US 20240264990A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2024/0264990 A1

Kumar 43) Pub. Date: Aug. 8, 2024
(54) LARGE DATA OBJECT TRANSFER AND (52) US. CL
STORAGE FOR MICROSERVICES CPC GO6F 16/2219 (2019.01); GO6F 16/258
(2019.01); HO3M 7/3084 (2013.01)
(71) Applicant: Dell Products L.P., Round Rock, TX
(Us) (57) ABSTRACT
(72) Inventor: Anshul Kumar, Waterloo, TX (US) In one aspect, an example methodology implementing the
disclosed techniques includes, by a computing device,
(73) Assignee: Dell Products L.P., Round Rock, TX receiving a request to write a first data object to an object
(Us) database. The method also includes, responsive to a deter-
mination that the first data object is a large data object, by
(21) Appl. No.: 18/165,404 the computing device, serializing the first data object, com-
. pressing the serialized first data object into a format that can
(22) Filed: Feb. 7, 2023 be stored in the object database, and saving the compressed
Publication Classification serialized first data object within the object database. The
method may further include, by the computing device,
(51) Int. CL extracting one or more fields which are queryable from the
GOG6F 16/22 (2006.01) first data object and saving the one or more queryable fields
GO6F 16/25 (2006.01) with the compressed serialized first data object within the
HO3M 7/30 (2006.01) object database.

10\

11a\

13

15a\

Il

lln\

wommEmRRe-
A
—

15 k\

Il

Patent Application Publication Aug. 8,2024 Sheet 1 of 6 US 2024/0264990 A1

10\

lla\ N 11n\

sasmERRRww
-

FommEmRRRw
-
—

13

153\ N 15k\

Il
Il

FIG. 1

Aug. 8,2024 Sheet 2 of 6 US 2024/0264990 A1

Patent Application Publication

¢ D4
777 00¢
eleq
9T¢C 0ct
(s)ea1neq O/ (s)uoneorddy
v1C 8TC
NS wa1sAg Suinesadp
80T 2de21U| J9sN 90¢ AMOWSIA 3|13B|OA-UON
< 7 K K K
[A4
()4 — ——
(s)20e4133] \Covaow 11e|o S Lommwuog
UOLLERIUNWWO? INl 3]13B]OA (s) d

Patent Application Publication

Aug. 8,2024 Sheet 3 of 6

Client Client Client
Device #1 Device #2 Device #3 R
302a 302b 302c¢
A
A
Cloud

304

FIG. 3

US 2024/0264990 A1

[300

Client
Device #20
302t

US 2024/0264990 A1

8TY
(s)924n0S 1uang

Aug. 8,2024 Sheet 4 of 6

otV —
Suissaosoud viv
e1eq Idv

80F uoinealddy Janias ga

oy (447
gq 103(q0 9ge1015

OF 1uswuonaul Suiindwo) pnojd

)K7
» S|0JIU0
w3l 9a 1013403
N
g0v ddy 1uaiD
0% uL1D

Patent Application Publication

Patent Application Publication Aug. 8,2024 Sheet 5 of 6 US 2024/0264990 A1

[
o

Receive a request to write a data object to
an object database
502

A

yes < Large data object? >
204

no

A

Save data object to object database
206

\

Serialize the large data object
208

\

Compress the serialized large data object (the byte array)
510

\

(Optional) Extract queryable fields from data object
512

\

Save the compressed byte array in the object database
514

FIG. 5

Patent Application Publication Aug. 8,2024 Sheet 6 of 6 US 2024/0264990 A1

600

Receive a request to read a data object from
an object database
602

\

Read data object from the object database
604

A
ves / Data object a compressed

byte array?
\ 606

no

A

Deserialize read data object into a POCO entity
608

\

Serialize the POCO entity into JSON object
610

A

Send the JSON object in a response to the request
612

Deserialize read data object into a POCO entity which
includes the ID and the compressed byte array
614

A
Send the compressed byte array in a response

to the request
616

FIG. 6

US 2024/0264990 Al

LARGE DATA OBJECT TRANSFER AND
STORAGE FOR MICROSERVICES

BACKGROUND

[0001] Use of cloud native and microservices technologies
are becoming more common. Cloud native computing is
software development approach that utilizes cloud comput-
ing to create scalable applications within dynamic environ-
ments such as cloud or cloud-like computing environments.
Common in cloud native computing architectures are micro-
services. A microservice (e.g., a microservice architecture) is
an architecture that structures an application as a collection
of separate, loosely coupled services, which are indepen-
dently deployable.

[0002] Database systems generally provide the ability to
store and retrieve various types of data, including large data
objects, from various databases. It has become increasingly
more common with the adoption of cloud native and micro-
service technologies for systems working on large data
objects to observe exponential increase in data storage and
network consumption. This increase in data storage and
network consumption reduces performance when transfer-
ring large data objects between distributed components with
tens or hundreds of microservices.

SUMMARY

[0003] This Summary is provided to introduce a selection
of concepts in simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key or essential features or combina-
tions of the claimed subject matter, nor is it intended to be
used to limit the scope of the claimed subject matter.
[0004] In accordance with one illustrative embodiment
provided to illustrate the broader concepts, systems, and
techniques described herein, a method includes, by a com-
puting device, receiving a request to write a first data object
to an object database. The method also includes, responsive
to a determination that the first data object is a large data
object, by the computing device, serializing the first data
object, compressing the serialized first data object into a
format that can be stored in the object database, and saving
the compressed serialized first data object within the object
database.

[0005] In some embodiments, serializing the first data
object includes using a binary serializer to convert the first
data object to a byte array.

[0006] In some embodiments, compressing the serialized
first data object includes using an [.Z4 algorithm to com-
press the serialized first data object.

[0007] In some embodiments, compressing the serialized
first data object includes using a Zstandard (ZSTD) algo-
rithm to compress the serialized first data object.

[0008] In some embodiments, the method also includes,
responsive to the determination that the first data object is a
large data object, by the computing device, extracting one or
more fields which are queryable from the first data object
and saving the one or more queryable fields with the
compressed serialized first data object within the object
database.

[0009] Insome embodiments, the method further includes,
responsive to a determination that the first data object is not
a large data object, saving, by the computing device, the first
data object within the object database.

Aug. 8,2024

[0010] In some embodiments, the method also includes,
responsive to receiving a request to read a second data object
from the object database, reading, by the computing device,
the second data object from the object database. The method
further includes, responsive to a determination that the
second data object read from the object database is a
compressed byte array, by the computing device, deserial-
izing the second data object into a POCO entity which
includes the compressed byte array, wherein the compressed
byte array represents the second data object and sending the
compressed byte array in a response to the request to read
the second data object.

[0011] Insome embodiments, the method further includes,
responsive to a determination that the second data object
read from the object database is not a compressed byte array,
by the computing device, by the computing device, deseri-
alizing the second data object into a POCO entity, serializing
the POCO entity into a JSON object, and sending the JSON
object in a response to the request to read the second data
object. In one aspect, the method also includes, by the
computing device, prior to sending the JSON object, com-
pressing the JSON object and sending the compressed JSON
object in the response to the request to read the second data
object.

[0012] According to another illustrative embodiment pro-
vided to illustrate the broader concepts described herein, a
system includes one or more non-transitory machine-read-
able mediums configured to store instructions and one or
more processors configured to execute the instructions
stored on the one or more non-transitory machine-readable
mediums. Execution of the instructions causes the one or
more processors to carry out a process corresponding to the
aforementioned method or any described embodiment
thereof.

[0013] According to another illustrative embodiment pro-
vided to illustrate the broader concepts described herein, a
non-transitory machine-readable medium encodes instruc-
tions that when executed by one or more processors cause a
process to be carried out, the process corresponding to the
aforementioned method or any described embodiment
thereof.

[0014] It should be appreciated that individual elements of
different embodiments described herein may be combined to
form other embodiments not specifically set forth above.
Various elements, which are described in the context of a
single embodiment, may also be provided separately or in
any suitable sub-combination. It should also be appreciated
that other embodiments not specifically described herein are
also within the scope of the claims appended hereto.

BRIEF DESCRIPTION OF THE DRAWINGS

[0015] The foregoing and other objects, features and
advantages will be apparent from the following more par-
ticular description of the embodiments, as illustrated in the
accompanying drawings in which like reference characters
refer to the same parts throughout the different views. The
drawings are not necessarily to scale, emphasis instead
being placed upon illustrating the principles of the embodi-
ments.

[0016] FIG.1 is a diagram illustrating an example network
environment of computing devices in which various aspects
of the disclosure may be implemented, in accordance with
an embodiment of the present disclosure.

US 2024/0264990 Al

[0017] FIG. 2 is a block diagram illustrating selective
components of an example computing device in which
various aspects of the disclosure may be implemented, in
accordance with an embodiment of the present disclosure.
[0018] FIG. 3 is a diagram of a cloud computing environ-
ment in which various aspects of the concepts described
herein may be implemented.

[0019] FIG. 4 is a block diagram of an illustrative system
for large data object transfer and storage, in accordance with
an embodiment of the present disclosure.

[0020] FIG. 5 is a flow diagram of an example process for
writing a large data object, in accordance with an embodi-
ment of the present disclosure.

[0021] FIG. 6 is a flow diagram of an example process for
reading a large data object, in accordance with an embodi-
ment of the present disclosure.

DETAILED DESCRIPTION

[0022] When systems, e.g., a resource provider (e.g., a
server application) and a resource consumer (e.g., a client
application), are working with large data objects (e.g., data
objects of sizes 100 kilobytes (kb) or larger), there are
numerous problems which lead to slow or reduced data
object transfer throughput and/or performance. The reduced
throughput and/or performance during transfer (e.g., storage
and retrieval) of large data objects is primarily caused by
several challenges including increased network latency,
database cache memory (e.g., working set) consumption,
and increased serialization and deserialization times
between the client application and the server application.
[0023] Network latency increases when transferring large
data objects (e.g., large documents) to/from a non-relational
database (e.g., a document database) since network latency
is directly proportional to the size of the payload. In a
document database, the cache memory (e.g., working set)
allocated to a database process is consumed by a small
number of large documents in a collection, which results in
most of the read/write operations requiring input/output (I0)
operations to disk. Also, when a large document is read by
the server application, the time needed to deserialize the
large document from the document database into the
resource model (e.g., a plain old class object (POCO) or
object class entity) increases and, in some cases significantly
increases due to the large size of the document. There will
also be increased network latency in sending the resource
model to the client application (e.g., in response to a client
request for the document) due to the large size of the
document. Finally, at the client, the time needed to deseri-
alize the received resource model (e.g., the received server
response) to an object increases due to the large size of the
document. Unfortunately, conventional techniques for trans-
ferring large data objects between distributed components in
such architectures are typically inefficient in addressing the
challenges noted above.

[0024] Certain embodiments of the concepts, techniques,
and structures disclosed herein generally relate to systems
and methods for comprehensive, end-to-end optimization in
exchanging large data objects. The various disclosed
embodiments significantly improve end-to-end network
latency, memory footprint, and storage size for systems that
work with large data objects. This can be achieved by,
according to some embodiments, a server application of a
non-relational database serializing (e.g., binary serializing) a
large data object which is to be written to (e.g., saved in) the

Aug. 8,2024

database into a byte array. The server application can then
compress the byte array and save the compressed byte array,
which represents the large data object, within the database.
For example, the compressed byte array may be saved as a
database entity within the database instead of the actual large
data object. The database entity associated with the saved
compressed byte array is assigned an identifier (ID) which
can be used to access the database entity. Compressing the
data object at the application layer (e.g., by the server
application) provides reduced network latency when writing
to the database due to the smaller size of the compressed
byte array as compared to the size of the large data object.
Compressing the data object at the application layer also
reduces the storage footprint of the data object, thus increas-
ing the number of data objects that can be maintained in the
database cache memory. That is to say, since the storage
footprint of the compressed byte array which represents the
data object is reduced at the application layer, the number of
compressed byte arrays which represent data objects that can
be maintained in cache memory is increased.

[0025] In some embodiments, the server application can
extract one or more fields which are queryable from the large
data object. The extracted fields may be used in an index for
querying the data object. The server application can save the
extracted fields along with the compressed byte array within
the database (e.g., assign to the extracted fields the ID which
was assigned to the compressed byte array).

[0026] In a read transaction, in response to a request to
read a data object from a client application, for instance, the
server application can read the requested data object from
the database using an ID (e.g., the ID assigned to the
database entity associated with the data object). Less time is
needed to read the data object in its compressed form (e.g.,
read the data object as a compressed byte array) from the
database due to the reduction in size provided by the
compression. The server application deserializes the read
data object into a POCO entity which includes the ID and the
compressed byte array. Less time is needed to deserialize the
data object from the database since the large data object is
read from the database as a compressed byte array into the
database entity object. Note that the server application does
not serialize and decompress the data object read from the
database. Also, less time is needed to send the byte array to
the client application, thus resulting in reduced network
latency. The server application can then send the compressed
byte array to the client application in response to the client
request. Note also that less time is needed to send the
compressed byte array to the client application, thus result-
ing in reduced network latency. At the client, the client
application can decompress and deserialize the compressed
byte array received from the server application.

[0027] In the description that follows, although certain
embodiments and/or examples are described in the context
of large data object transfers and non-relational database
systems, it will be appreciated in light of this disclosure that
such embodiments and/or examples are not restricted as
such. For example, the concepts, techniques, and structures
disclosed herein are applicable to message streams (e.g.,
KAFKA) and publishing/consuming large objects from the
message streams.

[0028] Referring now to FIG. 1, shown is a diagram
illustrating an example network environment 10 of comput-
ing devices in which various aspects of the disclosure may
be implemented, in accordance with an embodiment of the

US 2024/0264990 Al

present disclosure. As shown, environment 10 includes one
or more client machines 11a-11z (11 generally), one or more
server machines 154-15k (15 generally), and one or more
networks 13. Client machines 11 can communicate with
server machines 15 via networks 13. Generally, in accor-
dance with client-server principles, a client machine 11
requests, via network 13, that a server machine 15 perform
a computation or other function, and server machine 15
responsively fulfills the request, optionally returning a result
or status indicator in a response to client machine 11 via
network 13.

[0029] In some embodiments, client machines 11 can
communicate with remote machines 15 via one or more
intermediary appliances (not shown). The intermediary
appliances may be positioned within network 13 or between
networks 13. An intermediary appliance may be referred to
as a network interface or gateway. In some implementations,
the intermediary appliance may operate as an application
delivery controller (ADC) in a datacenter to provide client
machines (e.g., client machines 11) with access to business
applications and other data deployed in the datacenter. The
intermediary appliance may provide client machines with
access to applications and other data deployed in a cloud
computing environment, or delivered as Software as a
Service (SaaS) across a range of client devices, and/or
provide other functionality such as load balancing, etc.
[0030] Client machines 11 may be generally referred to as
computing devices 11, client devices 11, client computers
11, clients 11, client nodes 11, endpoints 11, or endpoint
nodes 11. Client machines 11 can include, for example,
desktop computing devices, laptop computing devices, tab-
let computing devices, mobile computing devices, worksta-
tions, and/or hand-held computing devices. Server machines
15 may also be generally referred to a server farm 15. In
some embodiments, a client machine 11 may have the
capacity to function as both a client seeking access to
resources provided by server machine 15 and as a server
machine 15 providing access to hosted resources for other
client machines 11.

[0031] Server machine 15 may be any server type such as,
for example, a file server, an application server, a web server,
a proxy server, a virtualization server, a deployment server,
a Secure Sockets Layer Virtual Private Network (SSL VPN)
server; an active directory server; a cloud server; or a server
executing an application acceleration program that provides
firewall functionality, application functionality, or load bal-
ancing functionality. Server machine 15 may execute, oper-
ate, or otherwise provide one or more applications. Non-
limiting examples of applications that can be provided
include software, a program, executable instructions, a vir-
tual machine, a hypervisor, a web browser, a web-based
client, a client-server application, a thin-client, a streaming
application, a communication application, or any other set of
executable instructions.

[0032] In some embodiments, server machine 15 may
execute a virtual machine providing, to a user of client
machine 11, access to a computing environment. In such
embodiments, client machine 11 may be a virtual machine.
The virtual machine may be managed by, for example, a
hypervisor, a virtual machine manager (VMM), or any other
hardware virtualization technique implemented within
server machine 15.

[0033] Networks 13 may be configured in any combina-
tion of wired and wireless networks. Network 13 can be one

Aug. 8,2024

or more of a local-area network (LAN), a wide area network
(WAN), a metropolitan area network (MAN), a virtual
private network (VPN), a primary public network, a primary
private network, the Internet, or any other type of data
network. In some embodiments, at least a portion of the
functionality associated with network 13 can be provided by
a cellular data network and/or mobile communication net-
work to facilitate communication among mobile devices.
For short range communications within a wireless local-area
network (WLAN), the protocols may include 802.11, Blu-
etooth, and Near Field Communication (NFC).

[0034] FIG. 2 is a block diagram illustrating selective
components of an example computing device 200 in which
various aspects of the disclosure may be implemented, in
accordance with an embodiment of the present disclosure.
For instance, client machines 11 and/or server machines 15
of FIG. 1 can be substantially similar to computing device
200. As shown, computing device 200 includes one or more
processors 202, a volatile memory 204 (e.g., random access
memory (RAM)), a non-volatile memory 206, a user inter-
face (UI) 208, one or more communications interfaces 210,
and a communications bus 212.

[0035] Non-volatile memory 206 may include: one or
more hard disk drives (HDDs) or other magnetic or optical
storage media; one or more solid state drives (SSDs), such
as a flash drive or other solid-state storage media; one or
more hybrid magnetic and solid-state drives; and/or one or
more virtual storage volumes, such as a cloud storage, or a
combination of such physical storage volumes and virtual
storage volumes or arrays thereof.

[0036] User interface 208 may include a graphical user
interface (GUI) 214 (e.g., a touchscreen, a display, etc.) and
one or more input/output (I/O) devices 216 (e.g., a mouse,
a keyboard, a microphone, one or more speakers, one or
more cameras, one or more biometric scanners, one or more
environmental sensors, and one or more accelerometers,
etc.).

[0037] Non-volatile memory 206 stores an operating sys-
tem 218, one or more applications 220, and data 222 such
that, for example, computer instructions of operating system
218 and/or applications 220 are executed by processor(s)
202 out of volatile memory 204. In one example, computer
instructions of operating system 218 and/or applications 220
are executed by processor(s) 202 out of volatile memory 204
to perform all or part of the processes described herein (e.g.,
processes illustrated and described with reference to FIGS.
4 through 6). In some embodiments, volatile memory 204
may include one or more types of RAM and/or a cache
memory that may offer a faster response time than a main
memory. Data may be entered using an input device of GUI
214 or received from I/O device(s) 216. Various elements of
computing device 200 may communicate via communica-
tions bus 212.

[0038] The illustrated computing device 200 is shown
merely as an illustrative client device or server and may be
implemented by any computing or processing environment
with any type of machine or set of machines that may have
suitable hardware and/or software capable of operating as
described herein.

[0039] Processor(s) 202 may be implemented by one or
more programmable processors to execute one or more
executable instructions, such as a computer program, to
perform the functions of the system. As used herein, the term
“processor” describes circuitry that performs a function, an

US 2024/0264990 Al

operation, or a sequence of operations. The function, opera-
tion, or sequence of operations may be hard coded into the
circuitry or soft coded by way of instructions held in a
memory device and executed by the circuitry. A processor
may perform the function, operation, or sequence of opera-
tions using digital values and/or using analog signals.
[0040] In some embodiments, the processor can be
embodied in one or more application specific integrated
circuits (ASICs), microprocessors, digital signal processors
(DSPs), graphics processing units (GPUs), microcontrollers,
field programmable gate arrays (FPGAs), programmable
logic arrays (PLAs), multi-core processors, or general-pur-
pose computers with associated memory.

[0041] Processor 202 may be analog, digital or mixed
signal. In some embodiments, processor 202 may be one or
more physical processors, or one or more virtual (e.g.,
remotely located or cloud computing environment) proces-
sors. A processor including multiple processor cores and/or
multiple processors may provide functionality for parallel,
simultaneous execution of instructions or for parallel, simul-
taneous execution of one instruction on more than one piece
of data.

[0042] Communications interfaces 210 may include one
or more interfaces to enable computing device 200 to access
a computer network such as a Local Area Network (LAN),
a Wide Area Network (WAN), a Personal Area Network
(PAN), or the Internet through a variety of wired and/or
wireless connections, including cellular connections.
[0043] In described embodiments, computing device 200
may execute an application on behalf of a user of a client
device. For example, computing device 200 may execute
one or more virtual machines managed by a hypervisor.
Each virtual machine may provide an execution session
within which applications execute on behalf of a user or a
client device, such as a hosted desktop session. Computing
device 200 may also execute a terminal services session to
provide a hosted desktop environment. Computing device
200 may provide access to a remote computing environment
including one or more applications, one or more desktop
applications, and one or more desktop sessions in which one
or more applications may execute.

[0044] Referring to FIG. 3, shown is a diagram of a cloud
computing environment 300 in which various aspects of the
concepts described herein may be implemented. Cloud
computing environment 300, which may also be referred to
as a cloud environment, cloud computing, or cloud network,
can provide the delivery of shared computing resources
and/or services to one or more users or tenants. For example,
the shared resources and services can include, but are not
limited to, networks, network bandwidth, servers, process-
ing, memory, storage, applications, virtual machines, data-
bases, software, hardware, analytics, and intelligence.
[0045] In cloud computing environment 300, one or more
client devices 302a-302¢ (such as client machines 11 and/or
computing device 200 described above) may be in commu-
nication with a cloud network 304 (sometimes referred to
herein more simply as a cloud 304). Cloud 304 may include
back-end platforms such as, for example, servers, storage,
server farms, or data centers. The users of clients 3024-302¢
can correspond to a single organization/tenant or multiple
organizations/tenants. More particularly, in one implemen-
tation, cloud computing environment 300 may provide a
private cloud serving a single organization (e.g., enterprise
cloud). In other implementations, cloud computing environ-

Aug. 8,2024

ment 300 may provide a community or public cloud serving
one or more organizations/tenants.

[0046] In some embodiments, one or more gateway appli-
ances and/or services may be utilized to provide access to
cloud computing resources and virtual sessions. For
example, a gateway, implemented in hardware and/or soft-
ware, may be deployed (e.g., reside) on-premises or on
public clouds to provide users with secure access and single
sign-on to virtual, SaaS, and web applications. As another
example, a secure gateway may be deployed to protect users
from web threats.

[0047] In some embodiments, cloud computing environ-
ment 300 may provide a hybrid cloud that is a combination
of a public cloud and a private cloud. Public clouds may
include public servers that are maintained by third parties to
client devices 302a-302¢ or the enterprise/tenant. The serv-
ers may be located off-site in remote geographical locations
or otherwise.

[0048] Cloud computing environment 300 can provide
resource pooling to serve clients devices 302a-302¢ (e.g.,
users of client devices 302a-3027) through a multi-tenant
environment or multi-tenant model with different physical
and virtual resources dynamically assigned and reassigned
responsive to different demands within the respective envi-
ronment. The multi-tenant environment can include a sys-
tem or architecture that can provide a single instance of
software, an application, or a software application to serve
multiple users. In some embodiments, cloud computing
environment 300 can include or provide monitoring services
to monitor, control, and/or generate reports corresponding to
the provided shared resources and/or services.

[0049] In some embodiments, cloud computing environ-
ment 300 may provide cloud-based delivery of various types
of cloud computing services, such as Software as a Service
(SaaS), Platform as a Service (PaaS), Infrastructure as a
Service (laaS), and/or Desktop as a Service (DaaS), for
example. laaS may refer to a user renting the use of
infrastructure resources that are needed during a specified
time period. laaS providers may offer storage, networking,
servers, or virtualization resources from large pools, allow-
ing the users to quickly scale up by accessing more resources
as needed. PaaS providers may offer functionality provided
by laaS, including, e.g., storage, networking, servers, or
virtualization, as well as additional resources such as, for
example, operating systems, middleware, and/or runtime
resources. SaaS providers may offer the resources that PaaS
provides, including storage, networking, servers, virtualiza-
tion, operating systems, middleware, or runtime resources.
SaaS providers may also offer additional resources such as,
for example, data and application resources. DaaS (also
known as hosted desktop services) is a form of virtual
desktop service in which virtual desktop sessions are typi-
cally delivered as a cloud service along with the applications
used on the virtual desktop.

[0050] FIG. 4 is a block diagram of an illustrative system
400 for large data object transfer and storage, in accordance
with an embodiment of the present disclosure. Illustrative
system 400 includes a client application 406 operable to run
on a client 402 and configured to communicate with a cloud
computing environment 404 via one or more computer
networks. Client 402 and cloud computing environment 404
of FIG. 4 can be the same as or similar to client 11 of FIG.
1 and cloud computing environment 300 of FIG. 3, respec-
tively.

US 2024/0264990 Al

[0051] As shown in FIG. 4, a database server application
408 can be provided within cloud computing environment
404. For example, in one implementation, database server
application 408 can be provided as a service (e.g., a micro-
service) within cloud computing environment 404. Client
application 406 and database server application 408 can
interoperate to provide optimized large data object transfer
and storage, as variously disclosed herein. To promote
clarity in the drawings, FIG. 4 shows a single client appli-
cation 406 communicably coupled to database server appli-
cation 408. However, embodiments of database server appli-
cation 408 can be used to service many client applications
(e.g., client applications 406) running on client devices (e.g.,
clients 402) associated with one or more organizations
and/or users. Client application 406 and/or database server
application 408 may be implemented as computer instruc-
tions executable to perform the corresponding functions
disclosed herein. Client application 406 and product analysis
service 408 can be logically and/or physically organized into
one or more components. In the example of FIG. 4, client
application 406 includes Ul controls 410 and a database
(DB) client 412. Also, in this example, database server
application 408 includes an application programming inter-
face (API) module 414 and a data processing module 416.

[0052] The client-side client application 406 can commu-
nicate with the cloud-side database server application 408
using an API. For example, client application 406 can utilize
DB client 412 to send requests (or “messages”) to database
server application 408 wherein the requests are received and
processed by API module. Likewise, database server appli-
cation 408 can utilize API module 414 to send responses/
messages to client application 406 wherein the responses/
messages are received and processed by DB client 412.

[0053] Referring to database server application 408, data
processing module 416 is operable to perform operations to
write to an object database 420. Object database 420 can be
provided as any type of database (e.g., a document-oriented
database) that represents data or information in the form of
objects as opposed to relational databases which organize
data into one or more tables. Data processing module 416
can perform a write process to write a data object, such as,
for example, a document, to object database 420. For
example, data processing module 416 can perform the write
process in response to database server application 408
receiving a request to write a data object to object database
420. The request, for example, may be from a client appli-
cation (e.g., client application 406 on client 402). Addition-
ally or alternatively, the request may be from an event source
418. Event sources 418 may correspond to various upstream
applications that can send data (e.g., data objects) to data-
base server application 408. The client applications and/or
event sources 418 can utilize an API (e.g., API module 414)
to send requests to database server application 408 to write
data objects to object database 420.

[0054] Writing to object database 420 equates to manipu-
lating data within object database 420. Writing allows data
processing module 416 to modify the contents of object
database 420. This can mean gathering and storing new data,
updating existing information, or deleting, among other
things. Thus, in some implementations, data processing
module 416 can be understood as providing functionality
which can be consumed by client applications (e.g., client
application 406) and upstream applications (e.g., event

Aug. 8,2024

sources 418) to transact (e.g., store or retrieve data, query
and manipulate data, etc.) with object database 420.

[0055] In response to a request to write a data object to
object database 420 being received, data processing module
416 can determine whether the data object to be written is a
large data object. For example, a large data object can be
defined as a data object that is at least a predetermined
threshold size such as, for example, 100 kb. The predeter-
mined threshold size can be configured as an organizational
policy. If data processing module 416 determines that the
data object is not a large data object, data processing module
416 can write (or “save”) the data object to object database
420, as conventionally done.

[0056] If data processing module 416 determines that the
data object is a large data object, data processing module 416
can serialize the data object (i.e., the large data object) to
convert (or “marshal” or “marshaling”) the data object into
a format such as a byte array. In some embodiments, data
processing module 416 can utilize a binary serializer, such
as MessagePack which provides an efficient binary serial-
ization format, to convert the data object to a byte array (e.g.,
a stream of bytes). Data processing module 416 can then
compress the byte array (e.g., compress the serialized large
data object). In some embodiments, data processing module
416 can utilize a data compression algorithm, such as 1.Z4
or Zstandard (ZSTD), to compress the byte array.

[0057] Data processing module 416 can save the com-
pressed byte array which represents the large data object
within object database 420. That is, the compressed serial-
ized large data object is saved within object database 420
instead of the actual large data object. Within object data-
base 420, the database entity associated with the saved
compressed byte array is assigned an identifier (ID) which
can be used to access the database entity. Writing the
compressed byte array in object database 420 is fast and
efficient (e.g., reduced network latency) due to the reduced
size of the compressed byte array in comparison to the size
of the actual large data object. Also, storage consumption in
object database 420 is reduced due to the reduced size of the
compressed byte array. As a result, an increased number of
data objects can be maintained in the cache memory of
object database 420 which, in turn, reduces and, in some
cases greatly reduces and ideally eliminates, the need to
perform 10 operations to a storage tier (e.g., a disk storage
422) to write/read data objects.

[0058] Insome embodiments, data processing module 416
can extract one or more fields which are queryable from the
data object. The extracted fields may be used in an index for
querying the data object (e.g., an index for querying the large
data object) even though the compressed byte array which
represents the data object is saved within object database
420. For example, suppose the large data object is a patient
medical record. In this example, data processing module 416
may extract from the large data object fields such as, for
example, patient’s name, address, phone number, and other
information related to the patient which are queryable. Data
processing module 416 can then save the extracted fields
(i.e., queryable fields) within object database 420 along with
the compressed byte array which represents the large data
object. As a result, the saved queryable fields can be iden-
tified using the ID assigned to the database entity associated
with the compressed byte array, and available for being
queried, for example by a client application.

US 2024/0264990 Al

[0059] Data processing module 416 is also operable to
perform operations to read from object database 420. Data
processing module 416 can perform a read process to read
a data object, such as, for example, a document, from object
database 420. For example, data processing module 416 can
perform the read process in response to database server
application 408 receiving a request to read a data object from
object database 420. The request, for example, may be from
a client application (e.g., client application 406 on client
402) and include an ID of a database entity in object
database 420 (i.e., ID of a database entity associated with the
data object).

[0060] In response to a request to read a data object from
object database 420 being received, data processing module
416 can use the ID included or otherwise provided with the
request to read a data object from object database 420. Data
processing module 416 can then determine whether the read
data object is a compressed byte array. In other words, data
processing module 416 can determine whether the read data
object is a large data object. If data processing module 416
determines that the read data object is not a compressed byte
array, data processing module 416 can send the data object
read from object database 420 in a response to the request to
read the data object, as conventionally done. For example,
data processing module 416 can deserialize the data object
read from object database 420 into a POCO entity and
serialize the POCO entity into, for instance, a JavaScript
Object Notation (JSON) object. In some cases, data pro-
cessing module 416 may compress the JSON object, for
example, if compression is specified in the request to read
the data object (e.g., if compression is specified in the
request header). Data processing module 414 can then sent
the JSON object (or the compressed JSON object) in a
response to the request to read the data object.

[0061] If data processing module 416 determines that the
read data object is a compressed byte array, data processing
module 416 can deserialize the data object read from object
database 420 into a POCO entity which includes the ID and
the compressed byte array. In some embodiments, data
processing module 416 can utilize the binary serializer to
deserialize the read data object. Reading the large data
object from object database 420 is fast and efficient (e.g.,
reduced network latency) since it is read from object data-
base 420 as a compressed byte array which represents the
large data object, and the compressed byte array is smaller
in size than the actual large data object. Also, deserialization
is magnitudes faster since the smaller byte array represent-
ing the large data object is read from object database 420 and
deserialized instead of the actual large data object.

[0062] Data processing module 416 can then extract the
compressed byte array from the POCO entity and send the
compressed byte array in a response to the request to read
the data object. For example, assuming that the request is
received from a client application (e.g., client application
406), data processing module 416 can send the compressed
byte array in a response to the client application. Sending the
compressed byte array to the client application is fast and
efficient (e.g., reduced network latency) due to the reduced
size of the compressed byte array in comparison to the size
of the actual large data object. Additionally, data processing
module 416 does not serialize and decompress the com-
pressed byte array again into a different content type prior to
sending the compressed byte array to the client application,

Aug. 8,2024

which reduces processing time at data processing module
416 (e.g., increases the efficiency of data processing module
416).

[0063] At the client, the compressed byte array received
from database server application 408 can be decompressed
and deserialized. For example, a client application can use a
data compression algorithm, such as [LZ4 or ZSTD, to
decompress the compressed byte array, and a binary serial-
izer, such as MessagePack, to deserialize the decompressed
byte array into an object (e.g., reconstruct the data object
from the decompressed byte array). In some embodiments,
the type of compression (e.g., LZ4) and data (e.g., Message-
Pack) may be indicated in the response to the request sent by
database server application 408. The client application can
then determine the algorithms to use to decompress and
deserialize the received byte array from the type of com-
pression and data indicated in the response. For example, in
the case of a Hypertext Transfer Protocol (HTTP) message,
the type of compression and data may be indicated in the
“content-encoding” and “content-type” headers, respect-
fully. In some embodiments, the client application can
specify the type of compression and data that is to be used
by data processing module 416 in the request to read a data
object sent to database server application 408. In some
embodiments, the client application may negotiate with
database server application 408 (e.g., data processing mod-
ule 416) the type of compression and data that is to be used
by data processing module 416.

[0064] Referring to client application 406, client applica-
tion 406 can include various Ul controls 410 that enable a
user (e.g., a user of client 402) to access and interact with
database server application 408. For example, Ul controls
410 can include Ul elements/controls, such as input fields
and text fields, that a user can use to enter (e.g., specify) a
data object (e.g., an ID of a data object) that is to be read
from object database 420. UI controls 410 can include Ul
elements/controls that a user can click/tap to request reading
of the specified data object from object database 420. In
response to the user’s input, client application 406 can send
a message to database server application 408 requesting that
the specified data object be read from object database 420.
[0065] Inthe embodiment of FIG. 4, client application 406
is shown as a stand-alone client application. In other
embodiments, client application 406 may be implemented as
or include a web browser for accessing web-based applica-
tions (e.g., SaaS applications) along with other types of web
apps and websites. In such embodiments, Ul controls 410
may be provided by one or more web pages, such as product
web pages or other web pages providing access to data,
being accessed using the web browser. By way of an
example, the user may use the web browser to request a
product web page from a particular website. In this example,
the product web page may include UI controls 410 (e.g.,
links) that the user can click/tap to request information/
details/data/etc. about various products listed in the product
web page. In response to the user clicking/tapping a link, a
request can be sent to database server application 408 to read
the data object associated with the clicked/tapped link from
object database 420.

[0066] FIG. 5 is a flow diagram of an example process 500
for writing a large data object, in accordance with an
embodiment of the present disclosure. Illustrative process
500 may be implemented, for example, within database
server application 408 of FIG. 4 and executed in response to

US 2024/0264990 Al

database server application 408 receiving a request to write
a data object to object database 420.

[0067] With reference to process 500 of FIG. 5, at 502, a
request to write a data object to an object database may be
received. The request may be received, for example, from a
client application (e.g., client application 406 of FIG. 4) or
an upstream application (e.g., event source 418 of FIG. 4).
[0068] At 504, a check may be performed to determine
whether the data object to write to the object database is a
large data object. For example, in one implementation, the
size of the data object may be checked against a predeter-
mined threshold size (e.g., 100 kb) to determine whether the
data object is a large data object.

[0069] If, at 504, a determination is made that the data
object to write to the object database is not a large data
object, then, at 506, the data object may be saved to the
object database as conventionally done. For example, the
data object may be saved as a database entity within the
object database.

[0070] Otherwise, if, at 504, a determination is made that
the data object to write to the database is a large data object,
then, at 508, the data object (i.e., the large data object) may
be serialized to convert the data object to a format, such as
a byte array, which is suitable for storing in the object
database. For example, in one implementation, a binary
serializer, such as MessagePack, can be used to serialize the
data object to a byte array.

[0071] At 510, the serialized data object (e.g., the byte
array) may be compressed. For example, in one implemen-
tation, the byte array, which represents the data object, can
be compressed using the [.Z4 or other suitable lossless
compression algorithm. The resulting compressed byte array
represents the large data object.

[0072] At 512, one or more fields which are queryable
may optionally be extracted from the data object. The
extracted fields may be used, for example, by a client
application for querying the data object.

[0073] At 514, the compressed byte array may be saved
within the object database. For example, the compressed
byte array may be saved as a database entity within the
object database. In cases where queryable fields are
extracted from the data object at 512, the queryable fields
may be saved along with the compressed byte array within
the object database.

[0074] FIG. 6 is a flow diagram of an example process 600
for reading a large data object, in accordance with an
embodiment of the present disclosure. Illustrative process
600 may be implemented, for example, within database
server application 408 of FIG. 4 and executed in response to
database server application 408 receiving a request to read
a data object from object database 420.

[0075] With reference to process 600 of FIG. 6, at 602, a
request to read a data object from an object database may be
received. The request can include a unique ID of a database
entity within the object database that is associated with the
data object. The request may be received, for example, from
a client application (e.g., client application 406 of FIG. 4).
[0076] At 604, the requested data object may be read from
the object database. For example, the database entity asso-
ciated with the data object can be read using the unique ID
included with the request.

[0077] At 606, a check may be performed to determine
whether the data object read from the object database is a
compressed byte array. That is, a check may be performed

Aug. 8,2024

to determine whether the data object read from the object
database is a large data object.

[0078] If, at 606, a determination is made that the data
object read from the object database is not a compressed
byte array, then, at 608, the data object may be deserialized
into a POCO entity. At 610, the deserialized data object (e.g.,
the POCO entity) may be serialized into a JSON object. In
some cases, such as, for example, when compression is
specified in the request, the JSON object may be compressed
using a suitable compression algorithm. At 612, the JSON
object (or the compressed JSON object) may be sent in a
response to the request. For example, the JSON object can
be sent in a response to the client application that sent the
request.

[0079] Otherwise, if, at 606, a determination is made that
the data object read from the object database is a compressed
byte array, then, at 614, the data object read from the object
database may be deserialized. For example, in one imple-
mentation, a binary serializer, such as MessagePack, can be
used to deserialize the data object into a POCO entity which
includes the ID and the compressed byte array.

[0080] At 616, the compressed byte array from the POCO
entity may be sent in a response to the request. Note that the
compressed byte array sent in the response represents the
requested large data object. The compressed byte array in the
response may be decompressed and deserialized by the
client (e.g., client application) to recreate the large data
object.

[0081] In the foregoing detailed description, various fea-
tures of embodiments are grouped together for the purpose
of streamlining the disclosure. This method of disclosure is
not to be interpreted as reflecting an intention that the claims
require more features than are expressly recited. Rather,
inventive aspects may lie in less than all features of each
disclosed embodiment.

[0082] As will be further appreciated in light of this
disclosure, with respect to the processes and methods dis-
closed herein, the functions performed in the processes and
methods may be implemented in differing order. Addition-
ally or alternatively, two or more operations may be per-
formed at the same time or otherwise in an overlapping
contemporaneous fashion. Furthermore, the outlined actions
and operations are only provided as examples, and some of
the actions and operations may be optional, combined into
fewer actions and operations, or expanded into additional
actions and operations without detracting from the essence
of the disclosed embodiments.

[0083] Elements of different embodiments described
herein may be combined to form other embodiments not
specifically set forth above. Other embodiments not specifi-
cally described herein are also within the scope of the
following claims.

[0084] Reference herein to “one embodiment” or “an
embodiment” means that a particular feature, structure, or
characteristic described in connection with the embodiment
can be included in at least one embodiment of the claimed
subject matter. The appearances of the phrase “in one
embodiment” in various places in the specification are not
necessarily all referring to the same embodiment, nor are
separate or alternative embodiments necessarily mutually
exclusive of other embodiments. The same applies to the
term “implementation.”

[0085] As used in this application, the words “exemplary”
and “illustrative” are used herein to mean serving as an

US 2024/0264990 Al

example, instance, or illustration. Any aspect or design
described herein as “exemplary” or “illustrative” is not
necessarily to be construed as preferred or advantageous
over other aspects or designs. Rather, use of the words
“exemplary” and “illustrative” is intended to present con-
cepts in a concrete fashion.

[0086] In the description of the various embodiments,
reference is made to the accompanying drawings identified
above and which form a part hereof, and in which is shown
by way of illustration various embodiments in which aspects
of'the concepts described herein may be practiced. It is to be
understood that other embodiments may be utilized, and
structural and functional modifications may be made without
departing from the scope of the concepts described herein.
It should thus be understood that various aspects of the
concepts described herein may be implemented in embodi-
ments other than those specifically described herein. It
should also be appreciated that the concepts described herein
are capable of being practiced or being carried out in ways
which are different than those specifically described herein.
[0087] Terms used in the present disclosure and in the
appended claims (e.g., bodies of the appended claims) are
generally intended as “open” terms (e.g., the term “includ-
ing” should be interpreted as “including, but not limited to,”
the term “having” should be interpreted as “having at least,”
the term “includes” should be interpreted as “includes, but
is not limited to,” etc.).

[0088] Additionally, if a specific number of an introduced
claim recitation is intended, such an intent will be explicitly
recited in the claim, and in the absence of such recitation no
such intent is present. For example, as an aid to understand-
ing, the following appended claims may contain usage of the
introductory phrases “at least one” and “one or more” to
introduce claim recitations. However, the use of such
phrases should not be construed to imply that the introduc-
tion of a claim recitation by the indefinite articles “a” or “an”
limits any particular claim containing such introduced claim
recitation to embodiments containing only one such recita-
tion, even when the same claim includes the introductory
phrases “one or more” or “at least one” and indefinite
articles such as “a” or “an” (e.g., “a” and/or “an” should be
interpreted to mean “at least one” or “one or more”); the
same holds true for the use of definite articles used to
introduce claim recitations.

[0089] In addition, even if a specific number of an intro-
duced claim recitation is explicitly recited, such recitation
should be interpreted to mean at least the recited number
(e.g., the bare recitation of “two widgets,” without other
modifiers, means at least two widgets, or two or more
widgets). Furthermore, in those instances where a conven-
tion analogous to “at least one of A, B, and C, etc.” or “one
or more of A, B, and C, etc.” is used, in general such a
construction is intended to include A alone, B alone, C alone,
A and B together, A and C together, B and C together, or A,
B, and C together, etc.

[0090] All examples and conditional language recited in
the present disclosure are intended for pedagogical examples
to aid the reader in understanding the present disclosure, and
are to be construed as being without limitation to such
specifically recited examples and conditions. Although illus-
trative embodiments of the present disclosure have been
described in detail, various changes, substitutions, and
alterations could be made hereto without departing from the
scope of the present disclosure. Accordingly, it is intended

Aug. 8,2024

that the scope of the present disclosure be limited not by this
detailed description, but rather by the claims appended
hereto.

What is claimed is:

1. A method comprising:

receiving, by a computing device, a request to write a first

data object to an object database; and

responsive to a determination that the first data object is

a large data object, by the computing device:

serializing the first data object;

compressing the serialized first data object into a for-
mat that can be stored in the object database; and

saving the compressed serialized first data object within
the object database.

2. The method of claim 1, wherein the serializing the first
data object includes using a binary serializer to convert the
first data object to a byte array.

3. The method of claim 1, wherein the compressing the
serialized first data object includes using an [.Z4 algorithm
to compress the serialized first data object.

4. The method of claim 1, wherein the compressing the
serialized first data object includes using a Zstandard
(ZSTD) algorithm to compress the serialized first data
object.

5. The method of claim 1, further comprising, responsive
to the determination that the first data object is a large data
object, by the computing device:

extracting one or more fields which are queryable from

the first data object; and

saving the one or more queryable fields with the com-

pressed serialized first data object within the object
database.

6. The method of claim 1, further comprising, responsive
to a determination that the first data object is not a large data
object, saving, by the computing device, the first data object
within the object database.

7. The method of claim 1, further comprising:

responsive to receiving a request to read a second data

object from the object database, reading, by the com-
puting device, the second data object from the object
database; and

responsive to a determination that the second data object

read from the object database is a compressed byte

array, by the computing device:

deserializing the second data object into a POCO entity
which includes the compressed byte array, wherein
the compressed byte array represents the second data
object; and

sending the compressed byte array in a response to the
request to read the second data object.

8. The method of claim 7, further comprising, responsive
to a determination that the second data object read from the
object database is not a compressed byte array, by the
computing device:

deserializing the second data object into a POCO entity;

serializing the POCO entity into a JSON object; and

sending the JSON object in a response to the request to
read the second data object.

9. The method of claim 8, further comprising, prior to
sending the JSON object, compressing the JSON object and
sending the compressed JSON object in the response to the
request to read the second data object.

10. A computing device comprising:

US 2024/0264990 Al

one or more non-transitory machine-readable mediums

configured to store instructions; and

one or more processors configured to execute the instruc-

tions stored on the one or more non-transitory machine-
readable mediums, wherein execution of the instruc-
tions causes the one or more processors to carry out a
process comprising:
receiving a request to write a first data object to an
object database; and
responsive to a determination that the first data object
is a large data object:
serializing the first data object;
compressing the serialized first data object into a
format that can be stored in the object database;
and
saving the compressed serialized first data object
within the object database.

11. The computing device of claim 10, wherein the
serializing the first data object includes using a binary
serializer to convert the first data object to a byte array.

12. The computing device of claim 10, wherein the
compressing the serialized first data object includes using an
LZ4 algorithm or a Zstandard (ZSTD) algorithm to com-
press the serialized first data object.

13. The computing device of claim 10, wherein the
process further comprises, responsive to the determination
that the first data object is a large data object:

extracting one or more fields which are queryable from

the first data object; and

saving the one or more queryable fields with the com-

pressed serialized first data object within the object
database.

14. The computing device of claim 10, wherein the
process further comprises, responsive to a determination that
the first data object is not a large data object, saving the first
data object within the object database.

15. The computing device of claim 10, wherein the
process further comprises:

responsive to receiving a request to read a second data

object from the object database, reading the second
data object from the object database; and

responsive to a determination that the second data object

read from the object database is a compressed byte

array:

deserializing the second data object into a POCO entity
which includes the compressed byte array, wherein
the compressed byte array represents the second data
object; and

sending the compressed byte array in a response to the
request to read the second data object.

Aug. 8,2024

16. The computing device of claim 15, wherein the
process further comprises, responsive to the determination
that the second data object read from the object database is
not a compressed byte array:

deserializing the second data object into a POCO entity;

serializing the POCO entity into a JSON object; and

sending the JSON object in a response to the request to
read the second data object.

17. The computing device of claim 16, wherein the
process further comprises, prior to sending the JSON object,
compressing the JSON object and sending the compressed
JSON object in the response to the request to read the second
data object.

18. A non-transitory machine-readable medium encoding
instructions that when executed by one or more processors
cause a process to be carried out, the process including:

receiving a request to write a first data object to an object

database; and

responsive to a determination that the first data object is

a large data object:

serializing the first data object;

compressing the serialized first data object into a for-
mat that can be stored in the object database; and

saving the compressed serialized first data object within
the object database.

19. The machine-readable medium of claim 18, wherein
the process further comprises, responsive to the determina-
tion that the first data object is a large data object:

extracting one or more fields which are queryable from

the first data object; and

saving the one or more queryable fields with the com-

pressed serialized first data object within the object
database.

20. The machine-readable medium of claim 18, wherein
the process further comprises:

responsive to receiving a request to read a second data

object from the object database, reading the second
data object from the object database; and

responsive to a determination that the second data object

read from the object database is a compressed byte

array:

deserializing the second data object into a POCO entity
which includes the compressed byte array, wherein
the compressed byte array represents the second data
object; and

sending the compressed byte array in a response to the
request to read the second data object.

#* #* #* #* #*

