
US 20210382718A1
MT IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0382718 A1

Agrawal et al . (43) Pub . Date : Dec. 9 , 2021

(54) CONTROLLING PREDICTION
FUNCTIONAL BLOCKS USED BY A
BRANCH PREDICTOR IN A PROCESSOR

(52) U.S. CI .
CPC G06F 9/30032 (2013.01) ; G06F 9/30058

(2013.01) ; G06F 9/3806 (2013.01)

(71) Applicant : Advanced Micro Devices , Inc. , Santa
Clara , CA (US)

(72) Inventors : Varun Agrawal , Acton , MA (US) ;
John Kalamatianos , Arlington , MA
(US)

(21) Appl . No .: 16 / 895,825

(57) ABSTRACT

An electronic device includes a processor , a branch predictor
in the processor , and a predictor controller in the processor .
The branch predictor includes multiple prediction functional
blocks , each prediction functional block configured for
generating predictions for control transfer instructions
(CTI) in program code based on respective prediction
information , the branch predictor configured to select , from
among predictions generated by the prediction functional
blocks for each CTI , a selected prediction to be used for that
CTI . The predictor controller keeps a record of prediction
functional blocks from which the branch predictor previ
ously selected predictions for CTIs . The predictor controller
uses information from the record for controlling which
prediction functional blocks are used by the branch predictor
for generating predictions for CTIS .

(22) Filed : Jun . 8 , 2020 a

Publication Classification

(51) Int . Cl .
GOOF 9/30 (2006.01)
G06F 9/38 (2006.01)

PREDICTOR
SELECT
VALUE
326

PROGRAM
COUNTER

320

HISTORY
REGISTERS

314
BRANCH PREDICTOR 300

BASE
PREDICTOR

302

TAGGED
PREDICTOR

304

TAGGED
PREDICTOR

306

TAGGED
PREDICTOR

308

CONTROLLER
324

SELECTOR
316

LOOP
PREDICTOR

310

STATISTICAL
CORRECTOR

312

SELECTOR
318

PREDICTION
FUNCTIONAL

BLOCK
IDENTIFIER

328

PROGRAM
COUNTER

320

PREDICTION
OUTPUT

322

Patent Application Publication Dec. 9 , 2021 Sheet 1 of 12 US 2021/0382718 A1

PROCESSOR
102

MEMORY
104

ELECTRONIC DEVICE 100

FIG . 1

Patent Application Publication Dec. 9 , 2021 Sheet 2 of 12 US 2021/0382718 A1

TO / FROM
MEMORY

104
PROCESSOR

102

L1 INSTRUCTION CACHE
208

FRONT END
SUBSYSTEM

200

NPC
216

INSTRUCTION
FETCH / DECODE

206

BPU
218 UOP

QUEUE
212

PCTRL
220

DISPATCH
214

L2
CACHE
210

BACK END
SUBSYSTEM

202
RETIRE
226

INTEGER
EXECUTION

UNIT
222

FLOATING
POINT

EXECUTION
UNIT
224 MEMORY

SUBSYSTEM
204

::
L1 DATA CACHE

228

FIG . 2

Patent Application Publication Dec. 9 , 2021 Sheet 3 of 12 US 2021/0382718 A1

PREDICTOR
SELECT
VALUE
326

PROGRAM
COUNTER

320

HISTORY
REGISTERS

314
BRANCH PREDICTOR 300

BASE
PREDICTOR

302

TAGGED
PREDICTOR

304

TAGGED
PREDICTOR

306

TAGGED
PREDICTOR

308

CONTROLLER
324

SELECTOR
316

LOOP
PREDICTOR

310

STATISTICAL
CORRECTOR

312

SELECTOR
318

PREDICTION
FUNCTIONAL

BLOCK
IDENTIFIER

328

PROGRAM
COUNTER

320

PREDICTION
OUTPUT

322

FIG . 3

Patent Application Publication Dec. 9 , 2021 Sheet 4 of 12 US 2021/0382718 A1

PROGRAM
COUNTER

404

PREDICTION
FUNCTIONAL BLOCK

IDENTIFIER
406

CONTROL
402

RECORD
400

PREDICTOR
SELECT
VALUE
408

MISPREDICT
INFORMATION

410 PREDICTOR CONTROLLER 220

FIG . 4

CONTROL
402

SET
514

RECORD
400

ENTRY
500

TAG GEN
508

TAG 502 LISTING 504 CC 506

TAG 502 LISTING 504 CC 506 SEARCH
510 TAG 502 LISTING 504 CC 506

TRAIN
512 TAG 502 LISTING 504 CC 506

PREDICTOR CONTROLLER 220

FIG . 5

Patent Application Publication Dec. 9 , 2021 Sheet 5 of 12 US 2021/0382718 A1

CONTROL
402

RECORD
400

SUB - TABLE
600

ENTRY
604

FV 606 LISTING 608 INDEX GEN
610 FV 606 LISTING 608

: :
FV 606 LISTING 608

INDEX GEN
612

FV 606 LISTING 608
SEARCH

614 FV 606 LISTING 608

:
TRAIN
616 FV 606 LISTING 608

PREDICTOR CONTROLLER 220 SUB - TABLE
602

FIG . 6

Patent Application Publication Dec. 9 , 2021 Sheet 6 of 12 US 2021/0382718 A1

START

KEEP A RECORD OF PREDICTION
FUNCTIONAL BLOCKS FROM WHICH A
BRANCH PREDICTOR PREVIOUSLY
SELECTED PREDICTIONS FOR

CONTROL TRANSFER INSTRUCTIONS
(CTIS)
700

USE INFORMATION FROM THE
RECORD FOR CONTROLLING WHICH
PREDICTION FUNCTIONAL BLOCKS

ARE USED BY THE BRANCH
PREDICTOR FOR GENERATING

PREDICTIONS FOR CTIS
702

END

FIG . 7

Patent Application Publication Dec. 9 , 2021 Sheet 7 of 12 US 2021/0382718 A1

START

5 RECEIVE , FROM A BRANCH PREDICTOR ,
AN INDICATION OF A PREDICTION

FUNCTIONAL BLOCK FROM WHICH THE
BRANCH PREDICTOR SELECTED A

PREDICTION FOR A CONTROL TRANSFER
INSTRUCTION (CTI)

800

YES ENTRY IN TABLE
HAVE INFORMATION

FOR THE CTI ?
802

UPDATE , IN AN EXISTING ENTRY IN THE
TABLE , THE LISTING OF THE PREDICTION
FUNCTIONAL BLOCKS TO IDENTIFY THE

PREDICTION FUNCTIONAL BLOCK
804

NO

ADD , TO AN AVAILABLE ENTRY IN THE
TABLE , A TAG FOR THE CTI AND A LISTING

THAT INCLUDES THE PREDICTION
FUNCTIONAL BLOCK

808

INCREASE , IN THE EXISTING ENTRY IN THE
TABLE , A VALUE OF A CONFIDENCE

COUNTER
806

SET , IN THE AVAILABLE ENTRY IN THE
TABLE , A CONFIDENCE COUNTER TO AN

INITIAL VALUE
810

END

FIG . 8

Patent Application Publication Dec. 9 , 2021 Sheet 8 of 12 US 2021/0382718 A1

START

RECEIVE , FROM A RETIRE UNIT , AN
INDICATION OF A MISPREDICTION AND AN
IDENTIFIER FOR A CONTROL TRANSFER
INSTRUCTION (CTI) FOR WHICH THE

MISPREDICTION OCCURRED
900

NO ENTRY IN TABLE
HAVE INFORMATION

FOR THE CTI ?
902

YES

DECREASE , IN THE ENTRY IN THE TABLE ,
A CONFIDENCE COUNTER VALUE

904
END

FIG . 9

Patent Application Publication Dec. 9 , 2021 Sheet 9 of 12 US 2021/0382718 A1

START

RECEIVE AN IDENTIFIER FOR A CONTROL
TRANSFER INSTRUCTION (CTI) FOR WHICH

A PREDICTION IS TO BE MADE
1000

NO ENTRY
IN TABLE HAVE

USABLE INFORMATION
FOR THE CTI ?

1002

CAUSE THE BRANCH PREDICTOR TO
GENERATE PREDICTIONS USING ALL OF
THE PREDICTION FUNCTIONAL BLOCKS

1008

YES

1 ACQUIRE , FROM THE ENTRY , A LISTING OF
THE PREDICTION FUNCTIONAL BLOCKS
FROM WHICH THE BRANCH PREDICTOR
PREVIOUSLY SELECTED PREDICTIONS

1004

CAUSE THE BRANCH PREDICTOR TO
GENERATE PREDICTIONS USING ONLY
THE PREDICTION FUNCTIONAL BLOCKS

IDENTIFIED IN THE LISTING
1006

END

FIG . 10

Patent Application Publication Dec. 9 , 2021 Sheet 10 of 12 US 2021/0382718 A1

START

RECEIVE , FROM A BRANCH PREDICTOR ,
AN INDICATION OF A PREDICTION

FUNCTIONAL BLOCK FROM WHICH THE
BRANCH PREDICTOR SELECTED A

PREDICTION FOR A CONTROL TRANSFER
INSTRUCTION (CTI)

1100

GENERATE , USING A HASH FUNCTION FOR
EACH SUB - TABLE OF A SET OF SUB

TABLES , AN INDEX INTO THAT SUB - TABLE
1102

INCREASE A FREQUENCY VALUE FOR AN
ENTRY IN EACH SUB - TABLE INDICATED BY

THE RESPECTIVE INDEX
1104

UPDATE A LISTING IN THE ENTRY IN EACH
SUB - TABLE INDICATED BY THE

RESPECTIVE INDEX TO INCLUDE AN
INDICATION OF THE PREDICTION

FUNCTIONAL BLOCK
1106

END

FIG . 11

Patent Application Publication Dec. 9 , 2021 Sheet 11 of 12 US 2021/0382718 A1

START

RECEIVE , FROM A RETIRE UNIT , AN
INDICATION OF A MISPREDICTION AND AN

IDENTIFIER ASSOCIATED WITH A
CONTROL TRANSFER INSTRUCTION (CTI)

FOR WHICH THE MISPREDICTION
OCCURRED

1200

GENERATE , USING A HASH FUNCTION FOR
EACH SUB - TABLE OF A SET OF SUB

TABLES IN A TABLE , AN INDEX INTO THAT
SUB - TABLE

1202

REDUCE A FREQUENCY VALUE FOR AN
ENTRY IN EACH SUB - TABLE INDICATED BY

THE RESPECTIVE INDEX
1204

END

FIG . 12

Patent Application Publication Dec. 9 , 2021 Sheet 12 of 12 US 2021/0382718 A1

START

RECEIVE AN IDENTIFIER FOR A CONTROL
TRANSFER INSTRUCTION (CTI) FOR WHICH

A PREDICTION IS TO BE MADE
1300

USE A HASH FUNCTION FOR EACH SUB
TABLE IN A SET OF SUB - TABLES TO

GENERATE , FROM THE IDENTIFIER FOR
THE CTI , AN INDEX INTO THAT SUB - TABLE

1302

DETERMINE A FREQUENCY VALUE FOR AN
ENTRY IN EACH SUB - TABLE INDICATED BY

THE RESPECTIVE INDEX
1304

NO ALL FREQUENCY
VALUES ABOVE A THRESHOLD ?

1306

CAUSE THE BRANCH PREDICTOR TO
GENERATE PREDICTIONS USING ALL OF
THE PREDICTION FUNCTIONAL BLOCKS

1312

YES

GENERATE , FROM A LISTING IN AN ENTRY
IN EACH SUB - TABLE INDICATED BY THE

RESPECTIVE INDEX , A COMBINED LISTING
OF THE PREDICTION FUNCTIONAL BLOCKS
FROM WHICH THE BRANCH PREDICTOR
PREVIOUSLY SELECTED PREDICTIONS

1308

CAUSE THE BRANCH PREDICTOR TO
GENERATE PREDICTIONS USING ONLY
THE PREDICTION FUNCTIONAL BLOCKS
IDENTIFIED IN THE COMBINED LISTING

1310

END

FIG . 13

US 2021/0382718 Al Dec. 9 , 2021
1

CONTROLLING PREDICTION
FUNCTIONAL BLOCKS USED BY A

BRANCH PREDICTOR IN A PROCESSOR

dictor ignores / discards all of the other predictions . This
means that the computational effort made and electrical
power consumed in generating the other predictions goes to
waste . Exacerbating this problem is the fact that CTIs can be
repeatedly executed (e.g. , in program code loops , com
monly - used libraries and functions , etc.) and thus the
branch predictor can ignore / discard many generated predic
tions for the same CTIS .

GOVERNMENT RIGHTS

[0001] This invention was made with government support
under the PathForward Project with Lawrence Livermore
National Laboratory (prime contract no . DE - AC52
07NA27344 , subcontract no . ?620717) awarded by the
Department of Energy (DOE) . The government has certain
rights in this invention .

BRIEF DESCRIPTION OF THE FIGURES

BACKGROUND

Related Art

a

[0002] Many modern electronic devices include proces
sors (e.g. , central processing units , etc.) that execute instruc
tions in program code (e.g. , applications , operating systems ,
etc.) that cause the processor — and thus the electronic
device — to perform associated operations . Some of these
processors include functional blocks that perform operations
for improving the efficiency of executing instructions . For
example , processors can include predictors that are used to
predict paths or flows of instruction execution (i.e. ,
sequences of addresses in memory from which instructions
are to be fetched for execution) based on records of one or
more prior instances of executing instructions . One common
predictor is a branch predictor , which predicts the resolution
of control transfer instructions (CTIS) such as jumps and
returns in program code . In operation , as CTIs are executed ,
branch predictors record the behavior of CTIs , such as the
" taken ” or “ not taken ” direction resolutions of CTIs , the
target instructions for taken CTIs , etc. Upon again encoun
tering CTIs while executing program code , the branch
predictors use the recorded behavior of the CTIs for pre
dicting the resolutions of present executions of the CTIS .
Based on the predicted resolutions , the processor specula
tively fetches and prepares instructions for execution along
a predicted path following the CTI while the CTI itself is
prepared and executed . In contrast to processors that wait to
determine resolutions of CTIs before proceeding or specu
latively follow fixed selections of paths from CTIs , proces
sors with branch predictors can speculatively follow paths
from CTIs that are more likely to be the paths that are
followed when the CTIs are executed , resulting in lower
delays and less recovery operations .
[0003] Although branch predictors can help to make the
execution of program code more efficient , the branch pre
dictors themselves can be inefficient . For example , in some
cases , branch predictors include multiple prediction func
tional blocks , each of which is used for generating predic
tions for CTIs based on corresponding prediction informa
tion . For example , one such branch predictor is a tagged
geometric (TAGE) branch predictor , which includes predic
tion functional blocks such as a base predictor , one or more
tagged predictors , a loop predictor , and a statistical corrector
predictor . In branch predictors with multiple prediction
functional blocks , each of the prediction functional blocks
generates or at least attempts to generate a prediction for
each CTI . The branch predictor then selects , based on a
selection policy , one of the predictions from among the
generated predictions to be used as the prediction for that
CTI . Because only one prediction is used , the branch pre

[0004] FIG . 1 presents a block diagram illustrating an
electronic device in accordance with some embodiments .
[0005) FIG . 2 presents a block diagram illustrating a
processor in accordance with some embodiments .
[0006] FIG . 3 presents a block diagram illustrating a
branch predictor in accordance with some embodiments .
[0007] FIG . 4 presents a block diagram illustrating a
predictor controller in accordance with some embodiments .
[0008] FIG . 5 presents a block diagram illustrating a
tag - indexed record in accordance with some embodiments .
[0009] FIG . 6 presents a block diagram illustrating sub
tables in a record in accordance with some embodiments .
[0010] FIG . 7 presents a flowchart illustrating a process
for controlling prediction functional blocks used by a branch
predictor for generating predictions for CTIs in accordance
with some embodiments .
[0011] FIG . 8 presents a flowchart illustrating a process
for updating information in a tag - indexed table in a predictor
controller in accordance with some embodiments .
[0012] FIG . 9 presents a flowchart illustrating a process
for updating confidence counters in a tag - indexed table in a
predictor controller in accordance with some embodiments .
[0013] FIG . 10 presents a flowchart illustrating a process
for using information from a tag - indexed table to control
prediction functional blocks that are used by a branch
predictor for generating predictions for CTIs in accordance
with some embodiments .
[0014] FIG . 11 presents a flowchart illustrating a process
for updating information in sub - tables in a predictor con
troller in accordance with some embodiments .
[0015] FIG . 12 presents a flowchart illustrating a process
for updating frequency values in sub - tables in a predictor
controller in accordance with some embodiments .
[0016] FIG . 13 presents a flowchart illustrating a process
for using information from sub - tables to control prediction
functional blocks that are used by a branch predictor for
generating predictions for CTIs in accordance with some
embodiments .
[0017] Throughout the figures and the description , like
reference numerals refer to the same figure elements .

DETAILED DESCRIPTION

a

[0018] The following description is presented to enable
any person skilled in the art to make and use the described
embodiments and is provided in the context of a particular
application and its requirements . Various modifications to
the described embodiments will be readily apparent to those
skilled in the art , and the general principles described herein
may be applied to other embodiments and applications .
Thus , the described embodiments are not limited to the
embodiments shown , but are to be accorded the widest scope
consistent with the principles and features described herein .

US 2021/0382718 A1 Dec. 9 , 2021
2

Terminology prediction window includes all of the bytes of a cache line
(or other block of memory) from a starting byte up to and
including the CTI — and may include all of the bytes of the
cache line (or other block of memory) when there is no CTI .
Depending on prediction window size (e.g. , in bytes) and
instruction size (s) , a prediction window can include multiple
instructions . For example , a 64 - byte prediction window
includes 16 four byte instructions .

Overview

[0019] In the following description , various terms are used
for describing embodiments . The following is a simplified
and general description of some of these terms . Note that
these terms may have significant additional aspects that are
not recited herein for clarity and brevity and thus the
description is not intended to limit these terms .
[0020] Functional block : functional block refers to a set of
interrelated circuitry such as integrated circuit circuitry ,
discrete circuitry , etc. The circuitry is “ interrelated ” in that
circuit elements in the circuitry share at least one property .
For example , the circuitry may be included in , fabricated on ,
or otherwise coupled to a particular integrated circuit chip ,
substrate , circuit board , or portion thereof , may be involved
in the performance of specified operations (e.g. , computa
tional or processing operations , memory operations , etc.) ,
may be controlled by a common control element and / or a
common clock , etc. The circuitry of a functional block can
have any number of circuit elements , from a single circuit
element (e.g. , a single integrated circuit logic gate or discrete
circuit element) to millions or billions of circuit elements
(e.g. , an integrated circuit memory) . In some embodiments ,
functional blocks perform operations in hardware , ” using
circuitry that performs the operations without executing

a

program code .

a

[0021] Control transfer instruction : a control transfer
instruction (CTI) is an instruction in program code that ,
when executed , causes or can cause a jump , displacement , or
discontinuity in an otherwise sequential flow of instruction
execution . CTIs include " unconditional ” CTIs such as jump ,
call , return , etc. , which automatically cause instruction
execution to jump from instructions at first memory
addresses , the CTI's , to instructions , or “ target instructions , ”
at second memory addresses . CTIs also include " condi
tional ” CTIs such as conditional jump instructions , etc. ,
which include , are associated with , or depend on conditions
(e.g. , greater than , equal to , non - zero , etc.) . When the
corresponding condition is satisfied (e.g. , true , false , etc.) , a
conditional CTI causes a jump in instruction execution from
the conditional CTI to an inst ion at a second memory
address . When the condition is not satisfied , however ,
instruction execution continues sequentially following the
conditional CTI . For example , a conditional branch instruc
tion can be implemented using a condition checking instruc
tion and a conditional CTI (or a single combined instruc
tion) , with the branch being “ taken , ” and instruction
execution jumping to the target instruction , when the con
dition is met , and the branch instruction being " not taken ” or
“ falling through , ” and instruction execution continuing
sequentially , when the condition is not met . CTIs include
“ indirect " unconditional and conditional CTIs , for which
addresses of target instructions are specified at runtime . For
example , an address of a target instruction of an indirect CTI
can be computed and stored in a processor register or other
location by a prior instruction , and then used to determine
the address to which instruction execution is to jump upon
executing the indirect CTI (assuming that the indirect CTI ,
if it is a conditional indirect CTI , is taken) .
[0022] Prediction window : prediction windows are blocks
or sets of instructions that are fetched from one or more
memories (e.g. , a cache memory , a main memory , etc.) as a
group and prepared for execution by a processor . In some
embodiments , prediction windows are defined or specified
based on CTIs . For example , in some embodiments , a

[0023] In the described embodiments , an electronic device
includes a processor that executes instructions from program
code (e.g. , a central processing unit , graphics processing
unit , etc.) . The processor includes a branch prediction unit
that generates predictions of resolutions of control transfer
instructions (CTIS) in program code based on records of
previous resolutions of the CTIs . For example , the branch
prediction unit may generate direction predictions (i.e. ,
whether the CTIs will have a " taken ” or “ not taken ” direc
tion when executed by the processor) , address predictions ,
and / or other predictions for CTIs . The predicted resolutions
generated by the branch prediction unit are used by the
processor for speculatively fetching instructions following
the CTIs for execution .
[0024] In the described embodiments , the branch predic
tion unit includes a branch predictor that generates predic
tions of resolutions for CTIs . The branch predictor includes
a number of separate prediction functional blocks , each
prediction functional block generating predictions for CTIS
based on respective prediction information . For example , in
some embodiments , the branch predictor is a tagged geo
metric (TAGE) branch predictor with prediction functional
blocks that include a base predictor and one or more tagged
predictors and possibly a loop predictor and / or a statistical
corrector . For a TAGE branch predictor , each of the predic
tion functional blocks makes direction predictions , or alters
direction predictions made by other prediction functional
block (s) , based on prediction information about previous
resolutions of CTIs or other properties of instructions in
program code kept by that prediction functional block .
[0025] In some embodiments , when generating predic
tions for a given CTI , each of two or more and possibly all
of — the prediction functional blocks in the branch predictor
generate predictions for the given CTI . The branch predictor
then selects a prediction from among the predictions gen
erated by the prediction functional blocks to be output from
the branch predictor . For these operations , the branch pre
dictor first communicates an identifier for the given CTI
(e.g. , a program counter for a prediction window in which
the given CTI is included) to each of the two or more of the
prediction functional blocks . Each of the two or more
prediction functional blocks then attempts to generate a
prediction for the given CTI . The branch predictor next
receives the generated predictions from some or all of the
two or more prediction functional blocks and selects one of
the generated predictions as a prediction to be output from
the branch predictor in accordance with a selection policy .
The branch predictor therefore selects , in view of the selec
tion policy , a prediction from among predictions generated
by the prediction functional blocks to be used for subsequent
operations .
[0026] In the described embodiments , the processor
includes a predictor controller that controls which prediction
functional blocks are used by the branch predictor for

US 2021/0382718 A1 Dec. 9 , 2021
3

generating predictions for CTIs . For this operation , the
predictor controller keeps a record of prediction functional
blocks from which the branch predictor has previously
selected generated predictions for CTIs . Upon encountering
a given CTI while executing program code , the predictor
controller determines , based on information in the record ,
the prediction functional block (s) that were previously used
by the branch predictor for generating direction predictions
for the given CTI . The predictor controller next generates ,
based on the information in the record , a predictor select
value that identifies the prediction functional block (s) that
were previously used by the branch predictor and commu
nicates the predictor select value to the branch predictor . The
branch predictor then uses only the prediction functional
block (s) identified in the predictor select value for generat
ing predictions for the given CTI — and selects the prediction
to be output from the branch predictor from among the
generated predictions . When the record , however , does not
include usable information for the given CTI , the prediction
functional block generates and communicates a default
predictor select value that identifies all (or a particular group
of) the prediction functional blocks . In this case , the branch
predictor uses all (or the particular group of) the prediction
functional blocks for generating predictions for the given
CTI . In this way , the predictor controller can limit , when the
record includes usable information for CTIs , the prediction
functional block (s) that are used by the branch predictor for
generating predictions for CTIs to those that prediction
functional block (s) that were previously used by the branch
predictor .
[0027] In some embodiments , the record kept by the
predictor controller includes a tag - indexed table . The table
includes a set of entries , each entry used for storing tags
associated with CTIs and listings of prediction functional
blocks from which the branch predictor previously selected
predictions for the CTIs associated with the tags . In these
embodiments , keeping the record of the prediction func
tional blocks includes either updating a listing of the pre
diction functional blocks in an existing entry or adding a
new entry for which the listing includes a prediction func
tional block from which a prediction was selected for a given
CTI . On the other hand , when using information from the
record of the prediction functional blocks , before the branch
predictor makes a branch prediction for a given CTI , when
the table includes an existing entry in which is stored a tag
that matches a tag associated with the given CTI , the
predictor controller acquires , from the existing entry , the
listing of the prediction functional blocks . The predictor
controller then uses the listing to generate a predictor select
value that identifies the prediction functional block (s) that
were previously used by the branch predictor and commu
nicates the predictor select value to the branch predictor to
be used for generating predictions for the given CTI as
described above .
[0028] In some embodiments , the entries in the above
described tag - indexed table are also used for storing confi
dence counters . When adding a new entry to the table for a
given CTI , the predictor controller sets the confidence
counter in the entry to an initial value . The predictor
controller then increases the confidence counter when updat
ing the entry after the branch predictor makes a subsequent
prediction for the given CTI and reduces the confidence
counter upon determining that the branch predictor made a
misprediction for the given CTI . The predictor controller

uses the confidence counter for each entry for determining
whether the listing of prediction functional blocks in that
entry is permitted to be used . When the confidence counter
is below a threshold value , the listing of prediction func
tional blocks in that entry is not permitted to be used . In this
case , the predictor controller will not use the listing for
setting the predictor select value and / or controlling the
prediction functional blocks used by the branch predictor as
described above .
[0029] In some embodiments , the record kept by the
predictor controller includes multiple sub - tables , each sub
table having a number of entries . In these embodiments , the
entries in each sub - table are used for storing frequency
values and listings of prediction functional blocks from
which the branch predictor previously selected predictions
for CTIs . The predictor controller accesses each of the
sub - tables using a respective different hash function , with
each hash function generating , based on identifiers associ
ated with CTIs , indexes into respective locations in the
respective sub - table . In these embodiments , for keeping the
record of the prediction functional blocks , the predictor
controller generates , using the hash function for each sub
table , an index into that sub - table based on an identifier
associated with a given CTI . The predictor controller then
increases a frequency value and updates the listing of
prediction functional blocks for an entry in each sub - table
indicated by the respective index . On the other hand , when
using information from the record of the prediction func
tional blocks , before the branch predictor makes a branch
prediction for a given CTI , the predictor controller gener
ates , using the hash function for each sub - table , an index into
that sub - table based on an identifier associated with a given
CTI . The predictor controller then generates a combined
listing from a combination of the listing of prediction
functional blocks in the entry in each sub - table indicated by
the respective index . The predictor controller next uses the
combined listing to generate a predictor select value that
identifies the prediction functional block (s) that were pre
viously used by the branch predictor and communicates the
predictor select value to the branch predictor to be used for
generating predictions for the given CTI as described above .
[0030] In some embodiments , the predictor controller uses
the above - described frequency values in the sub - tables for
determining whether the listing of prediction functional
blocks in entries in the sub - tables are permitted to be used .
Recall that the predictor controller increases frequency
values when recording predictions made by the branch
predictor in the sub - tables . In addition , upon determining
that the branch predictor mispredicted a CTI , the predictor
controller reduces the frequency value in respective entries
in the sub - tables . For using the frequency values to deter
mine whether listings are permitted to be used , the predictor
controller generates , using the hash function for each sub
table , an index into that sub - table based on an identifier
associated with a given CTI for which a branch prediction is
to be provided by the branch predictor . The predictor con
troller then determines the frequency value for an entry in
each sub - table indicated by the respective index . When all
the frequency values are above a threshold value , the pre
dictor controller determines that the listings are useable and
uses the listings of the prediction functional blocks in the
entries to generate the combined listing as described above .
Otherwise , when one or more of the frequency values are at
or below the threshold value , the predictor controller deter

US 2021/0382718 A1 Dec. 9 , 2021
4

mines that the listings are not useable and will not use the
listings of the prediction functional blocks in the entries as
described above .
[0031] As described in more detail above , the described
embodiments use a record of the prediction functional
block (s) from which the branch predictor previously
selected predictions for CTIs to control which prediction
functional blocks are used by the branch predictor for
generating predictions for CTIs . Because the branch predic
tor can use the same prediction functional blocks for gen
erating predictions for the same CTI instructions during
repeated instances of execution (e.g. , as a program code
method is executed two or more times , as a loop in program
code is executed multiple times , etc.) , limiting the prediction
functional blocks that are used by the branch predictor as
described can help prediction functional blocks from which
the prediction will be discarded by the branch predictor
avoid performing unnecessary work . Note that , even in the
case when a better prediction would have been generated by
one of the unused prediction functional blocks , the processor
continues correct operationalthough possibly needing to
handle a misprediction .
[0032] By using the record of the prediction functional
block (s) from which the branch predictor previously
selected predictions for CTIs to control which prediction
functional blocks are used by the branch predictor for
generating predictions for CTIs , the described embodiments
can limit the prediction functional blocks that are used by the
branch predictor for generating predictions for CTIs . This
can help to avoid unnecessary consumption of electrical
power , generation of heat , etc. Reducing electrical power
consumption , heat generation , etc. can improve the perfor
mance of the processor , which helps to improve the perfor
mance of the electronic device . Improved performance of
the electronic device results in increased user satisfaction
with the electronic device .

includes volatile memory circuits such as fourth - generation
double data rate synchronous DRAM (DDR4 SDRAM)
and / or other types of memory circuits for storing data and
instructions for use by functional blocks in electronic device
100 and control circuits for handling accesses of the data and
instructions that are stored in the memory circuits and for
performing other control or configuration operations .
[0036] Electronic device 100 is simplified for illustrative
purposes . In some embodiments , however , electronic device
100 includes additional or different functional blocks , sub
systems , and / or elements . For example , electronic device
100 may include display subsystems , power subsystems ,
input - output (1/0) subsystems , communication fabrics , etc.
Electronic device 100 generally includes sufficient func
tional blocks to perform the operations herein described .
[0037] Electronic device 100 can be , or can be included in ,
any device that performs the operations described herein .
For example , electronic device 100 can be , or can be
included in , a desktop computer , a laptop computer , a
wearable computing device , a tablet computer , a piece of
virtual or augmented reality equipment , a smart phone , an
artificial intelligence (AI) or machine learning device , a
server , a network appliance , a toy , a piece of audio - visual
equipment , a home appliance , a vehicle , etc. , and / or com
binations thereof

Processor

Electronic Device

[0038] As described above , electronic device 100 includes
processor 102. FIG . 2 presents a block diagram illustrating
processor 102 in accordance with some embodiments . As
shown in FIG . 2 , functional blocks in processor 102 can be
considered as part of front end subsystem 200 , back end
subsystem 202 , or memory subsystem 204. Generally , front
end subsystem 200 includes functional blocks that perform
operations for acquiring instructions from memory subsys
tem 204 and generating micro - operations from the instruc
tions that are sent to execution units in back end subsystem
202 for execution . Front end subsystem 200 , back end
subsystem 202 , and memory subsystem 204 (and the func
tional blocks included therein) are implemented in “ hard
ware , " i.e. , using corresponding circuitry . For example , in
some embodiments , front end subsystem 200 , back end
subsystem 202 , and memory subsystem 204 are entirely
fabricated in integrated circuitry on one or more semicon
ductor chips , possibly on one or more separate semiconduc
tor chips , are fashioned from semiconductor chips in com
bination with discrete circuitry , or are fabricated from
discrete circuitry alone .
[0039] Front end subsystem 200 includes instruction
fetch / decode 206 , which is a functional block that includes
circuitry that performs operations associated with fetching
instructions and decoding fetched instructions into micro
operations in preparation for executing the micro - opera
tions . Instruction fetch / decode 206 fetches (i.e. , requests and
receives) instructions in prediction windows from L1
instruction cache 208 or L2 cache 210 or memory 104 , if
necessary . Instruction fetch / decode 206 then decodes
instructions in the fetched prediction windows into respec
tive micro - operations . Instruction fetch / decode 206 for
wards the micro - operations to micro - operation (UOP) queue
212 , which is a functional block that includes circuitry for
controlling when and how micro - operations are fed from
front end subsystem 200 to back end subsystem 202. From
micro - operation queue 212 , micro - operations are eventually

[0033] FIG . 1 presents a block diagram illustrating elec
tronic device 100 in accordance with some embodiments . As
can be seen in FIG . 1 , electronic device 100 includes
processor 102 and memory 104. Processor 102 and memory
104 are implemented in " hardware , " i.e. , using correspond
ing circuitry . For example , in some embodiments , processor
102 and memory 104 are entirely fabricated in integrated
circuitry on one or more semiconductor chips , possibly on
one or more separate semiconductor chips , are fashioned
from semiconductor chips in combination with discrete
circuitry , or are fabricated from discrete circuitry alone . As
described herein , processor 102 performs operations for
controlling prediction functional blocks used by a branch
predictor in processor 102 for generating predictions for
CTIs in program code .
[0034] Processor 102 is a functional block that performs
computational and other operations (e.g. , control operations ,
configuration operations , etc.) in electronic device 100. For
example , processor 102 can be or include one or more
central processing units (CPUs) or CPU cores , graphics
processing units (GPUs) or GPU cores , application specific
integrated circuits (ASICs) , and / or other processing mecha
nisms .
[0035] Memory 104 is functional block in electronic
device 100 that performs operations of a memory (e.g. , a
“ main ” memory) for electronic device 100. Memory 104

a

a

a

US 2021/0382718 A1 Dec. 9. 2021
5

or more

fed to dispatch 214 , which is a functional block that includes
circuitry for steering or directing micro - operations to appro
priate execution units in back end subsystem 202 for execu
tion .
[0040] Front end subsystem 200 also includes next PC
(NPC) 216 , which is a functional block that includes cir
cuitry that performs operations for determining an address in
memory , or a “ program counter , ” for a next prediction
window to be fetched from L1 instruction cache 208 for
execution . Next PC 216 , based on an initial or current value
of the program counter , computes a next sequential value for
the program counter . For example , given two successive
32 - byte prediction windows , next PC 216 may compute next
address = current address + 32 bytes . When program / instruc
tion flow is not altered by CTIs , front end subsystem 200
uses the sequential values of the program counter that are
computed by next PC 216 for fetching prediction windows
from corresponding sequential addresses in memory .
[0041] Front end subsystem 200 additionally includes
branch prediction unit (BPU) 218 , which is a functional
block that includes circuitry that performs operations for
predicting resolutions of CTIs in prediction windows .
Branch prediction unit 218 uses one or more records of prior
CTI resolution or behavior to predict resolutions of CTIs .
For example , in some embodiments , branch prediction unit
218 predicts direction resolutions for CTIs , e.g. , taken or not
taken resolutions and , for indirect CTIs , target addresses ,
and / or makes other predictions for CTIs . Based on the
predictions , branch prediction unit 218 can modify the
program counter and thus the address in memory - from
which subsequent prediction windows are fetched and / or
can otherwise handle executing CTIs in program code . For
example , when a CTI is predicted taken by branch prediction
unit 218 , branch prediction unit 218 may replace a next or
subsequent program counter provided by next PC 216 with
a— possibly predicted — target address for the CTI .
[0042] In the described embodiments , branch prediction
unit 218 includes a branch predictor functional block that
has circuitry that generates predictions for CTIS (i.e. , direc
tion predictions , target address predictions , and / or other
predictions) . The circuitry in the branch predictor includes a
number of separate prediction functional blocks , each pre
diction functional block including circuitry for generating
predictions for CTIs based on corresponding prediction
information . For example , in some embodiments , the branch
predictor includes a tagged geometric (TAGE) branch pre
dictor (e.g. , a TAGE - SC - L branch predictor or another
TAGE branch predictor) with multiple prediction functional
blocks . As another example , in some embodiments , the
branch predictor includes an optimized geometric history
length (O - GEHL) branch predictor with multiple prediction
functional blocks . Generally , in the described embodiments ,
branch prediction unit 218 can include any form of branch
predictor having two or more prediction functional blocks
that generate predictions for CTIs based on corresponding
prediction information .
[0043] The " corresponding prediction information ” used
by each of the prediction functional blocks for generating
predictions depends on the nature of predictions provided by
the prediction functional blocks . For example , the corre
sponding prediction information can include information
such as records , lists , tables , etc. of or including direction
resolutions for one or more CTIs and / or sequences of CTIS ,
address resolutions for one or more CTIs and / or sequences

of CTIs , loop properties for CTIs in program code loops ,
misprediction rates for CTIs , relationships or correlations
between two or more CTIs , general CTI tendencies or
properties , etc.
[0044] In the described embodiments , for at least some
CTIs , the branch predictor generates predictions using two

and possibly all of the prediction functional
blocks . The branch predictor then selects a single prediction
from among the predictions generated by the two or more
prediction functional blocks to be output from the branch
predictor as the prediction for each CTI . For these opera
tions , when generating a prediction for a given CTI , the
branch predictor first communicates an identifier for the
given CTI to each of the two or more of the prediction
functional blocks . For example , in some embodiments , the
branch predictor communicates , to the prediction functional
blocks , a program counter or address for a prediction win
dow in which the given CTI is included as the identifier for
the given CTI . Each of the two or more prediction functional
blocks then attempts to generate a prediction for the given
CTI . (Although some or all of the two or more prediction
functional blocks may be unable to generate predictions due
to lack of information about the given CTI , etc. , for this
example , it is assumed that all of the two or more prediction
functional blocks generate a prediction for the given CTI .)
The branch predictor next receives the generated predictions
from the two or more prediction functional blocks and
selects one of the predictions as a prediction to be output
from the branch predictor in accordance with a selection
policy . For example , the branch predictor may use a selec
tion policy such as an ordered list of the prediction func
tional blocks to select the prediction to be output from the
branch predictor . The branch predictor therefore selects , in
view of the selection policy , a “ most desirable ” prediction to
be used for subsequent operations from among predictions
generated by the prediction functional blocks .
[0045] As an example of the above - described branch
predictor , FIG . 3 presents a block diagram illustrating a
TAGE branch predictor 300 in accordance with some
embodiments . As can be seen in FIG . 3 , branch predictor
300 includes a number of prediction functional blocks ,
including base predictor 302 , tagged predictors 304-308 ,
loop predictor 310 , and statistical corrector 312 , each of
which can be used for generating direction predictions for
CTIs . Base predictor 302 is a prediction functional block
that provides default direction predictions for CTIs in pre
diction windows . Direction predictions provided by base
predictor 302 can be used as “ default ” predictions when
tagged predictors 304-308 do not make a direction predic
tion on their own (e.g. , due to lack of information about
CTIs , etc.) . In other words , in some embodiments , branch
predictor 300 can preferentially use direction predictions
provided by tagged predictors 304-308 , but can fall back to
using direction predictions provided by base predictor 302
when tagged predictors 304-308 do not provide direction
predictions . Base Predictor 302 uses a simplified indexing
scheme . For example , in some embodiments , base predictor
302 is a program counter indexed 2 - bit counter table . Base
predictor 302 therefore includes a number of entries used for
storing records associated with CTIs in prediction windows ,
each record including a program - counter based index and a
2 - bit saturating counter in which is stored a direction history
for the CTI identified by the index . In some embodiments ,
the program counters by which base predictor is indexed are

US 2021/0382718 A1 Dec. 9 , 2021
6

a

?

a

the program counters associated with prediction windows in
which CTIs are included . In addition , in some embodiments ,
the " corresponding prediction information ” (as the term is
used elsewhere in this description) used by base predictor
302 is the 2 - bit counters .
[0046] Tagged predictors 304-308 are prediction func
tional blocks that each provide direction predictions using a
tag - based indexing scheme . For example , in some embodi
ments , each of tagged predictors 304-308 is a history - length
based tag indexed N - bit counter table (where Nis 3 , 5 , or
another value and may be different for each of tagged
predictor 304-308) . Each of tagged predictors 304-308
therefore includes a number of entries used for storing
records associated with CTIs in prediction windows , each
record including a tag - based index and an N - bit saturating
counter in which is stored a direction history for the CTI
identified by the index . The tags for each of tagged predic
tors 304-308 are generated using different lengths of CTI
direction resolution history , or “ history lengths . ” As used
herein , a " history ” is a record of CTI direction resolutions
for a number of prior instances of execution of the CTI and
“ length ” is the number of prior instances . For example , a
history length may be 50 , 100 , or another number of prior
instances of CTI resolution , such as a sequence of bits
indicating the taken or not - taken direction resolution for the
prior instances . Each of tagged predictors 304-308 is
indexed using values , or “ tags , ” that are generated as a
logical or bitwise combination of CTI histories of the
respective length and identifiers for CTIs such as program
counters for prediction windows in which the CTIs are
included . In some embodiments , the individual history
lengths for tagged predictors 304-308 , when considered as a
series , form a geometric series (e.g. , length (i) = (int) (a ? -1 * L
(1) +0.5)) or another series or sequence of values . In addi
tion , in some embodiments , the “ corresponding prediction
information ” (as the term is used elsewhere in this descrip
tion) used by each of tagged predictors 304-308 is the
respective N - bit counters .
[0047] Loop predictor 310 is a prediction functional block
that provides direction predictions for CTIs in loops in
program code (or , more generally , repeating sections of
program code for which the repetitions are controlled by
CTIS) . Loop predictor 310 , which is indexed using program
counters for prediction windows in which CTIs are included ,
includes a number of records of loops in program code , each
record identifying loop lengths or numbers of iterations .
Loop predictor 310 tracks instances of CTIs in loops (e.g. ,
loop termination CTIs , etc.) and provides direction predic
tions for CTIs at the termination of loops . In some embodi
ments , loop predictor 310 overrides or replaces direction
predictions made by base predictor 302 and / or tagged pre
dictors 304-308 so that branch predictor 300 ignores direc
tion predictions from base predictor 302 and / or tagged
predictors 304-308 in cases where loop predictor 310 pro
vides a direction prediction . In some embodiments , the
" corresponding prediction information ” (as the term is used
elsewhere in this description) used by loop predictor 310 is
the records of loops in program code .
[0048] Statistical corrector 312 is a prediction functional
block that provides direction predictions for CTIs that are
less correlated with CTI direction histories . Generally , the
direction predictions provided by base predictor 302 and
tagged predictors 304-308 can be incorrect more often when
predicting statistically biased branches , e.g. , CTIs that have

only a small bias towards a direction , but are not strongly
correlated with a CTI direction resolution history . Statistical
corrector 312 therefore , for providing direction predictions
for CTIs for which the direction resolution is statistically
biased , uses records of such CTIs for detecting the relatively
unlikely direction predictions and to replacing / inverting the
direction predictions made by base predictor 302 and tagged
predictors 304-308 . Statistical corrector 312 receives direc
tion predictions from some or all of base predictor 302 and
tagged predictors 304-308 and information about CTIS (e.g. ,
a program counter for the prediction window in which the
CTI is included , a global direction resolution history for
CTIs , a path in program code up to the CTI , a local direction
resolution history CTIs , etc) and determines whether to
replace / invert the direction prediction received from base
predictor 302 and / or tagged predictors 304-308 . In some
embodiments , the " corresponding prediction information ”
(as the term is used elsewhere in this description) used by
statistical corrector 312 is the records of the statistically
biased CTI resolutions .
[0049] In addition to the prediction functional blocks ,
branch predictor 300 includes a history registers 314 func
tional block , which includes circuitry for storing records of
CTI direction resolution histories that are used for generat
ing indexes for tagged predictors 304-308 . For example ,
history registers 314 can store branch direction resolution
histories in the form of bit sequences or vectors of Os and 1s
of specified lengths .
[0050] Branch predictor 300 also includes selectors 316
318 , which are functional blocks that include circuitry for
selecting , from among direction predictions generated by , in
the case of selector 316 , base predictor 302 and tagged
predictors 304-308 , and in the case of selector 318 , loop
predictor 310 and statistical corrector 312 , as well as direc
tion predictions output from selector 316. In other words ,
selector 316 forwards a direction prediction that is selected
from among direction predictions received from some or all
of base predictor 302 and tagged predictors 304-308 (recall
ing that some or all of base predictor 302 and tagged
predictors 304-308 may not generate direction predictions
for particular CTIs due to lack of information or lack of
usable information about the particular CTIs , etc.) . For
example , circuitry in selector 316 may be configured to
preferentially select direction predictions output from , in
order , tagged predictor 308 , tagged predictor 306 , tagged
predictor 304 , and base predictor 302. This can be regarded
as selector 316 using a “ selection policy , " as implemented in
the circuitry , for selecting a particular direction prediction to
be forwarded . The direction prediction output from selector
316 is fed to selector 318 along with direction predictions
from loop predictor 310 and statistical corrector 312 (recall
that loop predictor 310 and statistical corrector 312 may not
generate direction predictions for particular CTIs due to lack
of information or lack of usable information about the
particular CTIs , etc.) . Selector 318 then selects , from among
the direction predictions received from some or all of
selector 316 , loop predictor 310 , and statistical corrector
312 , a direction prediction to be output as prediction output
322 from branch predictor 300. Similarly to selector 316 ,
selector 318 includes circuitry for selecting from among
input direction predictions in a given order — which amounts
to selector 318 selecting a direction prediction to be output
in accordance with the selection policy . In this way , selectors
316 and 318 select , in view of the selection policy , from

a

US 2021/0382718 A1 Dec. 9 , 2021
7

a

among predictions generated by the prediction functional
blocks to be used for subsequent operations .
[0051] Branch predictor 300 further includes controller
324 , which is a functional block that includes circuitry for
controlling which prediction functional blocks from among
base predictor 302 , tagged predictors 304-308 , loop predic
tor 310 , and statistical corrector 312 are used for generating
direction predictions for CTIs . For this operation , for a given
CTI , controller 324 receives , from predictor controller (PC
TRL) 220 , predictor select value 326 , which is a value that
identifies the prediction functional block (s) that were pre
viously used by branch predictor 300 for generating direc
tion predictions for the given CTI . Controller 324 then uses
only the prediction functional blocks that are identified in
predictor select value 326 to generate direction predictions .
Controller 324 may , for example , assert disabling signals ,
control clock gating circuitry , etc. in order to disable or
otherwise prevent prediction functional blocks that are not
identified in the predictor select value 326 from generating
direction predictions . Prediction functional blocks that are
disabled by controller 324 do not output direction predic
tions for the given CTI , which means that selector 316 and
318 are only able to select from any direction predictions
output from other / not disabled prediction functional blocks .
In some embodiments , when disabled or prevented from
generating predictions , a prediction functional block is
placed in a lower - power operating state (via clock gating ,
reduced voltages , etc.) and thus conserves electrical power .
[0052] Controller 324 also receives , from selector 318 or
elsewhere in branch predictor 300 , an identifier for the
prediction functional block from which selector 318 selects
a direction prediction to be output as prediction output 322
for each CTI . Controller 324 then outputs , based on the
identifier for the prediction functional block , prediction
functional block identifier 328 to predictor controller 220 to
enable predictor controller 220 to update a record of pre
diction functional blocks from which direction predictions
have been selected for that CTI . For example , prediction
functional block identifier 328 may be or include a bit vector
with a particular bit set to identify the CTI , a numerical
identifier for the CTI , a string value that identifies the CTI ,
etc.

[0053] Although branch predictor 300 is used as an
example , in some embodiments , the branch predictor
includes different numbers and / or types of prediction func
tional blocks . Generally , in the described embodiments , the
branch predictor includes sufficient prediction functional
blocks to perform the operations described herein . In addi
tion , although program counter 320 is shown in two separate
locations in FIG . 3 , program counter 320 is the same signal
and / or includes the same information . Program counter 320
is shown in this way for clarity .
[0054] Returning to FIG . 2 , front end subsystem 200
further includes predictor controller (PCTRL) 220 , which is
a functional block that includes circuitry that performs
operations for controlling the prediction functional blocks
used by branch predictor 300 in branch prediction unit 218
for predicting resolutions for CTIs . Predictor controller 220
keeps a record of prediction functional blocks from which
branch predictor previously selected predictions for CTIs .
Predictor controller 220 uses information from the record for
controlling which prediction functional blocks are used by
the branch predictor for generating predictions for CTIs . The

functional blocks in and operations performed by predictor
controller 220 are described in more detail below .

[0055] Back end subsystem 202 includes integer execu
tion unit 222 and floating point execution unit 224 , which
are functional blocks that include circuitry that perform
operations for executing integer and floating point micro
operations , respectively . Integer execution unit 222 and
floating point execution unit 224 include elements such as
renaming hardware , execution schedulers , arithmetic logic
units (ALUS) , floating point multiply and add units (in
floating point execution unit 224) , reordering hardware ,
register files , etc. that are used for executing micro - opera
tions or performing other operations . Micro - operations are
steered or directed from dispatch 214 to integer execution
unit 222 or floating point execution unit 224 based on the
data types of the micro - operations , the execution unit
resources to be used for executing the micro - operations , etc.
[0056] Back end subsystem 202 also includes retire unit
226 , which is a functional block in which the results of
executed instructions are held after the corresponding
instructions have completed execution , but prior to the
results being committed to an architectural state of processor
102 (e.g. , written to a L1 data cache , L2 cache 210 , and / or
memory 104 and made available for use in other operations) .
In some embodiments , certain instructions can be executed
out of program order and retire unit 226 is used in ensuring
that results of out - of - order executed instructions are com
mitted in order to the architectural state of the processor
properly with respect to results of other out - of - order instruc
tions . In addition , in some embodiments , retire unit 226
monitors the actual / computed resolution of CTIs and
informs other functional blocks in the processor , e.g. , branch
prediction unit 218 , predictor controller 220 , etc. , when a
CTI was mispredicted . Upon being informed by retire unit
226 that a CTI was mispredicted , the other functional blocks
in the processor can perform operations such as mispredic
tion recovery (e.g. , flushing instructions and / or results from
instructions speculatively fetched and executed following a
mispredicted CTI and restarting fetching / executing instruc
tions following the mispredicted CTI) , updating the record
in predictor controller 220 , etc.
[0057] Memory subsystem 204 includes a hierarchy of
cache memories , which are functional blocks that include
circuitry that performs operations for storing copies of
instructions and / or data nearer the functional blocks that use
the instructions and / or data (than memory 104) , as well as
control circuits for handling accesses of the instructions
and / or data . The hierarchy includes two levels , with level
one (L1) instruction cache 208 and L1 data cache 228 on the
first level and L2 cache 210 on the second level . Memory
subsystem 204 is communicatively coupled to memory 104
and may also be coupled to an external L3 cache (not
shown) .
[0058] Although a particular arrangement , connectivity ,
and number of elements is shown in processor 102 in FIG .
2 , in some embodiments , different arrangements , connectiv
ity , and / or numbers of elements are present in processor 102 .
Generally , processor 102 includes sufficient elements to
perform the operations described herein . In addition ,
although shown as a single group in FIG . 2 , in some
embodiments , some or all of the functional blocks in pro
cessor 102 are fabricated separately , such as on separate
integrated circuit chips .

US 2021/0382718 A1 Dec. 9. 2021
8

Predictor Controller

2

[0059] In the described embodiments , predictor controller
220 performs operations for controlling the prediction func
tional blocks used by a branch predictor (e.g. , branch
predictor 300) for making predictions for CTIs in program
code . FIG . 4 presents a block diagram illustrating predictor
controller 220 in accordance with some embodiments . As
can be seen in FIG . 4 , predictor controller 220 includes
record 400 , which is a functional block that includes cir
cuitry for storing records of prediction functional blocks
from which the branch predictor previously selected predic
tions for CTIs . In other words , record 400 is used for storing
information that identifies , for CTIs , the prediction func
tional blocks (e.g. , base predictor 302 , tagged predictors
304-308 , etc.) from which the branch predictor previously
selected (e.g. , via selectors 316 and 318) and output the
prediction (e.g. , as prediction output 322) . For example ,
assume an embodiment where the branch predictor includes
four prediction functional blocks , numbered 1 , 2 , 3 , and 4 for
this example , and that the branch predictor has selected
predictions from the prediction functional blocks for a given
CTI in the sequence 1 , 1 , 3 , 3 , and 1 during five previous
instances of execution of the given CTI . In this case , record
400 will include information that identifies prediction func
tional blocks 1 and 3 as having had their predictions selected
by the branch predictor for the given CTI (but not prediction
functional blocks 2 and 4) .
[0060] Predictor controller 220 also includes control 402 ,
which is a functional block that includes circuitry for
controlling the operations of predictor controller 220 .
Included in the operations performed by control 402 are
operations for maintaining and using the information in
record 400. As a part of the operations for maintaining the
information in record 400 , control 402 adds and updates
information for CTIs in record 400. For these operations , in
some embodiments , control 402 receives program counter
404 (e.g . , from next PC 216 or another functional block) and
prediction functional block identifier 406 (e.g. , from con
troller 324) . Control 402 then adds new information to
ecord 400 ab a prediction functional block om which
a prediction was selected by the branch predictor for the CTI
identified by program counter 404 or updates existing
information in record 400 about the CTI . As another part of
the operations for maintaining the information in record 400 ,
control 402 updates information for CTIs in record 400
based on mispredict information 410. For this operation , in
some embodiments , control 402 receives (e.g. , from retire
unit 226) mispredict information 410 , that identifies a CTI
(e.g. , a program counter , etc.) for which an earlier prediction
was incorrect as determined by the retire unit based on the
execution of the CTI . Control 402 then updates existing
information in record 400 about the CTI to reflect the
misprediction (assuming that such information exists in
record 400) .
[0061] In some embodiments , as part of the above - de
scribed operations for using the information in record 400 ,
control 402 performs lookups in record 400 using program
counter 404 (or values computed therefrom) to determine
prediction functional blocks from which the branch predic
tor previously selected predictions for CTIs . Control 402
then generates predictor select values 408 that identify the
prediction functional blocks from which the branch predic
tor previously selected predictions for CTIs . Control 402
next communicates the predictor select values 408 to the

branch predictor , which uses the predictor select values 408
to control which predictor functional blocks are used for
generating predictions for CTIs . Note that , when record 400
does not include information about prediction functional
blocks from which the branch predictor previously selected
predictions for CTIs , control 402 can generate and commu
nicate a default predictor select value 408 to the branch
predictor . For example , in this case , control 402 can generate
a predictor select value 408 that indicates that all of (or a
specified group of) the prediction functional blocks should
be used for generating predictions .
[0062] Program counter 404 is or includes some or all of
a memory address or other reference associated with the
CTI — and may not include the actual memory address for
the CTI . For example , in some embodiments , program
counter 404 is a memory address for a prediction window in
which the CTI is included . For instance , in some embodi
ments , program counter 404 is the memory address of a first
instruction in the prediction window — i.e . , an address used
by instruction fetch / decode 206 for fetching the prediction
window from L1 instruction cache 208 (or L2 cache 210 or
memory 104) . In some embodiments , however , program
counter 404 is a different value . Generally , in the described
embodiments , predictor controller 220 receives as (or in
place of) “ program counter 404 ” an identifier for , or asso
ciated with , CTIs that can be used to identify CTIs for the
purposes of maintaining and using the information in record
400 .
[0063] In some embodiments , the same program counter
404 is used by control 402 at the commencement of branch
prediction for determining predictor select value 408 (i.e. ,
for informing the branch predictor which prediction func
tional blocks are to be used for generating predictions) and
at the conclusion of branch prediction for updating the
record based on prediction functional block identifier 406
for the given CTI . In other words , in these embodiments ,
program counter 404 is communicated to predictor control
ler 220 , used to generate the predictor select value 408 , and
then maintained or stored in predictor controller 220 until
the branch predictor reports prediction functional block
identifier 406 , at which point program counter 404 is used
for updating record 400 .

Tag Indexed Record
[0064] In some embodiments , record 400 is a tag indexed
record in which tags generated from identifiers associated
with CTIs (e.g. , program counter 404 , etc.) are used for
indexing , and thus maintaining and using the information in ,
record 400. Generally , the tags used to index record 400 in
these embodiments are values that are generated from , based
on , or using the identifiers associated with the CTIs . For
example , in some embodiments , the tags are N - bit (where
N = 8 , 24 , or another value) values that are generated based
on K - bit (where K = 32 , 64 , or another value) program
counters associated with CTIs . For “ indexing ” the record ,
the tags are used by control 402 to find , identify , add / update ,
or otherwise interact with information in the record for
corresponding CTIs .
[0065] FIG . 5 presents a block diagram illustrating a tag
indexed record 400 in accordance with some embodiments .
As can be seen in FIG . 5 , record 400 includes a number of
entries 500 (only one of which is labeled for clarity) , each
entry usable for storing a tag 502 , a listing 504 , and a
confidence counter (CC) 506. Tags 502 are values (e.g. ,

a

US 2021/0382718 A1 Dec. 9. 2021
9

a

9

a

2

sequences of bits , strings , numerical values , etc.) that iden
tify CTIs for the purpose of maintaining and using the
information in entries 500 in record 400. Listings 504 are
values (e.g. , sequences of bits , strings , numerical values ,
etc.) that indicate the prediction functional blocks from
which a branch predictor (e.g. , branch predictor 300) pre
viously selected predictions for the CTIs identified in tags
502. For example , in some embodiments , each listing 504
includes a sequence of bits with a single bit to be used for
storing an indicator for each available prediction functional
block in the branch predictor . In these embodiments , if there
are five prediction functional blocks in the branch predictor ,
there are five bits in each listing 504 , with each bit used for
indicating a specified one of the prediction functional
blocks . Confidence counters 506 are values (e.g. , numerical
values , etc.) in which is kept a count that represents a
number of predictions made for a CTI identified by tag 502
in each entry . For example , in some embodiments , each
confidence counter is an M - bit saturating counter (where
M = 3 , 6 , or another value) . Confidence counters 506 are used
for determining whether information in an entry 500 in
record 400 is usable / permitted to be used for controlling the
prediction functional blocks used by the branch predictor . In
some embodiments , when the confidence counter 506 for an
entry 500 is below a threshold value , the information in that
entry (i.e. , listing 504) is not permitted to be used .
[0066] Control 402 in FIG . 5 includes tag generator
(GEN) 508 , which is a functional block that includes cir
cuitry for generating tags from identifiers associated with
CTIs . For example , in some embodiments , tag generator 508
includes a number of logic gates (e.g. , XOR gates , AND
gates , etc.) that receive identifiers for CTIs as inputs and
output corresponding tags . As another example , in some
embodiments , tag generator 508 includes circuitry for
implementing a particular hash function , with input of the
hash function being the identifiers associated with the CTIS
and the output of the hash function being the tags . In some
embodiments , the tags generated by tag generator 508 are
not exclusive and thus collisions may occur (i.e. , the same
tags may be generated based on the identifiers for two or
more CTIs) . For example , in some embodiments , tag gen
erator 508 generates X - bit tags (where X = 8 , 12 , or another
value) from W - bit (where W = 32 , 64 , or another value)
program counters associated with CTIs — and the collisions
occur because multiple W - bit program counters lead to the
same X - bit tags . Although this is true , there is no functional
issue with the use of the tags or the predictor select values
generated therefrom , as processor 102 can recover from
mispredictions caused by the use of incorrect predictor
select values caused by tag collisions .
[0067] Control 402 in FIG . 5 also includes search 510 ,
which is a functional block that includes circuitry for
searching entries 500 in record 400 for information for CTIS .
For example , in some embodiments , search 510 includes
searching circuitry such as content addressable memory
(CAM) or other search or lookup mechanisms that receive ,
as inputs , tags generated by tag generator 508 (or another
functional block) . The searching circuitry then compares the
tags to some or all of the tags in record 400 to determine if
entries that have matching existing tags are present . The
searching circuitry returns miss indicators if no matching
entries are found or identifiers for the particular entries when
matching entries are found . In some embodiments , the
searching circuitry checks the confidence counter for each

matching entry and will not return an identifier for an entry
when the confidence counter is below a threshold value
i.e. , will behave as if a miss was encountered when the
information in a matching entry is not useable .
[0068] Control 402 in FIG . 5 additionally includes train
512 , which is a functional block that includes circuitry for
training record 400. For “ training ” record 400 , train 512
performs operations for maintaining information in entries
500. In other words , train 512 performs operations for
keeping information in entries 500 substantially updated and
current during operation of processor 102. For example , in
some embodiments , train 512 receives , from tag generator
508 , a tag associated with a CTI , from search 510 , a miss
indicator or an identifier for the particular entry , and , from
controller 324 , a prediction functional block identifier 406 .
Train 512 then either adds a new tag 502 , listing 504 , and
confidence counter 506 to an available entry 500 in record
400 or updates a listing 504 for an existing entry 500 in
record 400. When adding or updating a listing 504 , train 512
modifies the listing to include an indicator that the branch
predictor selected a prediction from the prediction functional
block identified in prediction functional block identifier 406 .
For example , in an embodiment where each listing 504
includes a sequence of bits having a single bit for each
prediction functional block , train 512 can switch a bit for a
given prediction functional block from 0 to 1 to indicate that
the prediction was selected from that prediction functional
block . Note , however , that train 512 leaves the listing
unchanged in the event that the indicator for a given pre
diction functional block is already set .
[0069] In some embodiments , upon the occurrence of one
or more reset events , train 512 resets or clears some or all of
the entries 500 in record 400 , thereby removing information
about a CTI from each reset or cleared entry 500. For
example , in some embodiments , train 512 resets all of the
entries periodically (e.g. , every X seconds , at a hardware
and / or software context switch , etc.) . As another example , in
some embodiments , train 512 keeps track of the ages of the
entries 500 , i.e. , a time since a last update , and resets each
entry 500 when that entry 500 exceeds a given age . Gener
ally , in these embodiments , train 512 performs operations
for removing , from entries 500 , information about CTIs that
is determined to be stale — and thus less likely to be correct .
[0070] As can be seen in FIG . 5 , record 400 includes
multiple sets 514 of entries . FIG . 5 is shown in this way to
illustrate that , in some embodiments , record 400 , and thus
the entries 500 therein , is organized as associative . For
example , record 400 may be organized as set associative ,
and thus entries 500 in record 400 are logically divided into
a number of sets and a number of ways per set . In these
embodiment , search 510 finds entries 500 based on the tag
for the CTI and the particular set used for record 400. When
information for a given CTI is to be added to record 400 , if
search 510 is unable to find an empty / unused entry , search
510 finds an entry to be replaced . Train 512 can then
overwrite information for another CTI in that entry . In some
embodiments , the predictor controller determines an exist
ing entry to be overwritten based on a policy such as least
recently used , least frequently used , or another policy .
Although record 400 is shown with three sets 514 , in some
embodiments , a different number of sets is used . Generally ,
in the described embodiments , record 400 includes sufficient
sets to perform the operations herein described .

?

US 2021/0382718 A1 Dec. 9 , 2021
10

a

[0071] In some embodiments , some or all of entries 500
include respective circular buffers with multiple buffer ele
ments . In these embodiments , each buffer element includes
circuitry for storing a single listing of a prediction functional
block that generated a prediction that was previously used
by the branch predictor for a CTI associated with the tag for
that entry . For example , assume an embodiment where the
branch predictor includes six prediction functional blocks ,
numbered 1,2,3,4,5 , and 6 for this example , that the branch
predictor has selected predictions from the prediction func
tional blocks for a given CTI in the sequence 1 , 4 , 4 , 6 , and
6 during five previous instances of execution of the given
CTI , and that the circular buffer in each entry includes five
buffer elements , each buffer element storing a six - bit listing .
In this case , the buffer elements in the entry 500 for the given
CTI in record 400 will include the following listings :
100000 , 000100 , 000100 , 000001 , and 000001. In these
embodiments , the buffer is “ circular ” in that , when the buffer
fills up , the predictor controller will overwrite existing
information with new information in a circular pattern as
needed — thereby replacing old listings with newer listings .
In some of these embodiments , when using the listings from
the circular buffer in a given entry 500 , predictor controller
220 can generate a combined listing that includes all of the
prediction functional blocks from which the branch predic
tor selected predictions . Continuing the example above ,
combining the five listings results in a combined listing of :
100101 (which indicates that the branch predictor selected
predictions from the 1 , 4 , and 6 prediction functional
blocks) . In these embodiments , because older listings in the
circular buffer can be overwritten by newer listings , using
the circular buffer enables predictor controller 220 to per
form the operations herein described based on more recent
listings .
[0072] Although predictor controller 220 , control 402 , and
record 400 are described as including particular functional
blocks and elements , and the functional blocks and elements
are described as performing respective operations , in some
embodiments , different functional blocks and / or elements
are present in some or all of predictor controller 220 , control
402 , and / or record 400 and / or the functional blocks and / or
elements perform different operations . Generally , in the
described embodiments , predictor controller 220 , control
402 , and record 400 include sufficient functional blocks and
elements to perform the operations herein described .

a a

branch prediction has provided a prediction by keeping a
count or “ frequency value ” in each entry that indicates the
number of times CTIs have indexed into that entry . In other
words , when the branch predictor provides a prediction for
a given CTI , an identifier for the given CTI is used to
generate indices into each sub - table and a frequency value
for an entry indicated by each of the indices is increased .
When the particular entries indexed into by the given CTI
are all non - zero , therefore , the predictor controller can
determine that the branch predictor has previously provided
a prediction for the given CTI .
[0074] In some embodiments , due to the nature of the hash
functions used for indexing into the sub - tables , collisions
can occur between indexes generated for different CTIs . For
example , in some embodiments , the hash functions generate
A - bit indices (where A = 6 , 15 , or another value) from K - bit
(where K = 32 , 64 , or another value) program counters asso
ciated with CTIs — and the collisions occur because multiple
K - bit program counters lead to the same A - bit indices . In
other words , the same entry (ies) in one or more of the
sub - tables may be indexed into for multiple CTIs . The
frequency values in the entries in the sub - tables can there
fore be increased based on multiple (and possibly many)
CTIs having indexed into that entry . It is possible , given the
frequency values in the sub - tables , that the branch predictor
appears to have provided a prediction for a given CTI when
that CTI has not yet been encountered . This is called a false
positive . False positives may result in inefficient operation ,
but there is no functional issue with the use of the sub - tables
or select values generated therefrom , as processor 102 can
recover from the effects of the false positives . Note that ,
although false positives may occur , the sub - tables are not
expected to give a false negative .
[0075] FIG . 6 presents a block diagram illustrating sub
tables 600 and 602 in record 400 in accordance with some
embodiments . As can be seen in FIG . 6 , sub - tables 600-602
include a number of entries 604 (only one of which is
labeled for clarity) , each entry usable for storing a frequency
value (FV) 606 and a listing 608. Frequency values 606 are
values (e.g. , numerical values , etc.) that indicate the number
of CTIs that have indexed into that entry 604. For example ,
in some embodiments , each frequency value is a three - bit
saturating counter . Listings 608 are values (e.g. , sequences
of bits , strings , numerical values , etc.) that indicate the
prediction functional blocks from which a branch predictor
(e.g. , branch predictor 300) previously selected predictions
for the CTIs that index into that entry 604. For example , in
some embodiments , each listing 608 includes a sequence of
bits with a single bit to be used for storing an indicator for
each available prediction functional block in the branch
predictor . In these embodiments , if there are five prediction
functional blocks in the branch predictor , there are five bits
in each listing 608 , with each bit used for indicating a
specified one of the prediction functional blocks .
[0076] Control 402 in FIG . 6 includes index generators
(GEN) 610-612 , which are functional blocks that include
circuitry for generating indexes from identifiers associated
with CTIs . Each of index generators 610-612 is associated
with a single sub - table and includes circuitry (e.g. , logic
gates , complex logic , etc.) for generating indices for the
single sub - table using a respective hash function for that
sub - table . For example , in some embodiments , index gen
erator 610 generates indices for sub - table 600 and index
generator 612 generates indices for sub - table 602. In some

Sub - Table Record

[0073] In some embodiments , record 400 includes a num
ber of sub - tables that are used for keeping track of CTIs for
which the branch predictor has previously generated predic
tion (s) . Generally , in these embodiments , the sub - tables are
used for keeping counts of CTIs for which the branch
predictor previously provided predictions . The counts are
kept in the sub - tables using a technique similar to Count
Min Sketch algorithms and other item / element counting
algorithms used for keeping track of items that have been
encountered in a sequence of items . In these embodiments ,
the sub - tables are indexed using index values generated
using respective hash functions from identifiers associated
with CTIS (e.g. , program counter 404) . The identifier asso
ciated with each CTI will index , via the respective hash
function , into one entry in each of the sub - tables (although
not necessarily the same entry in each sub - table) . The
sub - tables are used for keeping track of CTIs for which the

US 2021/0382718 A1 Dec. 9 , 2021
11

embodiments , the hash function used for some or all of the
sub - tables , and thus the index - generating circuitry in each of
index generators 610-612 , is different — and an identifier
associated with a given CTI may therefore index into entries
602 in different locations in sub - tables 600-602 . In some
embodiments , the indices generated by index generators
610-612 are not exclusive and thus collisions may occur
(i.e. , the same indices into a given sub - table may be gener
ated based on the identifiers for two or more CTIS) .
Although this is true , there is no functional issue with the use
of the indices or the predictor select values generated
therefrom , as processor 102 can recover from mispredictions
caused by the use of incorrect predictor select values caused
by index collisions .
[0077] Control 402 in FIG . 6 also includes search 614 ,
which is a functional block that includes circuitry for
searching sub - tables 600-602 in record 400 for information
for CTIs . When searching for information for given CTI ,
search 614 receives indices from each of index generators
610-612 and checks frequency values 606 in entries 604
indicated by the indices . When a frequency value 606 in at
least one of the entries 604 is zero , search 614 determines
that the given CTI has not yet been encountered . In this case ,
record 400 does not include information for the given CTI
and search 614 returns a miss indicator . On the other hand ,
when the frequency values 606 in each of the entries indexed
into for the given CTI is non - zero , search 614 determines
whether the frequency value in each of the entries is greater
than a threshold value . If the frequency value 606 in at least
one of the entries 604 is less than the threshold value , the
information about the given CTI in the entries is not suffi
ciently trustworthy to be used for controlling the prediction
functional blocks to be used by the branch predictor for
generating predictions — and search 614 returns a miss indi
cator (or at least does not return an identifier for an entry) .
In other words , in this case , the branch predictor has not
made enough predictions for the given CTI to enable con
fident predictions of the prediction functional block (s) from
which the branch predictor is likely to select a prediction
based on entries 604 in record 400. If the frequency value
606 in all of the entries 604 is greater than the threshold
value , search 614 returns an identifier for the entry .
[0078] Control 402 in FIG . 6 additionally includes train
616 , which is a functional block that includes circuitry for
training record 400. For “ training ” record 400 , train 616
performs operations for maintaining information in entries
604 in sub - tables 600-602 . In other words , train 616 per
forms operations for keeping information in the entries 604
substantially updated and current during operation of pro
cessor 102. For example , in some embodiments , train 616
receives , from index generators 610-612 , respective indexes
into sub - tables 600-602 associated with a given CTI and ,
from controller 324 , a prediction functional block identifier
406. Train 616 then increases (e.g. , increments) the fre
quency value 606 and updates the listing 608 in the entry
604 in each sub - table 600-602 indicated by the respective
index to indicate that the branch predictor selected a pre
diction from the prediction functional block identified in
prediction functional block identifier 406. For example , in
an embodiment where each listing 608 includes a sequence
of bits having a single bit for each prediction functional
block , train 616 can switch a bit for a given prediction
functional block from 0 to 1 to indicate that the prediction
was selected from that prediction functional block . Note ,

however , that train 616 leaves listings 608 unchanged in the
event that the indicator for a given prediction functional
block is already set .
[0079] In some embodiments , upon the occurrence of one
or more reset events , train 616 resets or clears some or all of
the entries 604 in sub - tables 600-602 , thereby removing
information about a CTI from each reset or cleared entry
604. For example , in some embodiments , train 616 resets all
of the entries periodically (e.g. , every F seconds , following
a hardware / software context switch , etc.) . As another
example , in some embodiments , train 616 keeps track of the
ages of the entries 604 , i.e. , a time since a last update , and
resets each entry 604 when that entry 604 exceeds a given
age . Generally , in these embodiments , train 616 performs
operations for removing , from entries 604 , information
about CTIs that is determined to be stale and thus less
likely to be correct
[0080] Although predictor controller 220 , control 402 , and
record 400 are described as including particular functional
blocks and elements , and the functional blocks and elements
are described as performing respective operations , in some
embodiments , different functional blocks and / or elements
are present in some or all of predictor controller 220 , control
402 , and / or record 400 and / or the functional blocks and / or
elements perform different operations . For example , in some
embodiments , there are a different number of sub - tables (as
shown by the ellipsis) . As another example , in some embodi
ments , there are a different number of index generators (e.g. ,
a single index generator that generates the indices for all of
the -tables , etc.) . Generally , in the described embodi
ments , predictor controller 220 , control 402 , and record 400
include sufficient functional blocks and elements to perform
the operations herein described .
Process for Controlling Prediction Functional Blocks used
by a Branch Predictor for Generating Predictions for Control
Transfer Instructions

[0081] In the described embodiments , a predictor control
ler (e.g. , predictor controller 220) performs operations for
controlling the prediction functional blocks used by a branch
predictor (e.g. , branch predictor 300) for generating predic
tions for CTIS . FIG . 7 presents a flowchart illustrating a
process for controlling prediction functional blocks used by
a branch predictor for generating predictions for CTIs in
accordance with some embodiments . Note that the opera
tions shown in FIG . 7 are presented as a general example of
operations performed by some embodiments . The operations
performed by other embodiments include different opera
tions , operations that are performed in a different order ,
and / or operations that are performed by different entities or
functional blocks .
[0082] The operations in FIG . 7 start when the predictor
controller keeps a record (e.g. , record 400) of prediction
functional blocks from which the branch predictor previ
ously selected predictions for CTIS (step 700) . For this
operation , the predictor controller , based on information
about prediction functional blocks from which predictions
were selected for CTIs by the branch predictor (e.g. , pre
diction functional block identifier 406) , adds information
about the CTI to the record or updates existing information
in the record . In other words , the predictor controller main
tains , in the record , listings that identify prediction func
tional blocks from which the branch predictor previously
selected predictions for CTIS .

US 2021/0382718 A1 Dec. 9. 2021
12

[0083] The predictor controller then uses information
from the record for controlling which prediction functional
blocks are used by the branch predictor for generating
predictions for CTIs (step 702) . For this operation , the
predictor controller acquires information about prediction
functional blocks from which predictions were previously
selected for a given CTI (for this example , the record is
assumed to have information for the given CTI) . The pre
dictor controller then generates a predictor select value that
identifies the prediction functional blocks from which pre
dictions were previously selected (e.g. , predictor select
value 408) and communicates the predictor select value to
the branch predictor . The branch predictor next generates
predictions for the given CTI using only prediction func
tional blocks identified in the predictor select value .

Process for Updating Information in a Tag - Indexed Table in
a Predictor Controller

a

searches the table for an existing entry in which is stored a
tag that matches the tag for the CTI .
[0087] When an existing entry in the table has information
for the CTI (step 802) , the predictor controller updates , in
the existing entry , the listing of the prediction functional
blocks to include an indication of the prediction functional
block (step 804) . For this operation , when the listing already
includes an indication of the prediction functional block ,
such as when the branch predictor previously selected a
prediction from the prediction functional block , the predic
tor controller leaves the listing unchanged . Otherwise , when
the listing does not include an indication of the prediction
functional block , such as when the branch predictor has
selected a prediction from the prediction functional block for
the first time , the predictor controller changes the listing to
include an indication of the prediction functional block . For
example , in an embodiment where the listing includes a set
of bits that has a single bit for each prediction functional
block , the predictor controller can change a value of a bit for
the prediction functional block from 0 to 1 (or vice versa) ,
thereby including the indication of the prediction functional
block in the listing . The predictor controller also increases ,
in the existing entry in the table , a value of a confidence
counter (e.g. , confidence counter 506) (step 806) .
[0088] When no entry in the table has information for the
CTI (step 802) , the predictor controller adds , to an available
entry in the table , a tag for the CTI and a listing that includes
the prediction functional block (step 808) . For this opera
tion , the predictor controller stores the above - described tag
for the CTI and a newly generated listing that includes
indication of the prediction functional block in the available
entry . For example , in an embodiment where the listing
includes a set of bits that has a single bit for each prediction
functional block , the predictor controller generates a listing
in which a value of a bit for the prediction functional block
is set to 1 (or 0) , thereby including the indication of the
prediction functional block in the listing . The predictor
controller then stores the listing in the available entry . The
predictor controller also sets , in the available entry in the
table , a confidence counter (e.g. , confidence counter 506) to
an initial value (step 810) . For example , the initial value for
the confidence counter may be 0 or 1. As part of this
operation , in embodiments in which the table is organized
associatively , the predictor controller performs operations
for finding the available entry .

a

9

a

[0084] In some embodiments , a predictor controller (e.g. ,
predictor controller 220) uses a tag - indexed table as the
record (e.g. , record 400) for storing information about
prediction functional blocks from which a branch predictor
(e.g. , branch predictor 300) previously selected predictions
for CTIS . FIG . 8 presents a flowchart illustrating a process
for updating information in a tag - indexed table in a predictor
controller in accordance with some embodiments . Note that
the operations shown in FIG . 8 are presented as a general
example of operations performed by some embodiments .
The operations performed by other embodiments include
different operations , operations that are performed in a
different order , and / or operations that are performed by
different entities or functional blocks .
[0085] The operations in FIG . 8 start when the predictor
controller receives , from a branch predictor (e.g. , branch
predictor 300) , an indication of a prediction functional block
(e.g. , base predictor 302 , tagged predictor 304 , etc.) from
which the branch predictor selected a prediction for a CTI
(step 800) . For this operation , the branch predictor gener
ates , using some or all of a set of prediction functional
blocks in the branch predictor , a prediction for the CTI . The
branch predictor then selects , in accordance with a selection
policy , the prediction from one of the prediction functional
blocks to be used as the prediction for the CTI — i.e . , to be
the prediction output of the branch predictor (e.g. , prediction
output 322) that is used by next PC 216 and / or other
functional blocks for determining which prediction windows
are to be fetched following a prediction window in which the
CTI is included . The branch controller also communicates ,
to the predictor controller , a prediction functional block
identifier (e.g. , prediction functional block identifier 328)
that identifies the prediction functional block .
[0086] The predictor controller then searches the table to
determine whether an entry (e.g. , entry 500) in the table has
information for the CTI (step 802) . In other words , the
predictor controller searches the table for an existing entry
in which is stored information about the CTI . For this
operation , the predictor controller uses an identifier for the
CTI (e.g. , a program counter of a prediction window in
which the CTI is included) to generate a tag for the CTI . For
example , in some embodiments , the predictor controller
generates the tag for the CTI using a hash function for the
table with the identifier for the CTI (and possibly one or
more other values) as the input . The predictor controller then

a

*

Process for Updating Confidence Counters in a Tag - Indexed
Table in a Predictor Controller

[0089] In some embodiments , a predictor controller (e.g. ,
predictor controller 220) updates confidence counter values
(e.g. , confidence counters 506) in entries in a tag - indexed
table upon determining that mispredictions were made for
CTIs for which the entries store information . FIG . 9 presents
a flowchart illustrating a process for updating confidence
counters in a tag - indexed table in a predictor controller in
accordance with some embodiments . Note that the opera
tions shown in FIG . 9 are presented as a general example of
operations performed by some embodiments . The operations
performed by other embodiments include different opera
tions , operations that are performed in a different order ,
and / or operations that are performed by different entities or
functional blocks .
[0090] The operations in FIG . 9 start when the predictor
controller receives , from a retire unit (e.g. , retire unit 226)

US 2021/0382718 A1 Dec. 9. 2021
13

(or a branch prediction unit or another functional block) , an
indication of a misprediction and an identifier associated
with a CTI for which the misprediction occurred (step 900) .
For example , the predictor controller may receive , as the
identifier for the CTI , a program counter for a prediction
window in which the CTI is included . For this operation , the
retire unit receives , along with the result of a CTI (e.g. , a
direction resolution of the CTI , etc.) information about the
prediction made by the branch predictor (e.g. , branch pre
dictor 300) for the CTI . The retire unit then determines that
the prediction does not match the result of the CTI — and
thus the branch predictor mispredicted the CTI . The retire
unit next communicates the indication of the misprediction
and the identifier associated with the CTI to the predictor
controller .
[0091] The predictor controller then searches the table to
determine whether an entry (e.g. , entry 500) in the table has
information for the CTI (step 902) . In other words , the
predictor controller searches the table for an existing entry
in which is stored information about the CTI . For this
operation , the predictor controller uses the identifier for the
CTI to generate a tag for the CTI . For example , in some
embodiments , the predictor controller generates the tag for
the CTI using a hash function for the table with the identifier
for the CTI (and possibly one or more other values) as the
input . The predictor controller then searches the table for an
existing entry in which is stored a tag that matches the tag
for the CTI .

[0092] When the table does not include an entry for the
CTI (e.g. , when information for the CTI in an entry in the
table was previously overwritten) (step 902) , the process
ends . Otherwise , when an entry in the table has information
for the CTI (step 902) , the predictor controller reduces , in
the entry , a value of a confidence counter (e.g. , confidence
counter 506) (step 904) . In other words , along with the
above described setting and increasing of the confidence
counter as predictions are made for CTIs (i.e. , in steps 806
and 810) , the predictor controller reduces the confidence
counter (to a value no lower than zero or another initial
value) when the predictions turn out to be incorrect . In this
way , the entry in the table stores a confidence count approxi
mating the probability that a correct prediction was made by
the branch predictor for a respective CTI — and thus can
reflect the " confidence ” that the predictor controller can
have in the information in that entry .
Process for Using Information from a Tag - Indexed Table in
a Predictor Controller
[0093] In some embodiments , a predictor controller (e.g. ,
predictor controller 220) uses information from a tag - in
dexed table to control which prediction functional blocks
(e.g. , base predictor 302 , tagged predictor 304 , etc.) are used
by a branch predictor (e.g. , branch predictor 300) for gen
erating predictions for CTIS . FIG . 10 presents a flowchart
illustrating a process for using information from a tag
indexed table to control prediction functional blocks that are
used by a branch predictor for generating predictions for
CTIs in accordance with some embodiments . Note that the
operations shown in FIG . 10 are presented as a general
example of operations performed by some embodiments .
The operations performed by other embodiments include
different operations , operations that are performed in a
different order , and / or operations that are performed by
different entities or functional blocks .

[0094] The operations in FIG . 10 start when the predictor
controller receives an identifier for a CTI for which a
prediction is to be made by a branch predictor (step 1000) .
For this operation , the predictor controller receives an iden
tifier for the CTI such as a program counter for a prediction
window in which the CTI is included , an address for the
CTI , and / or another identifier for the CTI . The predictor
controller receives the identifier from the CTI from a func
tional block such as next PC 216 , branch prediction unit 218 ,
or another functional block .
[0095] The predictor controller then searches the table to
determine whether an entry (e.g. , entry 500) in the table has
usable information for the CTI (step 1002) . In other words ,
the predictor controller searches the table for an existing
entry in which is stored information about the CTI that is
permitted to be used for controlling the prediction functional
blocks used by the branch predictor . For this operation , the
predictor controller uses the identifier for the CTI to gener
ate a tag for the CTI . For example , in some embodiments ,
the predictor controller generates the tag for the CTI using
a hash function for the table with the identifier for the CTI
(and possibly one or more other values) as the input . The
predictor controller then searches the table for an existing
entry in which is stored a tag that matches the tag for the
CTI . If an existing entry with a tag that matches the tag for
the CTI is found , the predictor controller checks the confi
dence counter for the existing entry . When the confidence
counter is below a threshold value , although there is an
existing entry with a matching tag , the information in the
entry is considered insufficiently reliable and is not permit
ted to be used for controlling the prediction functional
blocks used by the branch predictor . In other words , the
branch predictor has not yet made enough correct predic
tions using the prediction functional blocks in the listing in
the existing entry and the information in the existing entry
is therefore not permitted to be used . Otherwise , when the
confidence counter is at or above a threshold value , the
information in the entry is considered reliable and is there
fore permitted to be used for controlling the prediction
functional blocks used by the branch predictor .
[0096] When an entry (e.g. , entry 500) in the table has
usable information for the CTI (step 1002) , the predictor
controller acquires , from the entry , a listing (e.g. , listing 504)
of the prediction functional blocks from which the branch
predictor previously selected predictions (step 1004) . For
this operation , the predictor controller reads the listing from
the entry . For example , in an embodiment where the listing
includes a set of bits with a single bit for each prediction
functional block , the predictor controller can read the set of
bits from the listing .
[0097] The predictor controller then causes the branch
predictor to generate predictions using only the prediction
functional blocks identified in the listing (step 1006) . For
this operation , the predictor controller generates , using the
listing from the entry , a predictor select value (e.g. , predictor
select value 408) . The predictor controller then communi
cates the predictor select value to the branch predictor . For
example , the predictor select value can be a multi - bit value
with a different bit for each prediction functional block that
the predictor controller communicates , using a serial or
parallel signal route , to the branch predictor . A controller in
the branch predictor (e.g. , controller 324) receives the pre
dictor select value and uses only the prediction functional
blocks that are identified in predictor select value to generate

a

a
a

US 2021/0382718 A1 Dec. 9. 2021
14

predictions . In other words , the controller disables or oth
erwise prevents prediction functional blocks that are not
identified in the predictor select value from generating
predictions . These prediction functional blocks do not gen
erate predictions and so the branch predictor can only select
from among prediction (s) that were generated by the other
(not disabled / prevented) prediction functional blocks for the
prediction to be output from the branch predictor .
[0098] In contrast , when no entry in the table has usable
information for the CTI (step 1002) , the predictor controller
causes the branch predictor to generate predictions using all
of (or a specified group of) the prediction functional blocks
(step 1008) . In this way , the predictor controller uses a
“ default ” group of prediction functional blocks (again , either
all of or a specified group of prediction functional blocks)
when the table does not provide a listing of prediction
functional blocks to be used .

incrementing the frequency value or otherwise modifying
the frequency value to reflect that the prediction from the
prediction functional block was selected by the branch
predictor . The predictor controller also updates a listing
(e.g. , listing 608) in the entry in each sub - table indicated by
the respective index to include an indication of the predic
tion functional block (step 1106) . For this operation , when a
listing already includes an indication of the prediction
functional block , such as when the branch predictor previ
ously selected a prediction from the prediction functional
block , the predictor controller leaves the listing unchanged .
Otherwise , when the listing does not include an indication of
the prediction functional block , such as when the branch
predictor has selected a prediction from the prediction
functional block for the first time , the predictor controller
changes the listing to include an indication of the prediction
functional block . For example , in an embodiment where the
listing includes a set of bits that has a single bit for each
prediction functional block , the predictor controller can
change a value of a bit for the prediction functional block
from 0 to 1 (or vice versa) , thereby including the indication
of the prediction functional block in the listing .

Process for Updating Information in Sub - Tables in a
Predictor Controller

Process for Updating Frequency Values in Sub - Tables in a
Predictor Controller

a

[0099] In some embodiments , a predictor controller (e.g. ,
predictor controller 220) uses a set of sub - tables as the
record for storing information about prediction functional
blocks from which a branch predictor previously selected
predictions for CTIs . FIG . 11 presents a flowchart illustrat
ing a process for updating information in sub - tables in a
predictor controller in accordance with some embodiments .
Note that the operations shown in FIG . 11 are presented as
a general example of operations performed by some embodi
ments . The operations performed by other embodiments
include different operations , operations that are performed in
a different order , and / or operations that are performed by
different entities or functional blocks .
[0100] The operations in FIG . 11 start when the predictor
controller receives , from a branch predictor (e.g. , branch
predictor 300) , an indication of a prediction functional block
(e.g. , base predictor 302 , tagged predictor 304 , etc.) from
which the branch predictor selected a prediction for a CTI
(step 1100) . For this operation , the branch predictor gener
ates , using some or all of a set of prediction functional
blocks in the branch predictor , a prediction for the CTI . The
branch predictor then selects , in accordance with a selection
policy , the prediction from one of the prediction functional
blocks to be used as the prediction for the CTI — i.e . , to be
the prediction output of the branch predictor (e.g. , prediction
output 322) that is used by next PC 216 and / or other
functional blocks for determining which prediction windows
are to be fetched following a prediction window in which the
CTI is included . The branch controller also communicates ,
to the predictor controller , a prediction functional block
identifier (e.g. , prediction functional block identifier 328)
that identifies the prediction functional block .
[0101] The predictor controller then generates , using a
hash function for each sub - table in set of sub - tables in the
predictor controller (e.g. , sub - tables 600-602) , an index into
that sub - table (step 1102) . For this operation , index genera
tors (e.g. , index generators 610-612) generate , using corre
sponding hash function circuitry , indices into the respective
sub - tables .
[0102] The predictor controller (e.g. , train 616) then
increases a frequency value for an entry (e.g. , entry 604) in
each sub - table indicated by the respective index (step 1104) .
For this operation , the predictor controller increases the
frequency value (e.g. , frequency value 606) in the entry by

[0103] In some embodiments , a predictor controller
updates frequency values (e.g. , frequency values 606) in
entries in sub - tables (e.g. , sub - tables 600-602) upon deter
mining that mispredictions were made for CTIs for which
the entries store information . FIG . 12 presents a flowchart
illustrating a process for updating frequency values in sub
tables in a predictor controller in accordance with some
embodiments . Note that the operations shown in FIG . 12 are
presented as a general example of operations performed by
some embodiments . The operations performed by other
embodiments include different operations , operations that
are performed in a different order , and / or operations that are
performed by different entities or functional blocks .
[0104] The operations in FIG . 12 start when the predictor
controller receives , from a retire unit (e.g. , retire unit 226)
(or a branch prediction unit or another functional block) , an
indication of a misprediction and an identifier associated
with a CTI for which the misprediction occurred (step 1200) .
For example , the predictor controller may receive , as the
identifier for the CTI , a program counter for a prediction
window in which the CTI is included . For this operation , the
retire unit receives , along with the result of a CTI (e.g. , a
direction resolution of the CTI , etc.) information about the
prediction made by the branch predictor (e.g. , branch pre
dictor 300) for the CTI . The retire unit then determines that
the prediction does not match the result of the CTI — and
thus the branch predictor mispredicted the CTI . The retire
unit next communicates the indication of the misprediction
and the identifier associated with the CTI to the predictor
controller .
[0105] The predictor controller then generates , using a
hash function for each sub - table in set of sub - tables in the
predictor controller (e.g. , sub - tables 600-602) , an index into
that sub - table from the identifier for the CTI (step 1202) . For
this operation , index generators (e.g. , index generators 610
612) generate , using corresponding hash function circuitry ,
indices into the respective sub - tables .
[0106] The predictor controller then reduces a frequency
value for an entry in each sub - table indicated by the respec

US 2021/0382718 A1 Dec. 9 , 2021
15

a

tive index (step 1204) . In other words , along with the above
described increasing of the frequency as predictions are
made for CTIs (i.e. , in step 1104) , the predictor controller
reduces the frequency values (to a value no lower than zero
or another initial value) when the predictions turn out to be
incorrect . In this way , the entries in the sub - tables store a
frequency value approximating the probability that a correct
prediction was made by the branch predictor for CTIs — and
thus can reflect the " confidence ” that the predictor controller
can have in the information in those entries .
Process for Using Information from Sub - Tables in a Predic
tor Controller
[0107] In some embodiments , a predictor controller (e.g. ,
predictor controller 220) uses information from sub - tables to
control which prediction functional blocks (e.g. , base pre
dictor 302 , tagged predictor 304 , etc.) are used by a branch
predictor (e.g. , branch predictor 300) for generating predic
tions for CTIS . FIG . 13 presents a flowchart illustrating a
process for using information from sub - tables to control
prediction functional blocks that are used by a branch
predictor for generating predictions for CTIs in accordance
with some embodiments . Note that the operations shown in
FIG . 13 are presented as a general example of operations
performed by some embodiments . The operations performed
by other embodiments include different operations , opera
tions that are performed in a different order , and / or opera
tions that are performed by different entities or functional
blocks .
[0108] The operations in FIG . 13 start when the predictor
controller receives an identifier for a CTI for which a
prediction is to be made by a branch predictor (step 1300) .
For this operation , the predictor controller receives an iden
tifier for the CTI such as a program counter for a prediction
window in which the CTI is included , an address for the
CTI , and / or another identifier for the CTI . The predictor
controller receives the identifier from the CTI from a func
tional block such as next PC 216 , branch prediction unit 218 ,
or another functional block .
[0109] The predictor controller then generates , using a
hash function for each sub - table in set of sub - tables in the
predictor controller (e.g. , sub - tables 600-602) , an index into
that sub - table from the identifier for the CTI (step 1302) . For
this operation , index generators (e.g. , index generators 610
612) generate , using corresponding hash function circuitry ,
indices into the respective sub - tables .
[0110] The predictor controller next determines a fre
quency value (e.g. , frequency value 606) for an entry (e.g. ,
entry 604) in each sub - table indicated by the respective
index (step 1304) . For this operation , the predictor controller
reads , from the entries in the sub - tables indicated by the
indices , the frequency values .
[0111] When all of the frequency values are above a
threshold (step 1306) , the predictor controller generates ,
from a listing (e.g. , listing 608) in an entry in each sub - table
indicated by the respective index , a combined listing of the
prediction functional blocks from which the branch predic
tor previously selected predictions (step 1308) . The predic
tor controller then causes the branch predictor to generate
predictions for the CTI using only the prediction functional
blocks identified in the combined listing (step 1310) . For this
operation , the predictor controller generates , using the com
bined listing , a predictor select value (e.g. , predictor select
value 408) . The predictor controller then communicates the
predictor select value to the branch predictor . For example ,

the predictor select value can be a multi - bit value with a
different bit for each prediction functional block that the
predictor controller communicates , using a serial or parallel
signal route , to the branch predictor . A controller in the
branch predictor (e.g. , controller 324) receives the predictor
select value and uses only the prediction functional blocks
that are identified in predictor select value to generate
predictions . In other words , the controller disables or oth
erwise prevents prediction functional blocks that are not
identified in the predictor select value from generating
predictions . These prediction functional blocks do not gen
erate predictions and so the branch predictor can only select
from among prediction (s) that were generated by the other
(not disabled / prevented) prediction functional blocks for the
prediction to be output from the branch predictor .
[0112] When one or more of the frequency values are
below the threshold (step 1306) , the predictor controller
causes the branch predictor to generate predictions for the
CTI using all (or a specified group of) the prediction
functional blocks (step 1312) . In this case , the information
in at least one of the entries cannot yet be used for control
ling which prediction functional blocks are used for gener
ating predictions by the branch predictor because an insuf
ficient number of correct predictions have been made by the
branch predictor for the CTI and thus the information in
that entry (or those entries) is not considered trustworthy . In
this way , the predictor controller uses a “ default ” group of
prediction functional blocks (again , either all of or a speci
fied group of prediction functional blocks) when the sub
tables do not provide a listing of prediction functional blocks
to be used .
[0113] In some embodiments , at least one electronic
device (e.g. , electronic device 100) uses code and / or data
stored on a non - transitory computer - readable storage
medium to perform some or all of the operations described
herein . More specifically , the at least one electronic device
reads code and / or data from the computer - readable storage
medium and executes the code and / or uses the data when
performing the described operations . A computer - readable
storage medium can be any device , medium , or combination
thereof that stores code and / or data for use by an electronic
device . For example , the computer - readable storage medium
can include , but is not limited to , volatile and / or non - volatile
memory , including flash memory , random access memory
(e.g. , eDRAM , RAM , SRAM , DRAM , DDR4 SDRAM ,
etc.) , non - volatile RAM (e.g. , phase change memory , ferro
electric random access memory , spin - transfer torque random
access memory , magnetoresistive random access memory ,
etc.) , read - only memory (ROM) , and / or magnetic or optical
storage mediums (e.g. , disk drives , magnetic tape , CDs ,
DVDs , etc.) .
[0114] In some embodiments , one or more hardware mod
ules perform the operations described herein . For example ,
the hardware modules can include , but are not limited to , one
or more central processing units (CPUs) / CPU cores , graph
ics processing units (GPUs) / GPU cores , application - specific
integrated circuit (ASIC) chips , field - programmable gate
arrays (FPGAs) , compressors or encoders , compute units ,
embedded processors , accelerated processing units (APUs) ,
controllers (e.g. , predictor controller 220 , etc.) , and / or other
functional blocks . When circuitry (e.g. , integrated circuit
elements , discrete circuit elements , etc.) in such hardware
modules is activated , the circuitry performs some or all of
the operations . In some embodiments , the hardware modules

a

9

US 2021/0382718 A1 Dec. 9 , 2021
16

intended to limit the embodiments . The scope of the embodi
ments is defined by the appended claims .

1. An electronic device , comprising :
a processor ;
a branch predictor in the processor , the branch predictor

including multiple prediction functional blocks , each
prediction functional block configured for generating
predictions for control transfer instructions (CTI)
based on respective prediction information ; and

a predictor controller in the processor , the predictor
controller configured to use information from a record
of prediction functional blocks from which the branch
predictor previously selected predictions for CTIs for
controlling which prediction functional blocks are used
by the branch predictor for generating predictions for
CTIs .

2. The electronic device of claim 1 , wherein the record
includes a table having multiple entries , each entry config
ured for storing tags associated with CTIs and listings of
prediction functional blocks from which the branch predic
tor previously selected predictions for CTIs associated with
the tags .

include general purpose circuitry such as execution pipe
lines , compute or processing units , etc. that , upon executing
instructions (program code , firmware , etc.) , performs the
operations . In some embodiments , the hardware modules
include purpose - specific or dedicated circuitry that performs
the operations , possibly including circuitry that performs
some or all of the operations “ in hardware ” and without
executing instructions .
[0115] In some embodiments , a data structure representa
tive of some or all of the functional blocks and circuit
elements described herein (e.g. , electronic device 100 or
some portion thereof) is stored on a non - transitory com
puter - readable storage medium that includes a database or
other data structure which can be read by an electronic
device and used , directly or indirectly , to fabricate hardware
including the functional blocks and circuit elements . For
example , the data structure may be a behavioral - level
description or register - transfer level (RTL) description of the
hardware functionality in a high - level design language
(HDL) such as Verilog or VHDL . The description may be
read by a synthesis tool which may synthesize the descrip
tion to produce a netlist including a list of transistors / circuit
elements from a synthesis library that represent the func
tionality of the hardware including the above - described
functional blocks and circuit elements . The netlist may then
be placed and routed to produce a data set describing
geometric shapes to be applied to masks . The masks may
then be used in various semiconductor fabrication steps to
produce a semiconductor circuit or circuits (e.g. , integrated
circuits) corresponding to the above - described functional
blocks and circuit elements . Alternatively , the database on
the computer accessible storage medium may be the netlist
(with or without the synthesis library) or the data set , as
desired , or Graphic Data System (GDS) II data .
[0116] In this description , variables or unspecified values
(i.e. , general descriptions of values without particular
instances of the values) are represented by letters such as N ,
M , and X. As used herein , despite possibly using similar
letters in different locations in this description , the variables
and unspecified values in each case are not necessarily the
same , i.e. , there may be different variable amounts and
values intended for some or all of the general variables and
unspecified values . In other words , particular instances of N
and any other letters used to represent variables and unspeci
fied values in this description are not necessarily related to
one another .
[0117] The expression " et cetera " or " etc. " as used herein
is intended to present an and / or case , i.e. , the equivalent of
" at least one of the elements in a list with which the etc. is
associated . For example , in the statement “ the electronic
device performs a first operation , a second operation , etc. , "
the electronic device performs at least one of the first
operation , the second operation , and other operations . In
addition , the elements in a list associated with an etc. are
merely examples from among a set of examples — and at
least some of the examples may not appear in some embodi
ments .

[0118] The foregoing descriptions of embodiments have
been presented only for purposes of illustration and descrip
tion . They are not intended to be exhaustive or to limit the
embodiments to the forms disclosed . Accordingly , many
modifications and variations will be apparent to practitioners
skilled in the art . Additionally , the above disclosure is not

3. The electronic device of claim 2 , wherein the predictor
controller is configured to :

train the table by :
receiving , from the branch predictor , an indication of a

given prediction functional block from which the
branch predictor selected the prediction for a given
CTI ;

when no entry in the table includes information for the
given CTI , adding , to an available entry in the table ,
a tag associated with the given CTI and a listing of
the prediction functional blocks that includes an
indication of the given prediction functional block ;
and

when an existing entry in the table includes information
for the given CTI , updating , in the existing entry , the
listing of the prediction functional blocks to include
an indication of the given prediction functional
block .

4. The electronic device of claim 3 , wherein :
each entry in the table is configured for storing a confi

dence counter , and
when training the table , the predictor controller is con

figured to :
when adding the tag and the listing of the prediction

functional blocks to the available entry , setting a
value of a confidence counter for the available entry
to an initial value ; and

when updating the listing of the prediction functional
blocks for the existing entry , increasing the value of
the confidence counter for that entry .

5. The electronic device of claim 4 , wherein , when
training the table , the predictor controller is configured to :

receive a misprediction signal and an identifier associated
with a mispredicted CTI , the misprediction signal indi
cating that a prediction for the mispredicted CTI that
was previously provided by the branch predictor was
incorrect ; and

when an entry in the table includes information for the
mispredicted CTI , reducing the value of the confidence
counter for that entry in the table .

US 2021/0382718 A1 Dec. 9 , 2021
17

6. The electronic device of claim 2 , wherein , when using
the information from the record , the predictor controller is
configured to :
when a prediction is to be provided by the branch pre

dictor for a given CTI , search the table for an existing
entry in which is stored an existing tag that matches a
tag associated with the given CTI ;

when a useable existing entry is found for which the
existing tag matches the tag associated with the given
CTI , acquire , from the existing entry , the listing of the
prediction functional blocks from which the branch
predictor previously selected predictions for the given
CTI ; and

cause the branch predictor to generate predictions for the
given CTI using only the prediction functional blocks
identified in the listing , wherein the branch predictor
selects the prediction to be used for the given CTI from
among the generated predictions .

7. The electronic device of claim 6 , wherein the predictor
controller is configured to :
when no useable existing entry is found , cause the branch

predictor to generate predictions for the given CTI
using all of the prediction functional blocks , wherein
the branch predictor selects the prediction to be used
for the given CTI from among the generated predic
tions .

8. The electronic device of claim 6 , wherein searching the
table for the existing entry includes :
upon finding an existing entry in the table in which is

stored the existing tag that matches the tag associated
with the given CTI , determining that the existing entry
is useable only when a value of a confidence counter for
the existing entry exceeds a threshold value .

9. The electronic device of claim 2 , wherein the table is
organized as set associative .

10. The electronic device of claim 2 , wherein some or all
of the entries in the table include respective circular buffers
with multiple buffer elements , each buffer element config
ured for storing a listing of a prediction functional block that
generated a prediction that was previously used by the
branch predictor for a CTI associated with the tag for that
entry .

11. The electronic device of claim 1 , wherein the record
includes multiple sub - tables , each sub - table being accessed
by the predictor controller using a respective hash function ,
and each sub - table configured for storing frequency values
and listings of prediction functional blocks from which the
branch predictor previously selected predictions for CTIS .

12. The electronic device of claim 11 , wherein the pre
dictor controller is configured to :

train the sub - tables by :
receiving , from the branch predictor , an indication of a

given prediction functional block from which the
branch predictor selected the selected prediction for
a given CTI ;

generating , using the hash function for each sub - table ,
an index into that sub - table based on an identifier for
the given CTI ;

increasing a frequency value for an entry in each
sub - table indicated by the respective index ; and

updating the listing of the prediction functional blocks
for the entry in each sub - table indicated by the
respective index to include an indication of the given
prediction functional block .

13. The electronic device of claim 12 , wherein , when
training the sub - tables , the predictor controller is configured
to :

receive a misprediction signal and an identifier of a
mispredicted CTI , the misprediction signal indicating
that a prediction for the mispredicted CTI previously
provided by the branch predictor was incorrect ;

generate , using the hash function for each sub - table , an
index into that sub - table based on the identifier for the
mispredicted CTI ; and

reduce a frequency value for an entry in each sub - table
indicated by the respective index .

14. The electronic device of claim 11 , wherein , when
using the information from the record , the predictor con
troller is configured to :
when a prediction is to be provided by the branch pre

dictor for a given CTI , generate , using the hash func
tion for each sub - table , an index into that sub - table
based on the identifier for the given CTI ;

determine , based on the frequency value for an entry in
each sub - table indicated by the respective index , that
the listings of prediction functional blocks in those
entries are useable ;

generate a combined listing from a combination of the
listing of prediction functional blocks in the entry in
each sub - table indicated by the respective index ; and

cause the branch predictor to generate predictions for the
given CTI using only the prediction functional blocks
identified in the combined listing , wherein the branch
predictor selects the selected prediction to be used for
the given CTI from among the generated predictions .

15. The electronic device of claim 14 , wherein the pre
dictor controller is configured to :

determine , based on the frequency value for an entry in
each sub - table indicated by the respective index , that
the listings of prediction functional blocks in those
entries are not useable ; and

cause the branch predictor to generate predictions for the
given CTI using all of the prediction functional blocks ,
wherein the branch predictor selects the selected pre
diction to be used for the given CTI from among the
generated predictions .

16. The electronic device of claim 1 , wherein the branch
predictor is configured to select , from among predictions
generated by the prediction functional blocks for each CTI ,
a selected prediction to be used for that CTI .

17. A method for making predictions for control transfer
instructions (CTIS) in an electronic device that includes a
processor ; a branch predictor in the processor , the branch
predictor including multiple prediction functional blocks ,
each prediction functional block configured for generating
predictions for control transfer instructions (CTIs) based on
respective prediction information ; and a predictor controller
in the processor , the method comprising :

using , by the predictor controller , information from a
record of prediction functional blocks from which the
branch predictor previously selected predictions for
CTIs for controlling which prediction functional blocks
are used by the branch predictor for generating predic
tions for CTIS .

18. The method of claim 17 , wherein the record includes
a table having multiple entries , each entry configured for
storing tags associated with CTIs and listings of prediction

US 2021/0382718 A1 Dec. 9 , 2021
18

functional blocks from which the branch predictor previ
ously selected predictions for CTIs associated with the tags .

19. The method of claim 18 , further comprising :
training , by the predictor controller , the table by :

receiving , from the branch predictor , an indication of a
given prediction functional block from which the
branch predictor selected the prediction for a given
??? ;

when no entry in the table includes information for the
given CTI , adding , to an available entry in the table ,
a tag associated with the given CTI and a listing of
the prediction functional blocks that includes an
indication of the given prediction functional block ;
and

when an existing entry in the table includes information
for the given CTI , updating , in the existing entry , the
listing of the prediction functional blocks to include
an indication of the given prediction functional
block .

20. The method of claim 19 , wherein each entry in the
table is configured for storing a confidence counter and
training the table comprises :
when adding the tag and the listing of the prediction

functional blocks to the available entry , setting , by the
predictor controller , a value of a confidence counter for
the available entry to an initial value ; and

when updating the listing of the prediction functional
blocks for the existing entry , increasing , by the predic
tor controller , the value of the confidence counter for
that entry .

21. The method of claim 20 , wherein training the table
comprises :

receiving , by the predictor controller , a misprediction
signal and an identifier associated with a mispredicted
CTI , the misprediction signal indicating that a predic
tion for the mispredicted CTI that was previously
provided by the branch predictor was incorrect ; and

when an entry in the table includes information for the
mispredicted CTI , reducing , by the predictor controller ,
the value of the confidence counter for that entry in the
table .

22. The method of claim 18 , wherein using the informa
tion from the record comprises :
when a prediction is to be provided by the branch pre

dictor for a given CTI , searching , by the predictor
controller , the table for an existing entry in which is
stored an existing tag that matches a tag associated with
the given CTI ;

when a useable existing entry is found for which the
existing tag matches the tag associated with the given
CTI , acquiring , by the predictor controller , from the
existing entry , the listing of the prediction functional
blocks from which the branch predictor previously
selected predictions for the given CTI ; and

causing , by the predictor controller , the branch predictor
to generate predictions for the given CTI using only the
prediction functional blocks identified in the listing ,
wherein the branch predictor selects the prediction to
be used for the given CTI from among the generated
predictions .

23. The method of claim 22 , further comprising :
when no useable existing entry is found , causing , by the

predictor controller , the branch predictor to generate
predictions for the given CTI using all of the prediction

functional blocks , wherein the branch predictor selects
the prediction to be used for the given CTI from among
the generated predictions .

24. The method of claim 22 , wherein searching the table
for the existing entry comprises :
upon finding an existing entry in the table in which is

stored the existing tag that matches the tag associated
with the given CTI , determining , by the predictor
controller , that the existing entry is useable only when
a value of a confidence counter for the existing entry
exceeds a threshold value .

25. The method of claim 17 , wherein the record includes
multiple sub - tables , each sub - table being accessed by the
predictor controller using a respective hash function , and
each sub - table configured for storing frequency values and
listings of prediction functional blocks from which the
branch predictor previously selected predictions for CTIS .

26. The method of claim 25 , further comprising :
training , by the predictor controller , the sub - tables by :

receiving , from the branch predictor , an indication of a
given prediction functional block from which the
branch predictor selected the selected prediction for
a given CTI ;

generating , using the hash function for each sub - table ,
an index into that sub - table based on an identifier for
the given CTI ;

increasing a frequency value for an entry in each
sub - table indicated by the respective index ; and

updating the listing of the prediction functional blocks
for the entry in each sub - table indicated by the
respective index to include an indication of the given
prediction functional block .

27. The method of claim 26 , wherein training the sub
tables comprises :

receiving , by the predictor controller , a misprediction
signal and an identifier of a mispredicted CTI , the
misprediction signal indicating that a prediction for the
mispredicted CTI previously provided by the branch
predictor was incorrect ;

generating , by the predictor controller , using the hash
function for each sub - table , an index into that sub - table
based on the identifier for the mispredicted CTI ; and

reducing , by the predictor controller , a frequency value
for an entry in each sub - table indicated by the respec
tive index .

28. The method of claim 25 , wherein using the informa
tion from the record comprises :
when a prediction is to be provided by the branch pre

dictor for a given CTI , generating , by the predictor
controller , using the hash function for each sub - table ,
an index into that sub - table based on the identifier for
the given CTI ;

determining , by the predictor controller , based on the
frequency value for an entry in each sub - table indicated
by the respective index , that the listings of prediction
functional blocks in those entries are useable ;

generating , by the predictor controller , a combined listing
from a combination of the listing of prediction func
tional blocks in the entry in each sub - table indicated by
the respective index ; and

causing , by the predictor controller , the branch predictor
to generate predictions for the given CTI using only the
prediction functional blocks identified in the combined
listing , wherein the branch predictor selects the

US 2021/0382718 A1 Dec. 9. 2021
19

selected prediction to be used for the given CTI from
among the generated predictions ,

29. The method of claim 28 , further comprising :
determining , by the predictor controller , based on the

frequency value for an entry in each sub - table indicated
by the respective index , that the listings of prediction
functional blocks in those entries are not useable ; and causing , by the predictor controller , the branch predictor
to generate predictions for the given CTI using all of
the prediction functional blocks , wherein the branch
predictor selects the selected prediction to be used for
the given CTI from among the generated predictions .

30. The method of claim 17 , wherein the branch predictor
is configured to select from among predictions generated by
the prediction functional blocks for each CTI , a selected
prediction to be used for that CTI .

* *

