouny) 0 X g foLjoz | o |oe| i 0 0 0 0 0 088} doiS | o,
(Naw) "aind3 S76LZTSL [N
woﬂ BLOVLZOEIGHGEL | o ey 0 X L z ¥ L 6 ztzvi9 foLjoz |9 |oe] o 0 0 0 0 ‘0zoy sdag | 8561
sonposd 0g8l
/"l 6iovizosaGrGEs | 0 wing 0 X L z 4 £ z ¥ Livb bkl ez || 6 [ieigrioog crg dows |)
1001 BIpoLLdILY §291 US| 7ggy
1 , . ¢ wonpoid 029L-0191 ~
m@m i OTLELSVO99VLY | giinan oy 0 X 0 0 0 0] 0 o iorizrier| e ig]o ¢ {6eier|el]ie 1085, daie JEE
. L Jonpoug . GTOL-0L9} |-
mmﬁ B96ZP98E06789 | gyoiron o 0 X L [4 ¥ € z ¥ Vil b os | oz szl leriost 06 oee ‘005 das woor
/71 8ZPL'S | *d/oovh00l | puesdo 0 i X 0 0 0 v 0 o 0 S € ¢ | vz |6z | £ b [RAR R R A -1 zooi deig ./mmm:
£994
oza 237281981y | O pueiadp 0 X 0 0 z 0 0 0] L1z} o€ ¥ z 0 ¢ fec{oc | v |25 z094 deoig ;/mmm:
€991
1 6ZE | *M/1616591 | 8 pueisdD 0 | x bl vl zlels)ioelegir|ole | 9| e o]z {oLisy|sL]| sl || zoodag /woﬁ
7851 e
ﬁwm GZO0'8 | i/ i86GLLY | v puesedo 0 X L z z A i S igr i eyl | vE|leeclee| o L {6z |z z0oy deig /@mm:
e, e
perost oy | SMIEA SuRiSEW | uondiosaq i i STTPON ¥ das
1onuoy
T K \‘ AS | NS _‘n_ Nh. mh— vn— mn_ w& \.L : N— n_ v_ eu Nu mu wu mm mm FN ng} 2inbiy
0651 - 6951 0851 i
? sBej3 ublg J
; Z e | §] 2 et isrieliezle| e e | er Iy eS| 66| 19 409t
gi61 7
s O B U abues jeuojjoeiy abuey saboiyy s1Biq papuaixy
OVG0LS = £1e€ind badiGa€el = 7Y mymu\/b 045 ¥ 5961 J 0961 J
: 8198L¥ » /0GYPOOL) + (F/2G16891L v M//86G 1LY
181 UOBeINOIRT B0y
i (e 98 +lne.%,8)
o uogeinopes ssyewioiddy | gog,

US 9,395,952 B2

Sheet 67 of 99

Jul. 19, 2016

U.S. Patent

V.1 @inbig
S0.1 voLl €0LL 0L} vchrf{ 0011
A A A A 4 A
}
Z Hc v_m e smm ~Nm q.nw .2_ e -m_ ~N_ nﬂ_ " Zn_ e ~m..._— .Nm nﬂm
!
(unoo 1Bip jeuonoey)
6 (aBuey M. =<) (oBues sjoypn) (ebBuey jeuoyoeid)
19351621 uosod _A.Emwu_:%am‘v_A................ (M « 4) eBuey papusaixg > abuey M abuey 4

juiod |euoijorid

§. e
{- >m |

(s21S PIOM SNY 12101)
subia d

3

US 9,395,952 B2

Sheet 68 of 99

Jul. 19, 2016

U.S. Patent

/1 ainBig

oli

GOLL 0.1 1 A Z0.LL 00.LL
Y N N N Y N
|
{
{

W+N>USQ 421 €11 ‘60T ‘20T ‘€01 ‘TOT "£6 ‘68 ‘€8 ‘6L €L ‘TL ‘L9 19°65 ‘€S ‘LY ‘E¥ “T¥ ‘L€ TE6Z 'ET 6T LI'STIT'L'SE’L

(3unoo }bip jeuonsed)

B1 (aBuey M4 =<) (sBuei ajoypn) (sBuey |puonORIY)
193151691 UOLISOY I i T P R " SRS P —. o]
JU110 [PUONTEI “4uepunpsy (M .) aBuey papuaixgy afuey M abuey 4
e = |
e (o218 pIOM SNY fB304) .
o subig d o
g, ainbi4
S0LL v0.LL €0L1 c0Li wcﬁf_\/‘ 00.}
A h D B : A
i
>+Z Ty W Q HQ v_m e .mm ~Nm Qm _>_+=W ese -m+=m -N.Em -.H+cm “ cm one \mm \Nm ;m
i
(3unoa ubip reuonoesy)
1Bip (oBuey M.d =<) (aBuei ajoym) (abusy |euonoril)
1eysifies uonisog M uepunpay™ ™ {M . d) @Buey papuaixg »ie abuey g UMY abueyg — ™

U0 [RUORORI 4

Y

e Ay

(o215 piop SN 18101)
subig d

'y

¥

U.S. Patent

1813

1

1801 v

1802

S

1810

1809

increment index
pointer {1}
F

1814

Jul. 19, 2016

800

\
~—f Start »
8 R

Load divisor copy
into accumulator A

Divisor > A

.

\ 4
Start conversion with
Digit modulus S;

2> 4

Store Divisor S, digit
dq > temp1

Sheet 69 of 99

1805~\

Subtract the value
dy from divisor.

A-dg> A

ModDiv the A
i accumulator by Sy

AlSy> A

Mark Sy digil |
as skipped |

181 1\/ //';\

S

Increment index pointer

[ij+1-> i1

< msN O

?

4

1812~

Multiply divisor and dividend
by S{;]
Divisor * 8y > Divisor
Dividend * Sy > Dividend

Figure 18A

\\\ NO

1815~\

Set fraction point position
of divisor and dividend to
value of index pointer {i]

>R

1816~ v

Truncate S, power to
number of temp1
significant bits.

V = intflogz{temp1)i+1

US 9,395,952 B2

1817
—— End)

US 9,395,952 B2

Sheet 70 of 99

Jul. 19, 2016

U.S. Patent

€81 ainbi4 9 =0

gl =d

bb =N

¥9 ='s

(19 ‘6S '£S ‘L¥ SV “T¥ ‘LE ‘TE ‘67 ‘€T 6T ‘LT ‘ST ‘IT 'L ‘S ‘'€ ‘p9) :Snnpop
BAwexy

samod SDINPoO S, 0M} WNWIXEW =

unod pyjea samod g = A

uoisod jutod UooEl) POZHEWION = N

anjea y6ip 'g = Up

anjea uBip lg = Ip

sninpow aseq Jsajjews yum Buipe)s pasaquinu ‘sninpows uopsod yju = ¥g
snjnpouw jamod s,0M} = 'S

uvonejuasaidal jutod BUIPHS SN £0) SNNPOL JO ISGIUNN = ¢

LOLL
b /~90LL

—.+&U n_v _,:n_mu N.n_mu | w_mu mv Nﬁ _.U

_‘+n_w n_w F.Am N.aw . . _mm . . . mw Nw «W

q.ie€
\. \ S0L1
x+1U
D>AS0 d>5d5N
x;rnw
19ysibBou

pieA Jamod ig

onisod — A J
jutod uonoeid < <

obuel abuel abuey
- Popuaix3g ~ SI0UM ~ leuonoeRy
£0LL Z0LL 0044
ja— SHBIQ X —ie sibia d >

US 9,395,952 B2

Sheet 71 of 99

Jul. 19, 2016

U.S. Patent

081 ainbiy
| (BBl babab L LeyGiE0c) g puerado {998¥LLGL D 0 | sz 6L | 6 |08 |2 ieE| 2 zZ e |vlos L G Z v | e ot segl daig |
o] 1 652Y9929108 szl
| BBBLaLb S belegSnEnid) | pueiedn |o9,728500 ez | 6c iz | e |a e o |6t ire) v | el |z 8 | s |z|o| 9 || ssdag |
928l | TTTVETBEET zzsl
1 sninpon .) . o | e . . e
Jzgn | o sreouniy 19 | 85 L €S | | gr | wp jue |48 f ez | g2 |8t oo f el a2] S| & | &] omdes Pwm:
‘6 = voisod juod uoiely MaN p
SiG € = ¥BPp sninpows paeounyy | 3 PUERE0 oloiololololololo | | « i v vl | 1 |+ 0 || omans|
; i ; o
g = 1BIp s.0my15€T Hnsey qoesl
g puersdo S¥8L -G8l ™
Buissaooid 9 99 99 |9i9|98io9|. T sdaig owm:
d -
liesao0ie ooz iz | wv | 6 | Stz | v gz | 0| o« | e bl || o | T
g puesado T
Rutssonoiy eloe 6z | wle |zl lainlv | vi.| | o]tz | T
eiod -
Shssani e e ee | 8 | veioz |z lutazulo .|| e TS
uesado -
S 95 | sz izs |ov | sz | se | v |6z | b | e febioe |e | . [o] .| . e | SRS
ad -
o st Wl v vz |z sz ez [wen foe feb by fan s | L | L | . e | [TLDE
vetado -
w_mwsoi ol i vl szl | ol ziwia st Lt .]9 mvaom&
-~ ueiado - s
0281 | Breaoors zwlozio v | vwic|e | s vl ivlololw|.|e |l Tu m/mmr
A1 LB Ll baduSa,Eag?) velad . olgy
sz T 6eoyootalne g pueiado | 96VLE0'LY 0 | 5T 6L | 6 |0s|zejez| z T e w6 | 2| & | TP |e | || g des @E
1 2B hab badagBusEag?) wesed .
g | Zezreraez v pueiedo | £539081°¢ gz |66 iz | zz | e lesto | e vzt et lzls | s fzzl|or|s
N,
anjeA jendy uopdiiosaq uﬁw__a_._\wﬂc. _o”_w..”wo
7) g, o BRI L B - B SR - B - | k¢! B g 4] L AT I RS L I B | vaL 24nBig
0614 5844 084 - 5
GhEezoy = v 19 0 66 | S5l ub | S kb | 8 18 [6T | €T [6L | 4L €L M| £ | S| £ | & llds
Awmﬂ\mmmmwwmww afuet popuaxy ofues 106U pOZHEULION abBuey JeUOHDRIY POZHBILION
oLy 5911 oot 7

US 9,395,952 B2

Sheet 72 of 99

Jul. 19, 2016

U.S. Patent

agt anbiy
1 BB b bedngSEn T I~ . . doie
avet e eazion gpuRIBtO | vI8CLED ey | 8y vy | 2€ | Tv | O € s lez|s| ¢ 0 0 L L 6 ¢ | sz 59gi daig ojmmP
4 {LhE heb badi 5580, T) 1
s s babugdngle, uesad : dorg |\
vel | HLLEL.0000vbE1880) v puesndo | 0°002£0L 95 | 25 {ec | e | v | €L | O | 6 4 I A B 0 0 0 0 0 0 gogy deig Y
~ SNNPOW ., S-S AN
sl | o opgounyy | (SPINPOW) 19 | 65 { €8 | ¥ [e | bp | L8 4E L 62 [€2 | 6L i 4 | gL | | 4L | 5 £ | T 0284 doig wmm;
1 g pueiedo . 0ogl - 0981
epal | sowng | ZEPOEO0 v | ey i vr |28 {2¥ | B ¢ fgelez|s |t 0 0 b i 6 [74 e er
~1 v pussedo 5 - . . ., 0981 - 0681 ™
Zb8h | souwn s, 000122 96 | 25 €€ |2z | vL | 2| 0L | 6 4 g |zt ioo 0 6) 0 a 0 sos |
~ 1 g puaisdo . 098{- 0681 ™
o soumg, |CH0BLL000 vz | t¥ i 0¥ | V2| S 0 [se {2 |G| 6 |8 L 0 £ S zZ v | 6 sders _mwr
~1 ¥ purdado i Q981 - 0684 T~
ovlL | sewngy o0ogk Ze | 0L {0 | OF j 9L 8 | 8 | 9 | 6L P ELDGQ 0 0 it 0 o 0 sdors {oeay
‘JaW Jou uoiisod [BuUOORI 4 PIZIRRLION 4
e i : ! vesedo [~ -5l -
‘UG = ¥BIP sninpou pajesuni) mm__._m“wmooi N ! i 1 P 1 L | L L 1 i L P m*\wwwwmvmv ™
‘L = 161D S oM} 1B UNSaY . 8e8L s6L8L
vesado - 5L
i T2 TN AT T2 RNT N RN T2 R T O I I8 - A T T A O B B O
velsdo -Gy
%:wwmoe " Zeiey | 8 joz ozl L iseE| vyl |sie]| 9 9 z . . | 1z mvwmgmm 8t
veuado el .
mmcmwmue " Bz | ze iec | 9c | 8 {8 |7 |6z| @ 0 9 6 G 6 vl vz o« | 28 mwwm%wé 8/,5_
geal | HEREbLeSSaD g puags | 1610000 o | vrize |8 | 2 | 0 | ve v |6 | 9 o] 2| 2| v {9 |sr|somdus |
X 1 622101 agLel
{L1EbsbbideySegEeyT) .
s Y et
Leal } 0000PPELSe L v puRido 0004 o | 82 { B6C | 2C | € | 62 | ZZ | OL | 9T | 44 § 0 0 o 0 0 0 0
anjep dajg
SN{BA jen}Oy uopdusseg payaadiaiuy) losuos
7 7 y, itg|girfa | g itgal a8 a | At | ey ombiy
0611 s8iL osil ;
(95v€ZL / £1) = 8 19 | 8BS | €S | v | eV | Wb L 26 | 1€ 62 | €2 | 6L | 2L €L | M| L | S | £ | vBiL
(1/00K)=v p . P 5 5
‘sone _mEmtO abues pspusjxg , abues jafoy; pazijeuiionN abuey jeuanoesd ps2lewioN
(178 5941 / 09LL J

U.S. Patent Jul. 19, 2016

Sheet 73 of 99

US 9,395,952 B2

1850
~{ Start)

1851

v

-

Scale operands
according to
flow chart of

figure 18A

YES

“- Adjust fixed point multiplier and |

ALU to support fraction point

position and truncated modulus |

of scaled operands

A
Perform Goldschmidt
Division on scaled
operands using adjusted
multiplier and ALU

1854
-

Fraction

point
moved
1852 ?

1855 L/

|

truncated powers of step 1851,

with a re-grouped digit position,
then convert result back to RNS

Multiply resuit by 2" where T = # of

then, convert result to mixed radix,
then, restore normal two’s power modulus,
restore the normal fraction point position,
truncate any mixed radix digit associated

'

NO

Adjust fixed point multiplier and |
ALU to support truncated
modulus of scaled operands

Y

1851@ Perform Goldschmidt
' Division on scaled '
. operands using adjusted |
| multiplier and ALU
1858 Y
-

Multiply result by 27, where T = #
of truncated powers of step 1851,
then, convert result to mixed radix,
restore the two’s power modulus,

and convert result back to RNS

Figure 18E

US 9,395,952 B2

Sheet 74 of 99

Jul. 19, 2016

U.S. Patent

1744

FHYINOD / 0d3Z.8. NV
FHVYINOD 8V, NV
FHYIWNOD / OHFZ V. NV

V6| 8nbi4

W nod
sz 04l

aedwod
WRISLOD
7 Az

i

A

Areduns siedwod
A" JeIBUOD
i os07

A

i

|

d

el

JOJRIUNI0Y

v
JOJBINWINDOY
el

€ep

guocd v Uod

1T oewyuy ¥6ig

Bep

(/a-4)

aredwog e aiediuod
WESHOD v juelSLOg
roez o187

i 1

_ |

] v
JOjEmuWnNoYYy 101R{AWNDY
whig 161

eep eep
a Hod ¥V Hod
{1y -'+)

107 onswyiy wbig
oC = STHNPOpY
ssaippe ssaippe
g 0, yod

\/_/

&

0861

d=
a sseippe m:_:Uo_\Mwm_nnm
g Yo, 4 VO
861 !11:!1!:4 [Y Iy Y
g wboohh_‘m J
ialowltalt afe Il E 2 T S /o
\\ " 3 ! e ¥ 9p0D dO
.V, Od17 489 85010 6le 91¢€ \ll/ \II/
L _
ieg ssol
og | g |- |g| g —> greasson | ¢
| / Jeg sso1)
SHSAU0D [BlSS 0} 9|jeled 161 Aleuig i 8L¢
(sbip apim 319 T 1) €861
oC [
N q00¢

JNOY HOIG 1861

\. U»O>> \Cmc_m no geg N0 g

™ auod v uog

c86l 00z a1 tejsibey 1Big

S|iBla(JaudAL0D
SNy 03 Areulg
Bun [03uod NV

ey,

gYod V104

d = sninpopy

G ARy PV W ERg

!

. [»

IM»L

{0JJUCD puUE SSAIPPY g Hod

{0UOD pUB SSBIPPY ¥ WO

e00¢
o eEg N0 REG
f bod V Hogt
ali4 ioysiBey 1B
oT = SMNpopy
4 Hod A 2N
wERGg Uy Upy upeleq

je—— syfig 4 —————— >

U.S. Patent Jul. 19, 2016 Sheet 75 of 99 US 9,395,952 B2

1900

~(Stjrt)

k Clear accumulator A

0> A

1902 i

\.__| Receive binary digit
count K, set index.

(1 = K-1)

1903
& Gate B, to
crossbar
19& By+A->A
1904 l
N
1907 Decrement |
S Shift Next Digit
By 1905
A
NO
(End)
YES
1906

& Gate Power 2°
To crossbar

29 A A

Figure 19B

U.S. Patent Jul. 19, 2016 Sheet 76 of 99 US 9,395,952 B2

1910

- start)
1911 l

\ Clear accumulator A

0->A

1912 l

_| Receive binary digit
count K, set index.

(J=0)
1913 1920
NO [
1919 —(_ End >
N
YES
1915
1918 _ Gate B; to
_ crossbar
Shift Next Digit By tA>A

By

i l

1916 | Gate Power 2%
\._| Tocrossbar

29 A S A

1917 l

] Increment J

L

Figure 19C

US 9,395,952 B2

Sheet 77 of 99

Jul. 19, 2016

U.S. Patent

Y0z 8nbi

og iy g
subig Areug

-—— INQ Aeuig PolEIS — P

0£02 6203,
enmport Tv_ s]
gzoz Lk
SN NN 1202 €202
,/ONON

o og nuyl g
N8 subig Aeud
1202

[t Ul AJBUIg (BUOnDRl (4414

sebeig

5

ng JeqssoId \ g

MOIHBAQ
b\ gpoz

Yy
A

T| sofielg _
induj p _ ndino 3

Y

U.S. Patent

2070

Jul. 19, 2016 Sheet 78 of 99

2060

2062

\._ Partition binary
number into whole bits
and fractional bits

2064 ¢

k Convert fractional
bits o RNS using

'

US 9,395,952 B2

Convert whole bits

2076

to RNS using figure —

by (RF/2N) using integer
multiply and divide

by RF

figure 19A 19A
2066 l l‘
k . 2078
Scale fractional RNS Scale whole RNS L

2068 l

N\

Increment

fractional RNS

value

Yes

Y

—

2072 @ Add Whole RNS to
& fractional RNS

value

2074

Fig

A
End

-

ure 208

US 9,395,952 B2

Sheet 79 of 99

Jul. 19, 2016

FHVdNOD / 0d3Z .8, NIV
JIVdANOD .g/v. NV
FHVdNOD / 0d3Z .V, NV

00z 84nbi-

Y uno)
Wwswal3 0411
i 1n7 1n
€1z, bee

moomu_\,_;_,_m_ _:>_ ...T.uD_N.uS_ _.QD_.. 53%4 :rm.:i.. . :iwrﬂ H’
Is s

¥, Q47 Jeg $s01D

{od

~SCT
{

: : ;r»
fog || pa] g5] gEgson| o7 17
ﬂj J191I9AUOD A/ -3 & . J /QMN U REEESSee)

... £
0861 |euas o} |o|esed 2z ~e861 NWM ¥
«_m_ﬁ_ \Cmc_m O~ om niy) _..v_m =gt
1861 b “ “ Bud B
unog 16Ia

5 subig Aeuig y
piop Aleulg RN INQ Aeuig pajess

E‘“',-f

)

>
{
i
.
i

1

{ .)
Z561 a4 "By a|i4 "By

JBHOAUOD
SNd 0}
Aleuig |euonoeid
1N |puod NIV

fino g L EETEE] Sy B ¥ W

Ty N _ spbid o /

NFET

v 1unod
wewie|3 0411
uno)
SNNpojy

58150 | O x
0487)

[—

N

: °g niy +fg

30

U.S. Patent

e

L.00zZ T subig Ateuig r
/ u| Aseug [euonoe. K

US 9,395,952 B2

Sheet 80 of 99

Jul. 19, 2016

U.S. Patent

Qoz ainbig

L1902
ol

by niyy Sy %

subig fieuig Z =M
a— 1IN0 Aleuig pajeng

“geoz

3]

>

A

sng Lgie
JEQSS0ID

Oy ruy °g

sybig Areulg p=
uj Aseusg [euonoRI4

U.S. Patent Jul. 19, 2016 Sheet 81 of 99 US 9,395,952 B2

Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle
0 ;1 2 ;8 | 4 5 6 [7 | 8
1

2 3 5 7 1 1X11

C g
A EEENERK
(=] K

K1

Register

2080 —» | M,

2081 —» | M,

2082 —» | M,

—
=iy m —
N
w
[&;]

|
1IX1

2083 —» |\[|3

m —"y
e B o SR =
3> N
TSRPEL S
m —_
e e e
O —_
e e
> N

33?(5?(7?(1
AFAKAXA A

|
ZXO 0
5(

2084 —» | A,

2085 —» | €4

K

]

2087 —» C,

B
(423
~Tmemmen we~bmse e Dsse
>
T
e, TS e
o
e T
w
e s e —
o8}
sy}
e
w

2088 —» Az

&)
———
[6)]
—
&3]
T
>
=
il
m
-
'Tl
-
i
———
m
e
-

2089 ——» C;

|
x

o
st
[
——l
o
s el
o
i
N
N
[~
(o]
i
e’
a——ssenpl
o
—
o

2090 ——» A3

[¢23
bt
w
A S
>

2091 —» Cs

|
|
|
|
|
|
86— [A | 5
|
|
|
|
|
|

2092 —» A4

|
K

2093 —» | Cs OD{O;&:OMOMONOKOKOK‘*KO
' K

o

s SRR S
o

b ey Sy g
o
<
(e

RN o~ ot —calapal eSS R - e
<o

T T LSl e
o

T T e et
-

e TS St
o

T T 1
{ |

o

o
_—
o
—icy
(=)
—_—
s}

2004 —» | As xo x

4
Example Apparatus Configuration: round up Detection: Example Values:
Q = 4 bits (hex digits) Since FFBA; > 800046 Binary Input: 555546
J = 4 digits (16 bits) Then round up = 1 (55554/1000045) = .33333
K = 2 digits (8 bits) Output = 45,5= 691
F = 4 RNS fractional digits 69+ 1=70
Clocks =Jd+K+F =10 70/210 = .33333

Figure 20E

US 9,395,952 B2

Sheet 82 of 99

Jul. 19, 2016

U.S. Patent

viz ainbid4
80¢ ~
vaJ g, sl 161 dyig IVINOD / OWIZ 8. NTY 4 A
P 5 FHVYHNQD EV. Y « s
_, 4edy iy an__ “ s 4 |e4it4 —ﬂ

EECEOFEeEXAn-A S A N E ».|1‘_ I R ».l|._
! edwoy dsedwog ! ! atedwion RAWO)) auedwo) | |
1 umsuog uEsueD | b1 juesuon NvE welsuen |y
Y Y Y XY YYvyy] 1oz 1wz | b somz oz |

1]
| i
21807 uostedwon e “ » » | " » » 1
- pue sneig Ny T i ! _ _ _ .
Z82Z -t | 5 " “ ' o . “
A A A1 A 4 A i i oleinunaay iolefrLnoDy |] JOEINWN29Y 101BINWNDIY i
{ B pll'e} | } [l3e] whiq i
T.gu —m.au Yau_— " —»w o4 _ L4104 _ " TP eep | Sie " eep Tep i

g uod ¥ L0d g uod ¥ Hod

{ i
09z /Y. sBegubig dyis ! o ~ ! s |
| ,wDA_w”n__l_mnﬁﬂuMM_.\“_@E | m oN \ ._.quommmﬁ_.: MN_\“_m_Q]
g unod 1 ssoippe ssaippe " b sseippe sseippe "
uawsx Q4 1 g Ha Pt |] g 1o, 110 i
E { L 4 4 'y] } YYY 3 {

~ds I I
LIE ! !
62 | _ | |
wRJ T geP00d0 | RN "
qLlZ ¥ opoD 40 “ | " 1
oot zalaw |- - - feeg et e ! }
alowitalw | %alaw @i @9t ioq BLE " \II/ \II/ i " \II/ i
5, GIITTeq 55615 - 2\ | u _ | "
g teg sso1) _ b i P " i
¥, Q417 Jeg sso1) v Eg 550 T ! ' !
I ! ! i
calowttalin| fatam |- - - |eta w.aS. &) T me 1 i | l
i i
Y, a2 “ _ | j
L7 A | !] !
{ ! } i
] ! | !
¥ unoy “ ! " !

NG eje; GRS 110 Ele GRYET2
jews|3 04N " ot oo “ " iy woa “
| mﬁu;ﬁm_mmm g " } 14 Jeisibendy uhig "
= SMNPQ| = smn|
“ RS i " < = SMnpoyy ‘
o4l i qped v ! _ o ,
Ul 8I0JS PUE XIpE. PeXIW i N S T ! i = !
! : . { 3 i
0} SNy HoAuo) 1| dogs bze / _rlH»l tllllﬁ”l._ L b lllﬁ”lg
:U0ISIBAUDD Ateulq Oy SNY [ORU07 PUE SS8IPPY § Hod . n
Hun [opuod NV [ONUGH) PUE $SEIPPY V Uod
\ 002 gl d —

US 9,395,952 B2

Sheet 83 of 99

Jul. 19, 2016

U.S. Patent

wnon
Wwewe|3 04

0tig

lole 7\ [Buss o} jsieied anieA 1big

601¢

Z /wnod
uBia NI

°a 'a

N.QD

8012

_‘.QD

l _J% OdI74ed wwOLUﬁl_

5

'a

T e9g [T

unog
oiaz

1

°g | oW
mmw& ﬁ_
oW

h

m.as_

(o)

NOFN&

001

s ~Jieiias o jgjieied Sninpol 1bid ¥ 9012

0

mo_‘N\

»
»-

gl @by

HOW
\4
M_ S
iz | 911z
co1z/
» w_m_wwmmwm_m N

US 9,395,952 B2

Sheet 84 of 99

Jul. 19, 2016

U.S. Patent

uno) Z/wna)
juswalg Odi 101 NI

16=t-de|—> 5=4

orvmk\ mcpwk\

lole N osibey Yius wbia xipey pexiy

0 [4 b g ¥

01 ainbid

£ W

=T

X
XX ia|wmiraw| o Pwialeinla

¢ | € g L 0

f Joysibey YIS Jetdninw, snNpow ﬁ
Qote
0

mormx\

17424

A

sofelg
uBig xeH Ino4

x

0000} = (lewioapexsH) °83€0 = INSoY

{£'g'e'g} SNINAOW Buisn (X1avH AIXIN) 0ZLSY = Meis

0001 = (0+(Z(Z+(. (LG AGH LL))M)) = (X1avy GIXIN) 0ZLST

90001 anjeA 8U3 LOAUOD TTAWYXT | ¢g) 7

U.S. Patent Jul. 19, 2016 Sheet 85 of 99 US 9,395,952 B2

Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle Cycle

nso o o e]
2132 —> | My xXoX7§(5X3XzX1X1X1

2134 —> | My

3:9(29(1
?(
?(

2136 —> | Myes

2138 —» | p,

|
XKX
|

TR T e T SR T
P

B e v a -
o

TR o —
~

e danng e U
3
w
N

T oS T e T
—_

B
T
-
e
o
TS
EN
s
00
v
w
T e
[>+]

>< K
2142 —» | C, X x

(]
— i
N
il
(]
— U
N
T
(]
N
Q
(]
— N
[en]

2144 s | By

2146 —o» C,

2148 —» B,

[en]

o Il .
<

T - et T
[en]

e e e
<

T ™ S
[en]

P s s
<

T T LSS T e T T
—_

T T sl DS
<

s — eSSt
[en]

2150 —» | G,

K
|
|
|
|
20— [8 | x
|
|
|
|
|

oz [o {x (o o {x (o {0 (o oo

' Example Apparatus
2153 | Example Values:

- Configuration: _ ‘ _
\ Q = 4 bits (hex digits) Mixed Radix Input: 45120
K = 4 digits (16 bits) Mlxed Radix Miadu!us ={2,3,5,7}
F = 4 RNS fractional digits Binary Output = 03E845

Clocks=K+F=8

Figure 21D

U.S. Patent Jul. 19, 2016 Sheet 86 of 99 US 9,395,952 B2

2160
2162
2161 J
Negate A
YES Sign=negative
NO
2183
(- Sign =
positive
2164
Convert first F
digits to MRN
2165 Y 2176
{_{ Store remaining RNS e e —] Convert RNS in L/
value to ALUB ALU B to MRN
2166 Y v 2177
| Convert MRN to RNS Latch ALUB |-/
In ALU A MRN to
conversion
2167 # register
Y
Multiply by 2N v 2178
Convert
2169 2168{\1 / loaded MRN
1 Compare first F - Convert first F digits to binary
digits with Rg/2 7| digits to MRN v 2179
2170 @
1 Addoneto
RNS

Convert remaining
RNS digits to MRN

2173 #
(| Latch all but first F
MRN digits to
Conversion registers

2174 Y

| Convert loaded
MRN digits to binary

2175 Y
End2

Figure 21E

US 9,395,952 B2

Sheet 87 of 99

Jul. 19, 2016

U.S. Patent

vzz anbiy

US 9,395,952 B2

Sheet 88 of 99

Jul. 19, 2016

U.S. Patent

gze ainbiy

Jo8UUQ] pied

peads ybiH

0l22
] MU
Ny
goge |
~ gsn
09¢cez |
| Jewisyld
gGee
~| pieD 3ds
0622
— {aQ)
HOd [
Aeidsig
0oce
S

w2 A Mozzz
; §.2¢2 \i
volsuedxeo oy | H ED ““““““
DJM‘\NOW_MMMWE_ UOISIBAUOD) |
pasdg ubiH Areuig
“““““““““““““““““““““““ O] SNy
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Hun eaua)d
N1V SNY
sjetayduad »
o
pue Ol NdD M g
[BUOILBALOD) £ e
ik 0oz -/ R
AN JBljonuod YING
e / 19Uy sng “-geze
¥
108520044 {11 SOI) .
solceiD aH NdO 405 23
08z2 g e =z
\gzzz v9d4 ey Coezz

US 9,395,952 B2

Sheet 89 of 99

Jul. 19, 2016

U.S. Patent

02z sinbiy
Wa i |wa | _ﬁamiﬁo
IAL s_i wa 5 i wa
o - ook |,
g I8f|0AuUCD : 18jjoRNU0T) e :
Q| wa L wa WG |
1.Y 7 X uBIq IAL ““““ 7 L ™ L xbig IY
| na H (VE WO g i na
YY) IYSNY)
Y
¥
Y \j YivYy
7 o S WY A ,"
@ & mmmmm : 30| / [oAu0)
2 2 g8 : /
& & SEEo GV sngsmas My
© i] epogy uonesedo NV a3
(A1 8UOPAD BIRYY) VO : 9
lajjonuon) dnoio uig 109108 ¥OIQ =
o [
' O /v sng 1py “leisibey £
1] @ & Lo 3 e
062¢ 2 [U5 8o D : =
G 5 585848 v
w w o wo > sng Jejsuel] ejeqg
fod < cCCCo ;o
[73 G@AGo S)y
A 4 AlAA g/ 1eqssoiD N e
I
'y omwml\\
Z6ee
\/:: ¥ vvlivy vvivy
Eoﬂ W..Aﬂ,sa wa ¥ wa| wa > na
,1 “““““ M (y suoihg) [{p BUOEAD) ““““ F— (y BU0iRAD) —
| wa ..A.VL ssjonuon 2 S,m; a [JeliesUoD UVL s_m; wa] eoauos 1 g |
P opxubg Cpxubig | : ¥ xuiq b
ey N o L e e N
e ﬁﬁi W Qe ﬂzL Eo..A.V.. IA.Y;__\E_
v62Z YRS N tv 4
iwaliwag | imaiiwal 7§om 7zow

Loce

U.S. Patent

Jul. 19, 2016

Sheet 90 of 99

Category Neumonic Operands Notes
AddD Digh {add digit to accumulator, operand is crossbar)
SubD Digtt {subtract digit from accumulator, operand is crossbar)
Muiti Digh {multiply accumulatar by digit, operand is crossbar)
Arithmetic ModdiviM Digh {divide accumulator by digit, operand is crossbar)
primitives Addw Reg#t (add register word, operand is register file)
SubW Reg# {subtract register word, operand is register file)
MujtwW Reg# {multiply register word, operand is register file)
Moddivw Regh (ModDiv register word, operand is register file)
AddPD DigH, Pwr {optional)
Power Digit SubPD Dight, Pwr {operand is crossbar, source digit is gated by Pwr)
Arithmetic MuitPD Dig#, Pwr (operand is crossbar, multiplieris modulus"Pwr}
primitives ModdivPM Dig#, Pwr {operand is crossbar, divisor is base modulus*Pwr)
ResPower
DecPower Dig#, N
Power Digit GetPower Reg#, Dight |{return the power of the selected digit)
Arithmetic SetPower Digi, Reg# |({set power of the selected digit)
primitives Truncate Dig# {truncate digit based upon leadig zeros)
(digit) GetTrunc Reg#, Dight |{get the truncation value, and store in reg)
SetTrunc Digi, Reg# |(settruncation from register)
LIEO Based PopAdd {pops operand from LIFO to crosshar, adds to accum)
Arithmetic SubPush Digt (gate digit to crossbar, subtract, push to LIFO)
Primitives PopMult {pops operand from LIFO to crossbar, adds to accum)
DivPush Dig# {gate modulus to crossbar, multiply, push to LIFO)
LoadD Reg#f, Dight |({load register with digit value)
LoadD Digh, Reg#t [(store digit value to register)
LoadW A, Reg# {load the accumulator from register location)
Move, Set and LoadW Reg¥, A {store the .accuml.ﬂator at some. register location)
Clear LoadW Hold#, Reg#t |{load holding register from register)
Operations SetSkip DigH {set digit as skipped)
Clear A {clear the accumulator)
ClearSkips {clear all skip digit flags)
SetSign N/P {set sign of the accumulator)
SetSignValid T/F {set sign valid of the accumulator)
Digit and Sign |BaseExtend A Base extend all skipped digits
Extension SignExtl A Sign extend the accumulator (integer)

Figure 22D

US 9,395,952 B2

U.S. Patent Jul. 19, 2016 Sheet 91 of 99 US 9,395,952 B2

Operations Category Operation/operand
a. ADD

LUT Select Function b. SUB
¢. MULTIPLY
d. DIVISION

. Set Skip Flag @ digit
. Clear all skips {all digits)

Decrement Power Valid count @ Digit
. Restore Power Valid Count (all digits)
. Set or truncate Power Valid Count

Digit Validation
operations

o flalo loje

. (Gate to crossbar
i} Accumulator to crosshar
ii) Holding register to crossbar x N
iit) Register to crossbar
. Select LUT operand:
i) Crossbar
it) Register File

23]

Crossbar Gate Enabled and
LUT Operand Select

o

. Read Register @ Location (all digits)

. Write Register @ Location (all digits)
Read Register @ Location @ Digit

. Write Register @ Location @ Digit

Register File Read and
Write Control

oo jo o

. Load Accumulator from LUT result

. Load Accumulator from Register File
Latch Accumulator to Register File

. Latch Holding Register x N from Register File
Latch Compare Register from Register File

Register Loading and
Moving

OO0 o

a. All Digits Zero

b. All Digits one

¢. Zero @ digit

d. A/B comparator all set EQUAL
Status Signals and Flags e. A/B comparator set =, >, or < @ Digit
f. Local comparator all set EQUAL

g. Local comparator set =, >, <@ Digit
h. Skip Digit @ Digit

i. Power Valid count @ Digit

Figure 22E

U.S. Patent Jul. 19, 2016 Sheet 92 of 99 US 9,395,952 B2

Basic Arithmetic
Category) Operands
Instructions
Add <integer> <integer>
Add Add <fixfraction> <fixfraction>
Add <fixfraction> <integer>
Add <siptfraction>,<slptfraction>
Sub <integer><integer>
Subtract Sub <fixfraction><fixfraction>
Sub <fixfraction>,<integer>
Sub <siptfraction>, <siptfraction>
Muit <integer> <integer>
. Mult <fixfraction> <fixfraction>
Muttiply - -
Mult <slptfraction>,<slptfraction>
Muft <fixfraction> <integer>
Div <integer> <integer>
Divide D.iv <f-ixfraction>,<.fixfraction>
Div <fixfraction>, <integer>
Div <slptfraction>,<siptfraction>
inv <fixfraction>,<integer>
Invert Inv <fixfraction>
Inv <siptfraction>
Cmp <integer>,<integer>
Cmp <integer> <constant>
Compare Cmp <fixfraction> <fixfraction>
Cmp <fixfraction>,<integer>
Cmp <fixfraction>,<ffconstant>
Cvt <fixfraction> <integer> {(opt)
Cvt <fixfraction>,<slptfraction>
Convert Cvt <constant>,<integer>
Cvt <ffconstant>,<fixfraction>
Cvt <siptconstant> <siptfraction>
Ext <integer>
Sign Extend Ext <fixfraction>
Ext <siptfraction>

Figure 22F

US 9,395,952 B2

Sheet 93 of 99

Jul. 19, 2016

U.S. Patent

9zz 24nbid
‘049z Aq apiaip e s1dwialie (1Y Byl §i 9nij 03183 asje4/onii oiazAgalq
‘9sjey 3S{D ‘033z 03 |enba 18ip paddpjs-uou Aue JO §1IBIP 1S41) SUWINIDY # 1810 ciazAuy
*82|} spnjiudetu Usis 101ejNWNJIR 34} i0 SN{EA DYI SUINIDY | 9AISO4/aA1ledaN IS E)
‘95{e) 9519 ‘anjeA i UZ|S J01B{NWNIDE 3Y] I 9NJ3 SUINIBY asjed/eniy pieAUSISS) uopeiado
‘as{e] 35{d ‘au0 ale SHBIP poddiys-uou e ji an) suiNn1aYy osje4/oniy IYEDNnG) "I SMEIS
"9sie} 9542 ‘019z ale s1Fip paddps-uou jje 41 94 suin3ay asjed/onsy AOIDZ poseg piom
7 21edwiod (ojew sio1enwindde HSip paddpis-uou jje 1 9nul suin1ay asjed/oniy Mzenb3
T 24edwi0d Yojew S103e|nwindoe 131p padds-uou {je j1 anJl suin1ay asjeg/eniy MTienb3
181p paseq jomod pa133|as ayl JO 43Mad JU1ND Y3 SUINIDY N # udig 1DMO4195)
paddpis st 181p papa|es ay) §1 5153 ENCEVEIO # 181q digs) uonesado
1 adedwiod 1i31p yuim uosuedwod HSIP € JO 1 Nsal Y3 SNy NI =5« # 181g ‘#93y pioH gdwo) | -0.A smiels
{s)odaz (g51) & sey 13ip paseq 1amod paldafas ayl ji sisal U2 piRA JoMod # 181g HUMdoiaz paseq1dig
0492 S{ UEIp PSI0B]as By 1 51531 asjed/onsy # 18iq qoioz
uonduasag suuniay (s)puesado JIUOWNSN/ [OGUIAS Ao8ayen

US 9,395,952 B2

Sheet 94 of 99

Jul. 19, 2016

U.S. Patent

HzZ @nbi4
009 v/N 9 1+|{19)%804| o) Yipim puesado
60°SL V/N TT+IWTTIOY (M 5 fH) + A vy aduel DV
76°LE V/N TT+32909°C o« MY Y Auun
€99/ 8T €T+38]TLT'T Y« ™ & Y Ny a8uel auiydeN
60°6€ L TT+3IE08Y8'S | T946S+EGxLV4EV«TV4LE Ty adues papuaixg
60°€L v/N 7T+3T9500'T Az /™) A 28Ul aARISOd
§5'9¢ T TT+38200'T /M Yy aduel anisod
60°S. v/N ZT+ASKTI0Y A 5 A Y _e8ues ajgesn
§§'LE 1T TT+39500'C MY & 7Y g 93uel ajqesn
8681 14 £9876€ TE46C+EC46T My a8ues 19333u
96'8T L 0TSOTS LTAET4TT4L4G4E4T Y a8uey jeuoiloeiy
”H_M_MM”_“ s}SigsNY | 28uey (|ewpag uonenbg aduey _MM...‘_M\M uonduosag aduey

US 9,395,952 B2

Sheet 95 of 99

Jul. 19, 2016

U.S. Patent

vez aunbid

CETEQE6Z8TLTYTSTHTECTITTZOZ6TI BT LTOTSTPTETZITIOI G 8 L 9 & Vv € T 1

2 s 2 2 p 3 . : 4

{d)80| /sug ‘ainb3

¥'T v sUg 'AInb3

o esmeifiewse
S1g 1udjeAinby

0c

ov

08

08

007

0ct

ort

091

081

US 9,395,952 B2

Sheet 96 of 99

Jul. 19, 2016

U.S. Patent

14

€T

(43

gez a4nbi4

1T

Geee

0]

SUAP SNY osififnn
SHG 1UB[BAINDT arsersn

000S

00001

000ST

0000¢

0005¢

US 9,395,952 B2

Sheet 97 of 99

Jul. 19, 2016

U.S. Patent

[

0gz einbiy

ot

{d)80}/sug "AINDOT o

SUG 31U S]RAINDT wseienss

000S

0000t

0001

0000¢T

000s¢

sug / subig

US 9,395,952 B2

Sheet 98 of 99

Jul. 19, 2016

U.S. Patent

4% £1

I

age einbi-
@)

1T

[

e o

{SI01BUIWOUBD 3C #)30 T
(38UR4) 80T wacpose

09¢ee

0001

ooz

0008

000y

000s

0009

0004

sid

US 9,395,952 B2

Sheet 99 of 99

Jul. 19, 2016

U.S. Patent

3£ 8inbi
14 el A% 13 01
afuel J012UWI0UDD / DBUR L AJRUIG cuiienns
D "sA (suq ui)

a8uel siojeujwouap / asduel Ajeulg

0ot

[4)

US 9,395,952 B2

1
PRODUCT SUMMATION APPARATUS FOR A
RESIDUE NUMBER ARITHMETIC LOGIC
UNIT

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/475,979, filed May 19, 2012.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to general purpose arithmetic logic
units (AL Us), and in particular to an ALU utilizing a residue
number system in performing arithmetic operations.

2. Related Art

The binary number system is the most widely used number
system for implementing digital logic, arithmetic logic units
(ALU) and central processing units (CPU). Binary based
computers can be used to solve and process mathematical
problems, where such calculations are performed in the
binary number system. Moreover, an enhanced binary arith-
metic unit, called a floating point unit, enhances the binary
computers ability to solve mathematical problems of interest,
and has become the standard for most arithmetic processing
in science and industry.

However, certain problems exist which are not easily pro-
cessed using binary computers and floating point units. One
such class of problems involves manipulating and processing
very large numbers. One example is plotting the Mandelbrot
fractal at very high magnification. In order to plot the Man-
delbrot fractal at high magnifications, a very long data word is
required. Ideally, the Mandelbrot fractal plotting problem
necessitates a computer with an extendable word size.

The main issue is that any real computer must be finite in
size, and consequently the computer word size must be fixed
at some limit. However, closer analysis reveals other contrib-
uting problems. One such problem is the propagation of
“carry” bits during certain operations, such as addition and
multiplication. Carry propagation often limits the speed at
which an AL U can operate, since the wider the data word, the
greater the path for which carry bits are propagated. Com-
puter engineers have helped to reduce the effect of carry by
developing carry look-ahead circuitry, thereby minimizing,
but not eliminating, the effects of carry.

However, even the solution of implementing look-ahead
carry circuits introduces its own limitations. One limitation is
that look-ahead carry circuits are generally dedicated to the
ALU for which they are embedded, and are generally opti-
mized for a given data width. This works fine as long as the
CPU word size is adequate for the problems of interest. How-
ever, once a problem is presented which requires a larger data
width, the CPU is no longer capable of using its native data
and instruction formats for direct processing of the larger data
width.

In this case, computer software is often used to perform
calculations on larger data widths by breaking up the data into
smaller data widths. The smaller data widths are then pro-
cessed by the CPU’s native instruction set. In the prior art,
software libraries have been written specifically for this pur-
pose. Such libraries are often referred to as “arbitrary preci-
sion” math libraries. Specific examples include the arbitrary
precision library from the GNU organization, and the high
precision arithmetic library by Ivano Primi.

However, software approaches to processing very large
data widths have significant performance problems, espe-

20

25

30

35

40

45

50

55

60

65

2

cially as the processed data width increases. The problem is
that software processing techniques tend to treat the smaller
data widths as digits, and digit by digit processing leads to a
polynomial increase in execution time as the number of digits
increases. In one example, an arbitrary precision software
routine may take four times as much time to execute when the
data width is doubled. When using arbitrary precision soft-
ware solutions, the amount of processing time often becomes
impractical.

One possible solution is to build a computer which is not
based on binary arithmetic, and which does not require carry
propagation logic. One candidate number system is the resi-
due number system (RNS). Residue number addition, sub-
traction and multiplication do not require carry, and therefore
do not require carry logic. Therefore, it is possible that RNS
addition, subtraction and multiplication be very fast, despite
the word size of the ALU. These facts have provided some
interest for RNS based digital systems in the prior art; unfor-
tunately, prior art RNS based systems are only partially real-
ized, and have failed to match the general applicability of
binary based systems in essentially every instance. This factis
evident from the lack of practical RNS based systems in the
current state of the art.

The reasons for the failure of RNS based systems to dis-
place binary systems are many. Fundamental logic opera-
tions, such as comparison and sign extension, are more com-
plex in RNS systems than traditional binary systems, and
require more logic circuitry and execution time. For many
experts, it is often assumed the difficulty of RNS comparison,
RN to binary conversion, and RNS sign and digit extension
make RNS based processors and ALLUs impractical for gen-
eral purpose processing.

In addition to the problems noted above, the lack of a
practical RNS integer divide further restricts the applicability
of RNS based systems of the prior art. Also, the lack of
general purpose fractional number processing has (severely)
restricted the usefulness of RNS based digital systems of the
prior art. In summary, prior art RNS systems cannot process
numbers in a general purpose manner, and this has relegated
such systems to little more than research subjects.

SOME NEEDS OF THE PRESENT INVENTION

The method and apparatus disclosed herein provide a gen-
eral purpose RNS arithmetic logic unit (ALU). The new RNS
ALU addresses the many issues confronted and exposed in
the prior art. The RNS ALU of the present invention is exten-
sible, and provides a solution to the time complexity problem
involving arithmetic processing of very wide data. For very
long data widths, the RNS ALU may outperform many prior
art binary systems.

In terms of general purpose processing, the RNS ALU
provides performance advantages over very wide width
binary systems, even if such binary systems exhibit a run time
that is linear with respect to increasing bits (resolution). The
reason is the RNS ALU can complete many operations in near
constant time, such as adding, subtracting, and multiplying
integers. The RNS ALU can also add and subtract fractional
values in constant time, as well as multiply integers by frac-
tions in near constant time. Therefore, if the problem of
interest can take advantage of such single clock operations,
the RNS ALU may provide results faster than an equivalent
binary system, which must handle carry for all arithmetic
operations of all data formats.

It is anticipated that the RNS ALU of the present invention
find application in problems involving very large numbers,
such as encryption and decryption. Other example applica-

US 9,395,952 B2

3

tions are found in research, such as prime number searching
and fractal analysis. Often, these applications involve very
long word lengths, including binary word widths greater than
1024 bits. When dealing with very long word widths, num-
bers are broken down to smaller chunks for processing, and
therefore arithmetic operations are processed digit by digit. In
this context, the RNS ALU can effectively compete with
binary systems, since RNS operations do not require carry.

The method and apparatus of the present invention is also
applicable to fractal analysis. For example, consider the case
of'the analysis of the Mandelbrot set, or Mandelbrot fractal. In
order to observe the fractal at increasingly greater magnifi-
cation, the processing system requires increasingly greater
numeric resolution. If one uses a standard binary floating
point unit, there comes a point during magnification of the
fractal image for which the floating point unit will be unable
to render the fractal. In this case, a larger word size is needed,
as well as the required operations of fractional multiplication,
addition and compare on the larger word size.

The method and apparatus of the present invention can be
used to create a very wide word ALU. The ALU will support
fractional multiplication and addition of very long word val-
ues at theoretically greater speed then would be the case if a
conventional binary floating point unit was extended to sup-
port the same word size.

The method of the present invention provides an ALU
apparatus with superior fractional representation. The frac-
tional representation of the RNS ALU provides many more
denominators than does a binary representation covering the
(approximately) same range. This provides more accurate
representation of many more commonly used ratios. This
high precision of the RNS ALU competes favorably with the
precision of many binary formats, including extended preci-
sion floating point (when comparisons are made of ALUs of
approximately the same effective word width).

In addition, the RN'S ALU of the enclosed invention is very
fast. For example, the theoretical performance of the RNS
fractional multiply of the enclosed invention is approximately
linear with respect to the number of equivalent binary bits
(wide) of the data processed. This relation accounts for the
increase in memory table lookup time as the binary width of
the most significant digits increase. In practice, the perfor-
mance of the RNS fractional multiply is closer to n/log(P),
where n is the effective word width in bits, and P is the
equivalent number of RNS digits.

Interestingly, if look-up table speed is assumed to be fixed,
and other basic assumptions are made, the theoretical time for
RN fractional multiply is better than linear. This assumption
is particularly valid within intervals for which a given (bi-
nary) look-up table supports a plurality of digit modules; for
example, a look-up table supporting 8 bit wide operands
supports up to 54 RNS digits, whereas a lookup table sup-
porting 9 bit operands supports up to 97 RNS digits. The
difference in supported digits is 97-54=43 digits. Therefore,
assuming 9 bit look-up tables (LUT) are employed, up to 43
digits worth of number extension is possible without any
increase in LUT size or speed. It should be noted this analysis
compares “equivalent binary width”, and not RNS digit
length. When using conventional memory to support look-up
tables, higher density memory is also faster; therefore, the
assumption of a fixed delay look-up table holds as long as this
technology trend and the system memory requirements
match.

In terms of RNS digit length, the time complexity analysis
for fractional multiply versus RNS digit length is linear, again
assuming a fixed LUT speed.

20

25

30

35

40

45

50

55

60

65

4

The performance of the RNS ALU compares favorably
with binary processing systems, which may exhibit a poly-
nomial increase in processing time with respect to an increas-
ing number of bits (wide) of the data. For the multiply and
divide operations, the RNS ALU will typically exceed the
performance of a similarly sized (wide) binary ALU at some
given data width. The point of crossover is to be determined
based on actual implementations and technologies. For many
types of arithmetic calculations, and in many cases, the RNS
ALU will significantly outperform an equivalently sized
binary ALU. For integer operations of addition, subtraction
and multiplication, the RNS ALU theoretically outperforms
the binary AL U at any bit width. In practice, the actual per-
formance depends on many other real world factors, such as
implementation technology and circuit topology.

Additionally, the sliding point operation of the RNS frac-
tional multiplication supports a novel implementation of
Goldschmidt division and Newton-Raphson reciprocal. The
Newton reciprocal algorithm provides quadratic conver-
gence, and is ideally suited for systems requiring fast division
of fractional quantities. Using the fractional multiplication
method to implement either the Goldschmidt or the Newton-
Raphson technique provides a very fast division for fractional
RNS wvalues. (It should be noted the RNS integer division
method of the present invention may also be used achieve
fractional division without using Newton-Raphson or Gold-
schmidt).

The analysis and discussion above does not include the
time to convert results back to binary, and this is partially
justified. Some problems suitable for the method and appa-
ratus of the present invention will require many iterative
calculations to be performed. Using the apparatus and meth-
ods of the present invention, this will be accomplished
entirely in RNS format. Once the final arithmetic result is
ready, it is converted to binary. If the conversion time of the
final result can be neglected, then the RNS multiplier’s better
than linear performance with respect to the number of binary
digits may be realized. Furthermore, in the case of the Man-
delbrot fractal problem, the results of repetitive calculation
may only be a “yes” or “no” answer, which does not require
conversion back to binary. In yet another case, if allowable,
RNS results may be truncated, and converted with less reso-
lution to shorten conversion time.

However, many arithmetic problems will not require
repetitive calculations on one set of values, such as calcula-
tions involving matrixes. In this case, the speed of converting
RNS results back to binary is more significant. Fortunately,
the method of the present invention includes a new and unique
apparatus for high speed conversion of RNS values to binary.
The performance of the RNS to binary conversion is approxi-
mately linear with respect to RNS digits, given the assump-
tion that LUT access time is fixed. Using the methods of the
present invention, conversion of RNS to binary is on the order
of the time required to perform a fractional RNS multiplica-
tion, and is therefore practical. Moreover, the conversion
apparatus and method is extensible, and does not suffer from
increasing carry propagation delay as data width is increased.
Equally important is the fact the novel conversion apparatus is
extendable to a pipelined architecture, capable of performing
a conversion every clock cycle.

Another need and advantage of the disclosed invention is
its potential application to other forms of computational pro-
cessing. For example, optical computers may benefit from
digit by digit isolation due to their large size; therefore, the
method of the present invention is ideal. Additionally, new
technologies, such as optical computing and quantum com-
puting, can use the method of the present invention to perform

US 9,395,952 B2

5

digital arithmetic operations using hardware which has more
states than Boolean logic, i.e., more than two states.

In hindsight, RNS systems have numerous embodiments
and alternate methods that can be employed and exploited;
therefore, in foresight, it is anticipated the AL U of the present
invention be a new fundamental baseline, and therefore be
further modified and enhanced in the future.

SUMMARY OF THE INVENTION

A complete and well rounded residue based ALU is defined
herein. This ALU allows complete arithmetic processing of
both integer and fractional values in residue number format.
The ALU can operate on residue numbers directly, providing
a result directly in residue number format. The ALU can
compare residue numbers directly, and perform branching as
a result of a residue compare operation. The ALU is exten-
sible; that is, extending the word size of the ALU is straight-
forward. The AL U also provides conversion instructions for
converting RNS to binary and binary to RNS, thereby trans-
ferring processed data to and from the I/O or host computer
system.

This disclosure includes four parts. The first part discloses
an integer Arithmetic Logic Unit (ALU) which operates on
operands in a residue number format representing integers.
The second part discloses a fractional AL U which operates on
operands in a residue format representing fractional values.
The two ALUs are combined together with additional special
functions, such as compare, negate, and sign extend. The
resultant AL U is capable of general purpose number process-
ing. The resulting AL U may be used in novel and un-expected
ways to increase arithmetic processing performance. For
example, a sum of products algorithm is contemplated which
essentially performs in the same amount of time as a single
multiply plus a clock cycle for each product term, regardless
of data width.

The third part discusses conversion of binary to RNS, and
more importantly, RNS to binary. The applicability of the
present invention is greatly enhanced by the addition of a fast
RNS to binary conversion apparatus. Without it, conversion
rates may approach O(n?), thereby restricting the usefulness
of the ALU. The fourth part discusses an actual RNS ALU
called Rez-1, and some of the important criteria and implica-
tions of its design.

Included with the integer ALU is a method and apparatus
for dividing any two integers represented in residue number
format, and providing a resultant quotient and remainder in
residue number format. The method and apparatus of the
enclosed invention may be extended to support numbers of
any size or magnitude. Additionally, several key and novel
features are disclosed which enhance the execution speed of
the integer RNS division method.

The RNS based ALU supports the basic arithmetic opera-
tions, such as addition, subtraction, multiplication and divi-
sion. Furthermore, complex RNS operations, such as digit
extension and number comparison, are supported in a practi-
cal and extensible manner. Signed values, sign detection and
sign extension are supported. The integer division method
disclosed also provides a basis for supporting an efficient
fractional RNS representation, including the associated
operations of converting to and from RNS fractional repre-
sentations, also defined herein.

Included within the fractional ALU is a new method and
novel apparatus for multiplying any two arbitrary RNS values
in fractional RNS format. Like its integer counterpart, the
fractional RNS AL U supports addition, subtraction, multipli-
cation and division of arbitrary fractional values. The frac-

20

25

30

35

40

45

50

55

60

65

6

tional RNS AL U also supports mixed format operations, such
as addition, subtraction, multiplication and division of a frac-
tional value by an integer value.

The fractional RNS ALU supports at least two types of
fractional representations, 1) fixed fractional resolution, i.e.,
“fixed point”, and 2) variable fractional resolution, i.e., “Slid-
ing Point” RNS values. Furthermore, the fractional RNS AL U
supports fractional number comparison, sign extension, digit
extension, and operation with signed values.

RNS ALU Background

To facilitate the disclosure of the many innovations and
inventions to follow, it is necessary to introduce a basic struc-
ture for one embodiment of the RNS ALU. One such basic
structure is herein referred to as a “dual ALU, digit slice RNS
architecture”.

As a brief review, the following figures are provided to
establish a foundation and enhance the understanding of the
dual ALU, digit slice RNS architecture. Prior art concepts are
included to help the reader gain a basic understanding.

In 1945, John Von Neumann helped to clarify fundamental
concepts of digital computer apparatus. In his publication, a
basic arithmetic logic unit (ALU) was proposed. Today, an
ALU is often depicted using a “V” shaped symbol 100, as
shown in FIG. 1A. The basic ALU accepts up to two data
operands, A 110 and B 111, as inputs. The ALU is instructed
to perform a specific arithmetic operation using a control
input 113. Example operations include addition, subtraction
and multiplication. In response to the control input 113, the
ALU outputs an arithmetic result 112. In addition, the ALU
may also output an operation result status 114, such as over-
flow on result or zero on result.

In FIG. 1B, the ALU of FIG. 1A is expanded on by adding
an accumulator 101 and a registered operand 102. The accu-
mulator 101 is provided to store the output 112 of the ALU
100. The registered operand 102 is provided to store the
operand until the ALU is ready. In FIG. 1B, a special data path
103 is provided which routes the accumulator value (output)
backtobe used as an operand of the ALU. This data path gives
meaning to the term accumulator, since the value in the accu-
mulator can be accumulated, or continually summed with
operands, for example.

In FIG. 1C, the ALU of FIGS. 1A and 1B is advanced by
the addition of a register file 102. The register file allows a
plurality of operands to be stored, via a plurality of registers,
and each accessed as an operand to the ALU 100. The data
path 1035 feeding back from the accumulator 101 to the input
of'the register file 102 indicates the result of the accumulator
may be stored in any selected register in the register file.

FIG. 1D advances the previous concepts by combining two
such ALU structures into one. In FIG. 1D, a pair of ALUs is
illustrated, ALU A 100A and ALU B 100B. Also, two accu-
mulators are provided, accumulator A 101 A and accumulator
B 101B. While most everything is duplicated, register file 102
is shared. The shared register file means that both ALU A and
ALU B may access items contained in the register file. Also,
each ALU may write its accumulator to the register file,
provided they don’t write to the same register at the same
time.

In FIG. 1E, both ALU symbols are grouped using a block
diagram 301, and then in FIG. 1F, the ALU symbols are
replaced with a dual port look up table (LUT) 301. The LUT
301 is commonly implemented as random access memory
(RAM), and is shown as being dual ported, a common
resource in modern field programmable gate arrays (FPGA’s)
and very large scale integration (VLSI) integrated circuits.
Since the RAM is dual ported, it may be shared between the
two ALUs. The LUT table performs arithmetic functions by

US 9,395,952 B2

7

routing the operands into the LUT address inputs. The correct
result is contained in the resulting addressed location, and is
output to the accumulator 101a and 1015. Each ALU may
access different locations ofthe LUT 301 simultaneously, and
therefore operate independently.

One subtle detail of FIG. 1F is the “digit accumulator”.
Because of the nature of RNS numbers, each digit may be
operated on independently of the others, and therefore each
digit may support its own ALU, or “digit ALU”. This differs
from the concept of an N bit binary ALU, for example, which
is usually thought of as having a single ALU operating on
operands of N bits wide. The RNS computer architecture
dividing an ALU into digit groups is herein referred to as
“digit slice architecture”, since each digit slice includes its
own set of ALU logic circuitry, and since each digit slice may
be cascaded to form a wider ALU. FIG. 1G illustrates a
plurality of such digit AL.Us, which taken together represents
a P digit sized RNS ALU.

RNS ALU Overview

One basic RNS ALU structure of the present invention is
surprisingly simple given it can support nearly all RNS opera-
tions. FIG. 2A illustrates this basic structure using an ALU
with P number of digits. As shown in FIG. 2A, a control unit
200 is coupled to a plurality of digit slice ALU’s 215, 210, &
205. The control unit coordinates the primitive operations
within and between each digit slice ALU to perform the
desired function(s). This is analogous to microcode within a
binary CPU, which coordinates the required primitive opera-
tions for each machine instruction. Operations within the
RNS ALU may occur for all digits simultaneously, and may
also occur in sequence, in a digit by digit fashion.

In the prior art, basic binary AL Us are based upon simplic-
ity and economy. For example, it is common that a binary
ALU be fed data from two registers. It is common that one of
the registers is an accumulator, and the other register is
selected from a set of general purpose registers. After the
binary ALU performs an arithmetic operation, such as addi-
tion, the result of the operation is stored in the accumulator.
The RNS ALU of the present invention supports a similar
structure, but with several key modifications.

In one embodiment, the RNS ALU of the present invention
supports a dual accumulator. This architecture is advanta-
geous for several reasons. For one, some basic RNS opera-
tions, such as compare and divide, require two RNS numbers
to be processed in parallel. Another advantage of a dual accu-
mulator RNS architecture is that logic function Look-Up
Tables (LUTs) can be stored in dual port memory, a common
resource in modern FPGA’s. Therefore, the RNS ALU may
share the same memory LUT between both accumulators in a
single digit wide function block. Both accumulators will also
share the same modulus (p).

A dual ALU digit slice shares common resources but oper-
ates on two digits in an independent manner. Another way to
visualize the dual ALU is simply two independent RNS
ALU’s operating side by side. A dual RNS ALU enhances
performance while conserving critical hardware resources. In
one embodiment, the method and apparatus of the present
invention utilizes a dual accumulator ALU to enhance the
performance and efficiency of critical operations. It should be
noted that a single ALU structure is also possible, as is a quad
ALU using quad port memory, for example.

Digit Slice Architecture

The ALU of the present invention is extensible. By adding
successive ALU digits with unique (pair-wise prime) modu-
lus p, the overall ALU word size can be increased without
affecting the general architecture. In one embodiment of the

20

25

30

35

40

45

50

55

60

65

8

present invention, and as shown in FIG. 2A, a “digit slice”
ALU architecture is employed.

With respect to binary based systems, digit slice architec-
tures are not new in the prior art. For example, binary proces-
sors have been organized as bit-slice processors, such as the
Texas Instruments SN74AS888 integrated circuit (IC)
device. In this device, the processor is organized as eight bit
slices; these 8 bit slice ICs can be cascaded to create a pro-
cessor having any desired data width.

With respect to RNS based systems, the digit slice archi-
tecture is a new concept. The concept implies the AL U can be
extended by adding additional digits to the word size. It also
implies that each digit is separated from each other by the fact
each digitis contained in its own “digit ALLU”. In one embodi-
ment of the RNS ALU of the present invention, a new and
novel RNS based digit slice architecture is contemplated, and
is herein referred to as a “digit slice” RNS architecture.

Inthe priorart, binary bit slice AL U architectures fell out of
favor when ALU design techniques were developed that were
not suitable for bit slice architectures. Much of the reasoning
behind this has to do with handling carry logic in a more
efficient manner, i.e. all within a single IC chip. However,
residue number arithmetic does not require carry, and hence,
the digit slice architecture is well suited for the implementa-
tion of the present invention. It should be noted that other
embodiments for the present invention exist, and that the
present invention is not limited to the digit slice architecture.

The digit slice architecture for an RNS ALU of the present
invention also differs from prior art binary systems. For one,
each RNS digit slice must support a unique pair-wise prime
modulus. As shown in FIG. 2A, within the RNS digit slice
architecture, each digit slice 215, 210, 205 is essentially its
own “mini ALU”. Each digit ALU modulus must be pair-wise
prime with respect to one another, which implies that each
LUT of each digit ALU support a different modulus, p. For
example, the digit slice AL U 215 supports a modulus of p=2,
while the digit slice AL U 210 supports a modulus of p=3.

In one embodiment of the ALU, as shown in FIG. 2A, a
common data bus 319 is connected to each digit slice 215,
210, 205. The common data bus 319 allows the controller 200
to inspect the contents of any digit slice 215, 210, 205. The
common data bus 319 routes the data from any one digit ALU
to all other digit ALUs. While this may seem similar to carry
logic, itis not. The routed data is transmitted to each digit slice
at once, and without waiting for the results of any particular
digit to complete and propagate. In another embodiment,
multiple data paths 319, 318 are present to increase band-
width, and facilitate other design objectives such as a dual
accumulator architecture.

In the embodiment shown in FIG. 2A, an ALU control
system 200 coordinates the functions of all RNS digits, one
such digit 215 having the modulus p=2. Each digit incorpo-
rates the necessary LUT functions for modulo addition, sub-
traction, multiplication, and division (i.e., inverse multiplica-
tion). These operations are fundamental building blocks for
all other operations. Hence, RNS addition, subtraction and
multiplication can be completed with a single LUT access
within each digit AL U simultaneously. These RNS operations
are fast and can complete in one clock cycle.

In contrast, operations such as RNS comparison, base
extension, and arbitrary division will consist of a series of
operations within the AL U, such operations generally requir-
ing multiple and sequential LUT accesses. In FIG. 2A, a
micro-coded control system 200 processes data within the
ALU to perform complex operations, such as RNS compare,
digit extension, and division. These operations are essentially
digit by digit, and are hence regarded as slow operations.

US 9,395,952 B2

9

These operations may be invoked with a machine instruction,
or they are incorporated as low level operations in other RNS
ALU machine instructions.
Overview Summary

The RNS ALU of the present invention is unique, as it
allows general purpose arithmetic processing in RNS repre-
sentation. In one embodiment, enhanced digit-slice architec-
ture is employed. Additionally, the digit-slice architecture is
beneficial for explaining the unique and novel control meth-
ods of the present invention. This disclosure will return to the
discussion of the digit slice architecture and its associated
control methods later; however, next, we will provide a
broader understanding of the present invention, and how it
relates to its practical use and need.

BRIEF DESCRIPTION OF THE DRAWINGS

The components in the figures are not necessarily to scale,
emphasis instead being placed upon illustrating the principles
of the invention. In the figures, like reference numerals des-
ignate corresponding parts throughout the different views.

FIG. 1A is a block diagram illustrating an exemplary basic
ALU;

FIG. 1B is a block diagram illustrating an exemplary accu-
mulator based AL U with register based operands;

FIG. 1C is a block diagram illustrating an exemplary ALU
showing register file and basic data paths;

FIG. 1D is a block diagram illustrating an exemplary dual
ALU with shared register file;

FIG. 1E is a block diagram illustrating an exemplary dual
ALU with shared register file;

FIG. 1F is a block diagram illustrating an exemplary dual
digit AL U with dual port arithmetic LUT and dual port reg-
ister file;

FIG. 1G is a block diagram illustrating an exemplary plu-
rality arrangement of dual ALUs;

FIG. 2A is a block diagram illustrating an exemplary
p-digit RNS ALU architecture;

FIG. 2B is a block diagram illustrating an exemplary
p-digit RNS ALU architecture;

FIG. 2C is a block diagram illustrating an exemplary
p-digit RNS ALU architecture with a register file crossbar
source;

FIG. 2D is a block diagram illustrating an exemplary
p-digit RNS ALU architecture;

FIG. 2E is a block diagram illustrating an exemplary
p-digit RNS ALU architecture with a register file crossbar
source;

FIG. 2F is a block diagram illustrating an exemplary
p-digit RNS ALU architecture with a LIFO crossbar source;

FIG. 3A is a block diagram illustrating an exemplary RNS
dual digit accumulator;

FIG. 3B is a block diagram illustrating an exemplary RNS
dual digit accumulator modulus LUT pre-scalar to digit arith-
metic LUT;

FIG. 3C is a block diagram illustrating an exemplary RNS
dual digit accumulator;

FIG. 3D is a block diagram illustrating an exemplary RNS
dual digit accumulator;

FIG. 3E is a block diagram illustrating an exemplary RNS
dual digit accumulator with embedded digit compare regis-
ters and digit comparators in detail;

FIG. 3F is a block diagram illustrating exemplary RNS
dual ALU sign flags;

FIG. 3G is a block diagram illustrating an exemplary RNS
dual digit accumulator;

20

25

30

35

40

45

50

55

60

65

10

FIG. 3H is a block diagram illustrating an exemplary RNS
dual digit accumulator with a fused LUT and a Modulop LUT
in detail;

FIG. 31 is a block diagram illustrating an exemplary RNS
dual digit accumulator;

FIG. 4A is a block diagram illustrating an exemplary envi-
ronment of use for a RNS ALU co-processor;

FIG. 4B is a block diagram illustrating an exemplary envi-
ronment of use for a RNS ALU co-processor;

FIG. 4C is a block diagram illustrating an exemplary envi-
ronment of use for a RNS ALU co-processor;

FIG. 4D is a block diagram illustrating an exemplary RNS
ALU;

FIG. 5A is a block diagram illustrating exemplary ALU
status logic using digit banks;

FIG. 5B is a block diagram illustrating exemplary world
status logic for digit bank organization;

FIG. 5C is a block diagram illustrating exemplary ALU
status logic using digit banks;

FIG. 5D is a block diagram illustrating exemplary zero
digit status logic;

FIG. 5E is a block diagram illustrating exemplary status
register logic;

FIG. 6A is a block diagram illustrating an exemplary reg-
ister file layout;

FIG. 6B is a block diagram illustrating an exemplary reg-
ister file by digit;

FIG.7A is ablock diagram illustrating RNS to mixed radix
conversion with LIFO and skip digit processing;

FIG. 7B is a block diagram illustrating exemplary RNS to
mixed radix conversion using a LIFO;

FIG. 8A is a block diagram illustrating exemplary mixed
radix to RNS conversion with LIFO;

FIG. 8B is a block diagram illustrating exemplary mixed
radix to RNS conversion using LIFO;

FIG. 9A is a block diagram illustrating an exemplary RNS
value to RNS value comparison;

FIG. 9B is a block diagram illustrating an exemplary RNS
value to RNS value comparison;

FIG. 9C is a block diagram illustrating an exemplary RNS
value to RNS value comparison;

FIG. 10A is a block diagram illustrating exemplary digit
extension using LIFO;

FIG. 10B is a block diagram illustrating exemplary base
extension using LIFO;

FIG. 11A is a block diagram illustrating an exemplary
power based 2°s modulus ALU;

FIG. 11B is a block diagram illustrating an exemplary
leading zero detect circuit of a power based digit ALU;

FIG.11C is ablock diagram illustrating an exemplary eight
digit natural RNS register with binary coded digits;

FIG. 11D is a block diagram illustrating an exemplary
eight digit power based RNS register with binary coded
p-nary fixed radix digits;

FIG. 11E is a block diagram illustrating an exemplary
power based BCFR modulus digit ALU;

FIG. 11F is a block diagram illustrating an exemplary
tri-nary to binary converter;

FIG. 12A is a flow diagram illustrating an exemplary RNS
integer divide;

FIG.12B is a block diagram illustrating an exemplary RNS
integer divider;

FIG. 13A is a block diagram illustrating an exemplary
modified divide with delayed base extension;

FIG.13B is a block diagram illustrating an exemplary RNS
integer divide number sequence;

US 9,395,952 B2

11

FIG.13C is ablock diagram illustrating an exemplary RNS
integer divide number sequence with power based modulus;

FIG.13Dis ablock diagram illustrating an exemplary RNS
integer divide number sequence with power based modulus
and advanced delayed extension;

FIG. 14A is a block diagram illustrating exemplary addi-
tion of two fixed point RNS numbers represented exactly;

FIG. 14B is a block diagram illustrating exemplary addi-
tion of two fixed point RNS numbers represented approxi-
mately;

FIG. 14C is a block diagram illustrating exemplary addi-
tion of two fixed point RNS numbers, each number contain-
ing a whole part and a fractional part;

FIG. 15A is a flow diagram illustrating an exemplary sim-
plified fixed point RNS multiply with truncation rounding;

FIG. 15B is a flow diagram illustrating an exemplary fixed
point RN'S multiply with signed operands and basic rounding;

FIG. 15C is a flow diagram illustrating exemplary fixed
point RNS multiply with signed operands and integrated sign
extension;

FIG. 15D is a flow diagram illustrating exemplary fixed
point RNS multiply with signed operands and integrated sign
extension;

FIG. 15E is a block diagram illustrating exemplary range
definitions for fractional multiplication;

FIG. 15F is a block diagram illustrating an exemplary
fractional multiplication with truncation rounding;

FIG. 15G is a block diagram illustrating an exemplary
fractional multiplication with round up;

FIG. 16A is a flow diagram illustrating an exemplary fixed
point RNS multiply and accumulate;

FIG. 16B is a block diagram illustrating an exemplary
fractional multiply accumulate;

FIG. 16C is a flow diagram illustrating an exemplary fixed
point RNS sum of products;

FIG. 16D is a block diagram illustrating an exemplary sum
of fractional products;

FIG. 17A is a block diagram illustrating an exemplary
sliding point RNS representation;

FIG. 17B is a block diagram illustrating an exemplary
sliding point RNS representation;

FIG. 17C is a block diagram illustrating an exemplary
sliding point representation with example modulus;

FIG. 18A is a flow diagram illustrating exemplary sliding
point scaling;

FIG. 18B is a block diagram illustrating an exemplary
sliding point RNS representation with power valid register
and example modulus in detail;

FIG. 18C is a block diagram illustrating exemplary sliding
point fractional scaling;

FIG. 18D is a block diagram illustrating exemplary sliding
point fractional scaling;

FIG. 18E is a block diagram illustrating exemplary sliding
point fractional division;

FIG. 19A is a block diagram illustrating exemplary binary
to RNS conversion;

FIG. 19B is a flow diagram illustrating exemplary integer
binary to RNS conversion;

FIG.19C is a flow diagram illustrating exemplary binary to
RNS conversion least significant digit first;

FIG. 20A is a block diagram illustrating an exemplary high
speed fractional binary to RNS converter/pre-scale unit;

FIG. 20B is a flow diagram illustrating an exemplary con-
version of fractional binary to fractional RNS;

FIG. 20C is a block diagram illustrating an exemplary
fractional binary to RNS pre-scale unit to RNS ALU;

20

25

30

35

40

45

50

55

60

65

12

FIG. 20D is a block diagram illustrating an exemplary 4
digit to 2 digit binary to RNS pre-scale unit;

FIG. 20E is a block diagram illustrating exemplary binary
to RNS pre-scalar timing and value propagation;

FIG. 21A is a block diagram illustrating an exemplary
apparatus for converting an RNS number to mixed radix
format in preparation for conversion to binary;

FIG. 21B is a block diagram illustrating an exemplary high
speed mixed radix to binary converter;

FIG. 21C is a block diagram illustrating an exemplary
mixed radix to binary converter;

FIG. 21D s a block diagram illustrating exemplary RNS to
binary timing and value propagation;

FIG. 21E is a flow diagram illustrating an exemplary frac-
tional to binary conversion;

FIG. 22 A is a perspective view of an exemplary backplane,
controller card, and digit cards;

FIG. 22B is a block diagram illustrating an exemplary
control card;

FIG. 22C is ablock diagram illustrating an exemplary digit
group card;

FIG. 22D is a list of RNS ALU micro-coded operations.

FIG. 22E is a list of RNS ALU low level hardware opera-
tions;

FIG. 22F is a list of RNS ALU machine instructions;

FIG. 22G is a list of RNS ALU micro-coded status test
operations;

FIG. 22H is a list of RNS ALU value ranges;

FIG. 23A is a graph illustrating theoretical execution time
of an RNS ALU multiply versus a generalized linear time
binary multiply;

FIG. 23B is a graph illustrating the number of RNS digits
versus the number of binary bits for each given range of
numbers;

FIG. 23C is a graph illustrating the number of RNS digits
versus the number of binary bits with the curve (n)/Log(P)
super imposed;

FIG. 23D is a graph illustrating the range in bits of an
equivalent binary number versus the range in bits of the
number of denominators of an RNS fractional representation;
and

FIG. 23E is a graph illustrating the ratio of the range in bits
of'an equivalent binary number versus the range in bits of the
number of denominators of an RNS fractional representation.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

RNS ALU Introduction

In one embodiment, as shown in FIG. 4A, the RNS ALU
410 serves as a math co-processor for a conventional binary
CPU 400. A data path 405 connects the conventional CPU to
the RNS ALU to transfer data and/or instructions between the
two subsystems. The application of an RNS ALU co-proces-
sor serves to capitalize on the advantages of the RNS system,
but uses a binary CPU for more conventional tasks, such as
driving I/O, and performing other required control and pro-
cessing activities. The diagram of FIG. 4A is expanded in
FIG. 4B to illustrate this organization.

InFIG. 4B, the conventional CPU 400 is shown performing
a basic computer host role; it drives the main system /O,
including a graphics display subsystem 420 and keyboard and
mouse 425. The conventional CPU is also tasked with execut-
ing the main application program 415, which helps to coor-
dinate the activities of the user interface and the results of the
RNS ALU 410.

US 9,395,952 B2

13

Shown in FIG. 4B is a conversion function 430 contained
within (or alongside) the RNS ALU. The conversion of binary
to RNS and RNS to binary is performed mainly by RNS
calculations and optionally special hardware. The reason is
that the word lengths are very long, and the standard CPU is
at a disadvantage in terms of the required calculations. There-
fore, in one preferred embodiment, the conversion calcula-
tions are performed on the RNS side of the system. This
arrangement mirrors that of conversion from decimal to
binary and binary to decimal in conventional computers; in
most cases, this conversion is made using binary calculations.

The diagram of FIG. 4B is again expanded in FIG. 4C to
illustrate one embodiment providing basic data processing
flows. In FIG. 4C, the RNS ALU 410 is coupled to a high
speed DDR3 DRAM memory system 445. The DDR3
DRAM memory contains both data and control instructions
for the RNS ALU. FIG. 4C further shows a conventional CPU
400 coupled with its own DRAM memory system 440, which
holds data and control instructions for the conventional CPU.
A high speed data interconnection 435 between both memory
systems is illustrated. The high speed data bus serves to
transfer data to and from the conventional system and the
RNS ALU. Like most ALU’s, the RNS ALU of FIG. 4C
contains its own set of high speed registers, designated by the
register file block 450. To maintain highest performance, the
system must deliver data to the RNS ALU registers for pro-
cessing, and then transfer arithmetic results from the ALU
registers back to either the conventional CPU memory or the
RNS memory depending on the specific algorithm executed.

While many details and variations exist, the details of such
are standard concepts to those skilled in the art.

Functional ALU Description

The RNS ALU 410 of FIG. 4A is again expanded in FIG.
4D to illustrate some of'its basic functional components. FIG.
4D describe basic features and capabilities of one embodi-
ment of an RNS AL U by grouping common features together
for the purposes of illustration; however, in some embodi-
ments of the present invention, it is common that many of the
functional components share common resources.

RNS Integer Unit

In FIG. 4D, the RNS ALU 410 supports integer arithmetic
functions as illustrated by the RNS integer arithmetic unit
455. The basic arithmetic functions supported are signed
addition, subtraction, multiplication and division. RNS inte-
ger addition, subtraction and multiplication are straightfor-
ward since only a single, simultaneous LUT access is
required to complete the operation. In terms of mathematics,
these RNS operations are fundamental and familiar; many
embodiments exist for these operations, and simple examples
are often cited in one form or another in the prior art and
academic texts.

However, the RNS integer division method is new, and
several innovative techniques and apparatus are disclosed
herein for the first time. RNS integer division is categorized as
slow, since this operation is executed in a digit by digit fash-
ion. As in the case of many conventional binary CPU’s, the
RNS integer division hardware is typically more complex and
more resource intense than the hardware for addition, sub-
traction and even multiplication.

Additionally, the RNS integer arithmetic unit supports
signed values and signed computation. The innovative tech-
niques used to efficiently process signed values is disclosed
later.

20

25

30

35

40

45

50

55

60

65

14

RNS Fractional Arithmetic Unit

The RNS ALU 410 contains a fractional arithmetic unit
460. The fractional arithmetic unit operates on operands that
represent both whole and fractional quantities. This is analo-
gous to fixed point and/or floating point representations in
binary.

The fractional arithmetic unit of the RNS ALU supports
several types of fractional RNS formats, including a “fixed
point” RNS format, and a “sliding point” RNS format. The
fractional arithmetic unit supports operations of signed addi-
tion, subtraction, multiplication, division and reciprocation
on fixed point RNS operands, or sliding point RNS operands.
Additionally, the RNS fractional unit supports several mixed
type operations, including the addition, subtraction, multipli-
cation and division of fractional types by integer types.

The operation of fractional multiply is of particular impor-
tance. The method of the present invention provides disclo-
sure of a novel and unique method for multiplying fractional
numbers in RNS format. Special modifications to the novel
ALU structure provide for a practical multiplier which sup-
ports result rounding and signed values, among other fea-
tures. The disclosed RNS fractional multiplier provides high
precision, general purpose operation.

Fractional division can be supported in several ways. In
one embodiment, the integer divide apparatus is used to pro-
vide a fractional divide. In another embodiment, a divide
routine such as Goldschmidt division is used, which is com-
posed of fractional multiply and subtraction operations.

Another key feature and invention of the present invention
involves the manner in which fractional RNS values are
scaled for use by Goldschmidt or Newton-Raphson division
techniques. Scaling RNS fractions for optimized divide per-
formance is an advanced and novel feature of the method of
the present invention.

RNS Comparison Unit

The RNS ALU 410 of FIG. 4D supports RNS number
comparison via an RNS compare unit 465. RNS number
comparison is required to make decisions based on the result
of arithmetic calculation. Moreover, RNS value comparison
is required to implement other primitive RNS ALU functions,
including sign extension and integer divide.

The most generalized ALU RNS compare unit includes the
ability to compare all RNS formats that are supported by the
ALU. However, in other embodiments, there also exist spe-
cial RNS compare units for handling certain tasks, such as
being dedicated to the integer divide unit, for example. A high
performance RNS ALU may include more than one RNS
compare unit. In some cases, there are opportunities to use
more than one RNS compare unit simultaneously, thereby
increasing performance and throughput.

In one embodiment, the RNS compare unit is based on
Mixed Radix Conversion (MRC). However, the methods and
apparatus of the present invention use the mixed radix con-
version principle in novel ways, which are often surprising
and non-typical.

Mixed radix number (MRN) formats are supported in the
RNS ALU; one MRN format is an intermediate number for-
mat used during base extension and comparison. Another
MRN format is for storage of constant values, which enables
more efficient comparison of an arbitrary RNS number to a
constant value. Constants are well known as stored numbers
whose value does not change.

The method of the present invention enhances RNS com-
parison using a dual accumulator, shared LUT architecture in
one embodiment. The RNS comparator converts two num-
bers into MRN format simultaneously, while comparing the
same mixed radix digit (of the same digit position) at each

US 9,395,952 B2

15

step ofthe conversion process. The MRN digits are compared
essentially least significant first, one at a time; however, the
results of each digit comparison s stored and forwarded to the
next digit comparison step, while the MRN “digits” them-
selves are discarded. In this manner, the RNS value is implic-
itly converted to MRN format, but the mixed radix number
itself is not stored or even handled in its whole.

The enhanced RNS comparison method and technique
supports other enhancements; for example, the comparison
checks for early end of conversion, which signals that one
operand is at least one (converted) digit shorter than the other,
thereby determining a comparison based on mixed radix digit
length alone. The comparison unit of the present invention
also handles signed values; by performing a check of the sign
magnitude and sign valid bits first, it may be possible to return
the result of comparison early.

However, if the sign valid bit indicates the sign is not
available, a secondary and integrated compare against the
positive range (constant) of the RNS number format provides
the sign of the value. This “side effect” feature is integrated
within the compare operation such that a values sign bit may
be restored during a compare operation. In one embodiment,
the RNS comparison unit also doubles as an RNS to mixed
radix number converter, which can be used to create mixed
radix (RNS) constants before or during program execution.

In another embodiment of the RNS comparison unit, sup-
port is provided for handling skipped, or invalid, RNS digits.
This type of RNS comparison unit finds use within the integer
divide unit, for speeding the divide process by delaying the
last base extension before result comparison.

The comparison unit of the present invention supports sev-
eral different operand formats, including but not limited to
integer RNS, fractional RNS, and a special constant in two
related MRN formats, one derived from RNS integer format,
and the other from RNS fractional format.

RNS Sign Extend Unit

The RNS ALU 410 contains an RNS sign extend unit 470.
The RNS sign extend unit processes an RNS number and
extracts the sign of the RNS value. The result of the sign
extension operation is used during certain arithmetic opera-
tions, and is used to set the sign bit of the RNS value, thereby
saving future sign extension operations.

In one embodiment, the RNS ALU tracks the sign of a
value using two bits, a conventional (sign magnitude) sign bit
and an extra bit, called a “sign valid” bit. In order for the
system to use the sign bit to indicate the sign of the value, the
sign valid bit must be true. If the sign valid bit indicates false,
the ALU may invoke a sign extend operation before perform-
ing a subsequent operation. An RNS numbers “sign valid” bit
is set to true upon sign extension. The sign valid bit may be set
to false after certain arithmetic operations, thereby requiring
a sign extension at some other time.

More than one RNS sign extend unit may exist in a high
performance RNS ALU. Additionally, an ALU may support
combined functions, such as a combined sign extend and
value comparison unit, for example. In one embodiment, a
sign extension is performed as an integrated function and in
tandem to fractional multiplication.

RNS Digit Extend Unit

The RNS ALU 410 contains an RNS Digit Extend unit 475,
also referred herein as a base extension unit. This function is
actually a primitive function for both the integer divide and
fractional multiply. In one embodiment of the RNS ALU, all
completed arithmetic operations resultin a value that contains
all valid RNS digits, i.e., all digits have been extended.

The RNS digit extend unit is specially designed and
adapted to perform high performance RNS operations. For

20

25

30

35

40

45

50

55

60

65

16

example, for integer divide, the base extend unit is specially
adapted to support delayed digit extension through the use of
“digit skip” flags. As another example, in high performance
integer and fractional division units, the digit extension unitis
adapted to support variable power based modulus, whereas
the variable power is controlled using “valid power” flags, or
a“power valid” register. These valid flags are assigned to each
sub-digit of each power based modulus of the divider. (Note:
a “digit valid” flag should not be confused with “sign valid”
bit or flag.) More about this subject will be discussed later.

For the fractional RN'S multiply, the base extend unit is also
specially adapted and specially designed to allow high speed
fractional multiplication. For example, the operations of digit
base extend and range divide occur in the same operation
during fractional multiply.

Because of the importance of specialized base extend units
for divide and multiply, in one embodiment, more than one
base extend unit can exist. In another embodiment, a high
performance single base extend can be shared by both the
integer and fractional arithmetic units. In yet another embodi-
ment, a single scalar AL U performs digit extension as well as
all other required functions.

Base extend units require LUT and hardware resources
similar to an entire scalar RNS ALU. The base extend unit
must support all basic LUT operations along with specialized
enhancements. In some embodiments, the base extend func-
tion may be broken up and executed on different functional
units, such as a RNS to mixed radix converter (decomposer)
and a smaller base extend unit (re-composer).

RNS ALU Status Register

Operations within the RNS ALU may result in the ALU
setting various status flags, or status bits 480. For example, an
RNS compare operation may result in setting either the
“greater than” or “lesser than” status bits. An arithmetic
operation which ends in zero might also cause the ALU to set
the zero status bit. Status registers and status bits are not new,
and in fact, are critical elements to most ALU designs. Status
bits that are supported under the RNS ALU include a zero
flag, an equal flag, a greater and/or less than flag, and an
overflow/underflow detection flag. The ALU of the present
invention is not limited to this set of status registers and/or
status flags.

In later sections, more details are given to typical logic
circuits which support the detection, transmission and storage
of status information. For example, FIG. 5B illustrates an
example Word Status Register 500 and basic logic diagrams
representing how such status are detected. The word status
register 500 stores the status of the ALLU as a whole. In another
example, FIG. 5C shows the transmission of status informa-
tion to the Digit Status Register 510. The digit status register
stores the status of a single selected digit ALU.

RNS ALU Instruction Decode

In many embodiments of the RNS ALU of the present
invention, an RNS ALU instruction decode unit 485 is
present. The instruction decode unit provides a means for the
RNS ALU to support its own instruction set, and allows the
RNS ALU to execute its own algorithms. This is important.
The RNS ALU may execute an arithmetic task while its host
CPU is preparing for the next problem. However, this is not a
restriction, since RNS ALU operation which is under full
control of the host CPU is possible. In this alternate embodi-
ment, the host CPU triggers an RNS ALU operation, and then
checks the result of the operation and status register to deter-
mine the appropriate action(s). Furthermore, an RNS AL U
instruction unit comprises an RNS based central processing
unit (CPU), by definition.

US 9,395,952 B2

17

Instruction decode is well understood by those practiced in
the design of digital computer systems and is therefore not
dealt with in detail herein.

RNS ALU Ceontrol Unit

The RNS ALU of the present invention contains an ALU
control unit 200. The ALU control unit is responsible for all
low level control and primitive operations required for each
ALU instruction. A basic control unit is present in any ALU,
regardless of number format. However, for the RNS ALU,
and for many of'its embodiments, the control unit has special
significance since RNS digit slice data structures are similar
between most ALU functional units. This means the RNS
ALU control unit determines to a large degree the function-
ality of any given ALU functional unit, while the data struc-
ture being controlled remains structurally similar, or even the
same. This provides a great deal of flexibility in terms of RNS
ALU architecture.

For example, in one embodiment, the RNS ALU supports
a single bank of RNS digit slices, all under the control of a
master control unit 200, the master control unit providing all
required operations for the entire system. In this case, the
RNS digit bank supports a minimum set of registers, LUT’s
and comparators to support all required instructions and
operations. In another embodiment, the RNS ALU control
200 is sub-divided and partitioned across the AL U, such that
sub-controllers act together to coordinate the required control
functions.

In another embodiment, the RNS ALU supports a plurality
of' banks of RNS digit slices, each bank capable of operating
on an RNS number. Therefore, an RNS ALU control unit
connects each bank of RNS digit slices, and forms a coherent
operating strategy between them. For example, one bank of
(dual accumulator) RNS digit slices act as a comparator.
Another bank of RNS digit slices act as a general accumulator
or ALU, while yet another bank serves as a sign extension
unit. In this manner, RNS operations can be processed in
parallel where allowable. This disclosure discusses some
forms of parallel RNS operation used for speeding the integer
divide unit, for example. High performance scalar RNS ALU
architectures require performing as many low level ALU
operations in parallel as feasible.

Furthermore, RNS digit slice architecture may be parti-
tioned in other unique ways due to the parallel nature of RN'S
numbers. In one embodiment, the word size is increased by
adding additional digit slices to each supported digit slice
bank of the RNS ALU. Digit slices may be added as parti-
tioned digit groups. The digit groups are added using circuit
boards in one case. Each circuit board supports a fixed num-
ber of digits, such as thirty two digits for example, and may
include other partitioned circuits as well, including the parti-
tioned ALU control circuitry required to perform the opera-
tions on the RNS digit group. RNS digit slices are imple-
mented as digit function blocks in one embodiment.

RNS Conversion Unit

The RNS Conversion unit 495 is optional, since it may be
replaced by RNS software algorithms executing within the
RNS ALU. However, generally some provision exists for
expediting the conversion of binary to residue, and the con-
version of residue to binary. It should be noted that other
conversions may be warranted as well, such as RNS to deci-
mal, but for purposes of this disclosure, conversion to binary
suffices to represent the requirements for most RNS to fixed
radix conversions.

In a high performance scalar RNS ALU, the RNS conver-
sion unit is implemented in hardware. In such an embodi-
ment, an entire ALU is devoted to conversion tasks, thereby
creating a parallel system of two ALU’s, one that is perform-

20

25

30

35

40

45

50

55

60

65

18

ing arithmetic calculations in RNS, and another that is per-
forming number system conversions.

Still other embodiments find a solution somewhere
between dedicating a complete ALU for conversion and using
software controlled conversion. In particular, specialized
conversion hardware is disclosed in the method of the present
invention. ALU conversion instructions are supported to per-
form a conversion using such hardware.

Conversion of a binary integer to an RNS integer is
straightforward, since each bit shifted into the RNS ALU can
be added, and a value of two can be multiplied to the result. To
speed the conversion, a power based two’s digit modulus is
supported in the RNS ALU; the digit’s width defines the
number of bits that may be converted in one ALU conversion
iteration. In either case, a shift register-like conversion is
supported which operates in linear time with respect to the
binary bits converted.

Conversion of a binary fraction to an RNS fraction is more
difficult, since a conversion from binary fractional range to
RN fractional range is required. The present invention intro-
duces several techniques to convert the fractional binary
quantity to a fractional RNS quantity, including a hardware
conversion pre-scale unit that allows conversion in linear time
with respect to binary digits.

Conversion from RNS to binary is even more important,
since final results will be generated in RNS format but may be
usable only in binary format. The present invention includes
a hardware and control apparatus which converts RNS num-
bers to binary numbers in linear time with respect to RNS
digits. The apparatus is extensible, and provides a means to
assemble very wide binary values at high speed, and without
slowing due to increased carry propagation.

Conversion of fractional RNS to fractional binary requires
a scaling from RNS fractional range to binary fractional
range. In this case, the RNS ALU itself may perform the
scaling operation, since the RNS ALU can perform the
reverse conversion calculations more efficiently, i.e., that is,
divide by the RNS fractional range.

To maximize the number of applications, a high speed,
hardware assisted conversion from binary to RNS, and from
RNS to binary is generally required. Providing a high speed
conversion means the number of suitable applications for the
ALU significantly increases.

Detailed RNS ALU Description

In FIG. 3A, the basic architecture of a single RNS digit of
the ALU of the enclosed invention is disclosed. The digit
ALU, referred as a digit function block, is of dual accumula-
tor design; however, this is not a restriction.

As areview and shown in FIG. 2A, an RNS ALU is shown,
consisting of a plurality of digit function blocks, such as digit
function blocks 215, 210, and 205, each interconnecting to an
RNS ALU control block 200. As FIG. 2A implies, an RNS
ALU supporting P digits would support P number of digit
function blocks 215. Each function block supports a unique
digit modulus which is pair-wise prime to all other digit
function blocks.

In FIG. 3A, a single digit function block 215 is shown in
detail. The main components inside a digit function block 215
are: the register file 300, the arithmetic LUT 301, the digit A
accumulator 302, and the digit B accumulator 303. The digit
function block 215 supports two separate digit ALUs,
denoted A and B, each ALU sharing the same arithmetic LUT
301 and register file 300. The background for this arrange-
ment was discussed previously using FIGS. 1A through 1F.

US 9,395,952 B2

19

FIG. 3A is general for all digits; in practice, each digit
function block 215 will be configured for a unique modulus,
since values contained in their LUTs are unique to each digit
modulus.

General Purpose ALU Registers

Many modern and prior art approaches to ALU design use
general purpose registers. In most cases, the contents of a
general purpose register can be used as an operand in arith-
metic instructions. It is common that arithmetic instructions
imply the accumulator as the second operand, especially
arithmetic type instructions. This was illustrated in FIG. 1B.

The RNS ALU of the present invention uses a similar
concept with several key modifications. For one, general pur-
pose ALU registers can store RNS numbers; each RNS reg-
ister is broken into digit slices, where each digit slice of the
RN register is stored separately in its associated digit func-
tion block. When the ALU control unit 200 accesses a regis-
ter, it sends the same address to each AL U digit block register
file 300, so that each digit register 302 and 303 receives its
corresponding modulus digit data. Therefore, the process of
loading a full word into the accumulator occurs when all digit
ALU’s latch their corresponding chunk of data.

In one embodiment, as disclosed in FIGS. 1F and 3A,
registers 300 are dual port, so that RNS digit register A 302
and B 303 access the same register set. Dual port memory
allows separate control lines 320 for port A and control lines
321 for port B. Thus, ALU A is free to access registers inde-
pendently of ALU B. The number of registers supported
varies; however, in one embodiment, a large number of reg-
isters are supported. For RNS processors, there is a need to
store basic constants, common conversion factors, and inter-
mediate results, as well as provide for general purpose regis-
ters for programming needs.

In another embodiment not shown in FIG. 3 A, the register
file 300 is tri-ported or quad ported. For example, a tri-ported
register file allows two ALU’s to operate independently,
while allowing a host processor or DMA controller to move
data into and out of the register file at full speed. A quad-port
register file memory can also be used to support a quad ALU,
for example.

In FIG. 3A, port A output 324 of register file 300 directly
feeds a selector 310. Using selector 310, control circuitry
gates the port A output 324 directly to the address input of the
arithmetic LUT 301. Therefore, any value contained in reg-
ister file 300 may be moved to, and used as an operand for
arithmetic LUT 301. Likewise, port B output 325 of register
file 300 directly feeds selector 311. The register value can be
gated to the LUT 301 port B address for operation with digit
register accumulator B 303.

The output of digit register A 302 and digit register B 303
are fed back to the input of the register file 300, via data paths
315¢ and 314c¢ respectively. These connections allow the
results of an operation, stored in digit accumulator 302 and
303, to be moved into register file 300.

In many embodiments, the register file 300 stores the val-
ues of important constants, such as the values of all supported
digit modulus. This provides a means by which a control
circuit 200 can read a given value of modulus from a known
location of register file 300, and use this value as an operand
to the LUT(s). For every digit function block of FIG. 2A,
register file output 324 feeds selector 310 which is selected to
steer the output to the LUT 301 input.

For example, when a common modulus value divides each
digit register, the control circuit 200 sets the appropriate
address to the register file address bus 320. The value is
accessed via the data output 324 and steered to the LUT
address input via selector 310. Since each digit slice ALU

20

25

30

35

40

45

50

55

60

65

20

accesses its own register file with digit modulus p, the values
of the digits may differ from digit slice to digit slice.

In FIG. 6A, a sample register file 300 layout is shown. A
portion of the dual ported register memory 300 is dedicated to
general purpose register 600 use. Also, P number of register
space is reserved for ALU Modulus LUT 601 storage. Other
subdivisions of the register memory 300 may be reserved for
constants 603 and conversion tables 604. FIG. 6B shows the
register file 300 of FIG. 6A in terms of individual digit reg-
isters. Because the RNS ALU may be organized as a digit
slice processor, the register file 300 may also be organized by
digit slice 615. Also relevant to FIG. 6B is the existence of
sign bits 612 and sign valid bits 613. These bits are associated
to each stored RNS value, such as RNS value stored in the
location 601.

Arithmetic LUT and Digit registers

In one embodiment, as in FIG. 3A, LUT 301 is used to
perform arithmetic operations on digit register A 302 and
digit register B 303. Each register function block has its own
LUT 301, which is configured to support modulo operations
of'a specific modulus=p. Other embodiments are possible, as
long as basic digit modulus operations are supported. For
instance, LUTs may be replaced with dedicated logic.

Inthe method of the dual digit slice ALU, dual ported RAM
and/or ROM memory may be used. This has the advantage of
allowing dual access to the LUT 301, which allows a dual
ALU to be supported in one embodiment. Alternatively, tri-
ported or quad-ported memory may be used for LUT 301. In
this case, a triple-ALU or quad-ALU may be supported. The
additional ALLU’s allow additional conversion and processing
to be performed simultaneously. The additional increase in
performance is achieved without increasing LUT memory,
only the “ports” to that memory. Dual ported memory is a
common resource in modern FPGA’s which may be used to
implement an RNS ALU; this disclosure will generally focus
on explanations fora dual ALU RNS configuration because of
its novel and efficient design and balance.

Intheembodiment of FIG. 3A, abrute force LUT approach
is disclosed. The number of entries of LUT 301 for modulus

(p) is given by:
LUT depth=p?x(number of operations) (eqn. 2
LUT width=[log,(p)]+1 (eqn. 3a

Where [| denotes the “floor integer” function, i.e., integer
part of log,(p)-

The RNS ALU of the present invention supports four basic
operations, so the last term of equation 2 could be 4, implying
enough memory to support modulo addition, subtraction,
multiplication and division LUTs. In one embodiment, each
digit function block 215 is assigned a LUT, each LUT having
a size given by equation 2. The data width of the LUT needs
to be wide enough to store the largest digit of the given
modulus, and when encoding in binary, is given by equation
3a.

The depth of most standard memory technology is a power
of two. This means that a LUT built using standard memory
technology will need a memory size larger than theoretically
required according to equation 2. To account for the size
required using standard memory technology, equation 3b is
provided:

LUT std. depth=22"x(number of operations)

where W=LUT width=[log,(p)]+1

Consider the modulus p=7. The width of the modulus in
binary is three bits, since three bits is required to store all digit
values zero (0) through six (6). The number of LUT entries for

(eqn. 3b

US 9,395,952 B2

21

each operation is seven times seven (7*7), but binary memory
sizes force a configuration that is eight times eight (8#8=64),
since 3 binary address bits are needed, and 23=8.

In order to support four separate operations using the same
LUT, the concept of “memory pages” is adopted, so a total of
sixty four times 4 pages (64*4), or 256 entries are required in
our example. The data width is three bits, so a total of 768 bits
of memory is required in a modern FPGA. The digit register
accumulator itself need only consist of three bits.

The LUT of this example assumes all operands are modulo
7, since the range of the operand input is so bounded. Other-
wise, the LUT size would be greater, since one input of the
LUT may require the width of the maximum modulus of the
ALU. For example, if the maximum digit value width is 8 bits,
and given the example of modulus p=7, the input address
width of the LUT is 8+3+2=13 bits. In this case, the LUT
depthis 2'*=8192, and for a 3 bit wide operand, this requires
24,576 bits of memory. If the largest LUT operand is 8 bits
wide, then the input address width for the largest digit LUT is
8+8+2=18 bits, which requires a memory depth of 2'¥=262,
144 entries, and a memory size of 2 megabits. Again, this is a
brute force technique, and other techniques exist to reduce
memory requirements of the LUT 301.

The contents of LUT 301 are arranged to perform the
required arithmetic operations; the organization of the LUT
contents further considers the mapping and format of the
address inputs, which represents the arithmetic operands.
Referring to the input address for port A of LUT 301, the
address is shown as a combination of three sources in FIG.
3A. Two sources are the LUT operands, and the third source
is the LUT function control input, which selects the desired
operation, or LUT page. The function control input is fed by
Op Code A 316 for ALU A and Op Code B 317 for ALU B.

Taking the case of ALU A, and for a given operation code
316, the output of LUT 301 is a function of two operands, one
operand selected by selector 310, and operand 315a which is
sourced by digit register A 302. After the proper delay time,
the LUT 301 result is stored; port A output 315 of LUT 301
feeds digit register A 302 which is clocked to store the result.
It can be seen that digit register A acts as a “digit slice
accumulator”, capturing LUT 301 results, and storing results
for use as an operand in future operations. Port B AL U works
the same.

In one embodiment, LUT 301 performs arithmetic opera-
tions on operand A and operand B in accordance to equations
tabulated in Table 1.

TABLE 1
LUT Function
OpCode Operands Function Description

Modulo Addition 0 (A+B) F(A,B)=(A+B)Modm,
Modulo Subtract 1 (A-B) F(A,B)=(A-B)Modm,
Modulo Multiply 2 (A*B) F(A,B) = (A* B) Mod m,,
Inverse Modulo 3 (A/B) F(A, B) = C; where
Multiply (B*C)Modm, =A
(MODDIV)

where m, = modulus of p’h digit

In table 1 column 2, a simple binary op code is assigned to
each of four LUT operations. For example, to activate the
modulo subtraction function, an op code value of one (1) is
used. The desired op code is placed on the op code select lines
316, 317 during the required LUT operation.

The third column of Table 1 illustrates operand order, since
the LUT 301 supports two operands, input A fed by digit
accumulator 302 and input B fed by either the crossbar 318 or

20

25

30

35

40

45

50

55

60

65

22

digit register 300. For the case of addition and multiplication,
operand order is not important; therefore, table entries for
both operand orders (A,B & B, A) are the same. (This fact can
be used to reduce table size by one half by steering the lowest
value of any operand pair to operand A, for example.) Both
operations may produce a result which “wraps around”, but
there is no carry to other digits. This is another way of refer-
ring to the operation as modulo m,,, where m,, is the modulus
of'the specific digit. Operations described herein as “modulo”
refer to the fact that the LUT result must map to one of the
digit values supported by the modulus, and no carry is ever
generated as a secondary result.

For the operation of subtraction and division, operand
order is important, and therefore there is no such symmetry. In
the case of subtraction, the operand B is subtracted from the
value of operand A. Since operand A is fed by the digit
accumulator 302, the subtraction operation subtracts a value
from the accumulator. The value subtracted may be fed by the
crossbar 318, or alternatively, from the register file 300 via
selector 313 in the case of ALU A. The subtraction “wraps
around”, but there is no borrow; that is to say the subtraction
is modulo m,,, where m,, is the modulus of the specific digit.

In the case of the last operation of Table 1, MODDIYV,
which is defined herein, the digit accumulator 302 is routed to
LUT 301 operand A, which is then “divided” by the LUT 301
operand B. To be exact, the MODDIV operation is the inverse
operation of Modulo Multiply, with operand A acting as the
product, and operand B acting as an multiplicand; when the
MODDIV operation is activated, the LUT 301 output 322
returns the missing multiplicand. The MODDIV operation is
therefore a means to reverse the modulo multiply of Table 1.

The LUT operations of table 1 are used in a number of
ways. For one, complete integer operations can be performed
using P simultaneous LUT accesses. For example, ifthe value
of accumulator is to be incremented, the value of one is added
to all digits simultaneously. If the accumulator represents an
integer quantity, another integer quantity can be summed by
adding each digit of each operand using modulo p addition,
via LUT 301, without carry.

Table 2A is provided to show an example of two RNS
numbers, or integers, added together. The RNS numbers con-
sist of six modulus {2, 3, 5,7, 11, 13}.

TABLE 2A
RNS Integer (direct)
Addition
13 11 7 5 3 2 Equivalent
Operation I Is Iy Iz L I, Value
A+ 8 1 6 4 1 0 34
B 2 4 1 0 0 1 15
= 10 5 0 4 1 1 49

In table 2A, the value of thirty four is summed with the
integer value fifteen. Each digit of each operand is added
together, and wraps around if the result exceeds the modulus
of'the digit position. For example, in the two’s modulus digit
position, a value of zero is added to a value of one, which
equals one. However, in the seven’s modulus position, the
value of six is added to the value of one, which is seven, but for
the digit of modulus seven, the result wraps around to a value
of zero. It can be seen in table 2A that the integer addition in
RNS is very fast, since despite the digit width of the number,
the time to complete the operation remains theoretically con-
stant.

US 9,395,952 B2

23
Table 2B is provided as an example of integer subtraction
in RNS:

TABLE 2B
RNS Integer (direct)
Subtraction
13 11 7 5 3 2 Equivalent
Operation Iy I 1, I3 L I, Value
A- 8 1 6 4 1 0 34
B 2 4 1 0 0 1 15
= 6 8 5 4 1 1 19

In table 2B, the same operands as Table 2A are now sub-
tracted. In this case, order of operands is significant. In Table
2B, the B operand is subtracted from the A operand. There-
fore, the B digit value is subtracted from the A digit value, for
each digit position. If the subtraction is impossible, it is
because a reverse wrap around is required, so that the sub-
traction is modulo subtraction. For example, the digit value of
4 in the modulus p=11 position is subtracted from a value of
one. The result of digit subtraction is the digit position value
of one wraps backwards four positions, which settles on a
digit value of eight, in this case.

In table 2C, an example of integer RNS multiplication is
shown:

TABLE 2C
RNS Integer (direct)
Multiplication
13 11 7 5 3 2 Equivalent
Operation Iy Is Iy Iz L I, Value
A* 8 1 6 4 1 0 34
B 2 4 1 0 0 1 15
= 3 4 6 0 0 0 510

RNS integer multiplication, also referred to herein as direct
multiplication, occurs when two RNS values are directly
multiplied, digit for digit. Each digit of each digit position is
multiplied together using a modulo-p multiplication, where p
is the modulus of the digit, and where such operation is
implemented using LUT 301 in one embodiment.

Table 2C illustrates two RNS integers directly multiplied.
One operand is the value thirty four (34), the other value is
fifteen (15). The result of the integer multiply generally
occurs in one simultaneous LUT cycle, and in case of the
example, results in the value five hundred ten (510). Note the
value of each digit column is multiplied modulo p, without
carry. For example, the digit whose modulus is p=13 has the
digit value eight multiplied by two (8x2); the resulting value
is three (3), since 8x2=16—16% 13=3.

The last common arithmetic operation needed within the
ALU of the present invention is the so called MODDIV
operation. This operation is essentially a multiplication in
reverse, with the A operand acting as the product, and the B
operand acting as a multiplicand. The result of the MODDIV
operation is to return the missing multiplicand. In terms of
processing, the MODDIV operation is frequently used in
converting RNS to mixed radix.

There are other ways to view the MODDIV operation. For
example, the MODDIV operation can be thought of as a
“divide by a modulus™ operation. That is, if the digit position
defining the modulus to divide by is zero, the RNS integer

20

25

30

35

40

45

50

55

60

65

24

may be divided by the modulus value. In this case, the reverse
multiplication operation (MODDIV) is performed on a digit
by digit basis in parallel, and will return the correct result of
the divide. Therefore, this simple divide may be accom-
plished very quickly, since each digit function block LUT
access may be performed simultaneously.

Table 2D illustrates this specific case of the MODDIV
operation by showing an example case of an integer being
divided by a digit modulus:

TABLE 2D
RNS (direct) Divide by
Modulus
13 11 7 5 3 2 Equivalent
Operation I Is Iy Iz L I, Value
A/ 3 4 6 0 0 0 510
B 5 5 5 0 2 1 5
= 11 3 4 * 0 0 102

Intable 2D, the integer value five hundred ten (510) is to be
divided by the modulus value five (5). Because the integer
value 510 is evenly divisible by the modulus value five, the
MODDIV operation can be used, each digit of the dividend
being divided by the corresponding digit of the divisor, where
such operation is performed for each digit pair simulta-
neously using P number of arithmetic LUTs, and which may
complete in a single clock cycle. In the case of dividing by a
digit modulus value, the RNS number system offers an advan-
tage; that is, if the divisor digit, in the position of the modulus
value to be divided, is zero, the integer divisor is evenly
divisible by the modulus value. This fact forms the basis for
the MODDIV operations of the present invention. The aster-
isk in the result of the modulus five column indicates that the
digit is now undefined, or “skipped” as defined herein, as a
result of dividing by its modulus. The actual value of the lost
digit position can be recovered using a base extension opera-
tion not shown.

MODDIV may also be used to reverse multiply two arbi-
trary RNS integers. This operation is effectively integer divi-
sion, however, it is only valid if the values divide evenly, and
in most cases, this fact is not known. Therefore, MODDIV
cannot be used for arbitrary division of integers. To accom-
plish this task in RNS, a complex series of operations is
generally required; the complex arbitrary integer divide
method will be disclosed later, where one finds the MODDIV
operation being used as a primitive operation.

MODDIV may be used to test the property of being evenly
divisible using the system of the present invention. To factor
a composite, semi-prime number, a series of test divisions
may be required. Using the method of the present invention,
the conventional division test case may be converted in to a
MODDIV trial (single clock) and an RNS comparison. It is
possible the RNS comparison is faster than division, provid-
ing a means for fast factorization.

It should be noted that special memory can be designed to
support the various theoretical LUT sizes, but the use of
standard memory is generally less expensive. Also, there are
various coding schemes that may reduce memory LUT size.
For example, the MODDIV operation commonly uses only
modulus values as possible B inputs. This reduces the theo-
retical amount of arithmetic LUT 301 memory required by
the MODDIV operation.

Other means may be used to implement arithmetic opera-
tions in lieu of look-up tables (LLUTs), such as LUT 301. For

US 9,395,952 B2

25

example, special hardware may perform modulo addition and
modulo subtraction. Hardware solutions for modulo multipli-
cation also exist. The most difficult LUT operation to replace
is MODDIV; however, there are means to iterate a correct
answer for this function as well. However, since high perfor-
mance is typically required, the LUT implementation is
attractive since results of the MODDIV function may be
stored a prior, and accessed in a single cycle.

Direct Loading of Accumulator

Most embodiments require the digit accumulator 302 for
ALU A and the digit accumulator 303 for ALU B to be loaded
from a source other than LUT 301 output 322 and 323. For
example, most CPU’s allow the accumulator to be directly
loaded with a value from the register file 300. As another
example, the contents of digit accumulator B 303 may need to
be transferred to digit accumulator A 302.

Loading the digit accumulator is needed to initialize the
accumulator prior to performing an operation via LUT 301.
Generally, the loading operation occurs for all digit ALU’s
simultaneously, and is regarded as a single clock operation.

Hardware data paths that directly interconnect from the
register file 300 to digit accumulator, or from accumulator A
to accumulator B, are not shown in any figures provided for
sake of clarity. However, one embodiment may embed a
“Load” function within the LUT function block 301, for
example. In this case, an operation code may be added to
Table 1, and assigned the function of “load operand B to
accumulator”. Such hardware connections and their details
are presumed obvious to those skilled in the art of digital
hardware design.

Crossbar Data Bus

Each digit function block of the enclosed method is iso-
lated from every other digit stage with the exception of a
common “crossbar” bus, and common control and status lines
that connect to each digit. As shown in FIG. 2A, the crossbar
bus 318, 319 is a data bus interconnected to all RNS digits and
is generally used to forward a common value to one or more
digit function blocks 205, 210 & 215 simultaneously.

The crossbar buses 318, 319 are depicted in FIG. 2A inter-
connecting a plurality of digit AL.Us, such as AL.U 205, to an
RNS ALU control unit 200. In FIG. 3A, the crossbar busses
are shown in more detail, as crossbar bus A 318 and crossbar
bus B 319. Crossbar bus A 318 services ALU A, while cross-
bar bus B 319 services ALU B, each in an independent man-
ner depending on the requirements of the control unit 200.
Generally speaking, the crossbar buses 318, 319 are bi-direc-
tional, but this is not a limitation of the present invention.

Many primitive ALU operations require the use the cross-
bar bus. Referring to FIG. 2E, if the value of a given digit
register 3025 is to be subtracted from all other digit registers
(of different digit modulus), the crossbar bus A 318 may be
used. In this case, the crossbar bus gate 3135 is enabled, and
the value contained within the digit register A 3025 is gated to
the crossbar bus A 318. All other digit ALU’s can then gate the
value on the crossbar bus 318 to the LUT operand input via
the crossbar data selector 310.

FIG. 2E shows a highlighted path for the data flow to and
from the crossbar bus 318 in this case. In FIG. 2E, digit
register 3025 is sourcing its digit accumulator to the crossbar
bus 318 via selector 3135. Also shown is the crossbar A 318
sourcing data to other digit function blocks via selector 302
and 302c¢. Next, a global subtraction command is transmitted
via Op Code A bus 316 to all affected digit ALU’s; in
response, each digit ALU performs a modulo P subtraction of
the crossbar data, where P is the modulus of the particular
digit ALU.

20

25

30

35

40

45

50

55

60

65

26

The remaining operations of addition, multiplication and
digit division may also use the crossbar bus as an operand
source. For example, ifthe entire ALU A word is to be divided
by the value of a particular modulus, that modulus is gated to
the crossbar bus. All other digit slices then choose the cross-
bar bus as its operand (control lines not shown) via selector
310 to be used as an operand for LUT 301. All LUTs of the
ALU are instructed according to OP-code control lines 316.
In this case, the OP-code will indicate a divide, or MODDIV
operation. Each LUT is also fed from its digit register A 302.
The result for each digit slice LUT is stored in digit register
302 in the case of ALU A.

In certain low level ALLU operations, the value of a specific
digit is subtracted or added to the (entire) ALU. In other
operations, the value of a digit modulus is used to multiply by
or divide by the entire ALU. In any case, if there is a need to
transmit a digit value or digit modulus to all other digit
ALU’s, the crossbar bus is typically used.

Many sequential operations of the ALU use the crossbar
bus. For example, when converting an RNS value to a mixed
radix number, each digit of the RNS number may be pro-
cessed. The value of the first selected digit is tested for zero,
and if non-zero, is gated to the crossbar bus so that it may be
subtracted from all valid digits. After subtraction, all other
digits must be divided by the value of the first digit modulus.
Thus, the value of the selected modulus is gated onto the
crossbar via ALU controller 200 in one embodiment. The
ALU then instructs all LUTs to perform a divide LUT opera-
tion. Each digit is processed in a similar manner until the RN'S
value is exhausted.

The source for data which is gated to the crossbar bus A 318
and crossbar bus B 319 may vary. For example, a data path
from the register file 300 to the crossbar source selector 313 is
typically provided. In this case, a digit modulus may be
accessed via digit register file 300 and gated to the crossbar,
and then used as an operand for all other digit LUTs. This is
an alternative to the ALU supplying a data value directly,
although both design schemes are similar and require the
ALU to divide all valid digits by a given modulus value
supplied from a known source. It should be understood that
other sources of data may gated to the crossbar bus that are not
shown or described herein.

In one embodiment, the crossbar bus 318, 319 is as wide as
(the width) of the largest digit modulus of the ALU. In one
embodiment, this maximum width is depicted by Q, which
represents the binary width of the largest digit modulus. In
this embodiment, the design architecture extends a data path
of' width Q to the input (B) of all digit LUT’s 301, regardless
of the width of the specific ALU digit modulus. This tech-
nique avoids performing a “modulo digit” operation on the
crossbar data itself, (such as that shown in FIG. 3B with
modulus pre-scale LUT 3015 and 301c¢). This ensures that
LUT 301 input directly supports operations on data from any
larger digit modulus. Of course, such a technique may waste
storage as a result of LUT size and redundancy, but may
execute faster than using digit modulus LUT 3015 pre-scale
unit of FIG. 3B.

Crossbar data is generally sent and received in a common
format, but not necessarily in a format directly used by the
LUT or digit accumulator register. One embodiment includes
a special variation depicted in FIG. 3B. A LUT 3015 or other
hardware function performs a conversion of data from the
crossbar 318 for ALU A; LUT 301c¢ is used for ALU B. In this
embodiment, the ALU arithmetic LUT 301 input B need only
support MOD p data width, since any value exceeding p-1 is
converted using the MOD p LUT before being routed to the
LUT 301 input. This conserves memory space, by supporting

US 9,395,952 B2

27
smaller LUT input size, but may sacrifice speed, by cascading
the digit modulus LUT function 3015 with that of the arith-
metic LUT 301.

The crossbar bus may also support a different data format
than some or all digits of the ALU. For example, a power
based digit modulus is implemented for the purpose of creat-
ing a fast and balanced ALU. In one embodiment, the digit
accumulator of the power based digit is encoded as a binary
coded fixed radix (BCFR) number. Therefore, in this case, the
BCFR formatted value may require a conversion to binary
before being gated to the crossbar bus 318. FIG. 3G depicts a
digit AL U with a BCFR to binary conversion unit 326 placed
between the digit accumulator 302 and the crossbar bus gate
313. This advanced topic is discussed in the integer division
method in the section regarding power based digit modulus.

Typically, at least two crossbar buses 318, 319 are provided
for a dual accumulator. This allows each ALU to operate
independently, and also in tandem. In one embodiment not
shown, the ability to cross gate values from crossbar bus A
318 to crossbar B 319 is provided; these types of enhance-
ments are design specific, and do not add significantly to our
explanations of the basic operation of the present inventions.
Crossbar LIFO Hardware Stack

One optional, but particularly useful data structure con-
nected to the crossbar bus A 318 and B 319 is the crossbar
last-in first-out (LIFO) hardware stack 275 and 276 respec-
tively, as depicted in FIG. 2B. The LIFO interconnects to the
crossbar of each ALU using selector and bi-directional gate
represented as a double arrow 277a and 2775 for crossbar A
and B respectively. Each crossbar LIFO is capable of being
loaded from the crossbar data bus using a “push” type opera-
tion. Likewise, the crossbar LIFO may source data to the
crossbar bus using a “pop” type operation.

During residue to mixed radix conversion, LIFO 275 data
structure provides a means for high speed storage of both
modulus values and digit values in one embodiment. During
the conversion of RNS to MRN, the LIFO is pushed alter-
nately with digit values and modulus values. A LIFO element
count 278 tracks the number of data elements added to the
LIFO 275. During MRN to RNS conversion, the LIFO 275 is
operated in reverse. Digit values are sourced to the crossbar
bus and added to the ALU accumulator during a LIFO pop
operation; likewise, the ALU is multiplied by modulus values
sourced from the LIFO when they are popped. FIG. 2B
depicts the digit values D, and Modulus values M, contained
in the hardware LIFO stack 275.

The LIFO 275 structure offers several advantages. For one,
the LIFO helps to simplity the ALU control logic within the
ALU control unit 200. For example, tracking skipped digits is
implicitly handled by the FIFO, and therefore reduces control
logic. If the LIFO is not used, control circuitry may use the
register file 300 to store and retrieve modulus and digit values.
This creates additional burden on the control circuit to track
digits that have been skipped or modulus order that has
changed, for example. The LIFO 275 is very useful in the
present invention for managing numbers of variable modulus
and radix sets.

The LIFO stack structure can also play a key role in the
conversion of RNS to binary. In FIG. 21B, the LIFO stack 275
is interconnected to parallel to serial register 2100 and 2101.
Parallel to serial register 2100 latch the modulus values con-
tained in LIFO 275. Parallel to serial register 2101 latch the
digit values contained in LIFO 275. Values contained in each
parallel to serial converter are shifted in tandem to a plurality
of K binary digit stages 2102, 2103, 2104. After a sufficient
number of clock cycles, the binary conversion result appears
in digit registers B, 2111 through B, 2114.

20

25

30

40

45

50

55

60

65

28

Status Registers and Status Register Data Bus

ALU control circuitry 200 makes decisions based upon the
status of each digit AL U. In the embodiment of FIG. 2A, each
ALU provides a plurality of status signals 307, 308, & 309
back to ALU control circuitry 200. Basic status signals from
ALU A are set after the result of an operation and generally
reflect the state of the value contained in the digit accumulator
302 register. The AL U flags consist of a zero (0) flag, aone (1)
flag, and comparison flag indicating the outcome of compari-
son with digit register 303 accumulator B. Each ALU A and B
transmit status signals to the control circuit; each set of zero
and one detect flags are unique from each ALU. Generally,
status signals such as the zero (0) and one (1) status signal are
wired in parallel, so that control circuitry 200 can immedi-
ately establish whether a zero value exists in all digit accu-
mulators 302, 303 simultaneously.

A single shared set of compare status signals 309 are shown
in FIG. 3A; these compare flags indicate the outcome of a
digit by digit compare between ALU A and ALU B. This ALU
architecture is useful for enhancing the speed of number
comparison in the ALU of the present invention. The com-
parator 306 may support both “equal” as well as “less than”
and “greater than” status conditions. Status signals 309 from
each digit comparator 306 may be provided in parallel to
control circuitry 200 in FIG. 2A. This allows an apparatus for
fast equality check (i.e. identical value check). Alternatively
and in addition, a shared set of comparator status signals 309
may support comparison on a digit by digit fashion. A mixture
of status bus design is generally used depending on how the
RNS ALU is packaged and partitioned.

In some embodiments, an RNS number comparison opera-
tion is performed digit by digit. The ALU control unit 200 has
the ability to select any digit within the AL U, and therefore a
means to address any particular digit ALU to receive its
status.

For example, two RNS operands are loaded, one in digit
register A 302, and the other in digit register B 303. Compari-
son is performed by reducing each RNS value into a mixed
radix number (MRN) simultaneously. A digit modulus is
selected, and a mixed radix digit is obtained and stored in each
digit register 302 and 303. The digits are compared 306, and
a comparison signal 309 indicates the outcome of the digit
comparison to control circuitry 200 of FIG. 2A. The compari-
son signal is routed via control and status lines 309 to ALU
control 200, which then stores an updated comparison result.

Next, another digit modulus is selected, and another com-
parison is made between digit registers A and B. The new
result ofthe digit comparison overrides the previous compari-
son unless the new digits are equal. RNS comparison using
mixed radix conversion compares least significant digit to
most significant digit. A comparison code indicates equality,
greater than, or less than as each digit is processed. If the
conversion length of the mixed radix is equal, then the com-
parison code is used to indicate the comparison result. Oth-
erwise, if the conversion length is different, the number hav-
ing more digits is greater than the other, assuming both values
are positive quantities.

Other control signals may exist that are not shown in FIGS.
2A and 3A. Such additional control signals may provide
enhancements to the AL U architecture for faster processing.
Status Flags and Status Register Data Bus Details

FIG. 5A illustrates another embodiment of using a status
bus to transmit status information from each digit ALU to a
central controller 200. In FIG. 5A, a plurality of digit ALUs is
illustrated using an “ALU digit bank™ block symbol 530 and
535. This type of organization is common since RNS digits
may be grouped together on a circuit card, or within a single

US 9,395,952 B2

29

IC circuit. Within each digit bank, the necessary status lines
are grouped into a plurality of status signals gated to a digit
status bus 520 and a word status bus, such as word status bus
525.

In FIG. 5B, more detail representing typical logic for a
CPU status word is provided. The word status register 500
stores the “word wide” status result of each RNS AL U opera-
tion(s). Word wide generally implies status of all valid digit
ALUs combined together. For example, if the result of the
ALU produces a zero value, the output of AND gate 540a is
true, and the Zero Word Flag bit 501 contained within the
Word Status Register 500 is set. Likewise, if the result of all
digit ALLU’s within a digit bank sets the “Equal Word” flag,
the output of AND gate 5405 will set the Equal Word status
flag 502 in the Word Status Register 500. The “any zero” flag
503 represents OR logic processing of an AL U word wide
status; if any digit bank reports a zero, the output of OR gate
541 sets the Any Zero Flag 503 of the word status register 500.

In FIG. 5C, detail is shown regarding the “digit status bus”
520. The digit status bus may be implemented as a common
bus, i.e., a single set of shared status lines. In this case, the
digit to be inspected must first be selected via digit select bus
515, which is illustrated as being driven by digit select regis-
ter 550. The selected digit AL U, contained within a digit bank
530, will then gate its status to the digit status bus 520. For
example, if a particular digit AL U result is zero, and the digit
is selected by the digit select bus 515, the Zero Digit Flag
contained within the Digit Status Register 510 will be set. The
RNS ALU control 200 can select any specific digit ALU, and
query for required status information as needed.

FIG. 5D illustrates additional status logic of interest to the
RNS ALU. For example, the integer division method of the
present invention requires that “any zero™ contained in any
digit ALU be detected. In FIG. 5A, one specific status line is
called “Any Zero”. That is, if any digit ALU contained within
an ALU digit bank 530 is zero, the “any zero” signal is set
true. Each “any zero” signal is ORed 541 together in FIG. 5B
such that if any line is true, the Any Zero Flag contained in
Word Status Register 500 is set. In FIG. 5D, additional cir-
cuitry is provided which may exist in some form in AL U digit
bank 530 and also in RNS control 200. If multiple digits are
zero, a system to prioritize the processing of each zero digit
status 553 may be implemented using a priority encoder 555
which generates a digit address or code 552 that may be stored
in Digit Select Register 550.

For example, in FIG. 5D, a priority encoder 555 is fed by
the Zero Digit status 553 of each digit ALU contained within
an ALU digit bank 530. If any Zero Digit line 553 is true, the
Any Zero Signal 554 is set. Additionally, the highest priority
digit is selected, and is enumerated with a value that is fed
through selector 551 to be loaded into Digit Select Register
550. In other words, the highest priority zero digit ALU has
been detected, and its digit position is loaded into the Digit
Select Register 550 in certain operations. The Digit Select
register can then be used to enable the newly identified, high-
est priority zero digit position (modulus). This function is
useful for integer division of the present invention and will be
discussed in more detail in the integer divide section.

FIG. 22G lists some status test operations used in the
design of Rez-1, a specific ALU design which will be intro-
duced later. FIG. 22G lists specific micro-operations, that
when invoked, set specific status conditions within the RNS
ALU. There are two basic categories of status operations, a
digit based status, and a word based status, as shown in the
first column of FIG. 22G. For many digit based status opera-
tions, a digit position operand is required. This operand may
be provided by instruction, or directly by the ALU control

20

25

30

35

40

45

50

55

60

65

30

unit 200. The digit position operand may be expressed in the
form of a digit number, or digit_#, as shown in the third
column of Table 2. The digit number acts to select the digit to
be tested by the status micro-operation.

Compare status instructions perform a compare with the
accumulator versus a digit compare register. [f more than one
set of digit compare registers are supported, then a Hold_
Reg# operand may be required, to select which set of compare
registers will be used for the digit compare status micro-
operation.

FIG. 22G also shows the return, or result, of the specific
status micro-operation, in column 4. Many word based status
operations return True or False. For example, if the entire
ALU word is zero, the result of a Test for Zero word instruc-
tion, or ZeroW, will return TRUE. In the case of comparison,
the return value may be one from the set of lesser than, greater
than, or equal. A fourth return status may indicate an end of
compare, or END, for the case of digit by digit compare
instruction Comp 1D, for example. The return status of micro-
operations shown in FIG. 22G may be used by the ALU
control unit 200 in the course of higher level instructions, for
instance.

In one embodiment known as Rez-1, status operations are
the result of all non-skipped digits. This is to say that if a digit
is marked as skipped, that digit does not enter into any status
condition determination. This provides Rez-1 the ability to
support a dynamic RNS modulus set by removing any ALU
digit modulus by marking it as skipped.

Features and Enhancements to RNS ALU

The method and apparatus of the present invention is not
limited to the apparatus of FIGS. 2A and 3A. Additional data
paths and control circuitry may be added to enhance the
operation of the basic apparatus. For example, an integrated
compare register, an advanced multi-digit extend operation,
and a dedicated method for handling signed values is also
contemplated. The following sections describe additional
apparatus, features and functions of enhanced architectures
of the method of the present invention. Also, these sections
help clarify more complex AL U operations, such as conver-
sion to mixed radix and conversion to binary.

Conversion to and from Mixed Radix

RNS to mixed radix conversion and mixed radix to RNS
conversion are fundamental operations within the RNS ALU
of'the present invention. So much so that unique variations of
mixed radix conversion provide powerful methods for arith-
metic processing of RNS numbers in the present invention.
The present invention discloses for the first time unique and
novel methods for employing mixed radix conversion as well
as novel apparatus for supporting the operations within the
RNS ALU.

One unique hardware feature is a hardware LIFO data stack
for processing of mixed radix conversion. Another unique
feature is the support of “skipped” digits, sometimes called
“invalid” digits, which provides a general purpose mecha-
nism for supporting a variable RNS modulus set, and supports
a general feature for marking, delaying and grouping digits
for base extending.

Mixed radix conversion is a frequently performed primi-
tive operation within the ALU of FIG. 2A. Conversion from
RNS to mixed radix generally consists of a series of digit
subtractions and modulus divides. In turn, mixed radix digits
are generated, and may be stored in register file 300 during
high level operations like “digit extend”. Alternatively, or
additionally, mixed radix digits may be stored in the crossbar
LIFO 275 as they are generated, as depicted in FIG. 2B.

US 9,395,952 B2

31

Conversely, mixed radix digits may be discarded after they
are generated during operations such as “compare” and “sign
extend”. In any case, this disclosure refers to the general
process of mixed radix conversion as “decomposing” an RNS
number.

Conversely, converting a series of mixed radix digits back
to RNS is another primitive and fundamental operation of the
ALU of FIG. 2A. This primitive process is sometimes
referred to as “recomposing” an RNS number in this specifi-
cation. Converting back to RNS, or recomposing, consists of
a series of modulo additions and multiplications. To recon-
vert, the mixed radix digits must be processed in the reverse
order as they were generated to be converted back to the
correct RNS value; therefore, mixed radix digits have posi-
tional significance. Recovering the mixed radix digits in
reverse order may be simplified when using the LIFO 275
data structure as depicted in FIG. 2F. Otherwise, digit values
may be retrieved from register storage 300 in reverse
sequence as depicted in FIG. 2C.

Conversion of RNS to Mixed Radix Detail

FIG. 2B depicts a special hardware apparatus for support-
ing RNS to mixed radix conversion in one embodiment of the
present invention. A Last-in, First-out (LIFO) hardware data
stack 275 is coupled to crossbar bus A 318. A similar hard-
ware stack 276 is coupled to crossbar data bus B 319. The
LIFO hardware stack allows mixed radix digit and modulus
values to be stored in sequence, and retrieved in the opposite
order at high speed. Digit and modulus values are gated to and
from the LIFO structure using the crossbar bus. A LIFO
element count 278 and 279 track the number of stored entries
in LIFO A 275 and LIFO B 276 respectively.

FIG. 7A depicts a typical control flow for processing RNS
to mixed radix conversion in the present invention. The con-
trol process first starts with the step 701 of clearing the LIFO
structure 275 and loading the accumulator A with the value to
be converted. Loading accumulator A for the entire ALU
consists of loading each digit accumulator A 302 of each digit
ALU slice 215 for every modulus (p). In some cases, control
step 701 is not required since the value to convert may already
exist in the accumulator, and the LIFO A may be cleared, thus
the LIFO element count 278 is set to zero.

In control step 702 an arbitrary starting digit is defined for
conversion. In the case of the flowchart, and by example only,
the first digit is designated by index [I]=0. In one embodi-
ment, the modulus p=2 is associated to index zero. It should
be noted that other starting digits, and other digit orders may
exist for conversion; in general, however, once a digit order is
chosen, that order is kept for comparison, and followed in
reverse for reconversion. For example, one embodiment may
start with the largest digit modulus. (In some methods of the
present invention, conversion with a specific order of digits is
important, and will be noted at that time.)

Atcontrol step 703 a decision is made based on whether the
ALU digit is flagged as skipped. For example, a digit may
have been previously flagged as skipped using the skip digit
flag 330 as depicted in FIG. 31. Alternatively or additionally,
the controller 200 may store skip digit flags 280 depicted in
FIG. 2B. If the digit is flagged as skipped, the control system
selects the next modulus M, by incrementing its digit position
index 711. One requirement of the flowchart of FIG. 7A is that
at least one digit is not marked as skipped. In this case, once
a digit is selected that is not skipped, control passes to the step
704 of pushing the selected digits value to the LIFO 275. This
operation represents a ‘push”, or store operation to the hard-
ware stack LIFO 275 of FIG. 2B. The stack LIFO element
count 278 is incremented by one.

20

25

30

35

40

45

50

55

60

65

32

FIG. 2B illustrates by a dark highlight the data paths
affected for the case of ALU A. The step 704 of pushing the
digit value to the LIFO includes the process of gating the
selected digit to the crossbar bus. This generally implies
selector 313 gating the accumulator 302 value to the crossbar
bus 318 in the case of ALU A. The selected digit value is
latched by the LIFO structure, and stored for future use.

Next, or in parallel to step 704, a step of comparing the
selected digit 705 to check for a zero value is made. [fthe digit
value is not zero, the value of the digit is subtracted from the
entire ALU, i.e., subtracted from all digit slices simulta-
neously. Again, the data path of FIG. 2B illustrates the gating
of the digit value to the crossbar bus, and depicts all non-
selected digits 205 accessing the value of the crossbar bus 318
as an operand to the LUT. The AL U control unit 200 checks
for the condition of zero for the selected digit using zero
detect status signals 307 generated via zero detect logic 304 as
shown in FIG. 31. Referring to the flowchart of FIG. 7A, it is
noted the zero digit detection step 705 may be eliminated, and
control directly passed to subtraction 706 of the digit from the
accumulator, since subtracting a value of zero is equivalent to
skipping the subtraction step 706.

Next, a control decision based on the outcome of the sub-
traction 706 step is made; the entire accumulator is checked
for the value of zero 707. Checking the entire ALU for a status
of zero is accomplished using the status lines from each ALU
slice. By entire accumulator we are typically referring to all
valid digits of the accumulator, i.e., all digits not flagged as
skipped. Status lines indicating whether each digit is zero are
combined to form a complete zero status for the entire ALU as
depicted in FIG. 5E. Zero digit status line 592 is logically
ORed 595 with its associated skip digit status and logically
ANDed 596 with all other digits to form a zero word status
flag 501. If the Zero Word flag 501 is set, control will be
passed to step 708 to mark the selected digit position as
skipped. The process of marking a digit as skipped is one
embodiment of ALU control used to properly mask the digit
ALU status during processing. Other techniques can be
deployed to accomplish equivalent objectives.

Next, or in parallel to step 708, the accumulator is divided
709 by the value of the selected digit position modulus, M,.
The division process is referred as multiplication by the recip-
rocal of the modulus. In this specification, the operation is
referred to as MODDIV, which is essentially an inverse mul-
tiply function, and in the case of our example, is performed by
the LUT 301. All digits perform the MODDIV operation
simultaneously, with the operand value (modulus) gated from
the crossbar bus.

The source of the modulus value can vary by design. In one
embodiment, the modulus value is stored in the register file,
and is gated to the crossbar bus by the selected digit ALU. For
example, FIG. 2C depicts primary data flows in the case when
the selected digit position is modulus=2. The modulus value
is gated from register file 300 via selector 313 to crossbar bus
A 318. All LUTs use the crossbar bus A 318 as an operand via
a selector such as selector 310. In another embodiment, a
special storage for modulus values is gated to the crossbar
bus, such as LUT 1111 of FIG. 11A. Regardless of the source
of the modulus, each digit ALU is typically divided by the
modulus simultaneously.

During the MODDIV operation 709, the modulus value is
present on crossbar bus 318 as previously explained and as
depicted in FIG. 2C. During this time, the modulus value is
“pushed” 710 to the LIFO stack 275 as depicted in FIG. 2D.
In control step 710 control unit 200 signals bus control unit
277a to gate the source data from the crossbar 318 and write
the modulus value M, to LIFO stack 275. After this step or in

US 9,395,952 B2

33

parallel to, the control unit increments the selected digit posi-
tion [I] 711 and repeats the control loop beginning with the
step of checking for a skipped digit 703.

The control loop depicted in FIG. 7A by step 703 and
control path 712 is repeated until the condition of the accu-
mulator equal to zero 707 becomes true. When this occurs, the
conversion is terminated, and the resultant mixed radix digits
along with their associated modulus values are stored in the
LIFO structure 275. Example digit values D, and modulus
values M are illustrated as contained within LIFO structure
275 of FIG. 2B.

Other methods and variations exist. For example, mixed
radix digits may be stored in the register file as they are
generated. This is useful when storing RNS values as mixed
radix constants. In FI1G. 2E, the digit position of modulus=3 is
selected, and the accumulator 3025 is gated to the crossbar
bus in the procedure previously discussed. In addition, the
highlighted data path depicts the digit value is stored to reg-
ister 3004. In this manner, for each digit position for which a
mixed radix digit is generated, the digit is stored in a desig-
nated location of register file 300, 3005.

Another variation uses the register file to store mixed radix
values instead of the LIFO hardware stack 275. In this
embodiment, the control unit 200 may be aware of mixed
radix digit length, possibly using a significant digit detection
mechanism, or marker, for example. In another embodiment,
adigit count may be used with the mixed radix number stored
in the register file. In another embodiment, leading zeroes are
stored, and a mechanism for detecting leading zero digits is
used. Additionally, tracking skipped digits may be more com-
plicated, since a mechanism for tracking the sequence of valid
digit modulus for reconversion to RN'S may be required. This
disclosure uses the LIFO stack for ease of use and conve-
nience of explanation, but it should be understood that other
solutions to accomplish these same objectives may be used
but are not discussed in detail herein.

RNS to Mixed Radix Conversion Example

FIG. 7B illustrates an actual example of RNS to mixed
radix conversion. The example of FIG. 7B illustrates the
numerical relation within the dotted line 725. In this example,
the decimal value 21,845 is represented by 6 prime modulus
12,3, 5,7,11,13}, which has a range 0f 30,030. The starting
RNS value having the indicated decimal value is loaded into
the RNS ALU 740 at start. Each transition of the ALU is
documented with each following line. The associated control
loop step of FIG. 7A is listed in column 730. The RNS ALU
action is listed for each step, as indicated in the second col-
umn 735 of FIG. 7A.

FIG. 7B also illustrates the action and direction of the
crossbar bus during conversion using the Crossbar value and
direction column 745. Values transmitted via the crossbar are
pushed to the LIFO data structure 750, and are shown as
grayed out in FIG. 7B. A LIFO data count is tracked for each
step in the LIFO Count column 755 and the LIFO action is
listed for each step in the LIFO Action Description column
760. Atthe last step of the RNS to mixed radix conversion, the
LIFO count reaches eleven (11) in this example. For conve-
nience, the decimal equivalent is listed under the Actual Value
column 765 for the first step, when the value is in RNS format,
and in last step of the conversion, when the resulting value is
stored in the LIFO in mixed radix format. In this case, the
LIFO 750 contains the mixed radix digits and their corre-
sponding radix, or power. The digit modulus values are shown
as underlined in the LIFO 750. The conversion ends when all
non-skipped digits of the ALU 740 are zero.

20

25

30

35

40

45

50

55

60

65

34
Conversion of Mixed Radix to RNS Detail

Conversion of mixed radix to RNS is equally important,
and resembles the same operations, only in reverse. The need
to convert to the mixed radix format and then back again to the
RNS format may appear redundant, but surprisingly forms a
foundation for fractional arithmetic operations and other
functions of the present invention. Therefore, it becomes
important to understand the primitive conversion operations.

FIG. 8A illustrates a typical control flow for performing
conversion of mixed radix numbers stored in the LIFO struc-
ture 275 back to residue format. It should be noted that the
LIFO data format is special in that it contains the digits and
modulus values; modulus values represent the powers of the
mixed radix number format. As a consequence, skipping a
digit during RNS to mixed radix conversion changes the
ordering of powers, and hence creates a new mixed radix
number system. The LIFO adapts to these changes, since the
proper reconstruction sequence is preserved in the LIFO.

The control unit first loads the LIFO (perhaps by RNS to
mixed radix conversion) and then clears the accumulator 801.
The control unit receives the LIFO element count value 802 as
depicted in FIG. 2F. The first element of LIFO 275 is a digit
value and is added to the ALU accumulator in control step
803. The LIFO stack 275 is “popped”, and the next stacked
value is gated to the crossbar bus 318 as depicted by heavy
lines in FIG. 2F. The value or copy of the element count is
decremented 804 and a control decision 805 determines if
elements are still available on the LIFO stack 275. If elements
are still available on the LIFO, the top of the LIFO stack is
gated to the crossbar and multiplied to each digit of the AL U.
The LIFO is popped, and the element count 278 of FIG. 2F is
decremented 807.

The control loop defined by control path 808 is repeated
until the LIFO element count 278 is depleted as detected at
control step 805. At that time, the mixed radix number once
residing in the LIFO is converted to RNS format and resides
in the ALU accumulator. Special variations of this process
exist in the unique and novel apparatus of the present inven-
tion. For example, the RNS to mixed radix conversion can
decompose the value of an RN'S number using one set of RNS
modulus, and the mixed radix to RNS conversion can recon-
vert the value to an RNS number having a different set of
modulus.

Mixed Radix to RNS Conversion Example

FIG. 8B illustrates a specific example of mixed radix to
RNS conversion. The numeric example is given by the rela-
tionship 815 enclosed by dotted lines, and is the same rela-
tionship as provided in the RNS to mixed radix example of
FIG. 7B; however, the conversion operation is in reverse
order.

In mixed radix to RNS conversion, the LIFO starts with the
mixed radix number loaded into the LIFO 750. Again, a
special mixed radix format is required, which includes the
mixed radix digit and its associated digit power, or radix. For
example, the LIFO may be loaded using an RNS to mixed
radix conversion as discussed earlier using FIGS. 7A and 2B.
In step 811 of the example of FIG. 8B, the LIFO 750 is
initialized with the mixed radix digits and powers of mixed
radix number 950021,,,,, as shown in the actual value column
817. The RNS ALU 740 is initialized with zeroes in step 811.

Referring to FIG. 8B, during the conversion of mixed radix
to RNS, the reverse process occurs. Digit values are popped
from the LIFO 750 and added to the RNS ALU 740; modulus
values are popped from the LIFO 750 and the RNS ALU 740
is multiplied by the modulus value. The example of FIG. 8B
illustrates the crossbar data and direction 745. In this case, the
data is shown flowing from the LIFO 750 to the RNS ALU

US 9,395,952 B2

35
740. When all LIFO elements have been popped, the LIFO
count 755 goes to zero at step 816, and the process ends with
the converted RNS value loaded into the RNS ALU 740.

Other methods and variations exist. For example, a system
which does not use a LIFO structure can instead use the
register file to store and convert mixed radix numbers.
Depending on the desired level of functionality, the need to
support features such as variable modulus sets can be con-
templated. Additionally, the control system must also deal
with tracking the position of skipped digits during conversion
and reconversion of mixed radix numbers. Many specifics of
these alternate control solutions are beyond the scope of this
disclosure.

Fused LUT Arithmetic Functions

Since primitive operations of decomposing and recompos-
ing RNS numbers are essentially sequential, they are catego-
rized as a slow operation; therefore, it is important to find a
method to enhance performance. Since the function of
decomposing requires sequential modulo subtraction and
divide, both operations can be “fused” together in a single
LUT. Likewise, since recomposing a number is a function of
addition and multiplication, both of these operations can be
fused together in a single LUT. Therefore, instead of perform-
ing two operations, a single operation is performed for each
digit during decomposing and recomposing. This provides
for nearly double the speed for slow operations, and is a
claimed invention of this disclosure.

Fused LUT Subtract and Divide

One brute force method for fusing two LUT table opera-
tions into a single LUT operation is to increase the size of the
LUT by increasing the effective address width, since now a
third operand is present. This is illustrated in FIG. 3C, which
shows three digit sources as address input to LUT 301. This
technique works, but may not be effective, since the size of the
LUT is now a cube of the digit range, as opposed to the square.
In one novel enhancement of the present invention, the digit
slice ALU of FIG. 3A is modified as shown in FIG. 3D. In
place of operand selectors 310 and 311 are placed address
translators 334 and 335. Address translators essentially per-
form the more simple of the four modulo operations, namely
addition and subtraction.

During mixed radix conversion (decomposition), address
translator 334 acts as a subtract function, passing the accu-
mulator (digit register) value via path 3154 and subtracting
334 by common crossbar value 3184, the result appearing at
LUT 301 where modulo divide is performed. In this embodi-
ment, the address translator function 334 supports modulo
subtraction, so that its output is always a valid LUT address.
In this case, the arithmetic LUT no longer stores the entries
for subtraction. This technique reduces the LUT size, while
speeding the primitive operation of mixed radix conversion.

The fused subtract and divide function may operate as a
single subtract or divide function. For example, if a value is to
be subtracted only, the fused address translator performs a
subtraction, and the LUT is instructed to divide by one. Alter-
natively, the LUT can be bypassed (not shown). If only a digit
divide is to be performed, the address translator can subtract
a value of zero. Alternatively, the address translator can be
bypassed using appropriate logic (not shown).

FIG. 3H illustrates a digit ALU variation with both an
address translator 334 coupled to a Mod p LUT 3014. One
advantage of this arrangement is the Mod p LUT limits the
range ofthe crossbar value to p—1, and therefore simplifies the
circuit requirements of the address translator 334, especially
if the modulus p width is much less than the crossbar width Q.

20

25

30

35

40

45

50

55

60

65

36

Fused LUT Add and Multiply

During mixed radix to RNS conversion (re-composition),
address translator 334 is instructed to provide an “add” func-
tion via the OP Code A control lines 316, as depicted in FIG.
3D. The add function adds the value of the crossbar A bus 318
to the value of the accumulator (digit register A), and sends
the result 336 to the LUT 301 where a multiplication function
is performed. The multiply is performed with the value of a
register file 324, which contains the value of a digit modulus
in this embodiment. (The digit modulus value may also come
from other places, such as from a second crossbar bus, for
example) The LUT 301 is instructed to perform a multiply
while the address translator 334 is instructed to perform an
add function.

In one embodiment, address translator 334 performs
modulo p addition, so that its output 336 is always a valid
LUT 301 address. In one embodiment, address translator 334
and 335 are LUTSs themselves. In this case, total LUT is not
changed, but signal propagation delays are increased since
two LUT’s are cascaded. This is the case of cascaded LUT"’s.

It should be noted the configuration of FIG. 3D still allows
separate “non-fused” operations, since addition alone can be
performed as long as the multiplication operand is one. Like-
wise, multiplication alone can be performed as long as the
additive operand is zero. Other solutions which enable a
single arithmetic function are possible as well. The controller
200 determines the necessary control line operations and
table look-ups to achieve the desired results, and is not shown
for clarity.

The enhancement depicted by FIG. 3D implies operations
such as compare and digit extend will require half as many
clocks than the conventional apparatus of FIG. 3A. This
enhancement allows the ALU to be analyzed in a straightfor-
ward manner, that is, performing a digit operation every clock
cycle. The single digit operation comprises either a fused
subtraction and divide, or a fused multiplication and addition.
This type of speed enhancement is important for high perfor-
mance designs, but not important in explaining algorithms of
the present invention. Most discussions to follow therefore
assume the AL U has separate LUT cycles for each arithmetic
operation.

Residue Number Comparison

The comparison of two RNS numbers results in a condition
oflesser than, greater than or equal. Two RNS numbers can be
compared for equality using a dual accumulator ALU and a
digit comparator 306. Assuming one operand is loaded into
digit register A and the other operand is loaded into digit
register B, a comparator 306 determines if the operands are
equal, and if so, indicates an “equal status” via lines 309. In
one embodiment, digit comparator output 309 from each digit
is processed in parallel, so that a determination of equality is
made in one or less clock cycles. For all systems, checking for
identical numbers is typically fast.

On the other hand, checking the magnitude of an RNS
number against another RNS number is regarded as a slow
operation. However, unique and novel apparatus of the
present invention provides an efficient solution for number
comparison. Number comparison is important, and also helps
to explain how the dual accumulator architecture provides
efficiency.

In one embodiment of the present invention, a dual accu-
mulator, digit slice architecture is utilized as illustrated in
FIGS. 2A and 3A. For each digit, operand A is loaded into
Digit Register A 302 and operand B is loaded into Digit
Register B 303. (Loading a full word into an ALU consists of
loading each modulus digit of the operand into each associ-
ated digit slice.)

US 9,395,952 B2

37

For unsigned operands, and using the dual accumulator
architecture of the present invention, the compare process is a
dual and simultaneous conversion of each RNS value into a
mixed radix number format. During dual conversion, each
ALU generates a digit together, the digit being of the same
modulus, or position. The result of a single “digit cycle™ is to
produce two mixed radix digits, one stored in Digit Register
A 302 and the other stored in Digit Register B 303. Control
circuitry can save the mixed radix digits in the register file 300
for later comparison. However, in a unique method that fol-
lows, the digits are directly compared using comparator 306
as they are generated.

As the mixed radix digits are generated in each cycle, they
are compared with each other, and the result of the compari-
son may be affected. In one embodiment, as mixed radix
digits are generated, they are compared, and then discarded.
The process mirrors a comparison of fixed radix numbers, but
from least significant to most significant digit.

For unsigned numbers, if one RNS conversion terminates
(one or more digits) before the other, that number is smaller.
Therefore, special hardware support is added to the conver-
sion which terminates the comparison as soon as the smallest
number is exhausted. The mixed radix digits can be stored, or
simply discarded, in either case generating the final result
(less than or greater than) of the entire RN'S word comparison.
Comparison Control Flow

FIG. 9A is a typical control flow for a basic comparison of
positive integers within a dual RNS AL U of the present inven-
tion. The compare routine of FIG. 9A illustrates an approach
using mixed radix conversion. Each AL U generates a mixed
radix digit each conversion cycle, and these digits are com-
pared to one another. A control unit tracks the result of each
digit comparison, updating the status of comparison as digits
are generated and compared.

At the start of the comparison, the values to be compared
are loaded into ALU A and ALU B, as shown in control step
900. An order for digit processing is determined, the result
flag is initialized to equal, and the starting digit is marked in
control step 901. In this example, the digit order will be
successive, starting with the digit position zero, and moving
to the highest digit position. The first digits are generated in
902, and the digits are compared in 903. If the digits are equal,
the status of comparison does not change, and control con-
tinues at control decision step 907, otherwise, control passes
to step 904 where the digit magnitude is compared. If the
ALU A digit is greater than the ALU B digit, the status of
comparison is set to A>B 905. However, if not, the status of
comparison is set to A<B 906.

In control decision step 907, the value of the digit position
is subtracted 908 from the entire ALU if it is non-zero. In the
case of some embodiments, the value of the digit position is
subtracted from the ALU regardless, since subtracting a value
of zero 908 is the same as skipping this step. The digit sub-
traction process typically occurs simultaneously for each
digit ALU. In control decision step 909, a determination is
made as to whether ALU A or ALU B is zero. If neither ALU
is zero, the control system continues by dividing the ALU by
the selected digit position modulus 911. The control system
may also mark the selected digit position as skipped, or
“invalid” 910, either before, during or after step 911. The
control system then selects the next digit position to process
by incrementing the digit position index 912. Other variations
exist which may use a different sequences of digits.

The control loop defined by path 919 occurs for each digit
generated by the mixed radix conversion process. The next
digit comparison occurs at step 902. Again, the selected digit
of each ALU is compared. Based on the result of the digit

20

25

30

35

40

45

50

55

60

65

38

comparison, the comparison status result flag may be modi-
fied in step 905 or in step 906. At some point, the values
contained within one or both RNS ALU’s will decompose to
zero. When this occurs, the control decision step of 909 is
TRUE, and control proceeds to decision step 913 which deter-
mines if both ALU values are zero. If both operands decom-
pose to zero in the same cycle, the comparison result flag is
returned 914 as the result of the comparison. However, if one
operand goes to zero before the other, the comparison control
circuitry will test ALU A for zero; it ALU A is zero, it’s value
is smaller, and therefore the comparison returns A<B 916. If
not, the ALU B is zero, and the comparison apparatus returns
A>B917.

More complex control flow diagrams are required to
handle negative values, and are not disclosed in detail herein.
However, these apparatus are explained as follows. The com-
parison unit, or comparison control system, may use the sta-
tus of the sign bit to determine a comparison. If one operand
is negative, and the other is positive, then a comparison result
may be determined without decomposing either operand. If
both operands have the same sign, a flow control similar to
that of FIG. 9 A is used. For negative values using p’s-comple-
ment, the comparison result is the logical inverse of the case
of positive operands; for example, the absolute value of the
smallest negative number is represented by the largest
machine number integer, the machine number integer being
the format measured by the comparison apparatus in one
embodiment.

A novel an innovative invention for comparison of the
present invention is disclosed. The novel apparatus integrates
an operand “range comparison” function which operates in
tandem to the mixed radix conversion process of the compare
function of FIG. 9A. Using the integrated range compare, a
sign extend operation is integrated into the comparison opera-
tion; therefore, an operand with a non-valid sign flag will be
extended, i.e., set to valid, after the comparison operation is
complete. This helps reduce the need to sign extend operands
during the course of processing values, and results in an
increase in AL U performance and efficiency.

RNS Comparison Example

FIG. 9B illustrates a simple comparison of two numbers
(123 vs.245). A dual ALU architecture is illustrated as having
ALU A 926 and ALU B 934, each ALU having 6 prime
modulus {2, 3, 5, 7, 11, 13}. The first state of each ALU is
shown in the first row 941 having each value loaded into its
respective register. In this example, the value (123) is loaded
in to RNS ALU A, and the value (245) is loaded into RNS
ALU B. The column entitled “FIG. 9A control step™ 922 lists
the associated control step for each successive state of the
ALU A listed downwards. The columns listed as ALU A
action 924 and ALLU B action 936 describe specific actions for
each ALU respectively.

In the center of the diagram of FIG. 9B, the digit compari-
son process is illustrated. During specific steps of the control
922, each RNS ALU generates a mixed radix digit, such as the
first digit generated by ALU A 958, and the first digit gener-
ated by ALU B 962. In this case, each digit generated has the
value of one (1), so the comparison outcome of the two digits
is equal 960. In one embodiment, the comparison of the digits
is performed by comparator 306 as shown in FIG. 3A, for
example. The results of the comparison may be transmitted
via bus 309 to RNS control unit 200 for processing.

Control unit 200 of FIG. 2A may track the result of each
digit comparison, which is illustrated by the column entitled
“control compare” 940 in FIG. 9B. This is equivalent to the
comparison result flag of FIG. 9A. At start of the comparison,
the control compare status 940 may be set to “equal” 982.

US 9,395,952 B2

39

During the first digit compare 960, the control compare 940
continues to be set equal 984. In the next clock, or cycle, each
RNS ALU is divided by the next modulus M, illustrated by the
control steps 944. In the next digit compare cycle, ALU A
generates the digit one (1) 964 while ALU B generates the
digit two (2) 968. Since the AL U B digit is greater, the control
compare status 940 is setto A<B 986. Again, another modulus
divide cycle 948 is processed; this corresponds to control
steps 910 and 911 in FIG. 9A.

A third mixed radix digit is generated by each ALU in step
950; in this example, both digits are equal, so the control
compare result 988 remains set to A<B. After another modu-
lus divide cycle, a fourth mixed radix digit is generated by
each ALU. The ALU A digit 976 is four, which is greater than
the ALU B digit 980 of value one. Therefore, the control
compare status 940 is now changed to A>B 990. However,
during this same cycle, the value of the digit four is subtracted
from ALU A 954 per control step 908 in FIG. 9A. Likewise,
the value of one is subtracted from ALU B. The compare
control unit detects ALU A is now zero 994, while ALU B is
not. The control loop detects this condition in decision step
913 of FIG. 9A. In this example, control proceeds next to
control decision 915 to determine if A alone is zero, which it
is. Next, control passes to step of flagging, or returning as a
result, the status A<B 916.

In the example of FIG. 9B, the comparison has terminated
on an operand reducing to zero 994 before the other operand.
If positive numbers are assumed, the control unit reaches an
immediate determination of the comparison, in this case,
resulting in A<B 992.

Digit Compare Registers:

Another unique provision of the present invention is the
inclusion of a special comparison function. In FIG. 3E, a
special modification to digit slice ALU of FIG. 3A, which
shows the addition of two compare registers 3025 and 3035,
and the addition of two comparators 3065 and 306¢. Using the
dual ALU, each ALU A and B may perform a compare of its
contents versus the value of a constant. The constant is loaded
into the digit compare register A 3025 for comparison against
the value in the Digit Register A 302 via comparator 3065.
The comparison result is signaled via the Digit A compare
lines, and is used to set or update the value of the comparison,
based on the digit comparison at hand. The ALU B has a
similar structure for supporting the comparison of ALU B
with a constant loaded in Digit compare register B 3035 using
comparator 306c¢.

The digit comparison operation requires two operands, one
is the digit accumulator (register) and the other is a constant.
The constant is a value previously converted to mixed radix
format. Each digit of the constant is stored in its Digit Com-
pare register 3025 of each digit ALU. This saves the need to
use two ALUs at once, which is the case if both numbers are
in RNS format. The system controller 200 supports an
implied order of conversion and re-conversion of mixed radix
digits, thereby establishing standard data types in mixed radix
format that may be used directly within the ALU of the
present invention. The digit compare function may co-ex-
ecute with other operations to help detect certain status, such
as range and overflow. For example, the value at which posi-
tive numbers first become negative numbers can be loaded in
the constant digit compare register 3025, and while a mixed
radix conversion is being performed, a determination as to the
sign of the value may also be determined.

Curiously, while mixed radix digits are used with the ALU
design, in many embodiments, there are no provisions to
perform arithmetic operations, such as addition and subtrac-
tion, directly on the mixed radix data type; instead, mixed

20

25

30

35

40

45

50

55

60

65

40

radix data typically acts as an intermediate format that helps
the RNS ALU perform certain other types of operations, such
as comparison, conversion, and truncation.

In an advanced embodiment, a dual ALU generates mixed
radix constants in tandem to the method of comparing the
generated constant to an RNS operand. This process allows
the generated mixed radix constant to adapt to a variable RNS
modulus set. This embodiment is equivalent to an RNS versus
RNS number compare of FIG. 9A which further includes the
control element to process skipped digits.

Several key instructions executed by the ALU of the
present invention perform a sign extension to the final result.
One key feature to the fractional multiply of the present
invention is the ability to sign extend the result during the
multiply operation. Sign extension requires a comparison
against specific fixed or predetermined ranges. The AL U may
store the value of a particular range (or limit) as a mixed radix
constant, and compare the limit against an operand as it is
being converted to mixed radix, or otherwise processed.

Another advantage for the constant compare method just
described is it frees each ALU from the other. Each ALU A
and B is free to perform basic comparison against limits,
ranges, and other important values without requiring the ser-
vices of the other ALU. This modification to the dual ALU
digit slice architecture provides significant performance
increase. It also demonstrates the high resource cost of an
arbitrary RNS versus RNS value comparison, which use
should be minimized when programming high speed RNS
applications.

In FIG. 9C, an example comparison is made between the
contents of an RNS ALU 926 and a constant value of two
hundred forty five (245) 999. The constant value is stored for
comparison is a plurality of digit compare registers 994, 995,
996, 997 & 998. Each digit compare register of FIG. 9C is
similar to digit compare register A 30256 of FIG. 3E. The
operand compared with the value contained in the RNS ALU
is a mixed radix constant; converting to mixed radix is not
necessary. By loading each digit compare register of each
digit function block with the value of the associated digit of
the constant, only a single ALU is needed, not a dual ALU.

The mixed radix constant (11021,,,) has an associated
radix set, and even an associated radix order; therefore, the
number format of the mixed radix constant implies the order
of mixed radix conversion of RNS ALLU 926. For many cases,
selecting the least valued prime (base) modulus first and
proceeding upwards is a common standard. In FIG. 9C, the
comparison proceeds in the same fashion as the example of
FIG. 9B since the same values are compared, only in FIG. 9C,
the value of (245) is stored as a constant, not as an RNS value.

Using the arrangement described above, the digit compare
registers may be integrated into each RNS ALU digit function
block, and used to perform comparison of values as they are
processed. For example, the fractional multiply must convert
an intermediate RNS number to mixed radix format, and a
comparison of this number yields the sign of the value of the
number. The ALU may load the negative number threshold
value, represented as a mixed radix constant, into digit com-
pare registers A 3205 of FIG. 3E. During conversion of the
intermediate number to mixed radix for another purpose (the
purpose of normalizing), the generated mixed radix digits
may be compared to the negative value threshold (constant),
thereby determining if the value, or result, is positive or
negative.

Digit (Base) Extend with Skipped Digit Flags.

The process of obtaining a value of a digit modulus given
the value of all other digits is known as digit extension, or base
extension. This process is known in the prior art, as various

US 9,395,952 B2

41

methods have been proposed. However, the method and appa-
ratus of the present invention provide novel and unique ways
for using mixed radix conversion to perform digit extension.

One embodiment of the present invention utilizes direct
base extension during integer division and during certain slow
conversion processes. By direct, it is implied the base extend
is executed on its own, and is not a side effect of another
operation.

For example, during the integer divide process of the
present invention, the divisor is checked for the presence of
zeros in any digit accumulator. Upon the detection of a zero
digit, the entire accumulator is divided by that digits modulus
via LUT 301, using a MODDIV operation. After division,
that digit is marked as “skipped”, or “invalid”, using storage
such as skip flags 280 of F1G. 2B or skip digit flag 330 in FIG.
3D. When all zero digits are divided out and thus marked
skipped, the contents of the AL U may be base extended. This
is a unique situation, since multiple digits may need to be
extended, i.e., the digits marked as skipped require extending.
The method of the present invention provides a unique appa-
ratus that can base extend a maximum of P-1 digits in one
base extend operation, where P is the number of RNS digits.

In one embodiment, the digit extend operation is per-
formed using a control flow as depicted in the flowchart of
FIG. 10A and a LIFO stack 275 structure depicted in FIG. 2B.
Base extension is started with an RNS to mixed radix conver-
sion 1001 as in flowchart of FIG. 7A. This operation recog-
nizes skipped digits in control step 703 of FIG. 7A. Addition-
ally, the unique LIFO data structure ensures the correct digits
and modulus values are stored for reconstruction to RNS,
regardless of the order of skipped digits.

After conversion to mixed radix 1001, the mixed radix
digits reside in LIFO stack 275. As a following option, control
clears all digit skip flags 280, and the accumulator A is cleared
1002. The mixed radix digits in the LIFO are converted back
to RNS using a mixed radix to RNS conversion 1003, such as
depicted in FIG. 8A. When the mixed radix to RNS conver-
sion is complete, the RNS value is restored to the accumulator
with all digits extended. The control unit 200 may clear all
skip digit flags thereby indicating all digits are valid and
extended.

It should be understood that many variations exist. For
example, hardware may be optimized to skip steps where
possible, as well as perform multiple operations in parallel or
out of sequence to that shown herein.

Base Extend Example

FIG. 10B illustrates a base extend operation as an example.
This example again uses a simple RNS AL U consisting of six
prime modulus {2,3,5,7,11,13}. Inthe figure, the RNSALU
740 is depicted as a series of digit values, each RNS digit
value, Dy, located in a given column and associated to a
specific modulus, M. The example of FIG. 10B illustrates
the relationship given in the equation 1005 enclosed in dotted
lines. In this example, the decimal value of one hundred
twenty seven (127), in RNS format, is stored in the RNS AL U
740 with two digit positions undefined (D, & D). After the
digit extend operation, the original RNS value is restored
1020 with previously undefined digits now defined, or
extended.

As seen in FIG. 10B, the base extend operation is com-
posed of a sequence of two conversions; the first conversion
of RNS to mixed radix, and the second conversion is from
mixed radix to RNS. This is illustrated in FIG. 10B using the
column listing the associated control step 1010 of FIG. 10A.
Special support for marking digits as skipped is supported
and is indicated in the figure using an asterisk. For example,
the RNS starting value 1015 is indicated by the following

20

25

30

35

40

45

50

55

60

65

42
digits (*, 1, *, 1, 6, 10). Each asterisk indicates the specific
RNS digit position (modulus) is undefined.

In FIG. 10B, the direction of data on the crossbar 745 is
indicated. During the first process of converting the RNS
value to mixed radix 1001, data is processed and sourced from
the RNS ALU and pushed to the LIFO 750. During the pro-
cess of converting the mixed radix value back to RNS 1003,
data is sourced by the LIFO, and processed by the RNS AL U.
In FIG. 10B, the starting RNS value has undefined digits in
the M, and M; modulus positions. At the end of the base
extend operation, the RNS value 1020 is fully extended,
meaning the digit values for modulus M, and M; are now
defined. At step 1002 of FIG. 10A, all skip flags for all digits
are cleared, indicating all digits are valid, and the RNS value
is fully extended.

Sign Magnitude and Sign Valid Bit

The method of the present invention provides a unique and
novel approach to handling signed values in RNS format. The
residue number system is not a weighted number system, and
therefore, itis difficult to encode RNS numbers in a manner in
which both arithmetic operations and sign determination of
arbitrary values is easy. In order to determine the sign of an
RNS value, the value must first be encoded in a format sup-
porting signed numbers. If so, an operation is applied to the
RNS value to determine the sign of the value.

In one embodiment of the present invention, numbers are
encoded using method of complements format. That is,
roughly half of the (usable) RNS range is devoted to positive
numbers, and the other half is devoted to negative numbers.
Using the method of complements allows the RNS format to
represent signed values, even though detecting such sign may
be difficult. More importantly, the method of complements
allows direct operation on signed values. In one embodiment,
the method of complements is used by the ALU to perform
addition, subtraction and multiplication directly on signed
values, treating the values as if they are unsigned integers.
However, some operations, such as division, require knowing
the sign of the value beforehand. Therefore, some means for
detecting the sign of a value is required. More of this topic
will be discussed later.

In addition to the method of complements, two bits are
assigned to each RNS representation supporting signed val-
ues. In one embodiment, the RN'S AL U supports two sign bits
encoded in the following way. One bit is encoded as a sign
magnitude bit. The sign magnitude bit may be set to zero for
positive numbers and set to one for negative numbers, for
example. A second bitis encoded as a “sign valid” bit. This bit
is set true if the sign magnitude bit is valid, otherwise it is set
false.

If a value has a valid sign bit, the sign valid bit is set true,
and the sign magnitude bit is set to reflect the actual sign of the
value. If the sign valid bit is set false, this implies that a sign
extend operation is required before the sign bit is restored and
can be used.

FIG. 3F depicts hardware storage of the sign magnitude bit
and sign valid bit for the dual accumulator ALU of FIG. 3A.
Two sets of sign bits are depicted, one for ALU A and the other
for ALU B. Sign A magnitude bit 341 is set if the value is
negative, although this is a decision by design only. Sign A
valid bit 342 is set if the sign A magnitude bit 341 is valid.
Sign B magnitude bit 343 and sign B valid bit work the same
way for ALU B. Control unit 200 may read and/or manipulate
the value of the sign and sign valid bit via sign status and
control lines 346, 347. Therefore, the ALU can read the value
of the sign and sign valid bit upon performing an operation,
and may also set these bits as a result of an operation.

US 9,395,952 B2

43

In FIG. 3F, sign and sign valid bits may be loaded from the
register file 300 in tandem to the operation of loading the RN'S
value to the accumulator. Therefore, each register location in
register file 300 has two additional bits, the sign magnitude bit
612 and the sign valid bit 613 as depicted in FIG. 6B using the
dotted line 616. Conversely, if a value from the accumulator is
stored to the register file 300, the corresponding values of the
sign bit 341 and sign valid bit 342 are written along with the
value itself. If the ALU provides a means to validate, or
otherwise sign extend the value of the accumulator, this sign
information may be stored with the value in register file 300
for later use.

The Sign Extend Operation

In one method of the present invention, a sign extend
operation accepts an RNS value and extracts its sign, sets the
sign magnitude bit using the extracted sign, and sets the sign
valid bit true.

To implement a sign extend operation on the value con-
tained within the RNS ALU accumulator, the value is con-
verted to mixed radix format. During this conversion, a com-
parison is performed against the positive value range using
digit compare register 3025 in F1G. 3E for ALU A, and using
digit compare register 3035 for ALU B. During the mixed
radix reduction of the accumulator, the generated mixed radix
digits are compared on a digit by digit fashion with the mixed
radix digits stored in the digit compare register of each digit
ALU. The mixed radix digits stored in the digit compare
register are pre-generated and moved from the register file to
the digit compare register before or during the sign extend
operation. Control unit 200 monitors the comparator 3065
result via the digit comparator status signal 3075. After the
value is converted, the control unit may store the sign result in
the sign magnitude bit 341 and set the sign valid bit 342 true
inthe case of ALU A. ALU B will store its sign result into sign
magnitude bit 343 and set its sign valid bit 344 true. The sign
and sign valid bit may be written to a specific register file
location to restore an operands sign bits.

In one embodiment, the range comparison is reduced to a
single digit compare on the P# digit modulus (modulus start-
ing with P=1). The reason is the positive number range may
be checked using half the range of the RNS word, which in
mixed radix format is a single non-zero digit followed by P-1
zeroes. In this case, the CPU comparison unit assumes the
first P-1 digits are compared with zero until the P* digit is
compared. If the conversion terminates before the P digit,
the value is determined to be positive. If the comparison holds
to the P? digit, the digit comparison will determine the range
comparison outcome, and hence the sign of the value. In this
case, only a single comparator is used in one digit position,
and therefore only one comparator is required for a particular
number format, thereby reducing comparators, status lines
and control unit circuitry.

Integrated Sign Extension

One novel and new feature of the present invention is the
handling of the sign and sign valid bits during certain opera-
tions. Because the operation of sign extension is relatively
costly, it is best to minimize its use. The present invention
does so by integrating the process of sign extension directly
into many common operations, such as compare and frac-
tional multiply. Since such common operations may refresh
the state of a values sign bit, the need to perform sign exten-
sions is significantly reduced in most cases, thereby maxi-
mizing processing performance of the present invention.
Variable Power Digit Modulus

A variable power digit modulus is a new and novel mecha-
nism utilized by the method of the present invention to
enhance performance for certain operations, such as integer
division and fractional division. This feature is among the

20

25

30

35

40

45

50

55

60

65

44

more complex options for the ALU ofthe present invention. It
will be briefly described here, and concepts introduced later
in their proper context.

The variable power modulus modifies the prime number
based modulus into a power of the prime number. For
example, given the base modulus p=2, a power based modu-
lus might be p=2%, or p=256. Since the power of the prime
value is still pair-wise prime with respect to all other digit
modulus, there is no redundancy of the residue number sys-
tem, and everything works as expected.

However, the power based modulus provides additional
features that can be used to significantly enhance perfor-
mance. In the case of integer division, using power based
modulus can significantly reduce the number of base exten-
sions required, therefore speeding the process. The reason is
that a power of a modulus can be detected for divisibility by
a power of the modulus, meaning the reduction process may
divide by a higher power instead of the smaller value of the
prime modulus. More of this is discussed in the section cov-
ering the integer division enhancements.

In the case of the fractional divide procedure, the ability to
efficiently scale an RNS fractional value is important. A
highly efficient scaling procedure is provided by the use of a
power based modulus of base p=2. The power based modulus
allows a variable modulus setting for the digit. Setting the
modulus appropriately allows a truncation of the modulus
such that a value is scaled efficiently.

Another benefit of the power based modulus is better accu-
racy in terms of fractional representation of common ratios.
This is especially true if the lower valued prime modulus
values are used to implement power based modulus, since the
lower prime numbers are more frequent factors in general.
Additionally, increasing the digit range of lower value digit
modulus (p=2, p=3, etc) helps evenly distribute the memory
of all LUT’s, which means memory LUT space is more
balanced across digits and performance more efficient. Also,
the range of the RNS system may be increased without
increasing the value of the largest prime number modulus.
Therefore, there are many justifiable reasons to support
expanded modulus via power based modulus, even if not all
power based modulus features and benefits are realized.

A power based digit modulus is said to contain “sub-dig-
its”. Sub-digits may be flagged as valid or invalid, and in one
embodiment, are so flagged using a power valid register 338
and an apparatus similar to FIG. 11A. The power based
modulus digit apparatus is depicted in FIG. 11A as an
enhancement to the digit AL U. Only those components per-
tinent to the discussion are shown for clarity, since other
components shown in FIG. 2A may also be present. Only the
block circuitry for ALU B is depicted in FIG. 11A for clarity;
an additional set of circuitry may exist for ALU A. The fol-
lowing capabilities are among those provided by the power
based modulus:

InFIG. 11A, a four bit modulus p=2*is depicted. By means
of'example, the output of the digit accumulator 303 is divided
into four digit lanes, each digit lane being one bit wide. A zero
detect 1106 apparatus provides a means to detect if the value
of'the digit is divisible by any power of the base modulus p=2.
A digit gate function 3294 allows the digit ALU to gate
specific lanes of sub-digits to the crossbar bus 319. A leading
zero digit detector 1161 assists in determining a truncation
count for scaling operations (FIG. 11B). A power valid reg-
ister 338 controls how many sub-digit lanes are gated via
valid digit gate selector 329a.

A power based digit modulus provides an adjustable modu-
lus capability. During MODDIV operations, the largest
modulus allowable for division may be obtained via power
modulus LUT 1111, which is indexed from the output of the
zero count 1104 register. The zero count 1104 register indi-
cates how many consecutive least significant (valid) sub-

US 9,395,952 B2

45
digits equal zero; this value indexes the appropriate power
(modulus) from LUT 1111 to be gated via selector 3125 to
serve as an operand for MODDIV. This ensures the maximum
modulus value is used to divide the digit, which is useful
during the operation of integer division.

FIG. 11A also illustrates the Zero Digit B 3085 and the
Zero Sub-Digit B 308c¢ status signals. The Zero Digit B status
signal is active if all valid sub-digits are zero. This signal
essentially indicates a zero in the digit position. The Zero
Sub-Digit B status signal is active if a portion of the sub-digits

46

There are other methods to accomplish these objectives not
discussed here, however, the fixed radix, variable power,
p-nary encoding for power based digits as illustrated by
example in FIG. 11D, FIG. 11A and FIG. 11E is a claimed
invention of the disclosure.

FIG. 11F illustrates an example BCFR to binary converter,
also depicted by block symbols 1114 and 1115 in FIG. 11E.
The BCFR to binary converter may be required when gating
the power digit accumulator value back to the crossbar bus.

(least significant) digits are zero. Using signals 3085 and 19 This is required since. the accumulator value is encodeq ina
308c, the ALU control unit may determine if the digit is BCFR format, not binary, and the crossbar may require a
completely zero, or if the digit value is divisible by some ~ common binary format between all digit ALUs. The converter
smaller power of the base modulus p. may use hardware arithmetic multipliers 1125, 1124 and

To help describe the power modulus digit further, FIGS. |5 hardwa.re adders 1128, 1127 to perform the conversion as
11C and 11D are provided. In FIG. 11C, an example RNS shown in FIQ 11F.) S
register 1140 is depicted without any power based modulus FIG. 11F illustrates a simple case of a three digit tri-nary
feature. Each digit modulus is represented by a square sym- register 1120 being converted to a binary value 1130. The
bol, such as digit modulus two 1141 and digit modulus three sub-digit M, 1123 is mu.ltl.phed b}f nine and adde.d 1127 to the
1142. Each digit modulus is a binary coded register such as ,, productofthe M, sub-digit 1122 times three. This sum is then
digit modulus nineteen 1143 with its five bit digit register ~ added 1128 to the value of the M,, 1121 sub-digit. The binary
1146. result is the converted value of the 3 digit tri-nary register, and

In FIG. 11D an RNS register with power based modulus is is output 1129 and saved in register 1130, by means of
depicted by example. A difference is seen in the binary coding example. Conversions from BCER to binary and binary to
of the digit modulus two 11415, modulus three 11425b, and BCFR may 3159 be perfor.med using look up tablgs (LUTs);
modulus five 1147. For example, in digit modulus three Table 4 is provided as a simple example of a specific BCFR
11425, three sub-digits are depicted enclosed by dotted circle ~ conversion that may be stored using a LUT.
1149. Each sub-digit is binary coded as two bits, such as sub
digit D, 1150, since each sub-digit must store values up to TABLE 4
two. However, all sub-digits 1149 taken together form a 5,]]
unique tri-nary sequence, not a standard binary count. Binary Coded Trinary

Table 3 illustrates the 8 digit RNS count sequence with Sub-digit Sub-digit Binary
unique power based modulus for the first three digits. Note in D, Dy (No sub-digits) Decimal
Table 3 the Modulus M, =3 is a binary coded tri-nary encod- b b b b b b b b b
ing, and illustrates the count sequence for the digit modulus 55 ! ° ! ° 2 2 ! ° °
p=3>1142b of FIG. 11D. Likewise, the power based modulus 0 0 0 0 0 0 0 0 0
M,=57 is shown which illustrates the count sequence for the 0 0 0 1 0 0 0 1 1
power modulus p=5 1147. The count for the power modulus 8 ? é 8 8 8 } ? g
p=251s only binary, since binary is already binary coded fixed 0 1 0 1 0 1 0 0 4
radix (BCFR) representation, and is shown for the digit 0 1 1 0 0 1 0 1 5
modulus 11415 of FIG. 11D.

TABLE 3
RNS Number Sequence with Power Based Digits
Modulus Modulus Modulus Modulus Modulus Modulus Modulus ~ Modulus
My=2> M,=3* M,=52 M;=7 M,=11 Ms=13 M¢=17 M,=19 Value
Dy D, D, D, D, Ds Dy D, (decimal)

00000 000 00 0 0 0 0 0 0

00001 001 01 1 1 1 1 1 1

00010 002 02 2 2 2 2 2 2

00011 010 03 3 3 3 3 3 3

00100 011 04 4 4 4 4 4 4

00101 012 10 5 5 5 5 5 5

00110 020 11 6 6 6 6 6 6

00111 021 12 0 7 7 7 7 7

01000 022 13 1 8 8 8 8 8

10111 200 31 5 2 4 8 10 6983776791

11000 201 32 6 3 5 9 11 6983776792

11001 202 33 0 4 6 10 12 6983776793

11010 210 34 1 5 7 11 13 6983776794

11011 211 40 2 6 8 12 14 6983776795

11100 212 41 3 7 9 13 15 6983776796

11101 220 42 4 8 10 14 16 6983776797

11110 221 43 5 9 11 15 17 6983776798

11111 222 44 6 10 12 16 18 6983776799

US 9,395,952 B2

47
TABLE 4-continued

Binary Coded Trinary

Sub-digit Sub-digit Binary
D, Dy, (No sub-digits) Decimal
by bo by bo bs b, by bg Do
1 0 0 0 0 1 1 0 6
1 0 0 1 0 1 1 1 7
1 0 1 0 1 0 0 0 8

In Table 4, a list of values ranging from zero to eight is
shown using three different number systems. Binary coded
tri-nary is listed on the left of the table, as two binary encoded
tri-nary digits. Standard binary code is listed in the middle,
and the equivalent decimal value is listed on the right column
of Table 4.

Table 4 illustrates the conversion of a value from one for-
mat to the other. For example, the value for the decimal value
five (5)is 125 intri-nary, and if each digit is encoded in binary,
is the written in binary as 01,10, the comma separating the
ones place from the threes place. The normal four bit binary
code for the decimal value of five (5) is 0101, which is shown
in the middle of Table 4. A LUT may be programmed such
that a tri-nary encoded input references the location where a
binary encoded equivalent value is stored.

Integer RNS Divider and ALU

Novel features of the RNS integer division method and of
the RNS ALU apparatus, which enhance the speed and effi-
ciency of RNS operations, are disclosed next.

For apractical, general purpose RNS based digital process-
ing system, there is a need to divide arbitrary RNS integer
numbers. It would be beneficial if the divide method is rea-
sonably fast, and easily extensible in terms of word size. It
would be beneficial if the RNS integer divide method oper-
ates without requiring many redundant digits, or even worse,
without requiring a squared range of modulus.

With the integer division method of the enclosed invention,
intermediate values may be handled with an increased range
of only a single redundant digit or less. Alternatively, other
embodiments exist that eliminate redundant digits, but
require additional comparisons, for example. Another
embodiment simply uses the negative range of a signed rep-
resentation to serve as a redundant digit. This means the
divide method of the present invention is efficient in terms of
its redundant range requirement.

Consider that a practical solution to arbitrary RNS integer
divide greatly impacts the practicality of an RNS based com-
puter or ALU. It follows that one important ingredient of a
practical RNS divide method is that its structure and opera-
tion integrate well with all other parts of the ALU. The
method of the present invention satisfies this requirement.
The integer divide method may operate directly on the full
machine word of the ALU, making possible conversions of
primitive data formats which underlie other more complex
data formats.

Another benefit of the RNS division method of the present
invention is its extensibility. The method of the present inven-
tion may be extended to any arbitrary RNS word size. Sys-
tems based on the present method may extend resolution by
simply adding more digits, i.e., by utilizing the natural
sequence of primes to extend digits to a desired RNS word
size. The main restriction is implementing the logic for each
digit as the word size of the digit increases. Otherwise, the

20

25

30

35

40

45

50

55

60

65

48

method of the present invention scales in a linear fashion, and
without additional complication.

The method of RNS division of the present invention oper-
ates on any arbitrary set of operand values, directly in residue
number format. No intermediary binary format is used in the
divide calculation.

The method of RNS integer division of the enclosed inven-
tion is unique. The method is not based on prior algorithms for
division; as such, the new method provides its own unique set
of'opportunities to improve speed and efficiency of operation.
A general purpose RNS ALU apparatus, organized as digit
slices, supports the new divide method; the digit slice ALU is
modified and optimized to support the novel enhancements
disclosed.

The disclosed techniques for improving the speed of the
RNS integer division method provide a solution which is
expedient in terms of practicality, speed, and complexity. The
techniques for improving speed are novel, and provide a
surprising result in that each enhances the speed of the RNS
division technique without counteracting the benefits of other
techniques.

Lastly, these enhancements, together with new instructions
and operations, provide a new ALU design which supports
improved performance for fractional RNS representations. In
terms of need, an efficient and arbitrary RNS integer divide
simplifies the conversion of common integer ratios to RNS
fractional representation. Therefore, and as expected, integer
division is an important ingredient to a general purpose RNS
ALU capable of general purpose arithmetic operations.

Residue Number format for Integer Division

The method of integer division is based upon an extensible
formulation for residue numbers. This formulation is based
onthe use of a “natural RNS” number. This term may be new,
and is hereby defined to be an RNS number which includes
the prime modulus 2, and every prime number thereafter for
each of the remaining digits of the RNS representation.

The largest number represented in the range of the natural
RNS number of (n) digits is given by:
Largest number=(2*3*5% ., . *p)-1,where p=n""

prime number (eql.)

The range of the number representation includes the num-
ber zero, and is therefore given by:

Range=R=(2*3*5* .. *p), (eq. 1b)

We can also write the range in terms of the variable “n”, i.e.,
n=the number of RNS digits:

Range(n)=R(#)=(2*3%*5* ... *p), where p, =n" prime
modulus

Therefore, by means of example, our prototype RNS AL U
supports a 16 digit RNS word, the digits representing the
modulus (2,3, 5,7, 11,13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53). In the RNS ALU of the present invention, the (natural)
RNS number system is treated as fundamental as the binary
number system. In the enclosed method, RNS numbers are
represented using a long series of digits, in much the same
way as one uses binary representation using many bits. Also,
the modulus p=2 is important, and is typically required in the
ALU of the enclosed invention.

As a further example, Table 5 illustrates an RNS number
sequence using the first eight prime modulus, (2, 3, 5, 7, 11,
13,17, 19).

US 9,395,952 B2

49
TABLE 5

50

Natural RNS Number Sequence

Modulus Modulus Modulus Modulus Modulus Modulus Modulus Modulus
My=2 M, =3 M,=5 M;=7 M, =11 M;=13 Mg=17 M,=19 Value
Dy D, D, Dy D, Ds D¢ D, (decimal)
0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 2 2 2 2 2 2 2 2
1 0 3 3 3 3 3 3 3
0 1 4 4 4 4 4 4 4
1 2 0 5 5 5 5 5 5
0 0 1 6 6 6 6 6 6
1 1 2 0 7 7 7 7 7
0 2 3 1 8 8 8 8 8
1 0 1 5 2 4 8 10 9699681
0 1 2 6 3 5 9 11 9699682
1 2 3 0 4 6 10 12 9699683
0 0 4 1 5 7 11 13 9699684
1 1 0 2 6 8 12 14 9699685
0 2 1 3 7 9 13 15 9699686
1 0 2 4 8 10 14 16 9699687
0 1 3 5 9 11 15 17 9699688
1 2 4 6 10 12 16 18 9699689

The relative occurrence of “zeros™ in any specific digitof'a
number is an important factor in the integer division method
of'the enclosed invention. It then follows that each successive
(prime) digit modulus has a priority in terms of frequency of
zeros. The chance that any random number has at least one
digit equal to zero is given by:

Chance of any zero digit=(R-(2-1)(3-1)(5-1)
(7-1)... (P-1))R

where range R=2%3*5%7% _ *pP_

This equation approaches 1 as n, the number of digits, goes
to infinity. For example, at n=15 digits, the chance of any
number having at least one zero is better than 86%. At 32
digits, the chance is better than 88%.

The division method of the enclosed invention has unique
properties. One such unique property is that the speed of
division increases as the number of RNS digits increases. The
reason is RNS numbers with redundant digits carry more
information about the number, and the method of the present
invention capitalizes on that information. For example, addi-
tional digits expose new divisor factors, which may be used to
divide by during division. In this light, redundant RNS digits
are not completely redundant.

Division Quick Overview:

A new RNS decomposition procedure is defined for the
integer division method of the present invention. This new
decomposition method is hereby called “closest factor reduc-
tion” (CFR). In the method of the present invention, the
division method operates on two RNS numbers, generally
consisting of the same set of modulus, (although this is not a
restriction). One of the RNS numbers represents the dividend,
and the other represents the divisor. The divisor, using the
apparatus and methods described herein, is reduced using
CFR. The main divide loop in FIG. 12A, defined by control
path 1213, discloses the CFR method. The dividend, in turn,
is reduced using an MRC like procedure, but in a fashion
corresponding to the reduction of the divisor. The reduction of
the divisor completes when the divisor equals 1. At this point,
the dividend register is tested to be an accurate quotient result.
Ifthe result is in error, the divisor is reloaded, and the division
process is repeated with the error value replacing the divi-

30

35

40

45

50

55

60

65

dend. If iteration is required, each time through the iteration,
an accumulator sums or subtracts the resulting dividend reg-
ister until a final correct result (quotient) is obtained.
Division Detailed Explanation

Referring to FIG. 12B, a basic block diagram for the RNS
divide is disclosed. Details of each block are not provided, as
each block represents basic RNS functions. When new func-
tions are disclosed, the function of the block will be
explained. The hardware block diagram of FIG. 12B is a new
embodiment for an RNS integer divide unit, and differs from
FIG. 2A. The embodiment of FIG. 12B is disclosed to illus-
trate the integer algorithm may adapt to other architectures. It
should be noted that there are multitudes of solutions for
hardware implementation of each block, but the disclosed
interconnection of these blocks is unique in terms of provid-
ing a means and apparatus for performing integer division of
arbitrary RNS numbers. In a later section, an example integer
divide is illustrated using the apparatus of FIG. 2A to further
clarify the integer algorithm, which is among the most com-
plex of RNS arithmetic operations disclosed herein.

In FIG. 12B, RNS registers 1252, 1253 of FIG. 12B rep-
resent RNS registers consisting of a plurality of modulus.
Other examples of RNS register formats depicting a plurality
of RNS modulus are provided in FIG. 11C and Table 3. In one
embodiment, the modulus include the number 2 and all other
primes thereafter for as many digits as is required for the
application. For example, in our prototype RNS ALU, each
RNS register is composed of 16 digits, with the first digit
being the modulus 2, another digit being the modulus 3, and
so on up to the digit representing the modulus 53. It should be
noted that order of RNS digits is not important; however, for
purposes of explanation and organization, we will often refer
to digit ordering starting with modulus p=2.

The details provided in FIG. 12B disclose basic data flow
and processing stages of the RNS integer divide method ofthe
present invention. The associated control logic for the integer
divide method and apparatus is disclosed in the flow chart of
FIG. 12A. The flow chart assumes both operands are positive,
however, extension of the method to handle signed integers
will be discussed later. It should be noted that many variations
of hardware implementations are possible which follow, or

US 9,395,952 B2

51
similarly follow, the basic functionality disclosed in FIG. 12A
and FIG. 12B, including the digit slice architecture of FIG.
2A.

Referring to FIG. 12A, RNS division starts with loading
the values of the divisor and dividend into temporary RNS
registers, designated as the Dividend_Copy register and the
Divisor_Copy register, as shown in step 1201. These registers
are referred to as “copy registers”, since they will contain the
original values ofthe dividend and divisor for later use. Refer-
ring to FIG. 12B, the divisor copy register 1250 and dividend
copy register 1251 are shown.

In FIG. 12A after step 1201 processing proceeds to block
1202 which loads the values of the dividend and divisor into
their respective “working” registers, denoted as divisor work-
ing register B, 1252, and dividend working register A, 1253 in
FIG. 12B. Furthermore, at block 1202, other initializations
are performed, such as setting the initial toggle state 1264 and
clearing the dividend accumulator 1266. Additionally, a tem-
porary storage register or memory location entitled Last_
Dividend is initialized with the contents of the Dividend_
copy register.

Control generally processes step 1203 in parallel or after
steps 1201 and 1202; in step 1203, the control unit checks the
divisor for zero. If the divisor is zero, control is diverted to
block 1204, which halts the divide operation and flags the
operation as a divide by zero error. If the divisor is non-zero,
flow proceeds to the decision control block 1205 as illus-
trated.

Referring to FIG. 12A, control decision block 1205 is
executed, which tests if the divisor working register 1252 is
equal to one. If the divisor working register 1252 is not equal
to one, control is passed to block 1206. Decision block 1206
determines if the divisor is divisible by any supported digit
modulus (DM). This is equivalent to determining if any digit
of'the divisor is equal to zero. At block 1206 in FIG. 12A, the
divisor is tested for any “zeroes” in any of'its digit values. This
is performed by a Zero Digit Detector unit 1258 in FIG. 12B.

In step 1206, if the working divisor register 1252 has no
zeroes in any of its digits, then control is passed to block 1207
which decrements the working divisor 1252 by one. Because
the RNS representation of the present invention has a modu-
Ius of 2, a single decrement guarantees that a zero will be
present in at least the modulus=2 digit of the working divisor
1252. In either case, control will then proceed to the step of
selecting a digit for processing 1208.

If there is at least one digit equal to zero, then control
proceeds to block 1208, which is essentially a decision of
which zero digit to operate on first given the case of more than
one zero digit in the divisor 1252. The functionality of block
1208 will be expanded on later in the disclosure. For the most
basic explanation of the division method, it is fine to choose
any arbitrary digit having a zero in the divisor, or to start with
the digit with smallest index, for example. In other words, for
basic operation, the order of choosing each digit modulus
having a zero in the divisor is not important.

(In the flowchart of FIG. 12A, at step 1208, each digit
modulus is denoted as DM,, which denotes the i” digit of a
register. For sake of definition, we arbitrarily assign an index
to each digit modulus, DM, and for the purposes of this
disclosure, we will assign the first index, i=0, to the digit
modulus of 2. Therefore, the index i=1 refers to the digit
modulus of 3, and so on.)

In either case, when control proceeds to step 1208, a zero is
present in at least one of the digits of the working divisor
1252. In block 1208, a decision as to which zero digit to

20

25

30

35

40

45

50

55

60

65

52

operate on is made. In one basic embodiment, the digits of the
divisor register 1252 are sampled and the zero digithaving the
smallest index, i, is chosen.

Next, control is passed to block 1209 where the dividend
working register 1253 is tested. Specifically, the digit of the
dividend register whose modulus corresponds to the zero
digit (DM,) of the divisor, as selected in step 1208, is tested for
zero 1209. If the dividend working register 1253 digit is zero
(DM,=0), control is passed to block 1211. If not, control is
passed to block 1210, which subtracts the working dividend
register 1253 by the value contained in the selected digit
position of the dividend value, i.e., digit position from step
1208.

As shown in control block 1210, the dividend is subtracted
by the value of'its own digit of the selected digit position DM,.
For example, if at step 1208 the modulus=2 is selected, then
the value of the modulus=2 digit of the dividend 1253 is
subtracted from all digits of the dividend 1253. In FIG. 12B,
the digit value extract 1257 is used to extract the digit value
from the chosen modulus and subtract this value from every
digit of the dividend working register 1253 (full RNS sub-
traction by the selected digit). The subtraction is accom-
plished by block 1261 of FIG. 12B, and the result of the
subtraction is fed back to the dividend working register 1253.

Referring back to FIG. 12 A, block 1211 is performed next.
Atblock 1211, the chosen digit modulus (DM,) of block 1208
is zero for both the divisor and dividend, therefore, a valid
modulo (modulus=p,) division is legal. At block 1211,
modulo division by DM, is performed on both the divisor
working register 1252 and on the dividend working register
1253, using modulo dividers 1260 and 1259 respectively. For
example, if the chosen modulus of step 1208 was modulus
p=3, then both the divisor working register 1252 and dividend
working register 1253 are divided by 3. From an RNS math-
ematics point, the divisor and dividend are multiplied by the
multiplicative inverse of modulus 3.

It should be noted that RNS modulo division, via blocks
1259 and 1260, may be implemented using look up tables
(LUT) or other hardware approaches. Also, when modulo
digit division is implemented using a LU, it is referred to as
MODDIV in this specification.

After modulo division, control is passed to step 1212 which
performs a digit extension to both the working divisor register
1252 and the working dividend register 1253. In this basic
explanation, the digit extended is the digit modulus chosen in
step 1208. Digit extension for the RNS registers 1252 and
1253 are required, since after modulo division, the digit val-
ues of the chosen modulus are undefined. In FIG. 12B, digit
extension is performed on the result of modulo division of
block 1260, and the result stored back in the working divisor
register 1252. Likewise, the result of modulo division of
block 1259 is placed back into the working dividend register
1253. After the step of base extending both registers 1212,
both the divisor and dividend are said to be fully extended,
that is, each digit of the number format is defined and valid.

Referring to FIG. 12A, control is passed back to the begin-
ning of the CFR reduction procedure, namely control block
1205, which detects if the divisor is equal to one. This is
illustrated in FIG. 12A as control path 1213, which returns
control back to step 1205. Again, in step 1205, the divisor
value is checked for the value of one. If the value is not one,
the flow moves again to step 1206, where either the divisor
register 1252 already has a zero digit, or the divisor register
1252 is decremented once, via block 1256 and step 1207, to
create a zero digit. The control loop represented by control
path 1213 is continued again, dividing the value contained in
the divisor working register, and dividing the value contained

US 9,395,952 B2

53

in the dividend working register 1253, by common modulus
factors. The control path loop 1213 is executed until the
working divisor register 1252 is equal to one.

At step 1205, if the working divisor register is equal to one,
control is passed to step 1214. At step 1214, the accumulator
sign flag 1264 is toggled. When entering step 1214 for first
time, the add/subtract toggle state 1264 will be toggled to
indicate that the working dividend register 1253 will be added
to the dividend accumulator 1266 (or simply referred to as
“accumulator” for short). Each successive time through the
step 1214, the toggle state of block 1264 is toggled, such that
the result of the working dividend register 1253 is alternately
added to or subtracted from the accumulator 1266 using the
add/subtract function 1265.

At step 1215, the value of the working dividend register
1253 is either added to or subtracted from the dividend accu-
mulator 1266 using add/subtract function 1265. The opera-
tion selected is chosen based on the value of the add/subtract
toggle state of block 1264. The result of the operation of step
1215 is stored back into the accumulator register 1266.

At step 1216, an error value is calculated and checked
against the original divisor, via divisor copy register 1250.
The check is performed using an RNS compare illustrated at
block 1269. The error value represents the difference in the
expected outcome from the calculated outcome using RNS
multiplication at block 1267 and step 1216. A subtraction of
the dividend copy at block 1268 is performed to simplify the
comparison and creates a valid range of acceptance. Several
variations are possible, but the flowchart of FIG. 12A illus-
trates a typical and basic operation.

The flowchart of FIG. 12A more carefully defines the
subtleties of the error checking process of control steps 1216
and 1217. In control step 1216, several values are defined, and
may be assembled by other apparatus not shown, for purposes
of error checking the value contained in the dividend working
register 1253. In FIG. 12A, the variable register “Dividend”
represents the Dividend working register 1253 of FIG. 12B.
Likewise, the variable register “Divisor” of FIG. 12A repre-
sents the Divisor working register 1252. In control step 1216,
a test variable “Dif”, which equals the product of the Divi-
dend working register and the Divisor_Copy register, is com-
pared with the test variable “Temp”, which is the sum of the
“Last_Dividend” storage register and the Divisor_Copy reg-
ister. In this embodiment, the comparison need not handle
signed values, since “Dif” and “Temp” are always positive.

Referring to the flowchart of FIG. 12A, if the “Dif” test
variable is greater than the “Temp” test variable 1217, the
result of the CFR divide process is too large. Therefore, an
error value is generated in step 1218, and becomes the new
dividend in a new CFR divide iteration, as defined by the loop
path 1213. To accomplish this, the working dividend and
other temporary variables need to be re-initialized, as shown
in the control step 1218. In control step 1218, the “Dif” test
variable is decreased by the value of the Last_Dividend, since
“Dif” needs to be adjusted by the expected outcome to pro-
duce an error value. This subtraction always results in a
positive value, since Dif is always larger than, or equal to,
Last_Dividend. The reason is CFR reduction, as shown in this
variation, will either produce a value that meets the expected
value or exceeds it, since decrementing the denominator in
step 1207 has the effect of producing a test Dividend value
which is too large. This fact, among others, allows the integer
division of the present invention to operate on operands
requiring the full range of the RNS ALU with only a single
redundant digit, or bit.

Other initializations are processed in control step 1218 of
FIG. 12A. The Last_Dividend storage register is set to the

20

25

30

35

40

45

50

55

60

65

54

new target dividend, i.e., the error value contained in “Dif”.
The dividend working register 1253 is also initialized with the
error value contained in Dif. Also, the divisor working regis-
ter 1252 must be re-initialized with the original divisor, which
is stored in the Divisor_Copy register 1250. Other initializa-
tion may be required that are not shown.

In step 1217, if the temporary test value “Dif” is not greater
than the temporary test value “Temp”, as shown in FIG. 12A,
controlis passed to step 1219. At step 1219, the temporary test
value “Dif” is checked for equality to the temporary test value
“Temp”; if equal, control is passed to step 1224. At step 1224,
the accumulator 1266 is incremented to account for an even
division. Control is then passed to step 1225 where the
remainder value is set to zero 1225. At this point, the result of
the division is contained in the accumulator 1266, and can be
stored as a final result in step 1226. Next, the divide operation
is finished and terminates at step 1227.

In step 1219, if Dif does not equal Temp, control is passed
to step 1220. In step 1220, the accumulator 1266 is tested for
correctness. The comparison 1220 is performed using two
test variables, “Dif2” and “Temp2”; such test variables may
be computed as shown in step 1216, or computed prior to
control decision 1220, or otherwise made available for com-
parison. If the temporary test value “Dif2” is greater than the
temporary test value “Temp2”, then control proceeds to step
1221, where the accumulator 1266 is decremented by one.
The adjustment in step 1221 is a result of accumulated
remainders accumulated from step 1210. These accumulated
errors cannot change the final division result by more than
one.

Control is then passed to step 1222. In step 1222, the
remainder (not shown) is calculated if required. Calculation
of'the remainder is optional depending on design specifics of
the ALU.

Finally, in step 1226, the final result of the divide is con-
tained in the accumulator 1266, and may be stored in a final
register if required. Control is then terminated at step 1227.

Division—Key Features and Enhancements

The method of the present invention performs division
using a series of RNS digit by digit operations. Additionally,
the method may require some degree of iteration depending
onthe properties of the numbers being divided. Therefore, the
division may be categorized as a slow division method.

However, the method and apparatus of the present inven-
tion includes several key enhancements to dramatically
improve the speed of the RNS division of the present inven-
tion. Generally speaking, reducing the number of compari-
sons and base extensions is a primary objective of the speed
enhancements. The order of execution time has not yet been
characterized for variations of these embodiments. Some of
the key features and enhancements for the integer divide of

FIG. 12A are listed in Table 6.
TABLE 6
Reference Description

1 Delayed base extension combined with simultaneous digit
base extension.

2 Power based modulus for dividing repeated zeros in one
divide iteration.

3 Power based modulus for delaying base extension beyond a

denominator decrement.
4 Look ahead and optimize function for divide iterations by
recording divisor zeros.

US 9,395,952 B2

55
TABLE 6-continued

Reference Description

5 Fast MRC based compare, and compare in parallel with
CFR processing.

6 Combined subtract and divide LUT, which provides single
clock per digit processing.

7 Last base extend integrated into the compare operation, with
compare supporting skipped digits.
8 Adding redundant modulus for improved performance.

9 Delaying last base extend of CFR loop.

Reducing compare clocks with Compare Difference algorithm.
Adding an “increment” option for the divisor; a choice as

to which set of zero modulus to choose can optimize
performance during division.

Delayed Base Extension Enhancement

Base extension of RNS numbers is generally considered a
costly and time consuming operation. Base extension is the
process of adding a redundant modulus to a given RNS num-
ber representation. For example, an RNS number represented
by the moduli <2,3,5>, which must be less than 30, can also be
represented by an RNS number composed of 4 digits, say
<2,3,5,7>. In this example, the modulus=7 digit is not
required, but if' it is included, becomes a redundant digit. The
process of determining the value of the redundant digit given
all other non-redundant digits is called base extension, and in
this disclosure, is often referred to as digit extension.

Base extension is often required after the step of modulo
division, the reason being that the digit associated with
modulo divide will be undefined afterwards. For example, if
an RNS value is divided by modulus p=2, the modulus p=2
digit will be undefined afterwards. Using the same reasoning
behind mixed radix conversion, the divided digit becomes
redundant, so that base extension may be used to recover the
undefined value. Performing a base extension operation after
modulo divide recovers the new value of the undefined digit.

Referring to FIG. 12 A ofthe basic flow of the integer divide
method, step 1212 shows the base extension operation occur-
ring immediately after the modulo divide operation in step
1211. As shown in FIG. 12A, the base extension operation is
performed each and every time through the basic divide loop
1213 (i.e., or CFR loop). Because base extension occurs so
frequently, there is a desire to reduce the execution time to
perform base extension; in addition, it is desirable to reduce
the number of times base extension is performed to begin
with. The method of the present invention performs both
goals simultaneously and in a novel manner. By combining a
process to delay base extension with a method capable of
performing simultaneous digit extensions, the method of the
present invention significantly reduces the overhead of this
critical operation. In fact, by delaying base extensions, the
number of cycles of a simultaneous base extension is actually
less than a base extension for a single digit alone.

To realize the benefits of this novel solution, several modi-
fications to the basic divide method are required. Referring to
FIG. 13A, a modified flow chart is provided to describe cer-
tain key modifications to the basic control flow. After the step
of modulo division 1211, a new step 1228 to check whether
the digit extension can be delayed is added. If it can, control
is handed to step 1229, which marks the particular modulus
(digit position) for base extension at a later time. The process
of base extension, shown in step 1212, is modified to allow
multiple digit base extensions, where each digit modulus to
be extended is so indicated by its associated skip digit flag
(which is set in step 1229), or other such flags indicating each
digit to extend.

20

25

30

35

40

45

50

55

60

65

56

One embodiment of the base extension hardware is based
on fast Mixed Radix Conversion (MRC) techniques. In short,
a value requiring base extension indicates the digits which
require extension via their skip digit flags; the value is decom-
posed using MRC, skipping any digit modulus marked as
skipped. The resulting MRN values and their associated
modulus (factors) are stored in a Last-In First-Out (LIFO)
type memory. Once the value is decomposed, the LIFO
memory is operated in reverse, essentially performing a
mixed radix to RNS conversion. This process restores the
RNS value, including all digits requiring a base extension.
The more RNS digits that are skipped, the more digit posi-
tions are needing base extension, and the less clock cycles
required for the “simultaneous digit” base extension process.

It may be instructive to note the operation of step 1208 in
FIG. 13A, and how it relates to the base extension function
1212 and the decision to delay base extension 1228. In step
1208, a determination of which digit to perform modulo
division is made. This step is programmed to sequence
through each zero digit of the divisor for each iteration loop
1213. Once all zero digits have been divided and marked for
base extension, a single base extension operation 1212
resolves all marked digits. After base extension, it is possible
that previously marked digits will again be zero. In this case,
the loop 1213 and step of 1208 continue the process of divid-
ing by each zero digit modulus. The step of 1228 further
considers whether the base extension is performed due to
pending marked digits and no digits equal to zero in divisor
1252.

If after base extension any digits of divisor 1252 are again
zero, the process of the loop 1213 will continue. If no base
extensions are pending, and no digits are equal to zero, the
step 0of 1207 is performed to provide a new set of divisor 1252
digits which equal zero.

By delaying base extension 1212, significant savings in
clock cycles can be realized between the control flow of FIG.
12A and that of FIG. 13A. This is one example of the
enhancements possible for the integer divide method.
Example RNS Integer Divide

FIG. 13B illustrates an integer divide example according to
the control flow of FIG. 13A. The divide example is illus-
trated using a dual accumulator RNS ALU. One ALU is
loaded with the dividend, the other ALU is loaded with the
Divisor, as shown in the first step marked start 1330. In the
example, the AL U assigned to the dividend is loaded with the
value of (282), while the ALU associated with the divisor is
loaded with (59). This is a simple example chosen to illustrate
basic integer divide operation.

In the figure, the primary control steps are listed in the first
column 1300, and are associated to the operation description,
listed in the second column 1305. For each step in the dia-
gram, the state of the dividend value and the divisor value are
listed. The ALU structure in the example of FIG. 13B sup-
ports a simple eight digit RNS number with the modulus
values {2,3,5,7,11,13, 17, 19}. Range requirements for the
operands are not analyzed here.

After the start step 1330, control advances to the step of
decrementing the divisor 1331. The reason is that the original
value, (59), has no zero digits. After the divisor decrement
1331, the ALU detects that both the dividend and divisor are
divisible by the modulus M,=2. The ALU divides both the
dividend and the divisor by the modulus M, in step 1332. The
flowchart of FIG. 13A proceeds to the task of base extending
the divisor and dividend, since the digit position M, is now
undefined. After the process of base extension, which was
illustrated in FIG. 10B, the dividend and divisor are fully
extended.

US 9,395,952 B2

57

The integer control again inspects and detects if any digit
positions are zero. Since there are no zeroes, the divisor is
again decremented 1334. The divisor is now ready to be
divided by M,, but the dividend is not. Therefore, the divi-
dend is subtracted by the value of the D, digit 1335, which in
the example, is a value of one. Both the dividend and divisor
is divided by the modulus M, 1336 once again. After the
MODDIV operation 1336, a second digit position of the
divisor is also zero, that is, the position of M;. Because both
the dividend and divisor have a zero in the D5 digit position,
both the dividend and divisor may be immediately divided by
the modulus M;=7 1337.

The control proceeds to perform a base extension 1338 on
the dividend and divisor. Note that the base extension
included two undefined digits, demonstrating the base extend
operation performs extension on more than one digit simul-
taneously. In FIG. 13A, this was accomplished by delaying
base extension in step 1228, and flagging the undefined digits
as skipped in step 1229. After base extend, the digit position
of' M, is once again zero for the divisor and the dividend. The
control proceeds to divide the dividend and divisor by the
modulus M, 1339. Once again, the digits in the M,, position
are undefined until a base extend operation 1340 is per-
formed. At this point, the ALU detects the value of one (1) in
the divisor. The dividend is then tested according to the flow
diagram step 1220 of FIG. 13 A, and is decremented by one
1341. At this point, the divide is complete. Determination of
the remainder is not shown in FIG. 13B but requires several
more arithmetic operations as expected.

The example of FIG. 13B is used to help illustrate basic
operation as well as enhancements of the integer divide pro-
cess. For example, the control step to base extend 1340 the
divisor may be skipped if the AL U can detect a value of one in
all “non-skipped” digits. In this case, the last base extension
1340 for the divisor is not required, however, base extension
for the dividend generally is.

Power Based Modulus for Modulo Divide of Repeated Fac-
tors (Powers)

Delaying base extension of step 1212 can result in a sav-
ings in the number of base extensions required, and in the
number of cycles to perform the base extension. However,
after base extension, it is possible that more zeros will be
present in divisor 1252. In fact, the only new zeros possible
after base extension are in the position of the digits extended.
Therefore, it is common to get “repeated” factors during the
main divide loop 1213. Repeated zeroes occurring after base
extension represent a new opportunity to perform a digit
divide, which then requires another base extension operation.
The aforementioned technique of delaying base extension
cannot help in this case because the system cannot determine
if a repeated zero will occur until after a base extension is
completed.

We now disclose a novel approach to reducing the number
of base extension operations resulting from repeated zeros
after base extension. This novel technique makes use of
power based digit modulus, which is especially attractive for
lower value prime modulus. One advantage of having lower
value modulus replaced by a power of the modulus is that the
most common repeated zero modulus can be inspected and
divided in one step. In many cases where repeated zeroes
would otherwise occur in main division loop 1213, power
based digit modulus allows the processing of a plurality of
repeated zeroes using a single modulo division and a single
base extend operation. The power of the digit modulus deter-
mines the maximum number of repeated zeros which can be
divided in one step for this digit. For example, a modulus
which is a power of three can divide up to three repeated

—

0

20

25

30

35

40

45

50

55

60

65

58

factors in one MODDIV operation. The power based modulus
enhancement significantly reduces the occurrence of base
extension cycles, and also reduces the number of modulo
divide steps as well.

Power Based Modulus Introduction

Consider an example RNS AL U with the following modu-
lus: {2, 3, 5,7, 11, 13, 17, 19}. The count sequence for an
ALU using the example modulus is listed in Table 5, by
means of example. To implement the power based residue
number system, we modify the first three modulus to some
power, for example, we have chosen: {2%2%2%2%2 3%3%3
5%5,7,11,13,17,19}. We now have a “power residue number
system” (PRNS) system as defined herein. The count
sequence of an AL U using the PRNS variation is shown in
Table 3. In the case of the prime modulus M,=2 digit of Table
5, we have arbitrarily chosen to increase the modulus range to
5 powers, ormodulus=2°, as shown in Table 3. This makes the
first digit modulus equal to thirty two (32) instead of two (2).

The modulus M,=32 digit can be thought of as a hybrid
digit. The digit possesses more “zeros” than one. In other
words, a “zero” exists for each of the five powers of the base
modulus M,=2. For example, the digit may be evenly divis-
ible by 2, by 4, by 8, by 16, or by 32. Therefore, the hybrid
digit operation is capable of acting as modulo 2, modulo 4,
and so on up to modulo 32. In practice, each digit modulus
“power” is tracked, and a count is used to define how many
powers the digit represents. If the power digit is divided by its
base modulus, the power count is decreased by one to signify
the digit power is reduced by one. After base extension, the
entire power of the digit may be restored in addition to the
digit value. To facilitate certain operations, and to further
reduce the requirement for redundant digits, power based
digits having only part of their original power may be
included in comparison and base extension operations.

The basic divide is modified to support power based modu-
lus. For one, the least significant “zeroes” of the modulus
M,=32 digit are inspected to determine the greatest common
factor for division. In the specific case of modulus with base
two (M,=27%), the zeroes are sampled directly from the least
significant bits of the binary digit value. For example, if the
modulo 32 digit contains the value (16), four consecutive
zeroes are sampled directly from the least significant bits of
the binary value of (32), indicating that four p=2 factors can
be divided in one step. Without the power based RNS digit,
the divide CFR loop 1213 would require up to 3 extra base
extension cycles in our example above (since dividing by 16
needs 4 separate divides by 2).

Power Based Digit Modulus AL U Detail

The first digit in our previous example, the digit modulus
M,=2, is a special case since it is the only RNS digit that is
apower of two, which is the same as binary. Hardware imple-
mentation of the M,=2° digit is straightforward using basic
binary representation. In FIG. 11A, one embodiment for a
PRNS digit having the modulus M,=2* is illustrated; many of
the mechanisms discussed to implement the power based
digit modulus are shown in block diagram format. It should be
understood other embodiments are possible which perform
the same power digit divisibility detection, similar variable
power modulus management and other power digit opera-
tions.

In the example of FIG. 11A, the power valid register 338
controls the valid digit gate selector 3294, which means the
power valid count controls how many digits of the digit accu-
mulator 303 are gated to the crossbar 319 via digit gate 3295.
The power valid register 338 also influences the detection of
the divisibility of the digit accumulator by control connec-

US 9,395,952 B2

59

tions to the zero detect unit 1106, which in turn derives a
power divisibility count stored in zero count register 1104.

However, for all other (non-binary) digit modulus, the case
of supporting powers is more complicated. There are several
embodiments that can be applied to implementation of power
based modulus for modulus other than two. One basic method
involves supporting binary coded fixed radix (BCFR) repre-
sentation for the digit. For example, the modulus M,=3 of
Table 5 is modified to a modulus of M,=3> as shown in Table
3. Therefore, the M, modulus is now 27, consisting of three
sub-digits, each having their own zero; this is a three “sub-
digit” binary coded tri-nary digit. Inspecting a BCFR digit for
even division by a power of the modulus (base) is simplified,
since even powers have successive sub-digits that are zero.

In one embodiment, the arithmetic LUT 301 of a power
based digit is reconfigured to store its data in Binary Coded
Fixed Radix (BCFR) format, as shown in FIG. 11E. This
means the LUT output is in BCFR format, not binary; there-
fore, the format of the value stored in the digit accumulator is
also BCFR format. For example, if the base modulus of the
digit is p=3, then the digit accumulator would store binary
coded tri-nary. FIG. 11 illustrates general data paths, and is
therefore applicable to any modulus (p).

In FIG. 11E, the output of the digit accumulator 303 is
routed back to the input of the ALU 301, via path 314/, and by
means of BCFR to binary conversion block 1115. In addition,
the output of the digit accumulator 303 is routed back to a
selector 3125 that may gate the output the crossbar bus 319.

Generally speaking, gating a BCFR format value directly
onto the crossbar bus is problematic in the embodiment of
FIG. 3A, since the crossbar bus is binary format, a common
representation shared by all digits using the crossbar. There-
fore, a BCFR to binary conversion LUT 327 is inserted to
convert the BCFR format to the common binary format, as
shown in FIG. 3G. Also shown in FIG. 3G, a BCFR to binary
conversion LUT 326 is shown in the operand path 3154 to the
LUT 301. This is one of many possible design choices. In this
case, the main LUT 301 is encoded assuming binary inputs.
This has the advantage of keeping the main LUT 301 smaller
in size (since BCFR format is wider than binary, in general).

The power based RNS digit of FIG. 11FE has the ability to
divide the digit value, and hence all other digit values, by a
variable power of the modulus base. For example, a power
digit modulus M,=2° can be divided by up to five powers of
two. After all five powers have been divided, the entire digit
may be flagged as “skipped”, or invalid. If less than 5 powers
still remain, the digits modulus is said to be “partial”. The
mechanism tracking the current count of valid powers, or
sub-digits, is power valid count register 338 shown in FIG.
11E.

For the example of FIG. 11E, if a modulus (32) digit has all
valid sub-digits, power valid count 338 is set to five in our
example. If the accumulator value 303 is divided by a single
power of the base modulus, which is two in our example, the
power valid count is decremented by one using subtraction
unit 1110. In one case, the zero count register 1104 contains
the maximum power of the base modulus for which the digit
accumulator is evenly divisible. In this example, that power is
one. In FIG. 11E, the value of the zero count register 1104
may be loaded via zero power count priority encoder 1105,
using data input by zero detect unit 1106. The zero detect unit
1106 detects any digit position which starts with a series of
zeros, and the priority encoder 1105 selects from the plurality
of digit positions to select one specific digit position repre-
senting the maximum number of sequential zero digits. A
count of zero indicates the digit accumulator is not divisible
by any power of the base modulus.

20

25

30

35

40

45

50

55

60

65

60

Memory is required to track a plurality of modulus values.
In a natural residue number ALU, each digit modulus is a
single power, so there is only one modulus value per digit
position. As previously discussed, this modulus value may be
stored in register file 300. However, In an AL U which man-
ages a dynamic power modulus, there may be more than one
modulus value depending on the state of the power valid
register 338. In FIG. 11E, a special adaptation is made, that is,
LUT 1111 stores all possible modulus values, of which any
one of the plurality of modulus values may be selected and
gated via selector 3125 to the crossbar bus 319. In FIG. 11E,
the power modulus LUT 1111 may select a modulus entry
based upon the value contained in the zero count register
1104.

In FIG. 3G, a register labeled “Power Valid A” 337 and
“Power Valid B” 338 are included, one for each ALU. This
register provides the current count of the power of the digit
modulus. The count value is decreased when the digit under-
goes a MODDIYV operation of its modulus, or some power of
its modulus. The power valid count is restored to the original
power of the modulus after a base extend operation. In one
embodiment, only a single Power Valid register 337 is used
for both ALU’s, since during division, both ALUs are divided
by the same factors simultaneously. Therefore, a single
counter for each digit reflects the accurate power count for
both digits A and B of the ALU.

The power valid count 337 instructs BCFR digit selector
328 to “gate” only the valid sub-digits of the BCFR digit
register 302 back to the ALU 301 or crossbar bus 318. All
non-valid sub-digits are typically set to zero by the output of
the BCFR digit selector 328 unit. For example, if a BCFR
digit contains three digits, and only two digits are valid, the
digit selector 328 will gate (pass) only the two least signifi-
cant digits during certain operations. The gating operation is
also shown in additional detail using FIG. 11E.

For example, in FIG. 11E, sub-digit 1116 is passed through
digit gate 32954 if the Digit 0 Valid signal from the Valid Digit
Gate Selector 329a is one. The Valid Digit gate selector 3294
is responsive to the input from the power valid count 338, so
if the power valid count 338 is at least one or greater, the least
significant digit lane 1116 is passed. This operation is useful
for integer division of the present invention, since the proper
digit portion, defined by the number of valid digits, or powers,
can be transmitted to the crossbar 319 and to other digit
ALUs.

In FIG. 11E, it can be seen Power Valid count register 338
is associated with the “skip digit” flag 331. That is, if the
power valid count 338 goes to zero, zero detect unit 305
signals the skip digit flag be set. In general, every digit has a
power, even if the power equals one. If the power equals one,
and the digit is divided out, then the power is now zero, and
the digit should be skipped. Hence, the power valid count 338
is an extension of the skip digit flag 331 function. Further
illustrated in FIG. 11E is the skip digit flag 331 signaling the
zero power priority encoder 11055, which in turn affects the
states of the zero digit 3085 detection and zero power 308¢
detection.

For example, if a digit is marked as invalid, or skipped, the
status of the Zero digit line will always be true, since setting
the signal true removes the digit from consideration, similar
to AND gate 596 of FIG. 5E. In FIG. 11E, the skip digit flag
331 within the digit ALU may influence the zero digit 3085
and zero power 308c¢ status signals before they are transmitted
back to the control unit 200. In contrast to FIG. 5E and FIG.
2A, this is an example of distributing certain skip digit and
status signal circuitry away from control unit 200.

US 9,395,952 B2

61

Another basic embodiment for a PRNS digit function
block consists of one or more table look-ups that in addition
to providing arithmetic results, also provide an indication of
the digits “zeros” status, and may also provide a zero mask, or
offset vector, to guide subtraction of the numerator in prepa-
ration for modulo division. In this embodiment, the need to
directly encode the digit accumulator 303 using BCFR may
be bypassed, and replaced by table look-up mechanisms that
provide the necessary information for power based modulo
division. This embodiment and other alternatives for manag-
ing a variable digit modulus is not disclosed herein.

Divide Example with Repeated Factors

FIG. 13C uses the example of FIG. 13B and illustrates the
enhancement of supporting power based modulus and group-
ing repeating factors during the divide of FIG. 13A. In FIG.
13C, the first three digit modulus are converted to support a
power of the modulus. For example, the M,=2 modulus of
FIG. 13B is changed to an M,=2° modulus 1316 in FIG. 13C.
As another example, the M,=3 of FIG. 13C is changed to
M, =3> 1317 of FIG. 13C. Note the M, modulus is shown in
binary, to illustrate the binary value’s divisibility (by a power
of 2) can be detected more easily.

In the control steps of the example of FIG. 13C, the
example proceeds in identical fashion as the example of FIG.
13B until the control step 13364. In the control step 133656 of
FIG. 13C, the ALU divides the dividend and divisor by the
value of four (4), and not two (2) as was the case in FIG. 13B.
The enhanced ALU can detect the D, digit value is divisible
by four, not just two. By dividing by a power of the base
modulus p=2, an extra step of division as required in FIG. 13B
is saved. Note both the dividend and divisor (M,) digit ends
with two zeros in step 1335, hence a power based modulus
ALU can detect this condition, and act to gate the largest
power that divides the values evenly, which is two powers of
p=2, or 2°=4 in this case.

The example of FIG. 13C also illustrates a delayed base
extension of a power based modulus. That is, the high order
“sub-digits” of M, are marked invalid while the remaining
sub-digits remain valid. This is an example of a partially valid
digit, which contains valid and invalid sub-digits. The invalid
sub-digits are illustrated using an asterisk in the two high
order binary bits of the D, digit values in step 13365 and 1337.
Because the enhanced ALU processes repeated factors in
addition to delayed base extension, one entire base extend
cycle 1338 of FIG. 13B is eliminated in FIG. 13C.
Relationship to Divide Routine—How Grouping Repeated
Factors Increases Performance

InFIG. 13A, the flow chart of the modified divide with base
extension delay, consider the decision block 1208 which
advances to the next available zero in the divisor. In a modi-
fied embodiment, the block at 1208 also includes fetching the
next zero digit, including power based digits which has a
variable number of “zeroes”. In other words, in the case of the
modulus 2 with power 5, the digit can immediately indicate if
the digit value is evenly divisible by 2, 4, 8, 16 or 32. There-
fore, at step 1208, if the digit being divided is a power based
digit, the system also tracks the power of the divider which
will be used in block 1210 and 1211.

In block 1210, the offset value must be subtracted from the
Dividend. If the modulus is of variable power, then only the
valid digits indicated by the Power value count are included in
the offset value, and the remaining digits are masked during
subtraction 1210. This is the digit gating function described
earlier.

In block 1211, the RNS number is divided by the digit
modulus. In FIG. 13A, and in the case of a power based digit,
the value DMi of step 1211 is replaced with the base modulus

20

25

30

35

40

45

50

55

60

65

62

to the power of “valid power”, or 27, where V is the valid
power count in this example. In the case of one or more least
significant sub-digits equal to zero, the MODDIV operation
will divide by 2°, where S equals the number of consecutive,
least significant, zero sub-digits of the digit accumulator 303,
and where S<V.

In the modified embodiment, the net effect is that certain
opportunities are being taken to combine multiple digit divide
operations at block 1211 and replace them with a single
divide of more than one factor at a time, in this case, a power
of the base modulus. The effect of reducing the requisite
iterations through the divide loop 1213, including reduction
of divide at 1211 and base extension 1212 is significant.
Typical speed increases as a result of basic repeated factor
grouping using power based modulus is nearly 100% speed
improvement.

Power Based Modulus for Delaying Base Extension Beyond
Divisor Decrement

The power based digit modulus of the present invention can
provide another novel means for speed increase. In FIG. 13A,
at decision control block 1228, a decision is made as to
whether to base extend the dividend (and divisor). If there are
no available zeros to divide, and there are pending digits
marked for base extension (or marked as skipped), then the
flow chart of FIG. 13A and of the original divide flowchart
FIG. 12A instructs to base extend 1212 before returning to
step 1205. In many cases, flow continues back to block 1206
where the RNS divisor is inspected for more zeros. In one
variation, before committing to step 1207, which decrements
the divisor to get a zero, all factors are divided out, including
possible factors from invalid digit positions. Therefore, a base
extension 1212 is required to determine if any skipped (pre-
vious zero) digits extend to a zero before proceeding to step
1207.

A power based modulus can help the ALU determine, in
certain cases, that base extension is not needed. For example,
the modulus M,=2° digit may contain a digit that is divisible
by 2 but not by 4. In this case, the ALU can determine that
after a division by the modulus 2, the modulus 2 digit is not
divisible by 2 once again. In other words, after a partial
division by a base modulus, the power based digit is now a
non-zero partial digit, and therefore indicates that base exten-
sion will not yield a zero result.

If a plurality of power based modulus digits are imple-
mented, then the chance that only partial digits are remaining
at stage 1228 increase. In other words, after dividing out by a
set of power based modulus, in some cases, only partial power
digits will result. In this case, there are no digits marked for
base extension. Since there are no zeroes for division via loop
1213, assuming the divisor is not equal to 1, the loop will
continue at 1206. The step of decrementing the divisor 1207
is now executed to retrieve at least one guaranteed zero, i.e.,
the modulus 2, of at least one power.

In the iteration of control loop 1213 that may follow, the
digits, including the partial digits, that divide out (i.e. are
zero) will be processed. In some cases, the digits are not
related to the previous iteration factors (before the decrement
at 1207). In this case, these digits do not enter into a divide,
and do not require further base extension in the subsequent
loop 1213. However, the eventual presence of a completely
skipped digit will trigger a base extension operation, thereby
recovering all the partial and skipped digits requiring base
extension.

Therefore, the base extension operation 1212 usually
applied before every decrement at 1207 is sometimes
skipped, and combined with a subsequent base extension
operation. Again, if a digits power valid count drops to zero,

US 9,395,952 B2

63

the entire digit is skipped, and marked for base extension. In
this case, the completely invalidated digit causes the RNS
number to be base extended at 1212, since the value of the
digit is undefined, and therefore, the digit cannot be used in
subsequent operations.

Delaying Base Extension Beyond Divisor Decrement
Example

FIG. 13D illustrates the enhancement of delaying a base
extension beyond the step of decrementing the divisor 1207 in
the control flow of FIG. 13A. This feature is made practical
using an AL U supporting a power based modulus, such as the
modulus M,=2° 1316. In FIG. 13D, the divide example is the
same as in FIG. 13B and FI1G. 13C, but illustrates the new
enhancement. In the step of dividing by the first modulus
1332, the high order power digit of the M, modulus is marked
as invalid, and base extension is delayed. In other words, the
number of significant bits of the digit modulus M, decreased
from five to four. Instead of performing a base extension in
step 1333, the ALU of FIG. 13D creates a divisor zero by
decrementing the divisor. After decrementing, the M, digit
should always contain a zero. In the example, the ALU deter-
mines the M,, digit is divisible by four, and the division pro-
cess continues as in FIG. 13C.

In FIG. 13D, the base extension of step 1333 in FIG. 13C is
eliminated. The M, power based modulus stores enough
information to delay base extension through the divisor dec-
rement process 1334, and also allows grouping of repeated
factors in the divide step of 13365. The only base extension
remaining from the original example of FIG. 13C is the last
base extension 1340, which ensures the result quotient is fully
extended.

Look Ahead and Optimize Function for CFR Reduction and
Divide Iterations

In the basic divide flowchart of FIG. 12A, and also of FIG.
13 A, the basic divide loop of 1213 to 1206 is interrupted at
step 1205 if the divisor equals to one. In this case, the basic
flowchart calls for a base extension at 12125 to format the
divisor value so that it may be added to the accumulator at step
1215. If an error is detected at step 1217, the basic divide loop
will be re-entered via control path 1218 to 1205. In this case,
the working divisor will start with a fresh copy of the original
divisor value. This also means that the divisor CFR algorithm
will be identical, and the Divisor will reduce in the same
manner. A complex control system can take advantage of this
fact for subsequent divide iterations. Knowing the decompo-
sition of the Divisor beforehand allows the control system of
the divider to know whether digits marked as skipped at 1212
will activate the base extend function of step 1212. In some
cases, un-necessary base extension can be avoided. This is
possible ifthe base extensions are known beforehand, and this
will not generally be known unless the divide flow re-enters
the divide loop for a repeated time. In other words, once
through the primary divide loop, the divisor factors and hence
base extensions are calculated and stored. Ifthe divide repeats
the primary divide loop via path 1228, the knowledge of the
previous decomposition of the divisor can be used to process
the dividend directly thereafter.

Additionally, the decomposition and subsequent base
extend values for the Divisor can be stored and accessed as
needed, thereby saving the need to repeatedly perform the
same tasks on the divisor. Knowing this fact does not save
time since the working dividend must be base extended at any
rate, this process being in parallel with the divisor base exten-
sion at step 1212. However, it potentially saves hardware
resources and power.

20

25

30

35

40

45

50

55

60

65

64

Fast MRC Based Compare, and Compare in Parallel with
Processing

In one embodiment of the RNS divider of the present
invention, a novel adaptation is provided to speed perfor-
mance. In FIG. 13 A, a decision as to the accuracy of the result
is made at step 1217. If the result is within range, the division
algorithm proceeds to step 1219 where adjustments are made
and a final result is stored. Otherwise, control passes to step
1218 where the working Divisor is reloaded with the original
divisor, and the working dividend is reloaded with the new
delta, or error, calculated in step 1216.

In the FIG. 13A, it can be seen that at step 1217 either the
divide continues at 1218, or prepares for completion at 1219.
Also, once intermediate values are calculated in steps 1214,
1215 and 1216, control may be immediately passed to 1218,
bypassing the step of checking the error at 1217 temporarily.
Using a separate comparator circuit, the comparison of con-
trol step 1217 is processed in parallel to the new iteration of
digit division. If the result of the comparison is YES, then
control to 1218 was justified, and the new digit divide itera-
tion can continue as is. Otherwise, if the result of the com-
parison is NO, then the primary divide loop entered via path
1228 is canceled, and the process of adjustment at 1220
commences. This is one example of breaking up of the divide
control path of FIG. 13 A into parallel processes to save time
and clock cycles.

As another improvement, the process beginning at 1219
can execute in parallel with the execution of the comparator of
step 1217, using a third circuit. If the parallel compare circuit
returns NO, then the outcome of the adjustment process
started at 1220 can be used immediately.

Parallelization of the flow chart in FIG. 13A can result in
considerable savings, especially in savings of clock cycles
due to comparison operations at step 1219. In fact, the clock
cycles of step 1219, which represent the main comparison in
the divide circuit, may be operated in parallel to the remaining
portions of the flowchart. Since comparison and base exten-
sion contribute the most clock cycles to the RNS divide opera-
tion, there is significant savings in reducing the effective
comparison clocks. In this case, effectively reducing com-
parison clock cycles to a single comparison at step 1220.

Many of the details of the parallelism are not disclosed for
brevity sake. For example, it should be obvious that control
flow from the main divide loop may need to wait for the
completion of a previous compare before re-entering the
compare process again.

Furthermore, all of the previously disclosed speed
enhancements, those due to power based modulus and
delayed base extension, will work in unison to the speed
enhancements gained by implementing a parallel comparison
mechanism. Combining all of the speed enhancements
together creates a powerful, high speed RNS divide appara-
tus.

Combined Subtract and Divide LUT Providing Single Clock
Per Digit Processing

Repetitive arithmetic operations are applied to intermedi-
ate values within the divide process of FIG. 13A. There is an
opportunity to combine some of these operations. One inter-
esting sequence of operations to combine is that of Subtrac-
tion and MODDIV (inverse modulo multiplication). In FIG.
13A, at step 1210, the Dividend is being prepared for the
modulo divide (MODDIV) operation at step 1211 by subtrac-
tion of the digit value. This operation is followed by the
MODDIV operation at step 1211. Therefore, there is an
opportunity to combine the subtraction and modulo division
operation into the same LUT access cycle. This effectively
reduces the clock rate for divide operations almost by half. In

US 9,395,952 B2

65
a similar manner, base extension involves repeated addition
followed by multiplication. A RNS digit LUT table which
combines the addition and multiplication of the digit value
into one LUT access can effectively save clocks for that
process.

It should be noted that comparison and base extension are
also performed using a two function sequence of either Sub-
traction followed by MODDIV, or Addition followed by Mul-
tiplication. In other words, speeding up basic RNS digit
LUT’s to process two functions in one access cycle speeds all
other processes in the Divider. Therefore, performing such an
enhancement, in of itself, reduces the clock cycles for the
divide operation in half. FIG. 3H shows a digit function block
which includes hardware provisions for a combined subtract/
divide, and add/multiply architecture.

In one embodiment, the modulo addition portion of the
look-up is implemented in hardware using a binary adder,
comparator and subtraction unit circuit (not a LUT). The
modulo multiplication is retained as a memory LUT access,
whose input is fed by the result of the modulo addition hard-
ware circuit. Similarly, in the case of combining the subtrac-
tion and MODDIV LUT functions, the subtraction unit is
implemented in hardware using a subtract, comparator and
adder unit. The result of the hardware modulo subtraction is
fed into a LUT that handles the MODDIV operation via table
look up.

In another implementation, modulo subtraction and
modulo digit division is combined directly using a larger
three input LUT. This was illustrated in FIG. 3C. This
approach is fast, but costs much more memory for each digit
LUT. If the single operation LUT depth is Q, then the com-
bined two function LUT depth is Q.

Adding Redundant Modulus for Improved Performance

Another unique property of the divide algorithm of FIG.
12A and FIG. 13A is that the efficiency of the algorithm
increases as the number of redundant digits increases. The
reason is that redundant digits provide more opportunity to
reduce the divisor using CFR, thereby providing a more pre-
cise decomposition. The more digits that divide out, the lesser
the number of iterations and base extensions required.

The effect of redundant digits is dramatic. Another result is
that smaller numbers divide much faster than larger numbers.
Further adding redundant digits reduces execution time, but
at an ever diminishing degree.

Table 6 lists many of the most popular speed improvement
techniques. Other improvements to the integer divide method
and apparatus are listed in Table 6, and still others are pos-
sible, but are beyond the scope of this disclosure.

Fractional RNS ALU

Fractional arithmetic in computers is not new, and most
computers support some type of fractional representation.
Many modern binary CPU’s support a fractional number
format referred to as “floating point”. Several variations of
floating point number formats have been adopted, but
recently, several standards have emerged, such as IEEE 754-
2008.

Computer operations on fractional representations are very
important. Without fractional numbers and fractional arith-
metic operations, the ability to perform real world calcula-
tions is severely limited, i.e., limited to integer operations
alone. While there are some notable exceptions to common
fractional representations, such as using integers to form
rational number types, fractional representations such as
floating and fixed point have dominated most computer appli-
cations, including scientific and digital signal processing cal-

20

25

30

35

40

45

50

55

60

65

66

culations. Indeed, fractional representation is the technique
used by digital systems to represent real numbers, such sys-
tems being limited to a finite number of representation states.

In the prior art, RNS calculations are performed using
integers only. In some cases, RNS based systems have been
adapted to applications requiring fractional values; in these
cases, integers are treated as “scaled” values. In some litera-
ture, the use of integers to represent scaled values is termed
“fixed point” arithmetic. However, referring to scaled values
(integers) as a fixed point format is erroneous. In this disclo-
sure, fixed point arithmetic refers to arithmetic operations that
operate on a value 1) which may contain a fractional part and
a whole part, and 2) when multiplied by another fixed point
value produces a value that occupies the same range, and
exists in the same fixed point format. When using RNS inte-
ger multiplication, this is not the case, since multiplying two
integers produces a representation with a different range, and
adifferent format. In the prior art, there is a need to “re-scale”
such integer results, however, such re-scaling is not singularly
defined, and is dependent on a specific choice of modulus, and
specific application.

In the prior art, it is thought by many academics that gen-
eral purpose fractional representation using RNS numbers is
not possible, or at least not feasible. This is not true. The
method of the present invention introduces several new frac-
tional RNS representations. Indeed, the method of the present
invention will disclose novel methods for performing general
purpose arithmetic operations on these fractional RNS types.
Using the methods of the present invention, fractional RNS
multiplication, the most important of the RNS fractional
operations, is indeed efficient, accurate and extendable.

What is needed is a new approach to fractional number
representation in RNS, as well as a practical method and
apparatus for general purpose calculations on such fractional
RNS numbers. The next sections disclose new RNS fractional
representations, and the methods and apparatus’ for general
purpose arithmetic operations using these representations.

Fixed Point RNS Fractional Representations

RNS numbers are not weighted; this is to say the magnitude
of'an RNS number is not easily ascertained by inspection of
the digits alone. Unlike digits of fixed radix numbers, an RNS
digit does not represent any portion or amount. The lack ofan
ordered and weighted sequence of digits makes the ability to
“measure” a residue number difficult. The difficulty in quan-
tifying an RNS value, and the difficulty in dividing an RNS
value, may suggest that a fractional RNS representation is not
possible, or at least not feasible. However, this is not true, as
we shall discuss two different fractional number systems
important to the present invention.

The fixed point fractional representation for RNS numbers
is disclosed herein and is represented using Expression 2a in
the following way:

LI ... IyyF\ FoFs, ... Fy

Where I, through I,, represent M number of RNS digit
modulus’ reserved for the “whole” range of the number, and
F, through F,, represent N number of RNS digit modulus’
reserved for the “fractional” range of the RNS fixed point
representation.

In expression 2a, the total number of pair-wise prime
modulus’ is equal to M+N. All digits M+N are treated as a
single RNS number. For example, during a parallel operation
such as addition, all digit modulus (M+N) may perform the
add operation simultaneously.

(Expression. 2a)

US 9,395,952 B2

67

The “dot” separating the fractional portion from the whole
number portion is for illustration purposes, since a residue
number cannot support the exact equivalent of a “decimal
point”, or “binary point”. The dot in expression 2a could be
replaced by a comma. In fact, there should be no confusing
Expression 2a with its binary, fixed radix equivalent. For
example, even digits I, through I,, must change if any frac-
tional, nonzero value (less than one) is added. Residue num-
bers spread a values’ information among all digits, and there
is no such concept as concentrating a values’ fractional por-
tion to only the fractional digits alone.

In practice, an RNS ALU may require an extended range of
digit modulus. The extended range of digit modulus may be
expressed as:

1,0, . L F LS Fs, . FELESE;S . Ex

Where I, through I,, represent M number of RNS digit
modulus’ reserved for the “whole” range, and F, through F,,
represent N number of RNS digit modulus’ reserved for the
“fractional” range, and E, through E ;- represent X number of
RNS digits modulus reserved for the extended range of the
ALU.

The extended range, grouped as an adequate number of
successive digits in one embodiment, provides the range nec-
essary for scaling, and for holding intermediate values during
fundamental operations, such as multiplication and division.
Furthermore, extended digits may be required for detecting
overflow, or performing other advanced features.

We can define the total number (M+N) digits of expression
2a as the RNS “data type representation”, whereas the total
number (M+N+X) digits of expression 2b as the RNS ALU
“accumulator machine number”. Expression 2b is analogous
to a binary ALU of the prior art, which may have a wider
accumulator than the operand size of the values processed.

Additionally, an ALU may adjust its accumulator defini-
tion to accommodate different data types. Therefore, all or
more available digits of expression 2b can be formatted
according to the expression:

(Expression. 2b)

1,01, o Ly xR (Expression. 2¢)

In this expression, a single digit R is reserved as a redundant
digit for use by the integer divide operation of the present
invention. All other digits are treated as defining a range for
integer values, consuming the entire range of expression 2b.

Treating the machine ALU as an integer value is common.
Such integer formats represent primitive data types within
more complex ALU operations, such as fractional multipli-
cation. We will not disclose all such data types here, only to
disclose the concept of fundamental representations, such as
expression 2c, being used alongside and in conjunction with
more complex representations of expression 2a and 2b.

Note that in a given design, fixed point data values may be
handled, stored and moved with its extended (and therefore
redundant) digits intact, as in expression 2b. Alternatively, a
design may store and handle values in the format of expres-
sion 2a, and require values be base extended before an opera-
tion, (and truncated afterwards). In either case, the full num-
ber of digit modulus within an ALU “accumulator” will
account for all required extended and redundant ranges.
Machine designs which move and store values with extended
digits intact save time, and are attractive for high speed RNS
ALUs.

Despite the many differences, many parallels can be drawn
between the fixed point RNS fractional representation
defined herein and a fixed point binary fraction. In 1960,
William Kahn proposed the definition of ulp(x), which is an
acronym for unit of the last place. This definition aided the

20

25

30

35

40

45

50

55

60

65

68

analysis of floating point numbers and other binary represen-
tations with fractional representation of (x) bits. For fixed
point RNS representation, we will herein define “ump(n)”, or
unit of most precision. This is the smallest fraction that can be
defined by a fixed point system, and is hereby defined for the
RNS fixed point representation of (n) fractional digits as:

ump(p)=1/(F *F,*Fy*. .. *Fn) (Equation. 3)

For example, if a fixed-point RNS number has as its frac-
tional representation the following modulus’: (2, 3, 5,7, 11),
then the unit of most precision is:

Ump(5)=1/(2*3*5%7*11)=Y5310=0.000432900

Using Equation 3, it is obvious that to increase the preci-
sion of the RNS fixed point number, an extension of the
number of fractional digits is required. For a fixed point
machine, the machine precision (i.e., the number of fractional
digits) may be defined during design of the system, but this is
not a limitation of the present invention. For example, in a
later section, a “sliding point” RNS representation is defined,
whereas the number of fractional digits may dynamically
change during arithmetic operations.

Likewise, the largest RNS fractional value less than one
(unity=1.0) is given by:

(Largest fraction<1.0)=(F *F,*F3*... *F,-1)/

(F*F,*Fy* .. *F) (Eqn. 4)

Given the example above of a fixed point RNS fraction
having the fractional modulus® (2, 3, 5, 7, 11), the largest
fractional value less than one is:

(2%3%5%7%11-1)/(2*3*5*7*11)=(1.0-ump)=0.999567

Again, this is similar to a fixed point, fixed radix number,
for which the “range” of the fractional digits minus one (R~
1) divided by the range of the fractional digits (R) represents
the largest fraction (less than one) which can be represented.

The “range” of the fractional portion of a fixed point RNS
number employing N pair-wise prime modulus’ is an impor-
tant quantity, defined as:

Fractional Range=R=F | *F,*F3*... *Fy) (Eqn. 5a)

Therefore, the “range” of the integer (whole) portion of a
fixed point RNS number employing M pair-wise prime
modulus’ is equally important, and is defined as:

Integer Range=R = *L*L*. .. *I;,) (Eqn. 5b)

Moreover, the definition of fractional range affects the
definition of unity in a RNS fixed point number. For example,
in fixed radix systems, if the fraction point is omitted, the
whole number portion appears to be scaled up by the frac-
tional range. Likewise, the unit value (1.0) of a fixed point
RNS number is said to be “scaled” by its fractional range R :

Unit value=(1.0) ,oc=Rz (Eqn. 6)

For example, given a fixed point RNS value having the
fractional modulus’ (2, 3, 5, 7, 11),, and having the whole
modulus (13, 17, 19, 23),, the value of one (1.0,) could be
written as:

1.0,4=10,11,15,9-0,0,0,0,0

Given that the sequence of RNS digit modulus’ in the
written representation is: (23, 19, 17, 1311, 7, 5, 3, 2), the
“point” representing another comma, but is used to clarify
range assignments of Expression 2.

Another way to write an actual RNS fixed point number in
terms of its digits is to specify each digit value using a sub

US 9,395,952 B2

69

script which specifies its associated modulus; therefore, given
our example modulus, we can write the value of one as:

1.0,0=105311,515,79,3:0,,0,05050, (Expression 7a)

Again, in Expression 7a, the fixed point RNS value is
shown as a sequence of whole digits separated from a
sequence of fractional digits by a point; this is a convenience
ofrepresentation, and should not be confused to be equivalent
to a fraction point in a fixed radix number, although both are
similar in many respects.

In fact, the concept of “ordered digits™ has little meaning in
RNS numbers; only the assignment of modulus to a given
digit value has meaning. This fact is often missed when look-
ing at fixed radix numbers, since the order of digits custom-
arily defines the power of each digit. However, again this is
only notational convenience, since in truth, each digit posi-
tion of a fixed radix number is associated with a particular
“power” of the radix, and we have grown accustomed to
writing digits in a particular order to maintain that (implied)
association, and to simplify the concept of carry and borrow.

In this disclosure, we shall use the notation of Expression
7a when the meaning of RNS digits is deemed confusing.
However, again, the written order of digits is not important
other than to clarify notation. We shall see later that, indeed,
the digit order of certain types of RNS operations is arbitrary
for the same reason, as this is a property of residue numbers.
(Although once an order is chosen, it should be maintained
for certain subsequent operations).

To be clear, it is important to illustrate a few more fixed
point RNS numbers using the example modulus above. One
interesting number is the written value of ump; another is the
written value of ump plus unity:

ump=1551,41,,1,31;;1;151515 (Expression 7b)
ump-+unit value=11,312,416,,10,51,,1,15151,(Ex-
pression 7¢)
The largest value represented in the example fixed point
RNS system is represented with the largest integer repre-
sented by the M+N digit RNS number:

Largest value=22,318,416,,12,3-10,,6:45251, (Expression 7d)

Where the example fixed point RNS system of expression 7d
handles positive numbers only.
Fixed Point RNS Fractional Arithmetic Operations

Arithmetic operations for fixed point RNS values are in
many ways analogous to arithmetic operations for fixed point,
fixed radix systems. There are however, many differences,
especially for the operation of fixed point RNS multiplica-
tion.

For fixed point addition and subtraction of unsigned RNS
values, the operations are straight forward and are identical to
RNS integer addition and subtraction. For example, for fixed
point RNS addition, each operand (A) digit is added to its
corresponding operand (B) digit (of the same modulus) using
modulo addition, without carry. Subtraction is the same
except the operation is modulo subtraction. Because the RNS
fractional format is fixed point, the fixed point position is not
affected, as would be the case in binary fixed point addition
and subtraction.

FIGS. 14A, 14B and 14C illustrate simple examples of
fractional addition given the modulus set {23, 19, 17,13, 11,
7, 5, 3, 2}, where the fractional digits are assigned to the
modulus {11,7,5,3,2}. In FIG. 14A, the value of one seventh
is added to the value of one fifth. Because the RNS fractional
system of our example supports fifths and sevenths exactly,
this particular example illustrates an exact result, namely, a

20

25

30

35

40

45

50

55

60

65

70

result of 124s. Redundant modulus’ are not necessarily
required for addition, and are not shown in the examples.

FIG. 14B illustrates a fractional addition with values that
are not exactly represented. In this case, the value of 4 is
added to the value of Y. Using the example RNS system,
exact fractional representations do not exist for these values.
In this case, the example system approximates the desired
values; the example system adds 5772310 to 2894310 which
yields 894310, or approximately 0.3749. The binary fractional
system will perform this particular addition more accurately,
and will yield an exact result of 0.375, but the binary system
will have difficulty representing one fifth and one seventh,
and must approximate the results of FIG. 14A. FIG. 14C
illustrates the addition of two fixed point numbers having
both a fractional and whole part.

(In this disclosure, the term “fractional” generally
describes a representation which includes both fractional and
whole parts; i.e., a plurality of digits associated to the integer
range of a number, and a plurality of digits associated with the
fractional range.)

For RNS fixed point multiplication, the situation is similar
to fixed radix multiplication, but with several key differences.
To begin with, any fixed point fractional value can be rewrit-
ten in terms of its integer and fractional parts. Expression 2 is
rewritten in this form:

i3, - anf15S5 - v wH/R=((W*Rp)+n) Ry (Expression 7e)

where,

w=integer representing the integer portion of the RNS
value

n=integer representing the fractional portion of the RNS
value
That is, (w) equals an integer value representing the whole
portion of the fixed point RNS number, and (n) is an integer
value representing the fractional portion; n being an integer
value such that 0<=n<R, where R - is defined in Equation Sa.

In expression 7e, the notation chosen to describe an RNS
value is explained. The left hand term of expression 7e rep-
resents an RNS value of the form of expression 2a, where the
integer range and the fractional range are shown using difter-
ent letters for each RNS modulus. The digit value associated
with a modulus assigned to the fractional range is denoted as
f,, while a digit value associated with an RNS modulus
assigned to the whole range is designated as i,. As known by
those skilled in the art, the range of any RNS digit value, f ;and
i is therefore:

0=f;<F; (for any fractional modulus F;,1=J<N)

Osix<Iy (for any whole modulus I,1=K=M)

It is important to note that in expression 7e, the left hand
expression represents a single RNS value, which is math-
ematically treated in accordance to assigned ranges of expres-
sion 2a.

For completeness, the relationship between RNS values
and the values w and n, (which is not needed for this discus-
sion, but adds to our definition) is:

(Lot - - - Sn)=#)MOD Rp=n Eqn. 7f

(1,083, « . . i3)=(r+w)MOD Ry Eqn. 7g

In expression 7f and 7g, the fractional and whole ranges of
the RNS are separated, and each treated as a separate RNS
value, but this is done for mathematical relation purposes
only, and by means of example. Again, the left hand expres-
sion of 7e is in actuality a single RNS number, and will be
processed as a single number in the ALU of the present
invention.

US 9,395,952 B2

71

Getting back to the main idea, a simple way to look at the
right hand side of Expression 7e is to represent the entire fixed
point RNS number as a whole integer, Y, over the fractional
range of the fixed point number system, so we have:

w+n/Rp=Y/Rp Eqn. 8

where, Y=w*R+n

We refer to Y as a data representation number, employing
M+N digit modulus. Therefore, we are in a position to derive
the correct mathematics for fixed point RNS multiplication,
which is essentially the same for fixed point, fixed radix
systems. To multiply two RNS fractions, we have:

YR Yo/Re=(Y, *Y5) (Re*Ry) Eqn. 9a

(Y1) Re*Re)=((Y, *Ya) Rp)Ry Eqn. 9b

Where Y, and Y, represent RNS data numbers, treated as
integers.

The issue with the right hand of Equation 9a is the result is
not properly normalized for the machine representation. In
other words, Y, *Y, is not the correct result of the fixed point
fractional multiplication. Equation 9b suggests the proper
answer, that is, the integer result Y, *Y, must be normalized
by, i.e. or divided by, a factor of R. This is analogous to the
“left shift” of the binary point in fixed point binary multipli-
cation. For long multiplication as taught in grade school, it is
analogous to counting the number of decimal places to the
right of the decimal point of both operands, and placing the
decimal point to left of the least significant digit of the result
that many places.

Fixed Point RNS Multiplication Method and
Apparatus

One method to achieve fixed point RNS multiplication of
values having the representation set forth in Expression 2a is
to multiply the RNS fixed point numbers as if they are inte-
gers, and then divide the result by R, as suggested by Equa-
tion 9b. In fact, this can be achieved by performing an RNS
integer multiplication, and then applying the RNS integer
divide method of the present invention to divide by Ry. This
technique is indeed a claimed feature of the ALU of the
present invention. However, because the integer divide
method is not deterministic, the resulting fractional multipli-
cation is not deterministic.

Therefore, an alternate method of the enclosed invention is
disclosed which is faster, more simple, and requires less con-
trol circuitry. The new fractional RNS multiply is consistent,
and predictable in terms of execution cycles. From an overall
view, the unique and novel method for fixed point RNS mul-
tiplication of the present invention uses a modified base
extension algorithm and apparatus. The case of multiplying
two positive values is explained first to simplify the disclo-
sure.

The multiply operation starts with an RNS integer multiply
of the operands, i.e., treating each fixed point operand as an
extended integer (i.e., integer multiply of the machine num-
bers). Next, a modified base extension procedure and appa-
ratus performs three required functions as a combined opera-
tion. These three functions are: 1) divide by Ry, 2) digit
extend the fractional digits, and 3) round the result. The RNS
fixed point multiplication is achieved in linear time with
respect to the number of RNS digits, assuming LUT access
time is fixed.

It should be noted that for a given numeric range, a range
equal to or greater than the number range “squared” may be
supported by the AL U for the multiplication operation; this is

—

0

20

25

30

35

40

45

50

55

60

65

72

the same case if we are multiplying two N bit binary numbers,
such an apparatus might use an N+N bit width to store the full
result. In addition, by adding one or more redundant digits,
certain numeric overflow status can be generated.

(Variations of arithmetic ranges for RNS fractions can be
supported but are not discussed in detail herein. For example,
a machine number with a range equal to one number range
times an additional fractional range is contemplated. In this
example, the fractional range is squared, thereby covering the
range requirement for fractional operation, but supporting
only a single whole range, which easily “overflows™ if the
values are too large. Like the binary case, if the result exceeds
the range of the representation, it is invalid. In another case, a
machine which only supports calculations with numbers less
than a certain value may have a unique range requirement.)

In one embodiment, the RNS AL U carries the double width
(range squared) representation throughout all operations, and
not just within the integer multiplier as required. This
embodiment trades the need for additional hardware in order
to save clock cycles that would be needed to base extend each
operand before multiplication. An alternate embodiment is
contemplated which does not require a range squared repre-
sentation throughout, but at the cost of additional steps to base
extend the RNS values before multiplication.

To begin the disclosure of the novel approach to fixed point
RNS multiplication of the present invention, the flow chart of
FIG. 15A is provided. The flow chart of FIG. 15A represents
basic steps to provide an overview, and does not delve into
micro-coded specifics. However, the method of FIG. 15A
assumes basic data structures as shown in FIG. 2A, for
instance, supporting the fact that all algorithms of the
enclosed invention may use a similar digit slice data structure.
However, this is not a limitation of the method(s) herein.

FIG. 15A illustrates the most basic fixed point RNS mul-
tiply method of the enclosed invention. It does not include
advanced rounding functions other than truncation rounding,
nor does it describe how signed operands are handled.
Instead, it is provided to give a foundation for the more
advanced methods to follow. The flow chart further assumes
and references the basic notation for fixed point RNS num-
bers as provided by Expression 2a.

The flowchart of FIG. 15A starts at the control step 1500
marked start. It is assumed the operands are stored in a suit-
able memory, and may be accessed for the RNS multiply
operation 1510. After RNS integer multiplication 1510,
which generally requires an extended range, the result of the
integer multiply 1510 is converted to mixed radix digits using
a process similar to the flowchart of FIG. 7A. It is important
that the mixed radix conversion 1520 start with the fractional
RNS digits designated by the modulus F, through F,. The
mixed radix digits may be stored in any suitable manner, as
long as they may be accessed in a reverse order for step 1530.
In one embodiment, a LIFO hardware stack is used to store
and retrieve both mixed radix digit values and their associated
modulus, such as that depicted in FIG. 2B.

After converting the result of the RN'S multiply from step
1510 into its corresponding mixed radix digits in control step
1520, the process of reconverting 1530 the mixed radix digits
back to an RNS number is performed. In the reconversion
1530 of mixed radix digits, the mixed radix digits are recon-
verted to RNS starting with the last digit converted; in other
words, the reconversion process 1530 occurs in the reverse
digit order from the original mixed radix conversion 1520. In
a special modification of the mixed radix to RNS reconver-
sion procedure, the last N digits (to be reconverted) of the
mixed radix value are ignored, or skipped. These discarded

US 9,395,952 B2

73

digits correspond to the first N digits converted in mixed radix
conversion 1520, where N is the number of fractional digits of
the representation.

The final result of mixed radix to RNS conversion 1530 is
stored in step 1540. This result is the final truncated result of
the multiplication of the two (positive) fixed point RNS oper-
ands. The method of FIG. 15A accomplishes several impor-
tant objectives, which include a multiply, an implicit divide
by R, and a full digit extension as a result of reconversion.

The truncation of mixed radix digits is an operation that
truncates the digits as well as the powers of the digits. There-
fore, the truncated mixed radix number represents a new
number, in a new mixed radix number system, since the new
mixed radix number system has fewer radix, or powers. Inone
embodiment, reconverting the mixed radix number 1530
includes the process of truncation by the method of skipping
digits. By stopping short of converting the last N mixed radix
digits, the truncation operation is realized, and is equivalent to
adjusting the element count 802 of FIG. 8A.

A formal proof for the RNS fixed point multiplication is not
provided here, but is readily explained in the following man-
ner. From the integer multiply in step 1510, it is understood
from equation 9b that a divide by the fractional range, R, is
required to normalize the result. The conversion of the integer
result to mixed radix 1520 represents a valid result, only in
another number system, namely, mixed radix. Since the
mixed radix system is a weighted system, an equivalent frac-
tion point exists, therefore, truncation is valid. Since the first
digits converted to mixed radix become the least significant
digits, these digits are truncated. The number of digits trun-
cated will equal the number of fractional digits in the RNS
format, since there is a one to one correspondence from RNS
to mixed radix in terms of range represented by the digits. One
complete fractional range is to be divided, which is equivalent
to truncation in the mixed radix system of N number of least
significant digits, N being the number of (fixed point) frac-
tional modulus in RNS.

In FIG. 15A, the control steps 1520, 1530 and 1540 are
enclosed using a dotted rectangle 1550qa. This grouping of
low level functions 1550a constitute a new RNS fixed point
operation, herein referred to as “intermediate to normal” con-
version. In the sections that follow, the intermediate to normal
conversion 1550a will be expanded to support signed values,
sign extension and result rounding. As will be disclosed, the
ability to separate the intermediate to normal conversion
15504 from the intermediate format processing stage 1510
provides very fast arithmetic processing; since for some
operations, a plurality of intermediate format processing is
accomplished using the fastest RNS operations, while the
intermediate to normal conversion 1550q is only required
once. This new method of processing has significant benefits
in RNS, but has no value if attempted in binary.

Signed Values and the Method of Complements

FIG. 15B discloses a more complete method for fixed point
RNS multiplication of the present invention. Based on the
method of FIG. 15A, the modified flow diagram of FIG. 15B
adds a procedure for handling signed operands as well as a
procedure for handling a more sophisticated rounding func-
tion. Before explaining the process and method of FIG. 15B,
it is desirable to explain the mechanics and method for han-
dling signed RNS operands.

In one embodiment of the present invention, the method of
complements is used for representing signed quantities. For
most binary computers, the method of complements is
referred to as 1’s or 2’s complement binary. The method of
complements can also be applied to the fixed point RNS

20

25

30

35

40

45

50

55

60

65

74

representation of the present invention. That is, a negative
RNS quantity “A” may be defined by:

Negatived=(Ry—A4) Eqn. 10a
where, A is a positive value, and
Ry=RNS number representation range=Rz*Ry- Eqn. 10b

In equation 10b, the entire range of the number represen-
tation, Ry, is defined. This range may be defined by the
product of the fractional range and the whole range, such as
R-*Ry.

The method of complements, herein renamed as “P’s
complement”, P referring to the different prime (or semi-
prime) modulus digits, is established when a negative value A
is defined as a positive value A subtracted from the RNS
representation range R ;. The machine range R is essentially
the modulus of the number representation, whereas the num-
ber representation consists of (M+N) RNS digits, as defined
in equation 2a.

One way to explain signed addition and subtraction is to
say that RNS ranges support “wrap-around”, and therefore, a
portion of the number range R ;, may be reserved for positive
quantities, and the remaining portion may be reserved for
negative quantities, with the value “0” being unique, and
located in the “middle” of both signed sub-ranges.

For multiplication, the method of complements is illus-
trated briefly as a review using two positive operands A and B,
and demonstrating the multiplication of —A*B:

(Ry—A)*B=(Ry*B-AB)MOD Ry=(Ry—AB)

given: AB<R ;-

From equation 11, the right hand result is the definition for
the negative quantity A*B, provided the value (A*B) is less
than the machine number range R ;. If we model RNS signed
ranges after binary 2°s method of complements, the allowable
range for positive values is set from “+ump” to (R;/2-1),
while the allowable range for negative values is set from
“—ump” to (-R;/2), this case requiring the RNS machine
number support at least one even modulus, although this is not
a limitation of the present invention. It is, however, required
that the range for positive and negative numbers do not over-
lap, and are unique, with the exception of zero. In one
embodiment, the machine number range R ,-is larger than the
combined range of both the negative and positive number
ranges (plus zero) because of the existence of redundant
modulus, or a partially redundant RNS digit. Any number of
redundant digits may be added, since adding redundant
modulus to the ALU machine word does not affect the modu-
lus properties of the digits associated with the machine num-
ber R;.

If both operands are negative, the following method of
complements is briefly noted:

Eqn. 11a

(Ry~A)*(Ry~B)~(Ry*R y~Ry*B-Ry*A+AB)MOD
Ry=AB
given: AB<R,
Operation of Signed Number Formats
One advantage of representing signed quantities using P’s
complement is that RNS operations of addition, subtraction
and multiplication generate a correctly signed result without
having to know the sign of the operand beforehand. In other
words, the sign of the value is correctly handled by the arith-
metic operation and the result is correctly encoded as a signed
value. However, while the resulting data may be correctly
signed using the method of complements, the ability to ascer-
tain the sign of the result may be difficult. The reason is that
unlike a fixed point radix number system using the method of
complements, the sign of an RNS value cannot be readily

Eqn. 11b

US 9,395,952 B2

75

ascertained by inspection of the value’s digits. This is a key
difference between RNS numbers versus fixed radix numbers
like decimal or binary.

Some operations require the sign of an operand before
execution, such as division, for example. Some operations
may be aided by knowing the sign of the operand beforehand,
such as comparison. Therefore, the P’s complement system,
while powerful, may not always be adequate alone for han-
dling signed values within the RNS ALU. In one embodiment
of the present invention, a “sign” bit and “sign valid” bit is
supported in conjunction to the previously defined P’s
complement, fixed point RNS representation. The sign bit
will act as a sign magnitude bit, while the sign valid bit defines
whether the sign bit is to be trusted, i.e. whether it is valid or
not.

Using method of complements alone, the sign of an RNS
operand may not be readily inspected. Therefore, without
otherwise knowing the sign of the value, a sign extension
operation is required if the sign of the value is needed. On the
other hand, by convention, if the operand has a valid sign
magnitude bit, the sign of the value is known, and a sign
extension is not required. For example, if the divide operation
requires a positive operand, and the sign bit indicates a nega-
tive quantity, only a complement operation is required on the
operand, and not a sign extension. A sign complement opera-
tion is fully parallel, and much faster than a sign extension
operation, which is sequential.

For the operation of signed comparison, the presence of a
valid sign bit greatly speeds the comparison of a negative to a
positive number. Additionally, a valid sign bit allows the
comparison hardware unit of the present invention to use
special techniques to speed execution, such as comparison via
(mixed radix) digit length.

The “sign valid” bit is used to determine if the sign mag-
nitude bit is valid, since during arithmetic processing, the
validity of the sign magnitude bit may be lost. However, using
the unique methods of the present invention, the sign magni-
tude bit may be set and flagged as valid during certain opera-
tions, such as fixed point multiply, or signed operand com-
parison, among others. The ability of certain arithmetic
operations to simultaneously sign extend operands is a key
feature of the method of the present invention.

In another embodiment of the present invention, operands
do not carry a sign (magnitude) bit and a sign valid bit.
Instead, sign extend operations are required whenever knowl-
edge of a values sign is required and unknown. The sign
extend operation resembles a modified comparison operation
against the starting range of the negative numbers, R;/2, or a
comparison with the ending range of positive numbers. This
is performed using a modified mixed radix converter with an
integrated comparison apparatus; during mixed radix conver-
sion, the value of the accumulator is compared against mixed
radix constant(s). The special digit compare registers of the
digit slice ALU of FIG. 3E can be used to support such an
integrated comparison.

Advanced Fractional Multiply Detail

InFIG. 15B, a basic method for multiplying two fixed point
signed values is disclosed. This method is suitable for a single
accumulator RNS ALU. In step 1510 control circuitry per-
forms an RNS integer multiply of the two signed fixed point
RNS operands, denoted as operand A and B. That is, the fixed
point RNS numbers are treated as if they are integers, i.e., the
machine numbers are directly multiplied. The integer multi-
ply 1510 of the fixed point operands provide an intermediate
result, or intermediate product (IP). The RNS integer multi-
plication may be accomplished between corresponding digits
using a LUT technique, such as LUT 301 of the digit slice of

20

25

30

35

40

45

50

55

60

65

76

FIG. 3A. In another embodiment, a conventional binary hard-
ware multiplier is used which performs modulo-p multipli-
cation, where p is the modulus of the RNS digit.

After the integer multiply of control step 1510, the sign of
the intermediate product (IP) is determined 1511. In one
embodiment, the sign may be determined by inspecting each
operands sign and sign valid bits. If the sign of both operands
A & B are valid, the sign of the intermediate product can be
easily determined, otherwise, a sign extend operation is
required on each operand having an invalid sign bit. FIG. 15B
assumes each operand A and B have a valid sign bit. If the
intermediate product is determined to be a negative quantity,
the intermediate product is complemented 1512, and the sign
of'the final result is set to negative 1514, otherwise, the sign of
the final result is set to positive 1513.

Next, RNS to mixed radix conversion 1520 of the interme-
diate product is performed. In one embodiment, a plurality of
RNS digit slice ALU’s performs the conversion task, as
described in FIG. 2B and FIG. 7A. However, a novel and
unique modification to the RNS to mixed radix conversion
1520 method is supported, that is, the RNS to mixed radix
converter 1520 includes apparatus to perform rounding of
signed fixed point RNS multiplication.

In FIG. 15B, a novel apparatus is added as follows, which
is computed in parallel, and integrated into the mixed radix
conversion process 1520, as denoted by dotted path 1524. A
comparison 1525 is performed on the intermediate product
during the conversion to mixed radix 1520. The comparison
1525 is limited to the first N digits of the mixed radix conver-
sion, which represent a mixed radix conversion of one equiva-
lent fractional range of the intermediate value; i.e. N defined
as the number of fractional digits defined for the fixed point
RNS value. It is also these first N (mixed radix) digits that are
skipped in the mixed radix to RNS conversion 1530. The
importance of comparison 1525 is to perform a rounding
function determination on the final result, such determination
affecting the decision control block 1532.

In one embodiment, the first N mixed radix digits from
conversion 1520 are compared with the constant R/2; if the
comparison 1525 determines the first N mixed radix digits are
greater than or equal to R/2, the result is rounded up by
incrementing 1533 the converted result from reconversion
1530. The rounding operation is flagged by setting a suitable
memory bit, or entering a suitable control state; the process of
incrementing the result by one is delayed until after the con-
version to RNS in control step 1530, since the incrementing
operation is best accomplished in RNS (without carry).

Other variations of rounding modes may exist. It should be
noted the rounding method of FIG. 15B is only one type of
rounding that may be implemented, and additional modes
should be obvious to those skilled in the art of floating point
unit design in conventional binary computer systems. For
example, a comparison mechanism may also indicate the
truncated digits are equal to half range (R/2), and may cause
a round-up only if the converted result is even in this case.

After mixed radix conversion 1520 of the intermediate
result, control circuitry performs a mixed radix to RNS “re-
conversion” 1530. As previously illustrated in FIG. 15A in
step 1530, the least significant N digits of the mixed radix
number are ignored in the reconversion 1530. That is, the
process of reconverting mixed radix digits to RNS format
1530 employs the unique process of skipping, or ignoring, the
first N mixed radix digits generated from converter 1520. To
be clear, the first N digits of the mixed radix conversion are
generated and used until the rounding comparison 1525 is
complete; after this, they are not needed.

US 9,395,952 B2

77

If a LIFO apparatus is used to perform the mixed radix
truncation, the LIFO digit count may be subtracted by N,
since the mixed radix digits to be skipped are the last N digits
to be popped. Alternatively, another variation using the LIFO
generates the first N mixed radix digits, but never pushes them
to the LIFO. In this case, the LIFO element count and data
properly reflects the normalized value (i.e. remaining digits);
during re-conversion, the process is streamlined, since there
is no need to purge the LIFO of (ignored) data, and the LIFO
depth may be designed to be smaller.

It should be noted that discarding, or truncating mixed
radix digits does not affect, or shift, the associated digit
“power” for all non-discarded mixed radix digits. One might
expect this when truncating a fixed radix number. That is,
discarding a mixed radix digit also discards the associated
power; that is, the discarded digit value and its associated
power is not part of the calculation of converter 1530. The use
of'the LIFO illustrates this fact since one unique embodiment
supports both modulus and digit data residing in the LIFO.
Truncating the mixed radix number in the LIFO therefore
involves truncating a data pair, a mixed radix digit and its
associated modulus value. That is to say that truncating a
mixed radix digit may cancel the associated digit add and
modulus multiply step during mixed radix to RNS conver-
sion.

In the conversion of mixed radix to RNS 1530, a special
notation is disclosed. The truncated mixed radix value is
denotedas ,_,[MR], which describes a truncated mixed radix
number which retains the most significant (P-N) digits,
where P is the original mixed radix digit length. The notation
[MR], refers to a truncated mixed radix number which retains
the least significant N digits.

In FIG. 15B, the result of rounding comparator 1525
affects the control decision 1532 which determines whether
the final result is adjusted, i.e. incremented (by “ump” as
defined in Expression 7b). In other words, if the rounding
comparator 1525 determines a “round” is required, the final
result is incremented, or otherwise increased 1533. Next, the
sign flag set from control decision 1511 is tested, and if set to
negative, the final result is complemented 1535. This process
properly encodes the negative value. Next, the sign bits of the
result are set 15405, the sign bit of the final result being
determined beforehand from step 1511. In one embodiment,
the sign valid flag is set to indicate a “valid” sign bit condition.
The final result is stored, and the control circuitry terminates
1542 the signed fixed point multiply operation.

Once again a dotted rectangle 15505 is used to group the
operations which make up the intermediate to normal conver-
sion method of FIG. 15B. The operations enclosed handle
signed values in a straight forward manner. It should be noted
the negative value itself cannot be processed according to
steps 1520, 1525 and 1530 due to a number reasons, the most
significant being direct division by a negative value is invalid.
Therefore, intermediate values are complemented if they are
negative, and the final result is complemented again. Other
variations are possible, for example, the operands themselves
may be complemented if negative, and the sign value tracked
accordingly. In either scenario, FIG. 15B requires the sign of
each operand must be known.

The intermediate to normal conversion 15505 of FIG. 15B
is suitable for an RNS AL U having a single ALU. In this case,
the management and processing of signed values produce
additional burden on arithmetic processing. There is no
opportunity to sign extend during the multiplication of FIG.
15B since the process of sign determination occurs only after
the step of mixed radix conversion 1520, which is then too
late. For high performance applications, a new method is

20

25

30

35

40

45

50

55

60

65

78

disclosed which utilizes a dual accumulator ALU to convert
the intermediate product and its complement simultaneously.
During conversion, the sign is automatically determined, and
the correct value is selected for further processing of step
1530. This new method not only sign extends an intermediate
product automatically, but allows the separation of the inter-
mediate to normal conversion process from the intermediate
RNS processing steps. This “decoupling” of arithmetic steps
provides for an unprecedented increase in processing perfor-
mance of product sums and other operations, in a true fixed
point number representation. The brand new and novel appa-
ratus for performing high speed fixed point fractional arith-
metic is described next using the flowcharts of FIGS. 15C and
15D.

In FIG. 15C, a high performance alternative to the method
of FIG. 15B is disclosed. In step 1510, the two fixed point
operands are multiplied as if they are integers; this creates a
resulting intermediate product (IP). The IP may be stored in a
temporary location for further accessing. The IP is also stored
in the accumulator A according to step 1510. Next, in step
1515, the intermediate product complement is stored in accu-
mulator B. The complement may be derived from the original
IP value by subtracting IP from the value of zero, thereby
forming an additive inverse. The dotted line 1519 represents
a parallel control flow; one branch continuing to control step
1520a, and the other proceeding to control step 15205. In
other words, the control unit begins a simultaneous conver-
sion to mixed radix format 1520a, 15205, converting the
contents of accumulator A and B in digit synchronized fash-
ion.

During the synchronized conversion of accumulator A and
B, a comparison is made between the two values under con-
version. In other words, each mixed radix digit generated in
ALU A is compared with the corresponding digit generated in
ALU B. This is illustrated by the dotted lines 1526 and 1527.
The goal of the comparison is to determine which (absolute)
value contained in ALU A and B is smaller. Once the com-
parison 1529 determines which value is smaller, that value is
already converted to mixed radix (since the comparison ter-
minated on the small value going to zero first). Furthermore,
the small value is also positive, and is therefore suitable for
the next stage of processing.

According to the specifics of FIG. 15C, the sign flag is set
from the test of whether the A accumulator is larger than the
B accumulator. If A>B, the original value is negative, and
therefore the conditional control step 1529 proceeds to step
15305, to continue processing with the value of ALU B, since
the complemented value is positive. Otherwise, if A<B, the
ALU A value is positive, and the control step 1529 directs
control to step 1530a, which processes the value contained in
ALU A. Once control has been directed by decision block
1529, the non-selected ALU may terminate the conversion
process since the value contained may be disposed. The
selected value, either contained in ALU A or ALU B, is then
processed by truncating the mixed radix digits as explained
previously, and re-converting the truncated value back to
RNS 1530a, 15305. In one embodiment, an apparatus similar
to that of FIG. 2B is used. In FIG. 2B, each ALU supports a
LIFO structure connected to its associated crossbar bus,
which contains the mixed radix value.

Also during the synchronized conversion of accumulator A
15204 and accumulator B 152054, the process of determining
a round up 15254, 15255 is processed in parallel for each
ALU respectively as illustrated. The round-up determination
for each AL U is stored in its respective round up pending bit,
or is handled using state logic which results in the final value
being adjusted for round up in steps 1533a or step 15335,

US 9,395,952 B2

79

which ever path is selected via control decision 1529. If
control decision step 1529 selects the step 15305, it indicates
the complemented value is smaller, which implies the original
value is negative. Therefore, at step 1535, the resulting re-
converted RNS value, still contained in ALU B, is comple-
mented. According to the specifics of FIG. 15C, the value (in
ALU B)is then moved to the ALU A register. At step 1531, the
sign flag is set to indicate a negative final result. If the control
decision step 1529 selected the step of 1530a, the same round
up process applies at step 1532a and 1533¢; if a round up was
determined in 15254, the value contained in the ALU A is
incremented 1533a. Next, at step 1513, the sign is set to
positive in this case. The control path of FIG. 15C merges at
step 15405, which sets the sign valid bit to true. Other varia-
tions to this control flow are possible which do essentially the
same thing.

In FIG. 15C, a dotted rectangle encloses those operations
making up the so called “intermediate to normal” conversion
operation 1550¢. Unlike FIG. 15B, the intermediate to normal
conversion 1550¢ of FIG. 15C may be decoupled from the
intermediate arithmetic processing stage 1510. The reason is
the sign extension operation is completely handled by the
control flow of FIG. 15C, and therefore, the intermediate
processing stage 1510 may be relieved from the responsibility
ot handling or tracking the sign of the intermediate value. In
later sections, it is disclosed how high performance opera-
tions rely on the operation of FIG. 15C, and in particular, the
operation of the intermediate to normal conversion 1550¢, to
significantly enhance performance.

In FIG. 15D, a variation to FIG. 15C is provided. In FIG.
15D, the control flow is designed to handle either case of FIG.
15B, or FIG. 15C. For example, if the sign of the result is
known beforehand because the operand sign flags are valid,
the control flow of FIG. 15D behaves as FIG. 15B. In this
case, only a single ALU is required, and therefore a high
performance system is at liberty to use the free ALU for other
tasks. However, if the sign of the operands are not known, the
decision control step 1511 directs control to step 1515, which
essentially launches the flow of FIG. 15C. In this case, both
ALU’s are needed at the same time. One subtle difference of
FIG. 15D is the comparison step of 1522, which may check
more accurately for the proper range of the intermediate
value. In this manner, overflow or other arithmetic over-run
may be detected (not shown). Further details are provided in
the control flow diagram of FIG. 15D.

Fractional Multiply Example with Truncation

In FIG. 15E, a table of RNS ALU range definitions is
disclosed. This table defines some of the typical range con-
siderations for an example RNS ALU. Many of these range
definitions are associated with the practical needs of frac-
tional RNS multiplication. The table of FIG. 15E has been
adapted for the specific modulus of the examples to follow. In
the table of FIG. 15E and in FIG. 15F, the example ALU uses
seven fractional digit modulus {2, 3, 5, 7, 11, 13, 17}, four
whole number digit modulus {19, 23, 29, 31}, and seven
redundant modulus {37, 41, 43, 47, 53, 59, 61}.

In FIG. 15F, a basic example of the novel fractional mul-
tiplication method is illustrated. In this example, the RNS
fixed point value of three and one seventh (3'%) 1591 is
multiplied to the RNS fixed point value eight and one fifth
(8Y5) 1592. Because the example RNS ALU supports these
denominators exactly, both operands can be exactly repre-
sented by the number system, as noted by their machine
number representation 1585. For example, the machine num-
ber ratio 4186182/510510=8.2 exactly.

In FIG. 15F, the progression of states of a basic RNS
fractional multiply are shown. In the column entitled “FIG.

20

25

30

35

40

45

50

55

60

65

80

15B Control Step” 1555, the control step of FIG. 15B asso-
ciated with the current state is listed. The RNS ALU is illus-
trated as a series of modulus, grouped into three distinct
modulus groups; the extended digit modulus group 1560, the
integer digit modulus group 1565 and the fractional digit
modulus group 1570. The description of each number format
1580 is listed for clarity, and the machine equivalent ratio is
listed in the “Machine value” column 1585. An interpreted
value column 1590 is provided to illustrate the normal way
humans view fractional numbers.

The example of FIG. 15F illustrates a simple case of mul-
tiplying two positive numbers, however, even a positive num-
ber may need to be sign extended. Therefore, the example also
illustrates the sign magnitude and sign valid bits 1575. The
sign valid bit is assumed to be set “invalid” for both operands
1591 and 1592 at start.

Referring to the example of FIG. 15F, at the initial start of
the multiply, one operand is loaded into the AL U at step 1556.
(The second operand is shown for clarity in step 1557, but
may not actually be loaded separately). The second operand,
shown in state 1557, is multiplied to the AL U in step 1558 and
the resulting intermediate product 1593 stored in the RNS
ALU.The ALU now contains an intermediate number in RNS
format 1593. In the next state 1559 of the example of FIG.
15F, the intermediate number is converted to a mixed radix
number 1594. The RNS to mixed radix conversion process
may use a flow diagram similar to that of FIG. 7A.

In a novel enhancement, the mixed radix number is trun-
cated in step 1561. In another variation, the first N mixed
radix digits generated is discarded. The remaining truncated
mixed radix number 1596 is a new value represented using a
different mixed radix number system, since the modulus set
has been changed (due to truncation). In any event, the
remaining mixed radix number 1596 is converted treated
according to its unique radix (modulus) set. In one embodi-
ment, a LIFO hardware stack is used to manage the dynamic
radix set by storing each digit and its respective radix in pairs.

In step 1562, the truncated mixed radix number 1596 is
converted back to RNS 1597. In this case, the converted value
is normalized, and represents the proper result of the example
system, namely, the value of 25 and 274s, or approximately
25.7714,,. Inthe final step 1563, or optionally in parallel with
other prior steps, the sign bit and sign valid bit 1575 is set
appropriately. This is an important feature, since the frac-
tional multiply apparatus of the present invention also per-
forms a sign extend on the final result. This helps to reduce the
number of cycles needed to sign extend operands before other
operations, such as comparison and division.

Fractional Multiplication Example with Basic Round Up

In FIG. 15G, another example of fractional fixed point
RNS multiplication is provided. In this example, different
values are chosen. These values are chosen to illustrate values
that cannot be exactly represented in the RNS ALU of
example 31e. Values whose denominators are powers of two
are chosen, namely the operand values of eight and one six-
teenth (8%16) 1581 and three and one quarter (3%4) 1582. The
actual machine ratios used to represent intended operands are
listed in column 1585. Using a calculator, one can determine
the error of the machine ratios versus the interpreted initial
values that may be sought 1590.

The fractional multiply proceeds as the last example with
an integer multiply of the operands 1558 forming an interme-
diate product 1583. The intermediate product is converted to
mixed radix in step 1559 with several novel modifications. In
one such modification, the mixed radix intermediate value
1584 is truncated by removing the least significant seven digit

US 9,395,952 B2

81
positions in step 1561, and the resulting mixed radix number
1586 is reconverted to RNS in step 1562.

In another key modification, the first seven digits of the
mixed radix conversion of step 1559 are compared to half the
fractional range in step 1564. In the example, the value
derived from the first seven mixed radix digits exceeds half
the fractional range (R /2) 1588. Therefore, the truncated
result 1587 is incremented by one, accounting for a round up
operation 1564. The multiplication terminates in step 1566,
which may include the step of setting the sign magnitude and
sign valid bit 1575. The interpreted result of the multiplica-
tion is (26.2031) 1589. If the desired calculation is (8.0625x
3.25), the result is in error by the value (26.203125-
13376925/510510)=-6.3356e-5. In terms of perfect initial
ratios, the multiplication result is off by (4115987/
510510%1659157/510510-13376954/510510)=-5.51e-7.
These values can be compared with the value of ump, which
in this example is 1.96e-6.

Modification of the ALU of the present invention to include
power based modulus in the M, digit, of at least three powers
(2*), will provide a perfect result in the example above. This
fact demonstrates the advantage that power based modulus
has on the method of the present invention, that is, it provides
more unique denominator combinations, including those
denominators having a factor of some power, which may be
used to provide more exact number representations of inter-
est.

Multiply and Accumulate Unit

Many modern high-speed binary CPU’s employ special-
ized instructions, such as multiply and accumulate instruc-
tions. Additionally, special techniques for implementing mul-
tiply and accumulate functions exist for binary computers in
the prior art, such as “fused” multiply and accumulate units.
The reason is that many computer calculations require two
operands to be multiplied, and a third operand to be added to
the result of the multiply. Digital signal processing is one
application which benefits from the addition of a multiply
accumulate unit (MAC).

Inthe method ofthe present invention, a modification to the
novel method of fixed point RNS multiplication, as disclosed
in FIGS. 16A and 16B, provides an RNS fixed point multiply
and accumulate function (RNS MAC).

One general motivation to support a MAC instruction is to
allow a single instruction the ability to perform two opera-
tions. However, another motivation behind the RNS MAC
differs in some respects to that of'its binary counterpart. In the
case of a certain prior art binary CPU, a fused multiply and
accumulate instruction integrates both the multiply and addi-
tion function together, thereby creating a function which is
faster than both functions would be when executed separately.
However, in the case of an RNS based CPU, the speed of the
fixed point addition is already quite fast, being constant with
respect to digit width (assuming a fixed digit-slice ALU
speed). In contrast, one motivation for combining the multi-
ply and accumulate function for RNS based CPU’s is based
on saving sign extend operations.

In FIG. 16A, a method of the control circuitry associated
with an RNS MAC unit of the present invention is disclosed.
In one embodiment of the RNS MAC, the use of a dual RNS
accumulator in combination with a specialized control unit,
such as disclosed in FIG. 2B, provide a unique and novel
apparatus for an RNS MAC. However, the dual accumulator,
digit slice architecture of FIG. 2B is not a limitation to the
disclosure. For example, an embodiment which uses dedi-

20

25

30

35

40

45

50

55

60

65

82

cated registers, data paths and control circuitry may also be
used. This latter embodiment is explicitly not digit-slice
architecture.

FIG. 16A represents a typical multiply and accumulate
(MAC) operation, which may include additional control and
instruction execution circuitry 200 of FIG. 2B in one embodi-
ment. FIG. 16A is a modification of FIG. 15C, where the
flowchart of FIG. 16A has been modified by the addition of
two extra steps. Also, the intermediate to normal conversion
1550c¢ of FIG. 15C is redrawn as a smaller block 1550c of
FIG. 16A for conciseness. The operation of block 1550c¢ is
therefore identical in both figures.

In FIG. 16 A, after the integer multiply 1510 of two fixed
point RNS operands, a control step of scaling the third “addi-
tive operand” 1612 is disclosed. Using a dual ALU, the pro-
cess of scaling the third additive operand 1612 is accom-
plished in parallel to the integer multiply 1510, but may also
exist as a sequential operation as shown in the flowchart of
FIG. 16 A. The multiply and accumulate unit (MAC) adds the
scaled (additive) operand Z, stored in accumulator B, to the
intermediate product generated in control step 1510 and
stored in accumulator A 1614. The operand to be added must
be scaled by R 1612, the fractional range of the fixed point
representation, prior to the addition 1614; this is accom-
plished with an integer multiply by R. After the addition of
the scaled operand, an intermediate product and sum is stored
in accumulator A 1614. At this point, control is passed to the
intermediate to normal format converter 1550c.

At this point, the intermediate value contained in the accu-
mulator is a correctly encoded p’s-complement (intermedi-
ate) value; however, the sign of the intermediate value cannot
be known beforehand in all cases. The reason is the process of
adding a signed value to a signed product may invalidate the
resulting sign, i.e., if the signs of each value are different.
Therefore, in some cases, even knowing the signs of all oper-
ands prior to the MAC operation will not provide the infor-
mation needed to know the final result sign. In these cases, a
conventional approach must be used, thereby reducing the
usefulness of a MAC instruction.

However, using the novel and unique capabilities of the
intermediate to normal format converter 1550¢, the ability to
sum the intermediate product (A*B) with the scaled operand
(Z*R) is made possible for all cases, as illustrated in FIG.
16A. As previously explained, the intermediate value is con-
verted to mixed radix, and a complement of the intermediate
value is converted to mixed radix in block 1550¢. During the
synchronized conversion of both the original and comple-
ment, the smallest magnitude is determined via an integrated
compare mechanism. Also during conversion of both the
original and complement, a round up is determined for each
value. The sign of the result will depend on which value is
smallest in absolute magnitude (i.e. treated as an integer). If
the complemented value is smallest in magnitude, the original
intermediate value is negative, otherwise, it is positive. The
smallest absolute mixed radix value is truncated and recon-
verted to RNS. If that value is associated with a round up, the
value is incremented or otherwise increased. If the value is
determined to be negative, it is complemented, and the sign
flags may be set as appropriate.

Fractional Multiply and Accumulate Example

In FIG. 16B, an example of an RNS based fractional mul-
tiply and accumulate operation is illustrated. The example is
based on the fractional multiply example of FIG. 15G with an
additional operand value added, that of one third (*4). This
example illustrates a basic case of positive values only, and
does not delineate detailed steps of conversion 1550¢ for
clarity.

US 9,395,952 B2

83

In FIG. 16B, the three operands are shown, the two oper-
ands that will be multiplied, operand A 1581 and operand B
1582, and a third operand C 1671 will be summed to the
product of A and B. Like FIG. 15F, an intermediate product is
formed in step 1558. However, for an additive operand, its
intermediate format is formed by the scaling of operand C by
the amount R, as shown in step 15585. The final intermediate
result is the sum of the intermediate product 1583 of step 1558
with the scaled operand C 1672; the final intermediate sum
resides in the ALU at step 1558¢. By this point, the multiply
and accumulate operation has taken place, but the result is in
an un-normalized, intermediate format.

The result is normalized using a unique convert-truncate-
reconvert mechanism. The first step is to convert the interme-
diate MAC result 1673 to a mixed radix format 1684 in step
1559. Next, the mixed radix value has F number of digits
truncated in step 1561, F being the number of digits associ-
ated to the fractional range of the fixed point number. Lastly,
the truncated mixed radix number 1686 is converted back to
RNS format in step 1562. The new RNS value 1687 may be
modified as a result of a rounding operation in step 1564. In
FIG. 16B, the result 1688 is rounded, since the discarded
mixed radix portion was found to exceed half the fractional
range, which in this example, was the minimum value chosen
for round up. At the last step 1566, the sign flag 1575 may be
set, and the final RNS value 1689 is the final answer.

The multiply and accumulate function may increase effi-
ciency since it is addition and subtraction which typically
invalidates a values sign bit. Since the addition (or subtrac-
tion) operation may be integrated into the multiply operation,
a sign extend operation may be processed in tandem as a
secondary operation, as shown in FIG. 16A, control step
1522. In this way, the action of addition, since it is tied to the
step of multiplication, will not act to invalidate the resulting
sign.

Many operations discussed have been explained in their
more simplified view, to help shed light on the methods and
apparatus. In practice, enhancements at the hardware level
combine functions where possible to reduce the number of
clock cycles required. These enhancements have not been
discussed in depth herein.

Overflow Detection in Fractional Multiply and MAC

Checking for overflow is an advanced operation that
requires a keen understanding of the objectives, and thorough
understanding of the number range(s) employed in the archi-
tecture. For that matter, it is beyond the scope of a detailed
explanation herein. However, some strategies for overflow
detection can be mentioned.

A third novel apparatus may exist, which is computed in
parallel to conversion 1520, but is not shown in FIG. 16A.
That is, a comparison to the fixed point machine number
range R, is made to determine overflow. The technique is
similar to comparison against the positive range 1522, and
should be obvious to those who understand this specification.
If an overflow is detected, the associated overflow status flag
is set, indicating the result is invalid.

Another strategy for overflow detection is the use of oper-
and range detection before or during the multiplication opera-
tion. This strategy may reduce the number of redundant digits
required to support overflow detection. Overflow detection of
addition and subtraction is relatively simple, requiring an
additional redundant digit to support the additive range detec-
tion; range detection for signed multiplication is more diffi-
cult, especially for signed value operation, which must
account for improper “wrap around” result of range overflow.
In other words, in RNS, there is no one bit position for which
overflow can be detected; alternatively, the range of the

20

25

30

35

40

45

50

55

60

65

84

machine number may be measured and the proper context for
overflow can be established beforehand.
Other Implementation Notes for Multiplication:

For clarity and brevity, the flow charts of FIGS. 15B, 15C
& 16A (among others) are not specific as to temporary hold-
ing registers, and other potential requirements of an actual
implementation; any particular design architecture takes
these issues into account, which is known by those skilled in
the art. For example, the dual accumulator digit slice archi-
tecture of FIG. 2A may store temporary results into a register
file 300 as shown in FIG. 3A. The digit slice architecture may
also use a LIFO data structure to store intermediate results of
conversion, for example. It should also be clear that many
variations of the techniques presented herein are possible
which accomplish the same or similar objectives.

Fractional Sum of Products Overview

The multiply and accumulate operation of FIG. 16A is
extended to support a “sum of products” operation. The sum
of products operation is common in scientific computing,
since summing of products is required for matrix and vector
calculations, for example.

Moreover, the sum of products method and apparatus of the
present invention provides a high speed solution, since the
apparatus allows product sums to be processed in an interme-
diate RNS format first, with only the final result requiring a
normalization procedure. Therefore, if there are N products to
be summed, and the effective binary data width is (n) bits,
product sum execution time is on the order of O(n)=(n)/
(N*Log(P)), where P is the number of RNS digits. This result
implies very high processing rate for sum of products calcu-
lations on very wide data, and where the number of product
sums, N, is relatively large. Furthermore, processing rate may
be increased further since the method may be adapted to a
plurality of parallel or pipelined RNS ALU’s.

Sum of Fractional Products Detail

A basic control flow for a basic sum of products operation
on fixed point data using the RNS AL U of the present inven-
tion is disclosed in FIG. 16C. The control flow is modified
from the basic fractional multiply control flow of FIG. 15C.
The modified control flow of FIG. 16C integrates an interme-
diate product sum processing loop defined by control paths
1610 through 1630 and the loopback path 1631. As disclosed
in FIG. 15C, the intermediate to normal conversion control
step 1550¢ normalizes the intermediate product, and is used
here in FIG. 16C to normalize the product sum generated in
steps 1610 through 1630.

In FIG. 16C, the processing loop 1631 is responsible for
calculating a sum of products using direct (integer) RNS
operations of addition and multiplication. At start, in the
control step 1606 of F1G. 16C, the storage S allocated to store
the product sum is cleared. In control step 1610, the first
operand pair is accessed from storage, and in the next step
1620 is multiplied using a direct, integer RNS multiply. The
result of the integer multiply of step 1620 is added to the
summation storage register S in control step 1625. If more
products are to be summed, decision control block 1630
directs control flow back to 1610, where the next operand pair
is accessed. Each time through the control loop 1631 another
pair of operands are multiplied and summed to the product
sum S. This process is repeated for as many product terms
exist in the problem of interest, which is specified by N of
control step 1630.

In FIG. 16C, when all products are summed in control step
1625, control is passed to the step of 1550¢ via the control
decision block 1630. At this stage, the intermediate product

US 9,395,952 B2

85

sum in storage S is both normalized and sign extended 1550c.
This profess was explained in more detail earlier. At this
point, the processing of the intermediate value is similar to
that of 1550¢ of FIG. 15C, for standard fixed point RNS
multiplication of the present invention

In an alternative embodiment, the sum of products calcu-
lation of FIG. 16C provides a result directly in binary. The
truncated mixed radix result of 1550¢ is converted to binary
directly, using the apparatus similar to FIG. 21B. In one
variation of this alternate embodiment, the sign determination
and round up determination are passed to the binary system,
where round up correction and sign conversion are processed
in the binary number system. In another variation of the
alternate embodiment, the conversion apparatus, similar to
FIG. 21B, performs the process of round up and/or sign
conversion of the binary result.

Sum of Fractional Products Example

In the example of FIG. 16D, a sum of two fixed point
fractional multiplications are processed using the ALU of the
present invention. The calculation utilizes some of the same
values presented in prior examples, such as FIGS. 15F and
15G. The example calculation performed is shown enclosed
in dotted lines 1608. Once again, positive values are used to
illustrate a basic case.

In FIG. 16D, at the start of the operation, four operands are
shown, operand A 1581, operand B 1582, operand C 1663,
and operand D 1664. The example performs the sum of two
products, i.e., A*B+C*D. In the state of 1660, the first inter-
mediate product 1665 is formed at step, or state 1661, the
second intermediate product 1666 is formed from the integer
multiply of operand C and operand D in step 1661. In this
example, only two products are summed for sake of brevity,
however, in practice, many more terms may be summed. In
step 1662, the two intermediate products are summed to cre-
ate an intermediate product sum 1667.

In step 1559 of FIG. 16D, the process of normalizing the
intermediate product sum begins. The intermediate product
sum 1667 is converted to mixed radix in step 1559. The mixed
radix value is then truncated 1669 in step 1561. The truncated
mixed radix is converted to RNS 1670 in step 1562. The RNS
value 1670 is adjusted based on the results of round up deter-
mination to form a final rounded value 1671. In the last step of
1566, the RNS value has the flags set in accordance to the sign
extension determination of step 1559 according to the control
flow step 1522 in FIG. 16C.

It can be seen from the example of FIG. 16D that process-
ing values in their intermediate stage allows the RNS ALU to
make full use of high speed residue operations. Thus, the
more calculations that may be performed in intermediate
format, the more efficient the RNS ALU will be.

Adjustable Point RNS Fractional Representations

In the current state of the art, the use of a binary floating
point number representation is popular. The reason for this is
that binary floating point allows a much larger number range
to be supported than would be possible with a similar “fixed
point” binary unit. Generally, the floating point number rep-
resentation contains two parts, a mantissa, and an exponent.
The mantissa can be thought of as the binary number itself,
where its’ binary width defines the maximum “resolution” of
the floating point format. The exponent of the floating point
format can be thought of as a scaling factor, where the scale
factor is of the form of the radix to some power, i.e., an
exponent. The scale factor effectively extends the “range” of
the floating point number without having to increase the

20

25

30

35

40

45

50

55

60

65

86

resolution of the floating point format. This is an attractive
feature of binary, or any fixed radix number system.

The manipulation of binary floating point numbers is well
documented, and beyond the scope of this disclosure. How-
ever, its importance to modern conventional processing sys-
tems is not to be ignored by any architecture designed for
general purpose arithmetic processing. While binary fixed
point number systems are still in use today, such as in certain
digital signal processors and embedded microcontrollers,
binary floating point units have come to dominate binary
fixed point units in the commercial market.

In the case of the fixed point RNS unit of the present
invention, the comparison between a conventional binary
floating point unit and fixed point RNS unit is not as clear cut.
For example, in one embodiment of the present invention, a
fixed point RNS unit of very large (effective) binary width is
contemplated. The very large width of the RNS fixed point
unit essentially extends both precision and range of the rep-
resentation. For example, an RNS ALU with an effective
binary width greater than 1024 bits can be constructed using
off the shelf memory technology. In this case, the fixed point
RNS format is advantageous; for example, fixed point RNS
addition and subtraction may be performed in constant time,
assuming a fixed digit-slice processing speed. This is to say
that a very large increase in effective binary width of the RN'S
fixed point unit need not introduce significant delays in the
operations of fixed point addition and subtraction versus a
smaller width fixed point RNS unit.

However, there is still a need to adjust the “fractional point™
position of RNS fractional values. Again, the term “fractional
point”is amisnomer in RNS fractional representations. There
is no exact equivalent between a binary point, whose position
is well defined in terms of actual digit position, and an RNS
fractional point, whereas there is no such physical “point
position”. In the case of RNS fractional point representations,
we instead have a ‘digit count”, i.e. a group of specific digits
which define a specific range for which the RNS fractional
denominator is defined. In one embodiment of the present
invention, there is a digit order convention, which regards the
modulus associated with the smallest primes as least signifi-
cant digits, i.e. those digits to be grouped as fractional digits.
The convention mainly helps to disclose and discuss the num-
ber system, but also has real benefits as will be disclosed later.

In the method and apparatus of the present invention, there
exists a variable point fractional representation herein
referred to as a “sliding point” representation. In FIG. 17A, a
specific group of digit modulus is reserved for the fractional
portion of the RNS fractional representation 1700. In the
sliding point representation, the fractional grouping of digits
may change, and this fact allows a fractional RNS format that
adjusts its digit group, i.e. allows the fractional point to
“move”. By placing an “imaginary fractional point” 1701
between those RNS digits reserved for the fractional range
1700, and those digits reserved for the remaining machine
number 1702, 1703, 1704, we can illustrate and discuss RNS
fractional points as actual fractional point positions. There-
fore, this disclosure takes the liberty to explain an adjustable
fractional point RNS representation by illustrating a dot, or
point, between those digits reserved for the fractional range of
the RNS value, and those digits reserved for the range of the
remaining machine word.

In practice, a fractional RNS representation that adjusts its
fractional digit grouping does so using a separate register,
herein referred to as the “fractional point position™ register
1705. It is also herein referred to as the “sliding point posi-
tion” register 1705. In this embodiment, an implied RNS digit
ordering is assumed, such as treating the modulus having the

US 9,395,952 B2

87

least significant prime (base) factors as least significant digits.
Coincidentally, the sliding point position register mirrors the
exponent register of the floating point unit of the prior art. In
fact, it serves a similar purpose, to adjust the scaling ratio
between the whole range and fractional range of the RNS
fractional representation.

FIG. 17B and FIG. 17C illustrate additional aspects,
options and variations of a sliding point fractional represen-
tation of the present invention. In FIG. 17B, the ALU accu-
mulator is divided into four digit range categories. A frac-
tional range 1700 is illustrated as N digits, while the integer
range 1702 is illustrated as M digits. An extended range 1703
is illustrated with a range of K digits. A final redundant digit
D, 1704 is also provided. The redundant digit can aid in
certain types of overflow detection. In FIG. 17B, the frac-
tional point position register 1705 defines the “regrouping” of
fractional digits. The legal fractional point position is set to
between 0 fractional digits and N+M fractional digits for this
example. Note that this embodiment does not allow the frac-
tional position 1701 to enter into the extended range 1703;
this is to ensure that a minimum extended digit range is
always reserved. Other variations may allow the fractional
point position 1701 to extend into the extended digit range,
but these are application specific, and are not dealt with here.

FIG. 17C provides example modulus arranged into their
respective ranges; the overall representation may operate on
an AL U of Q=7 bits, where the largest digit modulus is p=127.
Power based modulus are not shown in the fractional range
1700, but could be supported if desired. The sliding point
RNS format of FIGS. 17B and 17C will be discussed in detail
later.

Fractional RNS Division

The need to adjust the fractional point position of an RNS
fixed point fraction is similar to the need to adjust the floating
point position of binary floating point numbers. For example,
in the prior art floating point representation for fixed radix
numbers, it is well known that adjusting the floating point
position one digit to the left effectively divides the value by its
radix. Conversely, moving the floating point position one
digit to the right multiplies the value by its radix. This ability
to scale a value by its radix is useful, both in terms of value
representation and in terms of performing arithmetic opera-
tions on numbers. Therefore, for fixed radix representations
of the prior art, dividing or multiplying by the underlying
radix is indeed accomplished by moving the fractional point
position. This fact has been useful for scaling fixed radix
numbers in the prior art.

One basic arithmetic operation which benefits from the
ability to easily scale a value is division. In fact, basic binary
division (and multiplication) takes advantage of the ability to
shift a value right (or left). One common requirement for
efficient division of fractional quantities is the ability to scale
a value within a predefined range. Therefore, the ability to
shift a binary value upwards or downwards is of great impor-
tance.

An equivalent shift operation on RNS values is not pos-
sible; however, in the method of the present invention, RNS
fractional values are scaled in a digit by digit succession, and
in a manner allowing efficient division. In particular, an RNS
sliding point representation is devised and disclosed that
allows fractional and integer values to be scaled both upward
and downward. The method of the present invention supports
an apparatus which uses the sliding point RNS (fractional)
representation to perform Newton-Raphson or Goldschmidt
division.

20

25

30

35

40

45

50

55

60

65

88

Newton-Raphson and Goldschmidt techniques allow fast
division on scaled sliding point values using RNS fractional
multiplication and addition and/or subtraction. Therefore,
fractional division which uses the RNS fractional multiply
and scaling apparatus is disclosed; this division technique is
new and novel and is a claimed invention of the disclosure.

Before moving forward with the disclosure of the Gold-
schmidt (or Newton-Raphson) based fractional division tech-
nique of the present invention, it should be understood the
RNS integer division method of the present invention may
also be used in lieu of the Goldschmidt or Newton based
techniques. The basic math for this premise is disclosed here
briefly.

Referring back to equations 9a and 9b for the terms used,
we have for fractional division:

(YV/Rp)(Yo/Rp)=(Y *"Rp) (Yo" Re)=((Y *Rp) Vo) Ry Eqn. 12

Equation 12 implies that fractional RNS division may be
performed by multiplying the dividend Y, by the fractional
range R, and performing an integer division of the scaled
dividend by the divisor Y,, where Y, and Y, represent the
fractional RNS values treated as integers (machine numbers).
The right hand result of equation 12 is properly normalized
for the given fractional RNS representation. This expression
does not include a rounding function, which is implemented
by a compare against the remainder of the integer division,
which should be obvious to those understanding the prior
disclosures of this specification, and is not articulated here.

Therefore, the method of performing a fractional division
using the integer division method of the present invention is a
practical method for performing fractional RNS division, and
is a claimed feature of the present invention. This form of
division has the advantage of high accuracy for a given
machine number range. The fractional division may be fixed
point, or variable point, as the integer divide routine may
easily adapt to any desired fractional range R..

New Scaling Method for Fractional RNS Division

One potential disadvantage of the fractional divide method
above is the integer divide method of the present invention
may not be determinate in terms of clock cycles. In other
words, an upper bound of the clock cycles required is either
too large, or not known with certainty. This makes some
computer architectures, such as pipelining, difficult to imple-
ment. On the other hand, the fractional division method based
upon a sliding point RNS fractional format using a technique
such as Goldschmidt (or Newton-Raphson) is a better candi-
date for pipelined architectures. The upper bound of the New-
ton-Raphson divide algorithm is deterministic, and the fast
RNS fractional multiply techniques of the present invention
can be used to implement a predictable divide apparatus.

However, one requirement for using Goldschmidt (or New-
ton’s) method to perform division is the divisor, D, be scaled
such that:

0<D=1 Eqn. 13a

However, a more efficient algorithm for division based on
Newton’s or Goldschmidt’s method requires the divisor, D,
be scaled such that:

0.5=D=1 Eqn. 13b

In Goldschmidt division, to ensure the correct quotient, the
numerator is scaled by the same amount required to scale the
divisor D. In order to efficiently perform the required scaling
on any value that may be represented, a new fractional RNS
representation is required. Therefore, a sliding point RNS

US 9,395,952 B2

89

representation is devised and disclosed, and a unique and
novel apparatus to perform division on this new representa-
tion, among other operations, is disclosed.

In one embodiment of the present method of fractional
RNS division using fractional multiplication, the divisor is
scaled according to Equation 13a and Newton’s method is
performed to find the reciprocal of the divisor. Once a recip-
rocal is determined, the reciprocal is multiplied by the divi-
dend to determine the quotient.

In another embodiment of the present invention, a unique
and novel means for scaling the RNS divisor, D, to meet the
requirement of equation 13b is disclosed. The Newton-Raph-
son algorithm is applied, and a reciprocal of the divisor is
determined. Again, the reciprocal is multiplied by the divi-
dend to find the quotient. The resulting increase in perfor-
mance over the aforementioned method is significant, and
provides a basis for high speed RNS division of the present
invention. That is, providing a means to scale a fractional
RN value to meet equation 13b results in a fast and accurate
implementation of Newton’s or Goldschmidt’s division
method.

In yet a third method of division, the divisor is scaled
according to equation 13a, the numerator is scaled by an equal
amount, and the Goldschmidt division algorithm is applied to
determine the quotient. In a more efficient variation to this
method, the divisor is scaled in accordance to equation 13b,
and the numerator is again scaled by an equal amount, and the
Goldschmidt algorithm is applied.

One advantage of using the Newton-Raphson (or Gold-
schmidt) algorithm is that it does not require a comparison,
only an equality check. That is, the result of successive itera-
tions of the Newton’s method may be compared until they are
equal (or otherwise oscillate). Furthermore, for Newton-
Raphson, the initial value formula used to minimize the maxi-
mum of the absolute value of the error is:

Xo=48/17-32/17*D Eqn. 14

It is noted the values of 48/17 and 32/17 may be exactly
represented in most RNS systems of the present invention.
Furthermore, Goldschmidt division may also be imple-
mented with an equality check for fast RNS fractional divi-
sion. Like Newton-Raphson, for fast implementation, the
Goldschmidt algorithm is most efficient when the divisor D is
scaled in accordance to equation 13b.

Newton-Raphson and Goldschmidt division are well
known in the prior art. That is, through the use of the RNS
fractional multiplication methods of the present invention, a
fractional division method can be ascertained. What is needed
and unique to the present invention is the method of scaling
the divisor D to meet the requirement of equations 13a and
13b. Once the divisor D is scaled, the dividend N must be
scaled by an equal amount. Upon achieving a scaling of both
operands, either Newton-Raphson or Goldschmidt division
may be applied using a fixed point or sliding point RNS
fractional multiplication method and apparatus of the present
invention. Therefore, the following disclosure focuses on the
scaling operations, and not the division routines themselves.

For signed fractional division, it is important the sign of the
divisor D is determined beforehand. If the divisor D is nega-
tive, the absolute value of the divisor should be used, or an
alternate division algorithm handling negative operand input.
In one embodiment of the present invention, a sign bit and a
sign valid bit is used to determine if the operand sign is
known, and if so, what the sign of the operand is. If the sign is
not known (sign valid bit equals false), the sign of the divisor
D may be determined in addition to scaling. In the unique and
novel method of fractional division of the present invention,

20

25

30

35

40

45

50

55

60

65

90

an operand sign extend and scaling function is integrated into
a single operation. This single operation is facilitated by a
‘sliding point” RNS fractional representation. This method
and apparatus is disclosed next.

Sliding Point RNS Fractional format

To explain the sliding point fractional RNS representation,
it helps to start with the definition for the fixed point RNS
fractional representation of Expression 2a. Expression 2a
only shows the primary digits of the RNS fractional repre-
sentation, and not the extended and redundant range digits for
simplicity. To further clarify the representation, FIG. 17A
shows a more complete description of a fixed point RNS
representation which includes an extended range, and option-
ally, a redundant digit, required for multiplication and divi-
sion.

FIG. 17A discloses one embodiment of the RNS fixed
point representation using a segmented register illustration.
The total RNS fixed point fractional machine number
includes the RNS digits which represent the range of the
fractional portion of the representation 1700, (F, F,, F5, ...
F,). It includes the RNS digits which represent the range of
the whole portion of the representation 1702, (I, L,, I, . ..
1,,), and it may include a number of RNS digits representing
anextended range 1703, (E |, E,, E;, .. . E,), which extend the
machine number range to exceed a “squared” usable range in
one embodiment. A full squared range will represent a range
that is equal to or greater than (R*R ;). (An extended range
may also be supported with a number of sub-digits i.e., squar-
ing each modulus). Finally, a redundant digit 1704, or range,
may be included to facilitate integer division on the entire
machine number range squared (R,?).

A few points are noted, since the representation of FIG.
17A is only one possible register organization. It is noted that
the range accounting for signed values is included in the
fractional 1700 and whole 1702 ranges, assuming the method
of complements is used. It also noted that extended ranges
may be less than or greater than (R-*R ;) depending on the
application; in fact, range requirements for a given general
purpose RNS ALU are only briefly considered herein. FIG.
15E provided a table of such ranges for the examples given for
fractional multiplication. Full extended ranges may allow for
certain forms of overflow detection, among other features.

FIG. 17A also shows a fractional point position register
1705. The fractional point position register may be a conven-
tional binary register which indicates where the fractional
point 1701 is positioned. In reality, the fractional point 1701
is virtual, and is shown as a “position” for purposes of illus-
tration. The fractional point position register 1705 is best
described as the number of fractional digits F which make up
the fractional range 1700. In a fixed point RNS fractional
representation, the fixed point position register may contain a
constant, or may not exist, and instead may be implied within
hardcoded or micro-coded circuits.

In one embodiment, the digits associated with the lowest
prime factors are grouped together to form the fractional
range 1700. This embodiment maximizes the number of
denominators in the fractional representation, thereby
increasing general processing accuracy. This embodiment
also maximizes the most fundamental denominators.

In FIG. 17B, the position point register contains a value (n)
that can change. (FIG. 17B is modified so that both the frac-
tional range and the whole range share the same digit desig-
nators S, and the subscript of the digit designator S is sequen-
tial to illustrate the operation of the sliding point
representation.) In this illustration, we treat the entire effec-

US 9,395,952 B2

91

tive RNS range R, as a continuous sequence of RNS digits
representing the effective machine number. The fractional
point 1701 is located at digit position (n), where (n) is speci-
fied by the fractional point position register 1705. The frac-
tional point position register can be altered, much as an expo-
nent register is altered to affect the range of floating point
binary numbers. By altering the fractional point position reg-
ister, more or less RNS digits are grouped to form the frac-
tional range 1700. Certain AL U elements are responsive to
the fractional grouping, and modify their processing algo-
rithms accordingly.

In this embodiment, the fractional range 1700 digit group-
ing always start with the digits associated with prime modulus
of'the smallest prime factors. In our example of FIG. 17B, the
value of the fractional point position register, n, can have a
value between zero (0) and M+N inclusive. If the value is
zero, the format is integer only; at the other extreme, if the
sliding point position is set to all digits (M+N), the number
format is all fraction, i.e., values less than 1.0. Normally, the
sliding point position is placed at a position providing the
fractional range and the integer range required of the appli-
cation. Defining a known and standard sliding point position
may be referred to as a “normalized format”. The format of a
number can be modified by sliding point scaling operations,
for example. These scaling operations facilitate more efficient
processing in some other configuration of the sliding point
unit. For example, an application may use an increased frac-
tional range format for fractional calculations, and use
extended integer range format for integer calculations, and
combine the two results in a normalized format to achieve the
smallest overall error in calculation.

To further clarify the sliding point representation, consider
FIG. 17C, an example RNS machine word composed of digits
whose modulus is the first 31 prime numbers. That is, the first
digit modulus is p=2, the second is p=3, and so on and so forth
to the last digit modulus, p=127. The largest digit width in
terms of binary bits is seven (7) in this example. Therefore,
the crossbar bus of our digit slice architecture would be at
least 7 bits wide, allowing it to transfer the value of any digit
to all other digits AL Us. FIG. 17C illustrates the first eighteen
RNS digits as allocating and defining the range of the data
representation number, R.

Changing the value of the position point register changes
the number of RNS digits that are dedicated to the fractional
range of the RNS representation. To illustrate, a fixed point
RNS fractional representation is first considered. In terms of
a fixed point representation, a specific design may choose to
group the first 11 RNS digits as fractional digits 1700. This
provides a fractional range in excess of 2.00E+11, which
results from multiplying the first 11 primes together, as shown
in equation 5a. In this embodiment, the fractional point posi-
tion register 1705 is always set to the value eleven (11), since
the first eleven RNS digits are dedicated to the fractional
range 1700. Therefore, in this example, all fixed point frac-
tional values will exist with the fractional point position reg-
ister set to eleven.

In terms of a sliding point representation, the value of the
fractional point position register 1705 is allowed to change;
its value may range from zero to eighteen (18) in our example,
since R, is defined as the fractional range times the whole
number range, from Equation 10b. In FIG. 17C, if the frac-
tional point position register is set to 12, then an additional
RNS digit modulus is grouped to the fractional range; in the
example at hand, this means the fractional range would be
extended by a factor of 37, since the modulus p=37 is now
grouped with the fractional range 1700. This also means the
whole number range 1702 is reduced by a factor of thirty

20

25

30

35

40

45

50

55

60

65

92

seven (37), since the whole number range 1702 is now com-
posed of only 6 RNS modulus, as opposed to the previous set
of seven.

Therefore, as shown in FIG. 17C and by means of example,
it is readily seen that sliding the fractional point position 1701
to the right extends the fractional range 1700 while reducing
the whole number range 1702. Conversely, sliding the frac-
tional point position 1701 to the left extends the whole num-
ber range 1702, while reducing the fractional range 1700 by
the same factor. This is analogous to fixed radix or mixed
radix number systems, except we have chosen to write our
least significant digits starting on the left.

In practice, there is no real fractional point position, but
instead, the value of the fractional point position register 1705
is used. In other words, the value contained in the fractional
point position register defines a “virtual” fractional point
position 1701; in reality, it defines the RNS digits grouped as
the fractional range 1700. The value contained in the frac-
tional point position register 1705 affects how the fractional
and whole portion of the RNS representation is treated, and
indeed, how they are processed. Again, the notion of a frac-
tional point position is similar, but not exact to fixed or mixed
radix number systems. However, much insight can be gained
into the sliding point RNS representation using an illustration
such as shown in FIG. 17C.

Fractional Division Framework

A specific embodiment of the present invention may
choose to define a “normalized” sliding point RNS number as
one which places the fractional point position at a specific
value, say eleven as in our previous example. One motivation
for normalizing sliding point numbers is to achieve fast frac-
tional addition and subtraction, since fixed point RNS addi-
tion and subtraction can be achieved in constant time regard-
less of the digit width of the representation, assuming a fixed
LUT access time. In other words, defining a normalized slid-
ing point number allows such normalized numbers to be
treated as fixed point fractional numbers. Therefore, the
methods and operations previously discussed regarding fixed
point RNS numbers may be used by adjusting N, the number
of fractional digits, and will not be covered here.

However, as stated, one need for altering the grouping of
fractional RNS digits is to scale the value in accordance to
equations 13a and/or 13b. In other words, a sliding point
function is useful for scaling fixed point RNS numbers in
preparation for division using the fractional RNS multiplica-
tion method of the present invention, and then applying New-
ton-Raphson or Goldschmidt divide algorithm. Unlike a
binary number where shifting the fractional point always
reduces or increases a value by a power of two, shifting the
fractional point position of an RNS number changes the value
in different amounts, depending on which modulus is shifted
into and out of our fractional range 1700 and whole range
1702.

However, using FIG. 17C, it can be visualized that shifting
the fractional point position to the right of our significant
digits (i.e. significant range), a fractional scaling of a value
greater than one to a value less than one can be achieved; such
an operation can scale a value greater than one to achieve the
requirement of equation 13a. Unlike the case of binary,
through moving the fraction point 1701 alone, one should not
expect the scaled value to meet the requirement of equation
13b, since scaling is not a power of two for all digits, except
the first digit with modulus p=2. Because the requirement of
equation 13b is not met by simply re-positioning the frac-
tional point position, the fractional divide operation is not
efficient, and may require many more iterations to complete,
thereby slowing the ALU and complicating the design of

US 9,395,952 B2

93

pipelined RNS CPU and AL U architectures. Therefore, there
is a need to scale RNS values to meet the requirement of
equation 13b.

Scaling an RNS value less than one half (<0.5) to a value
meeting the requirement of equation 13b is a related but
different operation. In one embodiment, such an operation
involves scaling the value up enough to establish a value
greater than the original value, but meeting equation 13b. The
scaling up operation preserves a specified minimum number
of fractional digits F, providing a large enough range to guar-
antee the required accuracy during division.

In a unique and novel method of the present invention, an
apparatus that scales any RNS fractional value to a value
which meets the requirement of equation 13b is disclosed.
Such an apparatus allows high speed fractional division using
either fixed point or sliding point RNS numbers. The scaling
method and apparatus uses the sliding point representation
just disclosed in conjunction with a specially modified RNS
to mixed radix conversion technique. The examples provided
next assume digit slice architecture for simplicity of explana-
tion, but the invention is not limited to this. This technique is
new, and provides a significant new paradigm for general
purpose RNS number processing and ALU design.
Fractional Scaling Specific Detail

The unique and novel method for scaling RNS fractional
values is broken into two cases, the first case involving scaling
numbers down, and the second case of scaling numbers up.
Both cases are processed with the same algorithm, and in an
integrated fashion. For purposes of clarity, we will focus on
positive values, and on each case above separately; next, we
will explain the integration of both methods. A basic example
is also given. Additionally, the discussion is focused on using
sliding point representation to scale operands appropriately,
for which an (adjustable) fixed point multiplication method is
then used to process fractional division. Next a brief discus-
sion on scaling the result back to a normalized format is
discussed. The case of using non-normalized sliding point
representation throughout the divide process is lengthy and
not discussed herein.

To facilitate an efficient fractional scaling method using
sliding point RNS representation, consider again the example
machine word of FIG. 17C. In FIG. 17C, thirty one (31)
distinct pair-wise prime modulus are used. In this case, the
modulus are the prime numbers from two (2) to one hundred
twenty seven (127). Using thirty one digits has an advantage
and is not coincidental, since up to thirty one prime numbers
starting with two (2) can be represented using a 7 bit binary
word. (Recall the RNS systems considered utilize binary
coded digits).

In one embodiment of the present invention, and by means
of'example, the two’s digit modulus is extended to a power of
seven, since a power of seven makes complete use of the
available 7 bit wide digit format required for the 31 digit RNS
system of FIG. 17C. The power based RNS modulus concept
was introduced earlier, as shown in FIG. 11D, and in the
discussion of a high speed variant of the integer divide
method of the present invention. Extending the two’s modu-
lus to a power of seven creates a modulus of one hundred
twenty eight (128). Extending a prime modulus to a specific
power preserves the modulus pair-wise prime status versus all
other modulus of the RNS word.

A unique property of raising the two’s modulus to the
maximum power for which all other prime modulus will fit,
i.e. 7 bits in the present example, is that the two’s power based
modulus becomes the largest modulus of the RNS sliding
point word representation. This fact guarantees that during
the scaling process, which is based on decomposing the value

20

25

30

35

40

45

50

55

60

65

94

using a mixed radix conversion procedure, the two’s power
modulus digit will the largest value digit at end of conversion.
This simplifies the scaling method, and is the method pre-
sented herein. Further details regarding this are discussed
below.

Another important facility required is the concept of a
“variable power” modulus. Essentially, this was disclosed
earlier in the discussion of a high speed integer method
through the use of a power based digit modulus. While the
concept is essentially the same, the need for a variable power
modulus is different. For the scaling procedure being dis-
cussed, the ability to alter, and truncate, the power of the two’s
modulus allows the number to be scaled in accordance to
equation 13b. In other words, it is the ability to modify the
power of the two’s modulus that allows scaling within the
power of a single binary bit, i.e., a power of two.

In the method of high speed integer division of the present
invention, a digit slice ALU of FIG. 3G was introduced. In
particular, the number of valid powers of a digit is tracked by
a special counter, the Power Valid Count 337. In the scaling
method to follow, at least the two’s power based modulus
requires a power valid counter 337. Other RNS digits may
employ power based digits, but the need to modify the power
of any other digit is not required for the scaling method to
follow. It should be noted that power valid counts may be a
part of the word representation, and moved and stored with
any particular value, or may only be a component of the ALU
hardware, implying a value may be normalized before being
stored into general purpose memory.

To disclose the procedure for scaling an RNS fractional
number using the sliding point representation discussed ear-
lier, the flow chart of FIG. 18A is shown. Additionally, a
convenient nomenclature for the RNS digit modulus and digit
values is adopted to simplify the disclosure. The nomencla-
ture is modified from FIG. 17C, and is shown in FIG. 18B. In
FIG. 18B, all digit modulus are denoted as S,,, where n is the
position of the modulus. The digit value for each modulus, S,
is denoted by d,,. While position of an RNS modulus is not
mathematically important, for clarity, the digits associated
with the modulus of the least (base) power are listed first, and
shown in order from leftto right in FIG. 18B. For example, the
first modulus is denoted as S,, which is the modulus with
base=2. The second modulus is S,, which is the modulus of
base=3, and so on and so forth to modulus S 5, which is the last
digit modulus of the P digit sliding point representation. In
terms of shifting the fraction point position in FIG. 18B,
shifting to the left increases a number, while shifting to the
right decreases the number.

In FIG. 18B, a fraction point position register 1705 is
shown. The fraction point position register defines the frac-
tion point position 1701; it essentially defines the group of
digits that are grouped into the fractional range of the RNS
sliding point number. The digits grouped into the fractional
range 1700 are all digits from S, to S inclusive, where R may
be altered by fraction point position register 1705. Also
shown in FIG. 18B is the whole range 1702. A values’ whole
range is not preserved when moving the fractional grouping,
since the whole range is a difference of P and R. Typically,
during sliding point scaling, the machine number itself'is not
changed, just the fraction point register (and optionally the
power valid register), which controls how the number is inter-
preted.

Also shown is the S, power valid register 3376 which
defines the power of the two’s power modulus S,. In one
embodiment, the maximum power of the two’s modulus pro-

US 9,395,952 B2

95

vides a digit modulus that is greater than any other modulus
S, This is referred to as the “maximum power of two’s
modulus”.

The last range shown is the extended range defined by the
extended digits 1703 in FIG. 18B. The number of extended
digits will depend on the intermediate value requirements of
the divide algorithm. For example, the Goldschmidt routine
requires the value of two (2.0) be used after scaling. If the
original scaled value is large enough, the fraction point 1701
may be placed past the last digit S, in which case at least one
more (extended) digit is required to represent the value two
(2.0) during the divide process. Moreover, Goldschmidt divi-
sion may increase the value of the dividend to a very large
value, despite the fact that scaling has decreased the range of
the whole part of the value. In this case, the range of extended
digits should allow a range suitable for the application, and
may indeed be larger than the whole range 1702 of the nor-
malized representation.

Furthermore, additional range represented by a redundant
digit having a range greater than Q-1 bits is required. The
reason is that the maximum truncation of the two’s power
digit is Q-1 bits worth of range. During Newton-Raphson or
Goldschmidt division, the divisor is scaled in accordance to
equation 13b. Likewise, the dividend must be scaled in the
same proportion as the divisor. Since the two’s power modu-
lus is to be modified for proper scaling, it is important that one
or more redundant digits exist when scaling the dividend to
preserve the number range. Digits reserved for the extended
range 1703 may also be used to fulfill the redundant digit
requirements.

In FIG. 18B, an example set of modulus is also provided to
help clarify the notation. The RNS sliding point word is
comprised of eighteen (18) digits, starting with the first digit
1706 being a power of two (2). In the example of FIG. 18B,
the base two’s modulus power may be raised via the power
valid register 3375 to a maximum value of six (6); therefore,
the largest modulus of the base two’s modulus S, is 64. The
smallest power for base two’s modulus is one (1), meaning
the smallest modulus for S, is two (2). A value of zero in the
power valid register 3375 may indicate the digit is completely
undefined, i.e. the digit is skipped.

The fraction point register 1705 indicates how many digit
modulus are grouped into the fractional range 1700. In the
example of 18B, the normalized value for the fractional point
register is eleven (11); the fractional grouping may be
extended via the fraction point register 1705 to include up to
eighteen (18) digits, i.e., all the whole digits of the RNS
sliding point number. In one embodiment, to increase pro-
cessing accuracy, the fractional digits start with the modulus
of the lowest prime base (p=2) and increase from lowest
prime to largest prime.

In the control method that follows, the embodiment does
not allow the fraction point to be less than the normalized
value N; this is to ensure a guaranteed number of fractional
digits to provide accurate results during the divide process,
however, the technique is not limited to this. An alternative
embodiment scales up a number sufficiently by moving the
fraction point to less than the normalized value N. This
decreases the fractional range, and decreases the accuracy.
Alternatively, a method and apparatus for scaling is contem-
plated which adds additional fractional digits (>N), such that
enough accuracy is obtained to provide a rounding function;
in this case, additional extended digits are required. This
process scales the value to an “intermediate normalized”
number where the fraction point position is greater than N, the
normalized position.

20

25

30

35

40

45

50

55

60

65

96

FIG. 18A illustrates a basic control flow diagram for the
scaling method of the present invention, and uses definitions
of the sliding point RNS fractional representation of FIG.
18B. It should be noted that variations of the flow control
diagram of FIG. 18A are possible, as the methods disclosed
are basic for the purpose of clarity. The control diagram also
assumes RNS digit slice architecture, such as the dual accu-
mulator architecture of FIG. 2A. However, the invention is
not limited to this particular architecture.

In FIG. 18A, control starts at step 1800 which assumes the
divisor and dividend are accessible by control circuit 200 via
register file 300. The control circuit 200 loads a copy of the
divisor 1801 into an accumulator for purposes of scaling the
divisor. The scaling method is a modified version of RNS to
mixed radix conversion, but with several key modifications.
For one, the order of conversion must end with the two’s
power modulus being the last digit to be converted. FIG. 18A
illustrates each digit to be operated on by using an index value
[1]. To skip the two’s modulus, the control circuit starts con-
version by initializing the index value to some other value
than the index associated with the two’s modulus. In this case,
the index is initialized with the index associated with the next
digit modulus, i.e. the modulus of three. Therefore, the index
is initialized with the second digit position 1802 by loading
the value of two into the index variable. (Index starts with one
in this description).

Next, control circuitry stores the value of the two’s power
modulus 1803 in case it is needed later. Next, control circuitry
tests the digit value of the selected digit modulus (i.e. selected
via the index value) to determine if the digit value is zero
1804. If not, control circuitry subtracts the value of the digit
from the accumulator 1805. Control is then passed to divide
the accumulator by the digit modulus 1806. To be clear, the
divide operation has been defined as a MODDIV operation,
which is essentially an inverse modulo multiply for each digit
of the accumulator by the selected modulus. Once the accu-
mulator has been divided by the currently selected modulus,
the digit may be marked as skipped 1807, although this is not
necessary in some embodiments. Marking a modulus as
skipped identifies all subsequent subtractions 1805 and
divides 1806 to ignore the digit; in practice, control circuitry
is configured to ignore the digits already processed in one
embodiment. Also, the process of flagging a divided digit as
skipped ensures the value of the digit does not enter into the
ALU status, allowing the control to determine if all valid
digits are zero, for example.

Next, the control circuit tests to determine if the accumu-
lator is zero 1808. If so, it means the value has been com-
pletely converted. If not, the next digit modulus is selected as
illustrated by incrementing the index value [I] 1809. The
control circuit path 1810 illustrates a basic loop which is
similar in RNS to mixed radix conversion. Once the accumu-
lator value reaches zero by test 1808, control is passed to
determine if the index count (digit position index) is less than
the normalized value N 1811. If so, the divisor and dividend
are multiplied by the modulus of the current digit position,
selected via the index pointer [I]. This represents the case
where the divisor is less than one (1.0). After multiplying, the
index pointer is again incremented to access the next digit
position.

Control path loop 1814 continues until the index pointer [I]
is equal to the normalized position N. It should be noted that
during the previous control loop 1810, it is possible that the
index value is larger than N. When either condition is met,
control is passed to set the new fraction point position 1705 of
the divisor and dividend 1815. This operation represents the
sliding of the fraction point as discussed earlier. Control is

US 9,395,952 B2

97

passed next to the step of truncating the two’s power modulus
to the number of bits required to represent the value saved in
tempi 1816. In other words, the number of significant bits of
the last non-zero value of the two’s digit from control loop
946 defines the new power of the two’s modulus.

For example, if the last digit value of the two’s power
modulus is five (5), then the two’s power modulus is limited
to a power of three, since three bits is needed to represent the
value of five. Therefore, the power valid register 3375 will be
set to a value of three. This is an important and key step to the
scaling method of the present invention. That is, a variable
power of the two’s modulus is set appropriately to scale a
value to meet the requirement of equation 13b.

Consider that the last digit converted to a mixed radix
format is the most significant digit of the mixed radix number.
Ifthe last digit is a two’s power modulus, the two’s power can
be truncated to exactly fit the value of the (most significant)
mixed radix digit. If the fraction point position is moved to
include all significant digits of the mixed radix number, and
the modulus is truncated to fit the most significant digit, the
scaled value is guaranteed to fit within the requirements of
equation 13b.

Sliding Point Fractional Scaling Example—Scaling Down-
wards

FIG. 18C illustrates a fractional scaling example using the
sliding point method of FIG. 18A. The scaling operation
starts with two RNS operands, a divisor and a dividend. The
divisor is scaled in accordance to equation 13b. The dividend
is scaled at the same ratio as the divisor. In the embodiment of
FIG. 18A, the sliding point scaling operation does not alter
the values of the underlying RNS values, instead, the scaling
operation affects the fractional grouping via the fraction point
position register 1705 and the two’s power modulus viathe S,
power valid register 3374.

In FIG. 18C an example ALU is shown with three digit
range sections, a normalized fractional range 1160, a normal-
ized integer range 1165, and a extended digit range 1170. By
normalized, we are referring to a particular data format defi-
nition provided with the example. For the full divider
example, operands are provided in a normalized format, and
returned in a normalized format; however, internal operations
may be performed in a variable fraction point format. The
example of FIG. 18C illustrates the process of receiving the
operand in normalized format, and converting the operands
into a variable point data format suitable for the division
process.

The example operand A 1824 and operand B 1825 are
shown. Operand B is treated as the divisor in this example,
and therefore the scaling operation begins a mixed radix
conversion of operand B in step 1819. Note the first digit
modulus, M,=2°, is skipped, and the second digit modulus,
M,=37 is processed instead. After the digit is processed, an
asterisk is placed at the digit position to indicate it is now
skipped. Each time a digit is divided, the conversion is essen-
tially testing the “length” of the RNS number. In this case, the
mixed radix conversion exceeds the normalized fraction point
position by being re-located at the digit modulus Mg=23 at
step 182064.

In step 1821 of FIG. 18C, the ALU modulus is shown as
modified, since the two’s base modulus is truncated to three
bits from six. The two’s digit modulus is shown in bold at step
1821. At step 1822, the operand A value is shown with the new
fraction point position setting, and the new two’s modulus
power. At step 1823, the divisor is shown with the new frac-
tion point position and the new two’s modulus power. The
Actual Value column 1190 lists the final value of the divisor as
a new ratio of modulus values. This new ratio is approxi-

20

25

30

35

40

45

50

55

60

65

98

mately equalto 0.75114866, which is properly scaled accord-
ing to equation 13b. The dividend is scaled in the same pro-
portion, since the value is unchanged, and the same
modification to the fractional denominator is made.

For full fractional division, the scaled fractional format
1828, 1829 is used in the computation of division. The frac-
tional multiply routine used to implement the division treats
the new “scaled” operands as fixed point operands having a
different fixed point position. When division is complete, the
final quotient may be converted to the normalized format
using a sliding point normalization operation.

Sliding Point Fractional Scaling Example—scaling upwards

The figure of 18D illustrates another example of the scaling
method of FIG. 18A. In this example, operands are chosen so
that the divisor is scaled upwards. That is, the divisor operand
1838 is much less than 0.5, and the scaling routine will work
to scale the value up to meet the requirements of equation 13b.

In FIG. 18D, the operand A value is one hundred (100.0),
and the operand B value is approximately (0.0001377). At
least the operand B is a copy, since the original operand B
value will be needed at the end of the conversion operation. In
step 1818 of the example, the operand B is treated as the
divisor, and undergoes a conversion operation similar to
mixed radix conversion and similar to the control flow of FIG.
7A. The conversion example starts with the digits of the
fractional range 1160. However, the mixed radix conversion,
which starts in step 1819 must not process the two’s modulus
digit, so the two’s modulus digit is not chosen for conversion
using a subtraction and modulus divide.

At the end of conversion 1819¢, the two’s modulus digit is
stored, as shown using the highlight of the digit value one (1)
in the F,=26 digit column. Referring back to FIG. 18A, the
stored value of the last digit of the two’s modulus 1803,
before the conversion value goes to zero 1808 (not shown), is
used to define a truncate count in the control step 1816. In this
case, the value of one may be stored using a single bit, there-
fore, the truncation of the two’s modulus to one bit 1834 will
be affected as illustrated in the bold face type of FIG. 18D.

Also during the conversion step 1819e, the last valid frac-
tion point position is determined to be the fifth digit, as
indicated by the solid black triangular digit position marker.
During conversion, the fraction point failed to meet the posi-
tion of the normalized format in step 1819¢, the normalized
position being seven in this example. In this case, and accord-
ing to the control flow of FIG. 18A, the scaling will increase
the value of the RNS number to move the fraction point
position farther, as shown in the decision control block 1811
and control step 1812. In FIG. 18D, at step 1830, the operand
A is multiplied by the value of the current digit position
modulus, which is thirteen (13). At step 1831, the operand B
(original divisor) is also multiplied by thirteen. At steps 1832
and 1833, each operand is multiplied by the next digit modu-
lus value of seventeen (17). Since the digit modulus seventeen
is associated with the seventh fractional digit (i.e., the nor-
malized fractional grouping), the process of multiplying the
operands by digit modulus is terminated at the control deci-
sions step 1811 of FIG. 18A.

Referring to FIG. 18A, at this point the fraction point
position remains in the normalized (seven) position at control
step 1815, and the step of truncating the two’s power modulus
1816 is performed by truncating the two’s power to a value of
one, since one bit is required to store the value of one, which
is the last two’s digit value during the conversion at step
1819¢ of FIG. 18D. The last two’s digit value is one and is
shown as shaded in step 1819¢. The modification of the power

US 9,395,952 B2

99

of'the two’s digit modulus is shown in step 1834 as a bold face
type in FIG. 18D. In this case, the power of the two’s modulus
is decreased from six to one.

In the particular scaling routine of FIG. 18A, scaling a
small value upwards changes the value of the RNS value.
However, it does not change the ratio of operand A to operand
B, as both operands are modified in the same proportion. The
divisoris denoted as operand B 1838 and starts with a value of
approximately 0.0001377. The dividend is denoted as oper-
and A, and starts with a value of one hundred (100.0). At the
end of the conversion, the fractional point position is not
affected, however, both operand has been increased by a
factor of thirteen times seventeen (13*17). In addition, the
denominator of the numbers has also changed in response to
the truncation of the two’s power modulus from a value of six
to a value of one.

The equivalent fraction of each scaled value is shown in the
Actual Value column 1190 of FIG. 18D. The operand A has
been increased to a value of 707200.0. The operand B value
has been scaled to an approximate value of 0.973824, which
meets the requirements of equation 13b. The scaled operands,
along with their new fractional modulus set, are used by an
RNS fractional multiplication apparatus responsive to the
changes in the modulus and fraction point position (from the
normalized fixed point configuration). The multiplication
apparatus resembles the fixed point multiplication apparatus
of the present invention, with the choice of modulus and
fraction point position altered.

Advanced Scaling Techniques

Advanced number scaling techniques may include a scal-
ing algorithm which truncates more than the base two modu-
lus digit. Such an apparatus tracks M pre-selected digits that
will not enter into the mixed radix conversion. The digit
values for M number of digits are stored for N conversion
iterations. During end of conversion, the stored digit values
are tested for values which define the truncation of each
associated modulus. The specifics to this logic are not dis-
closed herein. The generated truncated modulus set repre-
sents a number range closer to the value being scaled. There-
fore, the resulting scaled value is a fractional ratio closer to
one. The closer a scaled divisor is to one, the more efficient the
division.

Fractional Division Using Scaled Operands

The fractional multiply routine is used to perform Gold-
schmidt division in one embodiment. The result of the Gold-
schmidt division routine is to produce the correct quotient
(A/B), but in a non-normalized format. The non-normalized
format may be converted back to a normalized format for
further processing.

The Goldschmidt divide process uses fraction multiplica-
tion; the fractional multiplication apparatus supports a vari-
able point position in addition to a variable power two’s
modulus. The multiplication apparatus adjusts to the fraction
point position and two’s modulus power as determined in the
step of scaling of FIG. 18A. Multiplication as previously
documented in FIG. 15B can be used, but with a fractional
digit grouping and two’s valid power setting defined by the
scaling process of FIG. 18A.

Using Goldschmidt division, several different conditions
can be used to terminate the iteration. One such condition is
when the result is the same after two iterations. In fact, one
method compares the intermediate result (before normaliza-
tion) to save clock cycles. Once a repeated result is detected,
the result may require normalization before being stored or
used in subsequent operations.

20

25

30

35

40

45

50

55

60

65

100

Therefore, instead of digit extending the result of the last
multiplication (of the division process) to conform to the
modified modulus, the ALU control circuitry digit extends
and also normalizes the prior iteration (digit extended) result.
The normalization may include the restoration of the two’s
digit power valid register to a maximum value (i.e., two’s
modulus power is maximized). This is one example of creat-
ing efficiency of operation by integrating sliding point scal-
ing, and result normalization directly into the division control
process.

If the result of division is already normalized because the
scaling did not require a change of the fraction point position,
and no change in the two’s digit modulus, no action is taken.

If the result of division has a fraction point greater than
normal, or N, then the value is normalized by moving the
fraction point position to the normal position, and skipping,
or truncating, the mixed radix digit of each modulus that was
regrouped during base extend in one embodiment. This pro-
cess performs a division by all digit modulus that have been
re-grouped. This division offsets the decrease in the fractional
range, R, which is effectively divided by each digit modulus
that is regrouped when the fraction point position is moved
back to N, the normal position. One can expect R-N digits to
be regrouped, if R is the scaled fraction point position 1705,
and N is the normal fraction point position, as shown in FIG.
18B.

If the (non-normalized) result of division has a truncated
twos modulus, the value of the result is multiplied by 27
before conversion to mixed radix, where T is the number of
powers of the twos digit modulus truncated (lost) during
scaling. This multiplication offsets the increase in R, which
is increased by a factor of 27, Before re-conversion to RNS,
the ALU resets the power valid register 338 of the two’s digit
using the normalized value, or the reload value 1109. The
reconverted result is therefore properly normalized to the
normal two’s digit power modulus value.

After optionally dividing by all regrouped modulus, and
optionally multiplying by a power of the two’s modulus rep-
resenting the number of powers truncated, the value may reset
the fraction point position and the two’s power modulus to
their normal, or normalized. Thus, the value is identical to the
sliding point result, but now in a normalized, fixed point or
sliding point format.

Normalizing Sliding Point Division Results

In the method of the present invention, a unique method for
re-normalization is disclosed. The method involves base
extending the final result, however, during RNS to mixed
radix conversion, the truncated power modulus is used; dur-
ing recomposing, the mixed radix digits associated with the
extended sliding point digits are discarded, and all other digits
are converted. During the reconversion, the ALU power
modulus is fully extended. For example, if the normalized
fraction pointis seven, and the extended fraction pointis nine,
then two digits are discarded.

A specially modified mixed radix conversion is used to
re-normalize an RNS fraction with a fractional position
greater than the normalized value. Important to the modified
mixed radix conversion is the starting and subsequently first
digit modulus converted; the starting digit and all first digits
which should be a digit modulus multiplied in control step
1812. (Note that S is used to indicate the modulus value in
FIG. 18A). During re-conversion, the mixed radix digits asso-
ciated with the first digit modulus multiplied are discarded.
After re-conversion, the fractional point position is restored to
the normalized position.

US 9,395,952 B2

101

In Newton-Raphson, after the reciprocal is found, it may be
necessary to normalize the result. In one embodiment, the
re-normalization is integrated into the multiplication of the
dividend by the reciprocal. This is also a claimed feature of
the method of the present invention. Also, after using Gold-
schmidt division, the final result may need to be normalized
after the result is found.

In FIG. 18E, a basic procedure is disclosed for performing
fractional division using the fractional multiplication meth-
ods and apparatus, and the sliding point RNS representations
and methods of the present invention. At start, in control step
1851 of FIG. 18E, the two operands are prepared for division
by undergoing a scaling process, similar to that described
using FIG. 18A.

The result of the scaling operation of step 1851 is to convert
the divisor to a format which meets the requirements of equa-
tion 13b, and to scale the dividend in a proportional manner.
To perform this scaling, either or both the sliding point posi-
tion 1705 and the power valid register 3376 of FIG. 18B may
be modified from their normal, or normalized, value.

In step 1852 of the control flow diagram of FIG. 18E, a
decision is made according to whether the fraction point
position 1705 is moved from its normal position. If so, the
control executes the control steps 1853, 1854, & 1855; if the
fraction point does not move, control executes the control
steps 1856, 1857, & 1858.

In FIG. 18E, at step 1856, the RNS AL U changes the value
of its S, power valid register 3375 to reflect the new power
modulus value obtained by the scaling process of step 1851.
Inone embodiment, the scaling process of step 1851 performs
this step automatically in preparation for steps 1853, 1856.
Changing the power valid register 3375 of the ALU deter-
mines the ALU will treat the base two’s modulus as having a
maximum power; for example, if the normal two’s modulus is
22, then the truncated two’s power modulus is 297, where T
is the number of powers truncated.

Next, in step 1857 of FIG. 18E, the ALU performs a divi-
sion by use of RNS fractional multiplication and fractional
arithmetic operations, such as subtraction, and by use of the
Goldschmidt algorithm or other similar procedure. The ALU
will use the scaled setting in the S, power valid register 3374
while performing the operations. Referring to the flow control
of'the fixed point RNS fractional multiplication of FIG. 15B,
one can see that there is no alteration of the two’s power
modulus register 3375. Therefore, the result of the division is
in the same number system format as the scaled operands.

In step 1858 of FIG. 18E, the result of the division is
multiplied by 2%, where T is the mumber of two’s modulus
powers lost in the scaling operation of step 1851. This mul-
tiplication compensates for the increase of the fractional
range R, as a result of an increased two’s modulus power
when the value is normalized.

Next, in step 1858, the scaled result is converted to mixed
radix. The ALU then typically restores the normal power of
the two’s modulus by setting the S, power valid register 3376
appropriately. In some embodiments, special storage is allo-
cated for restoring normal values, which may be gated to and
loaded by the power valid register as a result of the ALU
normalization operation. Lastly, the mixed radix result is
re-converted to RNS. The conversion to RNS uses the
restored, normal, value of the S, power valid register 337b
during this reconversion, thereby extending the truncated
twos modulus to a full power modulus.

If control flow determines the fraction point is moved 1852,
the execution begins with control step 1853. In the steps that
follow, if the two’s power modulus is also truncated in the
scaling operation 1851, then the same steps as described to

20

25

30

35

40

45

50

55

60

65

102

restore the two’s modulus by multiplying by 27, etc., is still
performed as described above for steps 1856, 1857, & 1858.
However, several additional steps are taken if the fraction
point position register 1705 was modified during the scaling
operation 1851, thereby defining the division result format.

In step 1853, the ALU adjusts the fraction point register
1705, and optionally the two’s modulus power valid register
3375, to reflect the RNS number format of the scaled oper-
ands of the scaling operation 1851 of FIG. 18E. In some
embodiments, the scaling operation automatically affects the
power valid register and fraction point position register to
facilitate the processing of step 1854.

In step 1854, a fractional division is performed on the
scaled operands similar to that of step 1857. The ALU per-
forms the division using fractional multiplication operations
on the sliding point format determined in the scaling opera-
tion 1851.

In step 1855, the result of the division of control step 1854
is normalized. If the two’s modulus was modified in the
scaling operation 1851, the result will be multiplied by 2%, as
was the case in the control step 1858. In this case, the value 27
compensates for the increase in fractional range R, which
will occur when the two’s power modulus is restored to a
(larger) normal value. This compensation ensures the frac-
tional result, or fractional ratio, remains the same despite the
restoration of the two’s power modulus. The value, T, indi-
cates the number of powers truncated, or lost, in the scaling
operation 1851.

Continuing on the list of steps enumerated in control step
1855, the resultant value is then converted to mixed radix
format. The resulting mixed radix value contains digits that
correspond to RNS digit positions regrouped into the new
scaled fractional range. Moving the fractional point position
register 1705 to a lesser number of digits, means the overall
ratio is scaled upwards, by the product of each regrouped
modulus. To compensate for the decrease in the fractional
range R -as aresult of decreasing the value of the sliding point
position 1705 register, the mixed radix result is divided by the
product of modulus of each fractional digit re-grouped to the
whole range 1702. In one embodiment, this division is
accomplished using the integer divide method of the present
invention.

In a novel and unique embodiment, the division is per-
formed by removing the mixed radix digits associated with
the re-grouped digits, and then performing a conversion of the
truncated mixed radix value back to RNS. In one embodi-
ment, the process of truncating the mixed radix digits is also
referred to as “skipping” the mixed radix digits during the
re-conversion process. In one case, a LIFO containing the
mixed radix digits (and their associated power) also supports
a skip digit flag for each mixed radix digit. During processing
of the mixed radix value back to RNS, the mixed radix digit
values marked as skipped do not enter into the conversion
calculation, while all other digits do. The radix, or power, of
each skipped mixed radix digit is therefore ignored in the
MRN to RNS conversion calculation.

Before mixed radix to RNS conversion is started, the ALU
typically resets the value of the sliding point position register
1705 to anormal value. The ALU must also establish a normal
value for the two’s power modulus. In one embodiment, this
is accomplished using the Reset/Restore register 1109 to load
a value into the Power valid register 338 shown in FIG. 11A.
After mixed radix conversion is complete, the value of the
scaled result represents the final result, only in a normalized
format.

Not shown in FIG. 18E is the process of performing a
rounding function after the divide by each re-grouped digit

US 9,395,952 B2

103

modulus 1855. The remainder of divide process may be com-
pared with half the resulting range defined by all regrouped
digit modulus (the divisor). If the remainder is large enough,
the result is incremented by one unit, which is generally
executed in RNS format, after the value has been normalized.

Binary Conversions

In many applications, utilizing the ALU or CPU of the
present invention requires converting binary data to RNS
format, and converting RNS data back to binary. Converting
to and from a fixed radix system, such as binary or decimal, is
required for many common activities, such as plotting results
on a graphics display. In the case of encryption and decryp-
tion, conversion of binary may be required due to formula
rules and other standards.

Conversion from binary to RNS and RNS back to binary
has often been an impediment in the prior art, despite the
many variations of proposed methods. For example, if the
time and cost to perform conversions is greater than the ben-
efit derived by an RNS AL U, there is little or no reason to use
the ALU. Therefore, expedient and efficient conversion is not
only important, but critical to the usefulness of the AL U of the
present invention.

In the prior art, the problem of integer conversion is dis-
cussed, however, new and unique to the present invention are
methods and apparatus to convert fractional quantities to and
from the RNS ALU. For example, a fixed point binary quan-
tity can be converted into a fixed point RNS quantity and an
RNS fixed point quantity can be converted back to a binary
fixed point quantity. This procedure can be extended to handle
floating point binary conversions by normalizing the floating
point value appropriately before conversion.

Despite the many proposed methods, what is needed is a
fast, adaptive, extensible, flexible and coherent approach to
high speed conversion. The conversion method should not
rely on specific modulus for example. Additionally, the con-
version should scale to any number of digits in a linear fash-
ion. The conversion apparatus should integrate well into the
ALU architecture, providing a means to extend the ALU.
Finally, the conversion apparatus should be fast and practical,
and provide avenues for continued improvement in high
speed systems.

The methods and apparatus of the present invention pro-
vide these needed features and enhancements in addition to
providing conversion for fractional quantities and integers, as
well as representations of combined fractional and whole
integer quantities.

Integer Binary to RNS Conversion

Converting integers from binary to RNS is the most
straightforward conversion. In one embodiment of the
present invention, the ALU utilizes a parallel to serial digit
converter 1980 as illustrated in FIG. 19A. The parallel to
serial digit converter accepts a binary word, B, and partitions
the binary word into Q bit binary digits, such as digit B,
through B._,. The AL U control unit 200, or converter control
unit 200 of FIG. 19A, transfers the binary word, digit by digit,
to the crossbar bus 318 in the case of ALU A via selector 1983.
(Note that a similar circuit and apparatus may exist for ALU
B, or any other.) Binary digits may also be sourced from other
storage, such as the register file 300. However, this disclosure
will focus on the use of parallel to serial digit converter 1980.
Adaptation of the conversion routine to accommodate other
sources for operands is straightforward.

20

25

30

35

40

45

50

55

60

65

104

In one embodiment, selector 1983 may also gate the value
of the “binary power” of each individual binary digit B, as
shown by 22 operand source 1981 in FIG. 19A. For example,
if the width of binary digit B is Q bits, then the binary power
of the digit is 22. In one embodiment, the value of 22 is
encoded as the value zero, since the value 22 exceeds the
width of a Q bit crossbar bus. Therefore, LUT 301 is encoded
such that digit multiplication by zero for recomposing a
binary value is actually multiplication 2€ Mod p. Other
sources exist for multiplication by the binary power 29; for
example, the value of the binary power 22 may be stored in
register file 3004, 3005 and gated to the LUT directly, or gated
via the crossbar bus. In another embodiment, multiplication
by 2€is implied, and is accessed via a unique operation code.

The sequence for conversion of integer binary to integer
RNS is composed of a series of RNS digit additions and
multiplications by 22. FIG. 19B illustrates typical control
flow for a conversion which starts with the most significant
binary digit B, using the apparatus as depicted in FIG. 19A,
and using ALU A.

In FIG. 19B, at start 1900 the control unit initializes the
ALU by clearing the accumulator 1901 and receiving the
binary digit count, K 1902. A control index I is generally
initialized to reflect the digit count and position 1902. Next,
the first digit B, is gated via selector 1983 to the crossbar
bus 318 and is added to the accumulator A. In other words,
digit value B, added modulo p to every digit of ALU A.
Next, the control index, I, is decremented. The control unit
next processes control decision 1905, which determines ifthe
last binary digit has been converted.

Ifnot, the selector 1983 of F1G. 19 A selects the digit power
value 1981 (29) to be gated to the crossbar 318. The accumu-
lator A is multiplied by the value of the digit power value 1981
as depicted at control step 1906. In the control step of 1907,
the next binary digit is shifted to the front of the converter
1980. Control proceeds via loop path 1908 to process the next
binary digit Bx_, 1903. In other words, the parallel to serial
digit converter 1980 shifts the previously processed digit out,
and presents the new binary digit to crossbar bus 318. The
flow defined by the repeat of loop 1908 and the start of loop
1903 continues until the last digit is finally added to the
accumulator A and control index I goes to zero.

Fractional Binary to RNS Conversion

Converting from a fractional binary format into an RNS
fractional format requires a more complex conversion pro-
cess which must deal with the ratio of the fractional ranges of
both number systems. The fractional range conversion may
be performed digit by digit using RNS calculations within the
RNS ALU. However, often times, these conversions are quite
slow if they use integer divide or base extend in each iteration
loop; such is the case when performing digit by digit conver-
sion in software. Fortunately, the present invention introduces
several hardware apparatus that assist in the conversions.

A fixed point binary number generally includes a number
of'bits to represent the fractional portion, and a number of bits
to represent the whole integer portion. In one embodiment of
the present invention, the fractional range of a binary number
is converted separately from its integer portion. The integer
portion is converted using the method just described, depicted
in the flowchart of FIG. 19B. The fractional binary portion is
first scaled using an apparatus similar to that of FIG. 20A. The
apparatus of FIG. 20A performs the range scaling required
when converting a binary fraction to an RNS fraction. After
this process, a binary integer is produced which represents the

US 9,395,952 B2

105

fixed point RNS fraction; this binary value is then converted
to RNS format using an integer conversion method, such as
that of FIG. 19B.

Both the integer and fractional portions of a value may be
converted together, but would require a larger conversion
apparatus, and may require more steps; therefore, there are
advantages to converting the fractional binary number in two
stages, a fractional conversion stage, and an integer conver-
sion stage. Once both quantities are converted, they are com-
bined using the flowchart of FIG. 20B. In one embodiment,
the integer conversion stage operates in parallel to the frac-
tional conversion stage, thereby minimizing conversion time.

To understand the hardware conversion apparatus, it is
helpful to review some basic conversion formula. Given an N
bit binary number, n, representing a binary fraction less than
one (1.0), and given an RNS number, r, representing an RNS
fraction less than one (1.0) having fractional range R, we
have equivalent fractions if:

n2Y=r/Rp (eq. 15

Therefore, the integer conversion of the binary fraction, n,
to obtain the equivalent fraction, r, must be scaled according
to:

r=(n Rp)/2N (eq. 16

Therefore, the fraction portion of a fixed point binary frac-
tion is converted as an integer according to the integer con-
version described earlier. Next, the value is scaled by the
conversion factor R ./2”. The scaling may be performed using
various methods. In one method, the integer division method
of the present invention is used to divide the product (n*R)
by 2% directly. The constant 2*¥ may be stored in the register
file and the integer division method is used to find r. One
advantage of this approach is the integer division can operate
on the entire word size of the ALU, achieving greatest con-
version accuracy. The result is the fractional portion, r, of the
RNS fixed point fraction, which can be added to the integer
portion of the binary conversion using a conventional RNS
add operation. The remainder of the integer divide may be
compared to the appropriate constant to determine if a round
up is required on the converted fractional result.

In FIG. 20B, an original, fractional binary quantity is con-
verted to RNS; the original binary data type consists of a
whole part and a fractional part. In control step 2062, the
fractional binary quantity is partitioned according to its frac-
tional and whole quantity parts. The control flow for FIG. 20B
illustrates a parallel path, with execution commencing in
parallel at control blocks 2064 and 2076. At control block
2064, the control path for converting the fractional part
begins. At control block 2076, the control block for the whole
part conversion begins.

At control block 2064, the fractional bits that were parti-
tioned from the original binary quantity are converted to
RNS, forming an RNS fractional quantity. The conversion of
the fractional bits are treated as an integer conversion, and
may use the apparatus of FIG. 19A and the flowchart diagram
of FIG. 19B to perform the conversion. The RNS quantity is
then multiplied by an integer representing the fractional range
Ry, where F is the number of fractional RNS digits; this
process is very fast in RNS. Next, the RNS quantity is divided
by the integer representing the value 2%, where N represents
the number of fractional bits partitioned in 2062, or is other-
wise associated with the binary fractional range. This process
is relatively slow, since the integer divide method is a slow
operation. The resulting integer quantity is now a properly
scaled RNS fraction of F digits. The scaling operation can be
performed using binary calculations, but it’s generally

20

25

30

35

40

45

50

55

60

65

106

assumed the RNS ALU has an advantage in terms of data
width, and therefore processing power.

However, better accuracy can be obtained if a rounding
function 2068, 2070 is employed. In control step 2068, the
remainder of the integer divide is compared to half the binary
fractional range, and if greater than, causes the RNS quantity
to be incremented by one 2070. Other rounding functions are
possible, and should be obvious to those familiar with floating
point unit design techniques.

In control step 2076 of FIG. 20B, the process of converting
the whole part of the original fractional quantity begins.
Because the whole part of a fixed point, or floating point,
format is an integer to begin with, conversion is similarto that
discussed for high speed conversion of integers to RNS, such
as apparatus of FIG. 19A and the control flow of FIG. 19B. In
the final step of the conversion 2072 of FIG. 20B, the frac-
tional RNS quantity is summed with the scaled integer por-
tion. The scaled integer portion is formed by the product of
the integer portion and the RNS fractional range R 2078.

One drawback of using the integer divide method to per-
form the scaling of equation 16 is the slow execution time of
the integer divide, even though only one divide is required per
conversion.

Another technique for scaling by R,/2" uses RNS frac-
tional representation to represent the ratio, either directly as a
stored constant, or as a sequence of multiplication by range
R, followed by the reciprocal of 2%. This latter technique may
also employ Goldschmidt division as disclosed in the section
on fractional division. This technique is approximately linear
with respect to RNS digits, and is also predictable in terms of
termination. One potential disadvantage is less accuracy,
since in most cases, the fractional apparatus will support less
usable range than the integer division method of the present
invention. Also, this latter method still requires a considerable
number of ALU LUT cycles.

In yet another embodiment, a new and unique hardware
apparatus is disclosed in FIG. 20A which provides fast con-
version of fractional binary values into fractional RNS values.
The hardware structure of FIG. 20A is a parallel in, arithmetic
shift, and parallel out ALU structure which accepts the binary
number, n, and scales it to a new binary number, r, according
to equation 16. The pre-scale unit of FIG. 20A may be con-
nected to an RNS ALU as depicted in FIG. 20C via intercon-
nections to crossbar bus 318. The arithmetic operation of the
J+K stage structure is a multiply by the fractional RNS range
Ry, followed by an integer divide by the binary fractional
range 2%. (N=Q*]). In FIG. 20A, we denote the RNS frac-
tional range as the product of F number of fractional RNS
modulus M, through M., contained in shift register or LIFO
structure 2020.

In the embodiment of FIG. 20A, after J+K+F clocks, every
digit of the converted output, r, is available at output digit
registers B, OUT 2042 through B,_, OUT 2046. During
fractional binary to fractional RNS conversion, the output of
the pre-scale unit of FIG. 20A, such as binary digit register
B, OUT 2042, is gated 2047 to the crossbar bus 318. The
process of converting to RNS the new scaled binary integer, r,
is then similar to flowchart of FIG. 19B or FIG. 19C with the
LIFO of FIG. 19A replaced by digit gates 2043 and crossbar
gate 2047. After this conversion, the value contained in the
RNS ALU accumulator will be the converted fractional value
in fixed point RNS format.

The conversion starts by clearing certain registers, while
setting others. For example, each modulus digit shift register
M, 2023 through M, .- ; 2026 is loaded with a value of one
2028,20285,2028¢ via selectors such as 2027,20275,2027c.
The conversion also starts with clearing all carry holding

US 9,395,952 B2

107

registers, such as carry register 2038, and accumulator regis-
ters A ; 2034 through A, ., 2045. Start of conversion may
also include receiving the binary fraction value into the accu-
mulator digits A, 2034 through A, | 2036, from the J binary
digits B, IN 2021 through B,_; IN 2022 respectively. The
binary digits may be equal in width, such as Q bits wide, and
may be the same bit width as the crossbar bus 318, although
this is not a limitation.

Because binary representation is more efficient than RNS
representation when using binary coded systems, the number
of J stages is generally less than or equal to the number of F
modulus, given that each fractional range is nearly equal, and
Q equals the width ofthe RNS crossbar bus (i.e., both systems
have same digit width).

On the first cycle of the conversion process, the operand
shift register M, 2023 receives the first modulus M, from
modulus shift register 2020 via selector 2027. (The order of
mixed radix modulus contained in shift register 2020, is not
important.) All other modulus registers, such as register M,
2025, receive the value from the previous modulus shift reg-
ister M, ; 2024. Since at start, all modulus shift registers
contain a one, on the first cycle, modulus shift registers M,
through M, .-, will contain one.

In the next clock cycle, the accumulator A0 latches the
product of the first modulus M, with itself, and the next carry
stage 2038 latches the result of the first stage 2052 carry
value. There is no carry in for the first ALU stage 2052, so the
adder 2032 of the first stage is not technically needed in the
circuit. In terms of FIG. 20A, the adder 2032 always adds a
value of zero, diverting the most significant digit from the
multiplier 2031 to the next stage carry latch 2038, and the
least significant digit to the accumulator A, 2034. All other
accumulators latch the same value they contain in the prior
cycle. The operand shift registers shift the modulus values to
the next stages, in a shift register like fashion. The first oper-
and shift register 2023 is loaded with the next modulus M.

For each successive clock cycle, a value is latched into each
digit accumulator A. Carry values, if they exist, propagate to
each successive stage on each clock cycle. Modulus values
contained in operand shift registers propagate to the left in
FIG. 20A, such as the value of operand register 2024 propa-
gating to operand register 2025. After F clocks, the last modu-
lus value contained in shift register 2020 is shifted, and count
register 2030 decrements to zero. This triggers zero detect
2029 to gate a value of one to operand register M, 2023. At
this point, successive clocks will begin to propagate a one
value through operand shift register M, 2023.

After J+K+F clocks, the operand register M, -, contains
aone. Ifall carry stages contain a value of zero, the conversion
is complete. If not, additional clock cycles are required until
all carry registers are zero, at which point the conversion will
be complete. The conversion result is contained in accumu-
lator digits A, 2044 through A, . , 2045, which can be
latched to holding registers B, OUT 2042 to B, ; OUT
2046 respectively. At this stage, the holding registers contain
the binary equivalent of the fractional value, (r), of equation
16.

Next, the binary equivalent of the fractional value (r), con-
tained in the holding registers, is converted to RNS. Each digit
stage of the holding registers B, OUT 2042 through
B,_, OUT 2046 is gated to the crossbar bus 318 via selector
2047. The gating of each digit is used to convert the binary
result to an RNS integer, which once converted, is treated as
an RNS fractional value.

Another value that may be transmitted to the RNS ALU is
the rounding bit 2039. The rounding bit 2039 is calculated
when the values of the digits A, 2034 through A, , 2036 are

20

25

30

35

40

45

50

55

60

65

108

stable and valid. In one embodiment, the rounding bit is set
when the value of digits A, through A, , are equal to or
greater than half the binary fractional range 2041. If set, the
RNS ALU increments the converted result, thereby perform-
ing a round up operation. The round up bit may also be
injected into the carry of digit stage 2050 at the appropriate
time, which is determined once after the discarded digits A,
through A ; , are valid. In some implementations, an overflow
register 2048 is used to latch any non-zero overtlow value.

Fractional Binary to RNS Conversion Example

The scaling structure of FIG. 20A operates on values in
parallel, which makes flowcharting its operation difficult. As
an alternative, an example apparatus, depicted in FIG. 20D, is
provided with an example problem, and charted using a wave-
form diagram of FIG. 20E. The example apparatus supports a
binary digit width of four, or Q=4, i.e., a single hexadecimal
digit. The example apparatus supports a four digit input
B, IN 2021 through B; IN 2022. The output is only two
digits in this example, directly tapped from accumulators A,
2044 and A5 2045. The number of RNS modulus contained in
the modulus digit shift register 2020 is four, or F=4.

In FIG. 20E, an example conversion is shown as hexadeci-
mal values plotted over waveforms. The position of the wave-
form relative to the cycle interval illustrates how values
propagate through the apparatus of FIG. 20D. Referring to
FIG. 20E, the state of the first modulus operand register, M,
2023, is shown 2080. Additionally, the state values for oper-
and register M; 20235, M, 2023¢, and M, 2024 are shown in
waveforms 2081, 2082, and 2083 respectively. Operand reg-
isters M, and M are not shown, but may be readily deduced.
The state value for the digit accumulator A, 2034 is shown in
waveform 2084. The state value for the next digit accumula-
tor, A, 2034b, is shown in waveform 2086. The carry in stage
feeding digit accumulator A,, C,, is shown in waveform
2085. Likewise, the remaining carry in and digit accumulator
registers are illustrated in waveforms 2087 through 2094.

At cycle 0 of FIG. 20E, all operand registers M, 2023
through M, 2022 are loaded with a one value, and all carry
registers are cleared. The binary input value to the scaling unit
is 5555, ;and is latched in A0 through A3, as depicted in cycle
0 of waveforms 2084, 2086, 2088, and 2090. The accumula-
tors A, 2092 through A 2094, where the converted result will
ultimately reside, are cleared. In our example, the value of
5555,¢ represents a simple unsigned fractional value of
0.3333,,, since 5555,,/10000, ,=0.333328 ..

Atcycle 1, the operand register M, 2023 is loaded with the
first residue modulus, a value of two, from the modulus shift
register 2020 of FIG. 20D. At cycle 2, the modulus value in
operand register M, is shifted to the next operand register, M
20235, while the next residue modulus, a value of three, is
shifted into M,,. In each new clock cycle, it can be seen that
residue modulus values propagate from one modulus register
to the next. Also, each operand value is multiplied by its
respective digit accumulator, and the result added to the con-
tents of the carry in register. A new carry value, such as carry
2048, may be generated as a result of the multiply and addi-
tion. This value is propagated to the carry-in register 2049 of
the next stage, and latched on the next clock cycle. All digit
stages process in parallel, handing a carry value off to the next
stage, and shifting the modulus values to the left, on each
clock cycle

By cycle 5, the first digit accumulator, A, is stable, and has
a hexadecimal value of OxA. By cycle 9, all digit accumula-
tors A, through A are stable, since carry registers are all zero,
and all modulus operand registers, M, contain a one value.

US 9,395,952 B2

109

The scaled result is contained in A, and A, which in our
example is hexadecimal 0x45. Also, since the value in digit
accumulators A, through A, is 0XFFBA, which is greater than
0x8000, the round up bit 2039 (=1) is generated via compara-
tor 2040. Therefore, after conversion of the scaled binary, the
RNS ALU will receive the value of 0x45, and add one, which
is 0x46=70,,. Therefore, the RNS ALU, which has a frac-
tional range of 210, ,, now contains the fractional value of
70/210=0.3333, or exactly Y5 in this RNS system. In this
particular example, a close approximation of the value %5 in
binary was converted and correctly mapped it to the exact
value of V5 in the RNS system.

In the case of converting binary floating point numbers into
RNS fixed point values, or RNS sliding point values, the
floating point number must be appropriately normalized, and
must be a value that can be explicitly represented by the RNS
ALU. However, once normalized, the floating point conver-
sion works similar to that of the fixed point binary to RNS
fraction conversion but is not described here further.

Integer RNS to Binary Conversion

Converting RNS results back into binary is more trouble-
some, and more complex than forward conversion. One rea-
son has to do with the property of residue arithmetic. That is,
it is relatively easy to convert a binary number to RNS, as one
may truncate, or sub-divide, the weighted binary system and
convert each chunk of data using modulo arithmetic, i.e.,
without carry. On the other hand, it is more difficult to convert
an RNS number back to a binary number, since one must
sub-divide a residue number, and convert each data chunk
back to binary, i.e., with carry. In consideration of this, if the
process of converting arithmetic results back to binary cannot
offset the effects of binary carry, then there may be less reason
to convert to and use RNS to begin with.

The method of the present invention introduces a novel and
unique hardware apparatus that not only minimizes the effect
of binary carry during reverse conversion, but effectively
eliminates it, for any bit width conversion. The conversion is
linear with respect to RNS digits, given our standard assump-
tions, and assuming crossbar bus sized operands can be pro-
cessed in constant time. This assumption is essentially true in
practice, since there is only a small difference in adding and
multiplying 8 bit operands versus 10 or 11 bit operands, for
example. Given this assumption, the conversion time exhibits
approximately O(n)=n/log(P) behavior in terms of effective
binary bits, n, versus RNS digits P.

In the present method, the RNS integer to binary conver-
sion requires the RNS number to be converted to a mixed
radix number first, using apparatus previously described,
such as FIG. 21A, and RNS to mixed radix conversion control
methods previously described, such as in FIG. 7A. After the
RNS result is converted to mixed radix format, and stored in
the LIFO 275 of FIG. 21A, the apparatus of FIG. 21B illus-
trates how the mixed radix digits and modulus values are then
converted to binary.

FIG. 21B illustrates novel hardware apparatus for high
speed conversion of mixed radix integers to binary integers.
One common element in FIG. 21B is the crossbar LIFO 275,
which was introduced in the topic of RNS to mixed radix
conversion. Other unique features are K number of binary
digit ALU stages, such as the first ALU stage 2104, each ALU
stage feeding a binary digit accumulator, such as binary digit
accumulator B, 2111. Each binary digit may be a fixed width,
such as width=Q), but this is not a limitation. In one embodi-
ment, the digit width Q is set equal to the crossbar data width.

20

25

30

35

40

45

50

55

60

65

110

As seenin FIG. 21B, after RNS to mixed radix conversion
is completed, the crossbar LIFO A 275 contains the values of
mixed radix digits, such as D,_,, as well as the digit modulus
(power), such as M_, . Digit values are latched to parallel to
serial digit converter 2101, while modulus values are latched
to parallel to serial converter 2100. During that time, a zero
value 2105 is latched to the front of the modulus parallel to
serial converter 2100. The reason is the number of modulus
values are less by one than digit values, and the starting seed
for the conversion process is a modulus with a zero value.
Selector 2106 selects the first modulus (=0) at the first con-
version cycle. Selector 2108 selects the first digit value from
the front of parallel to serial converter 2101.

In the remaining cycles of the conversion process, the
mixed radix digits are recomposed, not to RNS, but to binary.
In the first binary arithmetic cycle, a zero value is clocked into
stage 0 modulus operand register 2117 and the first mixed
radix digit (the last to be converted during RNS to MRN
conversion) D,_,, is latched into stage 0 additive operand
register 2118. Since the first modulus is zero, the result of
binary multiplier 2119 is zero, and therefore the result of
binary adder 2120 is identical to the stage 0 digit value (addi-
tive) register 2118. During the first arithmetic cycle, the par-
allel to serial registers 2100 and 2101 shift the previous values
out, and gate the next digit value and digit modulus for latch-
ing by registers 2118 and 2117 respectively. In our example,
the modulus M,_, is gated through selector 2106 and the next
digit value, D,_, is gated via selector 2108.

On the second clock cycle, the result of ALU cycle 0 is
latched in B,. Also, the previous zero stored in the stage 0
modulus operand register 2117 is latched to stage 1 modulus
operand register 2116. Additionally, the carry out digit from
adder 2120 is latched in the carry operand register 2121. At
the same time, the next digit D,_, is latched into the digit
operand register 2118, and the associated modulus M, _, is
latched to the stage 0 modulus operand register 2117.

After some combinatorial logic delay, the multiplier of
stage 1 is now zero, and its adder essentially outputs the carry
2121 value to register accumulator B, 2112. The multiplier
2119 of stage 0 outputs the product of the new modulus M,_,
and the previous latched value of B, 2111, and this result is
added to the new digit D,_, via adder 2120.

On the third clock cycle, the result of adder 2120 for ALU
stage 0 is latched into binary digit accumulator B, 2111.
Likewise, the result of adder of ALU stage one 2103 is latched
into binary digitaccumulator B, 2112. Likewise, the modulus
value 2116 in stage one 2103 is latched into the successive
stage modulus value register, M, and so one and so forth; the
carry out of stage one is also latched in stage two 2103 ALU
carry operand register 2121, and carry out stage of stage one
2103 is fed to the next stage carry operand register, and so on
and so forth.

In FIG. 21B it becomes clear that as data is shifted across
the K binary digit stages, the binary ALU stages 2104, 2103,
2102 work in parallel. The parallel operation of the cascaded
stages is hereby described as a “digit brigade arithmetic logic
unit”. Each stage 2104 of the digit brigade ALU performs a
multiplication and addition operation in the same clock
period. The stages are cascaded, such that the results of the
previous stage feed the operands of the digit ALU of the
succeeding stage. Each succeeding stage is of a higher sig-
nificance in terms of the binary weighted value, or power.

After P clocks, or a lesser number of clocks to empty the
converter 2100, the zero count detect unit 2107 triggers selec-
tor 2106 to gate a value of one, and also signals selector 2108
to gate a value of zero. The reason for gating a one to the
modulus operand register 2117 is to preserve the value of the

US 9,395,952 B2

111

binary digit accumulator B, once all modulus values have
been introduced to stage zero 2104. In fact, as the value of one
propagates to each successive modulus operand register, such
as operand register 2116, the value of that digit is complete,
and is preserved.

The reason for gating a value of zero to the digit value
operand register 2118 is to preserve the value of the digit
accumulator B, once all digit values are exhausted in con-
verter 2101. Modulus and digit values loaded in converters
2100 and 2101 are exhausted together.

After P clocks, digit stages B, through B, begin to com-
plete in sequence, as the modulus value propagating towards
successive stages is one, and the carry value propagating to
successive stages is zero.

After P+K clocks, all modulus values originally contained
in parallel to serial register 2100 have been introduced to the
K binary stages, and the results of each K stage have been
completely propagated. At this point, the values contained in
binary digit accumulators B, through B,._, contain the binary
value of the original mixed radix value, which in turn is
identical to the original converted RNS value. By, is the least
significant binary digit, while B_, is the most significant
binary digit. If all binary digit stages are concatenated, the
resulting sequence is the pure binary converted sequence,
which is Q*K bits wide in FIG. 21B, and given the width of
each binary digit is Q bits.

Mixed Radix to Binary Conversion Example

The control flow for the apparatus of FIG. 21B is complex,
and is difficult to disclose using a control flow diagram.
Instead, a waveform diagram of FIG. 21D is provided which
discloses an example conversion. The example of FIG. 21D
also uses the example apparatus of FIG. 21C. The example of
FIG. 21D illustrates the conversion of the value one thousand
(1000) from mixed radix to binary number format; the asso-
ciated initial and final values are shown enclosed by dotted
line 2153.

The apparatus configuration for the example of FIG. 21D is
also provided as shown enclosed by dotted line 2153. Refer-
ring to FIG. 21C, the mixed radix value contained in LIFO
275 is converted to a binary value contained in binary digit
registers B, 2111 through B; 2114. Each binary digit is 4 bits
wide in our example, or Q=4. The overall output of the con-
version is four hex digits, or K=4, which provides up to 16 bits
of'range. The conversion apparatus of FIG. 21C also includes
provision to handle a mixed radix value of F=4 digits, the
specific radix being {2, 3, 5, 7}. The total size of the conver-
sion apparatus is described as supporting F+K stages, corre-
sponding to a conversion clock requirement of approximately
F+K clocks.

In FIG. 21D, the first waveform 2130 illustrates the values
ofthe modulus register M,,2117 at each cycle, or clock, or the
conversion. Clock cycles for the conversion of FIG. 21D are
shown along the top of the waveform diagram, with starting
cycle 0 on the left, and terminal cycle 8 on the right. Likewise,
the value of modulus registers My, ; 2132, M,.,, 2134, and
My, 5 2136 are illustrated at each cycle of the conversion.
Likewise, the values contained by other registers of apparatus
FIG. 21C are shown during the example conversion of FIG.
21D.

At cycle 0 of FIG. 21D, the M, modulus register 2117 is
loaded with the value of zero (0), while the digit operand
register D, 2118 is loaded with the value of four (4). It can be
seen from FIG. 21C that the modulus value of zero is sourced
from the modulus shift register 2100, while the digit value of

20

25

30

35

40

45

50

55

60

65

112

four is sourced from the digit shift register 2101. All other
registers of FIG. 21C are either don’t care, or are cleared in
cycle 0.

At cycle 1 of the conversion of FIG. 21D, the modulus
operand register M- 2130 is loaded with the value of seven
(7), while the digit operand register D, 2138 is loaded with
the value of five (5). Furthermore, as a result of the cycle
transition, the B0 register 2140 is loaded with the value of
four (4), which was propagated by the adder 2120 of the first
converter stage. The carry-in of the second stage is zero as
indicated at cycle 1 of signal C1 2142 since the carry out of the
first stage was zero at cycle 0.

At each successive cycle of the waveform of FIG. 21D, the
modulus values are propagated from one modulus register to
the next, such as from modulus register M- 2117 to the modu-
lus register M, ; 2116. Furthermore, carry values are propa-
gated from the output of adders in each digit stage to the carry
operand register of the next stage, such as carry out from
adder 2120 to carry-in operand register 2121. At each succes-
sive cycle or clock, the values contained in each binary digit
register B, 2111 through B, 2114 are processed, as shown in
the waveform as binary digit values B, 2140, B, 2144, B,
2148 and B, 2152.

At cycle 8 of the waveform of FIG. 21D, the result of the
conversion is stored in digit registers B, through B;. In the
example, the value of 1000,,, represented in a mixed radix
format as the value 45120, ., is converted to the value 03ES8 | ¢
using the example apparatus of the FIG. 21C.

Fractional RNS to Binary Conversion

The conversion of fractional RNS to binary is important,
since for general purpose processing, many results will
include a fractional value. For RNS processing to be efficient,
it must be possible to efficiently convert fractional RNS val-
ues back to binary fractions.

As was the case in forward conversion, reverse conversion
of fractional values must rescale values from one fractional
range to another. Manipulating equation 15, we get the
reverse conversion ratio:

n=(r*2")Rp

To convert, the RNS ALU must multiply the RNS frac-
tional value by the binary fractional range 2, then divide by
the RNS fractional range R . The RNS ALU may efficiently
perform the division by R, and is therefore best suited to
perform this task. The RNS ALLU may require an increased
dynamic range, since a multiply by the fractional range 2 is
required. In one embodiment, the fraction and integer portion
of a value is converted in two stages, thereby reducing the
overall range requirement for equation 17. This is the method
used by the control flow of FIG. 21E.

In FIG. 21E, a novel control method performs a conversion
of fractional RNS to equivalent fractional binary using a
modified mixed radix conversion procedure. FIG. 21E
assumes an operand having both a fractional portion and a
whole portion is converted. The particular variation of FIG.
21E handles positive value conversion, so the sign of the
operand is checked in control decision 2161. If the operand is
negative, the value is complemented, or negated, in control
step 2162. The original sign, either positive or negative, is
stored for later use. In this particular control flow, the operand
is assumed to be sign extended in RNS.

In FIG. 21E, the fractional portion and whole portion of the
RNS operand are separated. This process is represented in
steps 2164 through 2166. During the MRN conversion of step
2164, the first F (fractional) digits are converted to mixed

(eq. 17

US 9,395,952 B2

113

radix format. The mixed radix digits represents the fractional
portion, and the remaining RNS value represents the whole
digit portion. In the control step 2165, the remaining RNS
value is transferred to another ALU, such as ALU B. The
mixed radix digits generated in control step 2164 may reside
on a LIFO, for example, and are recomposed into RNS in
control step 2166.

At control step 2165, the control flow of FIG. 21E is shown
to split into two sections. At the control step starting with
2176, a separate ALU may complete the conversion process
of'the whole portion of the value. At step 2166, another ALU
may complete the conversion process of the fractional portion
of the value. Alternatively, a single ALLU may also be used to
convert each fractional and whole partition of the RNS value
into binary.

The process of converting the whole portion into binary is
similar to the integer RNS to binary conversion process
described in the figures of 21 A and 21B. In FIG. 21E, the first
control step 2176 starts the mixed radix conversion on the
stored remaining RNS number using an apparatus similar to
FIG. 21A. Next, in control step 2177, the mixed radix digit
and modulus values are latched to digit shift register 2101 and
modulus shift register 2100 respectively. The mixed radix
equivalent of the remaining RNS value is converted to binary
in the control step 2178 using an apparatus similar to FIG.
21B.

The process of converting the fractional RNS portion
includes the process of scaling from the RNS fractional range
to the binary fractional range. In FIG. 21E, the control step
2166 converts the equivalent fractional value stored in mixed
radix format to RNS, using a control method similar to FIG.
8A. The fractional RNS portion is fully extended in step 2166.
The fractional RNS value is multiplied by the binary frac-
tional range 2” 2167. The multiplication step of 2167 is inte-
ger type; the constant 2% may be stored in any suitable means,
such as register file 300.

In the step 2168 of FIG. 21E, the product of step 2167 is
converted to mixed radix by a first F mixed radix digits. The
initial F mixed radix digits are compared in sequence against
half the fractional range to determine if a round up is to be
performed. Afterwards, the initial F mixed radix digits (and
their associated modulus values) may be discarded once a
round up is determined.

The control step of 2169 indicates a parallel process of
performing a round up determination, via a comparison
against half the fractional range R./2. The comparison pro-
cess is integrated into the mixed radix conversion process
2168 in one embodiment. Therefore, the mixed radix conver-
sion 2168 may follow a pre-selected order of digit decompo-
sition to facilitate both a conversion and comparison simul-
taneously. This novel feature was previously described in the
section regarding constant compare registers, such as digit
compare register 3026 of FIG. 3E.

The determination of round up in step 2169, which may be
processed in parallel to control step 2168, may influence
control decision 2171. If a round up adjustment is needed, the
remaining RNS value contained in the AL U is incremented by
one unit 2170. The optionally adjusted remaining RNS num-
ber is converted to mixed radix in control step 2172. Using an
apparatus similar to FIG. 21B, all but the first F least signifi-
cant mixed radix digits are converted to binary, and in one
embodiment is performed by latching all but the first F mixed
radix digits and associated modulus values to the digit shift
register 2101 and modulus shift register 2100 respectively
2173.

In control step 2174, the latched mixed radix values are
converted to binary 2174 using an apparatus similar to FIG.

20

25

30

35

40

45

50

55

60

65

114

21B. The binary value generated in step 2174 represents a
binary fractional quantity which is equal to, or approximately
equal to, the original RNS fractional quantity. The process of
concatenating the binary whole result of step 2178 with the
binary fractional result of step 2174 is not shown, but can be
accomplished using simple gating circuits.

In the one embodiment of the present invention, the con-
version is performed on positive integers only. In this case, a
sign bit is sent along with the converted result to indicate the
sign of the number. In another or same embodiment, the RNS
signed fractional value is converted to the equivalent two’s
complement (signed) binary fraction by emulating a two’s
complement arithmetic operation via the RNS ALU before
conversion using the apparatus of FIG. 21B. In yet another
embodiment of the present invention, if the converted result is
negative, a special hardware unit performs a two’s comple-
ment on the converted binary result as the conversion is taking
place, least significant digit first.

Development of Rez-1

The methods and apparatus of the present invention may be
formulated in many different ways. One such formulation is
called Rez-1; details of Rez-1 are disclosed herein to further
the understanding of the present invention. Rez-1 is designed
as a research and scientific arithmetic logic unit which is
capable of performing general purpose calculations using
residue number arithmetic. The Rez-1 system is also designed
to be scalable, allowing additional AL U digits to be added to
the system.

In FIG. 22A the Rez-1 system is shown as a computer
backplane 2202 with plug-in cards. The outer chassis, power
supply, and Rez-1 control panel are not shown for clarity. The
high-speed backplane 2202 supports a plurality of high den-
sity connectors, such as connector 2203, and also a plurality
of plug-in cards, such as digit expansion card 2201, 22015,
2201c¢ and 2201d. Also supported is an RNS ALU control
card 2200 which plugs into the backplane 2202.

Rez-1 RNS ALU Control Card

The RNS ALU control card 2200 may contain on-board
memory for a specific number of digit ALUs; in addition,
ALU digits may be expanded through the use of one or more
digit group expansion card(s) 2201, 22015, 2201c¢, 2201d.
Different sized digit group cards may be designed and sup-
ported. For example, a digit group expansion card may sup-
port 32 RNS (dual) digit ALU’s. Adding four such cards
provides up to 128 RNS digits in addition to any digits sup-
ported on-board the RNS ALU controller card 2200. In this
scenario, the Rez-1 system is a digit slice architecture allow-
ing digit expansion in 32 digit groups.

FIG. 22B illustrates certain specific details of the RNS
ALU controller card 2200. The controller card 2200 is pri-
marily constructed using a high density field programmable
gate array (FPGA) 2225 coupled to several banks of SDRAM
memory 2230, 2235, 2240. The FPGA 2225 is also coupled to
a high speed, high density card connector 2220, which will
communicate to other cards on the backplane 2202. FPGA
2225 is also connected to a series of peripheral and user
interface connectors, such as a DVI display port 2250, SD
card connector 2255, Ethernet port 2260, USB port 2265, and
ALU Link port 2270 among others.

The use of FPGA’s allows the RNS ALU to be easily
altered and modified, as well as expanded and advanced. The
FPGA provides significant electronic resources, referred to as
fabric, used to integrate a host CPU 2280, DRAM memory
controllers, and other high level peripheral components. In
Rez-1, the controller card FPGA fabric is also used to provide

US 9,395,952 B2

115

an RNS ALU controller 200, and a hardware RNS to binary
conversion unit 2215. A high performance controller card
2200 may be offered in more than one version; such versions
may require one or more FPGA devices to accommodate all
required structures.

In FIG. 22B, the RNS ALU controller card 2200 also
integrates a conventional binary host CPU 2280, often
referred to as a soft processor because it is implemented
within an FPGA. For example, the FPGA used in Rez-1 is an
Altera Cyclone IV series device, and the embedded soft CPU
is the Altera NIOS-II 32 bit processor. The NIOS-II CPU
executes software stored within SDRAM memory 2230. The
binary CPU is used to drive common peripherals via an inter-
nal peripheral data bus 2210, such as a display processor
2205. For example, the host CPU can be programmed to plot
the results of the RNS ALU on a high definition screen,
through the integrated DVI display port 2250. The routines to
perform peripheral service and control, as well as the routines
to plot to the graphics screen are common and may be part of
an existing standard, such as the Linux operating system with
X-Windows GUI. Other types of operating systems and
graphics systems may be used.

The FPGA 2225 fabric is used to provide an RNS ALU
control block 200. The control block is interconnected via
data bus to external SDRAM memory 2235. The external
SDRAM memory 2235 may store RNS ALU instructions and
data. A bus arbiter 2245 is used to coordinate transfers
between the CPU data bus and the RNS ALU data buses. For
example, the soft CPU 2280 may execute instructions from
SDRAM 2230 while data is being transferred to the SDRAM
memory 2230; the secondary transfer is performed using bus
arbiter 2245 and a DMA channel performing a data move
from RNS memory 2235.

The FPGA 2225 is also used to create an RNS to Binary
hardware conversion unit 2215, consisting of structures simi-
lar to the mixed radix to binary conversion apparatus of FIG.
21B. The RNS to binary conversion unit is required to per-
form high speed conversion of the RNS AL U results to binary,
for further processing by the host CPU 2280. For conversion
of binary values to RNS values, a basic conversion unit as
depicted by FIG. 19A is supported. Fractional binary values
are converted to RNS using the integer divide method as
opposed to dedicated scaling hardware, as depicted in FIG.
20A. Additional conversion cards (not shown) may also be
supported. These cards provide additional hardware to per-
form such conversions, but are located off the main controller
card 2200.

Rez-1 Digit Group Card

In FIG. 22C, a 24 digit expansion card 2201 block diagram
is shown. The card expands the RNS AL U by another 24 RNS
digits. The digit expansion card 2201 uses seven FPGA
devices and 48 memory devices. The main FPGA device 2290
serves as a card digit controller and interfaces directly to the
card connector 2220 and the high speed backplane bus 2202.
The main FPGA 2290 controls six FPGA devices, such as
device 2292, each FPGA device supporting 4 RNS digit
ALUs. Each RNS ALU is provided two memory LUT ICs,
labeled as digit memory DM, such as DM IC 2294. In one
configuration, one DM LUT provides modulo (p) multiply
LUT function, while the other provides a MODDIV LUT
function. Addition and subtraction are performed in hardware
using FPGA fabric in an approach similar to FIG. 3D. There-
fore, a dual ALU architecture is supported, each ALU sharing
a dual ported, fused arithmetic LUT, and each ALU sharing
two common LUT memory ICs on alternate memory cycles.

Rez-1 Instruction Set Design

Developing and implementing a complete and practical
ALU or CPU is a tedious and complex task. Aside from the

20

25

30

35

40

45

55

60

65

116

core activities of designing and implementing hardware ALU
and associated control circuitry is the task of designing an
instruction set for the RNS ALU.

In Rez-1, the ability to perform complex arithmetic opera-
tions on very wide word data is the main strength of the RNS
ALU. Performing general purpose activities, such as control-
ling I/O, or running graphical user interface algorithms is the
task of the conventional 32 bit CPU 2280 shown in FIG. 22B.

Two instruction execution methodologies are provided for
in the design of Rez-1. The simpler of the two is the addition
of a special RNS ALU instruction set, added to the conven-
tional binary CPU 2280 instruction set, to support control of
the RNS ALU and its registers. The second method is to
provide the RNS AL U with its own instruction execution unit,
which allows the RNS ALU to execute instructions directly
from SDRAM 2235 of FIG. 22B.

The second method of providing a separate instruction set
is a superset of the RNS instruction set of the first method.
Both methods require arithmetic processing instructions as
well as arithmetic testing instructions. The main difference
between the two is the implementation of separate branching
and addressing modes for the second method. In the instruc-
tions to follow, it is assumed the instruction descriptions
which follow may apply to both instruction and control meth-
odologies of Rez-1.

Arithmetic Primitive Instructions

FIG. 22D illustrates a table of certain primitive instructions
supported by an early version of Rez-1. Arithmetic primitives
are forms of micro-code, since combinations of these primi-
tive instructions make up a single, complete machine or
assembly instruction, i.e., an instruction that may be used by
an assembly programmer or a compiler, for instance.

In FIG. 22D, the first column lists the general category of
the primitive instruction. For example, in the “Arithmetic
primitives” category, the second instruction listed is a “SubD”
instruction, which subtracts the value of the selected digit
(Dig#) from the entire accumulator. This primitive is obvi-
ously useful for mixed radix conversion. Similarly, another
arithmetic primitive, “ModdivM”, divides the entire accumu-
lator by the indicated digit modulus (Dig#). This primitive is
also useful for mixed radix conversion. A high level mixed
radix conversion instruction may contain a series of SubD and
ModdivM primitive instructions.

In FIG. 22D, the next general category is the ‘Power Digit
Arithmetic primitives”. These digit primitives operate on
power based digits, and are included for completeness. In
some embodiments, the need for separate power digit primi-
tive instructions is eliminated by more general purpose opera-
tion within each digit function block, whether it is power
based or not; however, some instructions for power based
digits are still needed, as will be discussed later. The last
primitive instruction listed in this category is the “ResPower”
primitive instruction, which restores the power valid count to
its normalized setting.

In the next category, “power Digit Arithmetic primitives
(digit)”, many power digit primitives have two operands, one
is the selected digit position, the other is the intended power of
the modulus. Some operands are not needed, as they are
implicit. Primitives for the power based digit include many of
the operations discussed for the power based digit, such as
modulus truncation and decrementing the power of a modu-
lus.

LIFO based primitives are illustrated in the following cat-
egory of FIG. 22D. LIFO primitives may be operated in
tandem with other primitives. For example, the act of sub-
tracting a digit from the accumulator and pushing the digit
value to the crossbar is facilitated by the SubPush instruction

US 9,395,952 B2

117

primitive. FIG. 22D also lists basic move and clear opera-
tions, needed to move data from one register to the accumu-
lator, of from the accumulator to a particular register. The
Move, Set and Clear instruction category also include the
operations to set and clear skip flags associated to digits of the
ALU.

More primitive to the instructions of FIG. 22D arethe ALU
operations listed in FIG. 22E. FIG. 22E is intended to
describe some of the various control elements that may be

118

include a test to check if the accumulator is zero. This is also
provided for in a typical binary CPU. One word based test
instruction for the RNS AL U is a “AnyZero” test, which tests
if any RNS digit is zero, this is unique to the RNS AL U, since
the binary CPU generally has no need for such a primitive
test. Some sign testing primitives are also unique, such as an
instruction to test if the sign is valid.

It should be understood that many other instruction types
and primitives may exist not disclosed herein. For example,
there exist conversion instructions, and different forms of

under control of a primitive instruction, or standard ALU 19 divide instructions. As noted earlier, there are branching
instruction. Many of these control operations may be per- instructions and addressing modes not contemplated herein.
formed simultaneously to create more complex operations, These subjects are well known to those familiar with binary
both for primitive instructions and high level instructions. CPU and architecture design.

For example, in FIG. 22E in the category listed “LUT s Moreover, Rez-1 is based on re-programmable FPGA
Select Function” are the four standard arithmetic LUT opera- logic, which may be easily modified and reconfigured. It is
tions, ADD, SUBTRACT, MULTIPLY, and MODDIV. These anticipated that Rez-1 be advanced with more streamlined
operations are invoked to select the desired LUT function instructions sets as more research is complete. Additionally,
operation. In the category Digit Validation operations are the Rez-1 is an extensible digit design, meaning additional digits
operations of setting and clearing skip digit flags. In the may be added to the architecture to help perform problems
category of crossbar and selector operations are the various 2" requiring more resolution.
gating choices available to route operand data to the ALU Rez-1 is the first general purpose RNS ALU of any kind; its
LUT. Inthe Register File Read and Write Control category are instruction set is expected to evolve rapidly to meet the many
the various operations allowing data to be selected from, or needs of scientific and other number crunching applications.
written to the register file 300. And finally, the last category, Notes about Dual Accumulator Design:

“Status Signals and flags”, is test operations that return a >> The dual accumulator of the Rez-1 design is automatically
result to the particular test inquiry. For example, a test if all handled by the high level instruction set provided to the user.
RNS digits are zero can be made. This means the user need not concern themselves with the act

In FIG. 22E, an example of more typical assembly lan- of programming two ALU’s. In Rez-1, some instructions,
guage type instructions are provided for the Rez-1 RNS AL U. 30 such as comparison, may use both ALU A and ALUB simul-
The figure lists different instruction types, and the types of taneously, and automatically. In other cases, the RNS control
operands that are supported. For example, for the “Add” unit 200 or other sub-controller decides when to take advan-
instruction of FIG. 22F, there are four combinations of oper- tage of using both ALU’s simultaneously. For example, the
ands that are valid. The Add instruction can handle addingan control unit may detect that two sequential instructions listed
integer type to an integer type, a fixed fraction type to a similar ;5 in the program may be operated in parallel without affecting
fixed fraction type, afixed fraction type to an integer type,and ~~ the results. The Rez-1 ALU may elect to perform such opti-
a sliding point type to a sliding point type (planned). Data mization without user knowledge.
types for other instructions are listed.

In FIG. 22E, instruction and operand types are shown, but Theoretical Basics of RNS ALU Design
the actual instruction mnemonics and data sources are not.

Typical instruction mnemonics include an instruction desig- 40" Selection of memory size and technology for digit memory
nating the type of operand being handled, and a list of data DM 2294 aftects the type of RNS ALU machine that may be
source(s) and destination(s), such as a register source, and/or built. Table 6 shows various memory requirements for a brute
a memory location. In this way, the Rez-1 instruction set force LUT function approach for digit memory, such as DM
appears conventional in most respects. 2294. The first column of Table 6 lists the operand width Q.

In FIG. 22G, RNS ALU test instruction primitives are 4 This is an important measure, as it is generally the width of the
listed. These test primitives may be used to create higher level crossbar bus 318, 319. Providing a specific width of Q bits of
test and branch instructions (not shown). However, the test the operand dictates the largest prime modulus that may be
primitives provide insight into the functionality of the RNS represented, which in turn dictates the largest word size of
ALU, and the similarities and differences that exist between it RNS ALU, in terms of digits, that may be supported, which is
and a typical binary CPU. For example, the test primitives shown in column 7 of Table 7.

TABLE 7

Column1 Column 2 Column3 Column 4 Column 7

Operand LUT address LUT Megabits Column 5 Column 6 Max. RNS
width Q width depth/Op (std) Memory technology Memory Speed digits
8bits 16 bit LUT 65,536 0.5 1M/4M SRAM 18-100 Mhz 54
9bits 18 bit LUT 262,144 4 4M/8M/16M SRAM 18-100 Mhz 97
10bits 20bitLUT 1,048,576 16 16M/64M SRAM, PSRAM 18-100 Mhz 172
1lbits 22bitLUT 4,194304 64 64M/256M PSRAM, DDR 166-250 Mhz 309
12bits 24bitLUT 16,777,216 ~ 256 256M/1G DDR/DDR2 266-400 Mhz 564
13bits 26bitLUT 67,108,864 1024 (1G) 1G/2G/4G DDR3 533-933 Mhz 1028
14bits 28 bit LUT 268,435,456 4096 (4G) 4G/8G DDR3 1066-1866 Mhz 1900

US 9,395,952 B2

119
TABLE 8

120

Column 3 Column4 Column5 Column 6

Column 1 Equivalent Equivalent Fractional Fractional Column 7
Operand Column2 decimal Binary Decimal Binary decimal/RNS
width Q RNSdigits digits Bits digits Bits digit ratio

8 bits 54 101 333 50 165 187%

9 bits 97 211 696 105 347 218%
10 bits 172 427 1409 213 703 248%
11 bits 309 862 2844 431 1422 279%
12 bits 564 1749 5771 874 2884 310%
13 bits 1028 3502 11556 1751 5778 310%
14 bits 1900 7059 23294 3529 11646 372%

For example, an operand width of Q=8 bits provides a ;5 megabit SRAM with part number IS61WV102416BLL from

maximum RNS ALU of 54 digits. To accommodate a brute
force LUT function, a LUT address width of 16 bits is
required, so the amount of memory required is 64K bytes
(maximum) per digit. If the operand size is allowed to occupy
9 bits, then an RNS ALU supporting up to 97 digits is pos-
sible. In this case, an eighteen bit LUT address requires 256K
locations, each location storing a 9 bit value. It can be seen in
Table 7 that as more digits are required, a larger LUT is
required.

In Table 7 column 5, common memory technology sizes
are listed in each row along with the maximum number of
prime digits the LUT can support in column 6. For example,
a 16 megabit static RAM chip is used in Rez-1 for the Digit
Memory (DM) LUT, which allows for a maximum RNS ALU
digit width of 172 digits. On the other hand, a one gigabit
SDRAM IC can support an RNS AL U supporting up to 1900
digits. Curiously, the trend in memory technology has been
that higher density comes with faster access speed. In previ-
ous sections, we have frequently assumed that memory LUT
speed remains fixed, and looking at Table 7, column 6, this
appears validated up to about 1900 RNS digits. Beyond this,
memory LUT access speed will degrade as decoding circuitry
is used to form larger memory arrays for supporting larger
LUTs.

Table 8 shows the equivalent decimal digits for various
ALU digit widths, i.e., number of RNS digits supported. For
example, for a 54 digit RNS ALU of Q=8 bit wide operands
(i.e., <255), the equivalent decimal digits is about 101 digits.
The equivalent number of binary bits is about 333 bits. In
column 5 of Table 8, the number of equivalent fractional
decimal digits is shown, which is approximately half of col-
umn 3, since the ALU must support a “squared” range for
processing fractional values. For example, an RNS AL U of 54
digits supports a range of about 50 fractional decimal digits.
The rages of table 8 are approximate, since actual ranges
depend on specific digit groupings, and number of redundant
and extended digits of the ALU.

Interestingly, the efficiency of the AL U range increases as
the number of RNS digits increases, since digit modulus
increases. In column 7 of Table 8, the decimal to RNS digit
ratio is shown. At 54 RNS digits, the ratio is 187%, since
equivalent decimal digits is about 101. However, at 97 RNS
digits the number of equivalent decimal digits jumps to 211,
more than twice that of 101; the decimal to RNS ratio at 97
RN digits is increased to 218%. This increasing conversion
efficiency is at the heart of better than linear run times for
RNS fractional multiply versus the number of effective
binary bits.

To keep costs down, and to maximize capability, the Rez-1
RNS ALU targets a maximum RNS ALU digit width of 172
RNS digits, with an operand width of Q=10 bits. The Rez-1
ALU will utilize high speed static RAM chips, such as 16

20

25

30

35

40

45

50

55

60

65

ISSI. This part supports a 1 Megabytex16 bit configuration
SRAM operating at 10 ns access speed. This IC provides for
10 bit operands and operations using a brute force LUT tech-
nique. The part is available for less than $20 in small quanti-
ties at the time of this writing. A fully expanded Rez-1 will
therefore be capable of operating on fractional values in the
order of 700 bits wide, with a range and resolution of approxi-
mately 10°*3, The Rez-1 integer processing range is much
greater, being approximately 427 decimal digits, or about
1400 bits wide.

It should be noted that future designs may be built around
faster and larger digit memory IC’s, such as 1 Gigabit DDR3
memory. Advanced digit group cards may be constructed
using faster and denser memory, supporting more RNS digit
ALU’s per card. A one gigabit size memory IC is capable of
supporting a single DM LUT for an RNS ALU of up to 1028
digits, allowing operation on binary fractions of over 5700
bits wide.

More efficient use of LUT memory can allow even greater
size AL.U’s. For example, techniques exist to expand a single
power digit modulus into a multiple power modulus without
increasing the LUT depth. For example, digit ALU’s support-
ing BCFR accumulator format may encode only the LUT
requirements of a single power digit, thereby dramatically
increasing the digit range to LUT depth ratio.

Another interesting memory technology is RLDRAM,
which supports very short burst lengths and random access of
values, which is an ideal memory requirement for the DUAL
RNS ALU described herein. DDR3 memory may be used, but
may waste memory clock cycles, since such memories are
often burst oriented, and the RNS LUT is random access.
Even so, the DDR3 memory technology is low cost, very high
density, and can support reasonably fast random access
memory cycles due to its high clock rate. It is possible that
special RNS LUT memory be developed that fulfills the
requirements for RNS ALU operation more precisely, and
more efficiently.

InFIG. 23 A, the relative growth of equivalent binary width
versus RNS ALU digit width is provided. The RNS digit
curve 2335 is a plot of the number of RNS digits. This curve
is purposely drawn as a straight line of unity slope for com-
parison purposes. The equivalent binary bits for each RNS
ALU digit width is given by curve 2325. It can be readily seen
that the equivalent binary width for a given RNS ALU digit
width grows rapidly with respect to the AL U digit width. That
is, the equivalent binary bits is growing at a faster than linear
rate with respect to the number of RNS digits. To approximate
the P line, the equivalent binary width, (n), is divided by
log(P) to form the curve 2330, which is a close fit over the
interval of 32 RNS digits of the graph of FIG. 23A.

Since the RNS fractional multiply run time is proportional
to the number of RNS digits, or curve 2335, and a linear

US 9,395,952 B2

121

binary multiplier run time is proportional to equivalent bits
curve 2325, it can be seen in the graph of FIG. 23A the
required clock cycles of the RNS multiplier is progressively
less as the number of bits increases. In fact, we can estimate
the order of run time (O(n)) of the fractional RNS multiply to
be about n/log(P), where n is the effective binary width, and P
equals the RNS ALU digit width. The effective run time of the
RNS fractional multiply is compelling for applications
requiring high performance, very wide word operation.

In further contrast, the curve of 2320 shows a best case
software emulated approach, which quickly converges
upward, beyond practicality, after only a few digits wide.

In FIG. 23B, the maximum number of RNS digits is plotted
alongside the number of equivalent bits as the operand width,
Q, increases. Therefore, the x-axis of the graph of FIG. 23C
represents an exponential increase of RNS digits as Q
increases; for Q=8, P=54, and for Q=14, P=1900 according to
Table 8. The number of RNS digits curve 2335 is plotted
along the equivalent bits curve 2325; at each point Q along the
curves, the equivalent number of binary bits 2325 is associ-
ated with a P digit RNS range 2335. It can be seen the
equivalent bits curve 2325 grows faster than the number of
RNS digits curve 2335. The graph of FIG. 23B again illus-
trates the advantage of an RNS AL U multiply over a linear
binary multiply as the number of bits increases; In FIG. 23B,
binary multiply execution is assumed linear, or proportional
to bits, (n), while RNS multiply execution is proportional to P,
the number of RNS digits.

In FIG. 23C, the equivalent number of bits divided by
log,(P) is plotted as curve 2330 and shown with the curves of
FIG. 23B. Again, a very close fit is seen between the relation
(n)/Log(P) 2330 and the value P 2335, over the wide range of
data width (from 54 to 1900 digits wide). If we compare the
order of run time of a binary multiplier that is linear with
respect to the number of bits, n, to the order of run time of the
RNS multiplier plotted as curve 2335, we get a close fit by
curve 2330, implying the approximate relationship of run
time of the RN'S multiplier is approximately n/log(P). We can
make this statement if LUT access time is constant, which for
all memory technology types and speeds in Table 7 show is
the case. (This argument neglects delay stages from intercon-
necting memory stages, but the delay increase factor may be
assumed in the order of log(log(n)) or slower.)

This approximate relationship appears often in the analysis
of Rez-1, and is given as:

P=n/log,(P)

Where,

P=number of RNS digits

n=number of effective bits of' a P digit RNS range

log,(x)=logarithm of x, base two.

Itis easy to doubt the merits of the RNS ALLU, however, one
should consider the following. Since the time to perform
addition and subtraction is one or two clocks for the RNS
ALU, and the time to multiply a fractional value by an integer
value requires only one or two clocks, the overall speed
advantage of the RNS ALU over the binary ALU can be
significant. In comparison to bit oriented binary AL U’s, the
RNS ALU is faster for fractional multiply operation. There-
fore every arithmetic operation is faster using the RNS ALU
by significant margins. In the fairest comparison, binary mul-
tipliers which use semi-systolic structures, and binary digit
groups of Q bits, may exhibit a similar order of run time as the
RNS ALU multiplier; however, again, when it comes to addi-
tion, subtraction, and multiplication by an integer, the RNS
ALU has significant advantages.

Eqn. 18

20

25

30

40

45

50

55

60

65

122

Binary addition and subtraction continues to present chal-
lenges for speed optimization as the number of bits (n)
increases. Also, there is no real advantage of multiplying by
an integer in the binary case, since binary multiplication is
similar regardless if the value is fractional or integer.

To further argue the case of the Rez-1 computer, and the
RNS ALU in general, consider the process of multiplying
pairs of fractional numbers, and forming a sum of products. In
RNS, it is possible to perform much of the calculation in an
intermediate format; working in an intermediate format takes
advantage of the fastest form of multiplication available, that
is, direct integer multiplication in RN'S. When the calculation
and summing of all products is complete, the resulting inter-
mediate value may be normalized using a number of cycles
similar to a single multiplication. Therefore, the average
execution time of each multiply is approximately the time for
one multiplication divided by N, the number of products
summed. The binary number system does have the equivalent
of'an intermediate format, however, there is nothing to gain by
operating in it, since each operation still requires carry.

On the other hand, comparison in the binary system is more
efficient than an RNS comparison, and therefore the types of
algorithms executed on the RNS AL U should be programmed
to reduce the number of comparisons. Likewise, the handling
of signed values may also be less efficient in the RNS ALU,
and therefore care must be placed on optimization of algo-
rithms to reduce the need to explicitly sign extend values. The
method of sign extending values as a secondary and parallel
operation to primary operations such as multiplication is a
novel method used by the Rez-1 RNS ALU. This novel
method allows the RNS ALU to process signed values more
efficiently, and reduces the need to perform sign extend
operations in any algorithm processed with Rez-1.

In summary, the best problems for the Rez-1 RNS AL U are
those requiring high accuracy and large data width, and con-
sist of many calculations, repetitive or otherwise. In addition,
it is desirable that applications not rely on excessive RNS
comparison operations.

Notes Regarding Semi-Systolic Architecture Issues

Digital arithmetic structures employing high fan-out, such
as the use of a crossbar bus, are often referred to as semi-
systolic. These structures suffer from inherent signal delay
due to high signal fan-out, i.e., a high number of signal des-
tinations per signal source. It is often times advantageous to
insert synchronizing steps into such architectures so as to
reduce signal fan-out, and help synchronize and propagate
signals from element to element. This strategy is possible
with the RNS ALU of the present invention due to the highly
parallel operation of the ALU.

The issue of inserting delay stages, and pipeline structures
is an advanced topic, but may be described briefly for com-
pleteness. The data flow of each major operation of the RNS
ALU is examined. Storage elements are inserted into the data
flow at specific points, creating a requirement for an addi-
tional clock cycle. The storage elements are so installed so as
to capitalize on the parallelism of the RNS ALU. For long
operations, this process is efficient. For shorter operations,
this process is more challenging.

In some ALU designs, operation that may require a single
cycle in theory may require more than one cycle. However,
this increase follows a slow progression as the number of
digits increases. In one case, the value of log(n) is used to
compensate the order of execution O(n)=((n)*log(n))/Log
(P), which results in a function that is approximately linear
over large changes in (n). In other words, the constant time of
one clock cycle may become a constant time of two or three

US 9,395,952 B2

123

clock cycles. This is in comparison to digit by digit operation
in binary, which must handle carry, so this is not generally a
big problem.

However, for high performance designs, every clock cycle
is important. Inserting storage elements into the data flow of
the RNS AL U may be accomplished in a manner that utilizes
the RNS ability to operate in parallel, and without carry. For
example, one digit group may operate slightly out of synchro-
nization of another digit group, and status signals from each
staggered digit group may be re-synchronized at the control
unit 200 to interpret the result of an ALU operation. This
organization may be optimized to account for crossbar bus
delays to all digit ALU’s of the entire ALU. In one embodi-
ment, a token type architecture is employed such that a par-
ticular digit group receives a token, and performs a series of
“master” operations, while all other digit blocks serve as a
slave, reacting to the values of the crossbar bus to process
their digits.

For long RNS operations, such as conversions, each digit
group is handed the token in turn. The digit group holding the
token is a “master”, as it contains a sub controller which
begins to process the series of digits contained within the
group. Each slave digit block reacts to the sequence of cross-
bar generated data and commands transmitted by the master
digit group. Control unit 200 manages a plurality of de-
synchronized digit blocks, by re-synchronizing staggered sta-
tus signals into an overall status which may cause a digit
group to abort sub-operations managed by localized digit
block sub-controllers.

Notes Regarding Representational Accuracy

While many RNS systems of the prior art have primarily
focused on the potential speed benefits of RNS addition,
subtraction and multiplication, the ALU unit of the present
invention focuses as much on its inherent precision. For
example, when comparing basic binary fractions with basic
RNS fractions, a key difference emerges. The number of
“denominators” inherent in an RNS fractional representation
is 2°-1, where P equals the number of RNS digits, or RNS
factors. In comparison, a simple binary fraction supports N
number of denominators, where N is the number of bits of the
binary word.

For example, the fractions 2, ¥, Y5, and V7 are exactly
represented by the RNS fractional representation supporting
the modulus 2, 3, 5 and 7. On the other hand, the fractions V2,
V4 and Y are exactly represented in the binary fractional
system of three bits. But combinations of factors are also
supported by the RNS fractional representations, such as: %,
Y10, VAo, etc. In fact, for a fractional RNS number supporting
the modulus {2, 3, 5, 7}, the following fractions are exactly
represented: V2, Y, V5, Ve, 17, Vio, Via, Y1, Vis, VAo, Vs, Vaz,
Y40, Vios, and V210!

The difference in fractional representation is due to the
factors present in the range of each number system. Binary
representation supports a range equal to 2%, where N is the
number of bits. Since the range is a power of two, only
numbers that are a power of two divide evenly into the binary
range. For natural RNS ranges, the range is equal to 2*3%5*
7* ... *P. The RNS range is divisible by many more multiples
of'factors, and this provides more “denominators” in the basic
fractional representation. It is interesting to note that with the
exception of the fraction V2, fractions represented exactly by
the binary system cannot be represented exactly by the natural
RNS system. Likewise, fractions represented exactly in a
natural RNS representation cannot be exactly represented by
a binary fraction. In this respect, the simple natural RNS and
binary fractional representation have opposing characteris-
tics in terms of representing real fractions.

20

25

30

35

40

45

50

55

60

65

124

It would be advantageous if the characteristics of a fixed
radix system (like binary), could be merged with the charac-
teristics of a natural modulus RNS system. The method of the
present invention includes a special modified embodiment
which does exactly this, hereby called a “natural power RNS”
system, or power RNS (PRNS) for short. The PRNS system
of the present invention includes power based modulus in
place of, and/or in addition to, the standard natural RNS
system enclosed herein. Therefore, with the PRNS ALU, the
properties of power based (fixed radix) fractional representa-
tion is combined with that of combination based RNS frac-
tional representation.

For example, the following PRNS system having the
modulus: {2%2%2,3*3 5 7 11, 13} will support the first 15
fractions of the following progression exactly: Y2, V4, Y4, 15,
Ve, Vo, Vs, Yo, Vio, Vi1, Y12, Vi3, Via, and Vis. Inthis example, the
number of RNS digits is P=6, and the maximum number of
fractional denominators is also increased due to two power
based modulus in this example, yielding 4*3%2*-1=191 total
number combinations of unique factors of the power based
residue number system. In comparison, for a simple frac-
tional binary system, only fractions having a power of two in
their denominator, such as Y4, %4 and Y, are exactly repre-
sented, regardless of word length.

Claims of high accuracy must still be verified by math-
ematical analysis. However, one argument for the high
numerical accuracy of the RNS fractional representation is
associated with the multiplication of fractional values by
fractional constants, such as those listed above. The RNS
fractional representation has the ability to exactly represent
many low order fractions. In many calculations, such as itera-
tive and series expansions, there is a need to multiply by
common low order fractional constants, and there is less error
if such low order constants are exactly represented.

The RNS system allows the user to precisely multiply by
fractions such as 4 and 5, where such constants may be
exactly represented in RNS. This provides for faster imple-
mentation of numerical routines, which may converge more
accurately, and more quickly, in terms of the least significant
bits of the result. This may be an advantage in the calculation
of complex functions, such as fractional division, logarithms,
square roots, and many others. For example, equation 14
illustrates an error function which can be minimized by exact
calculation of common low order constants, i.e. which are
often simple ratios of smaller numbers.

From a theoretical standpoint, as a full power based RNS
number system is expanded to infinity, such that Q—co, every
real number being a ratio of any two integers can be repre-
sented exactly. For the binary number system, even as n—>co,
the binary system will not be able to represent any fraction
exactly, other than those numbers whose fraction’s denomi-
nator is a power of two.

TABLE 9
Column 1 Column 3 Column 4
Operand Equivalent Equivalent Column 5
(digit) Column 2 decimal digits - decimal digits- Percentage
width Q RNS digits P natural power based Increase
8 bits 54 101 108 6.93%
9 bits 97 211 223 5.69%
10 bits 172 427 444 3.98%
11 bits 309 862 886 2.78%
12 bits 564 1749 1786 2.12%
13 bits 1028 3502 3550 1.37%
14 bits 1900 7059 7125 0.93%

US 9,395,952 B2

125 126
TABLE 10
Column 5 Column 8 Column 9

Column1l Column2 Column 3 largest Column 6 Column 7 Equiv. Binary
Operand RNS Digits Column4 power Natural RNS Full binary range/

width digits treated as Additional digit Denominators power based fraction ~ denominator
Q P Power based subdigits modulus 2 (RNS digs/4) denominators bits range
8 bits 54 6 15 13 2713 2728 90 3.21
9 bits 97 8 19 19 2724 2743 185 4.30
10 bits 172 11 25 31 2743 2768 369 5.43
11 bits 309 14 30 43 2777 2 107 736 6.88
12 bits 564 18 39 61 27141 27180 1481 8.23
13 bits 1028 24 49 89 27257 27306 2949 9.64
14 bits 1900 31 60 127 27475 27535 5918 11.06

15

Table 9 shows a comparison of a natural RNS range and a
full power based RNS range for various values of Q (i.e., Q
limits the maximum number of RNS digits). Column 5 of
Table 9 shows the percentage increase in range as a result of
moving from anatural RNS system to a full power based RNS
system. By full, it is meant the largest power of any digit must
be represented, but within the bit width Q. It can be seen in
column 5, for 54 RNS digits, going with a full power based
digit system provides nearly 7% more range in terms of
equivalent decimal digits. In other words, for the case of 54
digits, we obtain one hundred eight (108) decimal digits of
range as opposed to one hundred one (101) equivalent deci-
mal digits of range. Seven additional decimal digits results in
a range that is up to ten million times larger.

As Q increases, the effective increase in equivalent decimal
digits begins to drop. In column 5 of Table 9, the percentage
increase in digits when moving from a natural to a power
based system gets progressively less. In the case of Q=14, the
equivalent decimal digits for the natural system is (7059) and
the equivalent decimal digits for the power based system is
(7125), resulting in less than a 1% increase in effective digit
width. Therefore, in terms of expanding the range of the ALU
while holding Q fixed, the use of a power based RNS system
gets progressively less useful.

However, using a full power-based RNS (PRNS) number
system has other advantages. One advantage of using a PRNS
based RNS ALU is the increased number of denominators
that result in the fractional representation. Table 10 illustrates
some of these points. In column 3 of Table 10, the maximum
number of digits that may support a power based modulus is
listed. Also, in column 4, the total number of additional sub-
digits is listed. (By “additional”, we are indicating that the
digit position itself is already counted, so that a squared
modulus indicates the digit itself plus one additional sub-digit
in this context.) Column 5 indicates the largest natural modu-
lus that can be converted to a power based modulus given an
operand width limit Q. For Rez-1, the operand width is 10
bits, therefore, the approximate number of denominators for
a basic fractional representation is 2* if a natural system is
used, and approximately 2°® if a full PRNS system is used.

The formula for the number of denominators of a natural
fractional RNS representation of F digits equals the number
of n-tuple combinations of factors of the fractional RNS
range, n ranging from one to F, and is given by:

D=2F-1 Eqn. 19

Where F equals the number of digits reserved for the frac-
tional range.

In terms of theoretical denominators of a natural RNS
fractional representation, if we let F be the number of frac-

25

40

45

60

65

tional digits, then using the relationship of equation 18, we
can approximate the number of denominators D with respect
to the fractional range R

D=2F)_1 =/ (ogF)))_1=pUeg@*3*5 ...
olog F(R)

Where,

D=number of fractional denominators

R=R ~fractional range=2*3*5% . .. *m .

F=number of fractional digits

And the function log() refers to log,() and log F() refers
to log,()

The formula used in Table 10 for number of denominators
of'a power based RNS ALU is:

D=2 @/a+5)

) log(F))—
Eqgn. 20

Eqn. 21

D=number of fractional denominators

P=number of natural RNS digits

S=number of additional sub-digits

Where V4 of the digits is reserved for the fractional portion
of' the representation.

In Table 10, we are assuming a basic fractional represen-
tation for Rez-1. Of the entire machine word, one quarter is
reserved for the fractional range, another quarter of the
machine word is reserved for the integer range, and the
remaining half of the digits is the redundant range. (We are
assuming an RNS system that carries redundant values in its
fractional notation). The information in Table 10 is approxi-
mate, since we are assuming that each digit adds approxi-
mately the same amount of range.

One advantage of power based modulus is they occupy the
least valued prime digits of the natural RNS sequence. There-
fore, if using the first quarter RNS digits for the fractional
range, and the number of power digits occupies the first digit
positions (all within the first quarter of digits), then all power
digits of the ALU are assigned to the fractional range. Rez-1
employs this type of representation by design; that is, all
power based RNS modulus may be reserved for the fractional
range of the fixed point or sliding point fractional number.
Therefore, using power based modulus has a dramatic
increase in the number of denominators supported by the
fractional representation.

In Table 10, column 6 lists the number of possible denomi-
nators by indicating the number of binary bits required to
represent that number. For example, if 54 digits are supported
(Q=8), then the number of denominators supported using a
natural RNS system is 2*, or 13 binary bits worth of range.
For a 54 digit RNS ALU using a full power based digit ALU,
the number of possible fractional denominators increases to
228 which is 28 bits of range, as shown in column 7.

The number of denominators expressed as a ratio to the
RNS range decreases as P, the number of RNS digits,
increases. This is to be expected, since the base of the log

US 9,395,952 B2

127

function in equation 20 increases as the number of RNS digits
increases. Also, from a number theory perspective, it is
counter intuitive to believe the number of perfect denomina-
tors will track as a fixed ratio an increase in range. However,
it is interesting to know the change in this ratio as the number
of'digits increases. The inverse can be plotted, that s, the ratio
of binary range to the range of the number of denominators.
This ratio tabulated in column 9 of Table 10 using the equiva-
lent number of bits for the fractional range in column 8, and
the number of bits to represent the number of denominators,
which is the exponent value from column 7 of table 10. This
ratio versus Q changes in a nearly linear fashion.

FIG. 23D plots the fractional range in bits versus the num-
ber of denominators in bits wide for each value Q of Table 10.
Results are tabulated for the full power based ALU version. At
Q=8 bits, the equivalent fractional range is about 90 bits. The
number of denominators is a number about 28 bits wide.
Therefore, the ratio in column 9 is 3.18. As the following rows
of the Table 10 show, as Q increases, so does the ratio in
column 9.

Specifically, the ratio of the logarithm of range to the loga-
rithm of number of denominators increases by average about
1.33 per unit increase in Q. The FIG. 23D represents an
extraordinary large number of denominators, even as the
range increases. The number of RNS denominators is indeed
much larger than the number of binary denominators in a
binary fractional representation, and helps to illustrate why
the RNS fractional representation may be more accurate in
general.

In the case of Rez-1, the number of denominators for the
fractional representation for is 2°%, and the fractional range is
approximately 2°%; the ratio of the logarithm of range to
logarithm of denominators is 5.39.

What is claimed is:

1. A residue number arithmetic logic unit that performs
normalized fractional multiplication in residue number for-
mat comprising:

a parallel array of digit processing units, wherein each of
the digit processing units perform one or more modular
arithmetic operations on one or more sets of operands
simultaneously to generate one or more status condi-
tions as a result;

a status bus which transmits each of the one or more status
conditions when the status condition is not a digit skip
condition;

a data bus configured to transmit one or more digit and
modulus operands to and from each of the plurality of
digit processing units;

a LIFO register coupled to the data bus that stores and
transmits mixed radix digits;

one or more storage registers that transmit and receive
fractional residue values from the parallel array of digit
processing units;

a fraction point position register configured to identify one
or more digit modulus values as fractionally associated
digits, wherein the product of the one or more digit
modulus values define a fractional range in residue num-
ber format;

a controller in communication with the parallel array of
digit processing units, the LIFO register, the fraction
point position register, the data bus, via control signal
paths and the status bus, the controller configured to
transmit one or more control signals to instruct one or
more of'the plurality of digit processing units to multiply
a first fractional residue value to a second fractional
residue value by:

25

30

35

40

45

50

55

60

65

128

executing one or more first modular arithmetic operations
comprising multiply the first fractional residue value to
the second fractional residue value to create a non-nor-
malized intermediate product in the residue number for-
mat;

complementing the non-normalized intermediate product

thereby creating a non-normalized product complement
in residue format;
converting the one or more fractionally associated digits to
create one or more fractionally associated digits; and

after conversion of the one or more fractionally associated
digits, executing one or more second modular arithmetic
operations comprising converting the non-normalized
intermediate product and complement to a mixed radix
number format;
wherein the controller:
compares the mixed radix product and mixed radix prod-
uct complement;
selects the mixed radix product if it is lesser than the
complement, and to select the complement if lesser
than the mixed radix product, thereby creating one or
more selected mixed radix digits;
stores each of the one or more selected mixed radix
digits in the LIFO register when the mixed radix digit
is not a fractionally associated digit, the one or more
selected mixed radix digits forming a normalized
mixed radix product in mixed radix format;
retrieves the normalized mixed radix product from the
LIFO register and converts the normalized mixed
radix product to a residue number format, thereby
creating a normalized residue product in the residue
number format;
complements the normalized residue product if the
mixed radix product is greater than the complement;
and
increments the normalized residue product if the one or
more fractionally associated mixed radix digits are
greater than a predefined threshold, wherein a
rounded normalized product in residue format is cre-
ated as a result.
2. The residue number arithmetic logic unit of claim 1,
wherein the controller is further configured to select the one
or more commands prior to their transmission based on the
output of one or more of the plurality of digit processing units.
3. The residue number arithmetic logic unit of claim 1
further comprising the ability to normalize an intermediate
fractional product in residue number format, wherein the one
or more second modular arithmetic operations comprise:
converting the intermediate product to a mixed radix num-
ber format, comprising converting all fractionally asso-
ciated digits first, thereby creating an intermediate
mixed radix product, the intermediate mixed radix prod-
uct representing an intermediate mixed radix result;

truncating said intermediate mixed radix product by one or
more digits, thereby creating a truncated mixed radix
product, the truncated mixed radix product representing
a mixed radix result, said one or more digits comprising
all fractionally associated digits;

wherein the normalized fractional product comprise the

truncated mixed radix product after conversion to the
residue number format.

4. The residue number arithmetic logic unit of claim 1
further comprising the ability to perform a multiply and accu-
mulate of fractional values in reside number format by per-
forming, one or more third modular arithmetic operations
comprising:

US 9,395,952 B2

129

multiplying a first fractional residue value to a second
fractional residue value [representations in the residue
number data] thereby creating a non-normalized inter-
mediate product in residue number format;

scaling a third fractional residue value by on the fractional

range, thereby creating a non-normalized scaled addi-
tive operand;
adding the non-normalized intermediate product to the
scaled additive operand, thereby creating a non-normal-
ized intermediate product and sum in residue format;

converting said non-normalized intermediate product and
sum to mixed radix number format, comprising convert-
ing all fractionally associated digits first, thereby creat-
ing a non-normalized intermediate mixed radix product
and sum; and

truncating said intermediate mixed radix product and sum

by one or more digits, said one or more digits comprising
all fractionally associated digits, thereby creating a nor-
malized mixed radix product and sum;

wherein the multiply and accumulate result comprise the

normalized mixed radix product and sum after conver-
sion to the residue number format.

5. The residue number arithmetic logic unit of claim 1
further comprising the ability to scale a divisor operand in
fractional residue format to a value less than or equal to one by
performing one or more third modular arithmetic operations
comprising:

storing a copy of the divisor operand in residue format,

thereby creating a divisor copy;

converting the divisor to a mixed radix number format

comprising one or more mixed radix digits representing
a divisor in mixed radix format;

20

25

30

130

wherein the controller unit measures the mixed radix divi-
sor and selectively generates and transmits one or more
control signals based on this measurement, comprising:
setting the fraction point position register to the position

of the most significant mixed radix digit thereby cre-
ating a non-normal fraction point position; and
restoring the divisor copy;

wherein the arithmetic logic unit is responsive to a non-
normal fraction point position, thereby creating a scaled,
non-normalized residue divisor.

6. The arithmetic logic unit of claim 1 further comprising
the ability to perform multiplication on pairs of fractional
data in residue format and further sum the products thereby
creating a product summation in fractional residue format by
performing one or more third modular arithmetic operations
comprising:

multiplying each pair of residue number data thereby cre-
ating a plurality of intermediate products in residue for-
mat;

summing the plurality of intermediate products, thereby
creating an intermediate product sum in residue format;

converting the intermediate product sum to mixed radix
format, thereby creating an intermediate mixed radix
product sum; and

truncating said intermediate mixed radix product sum by
one or more digits, said one or more digits comprising all
fractionally associated digits, thereby creating a normal-
ized mixed radix product sum;

wherein the product summation result comprise the nor-
malized mixed radix product sum after conversion to
residue number format.

#* #* #* #* #*

