
US011429382B1

(12) United States Patent
Lakkundi et al .

(10) Patent No .: US 11,429,382 B1
(45) Date of Patent : Aug. 30 , 2022

(54) 6,415,396 B1 * 7/2002 Singh REGRESSION TEST CASE IDENTIFICATION
FOR TESTING SOFTWARE APPLICATIONS

7,178,063 B1 * 2/2007 Smith

(71) Applicant : KYNDRYL , INC . , New York , NY
(US) 10,956,308 B2 *

2016/0062876 A1 *
3/2021 Liemandt
3/2016 Narayanan

G06F 11/3688
714/33

GOOF 11/3688
717/124

G06F 11/3672
GO6F 11/3684

717/124
G06F 11/3684

717/124
GO6F 11/3688
G06F 11/3688

2016/0117239 A1 * 4/2016 Hamilton , II (72) Inventors : Abdul Kareem A Lakkundi , Gadag
(IN) ; Rajesh Ganji , Bengaluru (IN) ;
Abdul Karimulla Shakhadari
Mohammed , Kovvur (IN) ; Ashutosh
Janoria , Bangalore (IN)

2017/0046245 A1 *
2020/0019493 A1 *

2/2017 Liu
1/2020 Ramakrishna

FOREIGN PATENT DOCUMENTS
(73) Assignee : Kyndryl , Inc. , New York , NY (US) CN

WO
112328471 A

2021050065 Al
2/2021
3/2021

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U.S.C. 154 (b) by 0 days . OTHER PUBLICATIONS

(21) Appl . No .: 17 / 398,502
Mell , Peter , et al . , “ The NIST Definition of Cloud Computing ” ,
NIST Special Publication 800-145 , Sep. 2011 , Gaithersburg , MD , 7
pgs .

(22) Filed : Aug. 10 , 2021
* cited by examiner

(51)
Primary Examiner Qamrun Nahar
(74) Attorney , Agent , or Firm — Erik Swanson ; Matthew
M. Hulihan ; Heslin Rothenberg Farley & Mesiti PC

(52)

Int . Cl .
GO6F 9/44 (2018.01)
G06F 8/75 (2018.01)
G06F 8/73 (2018.01)
G06F 11/36 (2006.01)
GOON 20/20 (2019.01)
G06F 8/74 (2018.01)
U.S. Cl .
??? G06F 8/75 (2013.01) ; G06F 8/73

(2013.01) ; G06F 8/74 (2013.01) ; G06F
11/3684 (2013.01) ; GO6N 20/20 (2019.01) ;

G06F 11/3696 (2013.01)
Field of Classification Search
None
See application file for complete search history .

(57) ABSTRACT

Regression test case identification for automated regression
testing includes identifying program code file (s) in which
changes made to program code of an application are con
tained , selecting application feature (s) of the application as
candidate (s) on which to perform automated regression
testing , which selecting includes accessing mappings indi
cating features implemented by the identified program code
files and identifying those features as the selected applica
tion feature (s) , based on the selected application feature (s) ,
selecting regression test cases to be included in the auto
mated regression testing , and commencing execution of the
automated regression testing using the selected regression
test cases .

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

5,694,540 A
6,192,108 B1

12/1997 Humelsine et al .
2/2001 Mumford et al . 20 Claims , 8 Drawing Sheets

SOFTWARE LAYERS
102

BUSINESS LOGIC LAYER USER INTERFACE LAYER
104

DATA ACCESS
LAYER
108 106

ABCDEFGH U 3 ABCDEFGHI

114

F2 F4 F5 FO Fn

FEATURES / SOLUTIONS 120

U.S. Patent Aug. 30 , 2022 Sheet 1 of 8 US 11,429,382 B1

SOFTWARE LAYERS
102

www www

USER INTERFACE LAYER
104

BUSINESS LOGIC LAYER
106

DATA ACCESS
LAYER
108 WWW M

???????????? ABCDEFIMO Z BOLLECHU
114

WWWWWWWWW wwwwwwwwwwwwwww

F1 F3 F4 F5 F6 Fr
FEATURES / SOLUTIONS 120

w w

FIG . 1

U.S. Patent Aug. 30 , 2022 Sheet 2 of 8 US 11,429,382 B1

IDENTIFY AMENDED FILES 202

APPLICATION DEFINED REGRESSION TESTING 204
www

FILE SUM FEATURE SUM PRIORITY

FILE
IMPLEMENTS
DIFFERENT
FEATURES

FEATURE
SPREAD ACROSS
LAYERS AND

FILES

PRIORITY
ASSIGNED

TO
FEATURE

DENTIFIED REGRESSION FEATURES AND EFFORTS

IDENTIFY REGRESSION TEST CASES /
SUITE 206

REGRESSION TEST AUTOMATION -208

w

FIG . 2

312

WOWB202222

SQUAD 7 3023

U.S. Patent

ANALYZE CHANGES FROM REPOSITORY

REVIEW FOR OUTDATED FILES JAY
ANALYZE NEW UPDATED FILES

UPDATE FILE FEATURE MAPPINGS DATA STRUCTURE (S)

INTEGRATION REPOSITORY 303

310

SQUAD

REQUEST REMOVAL FROM REPOSITORY

Aug. 30 , 2022

www.ococococowHERMININESERVery

308

020

322

316

UPDATE REVIEW INPUTS

UPDATE REVIEW INPUTS

AAAAAAAAAAAAAA

Sheet 3 of 8

318

314

TO FIG . B

QUALITY GATE : REVIEW
FROM SME ! LEADS

DEFINE REGRESSION TEST SUITE -POST REVIEW FROM ARCHITECTURE MANAGERS - WITH HELP OF AL FROM HISTORY

QUALITY GATE : REVIEW TABLES STRUCTURES

320

US 11,429,382 B1

FIG . 3A

U.S. Patent

324
good
code
ooo000
000000
??????

OOOOOO
DOOOOO

000000 DOOOOO

?????

X0000.0
oooooo

000000
000000 do0000
00000
?????

??
000000
2000.00

??????
1 ??????

328

332

326

330

I 1 1

338

FROM FIG . 38

DEFINED REGRESSION TESTING AUTO TEST AND AUTOMATION SANITY

Aug. 30 , 2022

INTEGRATION BUILD TRIGGER

P.O. , ARCHITECT FEATURE OWNERS SIGN - OFF ON INTEGRATION BUILDI

VERIFY USERSTORIES ON COMMON TEST BED

ST RELEASE BRANCH 336

ST START

Sheet 4 of 8

INTEGRATION TESTING ON COMMON TEST BED

I

I

1
wooo
wwwca

woooo We

no
cocoon
bocca

wwwca
wooooo

wound
wwwco
w zurum

record

xenoot
I

334

FIG . 3B

US 11,429,382 B1

U.S. Patent Aug. 30 , 2022 Sheet 5 of 8 US 11,429,382 B1

START

IDENTIFY PROGRAM FILES WITH CODE
CHANGES

00000000 402

wwwwwwwww

ACCESS DATA STRUCTURE (S) WITH FILE
FEATURE MAPPINGS

x200x 404

LOOKUP FEATURES IMPLEMENTED BY CHANGED
PROGRAM CODE FLES 406

w

SELECT REGRESSION TESTS FOR AUTOMATED
REGRESSION TESTING

W 408

w

COMMENCE AUTOMATED REGRESSION TESTING
EXECUTION

W 410

END

FIG . 4

U.S. Patent Aug. 30 , 2022 Sheet 6 of 8 US 11,429,382 B1

500

COMPUTER SYSTEM

000 Xoc 000 XDOC 000 XDOC 000 DOS DOO

?
* , MEMORY 504

wwwwwwwwwwwwwwwwwwwwwwwwwww
502

j PROCESSOR
(CPU) 1

DOCX OPERATING
SYSTEM

505

wwwwwww

VO DEVICES www 508 COMPUTER
PROGRAMS 506

OOOOOOOOOOOOOOOOOOOOO 0000

HO INTERFACES 510
oooooooooooooooooox

1000

EXTERNAL
DEVICES 512

FIG . 5

U.S. Patent Aug. 30 , 2022 Sheet 7 of 8 US 11,429,382 B1

10

FIG . 6

54A

$ 33

91

92

93

94

95

96

Software Development
Virtual

Mapping and

and

Classroom

Navigation

Education
Lifecycle Management

Delivery

U.S. Patent

Data Analytics Processing
Transaction Processing
Regression Testing

Workloads 90

Resource Provisioning
Metering and Pricing

User Portal

Service Level Management
SLA Planning and Fulfillment

Aug. 30 , 2022

Management

82

83

85

80

?

Virtual Servers
71

Virtual Storage
72

Virtual Networks
73

Virtual Applications
Virtual Clients

Sheet 8 of 8

Virtualization

74

70

3 Servers

Storage

Mainframes RISC Architecture Servers
63

Blade Servers

65

Network Database

Networking
Application Software

66

Server Software
67

64

68

Hardware and Software

62

US 11,429,382 B1

60

FIG . 7

2

a

9

US 11,429,382 B1
1 2

REGRESSION TEST CASE IDENTIFICATION memory , wherein the computer system is configured to
FOR TESTING SOFTWARE APPLICATIONS perform a method . The method includes , based on changes

made to program code of an application , the program code
BACKGROUND of the application being included in program code files and

5 implementing application features of the application , auto
Software applications are often composed of multiple matically identifying at least one program code file , of the

different functional layers in which features of the applica- program code files , in which the changes are contained . The
tions are implemented . Example functional layers are a User method automatically selects at least one application feature ,
Interface (UI) layer , a Business Logic (BL) layer , and a Data of the application features , as at least one candidate on
Access (DA) layer . The UI layer presents the ' face ' of the 10 which to perform automated regression testing . The auto
application to users . This layer typically sees the most matically selecting includes electronically accessing data
changes over time as compared to other layers because structure (s) that include mappings between the program
changes desired by the consumer of the application (usually code files and the application features , the mappings indi
a business) often dictate that UI changes be made . The BL cating , for each program code file of the program code files ,
layer (BLL) incorporates the business logic ' to perform the 15 which of the application features are at least partially imple
key functions of the product , for instance to address a mented by the program code included in that program code
problem that the application is developed to address . The file , and performing a lookup in the accessed data
BLL is often where the key features reside and are updated structure (s) and identifying , as the selected at least one
over time . The BLL , like the UI layer , can also undergo application feature , each application feature that is at least
frequent updates based on the market , competition , and 20 partially implemented by program code included in any of
other factors that drive the business / consumer of the appli- the identified at least one program code file . Based on the
cation . The DA layer is driven primarily by the UI and BL selected at least one application feature , the method selects ,
layers . Data access is commonly performed by application from regression test cases defined for the application fea
programming interfaces (APIs) or other entities pro- tures , regression test cases to be included in the automated
grammed as part of the application to access data from a 25 regression testing . The method also commences execution
backend and communicate data between the backend and the of the automated regression testing using the selected regres
UI / BL layers . Changes to code of the DA layer are usually sion test cases .
orchestrated by the UI and BL layers . Yet further , a computer program product including a

Regression testing is commonly implemented after pro- computer readable storage medium readable by a processing
gram code of an application undergoes changes . Regression 30 circuit and storing instructions for execution by the process
testing tests the application to ensure that the changes have ing circuit is provided for performing a method . The method
not caused a regression of the application , i.e. , to ensure that includes , based on changes made to program code of an
the developed aspects of the application previously tested application , the program code of the application being
continue to perform properly after the changes . included in program code files and implementing application

35 features of the application , automatically identifying at least
SUMMARY one program code file , of the program code files , in which

the changes are contained . The method automatically selects
Shortcomings of the prior art are overcome and additional at least one application feature , of the application features ,

advantages are provided through the provision of a com- as at least one candidate on which to perform automated
puter - implemented method . The method includes , based on 40 regression testing . The automatically selecting includes
changes made to program code of an application , the pro- electronically accessing data structure (s) that include map
gram code of the application being included in program code pings between the program code files and the application
files and implementing application features of the applica- features , the mappings indicating , for each program code file
tion , automatically identifying at least one program code of the program code files , which of the application features
file , of the program code files , in which the changes are 45 are at least partially implemented by the program code
contained . The method automatically selects at least one included in that program code file , and performing a lookup
application feature , of the application features , as at least in the accessed data structure (s) and identifying , as the
one candidate on which to perform automated regression selected at least one application feature , each application
testing . The automatically selecting includes electronically feature that is at least partially implemented by program
accessing data structure (s) that include mappings between 50 code included in any of the identified at least one program
the program code files and the application features , the code file . Based on the selected at least one application
mappings indicating , for each program code file of the feature , the method selects , from regression test cases
program code files , which of the application features are at defined for the application features , regression test cases to
least partially implemented by the program code included in be included in the automated regression testing . The method
that program code file , and performing a lookup in the 55 also commences execution of the automated regression
accessed data structure (s) and identifying , as the selected at testing using the selected regression test cases .
least one application feature , each application feature that is Additional features and advantages are realized through
at least partially implemented by program code included in the concepts described herein .
any of the identified at least one program code file . Based on
the selected at least one application feature , the method 60 BRIEF DESCRIPTION OF THE DRAWINGS
selects , from regression test cases defined for the application
features , regression test cases to be included in the auto- Aspects described herein are particularly pointed out and
mated regression testing . The method also commences distinctly claimed as examples in the claims at the conclu
execution of the automated regression testing using the sion of the specification . The foregoing and other objects ,
selected regression test cases . 65 features , and advantages of the disclosure are apparent from

Further , a computer system is provided that includes a the following detailed description taken in conjunction with
memory and a processor in communication with the the accompanying drawings in which :

US 11,429,382 B1
3 4

FIG . 1 depicts a conceptual diagram of a file - feature map , files (i.e. , the code implementing the feature is contained in
in accordance with aspects described herein ; multiple code files) , then a change to one or more such files
FIG . 2 depicts an example process flow for identifying could inform that regression testing should be performed for

features and test cases for automated regression testing , in that feature using regression tests (regression “ test ” and “ test
accordance with aspects described herein ; 5 case ” are used synonymously herein) established for that
FIGS . 3A - 3B depict an example conceptual diagram of an feature .

application development process incorporating aspects dis- Accordingly , described herein are approaches for identi
cussed herein ; fying regression test cases for automated regression testing
FIG . 4 depicts an example process for regression test case a software application that has undergone code changes . In

identification and automated regression testing an applica- 10 some cases , a process automatically identifies the regression
tion , in accordance with aspects described herein ; test cases based on which files that have gone through
FIG . 5 depicts one example of a computer system and changes .

associated devices to incorporate and / or use aspects One aspect described herein is the creation and mainte
described herein ; nance of mappings between the program code files of an
FIG . 6 depicts a cloud computing environment according 15 application and the application features of that application .

to an embodiment of the present invention ; and FIG . 1 depicts a conceptual diagram of a file - feature map , in
FIG . 7 depicts abstraction model layers according to an accordance with aspects described herein , that maps pro

embodiment of the present invention . gram code files to the feature (s) they implement . In
examples , the mappings are indicated / stored in data struc

DETAILED DESCRIPTION 20 ture (s) maintained in computer storage / memory .
Referring to FIG . 1 , the application / software layers 102 of

As noted , software applications are often multi - layered in an application include a User Interface (UI) layer 104 ,
terms of function performance and program features . Each Business Logic (BL) layer 106 and Data Access (DA) layer
layer could be distinct from the other , having its role defined 108. The UI layer is made of .HTML , CSS , JSP and .JS
and restricted in terms of boundaries on its functions . An 25 technologies (as an example) and contains program files
application's functional layers implement features of the with like extensions . The program code files are a collection
application and application feature (s) may be implemented of files A , ... , Z in this example .
across such layers , for instance in a situation where an The BL layer is made of .JAVA , .TCL , .SH , .PY tech
application feature is implemented by code of a BL layer and nologies (as an example) and contains program code files
code of a DA layer , as one example . In this manner , despite 30 with like extensions . The program code files are a collection
the layers being distinct and potentially being based on of files also labeled A , ... , Z in this example (different files
different technologies , they work in tandem to make the A , ... , Z from those of the files of the UI layer .
features / solutions of the application work . The program The program code files of the DL layer in this example are
code constituting the application is included in program not shown in FIG . 1 .
code files , and different sets of the program code files 35 Each of the program code files of the UI and BL layers
include program code that implement different functional serve one or more purposes in that each is associated with
layers of the multiple functional layers making up the (e.g. , provides program code of) a respective one or more
application . application features of the application . Such association

In an application with a multi - layered architecture and constitutes a mapping between that file and the feature (s) it
that typically involves an amalgamation of different tech- 40 implements . A given program code file can include code that
nologies , it can be difficult to identify the regression test at least partially implements each of one or more features .
cases to use for regression testing after program code of the Any of such feature (s) may be also implemented at least
application goes through changes . When the product grows partially by code of one or more other program code files .
exponentially in terms of features and codebase , the com- FIG . 1 shows example mapping (s) of files to features .
plexity of identifying the regression test cases increases . 45 Many mappings are omitted in this example for simplicity .
Different developers changing different program code por- The mappings indicate , for each program code file , which of
tions at different times and different test cases applying to the application features are at least partially implemented by
different portions of the program code renders the task of the program code included in that program code file . In FIG .
identifying the most efficient regression testing very diffi- 1 , the mappings are shown by arrows 114 to a collection of
cult . The increase in complexity and difficulty in identifying 50 features 120 , the individual features being labeled F1 , ... ,
the proper regression test cases to use can result in missing Fn in this example . As an example , file Z of the UI layer
important test cases to be performed and a misplaced focus includes program code partially implementing feature F1 as
by the quality assurance team on non - relevant and / or unim- indicated by an arrow extending from file Z of the UI layer
portant other test cases . indicated in FIG . 1 to the feature F1 indicated in FIG . 1. File

In accordance with aspects described herein , keeping 55 G of the BL layer also partially implements feature F1 . Thus ,
adequate track of code changes and mapping code portions functionality of feature F1 is based at least on program code
to specific test cases can enable the application developer to in file Z of the UI layer and file G of the BL layer . Various
identify , given specific code changes that occurred , the other file - feature mappings are indicated in FIG . 1 , though
important test cases to be included in the regression suite . A only a portion of the entire collection of mappings is
program code file that goes through specific code changes 60 presented in FIG . 1 .
implements , at least in part , specific application features and Program code changes occur when there is a change to an
it is possible to identify which features such program code existing file or an addition of a new program code file . If a
file implements . Based on observed code changes , it can be change occurs , the feature (s) that consume the subject file (s)
determined which program code file (s) were touched as part (i.e. , that are at least partially implemented by program code
of those changes , and therefore which features may have 65 of that file) are to undergo regression testing to ensure that
been impacted and are therefore to undergo regression the functions that were not intended to be affected by the
testing . If a feature is spread across multiple program code changes continue to work . The mappings between the files

2

US 11,429,382 B1
5 6

and the features facilitate identification of the appropriate suite . The file - feature mappings , such as those depicted in
regression test cases to use by identifying which feature (s) the example Table 1 , can be shared with all scrums / teams
consume the changed program code file (s) . that participate in a release and access the same code . There

The relationships between files and features as shown in may be one master set of mappings kept , with all file - feature
FIG . 1 can be maintained in data structures , for instance 5 mapping updates being against that master set when / if code
tables . An example such table representing the mappings in changes result in changes in the mappings . Each team is
FIG . 1 is presented below as Table 1 . presented a common , consistent view of the mappings (e.g. ,

TABLE 1

UI Layer Business Logic Layer Feature

A B C D E F G H I Z A B C D E F G H I Z Sum

1 1 num 1 1
1 1 1 1

1
1

1
1

2
2
4
1
1
1
1
1
2
1
2
1
1
3

1
1 1

1
1

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
Fn
FILE
SUM

1
1

1
1 1

1
1 1

1 1 ENENNW 1
1

1 1
1

3 1 4 1 1 1 2 1 1 2 1 1 1 1 1 5 2 1 1 2

Features F1 , ... , Fn are listed vertically on the left side through version control software) at any given point in time
of Table 1 in its first column . The program code file 35 and each team can update the mappings in real - time . This
identifiers for files A - I and Z of both the UI layer and BL can help indicate to other teams in real - time the necessity to
layer are listed across the top of Table 1 in its second row . coordinate with each other in order to sort out any code
Each file - feature mapping is indicated by a numeral ‘ 1 ' . conflicts , since conflicts could lead to a regression .
Thus , feature F1 is implemented by program code of pro- 40 Referring to FIG . 2 , the process at 202 automatically
gram code file Z of the UI layer and file G of the BL layer identifies the program code file (s) that were changed when
as indicated by the positioning of the 1s in the row corre- changes are made to program code of an application . In one
sponding to F1 in Table 1 . example this is done by the continuous integration / continu

Program code files that are most used across most features ous delivery (C1 / CD) software . Every time a new piece of
could be regarded as particularly important , and therefore 45 code is written in a new program code file or an existing file
their features regression - tested ahead of others if desired . In is appended / modified with new code , for instance to support
a similar vein , features can be labeled with a feature priority a new feature and / or update an existing feature , this is
on which to base prioritization in regression - testing the automatically identified . As noted , the changes could include
features . These and other aspects of regression test case changes to one or more existing program code files of the
selection and prioritization are described in further detail 50 program code files making up the application and / or the
herein . addition of one or more new program code files to the
FIG . 2 depicts an example process flow for identifying collection of program code files that make up the applica

features and test cases for automated regression testing , in tion .
accordance with aspects described herein . Approaches dis- The observed code changes might produce a change in
cussed herein for identifying features and test cases can be 55 which of the program code files implement which of the
used in various methodologies of application development , application features . The corresponding mappings should be
for instance the Agile (e.g. , Scrum , Kanban , etc.) and Scaled kept up to date in this regard to properly reflect any such
Agile methodologies , and others . Software development at changes . For instance , file - feature mapping (s) might be
the enterprise level typically has many teams or ‘ squads ’ created or destroyed depending on the changes being made .
contributing to a common codebase and rolling out features / 60 The process proceeds by automatically selecting applica
solutions in - parallel . Each team has its own set of deliver- tion feature (s) , of the collection of application features that
ables focused on completing as many desired features (e.g. , make up the application , as candidate (s) on which to per
committed ‘ userstories ') in their set timelines , which are form automated regression testing . In FIG . 2 this is broadly
usually tight . In the process , these teams might interfere with referred to as application defined regression testing 204. The
each other's code , causing regression in the application and 65 selected candidates can be those features that are imple
features thereof . Aspects discussed herein aim to address mented , at least in part , by any program code file in which
this problem and provide an application - level regression test the code changes are contained . These features are just

US 11,429,382 B1
7 8

candidates at that point , as there may be some changes The process proceeds by commencing (208) execution of
and / or prioritization applied when determining which to the automated regression testing using the selected regres
actually regression - test , as explained below . sion test cases . As an example , the regression testing is
One aspect of selecting the candidate features is electroni- initiated to begin automated testing using a first one or more

cally accessing the data structure (s) , e.g. , table (s) , that 5 tests of the test suite . As is discussed further below , there
include the mappings between the program code files and may be situations when not all test cases for all of the
the application features . These mappings can inform which candidate features are performed , or at least not in initial
files changed and therefore which features may be affected . testing . For instance , in an example where there are multiple

Table 2 below depicts an example of how the mappings selected features to regression test , the process might pri
can reflect a changed program code file . oritize the selected regression test cases into an order in

TABLE 2

UI Layer Business Logic Layer Feature

A B C D E F G H I Z A B C D E F G ? ? Z Sum

F1 1 1

F2 1 1
2
2
4
1

1 1 1 1 F3
F4

30

Table 2 presents the rows for the first four features which the automated regression testing is to execute the
(F1 , ... , F4) from Table ove . Here , file C of the UI layer selected regression test cases . Resource limitations and
has been modified and this change is reflected by bold , time - boxing might inform that not all test cases can be
underline of the indicated “ l ' in Table 2 (this could be 25 performed in initial testing , for example .
indicated in the actual data structure (s) containing the map- Further details are now provided regarding selection and
pings using any desired approach) . In one specific example , prioritization of regression test cases as part of the applica
it is the code of feature F3 , and specifically the code tion defined regression testing 204 .
contained in file C of the UI layer , that changed . Table 1 above includes a File Sum (last row) for each

The process accesses the data structure (s) and performs a program code file . The File Sum is the number of features
lookup therein to identify , as the selected application feature that the file impacts , i.e. , the number of features that the
candidate (s) , each application feature that is at least partially program code of the file at least partially implements . File C
implemented by program code that is included in any of the of the UI layer impacts features F3 , F10 , F12 and F20 so its
program code file (s) identified as having been changed . 35 File Sum is 4. File F of the BLL layer impacts 5 Features
Thus , for any program code file that includes any change , it (F3 , F9 , F14 , F17 and F19) so its File Sum is 5 , and the File
is determined which feature (s) that file at least partially Sum of file G of the BLL layer is 2. If there are multiple
implements , and the feature / features are included as candi- program code files that go through the changes , File Sum
dates . The set of candidates is any feature at least partially can help sequence and / or prioritize the feature regression
implemented by any changed program code file . In some 40 testing . File Sum could for example be used to compute or
examples , there are multiple changed program code files and otherwise determine / inform the regression test efforts .
there are multiple selected features . From Table 1 , it is seen Depending on scheduling and other factors , the total efforts
that file C the of UI layer (which has been modified in this for the different files might inform when or in which order
example) is consumed by features F3 , F10 , F12 and F20 . to regression - test the features implemented by the files .
These features are selected for potential regression testing . 45 Accordingly , in one aspect , prioritizing the test cases
Changed (or added) program code in other files might result includes identifying (using File Sum) which one or more
in selection of additional features . program code files , of the identified program code files to

Based on the selected application feature (s) , the process which changes were made , includes program code at least
selects , from a collection of the regression test cases for the partially implementing a greatest number of application
application's features , regression test cases to be included in 50 features of any of the identified plurality of program code
the automated regression testing as the regression test cases / files . The features of file (s) with higher File Sums might be
suite (206) . Each application feature of the application can regression tested (using their associated test cases) before
have associated with it a set of regression test case (s) . The regression - testing features of files with lower File Sums , for
set of test case (s) associated with a particular feature are instance . In other words , File Sum could be used to select
defined for regression testing that feature . In one example , 55 which files to prioritize over other files in terms of the
the regression test case (s) to test a feature are defined when regression testing the features thereof . Thus , putting the
the feature is coded and / or updated . Different features are regression testing in a sequential order of importance could
typically regression tested using different regression test be done based on the number of features that each file
case (s) , where the regression test case (s) defined for one impacts . From the above example , the regression order
application feature can differ from the regression test case (s) 60 could be : (i) File F of BLL layer (File Sum : 5) , (ii) File C
defined for another application feature . There may also be of UI layer (4) , and then (iii) File G of BLL layer (2) .
test cases that can be used to test different features . Table 1 also includes a Feature Sum (last column) for each

In a particular example , selection of the regression test application feature . The Feature Sum of a feature is the
case (s) to be included in the automated regression test cases number of files across which the program code to implement
selects to include , for each application feature of the selected 65 feature is spread . Feature F3 is implemented by program
at least one candidate application feature , the regression test code in 4 total files — one in the UI layer and three in the
case (s) defined for that feature . BLL layer — so its Feature Sum is 4. For a software devel

a

a

a

a

US 11,429,382 B1
9 10

opment team , one of the challenges is to estimates the efforts is often not enough time to deliver everything . Prioritizing
when a bug is discovered . Someone who might not be fully the Features or bugs to address / work on can be key .
aware of the feature's program code and where it lies (e.g. , As seen in Table 3 below , each feature is assigned a
across different layers and files) might utilize the Feature priority tag (last column) referred to herein as Feature
Sum to help address this challenge . 5 Priority . Each feature is indicated with a priority for each file
As noted , Feature Sum is the total number of program at least partially implementing that feature . Feature F1 for

code files , across the layers , in which the feature code is instance is implemented in file Z of the UI layer and File G
spread . It helps to quickly identify the files - per - feature to of the BLL layer . The priority for each is indicated as 3 , and
understand the work involved and assess other aspects of a so the Feature Priority (last column) indicates 3 as the
bug fix . If there are bugs identified in features F3 , F14 and priority of feature F1 . The Feature Priority may be a function
F17 , and changes are to be made to those features to address of the individual priorities of that feature across its files , for
the bugs , then a developer could use Feature Sum to identify instance the highest / maximum of any such assigned priority .

10
a

TABLE 3

UI Layer Business Logic Layer

A B C D E F G H I Z A B C D E F G H I Z Priority
3 3 3

1 1 1
2 2 2 2 2

2 2
1 1

2 2
1 1

2
1 1

2
1
3 3

F1
F2
F3
F4
F5
F6
F7
F8
F9
F10
F11
F12
F13
F14
F15
F16
F17
F18
F19
F20
FN

1 1 1
3 3

1 1
2 2 2 2

1 1

1 1
3 3 3

1 1

1 1
3 3 3

3

40 the number of files involved — F3 is spread across 4 files , Features could be assigned a priority based on any desired
F14 is spread across 3 files , and F17 is spread across 2 files factor (s) . Examples include , but are not limited to , the
(see Table 1) . The number of files involved is suggestive of Return - on - Investment (ROI) determined for the feature , the
total work involved to address the bug , which could include frequency at which the feature is used in the application , or
regression testing it based on code changes . In many cases , any other business aspect . In Agile , the Product Owner
the work involved is more for feature F3 when compared to 45 release and participates in the scrum to prioritize the areas (PO) / Manager can set a priority as to what goes into the
the work involved for F14 and F17 since feature F3 is spread (feature development , field support , bug fixes , etc.) where across more files . In this manner , the Feature Sum can be team efforts must be directed . With the help of Feature used to compute the development / bug fix efforts and poten Priority , the involvement of the PO could be substantially tially prioritize the fixes based on the efforts involved and reduced , enabling the team to work more independently in
resources (time , people , etc.) available . 50 terms of its decision making .

In an aspect of prioritizing regression test cases , the Accordingly , Feature Priority could help prioritize , in
prioritizing can include identifying , for each candidate some cases as another layer on the top of an already
application feature , a number of program code files (e.g. , prioritized list based on , e.g. , File Sum and / or Feature Sum
Feature Sum) that include program code at least partially discussed above . Take an example where there are bugs that
implementing that application feature , which is indicative of 55 need to be fixed per features F3 , F9 and F1 in files of UI
an amount of development resources (e.g. , development / bug layer (File Sum 4) , F of BLL layer (File Sum 5) and G of
fix efforts) , and then prioritizing the regression test cases BLL layer (File Sum 2) . File Sum indicates the number of
based on the amount of development resources for those features impacted by the change and helps identify the
candidate application features . In this manner , the Feature regression test cases in conjunction with Table 1 , Feature

Sum indicates the number of files that involve a feature and Sum could help prioritize the fixes based on the efforts 60
involved and therefore the regression testing to be per helps compute the efforts involved , and Feature Priority

helps conclude on potential scoping , prioritizing , and time formed based on which fixes are handled first . boxing for the regression testing , i.e. , based on the priorities In additional or alternative to File Sum and / or Feature set for the features . The test cases to be performed can be Sum , a Feature Priority may be assigned to the application prioritized according to the priorities assigned the associated
features . There are often time constraints in an Agile soft- 65 application features . For instance , highest priority features
ware development backdrop (as one example) and thus of the already - prioritized features (from the File Sums
developers struggle in prioritizing their focus because there and / or Feature Sums) may be those tested first by way of

a

10

20

US 11,429,382 B1
11 12

their regression tests . All test cases for feature F3 might be fication of the gaps (bugs , missing feature , etc.) as a feeder
prioritized before any of features F1 and F9 , and test (s) for (e.g. , as a userstory) for the next cycle to deliver on those
feature F1 or F9 might be next - prioritized depending on gaps .
remaining time or time - boxing , as an example . Continuing with FIG . 3A , the process updates (312) the

Each of File Sum , Feature Sum , and Feature Priority may 5 file - feature mapping data structure (s) , for instance the map
be used alone or in conjunction with one or more of the pings and priorities if applicable . This is followed by a
others , as desired . quality gate at 314 to review the table (s) / data structures from

FIGS . 3A - 3B depict an example conceptual diagram of an architecture managers . This review is to determine whether
application development process incorporating aspects dis- the mappings (showing which files implement which fea
cussed herein . The development process in this example tures) is consistent with the intended design . Business logic
involves different teams / squads 302a , 302b that develop the implemented in files of the UI layer , as an example , is likely
various aspects of an application , pushing updated file (s) to undesirable . A quality gate is generally a milestone check to
an integration (e.g. , GIT) repository 303 that integrates inquire whether prerequisites have been met in order to
program code files for application builds . In a scaled Agile 15 15 proceed . It can be an important mechanism to make sure that
backdrop with multiple independent teams developing fea- key indicators of quality are not compromised in the face of
tures , solutions , products , etc. , their code is integrated often rushed timelines for delivery . Managers can utilize
together in the integration repository 303. The data these to validate at various stages that what has been
structure (s) holding the file - feature mappings described developed thus far is of an acceptable quality .
above could also reside in the integration repository . The approach for deriving application level regression test

The multiple squads might work against common files . cases can benefit from these quality gates to ensure quality
One team might be unaware of changes of a file by the other continues to improve . A factor in arriving at proper test cases
team until later time when the one team checks - in its is proper file - feature mappings , and the mappings should be
version of the file to the repository . Version control software kept up - to - date each time there is a change . The quality gate
is commonly used to address these situations . In one par- 25 314 can help ensure that each time there is a change File
ticular example , there may be an alert regarding multiple Sum , Feature Sum and / or Feature Priority , this is subjected
changes / conflicts , requiring the selection of which changes to a quality review process .
to actually implement in the integration repository . Creation and updating of the file - feature mappings can be

In any case , changes are integrated and the rest of the based on the artifacts available before the team has fully
process of FIG . 3A is triggered . Specifically , a tool analyzes 30 delved into the further software development . Each team
(304) program code changes from the repository to identify with the help of its architect could refer to artifacts such as
properties of the changes , for instance the number of exist the Business Requirements , Architecture , Design , Solution

Documents , etc. and arrive at what would be the prospective ing files that underwent changes , the number of new code
files added , and the number of files for each feature / solution , 35 can be followed by each scrum team / track to exposing the

new mappings / changes in existing mappings . This process
as examples . At 306 there is an inquiry and review for most common files to go through regression , making all outdated files with respect to solutions / features . If a feature / teams aware of that in order to discuss and agree on the solution is dropped or no longer supported , based on the approach for the final architecture / solution design with all
changes , then the process proceeds to request (308) that team representatives onboard . In some examples , this could
stakeholders remove outdated files and check those changes 40 eliminate 60 to 70 % of regression testing that might other
into the integration repository . The flow returns to the squad wise be performed .
at that point to prompt it to address those file (s) , e.g. , remove Nonetheless , not all features are developed and finalized
them or make them obsolete , for instance . based on the initial design . The file - feature mappings change

Assuming no outdated or extraneous files in terms of during other cycles of software development and thus the
features supported , the process analyzes (310) the new / 45 scrum teams could continue to update the mappings to yield
updated program code files based on (i) architecture / design the best results . In some examples , the code reviewer also
documents , (ii) business requirements , and (iii) solution reviews the file - feature mappings and provides feedback to
documents . This aspect is related to technical debt , referring the developer / quality assurance (QA) teams (identified
generally to when aspects of the current application are not using the version control software , based on the changes that
necessarily in - sync with what was initially intended . Often 50 the team is making , for instance) that will be impacted due
after a request / requirement is received for an application to these changes , reducing surprises that these changes may
under development , there are development cycles — typi- otherwise bring to the other teams , and thus avoid impact on
cally , analysis , assessment , design , architecture , develop- the release .
ment , testing , bug resolution , and then deployment and There may be outcomes of the review at 314 that require
maintenance . The request or requirement is some original 55 changes and therefore the process can proceed to 316 to
expectation for the feature but that feature might not take the update review inputs and return to 312 , i.e. , to update the
shape that is was originally expected and intended to take by table (s) as necessary . In this manner , the architecture man
the time that feature is delivered / deployed . This is because agers manage the mappings based on what the developer
of gaps in the development process — the requirement was pool is turning - out and whether it is appropriate .
not understood properly , the design did not consider certain 60 Assuming the quality gate 314 passes , the process pro
aspects of the feature and missed things , or the tester did not ceeds to 318 to define the regression test suite . This is after
test a particular aspect , as examples . There are all different architecture manager review (at 314) and may involve
kinds of gaps . These are wrapped into what is termed artificial intelligence (AI) , for instance a machine learning
“ technical debt ' . As development progresses , there may be based cognitive engine . Using the updated mappings , the
many expectations that were not delivered - upon . Aspect 310 65 regression test suite (suite of regression test cases) is iden
of FIG . 3A is directed to an analysis of the new / updated files tified . The suite might require approval from a relevant
based on the requirements for the application , then identi- stakeholder .

US 11,429,382 B1
13 14

As mentioned , AI could be leveraged . For instance , his- Further details are provided about technical debt and
torical testing results might inform of test cases , initially relation to aspects described herein . One of the key by
included in the suits , should be omitted , and / or test cases that products of software of compromised quality is the legacy of
were originally omitted from the suite should be added . technical debt that it creates and the challenges it brings in
Thus , the selecting the regression test cases to be included 5 addressing it . Product documentation might state that a
in the automated regression testing (FIG . 2 , 204) can include given feature incorporates functionality X , Y and Z but
using a cognitive engine trained via machine learning and identified technical debt might suggest that the feature was
historical regression testing results to identify one more not developed with such functionality . That gap might be
regression test case (s) to include in the selected regression raised as detected bugs , in document reviews , or from user
test cases , and / or regression test case (s) , initially proposed 10 feedback , as examples . Sometimes the gap is not raised at

all . Debt can continue to mount on account that development for inclusion in the selected regression test cases (the suite
at 206) , to exclude from the selected regression test cases . resources (like time and money) may be prioritized on

delivering the customer's priorities rather than directly In a particular example , the cognitive engine might
inform that a particular regression test case that , practically 15 undiscovered . addressing existing technical debt , especially if that debt is
speaking , always passes in similar situations , is therefore not It can be challenging to track the technical debt created worth performing as part of the suite . and compounded by the development process . Application

Another quality gate exists at 320 where there is a review development proceeds through various phases and at each
from subject matter expert (SME) / leads . This quality gate s stage generates artifacts that can be key to reaching conclu
to review the test cases that have been identified in the 20 sions and shaping solutions . Any deviation from the initial
testing suite . A SME might hold a particularly useful under- plan / design can affect the downstream product in many
standing of the product , features , etc. Leaders of a depart- ways . Going from the solution / feature as conceptualized ,
ment might desire to sign - off on the selected test suite in then to the representation ' on paper ’ , then to how it was
case there are challenges with resources such as time or cost . coded can create technical debt that may be difficult to track .
To the extent there is feedback from that review the neces- 25 If the debt is not tracked and addressed , this could pose
sitates changes to the test suite , the process proceeds to serious threats to the software product's long - term viability .
update the review inputs (322) and return to 318 to tweak the Processes discussed herein can facilitate tracking this
test suite . deviation , creating a ' debt - mesh ' that can suggest the quan

The above - mentioned quality gates at 314 (planning tity or magnitude of the deviation , and enable the team to
phase) and 320 (development phase) can be key to reducing 30 ascertain the impacts that it has created . In this regard , an
extraneous regression testing . Moreover , the utility is aspect of a process can track changes in the mappings across
extended even further when these become criteria to merge stages of the application's development , and identify , based
into a release branch and verify respective features / solutions on the changes in the mappings over technical debt that
in integration testing . A third quality gate of sorts , continu- informs of inefficiencies in development processes that are
ous integration testing discussed below , can expose much of 35 to develop and maintain the application . The debt - mesh can
the remaining regressions caused from technical debt (e.g. , be created as follows : The file - feature mappings (e.g. , as in
deviation from the initial plan outlined by the architects in Table 1) are updated at every stage / phase of software
the initial planning phase) . These three quality gates in place product development . This encompasses , as part of the
can facilitate smooth system testing and subsequent release mappings , the File and Feature Sums . The process captures
product . 40 a snapshot of the file - feature mappings at each such stage .

Assuming quality gate 320 is passed , the process proceeds Over time , the process tracks the changes in Feature Sum
to continuous integration testing 324 of FIG . 3B . Continuous and File sum across these stages of software product devel
integration testing can be verified on common test bed , opment . The lesser the deviation (evaluated using any
rather than in a squad test environment for instance . The desired approach) in Feature Sum and File Sum from one
continuous integration testing 324 commences when the 45 point (such as inception) to a subsequent point (such as a
integration build is triggered (326) . The product is bundled release) , the lesser the technical debt that exists ; a greater
and packaged with the contributions from the squads and is deviation indicates higher technical debt .
now ready to be installed / deployed . This is termed the A high degree of technical debt suggests potential major
integration build . problems . Significant deviation can suggest that the devel

The process proceeds with automated regression testing 50 oper did not understand a request / requirement , did not
with the selected test suite and a standard automation sanity design the feature (translate it into an architecture) correctly ,
check (328) . The process verifies the userstories on the did not develop it correctly , and / or did not test is correctly ,
common test bed (330) to understand whether what was as examples . This can be effective at illustrating where the
requested (by way of userstories) was satisfied . Then the breakdowns occur in the development process . The data
Product Owner (PO) , Architect , and / or Feature Owner (s) 55 could be used across releases to identify the common area
sign - off on the integration build (332) . That is the end of a where development is failing . It may then be desired to
so - called " sprint ” . The integration build and test could be prioritize finding solutions to those problems highlighted by
performed at the end of every sprint , feature development , the debt mesh .
etc. or once all the features are developed , as examples . Advantageously , aspects disclosed herein provide for

Continuous integration testing , being continuous , might 60 identification of files that are common across features and
therefore repeat this as indicated by arrow 334. At some what files make up a feature , and provide a model that aids
point there is a ' final sprint that completes . At this point the development and quality assurance teams to estimate efforts
feature / changes added in the present release have been and define scope of development , aids in identifying regres
integrated into the prior - version product and the product has sion test cases , and aids in planning and prioritizing bug
now passed regression testing . The integration build is then 65 fixes . Additionally , historical testing data can be fed into a
pushed out as a system test (ST) release to the ST branch 336 cognitive engine to generate a pattern of regressions over
for system - testing the build at 338 . time and take corrective actions or learn to improve the

a

US 11,429,382 B1
15 16

process and timelines , including identification of test cases feature , therefore the set of regression test cases defined for
to include or omit . Quality Gates can be used to ensure that one application feature of the plurality of application fea
the regression suite is in its best form , and maintenance of tures can differ from the set of regression test cases defined
file - feature mappings helps reduce uncertainty in efforts , for another application feature of the plurality of application
timeframes , and forecasting . Aspects apply to any software 5 features . As part of selecting the regression test cases to be
development model , and can be used to identify technical included in the automated regression testing (at 408) , the debt in a software product accumulate during its lifetime . process could , for each application feature of the selected at FIG . 4 depicts an example process for regression test case least one application feature , include in the selected regres identification and automated regression testing an applica sion test cases each of the regression test cases that is / are tion , in accordance with aspects described herein . In some 10 defined for that feature . In this manner , for each feature of examples , the process is performed by one or more computer any changed program code file , the process can identify and systems , such as those described herein . select the test case (s) for that feature . Initially , based on changes made to program code of an
application , the program code of the application being Selecting the regression test cases to be included in the
included in program code files and implementing a plurality is automated regression testing can include using a cognitive
of application features of the application , the process auto engine trained via machine learning and historical regression
matically identifies (402) at least one program code file , of testing results to identify (i) regression test case (s) , of the
the program code files , in which the changes are contained . plurality of regression test cases , to include in the selected
In examples , the changes are to existing program code file (s) regression test cases , and / or (ii) regression test case (s) ,
of the program code files and / or are program code of 20 initially proposed for inclusion in the selected regression test
program code file (s) that have been newly added to the cases , to exclude from the selected regression test cases .
program code files of the application . With the regression test cases to be used in the regression

In some embodiments , the application includes multiple testing selected , the process commences (410) execution of
functional layers that implement the plurality of application the automated regression testing using the selected regres
features . Different sets of the program code files could 25 sion test cases . It is noted that for one reason or another
include program code that implements different functional perhaps some prioritization applied — the test cases may be
layers of the multiple functional layers . At least one appli- run in an order and perhaps some test cases (at the end of the
cation feature of the plurality of application features can be queue) may be postponed or not run at all . This may depend
implemented by program code that is included in a plurality on timing and other factors that might limit the amount of
of different program code files , i.e. , that each at least 30 testing that can be performed in a given timeframe .
partially implement a plurality of different functional layers In some examples , the identified at least one program
of the multiple functional layers . code file includes an identified plurality of program code
The process of FIG . 4 then is to automatically select at files , the selected least one application feature includes a

least one application feature , of the plurality of application selected plurality of application features , and the process
features , as at least one candidate on which to perform 35 further includes prioritizing the selected regression test cases
automated regression testing . Thus , the process proceeds to into an order in which the automated regression testing is to
electronically access (404) one or more data structures that execute the selected regression test cases . Such prioritization
include mappings between the program code files and the may use file sum , feature sum , and / or feature priority in
plurality of application features . The mappings indicate , for terms of selecting , sequencing , prioritizing , and / or timing
each program code file of the program code files , which of 40 the performance of the regression test cases .
the plurality of application features are at least partially The prioritizing could include , for instance , identifying
implemented by the program code included in that program which one or more program code files , of the identified
code file . As part of this access or in a separate access , the plurality of program code files containing the code changes ,
process could update the mappings between the program includes program code at least partially implementing a
code files and the plurality of application features based on 45 greatest number of application features of any of the iden
the changes (identified at 402) changing which of the tified plurality of program code files , and prioritizing regres
program code files implement which of the plurality of sion test cases , of the selected regression test cases , that
application features . For instance , if a change made to a regression test the application features at least partially
program code file adds code to partially implement a feature , implemented by program code included in such identified
the mappings are updated to reflect this . 50 one or more program code files implementing a greatest

In any case , the process continues with the automatic number of application features . A File Sum of a file indicates
selection of the at least one application feature by perform- the number of application features program code of the file
ing (406) a lookup in the accessed one or more data at least partially implements and can inform regression test
structures and identifying , as the selected at least one efforts for used in sequencing and / or prioritizing feature
application feature that is / are candidate (s) for regression 55 regression testing .
testing , each application feature that is at least partially Additionally or alternatively , the prioritizing could
implemented by program code included in any of the include identifying , for each application feature of the
identified at least one program code file in which the changes selected plurality of application features , a number of pro
are contained . gram code files that include program code at least partially

Based on the selected at least one application feature , the 60 implementing that application feature (the “ Feature Sum ”) .
process proceeds by selecting (408) , from a plurality of The Feature Sum can be indicative of an amount of devel
regression test cases defined for the plurality of application opment resources for working on , developing , bug fixing ,
features , regression test cases to be included in the auto- etc. the feature . The process could prioritize regression test
mated regression testing . In examples , each application cases , of the selected regression test cases , based on the
feature of the plurality of application features has an asso- 65 amount of development resources for the selected plurality
ciated set of regression test cases defined for regression of application features (e.g. , which features require more
testing that application feature . The set is specific to that resources) .

2

US 11,429,382 B1
17 18

Additionally or alternatively , there could be a feature Video Electronics Standards Association (VESA) local bus ,
priority assigned to the application features and the priori- and the Peripheral Component Interconnect (PCI) .
tizing could include prioritizing regression test cases , of the Memory 504 can be or include main or system memory
selected regression test cases , based on a respective priority (e.g. , Random Access Memory) used in the execution of
assigned to each of the selected plurality of application 5 program instructions , storage device (s) such as hard
features . The priority assigned to an application feature drive (s) , flash media , or optical media as examples , and / or
could indicate a priority in regression testing that application cache memory , as examples . Memory 504 can include , for
feature . In some examples , a prioritized list of test cases (for instance , a cache , such as a shared cache , which may be
instance based on File Sum and / or Feature Sum) could be coupled to local caches (examples include L1 cache , L2
further prioritized using the feature priority indicators . This 10 cache , etc.) of processor (s) 502. Additionally , memory 504 may be or include at least one computer program product may be useful when there are several feature / test cases having a set (e.g. , at least one) of program modules , instruc otherwise prioritized evenly ; those of higher feature priority tions , code or the like that is / are configured to carry out can be further prioritized over those of lower feature priority . functions of embodiments described herein when executed

The data structure (s) with the mappings can be shared 15 by one or more processors . across a plurality of teams that participate in development of Memory 504 can store an operating system 505 and other the application , which development includes implementing computer programs 506 , such as one or more computer
changes to the program code files , and the process can programs / applications that execute to perform aspects
further include maintaining a consistent set of the data described herein . Specifically , programs / applications can
structure (s) , for instance using version control . 20 include computer readable program instructions that may be

In addition , the process could track changes in / to the configured to carry out functions of embodiments of aspects
mappings across stages of development of the application . described herein .
By tracking the changes , it can be observed how feature Examples of I / O devices 508 include but are not limited
code distribution and position (e.g. , different files , different to microphones , speakers , Global Positioning System (GPS)
application layers , etc.) change over time . This may be 25 devices , cameras , lights , accelerometers , gyroscopes , mag
useful in identifying , based on the changes in the mappings netometers , sensor devices configured to sense light , prox
over time , technical debt informing of inefficiencies in imity , heart rate , body and / or ambient temperature , blood
development processes that develop and maintain the appli- pressure , and / or skin resistance , and activity monitors . An
cation . I / O device may be incorporated into the computer system as

Although various examples are provided , variations are 30 shown , though in some embodiments an I / O device may be
possible without departing from a spirit of the claimed regarded as an external device (512) coupled to the com
aspects . puter system through one or more I / O interfaces 510 .

Processes described herein may be performed singly or Computer system 500 may communicate with one or
collectively by one or more computer systems . FIG . 5 more external devices 512 via one or more I / O interfaces
depicts one example of such a computer system and asso- 35 510. Example external devices include a keyboard , a point
ciated devices to incorporate and / or use aspects described ing device , a display , and / or any other devices that enable a
herein . A computer system may also be referred to herein as user to interact with computer system 500. Other example
a data processing device / system , computing device / system / external devices include any device that enables computer
node , or simply a computer . The computer system may be system 500 to communicate with one or more other com
based on one or more of various system architectures and / or 40 puting systems or peripheral devices such as a printer . A
instruction set architectures , such as those offered by Inter- network interface / adapter is an example I / O interface that
national Business Machines Corporation (Armonk , N.Y. , enables computer system 500 to communicate with one or
USA) , Intel Corporation (Santa Clara , Calif . , USA) or ARM more networks , such as a local area network (LAN) , a
Holdings plc (Cambridge , England , United Kingdom) , as general wide area network (WAN) , and / or a public network
examples . 45 (e.g. , the Internet) , providing communication with other
FIG . 5 shows a computer system 500 in communication computing devices or systems , storage devices , or the like .

with external device (s) 512. Computer system 500 includes Ethernet - based (such as Wi - Fi) interfaces and Bluetooth®
one or more processor (s) 502 , for instance central processing adapters are just examples of the currently available types of
unit (s) (CPUs) . A processor can include functional compo- network adapters used in computer systems (BLUETOOTH
nents used in the execution of instructions , such as func- 50 is a registered trademark of Bluetooth SIG , Inc. , Kirkland ,
tional components to fetch program instructions from loca- Wash . , U.S.A.) .
tions such as cache or main memory , decode program The communication between I / O interfaces 510 and exter
instructions , and execute program instructions , access nal devices 512 can occur across wired and / or wireless
memory for instruction execution , and write results of the communications link (s) 511 , such as Ethernet - based wired
executed instructions . A processor 502 can also include 55 or wireless connections . Example wireless connections
register (s) to be used by one or more of the functional include cellular , Wi - Fi , Bluetooth® , proximity - based , near
components . Computer system 500 also includes memory field , or other types of wireless connections . More generally ,
504 , input / output (I / O) devices 508 , and I / O interfaces 510 , communications link (s) 511 may be any appropriate wireless
which may be coupled to processor (s) 502 and each other via and / or wired communication link (s) for communicating
one or more buses and / or other connections . Bus connec- 60 data .
tions represent one or more of any of several types of bus Particular external device (s) 512 may include one or more
structures , including a memory bus or memory controller , a data storage devices , which may store one or more pro
peripheral bus , an accelerated graphics port , and a processor grams , one or more computer readable program instructions ,
or local bus using any of a variety of bus architectures . By and / or data , etc. Computer system 500 may include and / or
way of example , and not limitation , such architectures 65 be coupled to and in communication with (e.g. , as an
include the Industry Standard Architecture (ISA) , the Micro external device of the computer system) removable / non
Channel Architecture (MCA) , the Enhanced ISA (EISA) , the removable , volatile / non - volatile computer system storage

a

25

a

US 11,429,382 B1
19 20

media . For example , it may include and / or be coupled to a service (e.g. , storage , processing , bandwidth , and active user
non - removable , non - volatile magnetic media (typically accounts) . Resource usage can be monitored , controlled , and
called a “ hard drive ”) , a magnetic disk drive for reading reported , providing transparency for both the provider and
from and writing to a removable , non - volatile magnetic disk consumer of the utilized service .
(e.g. , a “ floppy disk ”) , and / or an optical disk drive for 5 Service Models are as follows :
reading from or writing to a removable , non - volatile optical Software as a Service (SaaS) : the capability provided to
disk , such as a CD - ROM , DVD - ROM or other optical the consumer is to use the provider's applications running on
media . a cloud infrastructure . The applications are accessible from

Computer system 500 may be operational with numerous various client devices through a thin client interface such as
other general purpose or special purpose computing system 10 a web browser (e.g. , web - based e - mail) . The consumer does
environments or configurations . Computer system 500 may not manage or control the underlying cloud infrastructure
take any of various forms , well - known examples of which including network , servers , operating systems , storage , or
include , but are not limited to , personal computer (PC) even individual application capabilities , with the possible
system (s) , server computer system (s) , such as messaging exception of limited user - specific application configuration
server (s) , thin client (s) , thick client (s) , workstation (s) , lap- 15 settings .
top (s) , handheld device (s) , mobile device (s) / computer (s) Platform as a Service (PaaS) : the capability provided to
such as smartphone (s) , tablet (s) , and wearable device (s) , the consumer is to deploy onto the cloud infrastructure
multiprocessor system (s) , microprocessor - based system (s) , consumer - created or acquired applications created using
telephony device (s) , network appliance (s) (such as edge programming languages and tools supported by the provider .
appliance (s)) , virtualization device (s) , storage controller (s) , 20 The consumer does not manage or control the underlying
set top box (es) , programmable consumer electronic (s) , net- cloud infrastructure including networks , servers , operating
work PC (s) , minicomputer system (s) , mainframe computer systems , or storage , but has control over the deployed
system (s) , and distributed cloud computing environment (s) applications and possibly application hosting environment
that include any of the above systems or devices , and the configurations .
like . Infrastructure as a Service (IaaS) : the capability provided

It is to be understood that although this disclosure to the consumer is to provision processing , storage , net
includes a detailed description on cloud computing , imple- works , and other fundamental computing resources where
mentation of the teachings recited herein are not limited to the consumer is able to deploy and run arbitrary software ,
a cloud computing environment . Rather , embodiments of the which can include operating systems and applications . The
present invention are capable of being implemented in 30 consumer does not manage or control the underlying cloud
conjunction with any other type of computing environment infrastructure but has control over operating systems , stor
now known or later developed . age , deployed applications , and possibly limited control of

Cloud computing is a model of service delivery for select networking components (e.g. , host firewalls) .
enabling convenient , on - demand network access to a shared Deployment Models are as follows :
pool of configurable computing resources (e.g. , networks , 35 Private cloud : the cloud infrastructure is operated solely
network bandwidth , servers , processing , memory , storage , for an organization . It may be managed by the organization
applications , virtual machines , and services) that can be or a third party and may exist on - premises or off - premises .
rapidly provisioned and released with minimal management Community cloud : the cloud infrastructure is shared by
effort or interaction with a provider of the service . This cloud several organizations and supports a specific community that
model may include at least five characteristics , at least three 40 has shared concerns (e.g. , mission , security requirements ,
service models , and at least four deployment models . policy , and compliance considerations) . It may be managed

Characteristics are as follows : by the organizations or a third party and may exist on
On - demand self - service : a cloud consumer can unilater- premises or off - premises .

ally provision computing capabilities , such as server time Public cloud : the cloud infrastructure is made available to
and network storage , as needed automatically without 45 the general public or a large industry group and is owned by
requiring human interaction with the service's provider . an organization selling cloud services .

Broad network access : capabilities are available over a Hybrid cloud : the cloud infrastructure is a composition of
network and accessed through standard mechanisms that two or more clouds (private , community , or public) that
promote use by heterogeneous thin or thick client platforms remain unique entities but are bound together by standard
(e.g. , mobile phones , laptops , and PDAs) . 50 ized or proprietary technology that enables data and appli

Resource pooling : the provider's computing resources are cation portability (e.g. , cloud bursting for load - balancing
pooled to serve multiple consumers using a multi - tenant between clouds) .
model , with different physical and virtual resources dynami- A cloud computing environment is service oriented with
cally assigned and reassigned according to demand . There is a focus on statelessness , low coupling , modularity , and
a sense of location independence in that the consumer 55 semantic interoperability . At the heart of cloud computing is
generally has no control or knowledge over the exact an infrastructure that includes a network of interconnected
location of the provided resources but may be able to specify nodes .
location at a higher level of abstraction (e.g. , country , state , Referring now to FIG . 6 , illustrative cloud computing
or datacenter) . environment 50 is depicted . As shown , cloud computing

Rapid elasticity : capabilities can be rapidly and elastically 60 environment 50 includes one or more cloud computing
provisioned , in some cases automatically , to quickly scale nodes 10 with which local computing devices used by cloud
out and rapidly released to quickly scale in . To the consumer , consumers , such as , for example , personal digital assistant
the capabilities available for provisioning often appear to be (PDA) or cellular telephone 54A , desktop computer 54B ,
unlimited and can be purchased in any quantity at any time . laptop computer 54C , and / or automobile computer system

Measured service : cloud systems automatically control 65 54N may communicate . Nodes 10 may communicate with
and optimize resource use by leveraging a metering capa- one another . They may be grouped (not shown) physically or
bility at some level of abstraction appropriate to the type of virtually , in one or more networks , such as Private , Com

a

US 11,429,382 B1
21 22

munity , Public , or Hybrid clouds as described hereinabove , instruction execution device . The computer readable storage
or a combination thereof . This allows cloud computing medium may be , for example , but is not limited to , an
environment 50 to offer infrastructure , platforms and / or electronic storage device , a magnetic storage device , an
software as services for which a cloud consumer does not optical storage device , an electromagnetic storage device , a
need to maintain resources on a local computing device . It 5 semiconductor storage device , or any suitable combination
is understood that the types of computing devices 54A - N of the foregoing . A non - exhaustive list of more specific
shown in FIG . 6 are intended to be illustrative only and that examples of the computer readable storage medium includes
computing nodes 10 and cloud computing environment 50 the following : a portable computer diskette , a hard disk , a
can communicate with any type of computerized device over random access memory (RAM) , a read - only memory
any type of network and / or network addressable connection 10 (ROM) , an erasable programmable read - only memory
(e.g. , using a web browser) . (EPROM or Flash memory) , a static random access memory

Referring now to FIG . 7 , a set of functional abstraction (SRAM) , a portable compact disc read - only memory (CD
layers provided by cloud computing environment 50 (FIG . ROM) , a digital versatile disk (DVD) , a memory stick , a
6) is shown . It should be understood in advance that the floppy disk , a mechanically encoded device such as punch
components , layers , and functions shown in FIG . 7 are 15 cards or raised structures in a groove having instructions
intended to be illustrative only and embodiments of the recorded thereon , and any suitable combination of the fore
invention are not limited thereto . As depicted , the following going . A computer readable storage medium , as used herein ,
layers and corresponding functions are provided : is not to be construed as being transitory signals per se , such

Hardware and software layer 60 includes hardware and as radio waves or other freely propagating electromagnetic
software components . Examples of hardware components 20 waves , electromagnetic waves propagating through a wave
include : mainframes 61 ; RISC (Reduced Instruction Set guide or other transmission media (e.g. , light pulses passing
Computer) architecture based servers 62 ; servers 63 ; blade through a fiber - optic cable) , or electrical signals transmitted
servers 64 ; storage devices 65 ; and networks and networking through a wire .
components 66. In some embodiments , software compo- Computer readable program instructions described herein
nents include network application server software 67 and 25 can be downloaded to respective computing / processing
database software 68 . devices from a computer readable storage medium or to an

Virtualization layer 70 provides an abstraction layer from external computer or external storage device via a network ,
which the following examples of virtual entities may be for example , the Internet , a local area network , a wide area
provided : virtual servers 71 ; virtual storage 72 ; virtual network and / or a wireless network . The network may com
networks 73 , including virtual private networks ; virtual 30 prise copper transmission cables , optical transmission fibers ,
applications and operating systems 74 ; and virtual clients wireless transmission , routers , firewalls , switches , gateway
75 . computers and / or edge servers . A network adapter card or

In one example , management layer 80 may provide the network interface in each computing / processing device
functions described below . Resource provisioning 81 pro- receives computer readable program instructions from the
vides dynamic procurement of computing resources and 35 network and forwards the computer readable program
other resources that are utilized to perform tasks within the instructions for storage in a computer readable storage
cloud computing environment . Metering and Pricing 82 medium within the respective computing / processing device .
provide cost tracking as resources are utilized within the Computer readable program instructions for carrying out
cloud computing environment , and billing or invoicing for operations of the present invention may be assembler
consumption of these resources . In one example , these 40 instructions , instruction - set - architecture (ISA) instructions ,
resources may include application software licenses . Secu- machine instructions , machine dependent instructions ,
rity provides identity verification for cloud consumers and microcode , firmware instructions , state - setting data , con
tasks , as well as protection for data and other resources . User figuration data for integrated circuitry , or either source code
portal 83 provides access to the cloud computing environ- or object code written in any combination of one or more
ment for consumers and system administrators . Service level 45 programming languages , including an object oriented pro
management 84 provides cloud computing resource alloca- gramming language such as Smalltalk , C ++ , or the like , and
tion and management such that required service levels are procedural programming languages , such as the " C " pro
met . Service Level Agreement (SLA) planning and fulfill- gramming language or similar programming languages . The
ment 85 provide pre - arrangement for , and procurement of , computer readable program instructions may execute
cloud computing resources for which a future requirement is 50 entirely on the user's computer , partly on the user's com
anticipated in accordance with an SLA . puter , as a stand - alone software package , partly on the user's

Workloads layer 90 provides examples of functionality computer and partly on a remote computer or entirely on the
for which the cloud computing environment may be utilized . remote computer or server . In the latter scenario , the remote
Examples of workloads and functions which may be pro- computer may be connected to the user's computer through
vided from this layer include : mapping and navigation 91 ; 55 any type of network , including a local area network (LAN)
software development and lifecycle management 92 ; virtual or a wide area network (WAN) , or the connection may be
classroom education delivery 93 ; data analytics processing made to an external computer (for example , through the
94 ; transaction processing 95 ; and regression testing 96 . Internet using an Internet Service Provider) . In some

The present invention may be a system , a method , and / or embodiments , electronic circuitry including , for example ,
a computer program product at any possible technical detail 60 programmable logic circuitry , field - programmable gate
level of integration . The computer program product may arrays (FPGA) , or programmable logic arrays (PLA) may
include a computer readable storage medium (or media) execute the computer readable program instructions by
having computer readable program instructions thereon for utilizing state information of the computer readable program
causing a processor to carry out aspects of the present instructions to personalize the electronic circuitry , in order to
invention . 65 perform aspects of the present invention .

The computer readable storage medium can be a tangible Aspects of the present invention are described herein with
device that can retain and store instructions for use by an reference to flowchart illustrations and / or block diagrams of

a

or more

US 11,429,382 B1
23 24

methods , apparatus (systems) , and computer program prod- deploying of an application comprises providing computer
ucts according to embodiments of the invention . It will be infrastructure operable to perform one or more embodi
understood that each block of the flowchart illustrations ments .
and / or block diagrams , and combinations of blocks in the As a further aspect , a computing infrastructure may be
flowchart illustrations and / or block diagrams , can be imple- 5 deployed comprising integrating computer readable code
mented by computer readable program instructions . into a computing system , in which the code in combination

These computer readable program instructions may be with the computing system is capable of performing one or
provided to a processor of a computer , or other program more embodiments .
mable data processing apparatus to produce a machine , such As yet a further aspect , a process for integrating comput
that the instructions , which execute via the processor of the 10 ing infrastructure comprising integrating computer readable
computer or other programmable data processing apparatus , code into a computer system may be provided . The com
create means for implementing the functions / acts specified puter system comprises a computer readable medium , in

which the computer medium comprises one in the flowchart and / or block diagram block or blocks . These embodiments . The code in combination with the computer computer readable program instructions may also be stored 15 system is capable of performing one or more embodiments . in a computer readable storage medium that can direct a Although various embodiments are described above , computer , a programmable data processing apparatus , and / these are only examples .
or other devices to function in a particular manner , such that The terminology used herein is for the purpose of describ
the computer readable storage medium having instructions ing particular embodiments only and is not intended to be
stored therein comprises an article of manufacture including 20 limiting . As used herein , the singular forms “ a ” , “ an ” and
instructions which implement aspects of the function / act “ the ” are intended to include the plural forms as well , unless
specified in the flowchart and / or block diagram block or the context clearly indicates otherwise . It will be further
blocks . understood that the terms “ comprises ” and / or " comprising ” ,

The computer readable program instructions may also be when used in this specification , specify the presence of
loaded onto a computer , other programmable data process- 25 stated features , integers , steps , operations , elements , and / or
ing apparatus , or other device to cause a series of operational components , but do not preclude the presence or addition of
steps to be performed on the computer , other programmable one or more other features , integers , steps , operations ,
apparatus or other device to produce a computer imple- elements , components and / or groups thereof .
mented process , such that the instructions which execute on The corresponding structures , materials , acts , and equiva
the computer , other programmable apparatus , or other 30 lents of all means or step plus function elements in the
device implement the functions / acts specified in the flow- claims below , if any , are intended to include any structure ,
chart and / or block diagram block or blocks . material , or act for performing the function in combination

The flowchart and block diagrams in the Figures illustrate with other claimed elements as specifically claimed . The
the architecture , functionality , and operation of possible description of one or more embodiments has been presented
implementations of systems , methods , and computer pro- 35 for purposes of illustration and description , but is not
gram products according to various embodiments of the intended to be exhaustive or limited to in the form disclosed .
present invention . In this regard , each block in the flowchart Many modifications and variations will be apparent to those
or block diagrams may represent a module , segment , or of ordinary skill in the art . The embodiment was chosen and
portion of instructions , which comprises one or more described in order to best explain various aspects and the
executable instructions for implementing the specified logi- 40 practical application , and to enable others of ordinary skill
cal function (s) . In some alternative implementations , the in the art to understand various embodiments with various
functions noted in the blocks may occur out of the order modifications as are suited to the particular use contem
noted in the Figures . For example , two blocks shown in plated
succession may , in fact , be accomplished as one step ,
executed concurrently , substantially concurrently , in a par- 45 What is claimed is :
tially or wholly temporally overlapping manner , or the 1. A computer - implemented method comprising :
blocks may sometimes be executed in the reverse order , based on changes made to program code of an application ,
depending upon the functionality involved . It will also be the program code of the application being included in
noted that each block of the block diagrams and / or flowchart program code files and implementing a plurality of
illustration , and combinations of blocks in the block dia- 50 application features of the application , automatically
grams and / or flowchart illustration , can be implemented by identifying at least one program code file , of the
special purpose hardware - based systems that perform the program code files , in which the changes are contained ;
specified functions or acts or carry out combinations of automatically selecting at least one application feature , of
special purpose hardware and computer instructions . the plurality of application features , as at least one

In addition to the above , one or more aspects may be 55 candidate on which to perform automated regression
provided , offered , deployed , managed , serviced , etc. by a testing , the automatically selecting comprising :
service provider who offers management of customer envi- electronically accessing one or more data structures
ronments . For instance , the service provider can create , comprising mappings between the program code
maintain , support , etc. computer code and / or a computer files and the plurality of application features , the
infrastructure that performs one or more aspects for one or 60 mappings indicating , for each program code file of
more customers . In return , the service provider may receive the program code files , which of the plurality of
payment from the customer under a subscription and / or fee application features are at least partially imple
agreement , as examples . Additionally or alternatively , the mented by the program code included in that pro
service provider may receive payment from the sale of gram code file ;
advertising content to one or more third parties . performing a lookup in the accessed one or more data

In one aspect , an application may be deployed for per structures and identifying , as the selected at least one
forming one or more embodiments . As one example , the application feature , each application feature that is at

65

US 11,429,382 B1
25 26

least partially implemented by program code 8. The method of claim 1 , further comprising updating the
included in any of the identified at least one program mappings between the program code files and the plurality
code file ; of application features based on the changes changing which

based on the selected at least one application feature , of the program code files implement which of the plurality
selecting , from a plurality of regression test cases 5 of application features .
defined for the plurality of application features , regres- 9. The method of claim 8 , wherein the one or more data
sion test cases to be included in the automated regres- structures are shared across a plurality of teams participating
sion testing ; and in development of the application , including implementing

commencing execution of the automated regression test- changes to the program code files , and wherein the method
ing using the selected regression test cases . 10 further comprises maintaining a consistent set of the one or

2. The method of claim 1 , wherein each application more data structures using version control .
feature of the plurality of application features has an asso- 10. The method of claim 8 , further comprising tracking
ciated set of regression test cases defined for regression changes in the mappings across stages of development of the
testing that application feature , wherein the set of regression application , and identifying , based on the changes in the
test cases defined for one application feature of the plurality 15 mappings over time , technical debt informing of inefficien
of application features differ from the set of regression test cies in development processes that develop and maintain the
cases defined for another application feature of the plurality application .
of application features , and wherein the selecting the regres- 11. The method of claim 1 , wherein the application
sion test cases to be included in the automated regression comprises multiple functional layers implementing the plu
testing comprises , for each application feature of the 20 rality of application features , wherein different sets of the
selected at least one application feature , including in the program code files include program code implementing
selected regression test cases each of the regression test different functional layers of the multiple functional layers ,
cases defined for that feature . and wherein at least one application feature of the plurality

3. The method of claim 1 , wherein the identified at least of application features is implemented by program code
one program code file comprises an identified plurality of 25 included in a plurality of different program code files that at
program code files , wherein the selected at least one appli- least partially implement a plurality of different functional
cation feature comprises a selected plurality of application layers of the multiple functional layers .
features , and wherein the method further comprises priori- 12. The method of claim 1 , wherein the selecting the
tizing the selected regression test cases into an order in regression test cases to be included in the automated regres
which the automated regression testing is to execute the 30 sion testing comprises using a cognitive engine trained via
selected regression test cases . machine learning and historical regression testing results to

4. The method of claim 3 , wherein the prioritizing com- identify at least one selected from the group consisting of : (i)
prises : a regression test case , of the plurality of regression test

identifying which one or more program code files , of the cases , to include in the selected regression test cases , and (ii)
identified plurality of program code files , includes 35 a regression test case , initially proposed for inclusion in the
program code at least partially implementing a greatest selected regression test cases , to exclude from the selected
number of application features of any of the identified regression test cases .
plurality of program code files ; and 13. A computer system comprising :

prioritizing regression test cases , of the selected regres- a memory ; and
sion test cases , that regression test the application 40 a processor in communication with the memory , wherein
features at least partially implemented by program code the computer system is configured to perform a method
included in the identified one or more program code comprising :
files . based on changes made to program code of an appli

5. The method of claim 3 , wherein the prioritizing com cation , the program code of the application being
prises : included in program code files and implementing a

identifying , for each application feature of the selected plurality of application features of the application ,
plurality of application features , a number of program automatically identifying at least one program code
code files that include program code at least partially file , of the program code files , in which the changes
implementing that application feature , the number of are contained ;
program code files that include program code at least 50 automatically selecting at least one application feature ,
partially implementing that application feature being of the plurality of application features , as at least one
indicative of an amount of development resources ; and candidate on which to perform automated regression

prioritizing regression test cases , of the selected regres testing , the automatically selecting comprising :
sion test cases , based on the amount of development electronically accessing one or more data structures
resources for the selected plurality of application fea- 55 comprising mappings between the program code
tures . files and the plurality of application features , the

6. The method of claim 3 , wherein the prioritizing com mappings indicating , for each program code file of
prises prioritizing regression test cases , of the selected the program code files , which of the plurality of
regression test cases , based on a respective priority assigned application features are at least partially imple
to each of the selected plurality of application features , the 60 mented by the program code included in that
priority assigned to an application feature indicating priority program code file ;
in regression testing that application feature . performing a lookup in the accessed one or more

7. The method of claim 1 , wherein the changes comprise data structures and identifying , as the selected at
at least one selected from the group consisting of : changes least one application feature , each application
to an existing program code file of the program code files , 65 feature that is at least partially implemented by
and addition of a new program code file to the program code program code included in any of the identified at
files . least one program code file ;

45

5

10

15

30

US 11,429,382 B1
27 28

based on the selected at least one application feature , 17. A computer program product comprising :
selecting , from a plurality of regression test cases a computer readable storage medium readable by a pro
defined for the plurality of application features , cessing circuit and storing instructions for execution by
regression test cases to be included in the automated the processing circuit for performing a method com
regression testing ; and prising :

commencing execution of the automated regression based on changes made to program code of an appli
testing using the selected regression test cases . cation , the program code of the application being

14. The computer system of claim 13 , wherein the iden included in program code files and implementing a
tified at least one program code file comprises an identified plurality of application features of the application ,
plurality of program code files , wherein the selected at least automatically identifying at least one program code
one application feature comprises a selected plurality of file , of the program code files , in which the changes

are contained ; application features , and wherein the method further com automatically selecting at least one application feature , prises prioritizing the selected regression test cases into an of the plurality of application features , as at least one order in which the automated regression testing is to execute candidate on which to perform automated regression the selected regression test cases , the prioritizing comprising testing , the automatically selecting comprising :
at least one selected from the group consisting of : electronically accessing one or more data structures

(i) identifying which one or more program code files , of comprising mappings between the program code
the identified plurality of program code files , includes files and the plurality of application features , the
program code at least partially implementing a greatest 20 mappings indicating , for each program code file of
number of application features of any of the identified the program code files , which of the plurality of
plurality of program code files , and prioritizing regres application features are at least partially imple
sion test cases , of the selected regression test cases , that mented by the program code included in that
regression test the application features at least partially program code file ;
implemented by program code included in the identi- 25 performing a lookup in the accessed one or more
fied one or more program code files ; data structures and identifying , as the selected at

(ii) identifying , for each application feature of the selected least one application feature , each application
plurality of application features , a number of program feature that is at least partially implemented by
code files that include program code at least partially program code included in any of the identified at
implementing that application feature , the number of least one program code file ;

based on the selected at least one application feature , program code files that include program code at least
partially implementing that application feature being selecting , from a plurality of regression test cases

defined for the plurality of application features , indicative of an amount of development resources , and regression test cases to be included in the automated prioritizing regression test cases , of the selected regres regression testing , and
sion test cases , based on the amount of development commencing execution of the automated regression resources for the selected plurality of application fea testing using the selected regression test cases .
tures ; and 18. The computer program product of claim 17 , wherein

(iii) prioritizing regression test cases , of the selected the identified at least one program code file comprises an
regression test cases , based on a respective priority 40 identified plurality of program code files , wherein the
assigned to each of the selected plurality of application selected at least one application feature comprises a selected
features , the priority assigned to an application feature plurality of application features , and wherein the method
indicating priority in regression testing that application further comprises prioritizing the selected regression test
feature . cases into an order in which the automated regression testing

15. The computer system of claim 13 , wherein the method 45 is to execute the selected regression test cases , the priori
further comprises : tizing comprising at least one selected from the group

updating the mappings between the program code files consisting of :
and the plurality of application features based on the (i) identifying which one or more program code files , of
changes changing which of the program code files the identified plurality of program code files , includes
implement which of the plurality of application fea program code at least partially implementing a greatest
tures ; and number of application features of any of the identified

tracking changes in the mappings across stages of devel plurality of program code files , and prioritizing regres
opment of the application , and identifying , based on the sion test cases , of the selected regression test cases , that

regression test the application features at least partially changes in the mappings over time , technical debt
informing of inefficiencies in development processes implemented by program code included in the identi

fied one or more program code files ; that develop and maintain the application . (ii) identifying , for each application feature of the selected 16. The computer system of claim 13 , wherein the select plurality of application features , a number of program ing the regression test cases to be included in the automated code files that include program code at least partially regression testing comprises using a cognitive engine trained implementing that application feature , the number of
via machine learning and historical regression testing results program code files that include program code at least
to identify at least one selected from the group consisting of : partially implementing that application feature being
(i) a regression test case , of the plurality of regression test indicative of an amount of development resources , and
cases , to include in the selected regression test cases , and (ii) prioritizing regression test cases , of the selected regres
a regression test case , initially proposed for inclusion in the 65 sion test cases , based on the amount of development
selected regression test cases , to exclude from the selected resources for the selected plurality of application fea
regression test cases . tures ; and

35

50

55

60

30
US 11,429,382 B1

29
(iii) prioritizing regression test cases , of the selected

regression test cases , based on a respective priority
assigned to each of the selected plurality of application
features , the priority assigned to an application feature
indicating priority in regression testing that application 5
feature .

19. The computer program product of claim 17 , wherein
the method further comprises :

updating the mappings between the program code files
and the plurality of application features based on the 10
changes changing which of the program code files
implement which of the plurality of application fea
tures ; and

tracking changes in the mappings across stages of devel
opment of the application , and identifying , based on the 15
changes in the mappings over time , technical debt
informing of inefficiencies in development processes
that develop and maintain the application .

20. The computer program product of claim 17 , wherein
the selecting the regression test cases to be included in the 20
automated regression testing comprises using a cognitive
engine trained via machine learning and historical regression
testing results to identify at least one selected from the group
consisting of : (i) a regression test case , of the plurality of
regression test cases , to include in the selected regression 25
test cases , and (ii) a regression test case , initially proposed
for inclusion in the selected regression test cases , to exclude
from the selected regression test cases .

* *

