US007440951B2

a2 United States Patent 10) Patent No.: US 7,440,951 B2
Chidlovskii 45) Date of Patent: Oct. 21, 2008
(54) METHOD FOR AUTOMATIC WRAPPER 2004/0015784 Al* 1/2004 Chidlovskii 715/530
REPAIR 2005/0022114 Al* 1/2005 Shanahanetal. 715/513
(75) Inventor: Boris Chidlovskii, Meylan (FR)
OTHER PUBLICATIONS

(73) Assignee: Xerox Corporation, Norwalk, CT (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 326 days.

(21) Appl. No.: 11/294,870

(22) Filed: Dec. 5, 2005
(65) Prior Publication Data
US 2006/0074999 A1l Apr. 6, 2006

Related U.S. Application Data

(62) Division of application No. 10/277,662, filed on Oct.
21, 2002, now Pat. No. 7,035,841.

(60) Provisional application No. 60/397,152, filed on Jul.

Faensen, D. et al., “Hermes—A Notification Service for Digital
Libraries”, ACM 2001, pp. 373-380.*

Kushmerick, Nicholas “Regression testing for wrapper mainte-
nance”, American Association for Artificial Intelligence, 1999, pp.
1-6.*

Kushmerick, Nicholas “Gleaning the Web”, IEEE Intelligent Sys-
tems, pp. 20-22.*

Stonebraker, Michael et al., “Content Integration for E-Business”,
ACM Sigmod, May 21-24, 2001, pp. 552-560.*

Chidlovskii, Boris, System and Method of Automatic Wrapper
Grammar Generation, Jul. 6, 1999, U.S. Appl. No. 09/361,496.
Gruser, Jean-Robert, et. al., Wrapper Generation for Web Accessible
Data Sources, University of Maryland, College Park Maryland
{gruser, louiqa, mvidal, bright} @umiacs. umd.edu.

Kushmerick, Nicholas, Wrapper Induction: Efficiency and expres-
siveness, Artificial Intelligence 118, 2000 Elsevier Science, pp.
15-68.

Kashmerick, Nicholas, Wrapper Induction, Efficiency and expres-
siveness (Extended Abstract), School of Computer Applications,
Dublin City University, Ireland, 25-37 (nick@compapp.dcu.ie).

* cited by examiner

Primary Examiner—Tony Mahmoudi
(74) Attorney, Agent, or Firm—IJeannette Walder

(57) ABSTRACT

A method of information extraction from a Web page using a
broken wrapper, includes using the wrapper to extract strings
from the Web page parsed in forward direction; analyzing the
extracted strings according to a set of rules for assigning
labels associated with the wrapper; assigning labels to those
strings which satisfy the label rules; classifying the extracted
strings based on content features of the labeled extracted
strings; validating those labeled extracted strings which sat-
isfy the label rules within some threshold value.

3 Claims, 11 Drawing Sheets

18, 2002.

(51) Imt.ClL
GO6F 17/30 (2006.01)
GO6F 15/16 (2006.01)

(52) US.CL ..o 707/10; 707/1; 707/100
(58) Field of Classification Search 707/10
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,826,258 A * 10/1998 Guptaetal.ccceee...... 707/4
5913,214 A * 6/1999 Madnick et al. 707/10
6,009,441 A * 12/1999 Mathieu et al. 715/516
6,085,198 A * 7/2000 Skinner etal. 707/103 R
6,304,870 B1* 10/2001 Kushmerick et al. 707/4
6,424,980 B1* 7/2002 lizukaetal. 715/513
6,442,749 B1* 8/2002 Hirao etal.cccoeeeeeee 717/170
6,691,264 B2* 2/2004 Huangc.ccccceeenn. 714/723
6,792,576 Bl 9/2004 Chidlovskii
2002/0062312 Al* 5/2002 Guptaetal.cccce...... 707/3
Recall
1.0 T T T
Group 1
095+ altavista ——
google —=—
excite —#—
0.9~ yahoo —g—
metacrawler —s—
| go —e—
0.85 doa e
cnn —a—
0.8
0.75|
0.7+
0.65 .

T

Recovery 4
Recovery 3
Recovery 2

Recovery 1

1 1
0.86 0.88 09

1 1 1
0.94 0.96 0.98 1.0

Precision

US 7,440,951 B2

Sheet 1 of 11

Oct. 21, 2008

U.S. Patent

\Il!tllillamﬂu%&ﬂmaowm |||||||||)
| i “
| uonoale(Q Aanooay |
dieH- abuey)d uonoeix3 |
_r ? aunje % |
H\l - T — — < ﬁl = <
BlRQ po1oResX] uolnoeIX3y g odd |
JBMSUY || 4o uowepien [Tsseoong | pue Buisied _ 1oCdEIM _
|\ |
| * | * |
| I (|
_ abey uononpu|

_ asm _ ‘_QQQM‘_>> _
|\ _
| | ! |
| | _ |

_ |
jsenbey JOPIAOI | sebed gom |_ | |
fenp | dilH gem | T pajeqeq _
_ |
| | |
| wauodwo) uswAhojdwg A Jauodwo?) uoleIauar))

U.S. Patent Oct. 21, 2008 Sheet 2 of 11 US 7,440,951 B2

FIG. 2

Search Result

Query: title = "collaborative filtering"

<< | Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, John RiedL:
‘EE{| An Algorithmic Framework for Performing Collaborative Filtering.
22| SIGIR 1999: 230-237 [DBLP:conf/sigir/HerlockerKBR99]

Dhruv Gupta, Mark Digiovanni, Hiro Narita, Ken Goldberg: Jester
2.0: Collaborative Filtering to Retrieve Jokes (demonstration abstract).
> | SIGIR 1999: 333 [DBLP:conf/sigir/GuptaDNG99a]

<<<|| Dhruv Gupta, Mark Digiovanni, Hiro Narita, Ken Goldberg: Jester
S5 2.0: Evaluation of an New Linear Time Collaborative Filtering

% Algorithm (poster abstract). SIGIR 1999: 291-292

Z\&' [DBLP:conf/sigir/GuptaDNG99]

US 7,440,951 B2

Sheet 3 of 11

Oct. 21, 2008

U.S. Patent

€ Oid
N

<I3/><p3/>

[669GMISNO0TISH/ATOTS/JUOD:1dTHA] LEZ-0EC

666T YIDIS<.66dIMIDHOOTIBHHTWAY g6ITDTS/ - //:da3y,=TJ2IYy e>
"HBUTISITTY SATIRIOCRTITOD DUTWIOIID IOF YIOMBWEII OTWYITIOHTY Uy
TPaTY uyopr<, Wiy uyop:Tpatd/** - //:d3a3y,=3aay e>

‘<¥/>sI8ydiog TV<,TWIY TY:saayoxod/" - //:d3ay,=JoI1y e>
‘<¥/>uelsuoy vy ydasop<,Twiy =y ydssop:ueisuoy/- - //:d33y, =391y e>
<Y/>ISYDOTIASH T UBUIRUOLL,TWIY' =T UBYJRUOL:YOOTISH/ " //:d313y,=J21Y e>
<pP3>

<PI/><e/>HAA<, /I D0TadY-0ggd/ * * *//:d33y,=F2IY ©><,00d400,=I0T00H6q paI>
AUH\VHA:M&UUUU#:"HOHOO@Q :MQ@HH:HC@HHG P3>

<I3>

<I=I9pI0g STdei>

4

j

J

US 7,440,951 B2

Sheet 4 of 11

Oct. 21, 2008

U.S. Patent

y "Old

AN

~

616
6661 dIDIS "(3oensqe 19350d) WPLIOS[y SuLId)[I] dABIOqR]]0)) JWI] Jedul] Bom
ue JO uonen|eAy (g 121s9r :513qp[o0n) Uy TIIEN OJif] TUUBAOISI(] SHe ‘Bidn) Any(] e
€€€ 16661 dIDIS (1or1SqR UOBISUOWIP) SO ALY 03 SuLIdN|1]
JAIRIOQR][0)) :()'7 12153 :FI3QPIOD) UIY ‘BIMEN OMH ‘TUUBAOISI(] JAC]N ‘BIdND) ALY (] @
LET-0ET “6661 AIDIS "SULIN|L] 2ARIOqR[[0]) SUIULIOLID] 10] J10MIWel]
IWPLIOS|Y UY [Py WO ‘SI3YdI0g [V ‘UBISUOY 'V JUdoSOf TINIO[SH '] UEIeUuo[@

,QULI3J[I] IANIRIOQR[[0J, 10] SINSIY YI1BIS)

US 7,440,951 B2

Sheet 5 of 11

Oct. 21, 2008

U.S. Patent

G O

AN

~

€€€ 6661 UIDIS "(19e1Sqe UOTIRISUOWISP) SINO[ALY 0} SUTIANL]
SATIRIOQR[[O0)) :()'Z 101S3[:SI3qP[O0) U SEueIIEN O JEAUUeAOTSI(] SIejNEeIdnD) ANT(] @
LET-0ET 6661 WIDIS “SULIAIL] 2ANRIOQR]]0D) SUIULIOJIS] S0 JIoMaurel |
oruyLog|y uy :[pary Uyor EIeYoIog [V EeIsuoy] "y daso[EpYo0[o] UeUjeuof e

)

J

U.S. Patent Oct. 21, 2008 Sheet 6 of 11 US 7,440,951 B2
FS
Position String Label none | number || ee | author
34 |2 number 7 10 9 4
35 EE ee 8 1 10 5
36 |[Dhruv Gupta author 9 2 1 6
37 , none 10 3 2 1
38 Mark Digiovanni || author 1 4 3 2

US 7,440,951 B2

Sheet 7 of 11

Oct. 21, 2008

U.S. Patent

==

(Zsd+04) T8TFTSSeT

=

(IS4+04) I9TITSSPT

Rl

(04) I9TITSSPT

0=£0 ﬁ

0=20 M
o=TD ﬁ

RXRR R KRR IR AR KRR R R SRR IR TS
K%L 190000002070 %000 %0020 %0 %% 1000000000000 000082000920 %%
0 X 05SSR IIEIEEEREK KKK 0004000 0.0.0.0.0.9.0.0.9:5:8,0.0.0
T %0 %0 % T T T Y0 %0 %0 %0 T T % 70 %0 %0 %0 % %0 %0 0 %0 00 %0 % %0 %0 070 0 %0 % 2 %0 %0 %6 10 %0 % Y

(Toyine’saucu)=zsd

€€€ 6661 AIDIS "(30B1SqQR UONBIISUOWIIP) SONO[AN 01 FuLIAI]

SATIBIOQR[[OD) ()T 1IS9f 3
LEZ-0€T 6661 AIDIS ‘SuLIoli] 9A1RIOqR][0)) SUTWIOId] J0] JIomawel]
SMULIOT[Y Uy R

(suou) =1sd

€£€ 6661 dIDIS "(10e11SQR UOT)RIISUOWIIP) SANO[ALY 0) TuLd[I]
9ALRIOQR[[0D) 107 1919 :ST3qP[On) USSEeIIIeN ONEIUUeAOISI(] e jNEeIdnD) ANIY(] @

LET-0€T ‘6661 AIDIS "SuLAi] 2A1RI0qR[[0)) SUIIONS 10] }I0MIUIRL]
JIWLIOS[Y Uy :[pary Wjof EIaydIog [V EFeISuoy] v ydasor EpYO0{IoH '] Ueyleuof e \

U.S. Patent Oct. 21, 2008 Sheet 8 of 11 US 7,440,951 B2

FIG. 8

t

'

W - classifier (t)]

Labellin L] Error
[C — classifier (t,1) >thVaIidateJ [C — classifier (t) >thRecovery]
Yes No Yes No
Label Skip Label Skip
Direction t
Forward Backward ¢
Forward Backward
W — classifier (t) W — classifier (t)
|Error
Label lin L Label lin L Error
y Y
[C - classifier (t,1) >thVaIidate) E: — classifier (t) >thHecoveryJ
Yes | No Yes |INo
Label Skip Label Skip

FIG. 9

U.S. Patent Oct. 21, 2008 Sheet 9 of 11 US 7,440,951 B2

FIG. 10

Recall
1.0 T | T T T
Group 1
0.95| altavista — Recovery 4
google —#&— Recovery 3
excite —&— Recovery 2
0.9 yahoo —g—
metacrawler —a—
i go —o—
0.85 deja —e—
cnn ——
0.8
0.75F -
0.7F |
Recovery 1 J.
0.65 '

| | 1 | | 1
0.86 0.88 0.9 0.92 0.94 0.96 0.98 1.0
Precision

U.S. Patent Oct. 21, 2008 Sheet 10 of 11 US 7,440,951 B2

Recall
1.0 T T T T T T -
Group 2 Recovery 4 \
Recovery 3 [
0.95F _
dblp —a— Recovery 2
acm —e—
09t ieee —— i
elsevier —-s— ‘
cora —s— R 1
0.85- ecovery |
0.8 -
d
0.75+ R
0.7 _
0.65 L

| 1 1 | I} 1
0.86 0.88 09 0.92 0.94 0.96 0.98 1.0
Precision

FIG. 11

U.S. Patent Oct. 21, 2008 Sheet 11 of 11 US 7,440,951 B2

Reca“ | I | T I { T ‘
10 Recovery 3=4 3
Group 3
0.9 - wallstreet —— -
fintimes —e— N
amazon —s— 4 2=3
08 2w -
Recovery 2
0.7 -
0.6 1I —
05 - Recovery 1 |
1 1 | | | | 1 |

0.86 0.88 09 0.92 0.94 0.95 0.98 1.0
Precision

FIG. 12

US 7,440,951 B2

1

METHOD FOR AUTOMATIC WRAPPER
REPAIR

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a divisional of U.S. application Ser. No.
10/277,662 filed Oct. 21, 2002, now U.S. Pat. No. 7,035,841.
This application claims priority from provisional Application
No. 60/397,152 filed Jul. 18, 2002, which is incorporated
herein by reference. This invention is related to co-assigned,
co-pending U.S. Pat. No. 6,792,576 issued Sep. 14, 2004 for
“System and Method for Automatic Wrapper Grammar Gen-
eration”, which is incorporated herein by reference.

FIELD OF THE INVENTION

This invention relates generally to wrappers, and more
particularly to a method for automatic repair of wrappers.

BACKGROUND AND SUMMARY

A wrapper is atype of software component or interface that
is tied to data which encapsulates and hides the intricacies of
aninformation source in accordance with aset of rules. Wrap-
pers are associated with the particular information source and
its associated data type. For example, HT'TP wrappers inter-
act with HTTP servers and HTML documents; JDBC wrap-
pers work with ODBC-compliant databases; and DM A wrap-
pers work with DMA-compliant document management
systems.

The World Wide Web (Web) represents a rich source of
information in various domains of human activities and inte-
grating Web data into various user applications has become a
common practice. These applications use wrappers to encap-
sulate access to Web information sources and to allow the
applications to query the sources like a database. Wrappers
fetch HTML pages, static or ones generated dynamically
upon user requests, extract relevant information and deliver it
to the application, often in XML format. Web wrappers
include a set of extraction rules that instruct an HTML parser
how to extract and label content of a web page. These extrac-
tion rules are specific for a given Web provider and therefore
may be tightly linked to the layout and structure of the pro-
vider pages.

When a wrapper is generated, it is assumed that the layout
and structure of the document pages do not change. However,
Web page owners frequently update and revise their pages,
which often involves changing the layout and structure of
their pages. Wrappers become brittle when the page mark-up
or layout or structure is changed. When the wrapper is brittle,
the wrapper may fail to find specific “landmarks” in the page
and may fail to apply the corresponding extraction rules, thus
becoming inoperable and incapable of completing the task of
information extraction. When the wrapper is broken, it must
be repaired. However, users find that it is often easier to
relearn or regenerate a broken wrapper than to repair it. How-
ever, relearning requires user intervention that is not always
available. Moreover, a regenerated wrapper is not scalable if
changes occur frequently.

Wrapper maintenance is challenging when provider pages
undergo massive and sweeping modifications, due to, for
example, a complete site re-design. A re-designed site will
usually require regenerating the wrapper. However, most
changes to Web pages are small and localized in nature,
including small changes in the page mark-up, small changes
in the content information, and possibly the addition or dele-

20

25

30

35

40

45

50

55

60

65

2

tion of a label. It would be desirable to have a method of
generating a wrapper with integrated maintenance compo-
nents capable of recovering, automatically when possible,
from small changes.

One solution to the problem of wrapper maintenance
detects page changes within a defined level of accuracy. When
the change is detected, the designer is notified so that the
wrapper can be regenerated from samples of the changed
pages. This solution requires user intervention. Another solu-
tion for wrapper repair finds the most frequent patterns (such
as starting or ending words) in the content of labeled strings
and then searches for these patterns in a page when the wrap-
per is broken. It would be desirable to have a method for
wrapper repairing that accurately and automatically repairs
wrappers in a large number of situations.

SUMMARY OF THE INVENTION

A method for repairing a wrapper associated with an infor-
mation source, according to one aspect of the invention,
wherein an initial wrapper comprises an initial set of rules for
extracting information and for assigning labels from a wrap-
per set of labels to the extracted information, includes defin-
ing a classifier comprising a set of alternative rules for extract-
ing information and for assigning labels to the extracted
information; providing a file from the information source
after the information source has changed its file format; using
the classifier to extract information from the file and to assign
alabel to any extracted information which satisfies the label’s
definition; and constructing a repaired wrapper comprising
those alternative rules for which corresponding labels have
been assigned to information extracted by the classifier.
While the initial wrapper may be broken, parts of the initial
wrapper may still work. The method of repair may also
include using the initial wrapper to extract information from
the file and to assign a label from the set of wrapper labels to
any extracted information which satisfies the label’s defini-
tion; and constructing a repaired wrapper comprising those
initial rules for which corresponding labels have been
assigned to information extracted by the wrapper and those
alternative rules for which corresponding labels which have
been assigned to information extracted by the classifier.

In the case of a web wrapper, the initial set of rules is
typically a set of grammar/transducer rules tuned to parsing
files from the beginning ofthe file to the end of the file. The set
of alternative rules may, for example, be based on content
features of information extracted by the initial wrapper from
files produced by the information source before it changed its
file format; or context features of information extracted by the
initial wrapper from files produced by the information source
before it changed its file format; or structure features of infor-
mation extracted by the initial wrapper from files produced by
the information source before it changed its file format; or the
initial set of rules applied in a direction opposite to the direc-
tion in which the initial wrapper applied them. Examples of
content features include syntactic features and semantic fea-
tures; examples of syntactic features include length of a
string, number of separators between strings, and number of
words in a string. Examples of semantic features include
number of nouns, data strings, and numeric strings. Structure
features represent relative co-occurrence of extracted and
labeled content information in the file.

A method for repairing a wrapper associated with an infor-
mation source, wherein the wrapper comprises a first set of
rules for extracting information and for assigning labels from
a set of wrapper labels to extracted information, according to
another aspect of the invention, includes defining a first clas-

US 7,440,951 B2

3

sifier, based on a content feature set of extracted and labeled
information using the first set of rules, for extracting infor-
mation and for assigning wrapper labels to the extracted
information; providing a Web page from the information
source; using the first classifier to extract information from
the Web page and to assign a first one of the wrapper labels to
any extracted information which satisfies the label’s defini-
tion; defining a second classifier, based on the content feature
set and a structure feature set of the one assigned wrapper
label, for extracting information and for assigning wrapper
labels to the extracted information; using the second classifier
to extract information from the Web page and to assign a
second one of the wrapper labels to any extracted information
which satisfies the second label’s definition; and defining a
repaired wrapper as the second classifier and the two labels in
the set which have been assigned to the extracted information.
This method may be extended by defining a third classifier to
identify a information in the Web page and to assign a third
one of the wrapper labels to the extracted information which
satisfy the third label’s rules; and defining the repaired wrap-
per as the third classifier and the three labels in the set which
have been assigned to extracted information.

Wrapper repair depends, to a large extent, on how much
information can be extracted from the file using the broken
wrapper. It would be desirable to keep those portions of the
original wrapper that still extract information correctly. A
method of information extraction from a Web page using an
initial wrapper which has become partially inoperative,
according to another aspect of the invention, wherein the
initial wrapper comprises an initial set of rules for extracting
information and for assigning labels from a wrapper set of
labels to the extracted information, includes using the initial
set of rules to extract information in the form of strings from
the Web page parsed in a first (forward) direction; analyzing
the extracted strings according to the initial set of rules for
assigning labels associated with the wrapper; assigning labels
to those strings which satisfy the label rules; using the initial
set of rules to extract strings from the Web page parsed in a
second (backward) direction; analyzing the extracted strings
according to the set of rules for assigning labels associated
with the wrappers; and assigning labels to those unlabeled
strings from which satisfy the label rules. The method may
further include classifying the extracted strings based on con-
tent features of the labeled extracted strings from the forward
direction; and validating those labeled extracted strings
which satisfy the label rules within some first threshold value.

The method of information extraction can be used to build
alternative and redundant views of provider pages, using con-
tent features of extracted information. Conventional wrap-
pers may be combined with alternative classifiers in order to
achieve two important goals. First, the alternative content-
based classifiers help validate information extracted by a
transducer-based wrapper. Second, when the transducer
based wrapper fails to extract information, the alternative
classifier is used to resume the information extraction. Within
a given accuracy threshold, the wrapper detects if it can repair
the wrapper itself or if it should be sent to a designer for
manual repair.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an architecture for wrapper
generation and maintenance.

FIG. 2 is a sample answer produced by a wrapper for the
DBLP web site.

FIG. 3 is the corresponding HTML source for the answer
shown in FIG. 2.

20

25

30

35

40

45

50

55

60

65

4

FIG. 4 is the sample answer produced by a wrapper for the
DBLP web site after the web site was changed.

FIG. 5 illustrates repairing information extraction from the
sample of FIG. 4.

FIG. 6 shows a fragment of extraction from the DBLP
sample and setting values for some structural features.

FIG. 7 illustrates iterative repair of the wrapper for the
DBLP web site.

FIG. 8 illustrates recovery with two classifiers in algorithm
3.

FIG. 9 illustrates recovery with forward and backward
T-content classifiers.

FIGS. 10-12 are graphs of recall precision for different
recovery routines.

DETAILED DESCRIPTION OF THE
EMBODIMENTS

The system and method of the invention is applicable to the
automatic repair of any type of wrapper. For convenience, the
following discussion will focus on exemplary wrappers used
to extract information from Web pages.

Web pages that contain relevant information vary in com-
plexity and organization. They can be static like a CNN news
page or dynamic like pages generated by a search engine in
response to a user request. They can contain advertisements
which change at the download time; they can be well-format-
ted (XHTML) or not. Wrappers that extract information from
Web pages may be developed using a variety of different
wrapping techniques. For example, a particular Web wrapper
might target the extraction of one tuple from a page, such as
a book price or a weather forecast, where another wrapper
might target lists of nested tuples with multiple labels.

Three exemplary types of format changes that may occur in
a Web page include: context shift, content shift and structural
shift. A context shift is a change in the page mark-up; such as,
for example putting price values in boldface or adding home
page links to authors’ names. A context shift does not change
the extracted information. A content shift is a change in con-
tent of information extracted by the wrapper. Examples
include replacing abbreviations used for a conference (“SI-
GIR”) with their full title (“ACM Conference on Research
and Development in Information Retrieval”) or adding the
prefix “pp.” to page strings. A structural shift is a change in the
structure of extracted information. Examples include the
addition of new labels, removal of old ones, order permuta-
tions, etc.

Referring to FIG. 1, a block diagram of wrapper architec-
ture includes a wrapper Generation component, a wrapper
Employment component and a wrapper Recovery compo-
nent. The Generation component generates or creates a wrap-
per 16 for a particular Web provider 10. A wrapper may be
generated using one of various techniques, including those
techniques which use an induction method. In an induction
technique, several labeled sample HTML pages 12 from Web
provider 10 are provided to wrapper induction engine 14. The
wrapper induction engine 14 generalizes the labeled pages
into a wrapper 16. Wrapper 16 may then be used in the
Employment component to process any new HTML page 18
(which is generated by provider 10 in response to HTTP
request 30 for a user, for example) from the provider 10. All
information successfully extracted (by parsing and extraction
20) by the wrapper 16 from HTML page 18, is verified in
validation of extracted data 22 and the answer provided.

When Web provider 10 changes the format of a Web page,
the wrapper 16 may be unable to match some strings to
extraction rules. The wrapper runs in an error and triggers the

US 7,440,951 B2

5

recovery component which attempts to resume the informa-
tion extraction and repair the wrapper. Two sequential main-
tenance steps are distinguished: extraction recovery and
wrapper repairing. Extraction recovery targets the identifica-
tion of labeled strings in the page; it is aimed at extracting as
much relevant data as possible, yet it does not necessarily lead
to wrapper repair. Wrapper repair may be accomplished if the
extraction recovery is sufficiently successfully. Pages in the
new format can be automatically re-labeled and extraction
rules can be consistently re-learned to match the new page
format. If the extraction recovery is not sufficiently successful
or sufficiently complete, the wrapper may not be repaired
automatically and user intervention may be required.

If the provider 10 changes the format of its HTML pages,
and the wrapper 16 fails to complete parsing and information
extraction, the web page 18 is provided to extraction recovery
26. Extraction recovery 26 uses one or more of the methods
described herein and tries to extract as much information as
possible from the page 18. A successful recovery is sent to
validation of extracted data 22. Any changes detected are
provided to change detection 28, which results in automatic
re-labeling of new samples that can then be used to generate
anew wrapper (or repair the old wrapper) that accommodates
the new page format.

Information extraction from HTML pages can be consid-
ered a form of transduction, where input strings over alphabet
A are transduced in output strings over alphabet L. Analogiz-
ing information extraction to transduction reduces wrapper
learning to transducer learning using the advanced techniques
created by the grammatical inference community. These tech-
niques are used in the method of automatic wrapper mainte-
nance and are described generally below.

Aregular transducer T: A*—B* is an finite-state automaton
when any transition consumes one input token ac A and emits
one or more output symbols b€ B. Input strings accepted by
regular transducers form a regular set, denoted Dom. The
most significant feature of regular transducers is that they can
be learned from positive examples. When transducers are
applied to wrapping HTML pages, the input strings are token-
ized into a sequence of textual and tag tokens, t, where t& A.
Textual tokens comprise the page content and are denoted as
text, where text € A; tag tokens control the content visualiza-
tion. Most wrappers target the extraction of textual tokens and
components of some tag tokens, for example, href attribute of
<a>, tags. In labeled samples, only these tokens may
have semantic labels, while all non-extracted tokens are
assumed to be labeled with a special none label, where none
€ L. Semantic labels 1 in set L are also seen as classification
classes. Classifying a token t€ A into class 1€ L is denoted 1(t)
and the result of transduction of input string X€ Dom is
denoted T(x).

When processing an input HTML page, the wrapper analy-
ses the element contents with their HTML context to classity
them into one of the classes. When a wrapper is broken, the
HTML context of strings cannot be used any longer. The
automatic wrapper repair method and system uses other fea-
tures to build a classifier for content strings.

The wrapping of HITML pages may be considered as a
special case of a classification problem. A conventional wrap-
per can be seen as a classifier where each class/label (includ-
ing the special label none for non-extracted strings) is char-
acterized by a set of rules having a grammatical nature and
using HTML context (tags). Any element of content in input
data is labeled with a class 1 from a set L of classification
labels. Consider two disjoint feature sets for input data, con-
text features and content features for pages in questions. A
context feature of a content string in HTML characterizes its

20

25

30

35

40

45

50

55

60

65

6

surroundings, that is, the tag and textual tokens that precede
(prefix) or follow the string (suffix). A content feature char-
acterizes the string itself; the string length or number of words
in it are examples of content features. Though there might
exist certain correlations between particular tags and content,
for example, a page title is often surrounded by HTML tags
<hl> or <h2>, the two sets of features are considered to be
uncorrelated.

Content, context and structure features may be used to
build a number of independent classifiers. Classifiers built
with context features are extraction rules used by various
wrapper induction methods; they classify content strings by
their context, that is, by observing tags and other strings
around the fragments. Classifiers built with content features
classify strings of a file by analyzing their content. Multiple
classifiers are used to recover information extraction when a
wrapper runs in error. Having a number of alternative classi-
fiers is beneficial in the case of concept shift. Small changes
in page format often hurt some of the classifiers, but not all of
them. Therefore, it is possible to use valid classifiers to iden-
tify reliable components in input data and reuse them to
automatically re-learn the wrapper.

The set of features used for the wrapper repairing classifier
include content, context and structure features. Content fea-
tures reflect the content of extracted and labeled information;
these features are both primitive (syntactic) ones like the
length, the number of separators; and more advanced (seman-
tic) ones, likely number of nouns or date strings. Structural
features are a complement to content ones; they express the
mutual co-allocation of strings in the page marked with dif-
ferent labels.

A set of content features for the HTML string classification
is identified for a particular wrapper. The content feature set
F_ includes syntactic and semantic features. Syntactic fea-
tures may be the length, word counts, density of digits, upper-
case and lower-case characters and standard delimiters
(comma, semicolon, blank, dot, etc., dash) and some others.
For finding semantic features, simple linguistic tools, such as
finding of typed tokens (proper names, abbreviations, url/
date/time strings, etc.), noun phrases, etc. may be used.

Wrapper example 1. Consider a wrapper for a Database
and Logic Programming site (DBLP) (http://www.informa-
tik.uni-trier.de/~ley/db/index.html) that provides biblio-
graphic information on computer science publications. A
sample answer produced by the wrapper for the DBLP site is
shown in FIG. 2 and its corresponding HTML source is
shown in FIG. 3. In February 2001, the page layout used for
answers to title-relevant queries underwent some changes.
The sample after the change is shown in FIG. 4. Each answer
item on the original page (FIG. 2) contains a number, title, one
or more authors, conference, pages, reference and (possibly)
ahyper-link to the electronic edition. The information extrac-
tion conducted by the DBLP wrapper consists of labeling all
textual tokens (PCDATA) in a page with one of labels in
L={number, ee, author, title, conference, pages, none}. An
example of extraction for the first item is (number="1",
ee="http://www.informatik.uni-trier/de/ . . . 7,
author="Jonathan L. Herlocker, Joseph . .. ”, title="An Algo-
rithmic . . . 7, conference="SIGIR 1999, pages="230-237",
reference="DBLP:conf/sigif/HerlockerKB1999”). The lay-
out change results in the disappearance of the number, elec-
tronic version and reference and change in the reference
format.

A classifier built from simple content features is rarely
100% accurate; often only some strings can be correctly
identified with high accuracy. In the DBLP sample, only
comma separators between authors (labeled with none) are

US 7,440,951 B2

7

accurately identified from content features. In FIG. 5 these
separators are marked with blocks; for all other strings, the
(decision tree) classifier gives 68% to 92% of prediction
accuracy which is insufficient for a reliable repairing of infor-
mation extraction.

In the method of wrapper repair, content features are
extended with structural features. The number of structural
features for a given wrapper W equals to the number of
wrapper labels, including none, F (1)), | € L. Assume a wrap-
per processes strings in an HTML page and labels a string t in
position i with a label | & L. Then, the structure feature F (1)
is set to li-p,l, where p; is the position of the last token
extracted with label I,. By construction, the structural features
take positive integer values. FIG. 7 shows a fragment of
extraction from the DBLP sample page and setting values of
some structure features (namely, F; (none), F (ee), F; (num-
ber), F (author)) for the DBLP label set.

When structure features are used together with content
features for the string classification, the classification error
level is much lower than the classification by content features
only. This allows us to repair the information extraction for a
given wrapper with much higher accuracy. However struc-
tural features considerably improve the classification accu-
racy when most strings are already correctly labeled. To solve
this chicken-and-egg problem, we use the basic classifier C,
on content feature set F . for bootstrapping of the wrapper
repair process. Then, structure features for all labels detected
by the basic classifier are combined with the content features
to build a new, more refined classifier C,. The process iterates,
each time with a larger set of structure features enhancing the
content features, until no new string can be labeled.

The example in FIG. 5 shows how the bootstrapping works
in the DBLP wrapper case. The basic classifier C, identifies
(some) none strings in the DBLP page. Thus the system builds
anew classifier C, built for F +F,, where F, is the structure
feature for none label; applying C, to the file reduces the error
ratio and the new classifier can accurately identify author
strings in the page. On the next step, a new classifier C; is built
for the feature set F+F,, where Fo,={F¢ (none), Fg
(author)}. Then, this classifier allows us to identify title and
conference labels. In FIG. 5, dark strips cover newly labeled
strings are while light strips cover previously labeled strings.

Wrapper example 2 (DBLP Wrapper is an OCER wrap-
per). In regular transducers, consuming an input token does
not necessarily lead to emitting an output symbol. The repre-
sentation of complex regular patterns may face multiple out-
put choices in some transducer states; in which cases the
output is postponed until reaching a state where the ambiguity
is resolved. In 1993, Oncina et al., in Learning subsequential
transducers for pattern recognition interpretation, /EEE
Trans. on Pattern Analysis, 15:448-458, proposed the OSTI
algorithm that allows inference of regular transducers from
positive samples and minimizes the delays between input
token consumption and output emission for all ambiguity
cases in the result transducer.

Boris Chidlovskii, in Wrapping Web Information Provid-
ers by Transducer Induction, Proc. Europ. Conf Machine
Learning, Germany, Freiburg, volume 2167 of Lect. Notes
Comp. Sci., pages 61-72. Springer, 2001, describes a method
that applies the transducer induction of the OSTI algorithm to
the conventional representation of wrappers as sets of extrac-
tion rules. The method is called the Optimal Context Extrac-
tion Rules (OCER); it is an incremental version of the OSTI
algorithm and it adopts the regular transduction to the infor-
mation extraction task. In the OCER method, labeled and
unlabeled HTML fragments are denoted: the class of unla-
beled fragments is denoted S*, where S“={vIxv&€ Dom} and

20

25

30

35

40

45

50

55

60

65

8
the class of labeled HTML fragments is denoted S'={x, T(x))
luxvE€ Dom for some u and v}.

Definition 1. An OCER wrapper W is a triple (T, L, R),
where T is an input tokenizer, L is the semantic label set and
R is a set of extraction rules R={r,}, where each rule r, is a
triple (p,s,1), where p€ S* and s& S* are prefix and suffix, and
leL.

An OCER wrapper W parses a page E from the beginning
to the end and applies the extraction rules in R as follows. For
a current textual token t, the labeled prefix P of t contains all
tokens from the beginning until t, with all previous textual
tokens labeled, and S is suffix of t, E=PtS, P€ S*, S& S*. Pair
(P,S) forms the full context of token t. The wrapper then
compares P and S to prefixes and suffixes in the extraction
rules. Pair (P,S) matches a prefix-suffix pair (p,s) of a rule
r=(p,s,]), if p is a suffix of P, P=up, and s is a prefix of S, S=sv,
for some labeled u and unlabeled v. In the match is found,
string t is labeled with label 1 in the rule. If no exact rule is
found for P and S, the wrapper results in an error.

A prefix-suffix pair in an extraction rule r& R forms its
context. A method for detecting optimal and minimal prefix-
suffix pairs for extraction rules is described in Chidlovskii,
Wrapping Web Information Providers by Transducer Induc-
tion. Like the OSTI algorithm, the OCER method finds all
ambiguities in sample data and detects minimal delays
between an input token consumption and classification. In
addition, the OCER is incremental; it aligns an input token
consumption with the classification. It replaces emission
delays with corresponding lookaheads in the input data; these
lookaheads are given by suffixes in rules. Finally, OCER
method disregards variations in input that are irrelevant to the
result information extraction. For the majority of Web pro-
viders, the input data does fit the class of regular languages,
thus allowing to infer regular transducers, and therefore
OCER wrappers, from positive examples.

In an OCER wrapper, the classification label of a textual
token may depend on labels of previous textual tokens. Prefix
<td> for label ee in the DBLP wrapper is label-independent;
s0 any textual token preceded with tag <td> will be labeled as
ee. Instead, two prefixes “author" (an abbreviation of the
HTML fragment “text(author)(none)”) for title and
“conference" for pages are label-dependent. If tag
precedes a current textual token, then it will be labeled as title
if the previous textual token is author and as pages if the
previous token is conference.

The DBLP wrapper in this example contains 12 extraction
rules, which are listed in Table 1. The left side of the table
identifies the rules before any changes. Rules are grouped by

classification labels. All rules, except r,,, have the empty
suffix, which means that the processing of token prefixes is
enough in most cases. The right side of Table 1 shows the
effect of the changes.
TABLE 1
Extraction rules in DBLP wrapper; before and after change
Before Change

Rule Prefix Suffix Label After Change
1, <title> none
1 <hi> none
Iy <hr> none
4 none
s <tr><td> number disappears
i <td><a> ee disappears

US 7,440,951 B2

9

TABLE 1-continued

10

Extraction rules in DBLP wrapper; before and after change

Before Change

Rule Prefix Suffix Label After Change

1 number<td> ee disappears

Iy ee<td><a> author changes to
(<a>, ,
author)

Iy none<a> author

I author title

I title<a> conference

I conference pages

All rules in Table 1 are deterministic and no two rules may
have the same context. All contexts are minimal and optimal;
shortening any context would make the rule set R ambiguous.
The sum of prefix and suffix lengths in a rule gives a context
width. For the DBLP wrapper, the maximal content width
equals 3; in more complex cases, the maximal context might
be wider. In general, the class of OCER wrappers have a high
expressive power, as using both labeled prefixes and unla-
beled suffixes allows coping with many ambiguous cases by
observing the unlabeled prefixes only.

The minimality of extraction rules does not guarantee
wrapper uniqueness. In certain cases, several alternative
OCER wrappers may exit for a provider. In the DBLP wrap-
per example, an extraction rule r,,=(conference, ,
pages) can be replaced with an alternative rule r, ,=(,
text, pages), which means that any string which is preceded
with tag and followed with “<i> text” is labeled as pages.

The DBLP sample page after the change is shown in FIG.
4. The format change concerns both page mark-up and struc-
ture. The mark-up change is in replacing the <table> element
containing <td> sub-elements with an -list where items
are separated by tags. The structure change takes place
because of the disappearance of all information labeled num-
ber and ee. As for the extraction rules (see Table 1, right part),
not only rules for number and ee disappear, but one of two
rules for author changes, too. The only rule for author that
does not change, r, refers to the extraction of second, third,
etc. authors of a given paper. Note that textual tokens labeled
as none and preceding all authors but the first one, are com-
ma’s separating authors; see FIG. 3. The rule for these later
tokens (labeled as none) does not change either.

A transducer wrapper is considered a partial classifier,
where each label, including none, is characterized by a set of
associated extraction rules (see Table 1). When processing a
page, the wrapper analyzes a current token’s context to cor-
rectly classify the token. This context-based classifier is par-
tial, so it runs in an error when no exact rule is found.

When a wrapper cannot label a token, an initial recovery
strategy is to skip one or more textual tokens in the input until
the first token that does match some rule. Note that skipping
strings is different from labeling them with none. If a string t
is preceded with one or more skipped strings, then the prefix
of't cannot match any of label-dependent rules. Therefore, the
recovery will skip strings until a label-independent rule is
matched.

In Algorithm 1 below, wrapper W processes a current tex-
tual token t and W(t) is either a label 1, & L if it finds a
matching rule or an “error”, otherwise.

20

25

30

35

40

45

50

55

65

Algorithm 1. Information extraction with initial recovery.

E:= HTML page; success:= true
for each string t in E do
L=W()
if |E L then
label t with 1,
else skip t; success:= false
return success

In the DBLP case (see FIG. 4 for the sample page after the
change), the wrapper runs into an error at text token for the
first author (Jonathan L. Herlocker) of the first item, because
its prefix . . . <a>" does not match any extraction rule in
Table 1. Using the initial recovery routine, the wrapper will
skip the first author, then it will analyze and label the follow-
ing “” (comma) token as none, because it fits the label-
independent prefix in rule r,. Extraction then resumes
and all following authors, title, conference and pages with be
extracted in a regular way. A new error will occur again at the
beginning of the next answer item, and so on.

Inthe general case, the majority of wrapper rules may have
label-dependent prefixes and the recovery by skipping tokens
till one that matches a label-independent rule may be too
generous. To solve the problem, the unique so far context-
based classifier is extended with alternative views which can
be used during the information extraction recovery.

Backward wrappers. The initial recovery routine helps
wrappers resume information extraction. To further improve
the accuracy of extraction recovery, an alternative view of
pages in questions may be used, namely backward wrappers.
In contrast to forward wrappers, backward wrappers scan
HTML files from the end to the beginning.

A backward OCER wrapper scans a file backward and has
the same structure as the forward one; its extraction rules
however use optimal and minimal set of labeled suffices and
unlabeled prefixes to uniquely label textual tokens. Like for-
ward wrappers, a backward wrapper is partial and can run in
error when the format changes. However, because of the
backward scanning, it would fail at positions different from
those where the forward wrapper would fail. Therefore, back-
ward extraction rules can help to complete information
extraction in positions where the forward wrapper fails.

The joint use of forward and backward wrappers in com-
bination transforms the recovery procedure from one-pass
scan into multi-pass one; moreover during the recovery the
direction of the file scan can change one or more times. In the
following, forward and backward wrappers are denoted as

" and W™, respectively.

Algorithm 2 below completes the information extraction
and recovery performed by Algorithm 1. Algorithm 2 runs
when Algorithm 1 returns false and fails to accurately com-
plete the information extraction. Algorithm 2 switches the file
scan direction and tries to classify not yet classified textual
tokens in E probing their prefixes and suffixes with forward
and backward wrappers, respectively. Algorithm stops when
none of the tokens is classified during the last scan.

Algorithm 2. Multi-scan recovery with forward and backward wrappers.

success:= false

stillRecovery:= true; direction:= ‘bkwd’

while stillRecovery is true do
stillRecovery:= false

US 7,440,951 B2

11

-continued

Algorithm 2. Multi-scan recovery with forward and backward wrappers.

for each unlabeled string t in E do
1= Welireetion (¢)
if |, € L and then
label t with ; stillRecovery:= true
else skip t; success:= false
if stillRecovery is true then change direction
return success

Content classifiers. In this section, token classification by
content features only are considered. Select a set F . of k=54
content features for the alternative classifier, these features
consist of 42 syntactic and 12 semantic ones. Syntactic fea-
tures include token length, word counts, density of digits,
upper-case and lower-case characters and standard delimiters
(comma, semicolon, dot, etc.). Semantic features count typed
components of textual tokens, such as proper names, abbre-
viations, url and time strings and noun phrases.

Content classifier C is generated from the content feature
set F . of textual tokens in sample pages. Any existing tech-
niques for classifier generation can be used here; we use
decision trees from Borgelt’s publicly available package.
Assume that for textual token t, classifier C returns a pair
C(t)=(l,, acc) where 1. is the most probable label for t, 1 €L
and acc is the accuracy for 1. Similarly, C(t,]) returns the
accuracy of labeling token t with 1. For perfect rules, C(t,1)
returns acc=1.0.

It is now straightforward to extend the initial recovery
strategy described above with a content classifier. First, the
content classifier C can validate information the wrapper
extracts in the regular way. Second, when a wrapper runs into
errors, the combined information extraction recovery will not
simply skip tokens with unrecognized context, but will apply
the corresponding content classifier in order to label such
tokens.

Algorithm 3 below scans page E from the beginning to the
end. First it probes a basic (forward) wrapper W with a current
token t; if W finds a matching rule with label 1, t is labeled
with 1, if C validates 1,, by observing content features of t, for
some threshold validation value, that is, C(t, 1,)=th Validate.
Ifan error occurs, C provides the most probable label 1, for t.
If the accuracy of 1, is superior to a given threshold value,
thRecovery, t is labeled with 1, otherwise string t remains
unlabeled. Note that, like Algorithm 1, Algorithm 3 scans the
file only once.

Algorithm 3. Information extraction with initial and content recovery.

thRecovery:= recovery threshold
thValidate:= validation threshold
P:= HTML page; success:= true
for each string t in P do
Lo =W(t)
if I, € L and C(t,l,,) = thValidate then
label t with 1,
if 1, is “error’ then
I, acc = C(t)
if acc = thRecovery then label t with 1,
else skip t; success:= false
else skip t; success:= false
return success

The content classifier C plays a double role in the extrac-
tion and recovery routine. First, it validates labels for strings
found by extraction rules. Second, C provides a candidate

20

30

35

40

45

50

55

60

65

12

label for a string when the wrapper runs in an error. This
double role confirms the use of two threshold parameters in
Algorithm 1. The validation threshold thValidate confirms the
label choice done by the wrapper, and therefore it is lower that
recovery threshold thRecovery in cases when the wrapper
runs in error and labeling decision is made only by the content
classifier, thValidate<thRecovery. Algorithm 3 is a sequential
combination of two alternative views of input data, given by
an OCER wrapper (W-classifier) and content (C-) classifier.
This combination is schematically represented in FIG. 8.

Algorithm below completes Algorithm 3 with backward
wrappers and multi-scan recovery in the same way as Algo-
rithm 2 completed Algorithm 1. Algorithm 4 runs when Algo-
rithm 3 returns false and fails to accurately complete the
information extraction. Algorithm 4 switches the file scan
direction and tries to label not yet labeled textual tokens
probing their context with forward and backward wrappers
and content classifiers. Algorithm stops when none of the
tokens is labeled during the last scan. Schematically, the
combination of these three classifiers is presented in FIG. 9.

Algorithm 4. IE multi-scan recovery with forward and backward wrappers.

success:= false
stillRecovery:= true; direction:= ‘bkwd’
while stillRecovery is true do
stillRecovery := false
for each unlabeled string t in E do
1,,: = Wélieetion (¢)
if , € L and C(t,) = thValidate then
label t with 1 ; stillRecovery:= true
else skip t; success:= false
if stillRecovery is true then change direction
return success

Wrapper Repairing. The information extraction recovery is
triggered by wrapper errors on a changed page; it applies
Algorithm 1(3) and possibly Algorithm 2(4) to accurately
label tokens in the page using alternative content classifiers
and backward wrappers. In turn, the information extraction
recovery triggers wrapper repair if the recovery went suffi-
ciently well and all strings have been labeled with a given
threshold of accuracy. It can then automatically re-label
sample pages and use them as input to the automatic re-
learning of the grammatical classifier, by using any of exist-
ing methods for wrapper induction. If instead the recovery is
incomplete and some strings in the page remained unlabeled,
no trusted samples can be prepared for automatic re-learning
and therefore the wrapper repairing cannot be successful.

Experiments have been conducted to validate three recov-
ery mechanisms described above. Seventeen (17) Web infor-
mation providers were selected for the experiments; for any
of them, at least one format change has been detected during
the period from July 1999 to October 2001. For the sake of
comparison, the providers are divided into three groups. Two
first groups are general-purpose and specialized (in computer
science) search engines. The first group includes Altavista,
Google, Excite, Yahoo, Metasearcher, Go, Deja and CNN
search engines. The second group includes DBLP, ACM,
IEEE, Elsevier and Cora search facilities. Wrappers in the two
groups extract “multi-slot multi-value” information, that is,
the result is a list of items and each item contains a number of
(value, label) pairs. Instead, the third group contains wrappers
performing the “one-item multi-slot” information extraction,
such as the stock information from Wall Street and Financial
Times cites and book information/prices from Amazon.com.

US 7,440,951 B2

13

Context and content classifiers. For all providers we have
generated context and content classifiers. For context classi-
fiers, the OCER algorithm implemented in Iwrap toolkit
developed at Xerox Research Centre Europe was used. For
content classifiers, decision trees were used as the underlying 5
learning system. Decision trees were built with the help of
Borgert’s classification software.

For each site, ISI=10 labeled samples have been prepared
for the classifier generation and evaluation. For OCER wrap-
per induction, five tests were performed, each test consisted 10
of learning the extraction rules from i=1,2,3, . . . randomly
chosen samples and testing them against the remaining (10-1)
samples. The average number over five experiments of
samples needed to learn 98%-accurate wrappers is reported in
the Table 2 below. For content classifiers, in each of five tests,
a decision tree been learned from five randomly selected
samples and tested against five remaining samples.

Table 2 reports the results of OCER wrapper induction and
classification by content features for all providers. Abbrevia-
tions used in the table are the following: ILI is the number of 20
classification labels, including none; N is the total number of
extraction rules in an OCER wrapper, N, is the number of
label-independent rules, N,=N; R, is the maximal number of
extraction rules per label in L, R,,=N, C,, is the maximal
context length in extraction rules, L, is the average number of 25
samples needed to reach 98%-accuracy; IDTI is the number of
nodes in the pruned decision tree DT generated by Borgelt’s
package, IF| is the number of features used in DT; Err is the
classification error of DT; IL | is the number of labels with all
perfect rules, IL_I=C.

—

5

TABLE 2

14

As for the content classifiers were not as accurate as the
context classifiers. As Table 2 shows, content classifiers give
up to 26.7% classification error in the worst case (Metacra-
wler.com). Between three provider groups, the best results are
obtained for the second group, where tokens extracted with
semantic labels (not none) expose particular syntactic fea-
tures and/or extracted information represents an important
part of the page. Instead, for the first and third groups,
extracted information represents a rather tiny part, making it
difficult to distinguish between extracted and non-extracted
(labeled with none) information, which results in a higher
classification error.

On the other hand, although only one of 17 classifiers is
perfect, each provider has certain labels with highly accurate
rules (acc=1.0). These labels can be therefore correctly iden-
tified by observing their content features only. For example,
DBLP wrapper has three such labels, namely number, ee and
pages, they can be accurately identified by their content (see
FIG. 2). As an example, the perfect rule for ee labels is the
following: Length=2, UpperCase=2, Digits=0.

Recovery tests. Methods of information extraction recov-
ery described above have been implemented in the Iwrap
prototype at Xerox Research Centre Europe. Recovery meth-
ods were tested for 17 information providers. For each pro-
vider, 10 “before-change” pages have been used for learning
extraction rules and content classifiers before the format
change and 10 “after-change” pages have been used for test-
ing the recovery routine. Below we report some important
results.

Context and content classifiers for 17 providers

OCER wrapper Content Classifier
Provider ILI N N; R, C. L, IDTI |FI Err(%) L.
Altavista 6 37 22 26 4 21 32 13 17.6 3
Google 6 27 12 11 4 21 53 10 24.7 2
Excite 6 27 16 19 4 20 17 7 9.6 3
Yahoo 5 29 19 14 5 3.8 40 10 16.7 1
Meta- 6 34 26 18 5 22 27 17 26.7 1
crawler
Go 5 19 14 14 3 1.1 25 8 16.9 2
Deja 5 17 11 12 3 1.1 33 10 14.0 2
CNN 6 35 28 21 4 22 12 5 16.1 2
Average 5.6 281 185 169 40 21 299 10.0 17.7 2.2
DBLP 7 12 7 4 3 1.6 15 7 8.8 5
ACM 7 18 12 9 4 1.6 33 11 3.7 4
Search
IEEE DL 5 21 16 15 4 50 27 8 0.0 5
Elsevier 10 26 18 11 7 1.5 39 12 4.2 5
Cora 7 32 19 15 9 3.0 39 10 7.7 3
Average 72 218 144 106 54 25 306 9.5 4.9 4.6
Wall 7 32 22 23 8 2.6 9 5 13.0 3
Street
Amazon 4 35 28 24 8 35 25 6 12.1 2
Fin 5 21 17 13 4 27 17 9 20.9 2
Times
Average 53 293 223 200 67 29 170 6.7 15.3 2.7

Accurate OCER wrappers have been successfully regener- ¢
ated for all 17 providers. Providers in the first and third groups
have often advertisement-padded pages; corresponding
wrappers have multiple extraction rules for the none class.
Although the complexity of extracted information is higher in 65
the second group, the third group requires more pages to learn

accurate extraction rules.

To quantity the performance of developed recovery mecha-
nisms, information extracted from “after-change” pages
using different methods were compared. Measures of preci-
sion and recall, widely used in Information Retrieval were
used. Precision is a portion of correctly labeled textual tokens
in the extracted information, and recall is a portion of cor-
rectly labeled textual tokens in the correctly labeled informa-
tion:

US 7,440,951 B2

15

. correct () extracted
precision= ———— recall =
extracted

correct () extracted
correct

First the changes which happened to all providers were
classified. Among three possible format changes, of primary
interest are context and structural ones. In the case of content
change, the wrapper action is to notify the designer and it does
not influence the recovery mechanism. So, such format
changes where context or structural shift took place were
selected and tested. For 17 reported format changes, context
shifts occurred in all 17 cases, and structural shifts occurred in
11 cases.
In experiments, three recovery methods were tested,
namely, the basic recovery, the multi-pass recovery with
backward transducers and multi-pass recovery with back-
ward wrappers and content classifiers. When using content
classifiers, perfect classification rules (thRecover=1.0) or
rules with a fairly low classification errors, (thRecov-
ery=0.95) were applied. Four tested recovery routines are
denoted as follows:
Recovery 1: one-scan basic recovery (Algorithm 1).
Recovery 2: multi-scan recovery with backward transduc-
ers (Algorithms 1 and 2).

Recovery 3: multi-scan with content classifier (Algorithms
3 and 4), thRecovery=1.0.

Recovery 4: multi-scan with content classifier (Algorithms
3 and 4), thRecovery=0.95.

Recovery results. FIGS. 10-12 report values of recall and
precision for all providers in the three groups. Axes for recall
and precision are inverted for convenience of presentation
only. Before changes all wrappers reported 0.98 values of
recall/precision; this “before-change” status is referred by a
rectangle in the upper-left corner in FIGS. 10, 11 and 12. Any
format change results in the fall of precision/recall values, and
the goal of all recovery routines is to return precision/recall as
close as possible to the initial rectangle. For each provider, the
performance of all four tested recovery methods is traced.

Recovery 1 fails to extract 5.1% to 50% of relevant infor-
mation, thus showing a bottom line for the recovery perfor-
mance and measuring implicitly the information extraction
damage due to the format change. As the figure shows, recall
suffers more that precision, as format changes disallow wrap-
pers to classify correctly some tokens, but those tokens it does
identify are relevant.

Recovery 2 that extents Recovery 1 with backward wrap-
pers, steadily improves the recall for all providers. Recovery
3 that adds the perfect content classification rules, improves
recall values further, although its gain is less important than
with Recovery 2. Finally, applying some non-perfect content
classification rules with thRecover=0.95 allows to further
increase the recall, however by the cost of a slight decrease of
the precision. In total, for 6 providers, the recovery routines
allowed to re-enter the initial 0.98-accuracy box, and for 10
more providers, the recovery achieved 0.95 values for both
precision and recall.

The most representative are recovery results for wrappers
in the third group. In the Wall Street case, the basic recovery
is able to accurately extract 4 elements of 7; recovery with the
backward wrapper extracts 2 more elements. Using perfect
content rules has no impact. Instead, relaxing thRecovery to

20

25

30

35

40

45

50

16

0.95 does not improve recall, but slightly decreases the pre-
cision, because of one misclassified token over 5 tests. In the
Amazon case, the basic recovery extracts 2 elements of 4, and
the backward wrapper and content classifier extract one more
element each. However, the precision is down-valued by few
misclassified tokens, as the format change confused some
wrapper extraction rules. Finally, for the Financial Times
wrapper, the basic recovery finds 3 elements of 5 and the
backward wrapper and content classifier help find two miss-
ing ones.

Note that the recovery routines have been applied to all
detected format changes, and this validates the small change
assumption mentioned above. Actually, the adjective “small”
was used mainly for the convenience of explanation and not to
constrain the proposed recovery routines. The success or
failure of the information extraction recovery is determined
by a number of aspects, including the type of changes, their
density or sparseness in pages, etc. If all these aspects are
aggregated in one notion of “size” of a change, then it appears
to be highly correlated to the chance for success: the smaller
changes happening to the page, the higher probability of the
successful automatic recovery.

The invention has been described with reference to a par-
ticular embodiment. Modifications and alterations will occur
to others upon reading and understanding this specification
taken together with the drawings. The embodiments are but
examples, and various alternatives, modifications, variations
orimprovements may be made by those skilled in the art from
this teaching which are intended to be encompassed by the
following claims.

What is claimed is:

1. A computer-related method of information extraction
from a Web page using a broken wrapper, comprising:

wherein a wrapper comprises a set of rules for extracting

information from HTML context of strings and for
assigning labels from a wrapper set of labels to the
extracted information;

wherein a broken wrapper comprises a wrapper in which

HTML context of at least one string cannot be used to
classify the at least one string;

extracting strings from the Web page parsed in a forward

direction using the broken wrapper;
for each extracted string t:
analyzing the extracted string t according to a set of rules
for assigning labels associated with the broken wrapper;

if a matching rule with a label 1, exists for the extracted
string t, validating the label 1, with a content classifier C,
which classifies the extracted string t based on content
features of the labeled extracted string; and

if the classifier C validates the label 1, for extracted string

t within some threshold value, then assigning label 1, to
extracted string t, else not assigning 1, to t.

2. The method of claim 1, further comprising: for each
unlabeled string t,

applying the content classifier C to suggest a probable label

1. with an accuracy of acc; and

assigning the label 1, to unlabeled string t if the accuracy

acc of 1, is within some recovery value.

3. The method of claim 2, wherein the recovery value is
greater than the threshold value.

