
MT IN
US 20210334267A1

(19) United States
(12) Patent Application Publication

SUBHEDAR
(10) Pub . No .: US 2021/0334267 A1
(43) Pub . Date : Oct. 28 , 2021

(54) AGGREGATION ANALYSIS AND
REMEDIATION OF DATA INVALIDATIONS

(71) Applicant : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

(72) Inventor : Sameeksha Suresh SUBHEDAR ,
Redmond , WA (US)

(21) Appl . No .: 17 / 371,945

(22) Filed : Jul . 9 , 2021

Related U.S. Application Data
(63) Continuation of application No. 16 / 293,480 , filed on

Mar. 5 , 2019 , now Pat . No. 11,093,480 .

(52) U.S. CI .
CPC G06F 16/2365 (2019.01) ; G06F 16/252

(2019.01) ; G06F 12/0802 (2013.01) ; G06F
16/24578 (2019.01) ; GO6F 11/0781 (2013.01) ;

G06F 11/0757 (2013.01) ; G06F 16/215
(2019.01) ; G06F 11/0775 (2013.01) ; G06F

2212/45 (2013.01) ; GO6F 11/0793 (2013.01) ;
G06F 16/211 (2019.01)

(57) ABSTRACT
The present disclosure relates to processing operations that
assess the impact of data invalidations and manage reme
diation of the data invalidations based on results of an
assessment of the impact of the data invalidation on opera
tion of an application / service . Identified data invalidations
may be aggregated and analyzed . In one non - limiting
example , types of data invalidations are aggregated over a
temporal count to identify recent data invalidations . Analy
sis of aggregated types of data invalidations comprises
evaluating an intensity of the types of data invalidations
identified within the temporal count . Identified data invali
dations may be ranked based on intensity analysis identify
ing impact on presentation of content through an applica
tion / service during the temporal count . Remediation of data
invalidations may be managed based on the ranking pro
cessing . For example , one or more data invalidations may be
prioritized for remediation processing to correct an under
lying data structure associated with an error .

Publication Classification

(51) Int . Ci .
G06F 16/23 (2019.01)
G06F 16/25 (2019.01)
G06F 12/0802 (2016.01)
G06F 16/2457 (2019.01)
G06F 11/07 (2006.01)
GO6F 16/21 (2019.01)
G06F 16/215 (2019.01)

116

SERVICE (S)

SYSTEM (S) PERMANENT
DATA STORAGE

114 CACHE MEMORY
106 APP (S)

11
10 : Update Data Structure

For Content

9 : Fix Data
Invalidation (s)

5 : Send Content
for Schema
Validation REAL TIME PROCESSING SYSTEM

104

4 : Get Full
Content

From Cache
to Validate

SCHEMA VALIDATION
ENGINE
118 VALIDATION

COMPONENT
112 1 : Detect content

for validation
(Delta File)

6 : Receive
List

of Invalidations

116
3 : Call validation
component to

check for
invalidity

7 : Send List of
Invalidations

Device (s) Device (s)
QUEUE LISTENER 110 ???

AGGREGATION
COMPONENT

120 2 : Send ID of
content to

8 : Send
Prioritized

Aggregation
of issues queue

102 QUEUE
108

100

116
SERVICE (S) SYSTEM (S)

PERMANENT DATA STORAGE 114

CACHE MEMORY 106

APP (S)

Patent Application Publication

10 : Update Data Structure For Content

9 : Fix Data

Invalidation (s)

5 : Send Content for Schema Validation

REAL TIME PROCESSING SYSTEM 104

4 : Get Full Content From Cache to Validate

SCHEMA VALIDATION ENGINE 118

1 !]

VALIDATION COMPONENT 112

1 : Detect content for validation (Delta File)

6 : Receive List of Invalidations

Oct. 28 , 2021 Sheet 1 of 3

3 : Call validation
component to check for invalidity

7 : Send List of Invalidations

116

Device (s)

Device (s)

.

QUEUE LISTENER 110

T
i

AGGREGATION COMPONENT 120

2 : Send ID of

8 : Send Prioritized Aggregation of Issues

content to queue

102

QUEUE 108

US 2021/0334267 A1

FIGURE 1 100

Patent Application Publication Oct. 28 , 2021 Sheet 2 of 3 US 2021/0334267 A1

FIGURE 2
200

I
IDENTIFY DATA INVALIDATIONS ASSOCIATED WITH CONTENT OF

AN APPLICATIONSERVICE 202

AGGREGATE TYPES OF DATA INVALIDATIONS TO ONE OR MORE
LEVELS 204

ANALYZE INTENSITY OF THE AGGREGATED TYPES OF DATA
INVALIDATIONS 206

GRAPH INTENSITY OF AGGREGATED TYPES OF DATA
INVALIDATIONS 208

RANK DATA INVALIDATIONS FOR REMEDIATION
210

PROPAGATE RANKING OF DATA INVALIDATIONS FOR PRIORITY
REMEDIATION PROCESSING 212

REMEDIATE ONE OR MORE DATA INVALIDATIONS BASED ON
THE RANKING 214

NO INVALIDATION
REMEDIATED ?

216

YES

IDLE

Patent Application Publication

FIGURE 3

COMPUTING SYSTEM

301

STORAGE SYSTEM

303

SOFTWARE

305

CACHE DATA VALIDATION PROCESSING

306a

Oct. 28 , 2021 Sheet 3 of 3

AGGREGATION COMPONENT PROCESSING 306b

COMM . VE SYS .
307

PROCESSING SYSTEM

302

USER . VF SYS .
309

US 2021/0334267 A1

US 2021/0334267 A1 Oct. 28 , 2021
1

AGGREGATION ANALYSIS AND
REMEDIATION OF DATA INVALIDATIONS

remediate an error . This may tie up valuable resources
associated with operation of an application / service as well as
create latency issues during the operation of the application /
service . RELATED APPLICATIONS

SUMMARY [0001] This application is a continuation of and claims
priority to U.S. Non - Provisional patent application Ser . No.
16 / 293,480 , entitled " AGGREGATED ANALYSIS AND
REMEDIATION OF DATA INVALIDATIONS ” , filed on
Mar. 5 , 2019 , which is hereby incorporated by reference
herein , in its entirety .

BACKGROUND

[0006] In view of the foregoing technical challenges , the
present disclosure relates to processing operations that
assess the impact of data invalidations and manage reme
diation of the data invalidations based on results of an
assessment of the impact of the data invalidation on opera
tion of an application / service . Data invalidations may occur
from updates to content that is presented through an appli
cation / service . Identified data invalidations may be aggre
gated and analyzed . In one non - limiting example , types of
data invalidations are aggregated over a temporal count to
identify recent data invalidations . Analysis of aggregated
types of data invalidations comprises evaluating an intensity
of the types of data invalidations identified within the
temporal count . Identified data invalidations may be ranked
based on intensity analysis identifying impact on presenta
tion of content through an application / service during the
temporal count . Remediation of data invalidations may be
managed based on the ranking processing . For example , one
or more data invalidations may be prioritized for remedia
tion processing to correct an underlying data structure
associated with an error .
[0007] This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description . This Summary is not
intended to identify key features or essential features of the
claimed subject matter , nor is it intended to be used to limit
the scope of the claimed subject matter . Additional aspects ,
features , and / or advantages of examples will be set forth in
part in the description which follows and , in part , will be
apparent from the description , or may be learned by practice
of the disclosure .

[0002] Commonly , data is accessed and modified in dis
tributed networking examples where one or more users may
update content through an application or service . A piece of
data that is stored in a distributed storage (e.g. , cloud
storage) can be updated by multiple users , from multiple
devices , and also can be updated through the various ser
vices that act on the data . There is a possibility that the data being updated , gets corrupted during update processing .
Among other reasons , this may be due to issues on any of the
clients or the services that access the data .
[0003] Previously , in cases of content corruption , the
cause of the issue was identified in an ad - hoc manner where
attempts were made to track the issue to a specific client or
service that may have accessed a distributed storage . Any
errors that were found were fixed . However , this process
makes it difficult to consistently identify the cause of the
issue , data in production that may have entered into a
corrupted state and impact of existing issues . Additionally ,
this type of processing is resource intensive from a process
ing efficiency standpoint , for example , tying up resources on
a client - side as well as a server - side and further requiring
additional processing operations to retrieve data from data
storages . A corruption remediation service may be config
ured to address corruption issues one by one , making it
difficult to tie multiple data corruption issues to an under
lying data structure (for file content) that may be invalid . As
more and more endpoints are added for system access , it
becomes increasingly difficult to ensure that everyone in
disparate systems adheres to schemas rules .
[0004] Additionally , when data edits occur to content of an
electronic document / electronic file , applications / services
typically report partial data edits (i.e. the delta) indicating
the changes made over a prior existing version of the content
that may already be stored . However , partial data edits may
be insufficient to determine the validity of an entire data
schema , which may be the root cause of a data invalidation .
This may require further data retrieval and analysis to
resolve data invalidations .
[0005] Further issues exist where an application or service
is not readily able to identify and correlate issues that are
most impacting (and / or most recently plaguing) operation of
the application or service . For instance , a specific instance of
a data error may be corrected in a specific user scenario , but
other similar errors may occur in a similar time period .
Applications / services may not typically be trained to aggre
gate types of data invalidations and correct the source of the
error so that the error does not become repeatable , especially
within a short period of time . In cases where error correction
is occurring in real - time , real - time error correction may
create serious performance implications as a large number of
data validation rules may need to be run to identify and

BRIEF DESCRIPTION OF THE DRAWINGS

[0008] Non - limiting and non - exhaustive examples are
described with reference to the following figures .
[0009] FIG . 1 illustrates an exemplary process flow pro
viding exemplary components for content validation pro
cessing , with which aspects of the present disclosure may be
practiced .
[0010] FIG . 2 illustrates an exemplary method related to
data invalidation aggregation , analysis and remediation ,
with which aspects of the present disclosure may be prac
ticed .
[0011] FIG . 3 illustrates a computing system suitable for
implementing content validation processing as described
herein , with which aspects of the present disclosure may be
practiced .

DETAILED DESCRIPTION

[0012] The present disclosure relates to processing opera
tions that assess the impact of data invalidations and manage
remediation of the data invalidations based on results of an
assessment of the impact of the data invalidation on opera
tion of an application / service . Data invalidations may occur
from updates to content that is presented through an appli
cation / service . Identified data invalidations may be aggre
gated and analyzed . In one non - limiting example , types of

a

US 2021/0334267 A1 Oct. 28 , 2021
2

data invalidations are aggregated over a temporal count to
identify recent data invalidations . Analysis of aggregated
types of data invalidations comprises evaluating an intensity
of the types of data invalidations identified within the
temporal count . Identified data invalidations may be ranked
based on intensity analysis identifying impact on presenta
tion of content through an application / service during the
temporal count . Remediation of data invalidations may be
managed based on the ranking processing . For example , one
or more data invalidations may be prioritized for remedia
tion processing to correct an underlying data structure
associated with an error .
[0013] As identified above , data invalidations may be
aggregated and analyzed within a temporal count . This
provides numerous technical improvements over traditional
ad - hoc data remediation systems . Aggregation of invalida
tion incidents identifies which invalidations have the maxi
mum impact on operation of an application / service due to
sheer count / volume . On top of aggregation analysis , inten
sity analysis helps qualify the top errors returned by the
aggregation analysis according to real customer impact (e.g. ,
immediate data loss , future data loss , no data loss , data
hangs , data crashes , loss of content) . Also , validation of data ,
used to identify data invalidations , happens over real - time
edits , which correlates to identifying highly used entities
through a system / service . This enables components associ
ated with data validation processing to identify patterns for
data validations within a specific time period (e.g. , minute ,
hour , day , month , year) and modify its processing to reme
diate data invalidations for that time period to improve
real - time processing for an application / service . In traditional
systems that resolve data invalidations , data remediation
may occur for each individual identification of a data
invalidation , which is inefficient from a processing stand
point and also shows a lack of intelligence for identifying
correlations between data invalidations . Processing opera
tions described herein improve over traditional systems by
aggregating types of data invalidations and analyzing the
aggregated types of data invalidations to identify how spe
cific types of data invalidations impact operation of an
application / service . For example , updates to a specific type
of electronic file may cause errors in a data structure for an
electronic document that affects numerous users within a
specific time period . This may cause data loss when users
attempt to access updated content of an electronic document
at a future point in time , which immediately affects opera
tion of an application / service . In other instances , user
updates to an electronic file may cause errors in a data
structure that may not instantaneously manifest . However ,
those errors could be triggered by other conditions or events
at a later point in time . In further examples , some data
invalidations may not result in data loss at all .
[0014] Aggregation and analysis processing improve vali
dation processing through identification and prioritization of
remediation of data invalidations based on a potential impact
to operation of an application / service . For example , data
invalidations may be analyzed based on aggregated count
types (e.g. , numeric and / or temporal) , intensity indicating
impact on operation of an application / service , business
requirements associated with one or more applications /
services , user feedback and / or a combination thereof . Non limiting examples of parameters for evaluating intensity of
a data invalidation comprise but are not limited to : a number
of data invalidations in an aggregated type (e.g. , count of a

specific type of data invalidations) ; a type of document
associated with content that in which the data invalidation is
identified ; an amount of data loss associated with an indi
vidual data invalidation , domain - specific business require
ments associated with the application or service ; and user
feedback signal data collected from usage of the application
or service , among other examples . A ranking of intensity of
data invalidations (e.g. , aggregated types of data invalida
tions) may be generated and utilized to order data invalida
tions for data remediation processing . For instance , one or
more data invalidations , identified within a temporal count ,
that have a highest intensity ranking may be prioritized for
data remediation processing over other queued data valida
tion processing requests (e.g. , checks for invalidities
amongst data structures associated with content) .
[0015] Moreover , the present disclosure relates to process
ing operations that enable use of cache memory for content
validation and error remediation of content . A cache is
typically used to optimize performance by providing a
temporary stop for data between a user and a permanent data
store . In examples described herein , functionality of the
cache is extended to enable interfacing between a cache
memory , a validation component that is configured to vali
date data read directly from a cache memory , and an
aggregation component that aggregates and analyzes data
invalidations for priority processing . If content is found to be
corrupted , the content may be updated in the cache memory
and propagated to a permanent data store associated with an
application / service , system , etc. Use of the cache may be
optimal for targeting recent and / or heavily accessed content
as well as a means for offloading data processing operations
from a permanent data storage (e.g. , distributed data stor
age) . Examples described herein extend to those in which
data associated with an electronic file is already stored in
cache memory as well as those in which update occurs
directly to a permanent data storage . Data invalidations may
be remediated asynchronously from real - time access to
content through an application / service . As a non - limiting
example , data invalidations may occur when read - write
access to content is not actively requested through an
application / service . For example , content may be updated
(e.g. , through a system , another application or service)
which is not being directly edited by a real time processing
system for an exemplary application / service . In such an
instance , a notification may be provided to add content to a
validation queue . The validation queue provides an asyn
chronous layer that listens to transactional flow and validates
queued data .
[0016] In one non- n - limiting example , a data structure for an
electronic file is read from a cache memory that is associated
with an application or service . Content of the electronic file
is validated based on an evaluation of the data structure read
from the cache memory . For example , validation processing
may comprise application of exemplary validation rules that
are usable to evaluate any data associated with the data
structure including but not limited to : exemplary data nodes
of the data structure ; and properties associated with those
data nodes . Exemplary validation rules may programmati
cally evaluate a hierarchy of any type of data structure (e.g. ,
data graph , data tree , hash) including evaluation of data
nodes (e.g. , parent nodes , child nodes) , their corresponding
sub - nodes as well as properties corresponding with respec
tive data nodes . As such , in one example , a full data structure
of an electronic file may be evaluated as compared with

a

a

US 2021/0334267 A1 Oct. 28 , 2021
3

a

instances where only revisions to an electronic file are
evaluated for correctness . This may improve accuracy in
detection of content invalidity as well as enable fixes to
prevent more widespread content corruption as well as
instances of future content corruption .
[0017] Continuing the above example , one or more inva
lidities in the content may be detected based on a result of
the validation processing . When an instance of corruption is
detected , processing operations may be automatically
executed to perform an in - memory fix of the data structure .
In further examples , processing by an aggregation compo
nent is utilized to further analyze data invalidations to
identify trends , patterns , impact of errors , etc. , based on
recent usage through an application / service . The aggrega
tion component is configured to interface with a validation
component , among other system components , to aggregate
and analyze data invalidations for optimal remediation pro
cessing as well as provision of telemetric feedback regarding
identified data invalidations (including temporal contexts) .
[0018] An exemplary data structure for an electronic file
may be updated to correct one or more invalidities in the
content of the electronic file . This may include direct fixes
to specific portions of an exemplary data structure and
corresponding data / metadata) as well as correction of an
entirety of a corrupted data structure . In one instance , update
may occur through a validation component , where an
updated data structure may be propagated to a permanent
data storage that is associated with an exemplary applica
tion / service . An aggregation component may analyze data
invalidations and provide a validation component with an
identified subset of data validations for remediation based on
analysis of aggregated data invalidations .
[0019] Validation processing described herein enables an
updated version of an electronic file to be directly accessed
from the cache memory as well as retrieved from the
permanent data storage . Update to the permanent data stor
age is important in instances where file data for an electronic
file is cached as well as instances where the permanent data
storage is a shared data storage that is accessible by other
systems , applications / services , etc. In any example , the
exemplary cache is configured to be used as a store for
detecting content that has already reached a corrupted state .
This technique may be utilized in any system (including
distributed systems / services) that have accessed to shared
data storage including instances where data is not directly
served to a cache memory . In - memory fixes are performed
to correct invalidities in content in electronic files . In some
instances , detection of invalidity may result in a determina
tion that an entire data structure (for an electronic file) is
corrupted . In such cases , an entire data structure (e.g. , full
data structure) may be re - rendered , for example , to prevent
continued instances of corruption as well as mitigate future
(potentially unforeseen) issues .
[0020] Exemplary technical advantages provided by pro
cessing described in the present disclosure including but are
not limited to : aggregation of data invalidations for temporal
analysis ; domain - specific analysis of impact of data invali
dations on operation of an application / service including
intensity metrics for contextual analysis of a data invalida
tion ; an ability to prioritize types of data invalidations for
data remediation processing ; extending functionality of a
cache memory above the traditional means of use to enable
interfacing for content validation ; improving processing
efficiency for content validation and error remediation upon

identification ; reducing latency in distributed system / service
examples that execute data validation processing and error
remediation , extending functionality and usability for shared
data storage systems ; improved processing efficiency (e.g. ,
reduction in processing cycles , saving resources / bandwidth)
during for computing devices during execution of content
validation processing , analysis of data invalidations and
error remediation ; programmatic application of customized
validation rules to improve validation processing and data
invalidation remediation ; an improved graphical user inter
face (GUI) , as compared with traditional GUIS , that is
configured to provide graphical displays and telemetric
analysis for identified data invalidations (i.e. aggregated data
invalidations) ; an ability to correct invalidities in large
amounts of data ; an ability to prioritize corrections based on
customer impact ; and extensibility to work with any type of
data structures , among other technical advantages .
[0021] FIG . 1 illustrates an exemplary process flow 100
providing exemplary components for content validation ,
with which aspects of the present disclosure may be prac
ticed . As an example , components of process flow 100 may
be executed by an exemplary computing system (or com
puting systems) as described in the description of FIG . 3 .
Exemplary components , described in process flow 100 , may
be hardware and / or software components , which are pro
grammed to execute processing operations described herein .
In one example , components of process flow 100 may each
be one or more computing devices associated with execution
of a specific service . Exemplary services may be managed
by an application platform that also provides , to a compo
nent , access to and knowledge of other components that are
associated with applications / services . In one instance , pro
cessing operations described in process flow 100 may be
implemented by one or more components connected over a
distributed network . Operations performed in process flow
100 may correspond to operations executed by a system
and / or service that execute computer programs , application
programming interfaces (APIs) , neural networks or
machine - learning processing , language understanding pro
cessing , search and filtering processing , and generation of
content for presentation through a user interface of an
application / service , among other examples .
[0022] In the illustration of process flow 100 , there are
numbered process flow steps that are provided to illustrate
interaction between components shown in FIG . 1. For
example , steps 1-10 illustrate one example process flow for
execution of data validation processing and error remedia
tion as described herein . It is to be recognized that the
numbered process flow steps are aimed at illustrating non
limiting examples of interaction between components of
FIG . 1. Process flow between components may be altered
without departing from the spirit of the present disclosure .
[0023] Process flow 100 comprises user computing device
(s) 102 (e.g. , client computing device) . An example of a user
computing device 102 is a computing system (or computing
systems) as described in the description of FIG . 3. A user
may interact with an exemplary application / service (subse
quently described in component (s) 116) through the user
computing device (s) 102. For instance , the user may connect
to an application / service through any number of different
device modalities . In some examples , a user may connect to
an application / service (e.g. , distributed data storage service ;
productivity service) through different user computing
devices 102 , where non - limiting examples of such are : a

2

a

a

US 2021/0334267 A1 Oct. 28 , 2021
4

a

a

a

?

smart phone , a laptop , a tablet , a desktop computer , etc. In
other instances , a user may carry on a multi - modal commu
nication with an application / service via multiple user com
puting devices . For example , a user may be accessing a first
electronic file via a laptop or tablet and further connect to a
collaboratively shared electronic file via a mobile computing
device such as a cellular phone or smartphone .
[0024] As referenced above , exemplary applications / ser
vices may interface with other components of process flow
100 to enhance processing efficiency and functionality as
described herein . For instance , specific components of pro
cess flow 100 may each be associated with one or more
application / services to enable functionality of each of the
components . Process flow 100 includes hosting components
116 that comprise services , systems and applications . Appli
cations and / or services may be any type of programmed
software , An exemplary application / service is a productivity
application / service that is configured for execution to enable
users to complete tasks on a computing device , where
exemplary productivity services may be configured for
access to content including electronic files / content retrieved
via a network connection (e.g. , Internet , Bluetooth® , infra
red) . Examples of productivity services comprise but are not
limited to : word processing applications / services , spread
sheet applications / services , notes / notetaking applications /
services , authoring applications / services , digital presenta
tion applications / services , search engine applications /
services , email applications / services , messaging
applications / services , web browsing applications / services ,
collaborative team applications / services , digital assistant
applications / services , directory applications / services , map
ping services , calendaring services , electronic payment ser
vices , digital data storage or distributed data storage appli
cations / services , web conferencing applications / services ,
call communication applications / services , language under
standing applications / services , bot framework applications /
services , networking applications / service , and social net
working applications / services , among other examples . In
some examples , an exemplary productivity application / ser
vice may be a component of a suite of productivity appli
cations / services that may be configured to interface with
other applications / services associated with an application
platform . For example , a word processing service may be
included in a bundled service (e.g. Microsoft® Office365®
or the like) . Further , an exemplary productivity service may
be configured to interface with other internet sources / ser
vices including third - party application / services , for
example , to enhance functionality of productivity services
during execution of operations such as retrieving file con
tent , accessing file content , updating file content , validating
content and storing content , among other examples .
[0025] An exemplary electronic file (or digital document)
is a representation of content in an electronic media / elec
tronic format such as a digital file . Examples of electronic
files may vary where files may be created to work with any
type of application / service . Types of electronic files are
known to one skilled in the field . For instance , an electronic
file may be created for a word processing service or notetak
ing service , where the electronic file may comprise authored
content . Electronic files may be accessed natively , through
applications stored on the user computing device . In alter
nate examples , electronic files may be accessed over a
network connection , for example , where an electronic file is
a web page accessed through a web browser or a distributed

copy of a document that is being accessed but is remotely
stored on a data storage other than the user computing
device . Consider an instance where a user accesses a
notetaking service for free - form information gathering and
multi - user collaboration . The user may be utilizing the
notetaking service to access and edit a shared electronic file
that is collaboratively accessed by a group of users . On the
back - end , the notetaking service may itself comprise dis
tributed data storage (or shared data storage) for a user to
store electronic files and / or the notetaking service may
interface with a data storage application / service to provide
data storage for said electronic files .
[0026] An exemplary real time processing system 104 is
one or more components that are configured for to provide
access to content through an application / service for users of
the application / service . The real time processing system 104
fosters near - instantaneous output of data between user com
puting device (s) 102 , hosting components 116 (e.g. , appli
cations , services , systems) and back - end processing com
ponents (e.g. , cache memory 106 , queue 108 , queue listener
110 , validation component 112 , permanent data storage 114 ,
schema validation engine 118 and the aggregation compo
nent 120) . The real time processing system 104 may directly
interface with user computing device (s) 102 , among other
components of process flow 100. As an example , the real
time processing system 104 is configured so that customers
are served data from a cache memory 106. The real time
processing system 104 may be correlated to track data from
the cache memory 106 that pertains to content that is being
accessed or recently accessed (within a predetermined time
period as specified by developers and / or data retention
policies) . Data from the cache memory 106 is populated
from a permanent data store 114 , which maintains data (e.g. ,
electronic files , log data , version data) used for execution of
exemplary hosting components 116. In execution , the real
time processing system 104 is configured to take input of
rapidly changing data and then provide output near instan
taneously so that change over time is efficiently updated to
the permanent data storage 114 and readily seen by the user .
For instance , the real time processing system 104 may detect
user requests for and / or access to electronic files and inter
face with a user computing device 102 to provide surface a
representation of the electronic file through a user interface
of an application or service . The cache memory 106 may
store data for active access (or recent access) to an electronic
file , where updates to that electronic file can be tracked and
implemented on behalf of a user . Updates made to electronic
files (e.g. , via a user computing device 102) may be further
propagated to the permanent data storage 114. The real time
processing system 104 may interface with other processing
components of process flow 100 through APIs or the like . In
some examples , the real time processing system 104 may
track usage of electronic files within a specific application
service . In other examples , the real time processing system
104 may comprise a plurality of components that are con
figured to track usage of electronic files across a plurality of
applications / services that may share access to the permanent
data storage 114 .
[0027] In one example shown in FIG . 1 , method steps for
content validation processing may be initiated by the real
time processing system 104 , where the real time processing
system 104 detects content for validation . In one example ,
detection of content for validation (step 1 of FIG . 1) may
comprise detection that content of an electronic file has been

a

US 2021/0334267 A1 Oct. 28 , 2021
5

?

edited or modified . In one non - limiting example , step 1
detects content for validation as a partial data edit (i.e. delta
file) , representing an update to an electronic file , that reflects
only the changes made to the electronic file above what is
stored in a prior existing version of the electronic file . In an
alternative example , detection of content for validation may
comprise detecting that a user has accessed an electronic file
whether or not content of the electronic file is modified . In
such instances , data structures for files may be queued for
validation processing , when a system has available
resources , to identify potential data errors before they arise
to the level where operation of an application / service is
affected . This may occur in a technical scenario where
numerous different systems / services are accessing and / or
updating content of an application / service .
[0028] The real time processing system 104 may be fur
ther configured to interface with an exemplary queue com
ponent 108 (hereinafter “ queue ” or “ validation queue ”) ,
where the real time processing system 104 may transmit /
submit identification (ID) of content (e.g. , electronic file) to
the queue 108 to further validation processing . Step 2 (of
FIG . 1) is the transfer of the ID of the content from the real
time processing system 104 to the queue 108 for content
validation . An exemplary (ID) of content may be any type of
data indicative of a specific electronic file , a delta file
associated with update to content , and / or reference to a
location of data of the electronic file within the cache
memory 106 so that the data structure of the electronic file
may be analyzed . An exemplary validation component 112
may be configured to utilize the ID to retrieve data for the
electronic file from the cache memory 106 to execute
validation processing .
[0029] As referenced above , the cache memory 106 (or
cache) may interface with the real time processing system
104 , among other components . An exemplary cache memory
106 is a hardware or software component that stores data so
that future requests for data may be served faster . As an
example , the cache memory 106 is a high - speed static
random access memory (SRAM) that processing compo
nents (e.g. , processor or microprocessor) can access more
quickly (and more efficiently) than regular random access
memory (RAM) , which may be utilized for the permanent
data storage 114. A cache is typically used to optimize
performance by providing a temporary stop for data between
a user and a permanent data store . In examples described
herein , functionality of the cache memory 106 is extended to
enable interfacing between the cache memory 106 and a
validation component , which is configured to validate data
read directly from a cache memory . In doing so , the cache
memory 106 is configured as a data store for running
validations on content . Content of an electronic file is
validated based on an evaluation of a data structure of the
electronic file that is read from the cache memory 106 .
[0030] The cache memory 106 may further directly inter
face with the validation component 112. In doing so , the
cache memory 106 may provide access to data associated
with an electronic file so that the validation component 112
may execute validation processing as described herein . The
cache memory 106 may be utilized to store any data (or
metadata) associated with electronic files including under
lying data structure (s) for an electronic file . Non - limiting
examples of data structures comprise but are not limited to :
graphs ; data trees ; and hashes , among other examples .
Realtime updates typically are incremental edits to the data

structure (e.g. , graph structure) per user . As referenced in the
foregoing , data updates may not always occur directly
though the real time processing system 104. Other examples
of validation are subsequently described such as when direct
edits are made to the permanent data store 114 through other
systems (applications / services) not using the cache memory
106 .
[0031] As previously referenced , data for an electronic file
is not always readily found in the cache memory 106. A
cache hit occurs when the requested data can be found in the
cache memory 106 , while a cache miss occurs when data is
not found in the cache memory 106. Cache hits are served
by reading data from the cache , which is faster than recom
puting a result or reading from a slower data store . Devel
opers may configure settings for storage of data within the
cache memory 106 (including retention of data stored in a
cache) for any length of time without departing from the
spirit of the present disclosure . Parameters for storage of
data within the cache memory 106 may comply with data
retention policies / regulations as well as any user privacy
laws or practices .
[0032] The permanent data storage 114 is a hardware data
storage device or software component (e.g. , virtual data
storage) that is configured to store data . Examples of data
storage devices and software components are known to one
skilled in the field of art . An exemplary permanent data
storage 114 acts as a dedicated storage for electronic files or
other content that may be associated with a user account (or
group user account) , systems and / or one or more applica
tions / services . For instance , the permanent data storage 114
may store content associated with a specific application /
service . In another instance , the permanent data storage 114
may store content across a plurality of hosting components
116 , which may include applications , services and system .
In such an example , the permanent data storage 114 is a
shared data storage for various hosting component 116. In
further examples , the permanent data storage 114 may
configured to store data associated with user accounts ,
where any type of electronic file may be stored across
dedicated storage associated with a user account .
[0033] As an example , the permanent data storage 114
may be one or more distributed data storages accessible over
a network connection . An example of a distributed data
storage is a cloud - based data storage . A piece of data that is
stored in the cloud can be updated by multiple users , from
multiple devices , and also can be updated through the
various services that act on the data . There is a possibility
that the data that gets updated , gets corrupted in the process
of update , either due to issues on any of the clients , or the
services that access it . However , once data gets updated in
the cloud in such corrupted states , due to any one client or
user or service , all the users , devices and services that access
the data henceforth get the corrupted content , and in some
cases are not able to display the data back to the user . This
can be perceived as data loss , or content corruption mani
festing in failures to sync the data across devices . Also , once
data goes into this state , there is no recovery mechanism to
put it back in a corrected state . As such , the cache memory
106 and processing components for validation of content
(e.g. , validation component 112) are utilized to get corrupted
data out of its invalid state and restored for user usage .
[0034] The permanent data storage 114 exchanges data
with the cache memory 106 , for example , in instances where
data is actively being accessed (or was recently accessed) .

a

a

US 2021/0334267 A1 Oct. 28 , 2021
6

a

Moreover , in one instance , a data structure of an electronic
file may be validated before an updated version of the
electronic file is persisted on the permanent data storage 114 .
In some alternative instances , the permanent data storage
114 may store any version of an electronic file , where an
update to content of the electronic file (or the underlying
data structure) may cause a re - write over a previous version
of an electronic file .
[0035] The real time processing system 104 may further
interface with an exemplary queue 108 for validation pro
cessing (or validation queue) . The queue 108 is configured
to provide a queuing mechanism to systematically feed the
validation component 112 with content to be validated . Any
type of queuing mechanism may be implemented as known
to one skilled in the field of art . Furthermore , the queue 108
may be further customized to manage exemplary validation
processing so as to reduce latency during system operation .
Exemplary validation processing is designed to improve
processing efficiency of system operation and not interfere
with a user's ability to access data . As a corollary , content
for validation may be detected by the real time processing
system 104 and propagated to the queue 108 for validation
at a later point in time . Timing for execution of validation
processing may correlate to a point in time where an
electronic file is no longer being accessed so as not to affect
service operation while content is being accessed .
[0036] An exemplary queue 108 may be configured with
processing rules that enable prioritization (or de - prioritiza
tion) of data validation processing for specific content . For
instance , processing rules may be set based on parameters
including but not limited to : the type of electronic file ; the
type of modification to the content ; the amount of access ; the
frequency of access ; specific users that edited content ; and
processing workload for validation , among other examples .
In some examples , the queue 108 may further apply criteria
for evaluating whether a content modification is to be
validated . The queue 108 may provide a decision point that
is configured to determine whether to validate specific
content or bypass the validation processing . Some of these
decisions may also happen as part of the real time processing
system 104 before content is queued for validation .
Examples of criteria for determining whether content is to be
validated or not may comprise but is not limited to : the type
of electronic file ; the type of modification to the content ;
frequency of validation processing on the content (e.g. , prior
validation processing on electronic file) ; the type of appli
cation / service associated with the content ; identification of
discrepancies between versions of an electronic file and
whether prioritization exists for remediation actions of data
invalidations identified by one or more of the schema
validation engine 118 and the aggregation component 120 ,
among other examples . In some examples , discrepancies
may be identified after content is validated . In examples
where an update meets the criteria for choice of content to
be validated , content is queued for validation (with the
identity of the content as stored in the cache memory 106) .
In examples where an ID is associated with detected access
to content based on an update of the content , prioritization
rules may be set to manage whether processing to remediate
identified data invalidations is prioritized over processing to
detect invalidities in content associated with queued IDs .
[0037] An exemplary queue listener 110 may establish an
interface between the queue 108 and the validation compo
nent 112. The queue listener 110 is a data object (or data

objects) that acts as asynchronous event handler for propa
gating content for validation to the validation component
112. The queue listener 110 may implement a messaging
interface that initiates communications between the queue
108 and the validation component 112 to feed the identifi
cation of the content to the validation component 112 when
the validation component 112 has bandwidth . In some
instances , the queue listener 110 may propagate identifica
tions of content one by one . In other cases , identifications of
content for validation may be transmitted in batches . The
queue listener 110 may execute method step 3 , shown in
FIG . 1 , where a call is executed to the validation component
112 for execution of validation processing of specific con
tent (e.g. , electronic file) . Based on method step 3 , the
validation component 112 may execute validation process
ing by calling a schema validation engine component 118 to
execute validation processing for content (e.g. , updated
content) .
[0038] When the validation component 112 receives a
message , from the queue listener 110 , with the identity of the
content to be validated , the validation component 112 uses
the identity (ID) to fetch the freshest content for that identity
from the cache memory 106. Method step 4 , shown in FIG .
1 , illustrates the interaction between the cache memory 106
and the validation component 112 , where the validation
component 112 may either : 1) directly access the data
structure (and associated data) for the electronic file in the
cache memory 106 ; or 2) the cache memory 106 may
propagate the data structure (and associated data) for the
electronic file to the validation component 112 to execute
further processing .
[0039] As referenced above , the validation component 112
is configured to implement a schema validation engine
component 118 (hereinafter “ schema validation engine
118 ”) to execute validation processing of the content , where
content may be checked for invalidity . The schema valida
tion engine 118 applies validation rules to identify invalidi
ties in a data structure for an electronic file . The validation
component 112 interfaces with the schema validation engine
118 to transmit content for schema validation , for example ,
where data structures may be propagated to (or accessed by)
the schema validation engine 118. Step 5 (of FIG . 1)
comprises sending content to the schema validation engine
118 to execute validation processing on a data structure of
the content .
[0040] An exemplary schema validation engine compo
nent 118 is configured to execute validation processing to
identify data invalidations in a data structure for an elec
tronic file . In executing validation processing , the schema
validation engine 118 may be configured to execute any of :
computer programs , software agents , application program
ming interfaces (APIs) , neural networks and / or machine
learning processing , among other examples . For instance , an
exemplary machine learning model may be generated and
trained to evaluate data structures for electronic files by
applying validation rules that identify invalidities in a data
structure (and specific properties within the data structure)
as well as determine and apply applicable in - memory fixes
to update a data structure to remove any invalidities . A set
of validation rules may comprise rules for identifying inva
lidities as well as rules for remedying identified invalidities .
In another example , the validation component 112 is con
figured to manage a separate set of rules for executing an
in - memory fix of identified data invalidations . Creation , a

US 2021/0334267 A1 Oct. 28 , 2021
7

training and update of a machine learning model is known
to one skilled in the field of art . In the present examples , a
machine learning model may be further customized for
validation processing using training data that adapts the
machine learning model for detection of invalidities in file
content and applying in - memory fixes to update a data
structure of an electronic file . The schema validation engine
118 is built with a set of validation checks and they check
every part of the data structure for consistency and detect if
the data is invalid . As one example , consider a graph as the
underlying data structure for the content , with multiple
different types of nodes with multiple properties , that are
also cross - referenced in other nodes . In that example , a
validation rule could be to check that nodes have the right
ranges for the property values . Another one could be to
check that the graph does not have any missing child nodes ,
or duplicate nodes . In another example , specific file prop
erties such as file extensions , formatting , access privileges ,
etc. , may be validated . The type of content validation could
differ based on the data structure under consideration .

[0041] Exemplary validation processing may comprise
evaluation of full content of an electronic file , where an
entirety of data structure for an electronic file may be
evaluated . As such , in some examples , validation processing
may periodically check a data structure of an electronic file
to proactively identify and prevent potential issues that may
arise during execution of an exemplary application / service .
In some alternative instances , detection of content for vali
dation may comprise identification of specific content that
was edited within an electronic file (e.g. , a portion of the
electronic file) . It is to be understood that validation pro
cessing described herein is applicable to instances where an
entirety of a data structure is evaluated as well as those in
which only a portion of the data structure (e.g. , pertaining to
specific content within a file) is evaluated .
[0042] Once the schema validation engine 118 has
detected invalidity in the content , using the validation rules ,
the schema validation engine 118 generates a list of identi
fied data invalidations for the validation component 112 .
Step 6 of FIG . 1 comprises processing operations where the
schema validation engine 118 sends a list of one or more
identified data invalidations to the validation component 112
and the validation component 112 receives the list of data
invalidations . In some examples , the validation component
112 is configured to immediately execute an in - memory fix
of the content (e.g. , data structure of the content) based on
application of validation rules for remedying identified
invalidations . In other examples , the validation component
112 is configured to execute subsequent processing to ana
lyze identified data invalidations to further improve opera
tion of an application / service .
[0043] In examples where subsequent analysis is executed
on identified data invalidations , the validation component
112 sends the listing of one or more identified data invali
dations to an aggregation component 120 (step 7 of FIG . 1) .
The aggregation component 120 is configured to execute
processing operations to aggregate and analyze identified
data invalidations . Specific processing operations executed
by an exemplary aggregation component 120 are subse
quently described in method 200 (FIG . 2) , among other
portions of the present disclosure . Processing by the aggre
gation component 120 is used to assess the impact of data
invalidations and manage remediation of the data invalida

tions based on results of an assessment of the impact of the
data invalidation on operation of an application / service .
[0044] The aggregation component 120 executes opera
tions to aggregate identified data invalidations to one or
more levels . Rules for data aggregation when working with
domain - specific content , including rules for categorizing
data invalidations into specific types / groupings , may be
programmed by developers to automate aggregation pro
cessing . Categorization of types of data invalidations may be
specific to an application / service or a plurality of applica
tions / services (e.g. , a suite of productivity applications /
services) . For example , types of identified data invalidations
may be aggregated according to one or more temporal
counts to identify recency of data invalidations . The tem
poral counts used for aggregation may be set by developers
and indicate a specific time period in which developers wish
to analyze operation of an application / service . For instance ,
a temporal count may be set to aggregate data invalidations
within a specific minute , hour , day month , year or any other
period of time . This may assist with identifying issues that
are most relevant to operation of an application / service in
that specified period of time . Other levels of aggregation
may also be applied (alone or in combination with temporal
count analysis) to enhance analysis of identified data invali
dations . Such levels of aggregation comprise but are not
limited to : types of data invalidations by user categorization /
groupings of users ; types of data invalidations that are
specific to one application / service and / or a plurality of
applications / services , and groupings of data invalidations
that resulted in data loss or application / service interruption ,
among other examples .
[0045] Once data invalidations have been aggregated , the
aggregation component 120 is configured to analyze the
aggregated types of data invalidations to determine contex
tual insights into issues associated with an application /
service for a specific period of time . Aggregation and
analysis processing improve validation processing through
identification and prioritization of remediation of data
invalidations based on a potential impact to operation of an
application / service . For example , data invalidations may be
analyzed based on aggregated count types (e.g. , numeric
and / or temporal) , intensity indicating impact on operation of
an application / service , and / or a combination thereof . As
referenced in the foregoing description , intensity of associ
ated with a data invalidation refers to the impact of the data
invalidation on operation of an application / service . Non
limiting examples of parameters for evaluating intensity of
a data invalidation comprise but are not limited to : a number
of data invalidations in an aggregated type (e.g. , count of a
specific type of data invalidations) ; a type of document
associated with content that in which the data invalidation is
identified ; an amount of data loss associated with an indi
vidual data invalidation , domain - specific business require
ments associated with the application or service ; and user
feedback signal data collected from usage of the application
or service , among other examples . Developers may pre - set
a number of different classifications of intensity (e.g. , low ,
medium , high) to classify aggregated types of data invali
dations . Any number of intensity classifications may be
generated without departing from the spirit of the present
disclosure . Intensity classifications may be used to prioritize
data invalidations for remediation by the validation compo
nent 112 .

a

a

US 2021/0334267 A1 Oct. 28 , 2021
8

[0046] The aggregation component 120 is configured to
implement machine learning modeling to apply parameters
associated with intensity to evaluate specific types of data
invalidations . Intensity classifications may be generated
based on results of machine learning modeling that is trained
to evaluate data invalidations in domain - specific contexts .
Machine learning modeling may be adapted , trained and
updated to continuously classify data invalidations . Devel
opers may apply weighing to different parameters , based on
contextual scenarios in which the data invalidations are
detected . Machine learning modeling may be trained to
classify aggregated data invalidations according to intensity
based on pre - determined weightings set by developers . For
example , one type of data invalidation may occur in a type
of electronic document that is not frequently accessed by
users where that type of data invalidation also results in no
significant data loss during operation (e.g. , presentation)
within a GUI of an application / service . In that specific
scenario , the data invalidation may be classified as having a
low intensity . In contrast , a type of electronic document that
is frequently accessed where a data invalidation results in
significant data loss during operation of an application /
service may result in a data invalidation being classified as
having a high intensity . In another example , a data invali
dation may relate to a frequently accessed electronic docu
ment but not result in significant data loss . This may result
in an intermediate intensity classification (e.g. , medium ,
medium - low) . In further examples , specific applications /
service may have domain specific requirements for classi
fying data invalidations where a type of electronic document
or a threshold of data loss results in a specific intensity
classification for a data invalidation . In additional examples ,
user feedback , received through an application / service , may
be utilized to classify an intensity of a data invalidation . For
instance , a user may offer , through a GUI , a classification of
an error it came across or user comments / feedback may be
contemplated when classifying an intensity of a data invali
dation . To further reiterate , intensity classifications may
further account for a number (count) of data invalidations in
an aggregated type of data invalidation . For instance , a
classification of a type of data invalidation that has a
plurality of instances of data invalidations for that type may
have a higher intensity ranking than a classification type that
has a small number of data invalidations in that grouping .
[0047] The aggregation component 120 is configured to
generate and utilize a ranking of intensity of data invalida
tions (e.g. , aggregated types of data invalidations) . For
instance , one or more data invalidations , identified within a
temporal count , that have a highest intensity ranking may be
prioritized for data remediation processing over other
queued data validation processing requests (e.g. , checks for
invalidities amongst data structures associated with content) .
The ranking may be utilized by the validation component
112 to identify an order in which to execute error remedia
tion of data invalidations . Ranking (or scoring processing)
as pertaining to machine learning modeling is known to one
skilled in the field of art . In one example , a classifier is
trained to rank aggregated types of data invalidations
according to intensity based on domain - specific training that
contemplates training data and parameters (features) that
define intensity . In some examples , intensity ranking may be
plotted into a graphical representation and / or other types of
telemetric analysis that may be provided to developers to
illustrate trends in data validation for specific temporal

counts . The aggregation component 120 may be configured
to plot intensity of types of data invalidations and present ,
through a GUI , a graphical representation of intensity of data
invalidations . Other types of telemetric analysis , resulting
from execution of machine learning modeling , may also be
provided to developers such as in a report form presented
through a GUI or sent via other types of modalities (e.g. ,
email , message) . This may be useful for tuning subsequent
validation processing and error remediation .
(0048] At step 8 of FIG . 1 , the aggregation component 120
sends / transmits , to the validation component 112 , a priori
tized aggregation of data invalidations for remediation . This
may comprise a ranked listing of aggregated data invalida
tions that the validation component 112 may utilize to order
how validation processing operations are applied . A ranked
listing may comprise identification of one or more aggre
gated grouping of data invalidations . The validation com
ponent 112 may be configured to prioritize operations to
remediate the identified data invalidations according to the
rankings provided by the aggregation component . In one
example , error remediation operations may be prioritized
over other types of validation processing operations (e.g. ,
identification of new invalidities) . In another example , the
validation component 112 may utilize this ranked listing to
re - order processing operations for data validation that will
subsequently be executed . For example , data invalidations
having a highest ranked intensity may be remediated first
and data invalidations having lower ranked intensity may be
scheduled to be remediated at a later point in time . In
alternative examples , the aggregation component 120 may
be configured to notify the validation component 112 of
analysis of data invalidations in batches . For instance ,
identified groupings or subsets of data invalidations may be
propagated to the validation component 112 according to an
analyzed level of intensity associated with an aggregated
type of data invalidation (e.g. , highest intensity data valida
tions sent in a batch and lower intensity data invalidations in
another batch) . This may assist the validation component
112 in efficiently executing validation processing without
being overwhelmed . In some alternative examples (not
shown in process flow 100) , the aggregation component 120
may interface directly with the queue 108 to prioritize / re
order validation processing transactions for execution by the
validation component 112. This may enable the validation
component 112 to focus directly on validation processing
and error remediation .
(0049] During error remediation , the validation compo
nent 112 attempts an in - memory fix of the content based on
the programmed validation rules (step 9 of process flow
100) . Along with this type of invalid content detection , the
validation rules may also have information on how to
modify the data structure so as to correct the content within
it , in order to get the content into a consistent state . One
example of a fix to the “ missing child node issue ” could be
search the graph to find if the data that was expected in the
missing child is present elsewhere , and then reconstruct a
child with that data and replace the missing child . Another
fix for an “ incorrect property value issue ” could be to change
the value of the property so that it aligns with the valid
property values for that node while maintaining consistency .
In another example , validation rules may be set to evaluate
file extensions associated with specific content portions . In
an instance where a file extension is identified as issue with
corrupted content , an in - memory fix of the data structure for

a

a

US 2021/0334267 A1 Oct. 28 , 2021
9

the electronic file may comprise processing operations that
update the file extension , for example , to a recognized file
extension for processing (e.g. , display) of content .
[0050] When a version of the data structure is updated , the
validation component 112 is programmed to write the
updated content to the permanent data storage 114 of the
real - time system . Method step 10 of FIG . 1 illustrates the
interaction between the validation component 112 and / or the
cache memory 106 with the permanent data storage 114 ,
where a data structure for content (containing the data
invalidation) is updated . In one example , the validation
component 112 writes the updated data structure in the cache
memory 106 and directs the cache memory 106 to forward
the updated data structure to the permanent data storage 114 .
In another example , the validation component 112 directly
requests update of the electronic file with the permanent data
storage 114. In that case , the validation component 112
propagates the updated data structure , for an electronic file ,
to the permanent data storage 114. For instance , the valida
tion component 112 may obtain the updated data structure
from the cache memory 106 and forward it to the permanent
data storage 114 .
[0051] As identified in the foregoing , process flow 100
may further comprise hosting components 116. Hosting
components 116 may comprise applications , services and / or
systems , etc. , that may store data / content on the permanent
data storage 114 for execution thereof . For instance , the
permanent data storage 114 may service a plurality of
applications / services , where an application / service may be
configured to work with the cache memory 106 while other
applications / service may make edits to content without
using the cache memory 106. Examples of applications and
services have been provided in the foregoing description .
Exemplary systems may comprise hardware components ,
software components or a combination thereof configured
for processing of any type of data including content .
[0052] FIG . 2 illustrates an exemplary method 200 related
to data invalidation aggregation , analysis and remediation ,
with which aspects of the present disclosure may be prac
ticed . Processing operations described in method 200 may
be executed by components described in process flow 100
(FIG . 1) , where the detailed description in process flow 100
supports and supplements the recited processing operations
in method 200. Interfacing and communication between
exemplary components , such as those described in process
flow 100 , are known to one skilled in the field of art . For
example , data requests and responses may be transmitted
between applications / services to enable specific applica
tions / services to process data retrieved from other applica
tions / services . Formatting for such communication may
vary according to programmed protocols implemented by
developers without departing from the spirit of this disclo

some examples , processing operations described in method
200 may be executed by one or more applications / services
associated with a web service that has access to a plurality
of application / services , devices , knowledge resources , etc.
In one instance , processing operations described in method
200 may be implemented by one or more components
connected over a distributed network .
[0054] Method 200 begins at processing operation 202 ,
where a plurality of data invalidations is identified for
subsequent error remediation analysis . Identification of data
invalidations has been described in the foregoing description
including the description of process flow 100 (FIG . 1) . In
one example , data invalidations are identified based on
application of validation rules that detect invalidities in data
structures of content accessed through an application / service
(e.g. , content that has been updated) . However , data valida
tion processing may be executed on any type of electronic
file associated with an application / service without requiring
a user to update the content (or add new electronic files)
before validation processing is performed .
[0055] Flow of method 200 may proceed to processing
operation 204 , where the identified data invalidations are
aggregated to one or more levels . Aggregation processing of
data invalidations has been described in the foregoing
description including the description of process flow 100
(FIG . 1) . An aggregation component may be configured to
execute aggregation processing . For example , identified data
invalidations are aggregated based on type within a specific
temporal count . In one instance , types of data invalidations
are aggregated on a daily basis (i.e. one day increments) for
subsequent analysis .
[0056] At processing operation 206 , the aggregated types
of data invalidations within a specific temporal count are
analyzed to determine an intensity for the aggregated types
of data invalidations . Intensity analysis processing has been
described in the foregoing description including the descrip
tion of process flow 100 (FIG . 1) . An aggregation compo
nent may be configured to execute analysis of intensity of
aggregated types of data invalidations . As referenced in the
foregoing description , intensity may correlate the impact of
the data invalidation on presentation of content through an
application / service . Non - limiting examples of parameters
for evaluating intensity of a data invalidation comprise but
are not limited to : a number of data invalidations in an
aggregated type (e.g. , count of a specific type of data
invalidations) ; a type of document associated with content
that in which the data invalidation is identified ; an amount
of data loss associated with an individual data invalidation ,
domain - specific business requirements associated with the
application or service ; and user feedback signal data col
lected from usage of the application or service , among other
examples .
[0057] Intensity analysis of aggregated types of data
invalidations may lead to generation of telemetry analytics
that can identify trends and patterns in data invalidations for
a specific period of time . In processing operation 208 ,
intensity of the aggregated types of data invalidations may
be graphed . Graphing (processing operation 208) of the
various intensities may comprise plotting , for the temporal
count , intensity of the aggregated types of identified data
invalidations based on the analyzing ; and outputting a
graphical representation of the plotted intensity of the aggre
gated types of identified data invalidations during the tem
poral count . As referenced in the foregoing description ,

a

sure .

[0053] As an example , method 200 may be executed
across an exemplary computing system (or computing sys
tems) as described in the description of FIG . 3. Exemplary
components , described in method 200 , may be hardware
and / or software components , which are programmed to
execute processing operations described herein . Operations
performed in method 200 may correspond to operations
executed by a system and / or service that execute computer
programs , software agents , intelligent bots , application pro
gramming interfaces (APIs) , neural networks and / or
machine - learning processing , among other examples . In

US 2021/0334267 A1 Oct. 28 , 2021
10

as

exemplary graphing of intensities of aggregated data invali
dations may be presented to a developer through a GUI or
other modality .
[0058] Flow of method 200 may proceed to processing
operation 210 , where the aggregated types of identified data
invalidations during the count (e.g. , temporal count) are
ranked based on results of the analyzing of the intensity of
the aggregated types of identified data invalidations . Rank
ing processing has been described in the foregoing descrip
tion including the description of process flow 100 (FIG . 1) .
[0059] The ranking of the identified data invalidations
may be propagated (processing operation 212) to a data
validation component that executes the remediating of the
one or more data invalidations . As identified in the foregoing
description , including the description of process flow 100 , a
data validation component may prioritize remediation pro
cessing of one or more data invalidations over other queued
data validation processing requests based on the ranking
processing . Examples of processing operations for prioritiz
ing error remediation transactions and / or re - ordering data
validation transactions for processing based on the ranking
have been described in the foregoing description .
[0060] At processing operation 214 , one or more data
invalidations are remediated based on the ranking . Reme
diation of data invalidations has been described in the
foregoing description including the description of process
flow 100 (FIG . 1) . In some examples , remediation of data
invalidations occurs asynchronously from real - time access
to the content through an application / service . For instance ,
a data validation component may be configured to detect that
content is no longer being accessed by a user or offline from
access by an application / service . This may be a trigger to
execute remediation processing on a data invalidation . In
another example , processing operation occurs after detecting
that read - write access to the content is not requested through
the application or service . That is , data remediation occurs
asynchronously from real - time access to the content through
the application or service based on detecting that the read
write access to the content is not actively being requested .
[0061] Error remediation (processing operation 214) may
include processing operations that comprise but are not
limited to : reading , for content associated with a data
invalidation a full data structure for an electronic file from
a cache memory associated with the application or service ;
updating the full data structure to correct the one or more
data invalidations , and propagating the updated full data
structure to a permanent data storage for subsequent access
to the electronic file through the application or service .
When an electronic file is subsequently called to be accessed
at a later point in time , the updated data structure is read into
a cache memory associated with an application / service .
[0062] Flow of method 200 may proceed to decision
operation 216. At decision operation 216 , it is determined if
a data invalidation was successfully remediated . In instances
where data remediation was not successful , flow of decision
operation 216 branches NO and processing of method 200
returns to processing operation 214. At processing operation
214 , a data fix may be retried to resolve the data invalidation .
In instances where a data invalidation is successfully reme
diated , flow of decision operation 216 branches YES and
processing of method 200 remains idle until new data
invalidations are to be addressed .
[0063] FIG . 3 illustrates a computing system 301 that is
suitable for implementing content validation processing

described herein , with which aspects of the present disclo
sure may be practiced . Computing system 301 , which is
representative of any system or collection of systems in
which the various applications , services , scenarios , and
processes disclosed herein may be implemented . Examples
of computing system 301 include , but are not limited to ,
server computers , rack servers , web servers , cloud comput
ing platforms , and data center equipment , as well as any
other type of physical or virtual server machine , container ,
and any variation or combination thereof . Other examples
may include smart phones , laptop computers , tablet com
puters , desktop computers , hybrid computers , gaming
machines , virtual reality devices , smart televisions , smart
watches and other wearable devices , well as any variation
or combination thereof . Computing system 301 may be
utilized to implement process flow 100 (FIG . 1) implement
ing exemplary components as described in the foregoing
description . Computing system 301 may further be utilized
to execute exemplary method 200 (FIG . 2) , where process
ing operations may be specifically executed that are related
to data invalidation aggregation , analysis and remediation as
described in the foregoing description .
[0064) Computing system 301 may be implemented as a
single apparatus , system , or device or may be implemented
in a distributed manner as multiple apparatuses , systems , or
devices . For example , computing system 301 may comprise
one or more computing devices that execute processing for
applications and / or services over a distributed network to
enable execution of processing operations described herein
over one or more services . Computing system 301 may
comprise a collection of devices executing processing for
front - end applications / services , back - end applications / ser
vice or a combination thereof . Computing system 301 com
prises , but is not limited to , processing system 302 , storage
system 303 , software 305 , communication interface system
307 , and user interface system 309. Processing system 302
is operatively coupled with storage system 303 , communi
cation interface system 307 , and user interface system 309 .
Processing system 302 loads and executes software 305
from storage system 303. Software 305 includes one or more
software components that are configured for cache data
validation processing 306a , aggregation component pro
cessing 306b and / or other applications / services of an appli
cation platform as described in the foregoing description .
Exemplary cache data validation processing comprises
operations to access , read , validate and update data in a
cache memory and / or interfacing with a permanent data
storage . The aggregation component processing executes
processing operations described herein related to data invali
dation aggregation , data invalidation analysis (including
intensity graphing) and data remediation of invalidations .
When executed by processing system 302 , software 305
directs processing system 302 to operate as described herein
for at least the various processes , operational scenarios , and
sequences discussed in the foregoing implementations .
Computing system 301 may optionally include additional
devices , features , or functionality not discussed for purposes
of brevity .
[0065] Referring still to FIG . 3 , processing system 302
may comprise processor , a micro - processor and other cir
cuitry that retrieves and executes software 305 from storage
system 303. Processing system 302 may be implemented
within a single processing device but may also be distributed
across multiple processing devices or sub - systems that coop

US 2021/0334267 A1 Oct. 28 , 2021
11

erate in executing program instructions . Examples of pro
cessing system 302 include general purpose central process
ing units , graphical processing units , application specific
processors , and logic devices , as well as any other type of
processing device , combinations , or variations thereof .
[0066] Storage system 303 may comprise any computer
readable storage media readable by processing system 302
and capable of storing software 305. Storage system 303
may include volatile and nonvolatile , removable and non
removable media implemented in any method or technology
for storage of information , such as computer readable
instructions , data structures , program modules , cache
memory or other data . Examples of storage media include
random access memory , read only memory , magnetic disks ,
optical disks , flash memory , virtual memory and non - virtual
memory , magnetic cassettes , magnetic tape , magnetic disk
storage or other magnetic storage devices , or other suitable
storage media , except for propagated signals . In no case is
the computer readable storage media a propagated signal .
[0067] In addition to computer readable storage media , in
some implementations storage system 303 may also include
computer readable communication media over which at least
some of software 305 may be communicated internally or
externally . Storage system 303 may be implemented as a
single storage device but may also be implemented across
multiple storage devices or sub - systems co - located or dis
tributed relative to each other . Storage system 303 may
comprise additional elements , such as a controller , capable
of communicating with processing system 302 or possibly
other systems .
[0068] Software 305 may be implemented in program
instructions and among other functions may , when executed
by processing system 302 , direct processing system 302 to
operate as described with respect to the various operational
scenarios , sequences , and processes illustrated herein . For
example , software 305 may include program instructions for
implementing an exemplary cache data validation process
ing 306a , the aggregation component processing 306b and /
or other applications / services of an application platform , as
described in the foregoing description .
[0069] In particular , the program instructions may include
various components or modules that cooperate or otherwise
interact to carry out the various processes and operational
scenarios described herein . The various components or
modules may be embodied in compiled or interpreted
instructions , or in some other variation or combination of
instructions . The various components or modules may be
executed in a synchronous or asynchronous manner , serially
or in parallel , in a single threaded environment or multi
threaded , or in accordance with any other suitable execution
paradigm , variation , or combination thereof . Software 305
may include additional processes , programs , or components ,
such as operating system software , virtual machine software ,
or other application software . Software 305 may also com
prise firmware or some other form of machine - readable
processing instructions executable by processing system
302 .
[0070] In general , software 305 may , when loaded into
processing system 302 and executed , transform a suitable
apparatus , system , or device (of which computing system
301 is representative) overall from a general - purpose com
puting system into a special - purpose computing system
customized to process data and respond to queries . Indeed ,
encoding software 305 on storage system 303 may transform

the physical structure of storage system 303. The specific
transformation of the physical structure may depend on
various factors in different implementations of this descrip
tion . Examples of such factors may include , but are not
limited to , the technology used to implement the storage
media of storage system 303 and whether the computer
storage media are characterized as primary or secondary
storage , as well as other factors .
[0071] For example , if the computer readable storage
media are implemented as semiconductor - based memory ,
software 305 may transform the physical state of the semi
conductor memory when the program instructions are
encoded therein , such as by transforming the state of tran
sistors , capacitors , or other discrete circuit elements consti
tuting the semiconductor memory . A similar transformation
may occur with respect to magnetic or optical media . Other
transformations of physical media are possible without
departing from the scope of the present description , with the
foregoing examples provided only to facilitate the present
discussion .
[0072] Communication interface system 307 may include
communication connections and devices that allow for com
munication with other computing systems (not shown) over
communication networks (not shown) . Communication
interface system 307 may also be utilized to cover interfac
ing between processing components described herein .
Examples of connections and devices that together allow for
inter - system communication may include network interface
cards or devices , antennas , power amplifiers , RF circuitry ,
transceivers , and other communication circuitry . The con
nections and devices may communicate over communica
tion media to exchange communications with other com
puting systems or networks of systems , such as metal , glass ,
air , or any other suitable communication media . The afore
mentioned media , connections , and devices are well known
and need not be discussed at length here .
[0073] User interface system 309 is optional and may
include a keyboard , a mouse , a voice input device , a touch
input device for receiving a touch gesture from a user , a
motion input device for detecting non - touch gestures and
other motions by a user , and other comparable input devices
and associated processing elements capable of receiving
user input from a user . Output devices such as a display ,
speakers , haptic devices , and other types of output devices
may also be included in user interface system 309. In some
cases , the input and output devices may be combined in a
single device , such as a display capable of displaying images
and receiving touch gestures . The aforementioned user input
and output devices are well known in the art and need not be
discussed at length here .
[0074] User interface system 309 may also include asso
ciated user interface software executable by processing
system 302 in support of the various user input and output
devices discussed above . Separately or in conjunction with
each other and other hardware and software elements , the
user interface software and user interface devices may
support a graphical user interface , a natural user interface , or
any other type of user interface , for example , that enables
front - end processing of exemplary application / services
described herein (including productivity applications / ser
vices) . In some examples , user interface system 309 may be
configured to output and display results of data invalidation
aggregation and analysis . For instance , a graphing illustrat
ing intensity of aggregated data invalidations within a tem

US 2021/0334267 A1 Oct. 28 , 2021
12

a

poral count may be output for display through a graphical
user interface for developers , programmers , etc. to visually
identify groupings and intensities of data invalidations
within specific time period .
[0075] Communication between computing system 301
and other computing systems (not shown) , may occur over
a communication network or networks and in accordance
with various communication protocols , combinations of
protocols , or variations thereof . Examples include intranets ,
internets , the Internet , local area networks , wide area net
works , wireless networks , wired networks , virtual networks ,
software defined networks , data center buses , computing
backplanes , or any other type of network , combination of
network , or variation thereof . The aforementioned commu
nication networks and protocols are well known and need
not be discussed at length here . However , some communi
cation protocols that may be used include , but are not limited
to , the Internet protocol (IP , IPv4 , IPv6 , etc.) , the transfer
control protocol (TCP) , and the user datagram protocol
(UDP) , as well as any other suitable communication proto
col , variation , or combination thereof .
[0076] In any of the aforementioned examples in which
data , content , or any other type of information is exchanged ,
the exchange of information may occur in accordance with
any of a variety of protocols , including FTP (file transfer
protocol) , HTTP (hypertext transfer protocol) , REST (rep
resentational state transfer) , WebSocket , DOM (Document
Object Model) , HTML (hypertext markup language) , CSS
(cascading style sheets) , HTML5 , XML (extensible markup
language) , JavaScript , JSON (JavaScript Object Notation) ,
and AJAX (Asynchronous JavaScript and XML) , as well as
any other suitable protocol , variation , or combination
thereof .
[0077] The functional block diagrams , operational sce
narios and sequences , and flow diagrams provided in the
Figures are representative of exemplary systems , environ
ments , and methodologies for performing novel aspects of
the disclosure . While , for purposes of simplicity of expla
nation , methods included herein may be in the form of a
functional diagram , operational scenario or sequence , or
flow diagram , and may be described as a series of acts , it is
to be understood and appreciated that the methods are not
limited by the order of acts , as some acts may , in accordance
therewith , occur in a different order and / or concurrently with
other acts from that shown and described herein . For
example , those skilled in the art will understand and appre
ciate that a method could alternatively be represented as a
series of interrelated states or events , such as in a state
diagram . Moreover , not all acts illustrated in a methodology
may be required for a novel implementation .
[0078] The descriptions and figures included herein depict
specific implementations to teach those skilled in the art how
to make and use the best option . For the purpose of teaching
inventive principles , some conventional aspects have been
simplified or omitted . Those skilled in the art will appreciate
variations from these implementations that fall within the
scope of the invention . Those skilled in the art will also
appreciate that the features described above can be com
bined in various ways to form multiple implementations . As
a result , the invention is not limited to the specific imple
mentations described above , but only by the claims and their
equivalents .
[0079] Reference has been made throughout this specifi
cation to “ one example ” or “ an example , " meaning that a

particular described feature , structure , or characteristic is
included in at least one example . Thus , usage of such
phrases may refer to more than just one example . Further
more , the described features , structures , or characteristics
may be combined in any suitable manner in one or more
examples .
[0080] One skilled in the relevant art may recognize ,
however , that the examples may be practiced without one or
more of the specific details , or with other methods ,
resources , materials , etc. In other instances , well known
structures , resources , or operations have not been shown or
described in detail merely to observe obscuring aspects of
the examples .
[0081] While sample examples and applications have been
illustrated and described , it is to be understood that the
examples are not limited to the precise configuration and
resources described above . Various modifications , changes ,
and variations apparent to those skilled in the art may be
made in the arrangement , operation , and details of the
methods and systems disclosed herein without departing
from the scope of the claimed examples .
What is claimed is :
1. A method comprising :
identifying a plurality of data invalidations associated

with content of an application or service ;
aggregating the identified data invalidations during a

temporal count designating a specific time period of
operation of the application or service ;

analyzing , for an aggregated type of identified data invali
dations , an intensity that corresponds with an impact on
presentation of the content through the application or
service , wherein the intensity is a classification gener
ated based on an evaluation of parameters comprising :
a number of data validations during the temporal count

in the aggregated type of identified data invalida
and

a determination as to an amount of data loss associated
with the content for the aggregated type of identified
data invalidations ;

ranking the aggregated type of identified data invalida
tions during the temporal count based on results of the
analyzing of the intensity ; and

accessing , via a cache memory associated with the appli
cation or service based on a result of the ranking , a full
data structure for an electronic file that comprises the
data invalidations .

2. The method of claim 1 , wherein the classification ,
associated with the intensity , is further generated based on
evaluation of parameters comprising : a type of document
associated with the content , domain - specific business
requirements associated with the application or service , and
user feedback signal data collected from usage of the
application or service .

3. The method of claim 1 , wherein the ranking further
comprises : graphing , for the aggregated type of identified
data invalidations during the temporal count , the intensity
based on a result of the analyzing ; and outputting a graphical
representation of the graphing to aid remediation determi
nations .

4. The method of claim 1 , wherein an analysis of intensity
of the aggregated type of identified data invalidations and a
ranking analysis , performed in the ranking of the aggregated
types of identified data invalidations , occur via application
of a trained machine learning model that is adapted to

tions ,

a

US 2021/0334267 A1 Oct. 28 , 2021
13

tions ,

generate the classification of intensity and assign a priority
ranking to the aggregated type of identified data invalida
tions relative to other aggregated types of identified data
invalidations .

5. The method of claim 5 , further comprising : modifying ,
in a data validation queue , an order of execution of data
remediation jobs based on the priority ranking associated
with the aggregated type of identified data invalidations .

6. The method of claim 1 , wherein the determination as to
the amount of data loss associated with the content is a
threshold analysis of data loss relative to a predetermined
threshold set for data loss associated with the application or
service .

7. The method of claim 1 , further comprising : remediat
ing , via the cache memory , one or more data invalidations
using the full data structure .

8. A system comprising :
at least one processor ; and
a memory , operatively connected with the at least one

processor , storing computer - executable instructions
that , when executed by the at least one processor ,
causes the at least one processor to execute a method
that comprises :
identifying a plurality of data invalidations associated

with content of an application or service ;
aggregating the identified data invalidations during a

temporal count designating a specific time period of
operation of the application or service ;

analyzing , for an aggregated type of identified data
invalidations , an intensity that corresponds with an
impact on presentation of the content through the
application or service , wherein the intensity is a
classification generated based on an evaluation of
parameters comprising :
a number of data validations during the temporal

count in the aggregated type of identified data
invalidations , and

a determination as to an amount of data loss asso
ciated with the content for the aggregated type of
identified data invalidations ;

ranking the aggregated type of identified data invali
dations during the temporal count based on results of
the analyzing of the intensity ; and

accessing , via a cache memory associated with the
application or service based on a result of the rank
ing , a full data structure for an electronic file that
comprises the data invalidations .

9. The system of claim 8 , wherein the classification ,
associated with the intensity , is further generated based on
evaluation of parameters comprising : a type of document
associated with the content , domain - specific business
requirements associated with the application or service , and
user feedback signal data collected from usage of the
application or service .

10. The system of claim 8 , wherein the ranking further
comprises : graphing , for the aggregated type of identified
data invalidations during the temporal count , the intensity
based on a result of the analyzing ; and outputting a graphical
representation of the graphing to aid remediation determi
nations .

11. The system of claim 8 , wherein an analysis of intensity
of the aggregated type of identified data invalidations and a
ranking analysis , performed in the ranking of the aggregated
types of identified data invalidations , occur via application

of a trained machine learning model that is adapted to
generate the classification of intensity and assign a priority
ranking to the aggregated type of identified data invalida
tions relative to other aggregated types of identified data
invalidations .

12. The system of claim 11 , wherein the method , executed
by the at least one processor , further comprises : modifying ,
in a data validation queue , an order of execution of data
remediation jobs based on the priority ranking associated
with the aggregated type of identified data invalidations .

13. The system of claim 8 , wherein the method , executed
by the at least one processor , further comprises : remediating ,
via the cache memory , one or more data invalidations using
the full data structure .

14. A method comprising :
identifying a plurality of data invalidations associated

with content of an application or service ;
aggregating the identified data invalidations during a

temporal count designating a specific time period of
operation of the application or service ;

analyzing , for an aggregated type of identified data invali
dations , an intensity that corresponds with an impact on
presentation of the content through the application or
service , wherein the intensity is a classification gener
ated based on an evaluation of parameters comprising :
a number of data validations during the temporal count

in the aggregated type of identified data invalida
and

a determination as to an amount of data loss associated
with the content for the aggregated type of identified
data invalidations ;

ranking the aggregated type of identified data invalida
tions during the temporal count based on results of the
analyzing of the intensity ; and

executing , based on a result of the ranking , a call to a
cache memory associated with the application or ser
vice to retrieve a full data structure for an electronic
file , wherein the full data structure comprises the data
invalidations .

15. The method of claim 14 , wherein the classification ,
associated with the intensity , is further generated based on
evaluation of parameters comprising : a type of document
associated with the content , domain - specific business
requirements associated with the application or service , and
user feedback signal data collected from usage of the
application or service .

16. The method of claim 14 , wherein the ranking further
comprises : graphing , for the aggregated type of identified
data invalidations during the temporal count , the intensity
based on a result of the analyzing ; and outputting a graphical
representation of the graphing to aid remediation determi
nations .

17. The method of claim 14 , wherein an analysis of
intensity of the aggregated type of identified data invalida
tions and a ranking analysis , performed in the ranking of the
aggregated types of identified data invalidations , occur via
application of a trained machine learning model that is
adapted to generate the classification of intensity and assign
a priority ranking to the aggregated type of identified data
invalidations relative to other aggregated types of identified
data invalidations .

18. The method of claim 14 , further comprising : modi
fying , in a data validation queue , an order of execution of

.

US 2021/0334267 A1 Oct. 28 , 2021
14

data remediation jobs based on the priority ranking associ
ated with the aggregated type of identified data invalida
tions .

19. The method of claim 1 , further comprising : remedi
ating , via the cache memory , one or more data invalidations
using the full data structure .

20. The method of claim 1 , further comprising : loading
the full data structure in the cache memory ; and remediating ,
via the cache memory , one or more data invalidations using
the full data structure .

* * * *

