(19)

(12)

(11) **EP 3 318 633 A1**

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 09.05.2018 Bulletin 2018/19
- (21) Application number: 17200495.4
- (22) Date of filing: 17.11.2011
- (84) Designated Contracting States: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
- (30) Priority: 17.11.2010 JP 2010257022
- (62) Document number(s) of the earlier application(s) in accordance with Art. 76 EPC:
 11842145.2 / 2 644 698
- (71) Applicant: Chugai Seiyaku Kabushiki Kaisha Kita-ku Tokyo 115-8543 (JP)
- (72) Inventors: • IGAWA, Tomoyuki Gotemba-shi
 - Shizuoka 412-8513 (JP)
 SAMPEI, Zenjiro
 - Gotemba-shi Shizuoka 412-8513 (JP)
 - KOJIMA, Tetsuo Gotemba-shi Shizuoka 412-8513 (JP)
 - SOEDA, Tetsuhiro Gotemba-shi
 - Shizuoka 412-8513 (JP)

- (51) Int CI.: C12N 15/09^(2006.01) A61P 7/04^(2006.01) C12N 5/10^(2006.01)
- A61K 39/395^(2006.01) C07K 16/36^(2006.01) C12P 21/02^(2006.01)
- MUTO, Atsushi Gotemba-shi Shizuoka 412-8513 (JP)
 KITAZAWA, Takehisa
- Gotemba-shi
- Shizuoka 412-8513 (JP) • NISHIDA, Yukiko
- Gotemba-shi Shizuoka 412-8513 (JP) • IMAI, Chifumi
- IMAI, Chifumi Gotemba-shi Shizuoka 412-8513 (JP)
- SUZUKI, Tsukasa Gotemba-shi Shizuoka 412-8513 (JP)
 YOSHIHASHI, Kazutaka
- Gotemba-shi Shizuoka 412-8513 (JP)
- (74) Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB Siebertstrasse 3 81675 München (DE)

Remarks:

This application was filed on 08-11-2017 as a divisional application to the application mentioned under INID code 62.

(54) MULTI-SPECIFIC ANTIGEN-BINDING MOLECULE HAVING ALTERNATIVE FUNCTION TO FUNCTION OF BLOOD COAGULATION FACTOR VIII

(57) Various bispecific antibodies that specifically bind to both blood coagulation factor IX/activated blood coagulation factor IX and blood coagulation factor X and functionally substitute for the cofactor function of blood coagulation factor VIII, that is, the function to promote

activation of blood coagulation factor X by activated blood coagulation factor IX, were produced. From these antibodies, multispecific antigen-binding molecules having a high activity of functionally substituting for blood coagulation factor VIII were successfully discovered.

Printed by Jouve, 75001 PARIS (FR)

Description

Technical Field

⁵ **[0001]** The present invention relates to multispecific antigen-binding molecules that functionally substitute for blood coagulation factor VIII, a cofactor that enhances enzymatic reactions, and pharmaceutical compositions comprising such a molecule as an active ingredient.

Background Art

10

[0002] Hemophilia A is a bleeding abnormality caused by a hereditary decrease or deficiency of blood coagulation factor VIII (F.VIII) function. Hemophilia A patients are generally administered with an F.VIII formulation for the bleeding (on-demand administration). In recent years, F.VIII formulations are also administered prophylactically to prevent bleeding events (preventive administration; Non-patent Documents 1 and 2). The half-life of F.VIII formulations in blood is ap-

- ¹⁵ proximately 12 to 16 hours. Therefore, for continuous prevention, F.VIII formulations are administered to patients three times a week (Non-patent Documents 3 and 4). In on-demand administrations, F.VIII formulations are also additionally administered when necessary at regular intervals to prevent rebleeding. In addition, the administration of F.VIII formulations is done intravenously. Therefore, there has been a strong need for pharmaceutical agents with a lesser burden than F.VIII formulations.
- 20 [0003] Occasionally, anti-F.VIII antibodies (inhibitors) develop in hemophilia patients. Such inhibitors cancel the effects of the F.VIII formulations. For bleeding in patients who have developed inhibitors (inhibitor patients), bypass formulations are administered. Their action mechanisms are not dependent on F.VIII function, that is, the function of catalyzing the activation of blood coagulation factor X (F.X) by activated blood coagulation factor IX (F.IXa). Therefore, in some cases, bypass formulations cannot sufficiently stop the bleeding. Accordingly, there has been a strong need for pharmaceutical
- ²⁵ agents that are not affected by the presence of inhibitors and which can functionally substitute for F.VIII. [0004] Recently, as a means for solving the problem, antibodies that functionally substitute for F.VIII and their use were disclosed (Patent Documents 1, 2, and 3). The antibodies may be effective for acquired hemophilia in which anti-F.VIII autoantibodies are present and for von Willebrand disease caused by an abnormality or deficiency of function of von Willebrand factor (vWF), but the activity of functionally substituting for F.VIII was not always sufficient. Therefore,
- ³⁰ as pharmaceutical agents exhibiting a high hemostatic effect, antibodies with a higher activity of functionally substituting for F.VIII than the above-mentioned antibodies were desired.

Prior Art Documents

35 [Patent Document]

[0005]

[Patent Document 1] WO 2005/035754
 [Patent Document 2] WO 2005/035756
 [Patent Document 3] WO 2006/109592

[Non-patent Document]

⁴⁵ [0006]

50

55

[Non-patent Document 1] Blood 58, 1-13 (1981) [Non-patent Document 2] Nature 312, 330-337 (1984) [Non-patent Document 3] Nature 312, 337-342 (1984) [Non-patent Document4] Biochim.Biophys.Acta 871, 268-278 (1986)

Summary of the Invention

[Problems to be Solved by the Invention]

[0007] An objective of the present invention is to provide multispecific antigen-binding molecules that functionally substitute for F.VIII, a cofactor that enhances enzymatic reactions.

[Means for Solving the Problems]

[0008] As a result of dedicated research, the present inventors succeeded in discovering bispecific antibodies having a better F.Xa generation-promoting activity than known antibodies from among various bispecific antibodies that specifically bind to both F.IX/F.IXa and F.X, and substitute for the cofactor function of F.VIII, that is, the function to promote F.X activation by F.IXa (F.Xa generation-promoting function).

[0009] Furthermore, the present inventors succeeded in finding the positions in the amino acid sequences of bispecific antibodies having the activity of functionally substituting for F.VIII that are important for improving the F.Xa generation-promoting activity of these antibodies, and thus they successfully obtained bispecific antibodies in which the activity of

[0010] Specifically, the present invention relates to multispecific antigen-binding molecules that functionally substitute for F.VIII, a cofactor that enhances enzymatic reactions, and pharmaceutical compositions comprising such a molecule as an active ingredient, and specifically relates to the following:

- [1] a multispecific antigen-binding molecule that functionally substitutes for blood coagulation factor VIII, which comprises a first antigen-binding site that recognizes blood coagulation factor IX and/or activated blood coagulation factor IX and a second antigen-binding site that recognizes blood coagulation factor X, wherein the functional
- ²⁰ substitution for blood coagulation factor VIII results from an activated blood coagulation factor X (F.Xa) generation-promoting activity higher than the activity of a bispecific antibody (hA69-KQ/hB26-PF/hAL-AQ) which comprises an H chain comprising SEQ ID NOs: 165 and 166, and a commonly shared L chain comprising SEQ ID NO: 167;
 [2] the multispecific antigen-binding molecule of [1], which comprises a first polypeptide comprising a first antigen-binding site that recognizes blood coagulation factor IX and/or activated blood coagulation factor IX and a third
- ²⁵ polypeptide comprising a third antigen-binding site that recognizes blood coagulation factor IX and/or activated blood coagulation factor IX, as well as a second polypeptide comprising a second antigen-binding site that recognizes blood coagulation factor X and a fourth polypeptide comprising a fourth antigen-binding site that recognizes blood coagulation factor X;
- [3] the multispecific antigen-binding molecule of [2], wherein the first polypeptide and the third polypeptide each
 comprises an antigen-binding site of an H chain or L chain of an antibody against blood coagulation factor IX or
 activated blood coagulation factor IX, respectively; and the second polypeptide and the fourth polypeptide each
 comprises an antigen-binding site of an H chain or L chain of an antibody against blood coagulation factor X,
 respectively;
- [4] the multispecific antigen-binding molecule of [3], wherein the antigen-binding site of the first polypeptide comprises
 an antigen-binding site which comprises H chain CDRs consisting of any one of the amino acid sequences selected
 from the following (a1) to (a11), or an antigen-binding site functionally equivalent thereto, and the antigen-binding
 site of the second polypeptide comprises an antigen-binding site which comprises H chain CDRs consisting of any
 one of the amino acid sequences selected from the following (b1) to (b11), or an antigen-binding site functionally
- 40

45

50

55

5

15

(a1) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 75, 76, and 77 (H chain CDRs of Q1), respectively;

(a2) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 78, 79, and 80 (H chain CDRs of Q31), respectively;

(a3) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 81, 82, and 83 (H chain CDRs of Q64), respectively;

(a4) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 84, 85, and 86 (H chain CDRs of Q85), respectively;

(a5) an antigen-binding site comprising the H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 87, 88, and 89 (H chain CDRs of Q153), respectively;

(a6) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 90, 91, and 92 (H chain CDRs of Q354), respectively;

(a7) an antigen-binding site comprising the H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 93, 94, and 95 (H chain CDRs of Q360), respectively;

- (a8) an antigen-binding site comprising the of H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 96, 97, and 98 (H chain CDRs of Q405), respectively;
 - (a9) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 99, 100, and 101 (H chain CDRs of Q458), respectively;

(a10) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 102, 103, and 104 (H chain CDRs of Q460), respectively; (a11) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 105, 106, and 107 (H chain CDRs of Q499), respectively; 5 (b1) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 108, 109, and 110 (H chain CDRs of J232), respectively; (b2) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 111, 112, and 113 (H chain CDRs of J259), respectively; (b3) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 10 114, 115, and 116 (H chain CDRs of J268), respectively; (b4) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 117, 118, and 119 (H chain CDRs of J300), respectively; (b5) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 120, 121, and 122 (H chain CDRs of J321), respectively; 15 (b6) an antigen-binding site comprising the H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 123, 124, and 125 (H chain CDRs of J326), respectively; (b7) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 126, 127, and 128 (H chain CDRs of J327), respectively; (b8) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 20 129, 130, and 131 (H chain CDRs of J339), respectively; (b9) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 132, 133, and 134 (H chain CDRs of J344), respectively; (b10) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 135, 136, and 137 (H chain CDRs of J346), respectively; and 25 (b11) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 174, 175, and 176 (H chain CDRs of J142), respectively; [5] the multispecific antigen-binding molecule of [3], wherein the antigen-binding site of the first polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences 30 selected from the following (a1) to (a11), or an antigen-binding site functionally equivalent thereto, and the antigenbinding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11), or an antigen-binding site functionally equivalent thereto: 35 (a1) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 35 (H chain variable region of Q1); (a2) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 36 (H chain variable region of Q31); (a3) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 37 (H 40 chain variable region of Q1); (a4) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 38 (H chain variable region of Q85); (a5) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 39 (H chain variable region of Q153); 45 (a6) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 40 (H chain variable region of Q354); (a7) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 41 (H chain variable region of Q360); (a8) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 42 (H 50 chain variable region of Q405); (a9) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 43 (H chain variable region of Q458); (a10) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 44 (H chain variable region of Q460); 55 (a11) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 45 (H chain variable region of Q499);

(b1) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 46 (H chain variable region of J232);

	(b2) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 47 (H
	chain variable region of J259);
	(b3) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 48 (H
5	chain variable region of J268); (b4) an antiagn hinding site comprising on Highein variable region aming acid acquence of SEO ID NO: 40 (Higher
5	(b4) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 49 (H chain variable region of J300);
	(b5) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 50 (H
	chain variable region of J321);
	(b6) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 51 (H
10	chain variable region of J326);
	(b7) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 52 (H
	chain variable region of J327);
	(b8) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 53 (H
45	chain variable region of J339);
15	(b9) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 54 (H
	chain variable region of J344); (b10) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 55
	(H chain variable region of J346); and
	(b11) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 172
20	(H chain variable region of J142);
	[6] the multispecific antigen-binding molecule of [3], wherein the antigen-binding sites included in the third polypeptide
	and the fourth polypeptide comprise an antigen-binding site which comprises L chain CDRs consisting of any one
	of the amino acid sequences selected from the following (c1) to (c10) or an antigen-binding site functionally equivalent
25	thereto:
	(c1) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 138,
	139, and 140 (L chain CDR of L2), respectively;
	(c2) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 141,
30	142, and 143 (L chain CDR of L45), respectively;
	(c3) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 144,
	145, and 146 (L chain CDR of L248), respectively;
	(c4) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 147,
25	148, and 149 (L chain CDR of L324), respectively;
35	(c5) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 150, 151, and 152 (L chain CDR of L334), respectively;
	(c6) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 153,
	154, and 155 (L chain CDR of L377), respectively;
	(c7) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 156,
40	157, and 158 (L chain CDR of L404), respectively;
	(c8) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 159,
	160, and 161 (L chain CDR of L406), respectively;
	(c9) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 137,
45	138, and 139 (L chain CDR of L408), respectively; and
45	(c10) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs:
	177, 178, and 179 (L chain CDR of L180), respectively;
	[7] the multispecific antigen-binding molecule of [3], wherein the antigen-binding sites included in the third polypeptide
	and the fourth polypeptide comprise an antigen-binding site which comprises an L chain variable region consisting
50	of any one of the amino acid sequences selected from the following (c1) to (c10), or an antigen-binding site functionally
	equivalent thereto:
	(c1) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 56 (L
55	chain variable region of L2);
55	(c2) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 57 (L chain variable region of L45);
	(c3) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 58 (L
	(or) an anagen binding site comprising an E chain variable region animo acid sequence of SEQ ID NO. 30 (E

chain variable region of L248);

	(c4) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 59 (L chain variable region of L324);
	(c5) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 60 (L chain variable region of L334);
5	(c6) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 61 (L chain variable region of L377);
	(c7) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 62 (L chain variable region of L404);
10	(c8) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 63 (L chain variable region of L406);
	(c9) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 64 (L chain variable region of L408); and
	(c10) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 173 (L chain variable region of L180);
15	
	 [8] the multispecific antigen-binding molecule of [3], wherein the first and second polypeptides further comprise an antibody H chain constant region, and the third and fourth polypeptides comprise an antibody L chain constant region; [9] the multispecific antigen-binding molecule of [3], wherein the first and second polypeptides comprise an antibody H chain constant region, and the third and fourth polypeptides comprise an antibody L chain constant region, and the third and fourth polypeptides comprise an antibody L chain constant region, and the third and fourth polypeptides comprise an antibody L chain constant region, and
20	wherein the third polypeptide and the fourth polypeptide are a commonly shared L chain; [10] the multispecific antigen-binding molecule of [8] or [9], wherein the first polypeptide comprises an antibody H chain constant region consisting of any one of the amino acid sequences selected from the group consisting of the
	following (d1) to (d6) or the group consisting of the following (d7) to (d9), and the second polypeptide comprises an antibody H chain constant region consisting of any one of the amino acid sequences selected from a group different
25	from that of the above-mentioned first polypeptide:
	(d1) an H chain constant region of SEQ ID NO: 65 (G4k);
	(d2) an H chain constant region of SEQ ID NO: 66 (z7); (d3) an H chain constant region of SEQ ID NO: 67 (z55);
30	(d4) an H chain constant region of SEQ ID NO: 68 (z106);
	(d5) an H chain constant region of SEQ ID NO: 69 (z118);
	(d6) an H chain constant region of SEQ ID NO: 70 (z121);
	(d7) an H chain constant region of SEQ ID NO: 71 (G4h); (d8) an H chain constant region of SEQ ID NO: 72 (z107); and
35	(d9) an H chain constant region of SEQ ID NO: 73 (z119);
	[11] the multispecific antigen-binding molecule of [8] or [9], wherein the third and fourth polypeptides comprise the antibody L chain constant region consisting of the following amino acid sequence of:
40	(e) an L chain constant region of SEQ ID NO: 74 (k);
45	[12] the multispecific antigen-binding molecule of [8] or [9], wherein the first polypeptide comprises any one antibody H chain selected from the following (a1) to (a14), the second polypeptide comprises any one antibody H chain selected from the following (b1) to (b12), and the third polypeptide and the fourth polypeptide comprise any one antibody L chain selected from the following (c1) to (c10):
	(a1) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 1 (Q1-G4k); (a2) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 2 (Q31-z7);
	(a3) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 3 (Q64-z55);
50	(a4) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 10 (Q64-z7);
	(a5) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 11 (Q85-G4k); (a6) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 12 (Q153-G4k);
	(a7) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 12 (Q155-G4K);
	(a8) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 14 (Q360-G4k);
55	(a9) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 15 (Q360-z118);
	(a10) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 16 (Q405-G4k);
	(a11) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 17 (Q458-z106); (a12) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 18 (Q460-z121);

	(a13) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 19 (Q499-z118);
	(a14) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 20 (Q499-z121);
	(b1) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 4 (J268-G4h);
	(b2) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 5 (J321-G4h);
5	(b3) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 6 (J326-z107);
	(b4) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 7 (J344-z107);
	(b5) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 21 (J232-G4h);
	(b6) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 22 (J259-z107);
	(b7) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 23 (J300-z107);
10	(b8) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 24 (J327-z107);
	(b9) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 25 (J327-z119);
	(b10) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 26 (J339-z119);
	(b11) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 27 (J346-z107);
	(b12) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 170 (J142-G4h);
15	(c1) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 8 (L2-k);
	(c2) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 9 (L45-k);
	(c3) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 28 (L248-k);
	(c4) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 29 (L324-k);
	(c5) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 30 (L334-k);
20	(c6) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 31 (L377-k);
	(c7) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 32 (L404-k);
	(c8) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 33 (L406-k);
	(c9) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 34 (L408-k); and
	(c10) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 171 (L180-k);
25	
	[13] the multispecific antigen-binding molecule of [1], wherein the first polypeptide comprises an antigen-binding
	site which binds to an epitope overlapping with an epitope that binds to an antibody consisting of the antibody H
	chain of any one of (a1) to (a14) and the antibody L chain of any one of (c1) to (c10) of [12], and the second
	polypeptide comprises an antigen-binding site which binds to an epitope overlapping with an epitope that binds to
30	an antibody consisting of the antibody H chain of any one of (b1) to (b12) and the antibody L chain of any one of
	(c1) to (c10) of [12];
	[14] the multispecific antigen-binding molecule of [8] or [9], wherein the first polypeptide comprises any one antibody
	H chain selected from the following (e1) to (e3), the second polypeptide comprises any one antibody H chain selected
	from the following (f1) to (f3), and the third polypeptide and the fourth polypeptide comprise any one antibody L
35	chain selected from the following (g1) to (g4):
	(e1) an H chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody
	consisting of an antibody H chain of any one of (a1) to (a14) and an antibody L chain of any one of (c1) to (c10), of [12];
40	(e2) an antibody H chain, wherein at least one amino acid residue selected from the amino acid residues at

idues at positions 34, 35, 49, 61, 62, 96, 98, 100, 100b, and 102 by Kabat numbering in any one antibody H chain selected from (e1) is substituted with another amino acid;

- (e3) an antibody H chain, wherein by Kabat numbering, the amino acid residue at position 34 is isoleucine, the amino acid residue at position 35 is asparagine, glutamine, or serine, the amino acid residue at position 49 is 45 serine, the amino acid residue at position 61 is arginine, the amino acid residue at position 62 is glutamic acid, the amino acid residue at position 96 is serine or threonine, the amino acid residue at position 98 is lysine or arginine, the amino acid residue at position 100 is phenylalanine or tyrosine, the amino acid residue at position 100b is glycine, or the amino acid residue at position 102 is tyrosine in any antibody H chain selected from (e1); (f1) an H chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody 50 consisting of an antibody H chain of any of (b1) to (b12) of [12] and an antibody L chain of any of (c1 to (c10) of [12]; (f2) an antibody H chain, wherein at least one amino acid residue selected from the amino acid residues at positions 35, 53, 73, 76, 96, 98, 100, and 100a by Kabat numbering in any antibody H chain of (f1) is substituted with another amino acid;
- (f3) an antibody H chain, wherein by Kabat numbering, the amino acid residue at position 35 is aspartic acid, 55 the amino acid residue at position 53 is arginine, the amino acid residue at position 73 is lysine, the amino acid residue at position 76 is glycine, the amino acid residue at position 96 is lysine or arginine, the amino acid residue at position 98 is tyrosine, the amino acid residue at position 100 is tyrosine, or the amino acid residue at position 100a is histidine in any one antibody H chain selected from (f1);

(g1) an L chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody which consists of an antibody H chain of any one of (a1) to (a14) and an antibody L chain of any one of (c1) to (c10), of [12];

(g2) an L chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody which consists of an antibody H chain of any one of (b1) to (b12) and an antibody L chain of any one of (c1) to (c10), of [12];

(g3) an antibody L chain, wherein at least one amino acid residue selected from the amino acid residues at positions 27, 30, 31, 32, 50, 52, 53, 54, 55, 92, 93, 94, and 95 by Kabat numbering in the antibody L chain of either (g1) or (g2) is substituted with another amino acid; and

(g4) an antibody L chain, wherein by Kabat numbering, the amino acid residue at position 27 is lysine or arginine, the amino acid residue at position 30 is glutamic acid, the amino acid residue at position 31 is arginine, the amino acid residue at position 32 is glutamine, the amino acid residue at position 52 is serine, the amino acid residue at position 53 is arginine, the amino acid residue at position 54 is lysine, the amino acid residue at position 55 is glutamic acid, the amino acid residue at position 54 is lysine, the amino acid residue at position 55 is glutamic acid, the amino acid residue at position 92 is serine, the amino acid residue at position 93 is serine, the amino acid residue at position 94 is proline, or the amino acid residue at position 95 is proline in the antibody L chain of either (g1) or (g2);

[15] the multispecific antigen-binding molecule of any one of [1] to [14], wherein the multispecific antigen-binding molecule is a multispecific antibody;

²⁰ [16] a bispecific antibody of any one of the following (a) to (u):

5

25

40

45

(a) a bispecific antibody (Q1-G4k/J268-G4h/L45-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 1, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 4, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 9;

- (b) a bispecific antibody (Q1-G4k/J321-G4h/L45-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 1, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 5, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 9;
- 30 (c) a bispecific antibody (Q31-z7/J326-z107/L2-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 2, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 6, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 8;
- (d) a bispecific antibody (Q64-z55/J344-z107/L45-k), wherein the first polypeptide is an H chain consisting of
 the amino acid sequence of SEQ ID NO: 3, the second polypeptide is an H chain consisting of the amino acid
 sequence of SEQ ID NO: 7, and the third polypeptide and the fourth polypeptide are a commonly shared L chain
 of SEQ ID NO: 9;

(e) a bispecific antibody (Q64-z7/J326-z107/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 10, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 6, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

(f) a bispecific antibody (Q64-z7/J344-z107/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 10, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 7, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;

- (g) a bispecific antibody (Q85-G4k/J268-G4h/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 11, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 4, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;
- (h) a bispecific antibody (Q85-G4k/J321-G4h/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 11, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 5, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;
- (i) a bispecific antibody (Q153-G4k/J232-G4h/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 12, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;

(j) a bispecific antibody (Q354-z106/J259-z107/L324-k), wherein the first polypeptide is an H chain consisting

of the amino acid sequence of SEQ ID NO: 13, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 22, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 29;

(k) a bispecific antibody (Q360-G4k/J232-G4h/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 14, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;

(I) a bispecific antibody (Q360-z118/J300-z107/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 15, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 23, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

(m) a bispecific antibody (Q405-G4k/J232-G4h/L248-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 16, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 28;

(n) a bispecific antibody (Q458-z106/J346-z107/L408-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 17, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 27, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 34;

- (o) a bispecific antibody (Q460-z121/J327-z119/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 18, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;
- (p) a bispecific antibody (Q499-z118/J327-z107/L334-k), wherein the first polypeptide is an H chain consisting
 of the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

(q) a bispecific antibody (Q499-z118/J327-z107/L377-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 31;

(r) a bispecific antibody (Q499-z118/J346-z107/L248-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 27, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 28;

- (s) a bispecific antibody (Q499-z121/J327-z119/L404-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 20, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 32;
- (t) a bispecific antibody (Q499-z121/J339-z119/L377-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 20, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 26, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 31; and
- (u) a bispecific antibody (Q153-G4k/J142-G4h/L180-k), wherein the first polypeptide is an H chain consisting
 of the amino acid sequence of SEQ ID NO: 12, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 170, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 171;

[17] a nucleic acid encoding the multispecific antigen-binding molecule of any one of [1] to [15] or the bispecific antibody of [16];

[18] a vector inserted with the nucleic acid of [17];

5

10

15

30

35

50

[19] a cell comprising the nucleic acid of [17] or the vector of [18];

[20] a method for producing the multispecific antigen-binding molecule of any one of [1] to [15] or the bispecific antibody of [16] by culturing the cell of [19];

⁵⁵ [21] a pharmaceutical composition comprising the multispecific antigen-binding molecule of any one of [1] to [15] or the bispecific antibody of [16], and a pharmaceutically acceptable carrier;

[22] the composition of [21], which is a pharmaceutical composition used for prevention and/or treatment of bleeding, a disease accompanying bleeding, or a disease caused by bleeding;

[23] the composition of [22], wherein the bleeding, the disease accompanying bleeding, or the disease caused by bleeding is a disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII;

[24] the composition of [23], wherein the disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is hemophilia A;

[25] the composition of [23], wherein the disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is a disease showing emergence of an inhibitor against blood coagulation factor VIII and/or activated blood coagulation factor VIII;

[26] the composition of [23], wherein the disease that develops and/or progresses due to a decrease or deficiency
 in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is acquired hemophilia;
 [27] the composition of [23], wherein the disease that develops and/or progresses due to a decrease in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is von Willebrand disease;

[28] a method for preventing and/or treating bleeding, a disease accompanying bleeding, or a disease caused by bleeding, which comprises the step of administering the multispecific antigen-binding molecule of any one of [1] to [15] or the bispecific antibody of [16], or the composition of any one of [21] to [27]; and

[29] a kit for use in the prevention and/or treatment method of [28], which comprises at least the multispecific antigenbinding molecule of any one of [1] to [15] or the bispecific antibody of [16], or the composition of any one of [21] to [27].

[0011] Furthermore, the present invention relates to:

[30] use of the multispecific antigen-binding molecule of any one of [1] to [15], the bispecific antibody of [16], or the composition of any one of [21] to [27] in the manufacture of an agent for preventing and/or treating bleeding, a disease accompanying bleeding, or a disease caused by bleeding; and

[31] the multispecific antigen-binding molecule of any one of [1] to [15], the bispecific antibody of [16], or the composition of any one of [21] to [27] for preventing and/or treating bleeding, a disease accompanying bleeding, or a disease caused by bleeding.

[0012] The present invention also relates to bispecific antibodies that functionally substitute for F.VIII, a cofactor that enhances enzymatic reactions, and pharmaceutical compositions comprising the antibody as an active ingredient, and more specifically relates to:

[32] a bispecific antibody that functionally substitutes for blood coagulation factor VIII, which comprises a first antigenbinding site that recognizes blood coagulation factor IX and/or activated blood coagulation factor IX and a second antigen-binding site that recognizes blood coagulation factor X, wherein the bispecific antibody is any of the following (a) to (u):

35 (a) to (u

5

15

20

30

40

55

(a) a bispecific antibody (Q1-G4k/J268-G4h/L45-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 1, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 4, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 9;

(b) a bispecific antibody (Q1-G4k/J321-G4h/L45-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 1, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 5, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 9;

- (c) a bispecific antibody (Q31-z7/J326-z107/L2-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 2, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 6, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 8;
- (d) a bispecific antibody (Q64-z55/J344-z107/L45-k), wherein the first polypeptide is an H chain consisting of
 the amino acid sequence of SEQ ID NO: 3, the second polypeptide is an H chain consisting of the amino acid
 sequence of SEQ ID NO: 7, and the third polypeptide and the fourth polypeptide are a commonly shared L chain
 of SEQ ID NO: 9;

(e) a bispecific antibody (Q64-z7/J326-z107/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 10, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 6, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

(f) a bispecific antibody (Q64-z7/J344-z107/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 10, the second polypeptide is an H chain consisting of the amino acid

sequence of SEQ ID NO: 7, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;

(g) a bispecific antibody (Q85-G4k/J268-G4h/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 11, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 4, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;

5

10

25

30

45

50

(h) a bispecific antibody (Q85-G4k/J321-G4h/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 11, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 5, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

(i) a bispecific antibody (Q153-G4k/J232-G4h/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 12, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;

- (j) a bispecific antibody (Q354-z106/J259-z107/L324-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 13, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 22, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 29;
- (k) a bispecific antibody (Q360-G4k/J232-G4h/L406-k), wherein the first polypeptide is an H chain consisting
 of the amino acid sequence of SEQ ID NO: 14, the second polypeptide is an H chain consisting of the amino
 acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared
 L chain of SEQ ID NO: 33;
 - (I) a bispecific antibody (Q360-z118/J300-z107/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 15, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 23, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

(m) a bispecific antibody (Q405-G4k/J232-G4h/L248-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 16, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 28;

- (n) a bispecific antibody (Q458-z106/J346-z107/L408-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 17, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 27, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 34;
- (o) a bispecific antibody (Q460-z121/J327-z119/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 18, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;
- (p) a bispecific antibody (Q499-z118/J327-z107/L334-k), wherein the first polypeptide is an H chain consisting
 of the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino
 acid sequence of SEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared
 L chain of SEQ ID NO: 30;

(q) a bispecific antibody (Q499-z118/J327-z107/L377-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 31;

(r) a bispecific antibody (Q499-z118/J346-z107/L248-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 27, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 28;

(s) a bispecific antibody (Q499-z121/J327-z119/L404-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 20, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 32;

⁵⁵ (t) a bispecific antibody (Q499-z121/J339-z119/L377-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 20, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 26, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 31; and

(u) a bispecific antibody (Q153-G4k/J142-G4h/L180-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 12, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 170, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 171;

5

[33] a nucleic acid encoding the bispecific antibody of [32];

- [34] a vector inserted with the nucleic acid of [33];
- [35] a cell comprising the nucleic acid of [33] or the vector of [34];
- [36] a method for producing the bispecific antibody of [32] by culturing the cell of [35];
- ¹⁰ [37] a pharmaceutical composition comprising the bispecific antibody of [32], and a pharmaceutically acceptable carrier;

[38] the composition of [37], which is a pharmaceutical composition used for prevention and/or treatment of bleeding, a disease accompanying bleeding, or a disease caused by bleeding;

[39] the composition of [38], wherein the bleeding, the disease accompanying bleeding, or the disease caused by
 ¹⁵ bleeding is a disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation factor VIII;
 [40] the composition of [20] wherein the disease that develops and/or progresses are deficiency.

[40] the composition of [39], wherein the disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is hemophilia A;

[41] the composition of [39], wherein the disease that develops and/or progresses due to a decrease or deficiency
 in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is a disease showing emergence of an inhibitor against blood coagulation factor VIII and/or activated blood coagulation factor VIII;
 [42] the composition of [39], wherein the disease that develops and/or progresses due to a decrease or deficiency

[42] the composition of [69], wherein the disease that develops and/or progresses due to a decrease of derivativity in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is acquired hemophilia;
 [43] the composition of [39], wherein the disease that develops and/or progresses due to a decrease in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is acquired hemophilia;

[44] a method for preventing and/or treating bleeding, a disease accompanying bleeding, or a disease caused by bleeding, which comprises the step of administering the bispecific antibody of [32] or the composition of any one of [37] to [43];

[32] of the composition of any one of [37] to [43]; [45] a kit for use in the prevention and/or treatment method of [44], wi

[45] a kit for use in the prevention and/or treatment method of [44], which comprises the bispecific antibody of [32], or the composition of any one of [37] to [43];

[46] use of the bispecific antibody of [32] or the composition of any one of [37] to [43] in the manufacture of an agent for preventing and/or treating bleeding, a disease accompanying bleeding, or a disease caused by bleeding; and [47] the bispecific antibody of [32] or the composition of any one of [37] to [43] for preventing and/or treating bleeding, a disease accompanying bleeding.

35

25

[Effects of the Invention]

[0013] The present invention provides antibodies that recognize both an enzyme and its substrate, which are multi-specific antigen-binding molecules having a high activity of functionally substituting for F.VIII. Furthermore, the present invention provides antibodies that recognize both an enzyme and its substrate, which are multispecific antigen-binding molecules having a high activity of functionally substituting for F.VIII and a low F.Xase inhibitory action. Since humanized antibodies are generally thought to have high stability in blood and low immunogenicity, multispecific antibodies of the present invention may be very promising as pharmaceuticals.

⁴⁵ Brief Description of the Drawings

[0014]

Fig. 1 describes the F.Xase inhibitory action.

50

55

- (a) F.VIIIa forms a complex with F.IXa (F.Xase) and activates F.X.
- (b) A bispecific antibody binds to F.IXa and F.X and activates F.X.
- (c) Both F.VIIIa and the bispecific antibody activate F.X without competition.

(d) Binding of the bispecific antibody to F.IXa and/or F.X inhibits the formation of the complex formed between F.Xase and F.X.

(e) Binding of the bispecific antibody to F.IXa and/or F.X inhibits the activity of F.Xase.

Fig. 2 describes the screening. Approximately 200 types each of genes for antibodies against human F.IXa and

human F.X were produced, and they were incorporated into animal cell expression vectors. 40,000 or more bispecific antibodies as a combination of an anti-F.IXa antibody and anti-F.X antibody were transiently expressed. F.Xa generation-promoting activity and F.Xase inhibitory action were evaluated to screen for bispecific antibodies having a high F.Xa generation-promoting activity and a low F.Xase inhibitory action. Furthermore, by substituting amino acids when necessary, prototype antibodies were produced.

- ⁵ when necessary, prototype antibodies were produced.
 Fig. 3 shows the F.Xa generation-promoting activities of hA69-KQ/hB26-PF/hAL-AQ, Q1-G4k/J268-G4h/L45-k, Q1-G4k/J321-G4h/L45-k, Q31-z7/J326-z107/L2-k, and Q64-z55/J344-z107/L45-k. The concentrations of the antibody solutions were 300, 30, and 3 µg/mL (the concentrations after mixing Human Factor IXa, Novact (registered trademark) M, Human Factor X, and the antibody solution were 100, 10, and 1 µg/mL), the enzyme reaction and color
- development were performed for ten minutes and 50 minutes, respectively. As a result, these antibodies showed a higher F.Xa generation-promoting activity compared to hA69-KQ/hB26-PF/hAL-AQ described in WO 2006/109592.
 Fig. 4 shows the F.Xa generation-promoting activity of hA69-KQ/hB26-PF/hAL-AQ, prototype antibodies, and modified antibodies with amino acid substitutions. The concentrations of the antibody solutions were 300, 30, and 3 μg/mL (the concentrations after mixing Human Factor IXa, Novact (registered trademark) M, Human Factor X, and
- ¹⁵ the antibody solution were 100, 10, and 1 μg/mL), the enzyme reaction and color development were performed for two minutes and 20 minutes, respectively. As a result, these modified antibodies showed a higher F.Xa generation-promoting activity compared to the prototype antibodies.
 Fig. 5 shows the E Xaaa inhibitary action of hA60 KO/kD26 DE/hAL A0, pretative, antibodies, and madified anti-

Fig. 5 shows the F.Xase inhibitory action of hA69-KQ/hB26-PF/hAL-AQ, prototype antibodies, and modified antibodies with amino acid substitutions.

- 20 The figure shows the effects of hA69-KQ/hB26-PF/hAL-AQ, Q1-G4k/J268-G4h/L45-k, Q31-z7/J326-z107/L2-k, Q1-G4k/J321-G4h/L45-k, Q64-z55/J344-z107/L45-k, Q85-G4k/J268-G4h/L406-k, Q85-G4k/J321-G4h/L334-k, Q64-z7/J344-z107/L406-k, Q64-z7/J326-z107/L334-k, Q153-G4k/J142-G4h/L180-k, Q405-G4k/J232-G4h/L248-k, Q360-G4k/J232-G4h/L406-k, Q153-G4k/J232-G4h/L406-k, Q458-z106/J346-z107/L408-k, Q360-z118/J300-z107/L334-k, Q499-z118/J327-z107/L377-k, Q499-z121/J327-z119/L404-k, Q499-z121/J339-z119/L377-k, Q499-z121/J327-z107/L334-k
- 25 z118/J346-z107/L248-k, Q354-z106/J259-z107/L324-k, Q460-z121/J327-z119/L334-k, and Q499-z118/J327-z107/L334-k on F.X activation by F.IXa in the presence of F.VIIIa. The F.Xase inhibitory actions of the antibodies are indicated as the value obtained by subtracting the absorbance of the antibody-free reaction solution from the absorbance of the antibody-supplemented reaction solution. The concentrations of the antibody solutions were 300 and 30 μg/mL (the concentrations after mixing Human Factor IXa, F.VIIIa, Human Factor X, and the antibody solution
- 30 were 100 and 10 μg/mL), the enzyme reaction and color development were performed for six minutes and 14 minutes, respectively. The more positive the value of F.Xase inhibitory action shown on the horizontal axis, the weaker the F.Xase inhibitory action is. As a result, hA69-KQ/hB26-PF/hAL-AQ described in WO 2006/109592 showed strong F.Xase inhibitory action. All of the antibodies of the present invention showed weaker F.Xase inhibitory action compared to hA69-KQ/hB26-PF/hAL-AQ, or did not show inhibitory action.
- Fig. 6A shows the amino acid sequences of the prototype antibodies and the modified antibodies with amino acid substitutions. When the sequence name is not indicated in the Ref column, the variable region sequence of the Name column is mentioned. A"- (hyphen)" is shown where an amino acid is absent at the number by Kabat numbering. A ". (dot)" is shown where amino acid is the same when comparing the variable region of the Name column and the Ref column, and the amino acid of the variable region of the Name column is shown where the amino acids are
- different. Amino acids found to be important for improvement of F.Xa generation-promoting activity were indicated by framing them.

Fig. 6B is a continuation of Fig. 6A.

Fig. 6C is a continuation of Fig. 6B.

Fig. 6D is a continuation of Fig. 6C.

45

Mode for Carrying Out the Invention

50

[0015] Multispecific antigen-binding molecules described herein comprise a first antigen-binding site and a second antigen-binding site that can specifically bind to at least two different types of antigens. While the first antigen-binding site and the second antigen-binding site are not particularly limited as long as they have an activity to bind to F.IX and/or F.IXa, and F.X, respectively, examples include sites necessary for binding with antigens, such as antibodies, scaffold molecules (antibody-like molecules) or peptides, or fragments containing such sites. Scaffold molecules are molecules that exhibit function by binding to target molecules, and any polypeptide may be used as long as they are conformationally stable polypeptides that can bind to at least one target antigen. Examples of such polypeptides include antibody variable

⁵⁵ regions, fibronectin (WO 2002/032925), protein A domain (WO 1995/001937), LDL receptor A domain (WO 2004/044011, WO 2005/040229), ankyrin (WO 2002/020565), and such, and also molecules described in documents by Nygren et al. (Current Opinion in Structural Biology, 7: 463-469 (1997); and Journal of Immunol Methods, 290: 3-28 (2004)), Binz et al. (Nature Biotech 23: 1257-1266 (2005)), and Hosse et al. (Protein Science 15: 14-27(2006)). Furthermore, as mentioned

in Curr Opin Mol Ther. 2010 Aug; 12(4): 487-95 and Drugs. 2008; 68(7): 901-12, peptide molecules that can bind to target antigens may be used.

[0016] Herein, multispecific antigen-binding molecules are not particularly limited as long as they are molecules that can bind to at least two different types of antigens, but examples include polypeptides containing the above-mentioned

- ⁵ antigen-binding sites, such as antibodies and scaffold molecules as well as their fragments, and aptamers comprising nucleic acid molecules and peptides, and they may be single molecules or multimers thereof. Preferred multispecific antigen-binding molecules include multispecific antibodies that can bind specifically to at least two different antigens. Particularly preferred examples of antibodies which have an activity of functionally substituting for F.VIII of the present invention include bispecific antibodies (BsAb) that can bind specifically to two different antigens (they may also be called
- ¹⁰ dual specific antibodies).

[0017] In the present invention, the term "commonly shared L chain" refers to an L chain that can link with two or more different H chains, and show binding ability to each antigen. Herein, the term "different H chain(s)" preferably refers to H chains of antibodies against different antigens, but is not limited thereto, and also refers to H chains whose amino acid sequences are different from each other. Commonly shared L chain can be obtained, for example, according to the method described in WO 2006/109592.

- ¹⁵ method described in WO 2006/109592. [0018] The multispecific antigen-binding molecules of the present invention (preferably bispecific antibodies) are antibodies having specificity to two or more different antigens, or molecules comprising fragments of such antibodies. The antibodies of the present invention are not particularly limited, but are preferably monoclonal antibodies. Monoclonal antibodies used in the present invention include not only monoclonal antibodies derived from animals such as humans,
- ²⁰ mice, rats, hamsters, rabbits, sheep, camels, and monkeys, but also include artificially modified gene recombinant antibodies such as chimeric antibodies, humanized antibodies, and bispecific antibodies.
 [0019] Furthermore, the L chains of an antibody which will become a multispecific antigen-binding molecule of the present invention may be different, but preferably have commonly shared L chains.
- [0020] Multispecific antigen-binding molecules of the present invention are preferably recombinant antibodies produced using genetic recombination techniques (See, for example, Borrebaeck CAK and Larrick JW, THERAPEUTIC MONO-CLONAL ANTIBODIES, Published in the United Kingdom by MACMILLAN PUBLISHERS LTD, 1990). Recombinant antibodies can be obtained by cloning DNAs encoding antibodies from hybridomas or antibody-producing cells, such as sensitized lymphocytes, that produce antibodies, inserting them into suitable vectors, and then introducing them into hosts (host cells) to produce the antibodies.
- [0021] Furthermore, antibodies of the present invention may include not only whole antibodies but also antibody fragments and low-molecular-weight antibodies (minibodies), and modified antibodies.
 [0022] For example, antibody fragments or minibodies include diabodies (Dbs), linear antibodies, and single chain antibody (hereinafter, also denoted as scFvs) molecules. Herein, an "Fv" fragment is defined as the smallest antibody fragment that comprises a complete antigen recognition site and binding site.
- 35 [0023] An "Fv" fragment is a dimer (VH-VL dimer) in which an H chain variable region (VH) and an L chain variable region (VL) are strongly linked by non-covalent binding. The three complementarity determining regions (CDRs) of each of the variable regions interact with each other to form an antigen-binding site on the surface of the VH-VL dimer. Six CDRs confer the antigen-binding site to an antibody. However, one variable region (or half of the Fv comprising only three CDRs specific to an antigen) alone can recognize and bind to an antigen, though its affinity is lower than that of the entire binding site.
- **[0024]** An Fab fragment (also called F(ab)) further comprises an L chain constant region and an H chain constant region (CH1). An Fab' fragment differs from an Fab fragment in that it additionally comprises several residues derived from the carboxyl terminus of the H chain CH1 region, comprising one or more cysteines from the hinge region of the antibody. Fab'-SH refers to an Fab' in which one or more cysteine residues of its constant region comprise a free thiol
- ⁴⁵ group. An F(ab') fragment is produced by cleavage of disulfide bonds between the cysteine residues in the hinge region of F(ab')₂ pepsin digest. Other chemically bound antibody fragments are also known to those skilled in the art.
 [0025] Diabodies are bivalent minibodies constructed by gene fusion (Holliger, P. et al., Proc. Natl. Acad. Sci. USA 90: 6444-6448 (1993); EP 404,097; WO 93/11161). Diabodies are dimers consisting of two polypeptide chains, in which each polypeptide chain comprises an L chain variable region (VL) and an H chain variable region (VH) linked with a
- 50 linker short enough to prevent association of these two domains within the same chain, for example, a linker of preferably 2 to 12 amino acids, more preferably 3 to 10 amino acids, particularly about 5 amino acids. The polypeptide chain form a dimer since the linker between the VL and VH encoded on the same polypeptide is too short to form a single chain variable region fragment. Therefore, diabodies comprise two antigen-binding sites.
- [0026] A single-chain antibody or an scFv antibody fragment comprises the VH and VL regions of an antibody, and these regions exist in a single polypeptide chain. In general, an Fv polypeptide further comprises a polypeptide linker between the VH and VL regions, and this enables an scFv to form a structure necessary for antigen binding (for a review on scFvs, see Pluckthun "The Pharmacology of Monoclonal Antibodies" Vol. 113 (Rosenburg and Moore ed. (Springer Verlag, New York) pp.269-315, 1994). In the context of the present invention, linkers are not particularly limited so long

as they do not inhibit the expression of the antibody variable regions linked at their ends.

5

50

[0027] IgG-type bispecific antibodies can be secreted from hybrid hybridomas (quadromas) produced by fusing two kinds of hybridomas that produce IgG antibodies (Milstein C et al. Nature 1983, 305: 537-540). They can also be secreted by taking the L chain and H chain genes constituting the two kinds of IgGs of interest, a total of four kinds of genes, and introducing them into cells to coexpress the genes.

- **[0028]** In this case, by introducing suitable amino acid substitutions to the CH3 regions of the H chains, IgGs having a heterogeneous combination of H chains can be preferentially secreted (Ridgway JB et al. Protein Engineering 1996, 9: 617-621; Merchant AM et al. Nature Biotechnology 1998, 16: 677-681; WO 2006/106905; Davis JH et al. Protein Eng Des Sel. 2010, 4: 195-202).
- 10 [0029] Regarding the L chains, since diversity of L chain variable regions is lower than that of H chain variable regions, commonly shared L chains that can confer binding ability to both H chains may be obtained. The antibodies of the present invention comprise commonly shared L chains. Bispecific IgGs can be efficiently expressed by introducing the genes of the commonly shared L chain and both H chains into cells.
- [0030] Bispecific antibodies may be produced by chemically crosslinking Fab's. Bispecific F(ab')₂ can be produced, for example, by preparing Fab' from an antibody, using it to produce a maleimidized Fab' with ortho-phenylenedimaleimide (o-PDM), and then reacting this with Fab' prepared from another antibody to crosslink Fab's derived from different antibodies (Keler T et al. Cancer Research 1997, 57: 4008-4014). The method of chemically linking an Fab'thionitrobenzoic acid (TNB) derivative and an antibody fragment such as Fab'-thiol (SH) is also known (Brennan M et al. Science 1985, 229: 81-83).
- 20 [0031] Instead of a chemical crosslink, a leucine zipper derived from Fos and Jun may also be used. Preferential formation of heterodimers by Fos and Jun is utilized, even though they also form homodimers. Fab' to which Fos leucine zipper is added, and another Fab' to which Jun leucine zipper is added are expressed and prepared. Monomeric Fab'-Fos and Fab'-Jun reduced under mild conditions are mixed and reacted to form bispecific F(ab')₂ (Kostelny SA et al. J. of Immunology, 1992, 148: 1547-53). This method can be applied not only to Fab's but also to scFvs, Fvs, and such.
- [0032] Furthermore, bispecific antibodies including sc(Fv)₂ such as IgG-scFv (Protein Eng Des Sel. 2010 Apr; 23(4): 221-8) and BiTE (Drug Discov Today. 2005 Sep 15; 10(18): 1237-44.), DVD-Ig (Nat Biotechnol. 2007 Nov; 25(11): 1290-7. Epub 2007 Oct 14.; and MAbs. 2009 Jul; 1(4): 339-47. Epub 2009 Jul 10.), and also others (IDrugs 2010, 13: 698-700) including two-in-one antibodies (Science. 2009 Mar 20; 323(5921): 1610-4; and Immunotherapy. 2009 Sep; 1(5): 749-51.), Tri-Fab, tandem scFv, and diabodies are known (MAbs. 2009 November; 1(6): 539-547). In addition,
- ³⁰ even when using molecular forms such as scFv-Fc and scaffold-Fc, bispecific antibodies can be produced efficiently by preferentially secreting a heterologous combination of Fcs (Ridgway JB et al., Protein Engineering 1996, 9: 617-621; Merchant AM et al. Nature Biotechnology 1998, 16: 677-681; WO 2006/106905; and Davis JH et al., Protein Eng Des Sel. 2010, 4: 195-202.).
- [0033] A bispecific antibody may also be produced using a diabody. A bispecific diabody is a heterodimer of two crossover scFv fragments. More specifically, it is produced by forming a heterodimer using VH(A)-VL(B) and VH(B)-VL(A) prepared by linking VHs and VLs derived from two kinds of antibodies, A and B, using a relatively short linker of about 5 residues (Holliger P et al. Proc Natl. Acad. Sci. USA 1993, 90: 6444-6448).

[0034] The desired structure can be achieved by linking the two scFvs with a flexible and relatively long linker comprising about 15 residues (single chain diabody: Kipriyanov SM et al. J. of Molecular Biology. 1999, 293: 41-56), and conducting appropriate amino acid substitutions (knobs-into-holes: Zhu Z et al. Protein Science. 1997, 6: 781-788; VH/VL interface engineering: Igawa T et al. Protein Eng Des Sel. 2010, 8: 667-77).

[0035] An sc(Fv)₂ that can be produced by linking two types of scFvs with a flexible and relatively long linker, comprising about 15 residues, may also be a bispecific antibody (Mallender WD et al. J. of Biological Chemistry, 1994, 269: 199-206).
 [0036] Examples of modified antibodies include antibodies linked to various molecules such as polyethylene glycol

(PEG). The antibodies of the present invention include such modified antibodies. In the context of the present invention, the substance to which the modified antibodies are linked is not limited. Such modified antibodies can be obtained by chemically modifying obtained antibodies. Such methods are well established in the art.

[0037] The antibodies of the present invention include human antibodies, mouse antibodies, rat antibodies, or such, and their origins are not limited. They may also be genetically modified antibodies, such as chimeric or humanized antibodies.

[0038] Methods for obtaining human antibodies are known in the art. For example, transgenic animals carrying the entire repertoire of human antibody genes can be immunized with desired antigens to obtain desired human antibodies (see International Patent Application WO 93/12227, WO 92/03918, WO 94/02602, WO 94/25585, WO 96/34096, and WO 96/33735).

⁵⁵ **[0039]** Genetically modified antibodies can also be produced using known methods. Specifically, for example, chimeric antibodies may comprise H chain and L chain variable regions of an immunized animal antibody, and H chain and L chain constant regions of a human antibody. Chimeric antibodies can be obtained by linking DNAs encoding the variable regions of the antibody derived from the immunized animal, with DNAs encoding the constant regions of a human

antibody, inserting this into an expression vector, and then introducing it into host cells to produce the antibodies. [0040] Humanized antibodies are modified antibodies often referred to as "reshaped" human antibodies. A humanized antibody is constructed by transferring the CDRs of an antibody derived from an immunized animal to the complementarity determining regions of a human antibody. Conventional genetic recombination techniques for such purposes are known

- ⁵ (see European Patent Application Publication No. EP 239400; International Publication No. WO 96/02576; Sato K et al., Cancer Research 1993, 53: 851-856; International Publication No. WO 99/51743).
 [0041] The multispecific antigen-binding molecules of the present invention are those that recognize and/or F.IXa, and F.X, and functionally substitute for cofactor function of F.VIII, and characterized in that the molecules have a higher F.Xa generation-promoting activity compared to hA69-KQ/hB26-PF/hAL-AQ (described in WO 2006/109592) which is
- 10 known as a bispecific antibody that functionally substitutes for F.VIII. Furthermore, antibodies of the present invention usually have a structure which comprises a variable region of an anti-F.IXa antibody and a variable region of an anti-F.X antibody.

[0042] More specifically, the present invention provides a multispecific antigen-binding molecule that functionally substitutes for F.VIII, which comprises a first antigen-binding site that recognizes and/or F.IXa and a second antigen-binding

- ¹⁵ site that recognizes F.X, wherein the function that substitutes for the function of F.VIII is caused by a higher F.Xa generation-promoting activity compared to the activity of the bispecific antibody (hA69-KQ/hB26-PF/hAL-AQ) which comprises H chains consisting of SEQ ID NOs: 165 and 166, and a commonly shared L chain consisting of SEQ ID NO: 167.
- [0043] A multispecific antigen-binding molecule of the present invention comprises a first polypeptide and a third ²⁰ polypeptide comprising an antigen-binding site that recognizes and/or F.IXa, and a second polypeptide and a fourth polypeptide comprising an antigen-binding site that recognizes F.X. The first polypeptide and the third polypeptide, and the second polypeptide and the fourth polypeptide each include the antigen-binding site of the antibody H chain and the antigen-binding site of the antibody L chain.
- [0044] For example, in a multispecific antigen-binding molecule of the present invention, the first polypeptide and the third polypeptide include an antigen-binding site of an H chain and L chain of an antibody against or F.IXa, respectively; and the second polypeptide and the fourth polypeptide comprise an antigen-binding site of an H chain and L chain of an antibody against F.X, respectively.

[0045] At this time, the antigen-binding sites of the antibody L chain included in the first polypeptide and the third polypeptide, and the second polypeptide and the fourth polypeptide may be commonly shared L chains.

- 30 [0046] A polypeptide comprising an antigen-binding site of an antibody L chain in the present invention is preferably a polypeptide which comprises all or a part of the sequence of the antibody L chain which binds to F.IX, F.IXa and/or F.X.
 [0047] Preferred embodiments of the antigen-binding site of the first polypeptide of an antibody of the present invention specifically include antigen-binding sites comprising the amino acid sequences of:
- Q1 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 75, 76, and 77, respectively);
 Q31 H chain each CDR1, 2, and 3 sequences (SEQ ID NOs: 78, 79, and 80, respectively);
 Q64 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 81, 82, and 83, respectively);
 Q85 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 84, 85, and 86, respectively);
 Q153 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 87, 88, and 89, respectively);
 Q354 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 90, 91, and 92, respectively);
 Q360 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 93, 94, and 95, respectively);
 Q405 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 96, 97, and 98, respectively);
 Q458 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 99, 100, and 101, respectively);
 Q460 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 102, 103, and 104, respectively); and
 Q499 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 105, 106, and 107, respectively) mentioned in the
 - later-described Examples, or antigen-binding sites that are functionally equivalent to them.

[0048] Preferred embodiments of the antigen-binding site of a second polypeptide specifically include, for example, antigen-binding sites comprising the amino acid sequences of:

50

55

J232 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 108, 109, and 110, respectively); J259 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 111, 112, and 113, respectively); J268 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 114, 115, and 116, respectively); J300 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 117, 118, and 119, respectively); J321 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 120, 121, and 122, respectively); J326 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 123, 124, and 125, respectively); J327 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 126, 127, and 128, respectively); J339 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 129, 130, and 131, respectively);

J344 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 132, 133, and 134, respectively);

- J346 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 135, 136, and 137, respectively); and
- J142 H chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 174, 175, and 176, respectively) mentioned in the laterdescribed Examples, or antigen-binding sites that are functionally equivalent to them.
- 5

[0049] More specifically, the present invention provides multispecific antigen-binding molecules, wherein the antigenbinding site of the first polypeptide comprises an antigen-binding site which comprises H chain CDRs consisting of any one of the amino acid sequences selected from the following (a1) to (a11), or an antigen-binding site functionally equivalent thereto, and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises H 10 chain CDRs consisting of any one of the amino acid sequences selected from the following (b1) to (b11), or an antigenbinding site functionally equivalent thereto: (a1) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 75, 76, and 77 (H chain CDRs of Q1), respectively; 15 (a2) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 78, 79, and 80 (H chain CDRs of Q31), respectively; (a3) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 81, 82, and 83 (H chain CDRs of Q64), respectively; (a4) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 84, 85, and 86 (H chain CDRs of Q85), respectively; 20 (a5) an antigen-binding site comprising the H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 87, 88, and 89 (H chain CDRs of Q153), respectively; (a6) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 90, 91, and 92 (H chain CDRs of Q354), respectively; 25 (a7) an antigen-binding site comprising the H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 93, 94, and 95 (H chain CDRs of Q360), respectively; (a8) an antigen-binding site comprising the of H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 96, 97, and 98 (H chain CDRs of Q405), respectively; (a9) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 99, 100, 30 and 101 (H chain CDRs of Q458), respectively; (a10) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 102, 103, and 104 (H chain CDRs of Q460), respectively; (a11) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 105, 106, and 107 (H chain CDRs of Q499), respectively; 35 (b1) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 108, 109, and 110 (H chain CDRs of J232), respectively; (b2) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 111, 112, and 113 (H chain CDRs of J259), respectively; (b3) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 114, 40 115, and 116 (H chain CDRs of J268), respectively; (b4) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 117, 118, and 119 (H chain CDRs of J300), respectively; (b5) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 120, 121, and 122 (H chain CDRs of J321), respectively; 45 (b6) an antigen-binding site comprising the H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 123, 124, and 125 (H chain CDRs of J326), respectively; (b7) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 126, 127, and 128 (H chain CDRs of J327), respectively; (b8) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 129, 50 130, and 131 (H chain CDRs of J339), respectively; (b9) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 132, 133, and 134 (H chain CDRs of J344), respectively; (b10) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 135, 136, and 137 (H chain CDRs of J346), respectively; and 55 (b11) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 174, 175, and 176 (H chain CDRs of J142), respectively.

[0050] Preferred embodiments of the antigen-binding site of the third and fourth polypeptides specifically include, for

example, antigen-binding sites comprising the amino acid sequences of:

L2 L chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 138, 139, and 140, respectively); L45 L chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 141, 142, and 143, respectively); 5 L248 L chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 144, 145, and 146, respectively); L324 L chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 147, 148, and 149, respectively); L334 L chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 150, 151, and 152, respectively); L377 L chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 153, 154, and 155, respectively); L404 L chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 156, 157, and 158, respectively); 10 L406 L chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 159, 160, and 161, respectively); L408 L chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 162, 163, and 164, respectively); and L180 L chain each CDR1, 2, and 3 sequence (SEQ ID NOs: 177, 178, and 179, respectively) mentioned in the laterdescribed Examples, or antigen-binding sites that are functionally equivalent to them. 15 [0051] More specifically, the present invention provides multispecific antigen-binding molecules, wherein the antigenbinding sites included in the third polypeptide and the fourth polypeptide comprise an antigen-binding site which comprises L chain CDRs consisting of any one of the amino acid sequences selected from the following (c1 to (c10), or an antigenbinding site functionally equivalent thereto: 20 (c1) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 138, 139, and 140 (L chain CDR of L2), respectively; (c2) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 141, 142, and 143 (L chain CDR of L45), respectively; (c3) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 144, 145, 25 and 146 (L chain CDR of L248), respectively; (c4) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 147, 148, and 149 (L chain CDR of L324), respectively; (c5) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 150, 151, and 152 (L chain CDR of L334), respectively; 30 (c6) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 153, 154, and 155 (L chain CDR of L377), respectively;

(c7) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 156, 157, and 158 (L chain CDR of L404), respectively;

(c8) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 159, 160, and 161 (L chain CDR of L406), respectively;

(c9) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 137, 138, and 139 (L chain CDR of L408), respectively; and

(c10) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 177, 178, and 179 (L chain CDR of L180), respectively.

40

35

[0052] The amino acid sequences of the H chain variable regions of Q1, Q31, Q64, Q85, Q153, Q354, Q360, Q405, Q458, Q460, and Q499 of the present invention are indicated by the following SEQ ID NOs, respectively.

Q1: SEQ ID NO: 35 Q31: SEQ ID NO: 36 Q64: SEQ ID NO: 37 Q85: SEQ ID NO: 38 Q153: SEQ ID NO: 39 Q354: SEQ ID NO: 40 50 Q360: SEQ ID NO: 41 Q405: SEQ ID NO: 42 Q458: SEQ ID NO: 43 Q460: SEQ ID NO: 44 Q499: SEQ ID NO: 45

55

[0053] The amino acid sequences of the H chain variable regions of J232, J259, J268, J300, J321, J326, J327, J339, J344, J346, and J142 of the present invention are indicated by the following SEQ ID NOs, respectively.

	J232: SEQ ID NO: 46
	J259: SEQ ID NO: 47
	J268: SEQ ID NO: 48
	J300: SEQ ID NO: 49
5	J321: SEQ ID NO: 50
	J326: SEQ ID NO: 51
	J327: SEQ ID NO: 52
	J339: SEQ ID NO: 53
	J344: SEQ ID NO: 54
10	J346: SEQ ID NO: 55
	J142: SEQ ID NO: 172

[0054] More specifically, the present invention provides multispecific antigen-binding molecules, wherein the antigen-binding site of the first polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (a1) to (a11), or an antigen-binding site functionally equivalent thereto, and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (a1) to (a11), or an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11), or an antigen-binding site functionally equivalent thereto:

20 (a1) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 35 (H chain variable region of Q1); (a2) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 36 (H chain variable region of Q31); (a3) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 37 (H chain 25 variable region of Q1): (a4) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 38 (H chain variable region of Q85); (a5) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 39 (H chain variable region of Q153); 30 (a6) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 40 (H chain variable region of Q354); (a7) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 41 (H chain variable region of Q360); (a8) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 42 (H chain 35 variable region of Q405); (a9) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 43 (H chain variable region of Q458); (a10) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 44 (H chain variable region of Q460): 40 (a11) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 45 (H chain variable region of Q499); (b1) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 46 (H chain variable region of J232); (b2) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 47 (H chain 45 variable region of J259); (b3) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 48 (H chain variable region of J268); (b4) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 49 (H chain variable region of J300); 50 (b5) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 50 (H chain variable region of J321); (b6) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 51 (H chain variable region of J326); (b7) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 52 (H chain 55 variable region of J327); (b8) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 53 (H chain variable region of J339); (b9) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 54 (H chain

variable region of J344);

(b10) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 55 (H chain variable region of J346); and

(b11) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 172 (H chain variable region of J142).

[0055] In addition, the amino acid sequences of the L chain variable regions of L2, L45, L248, L324, L334, L377, L404, L406, L408, and L180 of the present invention are indicated by the following SEQ ID NOs, respectively.

10	L2: SEQ ID NO: 56 L45: SEQ ID NO: 57
	L248: SEQ ID NO: 58
	L324: SEQ ID NO: 59
	L334: SEQ ID NO: 60
15	L377: SEQ ID NO: 61
	L404: SEQ ID NO: 62
	L406: SEQ ID NO: 63
	L408: SEQ ID NO: 64
	L180: SEQ ID NO: 173

20

5

[0056] More specifically, the present invention provides multispecific antigen-binding molecules, wherein the antigenbinding sites included in the third polypeptide and the fourth polypeptide comprise an antigen-binding site which comprises an L chain variable region consisting of any one of the amino acid sequences selected from the following (c1 to (c10) or an antigen-binding site functionally equivalent thereto:

25

30

35

45

(c1) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 56 (L chain variable region of L2);

(c2) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 57 (L chain variable region of L45);

(c3) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 58 (L chain variable region of L248);

(c4) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 59 (L chain variable region of L324);

(c5) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 60 (L chain variable region of L334);

(c6) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 61 (L chain variable region of L377);

(c7) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 62 (L chain variable region of L404);

40 (c8) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 63 (L chain variable region of L406);

(c9) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 64 (L chain variable region of L408); and

(c10) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 173 (L chain variable region of L180).

[0057] The amino acid sequences of CDR1 to 3 and FR1 to 4 in each of the sequences are as described in Figs. 3A to D [0058] When producing a full-length antibody using the variable regions disclosed in the present invention, without particular limitations, constant regions well known to those skilled in the art may be used. For example, constant regions described in "Sequences of proteins of immunological interest", (1991), U.S. Department of Health and Human Services.

- ⁵⁰ described in "Sequences of proteins of immunological interest", (1991), U.S. Department of Health and Human Services. Public Health Service National Institutes of Health, or "An efficient route to human bispecific IgG", (1998). Nature Biotechnology vol. 16, 677-681 can be used. Preferred examples of the antibody constant regions of the present invention include the constant regions of IgG antibodies. When using the constant region of an IgG antibody, its type is not limited, and a constant region of IgG subclass such as IgG1, IgG2, IgG3, or IgG4 may be used. Furthermore, amino acid
- ⁵⁵ mutations may be introduced into the constant region of these IgG subclasses. Amino acid mutations to be introduced may be, for example, those that enhance or decrease binding to Fcγ receptors (Proc Natl Acad Sci USA. 2006 Mar 14; 103(11): 4005-10; and MAbs. 2009 Nov; 1(6): 572-9), or enhance or decrease binding to FcRn (J Biol Chem. 2001 Mar 2; 276(9): 6591-604; Int Immunol. 2006 Dec; 18(12): 1759-69; and J Biol Chem. 2006 Aug 18; 281(33): 23514-24), but

are not limited thereto. Two types of H chains must be heterologously associated to produce a bispecific antibody. The knobs-into-holes technology (J Immunol Methods. 2001 Feb 1; 248(1-2): 7-15; and J Biol Chem. 2010 Jul 2; 285(27): 20850-9), the electrostatic repulsion technology (WO 2006/106905), the SEEDbody technology (Protein Eng Des Sel. 2010 Apr; 23(4): 195-202), and such may be used for heterologous association of two types of H chains *via* a CH3

- ⁵ domain. Furthermore, the antibodies of the present invention may be those with a modified or deficient sugar chain. Examples of antibodies having modified sugar chains include glycosylation-engineered antibodies (such as WO 99/54342), antibodies with defucosylated sugar chains (WO 00/61739, WO 02/31140, WO 2006/067847, WO 2006/067913, etc.), and antibodies having a sugar chain with bisecting GlcNAc (such as WO 02/79255). Known examples of methods for producing sugar chain-deficient IgG antibodies include the method of introducing a mutation to asparagine
- ¹⁰ at position 297 in the EU numbering (J Clin Pharmacol. 2010 May; 50(5): 494-506), and the method of producing IgG using *Escherichia coli* (J Immunol Methods. 2002 May 1; 263(1-2): 133-47; and J Biol Chem. 2010 Jul 2; 285(27): 20850-9). Furthermore, heterogeneity accompanying deletion of C-terminal lysine in IgG, and heterogeneity accompanying mispairing of disulfide bonds in the hinge region of IgG2 can be decreased by introducing amino acid deletions/substitutions (WO 2009/041613).
- ¹⁵ **[0059]** The present invention provides, for example, multispecific antigen-binding molecules, wherein the first and second polypeptides comprise an antibody H chain constant region, and the third and fourth polypeptides comprise an antibody L chain constant region.

[0060] Furthermore, the present invention provides multispecific antigen-binding molecules, wherein the first polypeptide comprises an antibody H chain constant region consisting of any one of the amino acid sequences selected from

- ²⁰ the group consisting of the following (d1) to (d6) or the group consisting of the following (d7) to (d9), and the second polypeptide comprises an antibody H chain constant region consisting of any one of the amino acid sequences selected from a group different from that of the above-mentioned first polypeptide:
 - (d1) an H chain constant region of SEQ ID NO: 65 (G4k);
 - (d2) an H chain constant region of SEQ ID NO: 66 (z7);

25

30

- (d3) an H chain constant region of SEQ ID NO: 67 (z55);
- (d4) an H chain constant region of SEQ ID NO: 68 (z106);
- (d5) an H chain constant region of SEQ ID NO: 69 (z118);
- (d6) an H chain constant region of SEQ ID NO: 70 (z121);
- (d7) an H chain constant region of SEQ ID NO: 71 (G4h);
 - (d8) an H chain constant region of SEQ ID NO: 72 (z107); and
 - (d9) an H chain constant region of SEQ ID NO: 73 (z119).

[0061] Furthermore, the present invention provides a multispecific antigen-binding molecule, wherein the third and fourth polypeptides comprise an antibody L chain constant region consisting of the following amino acid sequence of:

(e) an L chain constant region of SEQ ID NO: 74 (k).

[0062] In the present invention, the phrase "functionally substitute for F.VIII" means that and/or F.IXa, and F.X is recognized, and activation of F.X is promoted (F.Xa generation is promoted).

[0063] In the present invention, "F.Xa generation-promoting activity" can be confirmed by evaluating the multispecific antigen-binding molecules of the present invention using, for example, a measurement system comprising F.XIa (F.IX activating enzyme), F.IX, F.X, F synthetic substrate S-2222 (synthetic substrate of F.Xa), and phospholipids. This measurement system shows the correlation between the severity of the disease and clinical symptoms in hemophilia A cases

- ⁴⁵ (Rosen S, Andersson M, Blomba¨ck M et al. Clinical applications of a chromogenic substrate method for determination of FVIII activity. Thromb Haemost 1985, 54: 811-23). That is, in the present measurement system, test substances that show higher F.Xa generation-promoting activity are expected to show better hemostatic effects against bleeding episodes in hemophilia A. With these results, if a multispecific antigen-binding molecule having activity of functionally substituting for F.VIII is a molecule having a higher activity than hA69-KQ/hB26-PF/hAL-AQ, it may yield excellent blood coagulation-
- ⁵⁰ promoting activity, and excellent effects may be obtained as a pharmaceutical component for preventing and/or treating bleeding, a disease accompanying bleeding, or a disease caused by bleeding. To obtain excellent effects as the above-mentioned pharmaceutical component, for example, F.Xa generation-promoting activity measured under the conditions described in [Example 2] is preferably not less than that of hA69-KQ/hB26-PF/hAL-AQ, and in particular, the activity is more preferably the same as or not less than that of Q153-G4k/J142-G4h/L180-k. Herein, the "F.Xa generation-promoting".
- ⁵⁵ activity" is the value obtained by subtracting the change in absorbance upon 20 minutes in a solvent from the change in absorbance upon 20 minutes in an antibody solution.

[0064] A preferred embodiment of the present invention is a multispecific antibody that functionally substitutes for F.VIII, which recognizes and/or F.IXa, and F.X.

[0065] The above-mentioned multispecific antibodies of the present invention are preferably antibodies which comprise H chain CDRs of anti-F.IX/F.IXa antibodies or CDRs functionally equivalent to them, and H chain CDRs of anti-F.X antibodies or CDRs functionally equivalent to them.

[0066] Furthermore, the antibodies of the present invention are preferably antibodies comprising an antigen-binding site having:

- H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 75, 76, and 77 (H chain CDRs of Q1), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 78, 79, and 80 (H chain CDRs of Q31), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 81, 82, and 83 (H chain CDRs of Q64), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 84, 85, and 86 (H chain CDRs of Q85), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 87, 88, and 89 (H chain CDRs of Q153), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 90, 91, and 92 (H chain CDRs of Q354), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 90, 91, and 92 (H chain CDRs of Q354), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 93, 94, and 95 (H chain CDRs of Q360), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 96, 97, and 98 (H chain CDRs of Q405), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 99, 100, and 101 (H chain CDRs of Q405), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 99, 100, and 101 (H chain CDRs of Q458), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 99, 100, and 101 (H chain CDRs of Q458), respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 102, 103, and 104 (H chain CDRs of Q460), respectively; or
 - H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 105, 106, and 107 (H chain CDRs of Q499), respectively,
- 20

5

10

15

in an anti-F.IX/IXa antibody, or an antigen-binding site functionally equivalent to it, and an antigen-binding site comprising:

H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 108, 109, and 110 (H chain CDRs of J232), respectively;

- H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 111, 112, and 113 (H chain CDRs of J259), respectively;
 H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 114, 115, and 116 (H chain CDRs of J268),
- respectively; H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 117, 118, and 119 (H chain CDRs of J300), respectively;
- H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 120, 121, and 122 (H chain CDRs of J321), respectively;
 - H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 123, 124, and 125 (H chain CDRs of J326), respectively;
- ³⁵ H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 126, 127, and 128 (H chain CDRs of J327), respectively;

H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 129, 130, and 131 (H chain CDRs of J339), respectively;

H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 132, 133, and 134 (H chain CDRs of J334), respectively;

the amino acid sequences of H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 135, 136, and 137 (H chain CDRs of J346), respectively; or

H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs 174, 175, and 176 (H chain CDRs of J142), respectively,

45

in an anti-F.X antibody, or an antigen-binding site functionally equivalent to it.

[0067] In the present invention, "antigen-binding sites are functionally equivalent" means that the activities of functionally substituting for F.VIII possessed by the multispecific antigen-binding molecules having the antigen-binding sites are equivalent.

- ⁵⁰ **[0068]** In the present invention, the term "equivalent" does not necessarily have to mean the same degree of activity, and the activity may be enhanced, or the activity may be decreased as long as there is an activity higher than that of hA69-KQ/hB26-PF/hAL-AQ according to the measurement system described above, or preferably F.Xa generation-promoting activity measured under the conditions described in [Example 2] is equivalent to or not less than that of Q153-G4k/J142-G4h/L180-k.
- ⁵⁵ **[0069]** The above-mentioned antibodies may have one or more amino acid substitutions, deletions, additions, and/or insertions in the variable region (CDR sequences and/or FR sequences) of the amino acid sequence as long as they have an activity higher than that of hA69-KQ/hB26-PF/hAL-AQ according to the measurement system described above at page 35, lines 11-30, or preferably F.Xa generation-promoting activity measured under the conditions described in

[Example 2] is equivalent to or not less than that of Q153-G4k/J142-G4h/L180-k. A method of introducing mutations into proteins is well known to those skilled in the art as a method for introducing one or more amino acid substitutions, deletions, additions, and/or insertions into an amino acid sequence. For example, those skilled in the art can prepare a desired mutant functionally equivalent to a multispecific polypeptide multimer having the activity of functionally substituting

- ⁵ for F.VIII by introducing appropriate mutations into the amino acid sequence using site-directed mutagenesis (Hashimoto-Gotoh, T, Mizuno, T, Ogasahara, Y, and Nakagawa, M. (1995) An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. Gene 152: 271-275; Zoller, MJ, and Smith, M. (1983) Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. Methods Enzymol. 100: 468-500; Kramer, W, Drutsa, V, Jansen, HW, Kramer, B, Pflugfelder, M, and Fritz, HJ (1984) The gapped duplex DNA approach to oligonucleotide-directed mutation
- ¹⁰ construction. Nucleic Acids Res. 12, 9441-9456; Kramer W, and Fritz HJ (1987) Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. Enzymol. 154: 350-367; and Kunkel, TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci USA. 82: 488-492) and such. [0070] As such, antibodies of the present invention also include antibodies with one or more amino acid mutations in
- the variable region, and having an activity higher than that of hA69-KQ/hB26-PF/hAL-AQ according to the measurement
 system described above at page 35, lines 11-30, or preferably F.Xa generation-promoting activity measured under the conditions described in [Example 2] is equivalent to or not less than that of Q153-G4k/J142-G4h/L180-k.
 [0071] When an amino acid residue is altered, the amino acid is preferably mutated for a different amino acid(s) that
- conserves the properties of the amino acid side-chain. Examples of amino acid side chain properties are: hydrophobic amino acids (A, I, L, M, F, P, W, Y, and V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, and T), amino acids containing aliphatic side chains (G, A, V, L, L, and P), amino acids containing hydroxyl group-containing side chains (S)
- ²⁰ containing aliphatic side chains (G, A, V, L, I, and P), amino acids containing hydroxyl group-containing side chains (S, T, and Y), amino acids containing sulfur-containing side chains (C and M), amino acids containing carboxylic acid- and amide-containing side chains (D, N, E, and Q), amino acids containing basic side chains (R, K, and H), and amino acids containing aromatic side chains (H, F, Y, and W) (amino acids are represented by one-letter codes in parentheses). Amino acid substitutions within each group are called conservative substitutions. It is already known that a polypeptide
- ²⁵ containing a modified amino acid sequence in which one or more amino acid residues in a given amino acid sequence are deleted, added, and/or substituted with other amino acids can retain the original biological activity (Mark, D. F. et al., Proc. Natl. Acad. Sci. USA; (1984) 81: 5662-6; Zoller, M. J. and Smith, M., Nucleic Acids Res. (1982) 10: 6487-500; Wang, A. et al., Science (1984) 224: 1431-3; Dalbadie-McFarland, G. et al., Proc. Natl. Acad. Sci. USA (1982) 79: 6409-13). Such mutants have an amino acid identity of at least 70%, more preferably at least 75%, even more preferably
- at least 80%, still more preferably at least 85%, yet more preferably at least 90%, and most preferably at least 95%, with the variable regions (for example, CDR sequences, FR sequences, or whole variable regions) of the present invention. Herein, sequence identity is defined as the percentage of residues identical to those in the original amino acid sequence of the heavy chain variable region or light chain variable region, determined after the sequences are aligned and gaps are appropriately introduced to maximize the sequence identity as necessary. The identity of amino acid sequences can be determined by the method described below.
- **[0072]** Alternatively, the amino acid sequences of variable regions that have a substitution, deletion, addition, and/or insertion of one or more amino acids in the amino acid sequence of the variable regions (CDR sequences and/or FR sequences) and have an activity higher than that of hA69-KQ/hB26-PF/hAL-AQ according to the measurement system described above at page 35, lines 11-30, or preferably F.Xa generation-promoting activity measured under the conditions
- 40 described in [Example 2] is equivalent to or not less than that of Q153-G4k/J142-G4h/L180-k can be obtained from nucleic acids that hybridize under stringent conditions to nucleic acid composed of the nucleotide sequence encoding the amino acid sequence of the variable regions. Stringent hybridization conditions to isolate a nucleic acid that hybridizes under stringent conditions to a nucleic acid that includes the nucleotide sequence encoding the amino acid sequence of the variable regions include, for example, the conditions of 6 M urea, 0.4% SDS, 0.5x SSC, and 37°C, or hybridization
- ⁴⁵ conditions with stringencies equivalent thereto. With more stringent conditions, for example, the conditions of 6 M urea, 0.4% SDS, 0.1x SSC, and 42°C, isolation of nucleic acids with a much higher homology can be expected. The sequences of the isolated nucleic acids can be determined by the known methods described below. The overall nucleotide sequence homology of the isolated nucleic acid is at least 50% or higher sequence identity, preferably 70% or higher, more preferably 90% or higher (for example, 95%, 96%, 97%, 98%, 99%, or higher).
- 50 [0073] Nucleic acids that hybridize under stringent conditions to a nucleic acid composed of the nucleotide sequence encoding the amino acid sequence of the variable regions can also be isolated using, instead of the above-described methods using hybridization techniques, gene amplification methods such as polymerase chain reaction (PCR) using primers synthesized based on the information of nucleotide sequence encoding the amino acid sequence of the variable regions.
- ⁵⁵ **[0074]** The identity of one nucleotide sequence or amino acid sequence to another can be determined using the algorithm BLAST, by Karlin and Altschul (Proc. Natl. Acad. Sci. USA (1993) 90: 5873-7). Programs such as BLASTN and BLASTX were developed based on this algorithm (Altschul et al., J. Mol. Biol. (1990) 215: 403-10). To analyze nucleotide sequences according to BLASTN based on BLAST, the parameters are set, for example, as score = 100 and

wordlength = 12. On the other hand, parameters used for the analysis of amino acid sequences by BLASTX based on BLAST include, for example, score = 50 and wordlength = 3. Default parameters for each program are used when using the BLAST and Gapped BLAST programs. Specific techniques for such analyses are known in the art (see the website of the National Center for Biotechnology Information (NCBI), Basic Local Alignment Search Tool (BLAST); http://www.nc-bi.nlm.nih.gov).

[0075] The present invention also provides antibodies that bind to an epitope overlapping with an epitope bound by the antibodies described above.

[0076] Whether an antibody recognizes an epitope overlapping with an epitope that is recognized by another antibody can be confirmed by the competition between the two antibodies against the epitope. Competition between the antibodies

- 10 can be evaluated by competitive binding assays using means such as enzyme-linked immunosorbent assay (ELISA), fluorescence energy transfer method (FRET), and fluorometric microvolume assay technology (FMAT (Registered trade-mark)). The amount of antibodies bound to an antigen indirectly correlate with the binding ability of candidate competitor antibodies (test antibodies) that competitively bind to the overlapping epitope. In other words, as the amount of or the affinity of test antibodies against the overlapping epitope increases, the amount of antibodies bound to the antigen
- ¹⁵ decreases, and the amount of test antibodies bound to the antigen increases. Specifically, appropriately labeled antibodies and antibodies to be evaluated are simultaneously added to the antigens, and the thus bound antibodies are detected using the label. The amount of antibodies bound to the antigen can be easily determined by labeling the antibodies beforehand. This label is not particularly limited, and the labeling method is selected according to the assay technique used. The labeling method includes fluorescent labeling, radiolabeling, enzymatic labeling, and such.
- 20 [0077] For example, fluorescently labeled antibodies and unlabeled antibodies or test antibodies are simultaneously added to beads immobilized with F.IX, F.IXa or F.X, and the labeled antibodies are detected by fluorometric microvolume assay technology.

[0078] Herein, the "antibody that binds to the overlapping epitope" refers to an antibody that can reduce the binding of the labeled antibody by at least 50% at a concentration that is usually 100 times higher, preferably 80 times higher, mere preferably 50 times higher and still mere preferably 50 times higher then

- ²⁵ more preferably 50 times higher, even more preferably 30 times higher, and still more preferably 10 times higher than a concentration at which the non-labeled antibody reduces the binding of the labeled antibody by 50% (IC₅₀). [0079] Multispecific antigen-binding molecules, which have antigen-binding sites of antibodies that bind to epitopes overlapping with epitopes bound by the above-mentioned antibodies, may yield an excellent activity of functionally substituting for F.VIII. Furthermore, in antigen-binding sites of antibodies that bind to epitopes
- ³⁰ bound by the above-mentioned antibodies, one or more amino acids may be altered to obtain a better activity of functionally substituting for F.VIII. Multispecific antigen-binding molecules having a better activity of functionally substituting for F.VIII can be obtained by altering the amino acids of the antigen-binding sites and selecting multispecific antigen-binding molecules having an activity higher than that of hA69-KQ/hB26-PF/hAL-AQ according to the measurement system described above, or preferably having an F.Xa generation-promoting activity measured under the conditions described
- ³⁵ in [Example 2] that is equivalent to or not less than that of Q153-G4k/J142-G4h/L180-k. To obtain an excellent activity of functionally substituting for F.VIII of the present invention, the following amino acid alterations are particularly preferred.

(1) At least one amino acid residue selected from the amino acid residues at positions 34, 35, 49, 61, 62, 96, 98, 100, 100b, and 102 by Kabat numbering in the H chain of the antibody that recognizes and/or F.IXa is substituted with a different amino acid.

40

5

(2) At least one amino acid residue selected from the amino acid residues at positions 35, 53, 73, 76, 96, 98, 100, and 100a by Kabat numbering in the H chain of the antibody that recognizes F.X is substituted with a different amino acid.

(3) At least one amino acid residue selected from the amino acid residues at positions 27, 30, 31, 32, 50, 52, 53, 54, 55, 92, 93, 94, and 95 by Kabat numbering in the antibody L chain is substituted with a different amino acid.

- ⁴⁵ 54, 55, 92, 93, 94, and 95 by Kabat numbering in the antibody L chain is substituted with a different amino acid. Furthermore, in the present invention, preferred antibody amino acids for obtaining a better activity of functionally substituting for F.VIII include those mentioned in (4) to (6) below. Regarding these amino acids, the antibody H chain may originally have such amino acids, or antibody H chain amino acids may be modified to have such a sequence.
- 50 (4) An antibody H chain which recognizes and/or F.IXa, wherein, by Kabat numbering, the amino acid residue at position 34 is isoleucine, the amino acid residue at position 35 is asparagine, glutamine, or serine, the amino acid residue at position 61 is arginine, the amino acid residue at position 62 is glutamic acid, the amino acid residue at position 96 is serine or threonine, the amino acid residue at position 98 is lysine or arginine, the amino acid residue at position 100 is phenylalanine or tyrosine, the amino acid residue at position 102 is tyrosine.
- at position 100b is glycine, or the amino acid residue at position 102 is tyrosine.
 (5) An antibody H chain which recognizes F.X, wherein, by Kabat numbering, the amino acid residue at position 35 is aspartic acid, the amino acid residue at position 53 is arginine, the amino acid residue at position 73 is lysine, the amino acid residue at position 76 is glycine, the amino acid residue at position 96 is lysine or arginine, the amino

acid residue at position 98 is tyrosine, the amino acid residue at position 100 is tyrosine, or the amino acid residue at position 100a is histidine.

(6) An antibody L chain, wherein, by Kabat numbering, the amino acid residue at position 27 is lysine or arginine, the amino acid residue at position 30 is glutamic acid, the amino acid residue at position 31 is arginine, the amino acid residue at position 32 is glutamine, the amino acid residue at position 50 is arginine or glutamine, the amino acid residue at position 52 is serine, the amino acid residue at position 53 is arginine, the amino acid residue at position 54 is lysine, the amino acid residue at position 93 is serine, the amino acid residue at position 94 is proline, or the amino acid residue at position 95 is proline.

10

15

5

[0080] Among the above-mentioned antibody amino acid residues of (1) to (6), favorable positions of amino acid residues for obtaining a particularly excellent F.VIII-fike activity are shown in the following (1) to (3).

(1) Amino acid residues at positions 34, 35, 61, 98, 100, and 100b, particularly amino acid residues at positions 61 and 100, by Kabat numbering in the H chain of the antibody that recognizes and/or F.IXa.

(2) Amino acid residues at positions 35, 53, 73, 96, 98, 100, and 100a by Kabat numbering in the H chain of the antibody that recognizes F.X.

(3) Amino acid residues at positions 27, 30, 31, 32, 50, 52, 53, 93, 94, and 95, and particularly amino acid residues at positions 27, 30, 31, 50, 53, 94, and 95, by Kabat numbering in the antibody L chain.

20

[0081] Specifically, the present invention provides multispecific antigen-binding molecules, wherein a first polypeptide comprises any of the antibody H chains selected from the following (a1) to (a 14) and any of the antibody L chains selected from the following (c1) to (c10), and the second polypeptide comprises any of the antibody H chains selected from the following (b1) to (b12) and any of the antibody L chains selected from the following (c1 to (c10):

25

(a1) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 1 (Q1-G4k);

(a2) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 2 (Q31-z7);

(a3) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 3 (Q64-z55);

(a4) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 10 (Q64-z7);

30 (a5) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 11 (Q85-G4k); (a6) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 12 (Q153-G4k); (a7) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 13 (Q354-z106); (a8) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 14 (Q360-G4k); (a9) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 15 (Q360-z118); 35 (a10) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 16 (Q405-G4k); (a11) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 17 (Q458-z106); (a12) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 18 (Q460-z121); (a13) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 19 (Q499-z118); (a14) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 20 (Q499-z121); 40 (b1) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 4 (J268-G4h); (b2) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 5 (J321-G4h); (b3) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 6 (J326-z107); (b4) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 7 (J344-z107); (b5) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 21 (J232-G4h); 45 (b6) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 22 (J259-z107); (b7) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 23 (J300-z107); (b8) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 24 (J327-z107); (b9) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 25 (J327-z119); (b10) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 26 (J339-z119); 50 (b11) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 27 (J346-z107); (b12) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 170 (J142-G4h); (c1) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 8 (L2-k); (c2) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 9 (L45-k); (c3) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 28 (L248-k); 55 (c4) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 29 (L324-k); (c5) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 30 (L334-k); (c6) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 31 (L377-k); (c7) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 32 (L404-k);

(c8) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 33 (L406-k);

(c9) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 34 (L408-k); and

(c10) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 171 (L180-k).

⁵ [0082] The present invention also provides multispecific antigen-binding molecules, wherein the first polypeptide comprises an antigen-binding site which binds to an epitope overlapping with an epitope that binds to an antibody consisting of the antibody H chain of any one of (a1) to (a14) and the antibody L chain of any one of (c1) to (c10) described above, and the second polypeptide comprises an antigen-binding site which binds to an epitope overlapping with an epitope overlapping with an epitope that binds to an antibody consisting of the antibody H chain of any one of (b1) to (b12) and the antibody L chain of any one of (c1) to (c10) described above.

[0083] Furthermore, the present invention provides multispecific antigen-binding molecules, wherein the first polypeptide comprises any one antibody H chain selected from the following (e1) to (e3), the second polypeptide comprises any one antibody H chain selected from the following (f1) to (f3), and the third polypeptide and the fourth polypeptide comprise any one antibody L chain selected from the following (g1) to (g4):

15

20

25

35

40

50

(e1) an H chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody consisting of an antibody H chain of any one of (a1) to (a14) and an antibody L chain of any one of (c1) to (c10) described above; (e2) an antibody H chain, wherein at least one amino acid residue selected from the amino acid residues at positions 34, 35, 49, 61, 62, 96, 98, 100, 100b, and 102 by Kabat numbering in any one antibody H chain selected from (e1) described above is substituted with another amino acid;

- (e3) an antibody H chain, wherein by Kabat numbering, the amino acid residue at position 34 is isoleucine, the amino acid residue at position 35 is asparagine, glutamine, or serine, the amino acid residue at position 49 is serine, the amino acid residue at position 61 is arginine, the amino acid residue at position 62 is glutamic acid, the amino acid residue at position 96 is serine or threonine, the amino acid residue at position 98 is lysine or arginine, the amino acid residue at position 100 is phenylalanine or tyrosine, the amino acid residue at position 100b is glycine,
- or the amino acid residue at position 102 is tyrosine in any antibody H chain selected from (e1) described above; (f1) an H chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody consisting of an antibody H chain of any of (b1) to (b12) described above and an antibody L chain of any of (c1) to (c10) described above;
- (f2) an antibody H chain, wherein at least one amino acid residue selected from the amino acid residues at positions
 35, 53, 73, 76, 96, 98, 100, and 100a by Kabat numbering in any antibody H chain of (f1) described above is substituted with another amino acid;

(f3) an antibody H chain, wherein by Kabat numbering, the amino acid residue at position 35 is aspartic acid, the amino acid residue at position 53 is arginine, the amino acid residue at position 73 is lysine, the amino acid residue at position 76 is glycine, the amino acid residue at position 96 is lysine or arginine, the amino acid residue at position

98 is tyrosine, the amino acid residue at position 100 is tyrosine, or the amino acid residue at position 100a is histidine in any one antibody H chain selected from (f1) described above;

(g1) an L chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody which consists of an antibody H chain of any one of (a1) to (a14) and an antibody L chain of any one of (c1) to (c10) described above;

(g2) an L chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody which consists of an antibody H chain of any one of (b1) to (b12) and an antibody L chain of any one of (c1) to (c10) described above;

(g3) an antibody L chain, wherein at least one amino acid residue selected from the amino acid residues at positions
 27, 30, 31, 32, 50, 52, 53, 54, 55, 92, 93, 94, and 95 by Kabat numbering in the antibody L chain of either (g1) or
 (g2) described above is substituted with another amino acid; and
 (g4) an antibody L chain, wherein by Kabat numbering, the amino acid residue at position 27 is lysine or arginine,

the amino acid residue at position 30 is glutamic acid, the amino acid residue at position 21 is systere of arginine, acid residue at position 32 is glutamine, the amino acid residue at position 50 is arginine or glutamine, the amino acid residue at position 52 is serine, the amino acid residue at position 53 is arginine, the amino acid residue at position 54 is lysine, the amino acid residue at position 55 is glutamic acid, the amino acid residue at position 92 is serine, the amino acid residue at position 93 is serine, the amino acid residue at position 94 is proline, or the amino acid residue at position 95 is proline in the antibody L chain of either (g1) or (g2) described above.

⁵⁵ **[0084]** Amino acid substitutions can be performed on the antibodies (clones) of the present invention to avoid deamidation, methionine oxidation, and such, or to structurally stabilize the antibodies.

[0085] The method for obtaining multispecific antigen-binding molecules of the present invention is not particularly limited, and may be any method. Bispecific antibodies can be generated according to the methods described in WO

2006/109592, WO 2005/035756, WO 2006/106905, or WO 2007/114325, which are known as examples of the method for producing the bispecific antibodies; and then desired antibodies having a cofactor function-substituting activity can be selected and obtained.

- **[0086]** For example, the bispecific antibody described in any of the following (a) to (u) is provided by the present invention:
 - (a) a bispecific antibody (Q1-G4k/J268-G4h/L45-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 1, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 4, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 9; (b) a bispecific antibody (Q1-G4k/J321-G4h/L45-k), wherein the first polypeptide is an H chain consisting of the
- amino acid sequence of SEQ ID NO: 1, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 5, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 9; (c) a bispecific antibody (Q31-z7/J326-z107/L2-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 2, the second polypeptide is an H chain consisting of the amino acid sequence of

10

25

30

45

50

- SEQ ID NO: 6, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 8;
 (d) a bispecific antibody (Q64-z55/J344-z107/L45-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 3, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 7, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 9;
 (e) a bispecific antibody (Q64-z7/J326-z107/L334-k), wherein the first polypeptide is an H chain consisting of the
- 20 amino acid sequence of SEQ ID NO: 10, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 6, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

(f) a bispecific antibody (Q64-z7/J344-z107/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 10, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 7, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID

NO: 33; (g) a bispecific antibody (Q85-G4k/J268-G4h/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 11, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 4, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33:

(h) a bispecific antibody (Q85-G4k/J321-G4h/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 11, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 5, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

- (i) a bispecific antibody (Q153-G4k/J232-G4h/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 12, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;
- (j) a bispecific antibody (Q354-z106/J259-z107/L324-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 13, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 22, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 29;

(k) a bispecific antibody (Q360-G4k/J232-G4h/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 14, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;

(I) a bispecific antibody (Q360-z118/J300-z107/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 15, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 23, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

- (m) a bispecific antibody (Q405-G4k/J232-G4h/L248-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 16, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 28;
- (n) a bispecific antibody (Q458-z106/J346-z107/L408-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 17, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 27, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 34;

(o) a bispecific antibody (Q460-z121/J327-z119/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 18, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

- (p) a bispecific antibody (Q499-z118/J327-z107/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;
- (q) a bispecific antibody (Q499-z118/J327-z107/L377-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 31;

15

20

(r) a bispecific antibody (Q499-z118/J346-z107/L248-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 27, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 28;

(s) a bispecific antibody (Q499-z121/J327-z119/L404-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 20, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 32;

(t) a bispecific antibody (Q499-z121/J339-z119/L377-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 20, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 26, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 31; and

- (u) a bispecific antibody (Q153-G4k/J142-G4h/L180-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 12, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 170, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 171.
- 30 [0087] Amino acid sequences, molecular weights, isoelectric points, or presence or absence and form of sugar chains of the antibodies of the present invention vary depending on cells or hosts that produce the antibodies or purification methods described later. However, as long as the obtained antibodies have functions equivalent to the antibodies of the present invention, they are included in the present invention. For example, when an antibody of the present invention is expressed in prokaryotic cells such as *E. coli*, a methionine residue will be added to the N terminus of the original article antibodies and be antibodies.
- antibody amino acid sequence. Antibodies of the present invention also comprise such antibodies.
 [0088] Bispecific antibodies of the present invention can be produced by methods known to those skilled in the art.
 [0089] Based on the obtained sequence of the anti-F.IX/F.IXa antibody or anti-F.X antibody, the anti-F.IX/F.IXa antibody or anti-F.X antibody can be prepared, for example, by genetic recombination techniques known to those skilled in the art. Specifically, a polynucleotide encoding an antibody can be constructed based on the sequence of the anti-F.IX/F.IXa
- antibody or anti-F.X antibody, inserted into an expression vector, and then expressed in appropriate host cells (see for example, Co, M. S. et al., J. Immunol. (1994) 152, 2968-2976; Better, M. and Horwitz, A. H., Methods Enzymol. (1989) 178, 476-496; Pluckthun, A. and Skerra, A., Methods Enzymol. (1989) 178, 497-515; Lamoyi, E., Methods Enzymol. (1986) 121, 652-663; Rousseaux, J. et al., Methods Enzymol. (1986) 121, 663-669; Bird, R. E. and Walker, B. W., Trends Biotechnol. (1991) 9, 132-137).
- ⁴⁵ [0090] The vectors include M13 vectors, pUC vectors, pBR322, pBluescript, and pCR-Script. Alternatively, when aiming to subclone and excise cDNA, the vectors include, for example, pGEM-T, pDIRECT, and pT7, in addition to the vectors described above. Expression vectors are particularly useful when using vectors for producing the antibodies of the present invention. For example, when aiming for expression in *E. coli* such as JM109, DH5α, HB101, and XL1-Blue, the expression vectors not only have the characteristics that allow vector amplification in *E. coli*, but must also carry a
- ⁵⁰ promoter that allows efficient expression in *E. coli,* for example, lacZ promoter (Ward et al., Nature (1989) 341: 544-546; FASEB J. (1992) 6: 2422-2427), araB promoter (Better et al., Science (1988) 240: 1041-1043), T7 promoter or such. Such vectors include pGEX-5X-1 (Pharmacia), "QIAexpress system" (Qiagen), pEGFP, or pET (in this case, the host is preferably BL21 that expresses T7 RNA polymerase) in addition to the vectors described above.
- [0091] The expression plasmid vectors may contain signal sequences for antibody secretion. As a signal sequence for antibody secretion, a pelB signal sequence (Lei, S. P. et al J. Bacteriol. (1987) 169: 4379) may be used when a protein is secreted into the *E. coli* periplasm. The vector can be introduced into host cells by calcium chloride or electroporation methods, for example.

[0092] In addition to vectors for E. coli, the vectors for producing the antibodies of the present invention include

mammalian expression vectors (for example, pcDNA3 (Invitrogen), pEF-BOS (Nucleic Acids. Res. 1990, 18(17): p5322), pEF, and pCDM8), insect cell-derived expression vectors (for example, the "Bac-to-BAC baculovirus expression system" (Gibco-BRL) and pBacPAK8), plant-derived expression vectors (for example, pMH1 and pMH2), animal virus-derived expression vectors (for example, pHSV, pMV, and pAdexLcw), retroviral expression vectors (for example, pZIPneo),

- ⁵ yeast expression vectors (for example, "Pichia Expression Kit" (Invitrogen), pNV11, and SP-Q01), and *Bacillus subtilis* expression vectors (for example, pPL608 and pKTH50), for example.
 [0093] When aiming for expression in animal cells such as CHO, COS, and NIH3T3 cells, the expression plasmid vectors must have a promoter essential for expression in cells, for example, SV40 promoter (Mulligan et al., Nature (1979) 277: 108), MMLV-LTR promoter, EFIα promoter (Mizushima et al., Nucleic Acids Res. (1990) 18: 5322), and
- CMV promoter, and more preferably they have a gene for selecting transformed cells (for example, a drug resistance gene that allows evaluation using an agent (neomycin, G418, or such)). Vectors with such characteristics include pMAM, pDR2, pBK-RSV, pBK-CMV, pOPRSV, and pOP13, for example.
 [0094] In addition, the following method can be used for stable gene expression and gene amplification in cells: CHO
- cells deficient in a nucleic acid synthesis pathway are introduced with a vector that carries a DHFR gene which com pensates for the deficiency (for example, pSV2-dhfr (Molecular Cloning 2nd edition, Cold Spring Harbor Laboratory Press, 1989)), and the vector is amplified using methotrexate (MTX). Alternatively, the following method can be used for transient gene expression: COS cells with a gene expressing SV40 T antigen on their chromosome are transformed with a vector with an SV40 replication origin (pcD and such). Replication origins derived from polyoma virus, adenovirus, bovine papilloma virus (BPV), and such can also be used. To amplify gene copy number in host cells, the expression
- vectors may further carry selection markers such as aminoglycoside transferase (APH) gene, thymidine kinase (TK) gene, *E. coli* xanthine-guanine phosphoribosyltransferase (Ecogpt) gene, and dihydrofolate reductase (dhfr) gene. [0095] The antibodies of the present invention obtained by the methods described above can be isolated from inside host cells or from outside the cells (the medium, or such), and purified to homogeneity. The antibodies can be isolated and purified by methods routinely used for isolating and purifying antibodies, and the type of method is not limited. For
- ²⁵ example, the antibodies can be isolated and purified by appropriately selecting and combining column chromatography, filtration, ultrafiltration, salting-out, solvent precipitation, solvent extraction, distillation, immunoprecipitation, SDS-poly-acrylamide gel electrophoresis, isoelectrofocusing, dialysis, recrystallization, and such.
 [0096] The chromatographies include, for example, affinity chromatography, ion exchange chromatography, hydro-

[U096] The chromatographies include, for example, affinity chromatography, ion exchange chromatography, hydrophobic chromatography, gel filtration, reverse phase chromatography, and adsorption chromatography (Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Ed Daniel R. Marshak et al., Cold Spring Harbor Laboratory Press, 1996). The chromatographic methods described above can be conducted using liquid chromatography, for example, HPLC and FPLC. Columns that can be used for affinity chromatography include protein A columns and protein G columns. Columns using protein A include, for example, Hyper D, POROS, and Sepharose FF (GE Amersham Biosciences). The present invention includes antibodies that are highly purified using these purification methods.

- ³⁵ **[0097]** The obtained antibodies can be purified to homogeneity. Separation and purification of the antibodies can be performed using conventional separation and purification methods used for ordinary proteins. For example, the antibodies can be separated and purified by appropriately selecting and combining column chromatography such as affinity chromatography, filtration, ultrafiltration, salting-out, dialysis, SDS polyacrylamide gel electrophoresis, isoelectric focusing, and such, without limitation (Antibodies : A Laboratory Manual. Ed Harlow and David Lane, Cold Spring Harbor Labo-
- 40 ratory, 1988). Columns used for affinity chromatography include, for example, protein A columns and protein G columns. [0098] In one embodiment of antibodies of the present invention, since the antibodies of the present invention functionally substitute for cofactor F.VIII, they are expected to become effective pharmaceutical agents against diseases resulting from decrease in activity (function) of this cofactor. Examples of the above-mentioned diseases include bleeding, diseases accompanying bleeding, or a disease caused by bleeding. In particular, there may have excellent therapeutic
- effects on hemophilias, in which bleeding disorders are caused by a deficiency or decrease of F.VIII/F.VIIIa function. Among the hemophilias, they are expected to become excellent therapeutic agents for hemophilia A, in which bleeding disorders are caused by a hereditary deficiency or decrease of F.VIII/F.VIIIa function.
 [0099] The present invention provides (pharmaceutical) compositions comprising the antibodies of the present inven-
- tion and pharmaceutically acceptable carriers. For example, the antibodies of the present invention that recognize both
 F.IX or F.IXa and F.X, and functionally substitute for F.VIII are expected to become pharmaceuticals (pharmaceutical compositions) or pharmaceutical agents for preventing and/or treating bleeding, diseases accompanying bleeding, diseases caused by bleeding, and the like.

[0100] In the context of the present invention, bleeding, diseases accompanying bleeding, and/or diseases caused by bleeding preferably refer to diseases that develop and/or progress due to reduction or deficiency in activity of F.VIII and/or activated coagulation factor VIII (F.VIIIa). Such diseases include the above-described hemophilia A, diseases in which an inhibitor against F.VIII /F.VIIIa appear, acquired hemophilia, von Willebrand's disease, and such, but are not particularly limited thereto.

55

[0101] Pharmaceutical compositions used for therapeutic or preventive purposes, which comprise antibodies of the

present invention as active ingredients, can be formulated by mixing, if necessary, with suitable pharmaceutically acceptable carriers, vehicles, and such that are inactive against the antibodies. For example, sterilized water, physiological saline, stabilizers, excipients, antioxidants (such as ascorbic acid), buffers (such as phosphate, citrate, histidine, and other organic acids), antiseptics, surfactants (such as PEG and Tween), chelating agents (such as EDTA), and binders

- ⁵ may be used. They may also comprise other low-molecular-weight polypeptides, proteins such as serum albumin, gelatin, and immunoglobulins, amino acids such as glycine, glutamine, asparagine, glutamic acid, asparagic acid, methionine, arginine, and lysine, sugars and carbohydrates such as polysaccharides and monosaccharides, and sugar alcohols such as mannitol and sorbitol. When preparing an aqueous solution for injection, physiological saline and isotonic solutions comprising glucose and other adjuvants such as D-sorbitol, D-mannose, D-mannitol, and sodium chloride may
- ¹⁰ be used, and if necessary, in combination with appropriate solubilizers such as alcohol (for example, ethanol), polyalcohols (such as propylene glycol and PEG), and nonionic surfactants (such as polysorbate 80, polysorbate 20, poloxamer 188, and HCO-50). By mixing hyaluronidase into the formulation, a larger fluid volume can be administered subcutaneously (Expert Opin Drug Deliv. 2007 Jul; 4(4): 427-40).
- [0102] If necessary, antibodies of the present invention may be encapsulated in microcapsules (e.g., those made of hydroxymethylcellulose, gelatin, and poly(methylmetacrylate)), or incorporated as components of colloidal drug delivery systems (e.g., liposomes, albumin microspheres, microemulsion, nanoparticles, and nanocapsules) (see, for example, "Remington's Pharmaceutical Science 16th edition", Oslo Ed. (1980)). Methods for preparing the pharmaceutical agents as controlled-release pharmaceutical agents are also well known, and such methods may be applied to the antibodies of the present invention (Langer et al., J. Biomed. Mater. Res. 15: 267-277 (1981); Langer, Chemtech. 12: 98-105 (1982);
- ²⁰ U.S. Patent No. 3,773,919; European Patent Application Publication No. EP 58,481; Sidman et al., Biopolymers 22: 547-556 (1983); EP 133,988).

[0103] The dose of a pharmaceutical composition of the present invention may be appropriately determined by considering the dosage form, method of administration, patient age and body weight, symptoms of the patient, type of the disease, and degree of progress of the disease, and is ultimately decided by physicians. Generally, the daily dose for

- ²⁵ an adult is 0.1 mg to 2,000 mg at once or in several portions. The dose is more preferably 0.2 to 1,000 mg/day, even more preferably 0.5 to 500 mg/day, still more preferably 1 to 300 mg/day, yet more preferably 3 to 100 mg/day, and most preferably 5 to 50 mg/day. These doses may vary, depending on the patient body weight and age, and the method of administration; however, selection of suitable dosage is well within the purview of those skilled in the art. Similarly, the dosing period may be appropriately determined depending on the therapeutic progress.
- ³⁰ **[0104]** Furthermore, the present invention provides genes or nucleic acids encoding the antibodies of the present invention. In addition, gene therapy may be performed by incorporating genes or nucleic acids encoding the antibodies of the present invention into vectors for gene therapy. In addition to direct administration using naked plasmids, methods of administration include administration after packaging into liposomes and such, forming a variety of virus vectors such as retrovirus vectors, adenovirus vectors, vaccinia virus vectors, poxvirus vectors, adeno-associated virus vectors, and
- ³⁵ HVJ vectors (see Adolph "Viral Genome Methods" CRC Press, Florida (1996)), or coating with carrier beads such as colloidal gold particles (WO 93/17706, and such). However, so long as the antibodies are expressed *in vivo* and their activities are exercised, any method can be used for administration. Preferably, a sufficient dose can be administered by a suitable parenteral route (such as injecting or infusing intravenously, intraperitoneally, subcutaneously, intradermally, intramuscularly, into adipose tissues or mammary glands; inhalation; gas-driven particle bombardment (using electron
- 40 gun and such); or mucosal route such as nasal drops). Alternatively, the genes encoding the antibodies of the present invention may be administered into blood cells, bone marrow cells, and such *ex vivo* using liposome transfection, particle bombardment (U.S. Patent No. 4,945,050), or viral infection, and the cells may be reintroduced into patients. Any gene encoding an antibody of the present invention may be used in gene therapy, and its examples include genes comprising nucleotide sequences encoding the CDRs of Q1, Q31, Q64, Q85, Q153, Q354, Q360, Q405, Q458, Q460, Q499, J232,
- ⁴⁵ J259, J268, J300, J321, J326, J327, J339, J344, J346, J142, L2, L45, L248, L324, L334, L377, L404, L406, L408, and L180 described above.

50

[0105] The present invention also provides methods for preventing and/or treating bleeding, diseases accompanying bleeding, and/or diseases caused by bleeding, such methods comprising the step of administering the antibodies or compositions of the present invention. The antibodies or compositions can be administered, for example, by the above-mentioned methods.

[0106] Furthermore, the present invention provides kits to be used for the above-mentioned methods, such kits comprising at least an antibody or composition of the present invention. In addition, the kits may include, packaged therewith, a syringe, injection needle, pharmaceutically acceptable medium, alcohol-soaked cotton, adhesive bandage, instructions describing the method of use, and the like.

⁵⁵ **[0107]** The present invention also relates to use of a multispecific antigen-binding molecule, a bispecific antibody, or a composition of the present invention in the manufacture of an agent for preventing and/or treating bleeding, a disease accompanying bleeding, or a disease caused by bleeding.

[0108] Furthermore, the present invention relates to a multispecific antigen-binding molecule, a bispecific antibody,

or a composition of the present invention for preventing and/or treating bleeding, a disease accompanying bleeding, or a disease caused by bleeding.

[0109] All prior art references cited herein are incorporated by reference into this description.

5 Examples

[0110] Herein below, the present invention will be specifically described with reference to the Examples, but it is not to be construed as being limited thereto.

¹⁰ [Example 1] Production of Bispecific Antibodies Having F.Xa Generation-Promoting Activity

[0111] In WO 2006/109592, hA69-KQ/hB26-PF/hAL-AQ was obtained as a bispecific antibody having an activity of functionally substituting for F.VIII. However, there was the possibility that this antibody has an inhibiting action on the reaction in which F.IXa activates F.X using F.VIIIa as a cofactor.

- ¹⁵ **[0112]** As shown in Fig. 1, antibodies that bind to F.IX/F.IXa or F.X may inhibit the formation of the F.IXa-F.VIIIa complex (Factor Xase (F.Xase)), or inhibit F.Xase activity (activation of F.X). Hereafter, inhibition of F.Xase formation and/or action of inhibiting F.Xase activity will be mentioned as F.Xase inhibitory action. F.Xase inhibitory action is the inhibition of a coagulation reaction in which F.VIIIa serves as the cofactor, which may suppress the remaining F.VIII function in a patient or the function of the administered F.VIII formulation. Therefore, it is desirable that F.Xa generation-
- ²⁰ promoting activity, which is the objective of the bispecific antibody, is high, while F.Xase inhibitory action is low. In particular, for patients maintaining F.VIII function and patients receiving treatment with a F.VIII formulation, it is more desirable that F.Xa generation-promoting activity and F.Xase inhibitory action are separated as much as possible. [0113] However, F.Xase inhibitory action is due to the binding to the antigen (F.IXa and/or F.X), which is fundamental property of the antibody. On the other hand, a bispecific antibody having F.Xa generation-promoting action (functionally)
- ²⁵ substituting for F.VIII) also needs to bind to the antigens (F.IXa and F.X). Therefore, it is predicted that it is extremely difficult to obtain bispecific antibodies that do not have an F.Xase inhibitory action but have an F.Xa generation-promoting activity (functionally substituting for F.VIII). Similarly, it is predicted that it is extremely difficult to decrease an F.Xase inhibitory action while increasing the target F.Xa generation-promoting activity by introducing amino acid substitutions in a bispecific antibody.
- 30 [0114] The present inventors prepared genes for approximately 200 types of antibodies against human F.IXa and human F.X, respectively, using a method known to those skilled in the art, which is the method of obtaining antibody genes from antibody-producing cells of animals immunized with an antigen (human F.IXa or human F.X), and introducing amino acid substitutions, when necessary. Each antibody gene was incorporated into an animal cell expression vector. [0115] 40,000 or more bispecific antibodies as anti-F.IXa antibody and anti-F.X antibody combinations were transiently
- ³⁵ expressed by simultaneously transfecting the anti-human F.IXa antibody H chain expression vector, the anti-human F.X antibody H chain expression vector, and the commonly shared antibody L chain expression vector into mammalian cells such as HEK293H cells. As a comparative control, bispecific antibody hA69-KQ/hB26-PF/hAL-AQ (SEQ ID NOs: 165/166/167) described in WO 2006/109592 was prepared.
- [0116] Since the mutations mentioned in WO 2006/106905 or WO 1996/027011 were introduced into the CH3 domain of each H chain, it was thought that bispecific antibodies were mainly expressed. Antibodies in the cell culture supernatant were purified by a method known to those skilled in the art using Protein A.

[0117] The present inventors measured the F.Xa generation-promoting activity of these antibodies by the method described below. All reactions were performed at room temperature.

[0118] Five μL of antibody solution diluted with Tris-buffered saline containing 0.1% bovine serum albumin (hereafter referred to as TBSB) was mixed with 2.5 μL of 27 ng/mL Human Factor IXa beta (Enzyme Research Laboratories) and 2.5 μL of 6 IU/mL of Novact (registered trademark) M (Kaketsuken), and then incubated in a 384-well plate at room temperature for 30 minutes.

[0119] The enzyme reaction in this mixed solution was initiated by adding 5 μ L of 24.7 μ g/mL of Human Factor X (Enzyme Research Laboratories), and ten minutes later, 5 μ L of 0.5 M EDTA was added to stop the reaction. The

- ⁵⁰ coloring reaction was initiated by adding 5 μL of coloring substrate solution. After a 50-minute coloring reaction, the change in absorbance at 405 nm was measured using the SpectraMax 340PC³⁸⁴ (Molecular Devices). F.Xa generation-promoting activity was indicated as the value obtained by subtracting the absorbance of the antibody-free reaction solution from the absorbance of the antibody-supplemented reaction solution.
- [0120] TBCP (TBSB containing 93.75 μM phospholipid solution (SYSMEX CO.), 7.5 mM CaCl₂, and 1.5 mM MgCl₂) was used as the solvent for Human Factor IXa, Novact (registered trademark) M, and Human Factor X. A coloring substrate solution S-2222[™] (CHROMOGENIX) was dissolved in purified water at 1.47 mg/mL, and then used in this assay.

[0121] To evaluate the F.Xase inhibitory action of the antibodies, the present inventors measured the effects on F.X

activation by F.IXa in the presence of F.VIIIa using the following method. All reactions were performed at room temperature.

[0122] Five μ L of antibody solution diluted with Tris-buffered saline containing 0.1% bovine serum albumin (hereafter referred to as TBSB) was mixed with 2.5 μ L of 80.9 ng/mL Human Factor IXa beta (Enzyme Research Laboratories), and then incubated in a 384-well plate at room temperature for 30 minutes.

- **[0123]** 2.5 μ L of 1.8 IU/mL of F.VIIIa (production method will be descried later) was further added, and 30 seconds later, the enzyme reaction in this mixed solution was initiated by adding 5 μ L of 24.7 μ g/mL of Human Factor X (Enzyme Research Laboratories). Six minutes later, 5 μ L of 0.5 M EDTA was added to stop the reaction. The coloring reaction was initiated by adding 5 μ L of coloring substrate solution. After a 14-minute coloring reaction, the change in absorbance
- 10 at 405 nm was measured using the SpectraMax 340PC³⁸⁴ (Molecular Devices). F.Xase inhibitory action of an antibody was indicated as the value obtained by subtracting the absorbance of the antibody-free reaction solution from the absorbance of the antibody-supplemented reaction solution.

[0124] F.VIIIa was prepared by mixing 5.4 IU/mL of Kogenate (registered trademark) FS (Bayer HealthCare) and 1.11 μ g/mL of Human alpha Thrombin (Enzyme Research Laboratories) at a volume ratio of 1:1, incubating at room temper-

¹⁵ ature for one minute, and then adding 7.5 U/mL of Hirudin (Merck KgaA) at a quantity that is half the volume of the mixture solution. The prepared solution was defined as 1.8 IU/mL of FVIIIa, and one minute after addition of Hirudin, this was used for assays.

[0125] TBCP (TBSB containing 93.75 μM phospholipid solution (SYSMEX CO.), 7.5 mM CaCl₂, and 1.5 mM MgCl₂) was used for the solvent for Human Factor IXa, Human Factor X, Kogenate (registered trademark) FS, Human alpha

- ²⁰ Thrombin, and Hirudin. A coloring substrate solution S-2222[™] (CHROMOGENIX) was dissolved in purified water at 1.47 mg/mL, and then used in this assay.
 [0126] The F.Xa generation-promoting activities of each of the bispecific antibodies are indicated in Figs. 3 and 4, and the F.Xase inhibitory actions of each of the bispecific antibodies are indicated in Fig. 5. Various amino acid substitutions
- that increase the F.Xa generation-promoting activity have been found, but as expected, most of the amino acid substitutions that increase the F.Xa generation-promoting activity increased F.Xase inhibitory action as well, and suppressing F.Xase inhibitory action while increasing F.Xa generation-promoting activity was very difficult.
 [0127] Under such circumstances, the inventors of the present application obtained Q1-G4k/J268-G4h/L45-k, Q1-G4k/J321-G4h/L45-k, Q31-z7/J326-z107/L2-k, Q64-z55/J344-z107/L45-k as bispecific antibodies with a high F.Xa generation-promoting activity increased generation.
- eration-promoting activity and a low F.Xase inhibitory action. In addition, Q1-G4k (SEQ ID NO: 1), Q31-z7 (SEQ ID NO: 2), and Q64-z55 (SEQ ID NO: 3) were obtained as anti-human F.IXa antibody H chains, J268-G4h (SEQ ID NO: 4), J321-G4h (SEQ ID NO: 5), J326-z107 (SEQ ID NO: 6), and J344-z107 (SEQ ID NO: 7) were obtained as prototype anti-human F.X antibody H chains, and L2-k (SEQ ID NO: 8) and L45-k (SEQ ID NO: 9) were obtained as prototype commonly shared antibody L chains. The character before the hyphen in the sequence name indicates the variable region and the character after the hyphen indicates the constant region. Each bispecific antibody name is indicated by listing the sequence names of each chain to be transfected.
- [0128] Most of the bispecific antibodies having F.Xa generation-promoting activity close to that of hA69-KQ/hB26-PF/hAL-AQ had high F.Xase inhibitory action as expected, but these bispecific antibodies (Q1-G4k/J268-G4h/L45-k, Q1-G4k/J321-G4h/L45-k, Q31-z7/J326-z107/L2-k, Q64-z55/J344-z107/L45-k) were found to have higher F.Xa generation-promoting activity and lower F.Xase inhibitory action than hA69-KQ/hB26-PF/hAL-AQ described in WO
- 40 2006/109592. The present inventors conducted examinations to further increase the F.Xa generation-promoting activity and reduce the F.Xase inhibitory action using these four antibodies as prototype antibodies. Screening of bispecific antibodies that increase F.Xa generation-promoting activity and reduce F.Xase inhibitory action is indicated in Fig. 2.
 - [Example 2] Production of Modified Antibodies
- 45

50

5

[0129] The present inventors introduced various combinations of amino acid mutations that affect the F.Xa generationpromoting activities and F.Xase inhibitory actions found in Example 1 to each of the chains of the prototype antibodies by a method known to those skilled in the art such as PCR for introducing mutations and evaluated the combinations of modified chains on a large scale to screen for amino acid substitutions that will further increase the F.Xa generationpromoting activities and reduce the F.Xase inhibitory actions of the four prototype antibodies.

- **[0130]** Each of the modified bispecific antibodies with amino acid substitutions were expressed transiently and purified by methods similar to those for the prototype antibodies. The F.Xa generation-promoting activities of the antibodies were measured using the following method. All reactions were performed at room temperature.
- [0131] Five μL of antibody solution diluted with Tris-buffered saline containing 0.1% bovine serum albumin (hereafter referred to as TBSB) was mixed with 2.5 μL of 27 ng/mL Human Factor IXa beta (Enzyme Research Laboratories) and 2.5 μL of 6 IU/mL of Novact (registered trademark) M (Kaketsuken), and then incubated in a 384-well plate at room temperature for 30 minutes.

[0132] The enzyme reaction in this mixed solution was initiated by adding 5 μ L of 24.7 μ g/mL of Human Factor X

(Enzyme Research Laboratories), and two minutes later, 5 μ L of 0.5 M EDTA was added to stop the reaction. The coloring reaction was initiated by adding 5 μ L of coloring substrate solution. After a 20-minute coloring reaction, the change in absorbance at 405 nm was measured using the SpectraMax 340PC³⁸⁴ (Molecular Devices). F.Xa generation-promoting activity was indicated as the value obtained by subtracting the absorbance of the antibody-free reaction solution from the absorbance of the antibody-supplemented reaction solution.

- ⁵ solution from the absorbance of the antibody-supplemented reaction solution. [0133] TBCP (TBSB containing 93.75 μM phospholipid solution (SYSMEX CO.), 7.5 mM CaCl₂, and 1.5 mM MgCl₂) was used as the solvent for Human Factor IXa, Novact (registered trademark) M, and Human Factor X. A coloring substrate solution S-2222[™] (CHROMOGENIX) was dissolved in purified water at 1.47 mg/mL, and then used in this assay.
- ¹⁰ **[0134]** F.Xase inhibitory actions of the antibodies were also evaluated by previously described methods.

[0135] The F.Xa generation-promoting activities of each of the modified bispecific antibodies are indicated in Fig. 4, and the F.Xase inhibitory actions of each of the bispecific antibodies are indicated in Fig. 5.

[0136] The inventors of the present application obtained Q85-G4k/J268-G4h/L406-k, Q85-G4k/J321-G4h/L334-k, Q64-z7/J344-z107/L406-k, and Q64-z7/J326-z107/L334-k as bispecific antibodies with a high F.Xa generation-promoting activity and a low F.Xase inhibitory action. In addition, they discovered Q64-z7 (SEQ ID NO: 10) and Q85-G4k (SEQ ID NO: 11) as the anti-human F.IXa antibody H chain, and L334-k (SEQ ID NO: 30) and L406-k (SEQ ID NO: 33) as the

- commonly shared antibody L chains with increased F.Xa generation-promoting activity. Though F.Xase inhibitory actions increased slightly, F.Xa generation-promoting activity increased greatly in Q85-G4k/J268-G4h/L406-k, Q85-G4k/J321-G4h/L334-k, Q64-z7/J344-z107/L406-k, and Q64-z7/J326-z107/L334-k. Since these modified antibodies have very large
- F.Xa generation-promoting activities compared to increase in F.Xase inhibitory actions, the F.Xa generation-promoting activity and the F.Xase inhibitory action could further be separated compared to the prototype antibodies. This way, combinations that suppress the F.Xase inhibitory action and increase the F.Xa generation-promoting activity were discovered.
- [0137] While a higher F.Xa generation-promoting activity is preferred for the discovered prototype antibodies to functionally substitute for F.VIII by bispecific antibodies, lower F.Xase inhibitory action was considered favorable to clinically use for patients maintaining F.VIII functions or patients receiving treatment with F.VIII formulations. Therefore, further modifications were performed to produce bispecific antibodies in which F.Xase inhibitory action is not increased while F.Xa generation-promoting activity is further increased.
- [0138] As a result, Q153-G4k/J232-G4h/L406-k, Q354-z106/J259-z107/L324-k, Q360-G4k/J232-G4h/L406-k, Q360-z118/J300-z107/L334-k, Q405-G4k/J232-G4h/L248-k, Q458-z106/J346-z107/L408-k, Q460-z121/J327-z119/L334-k, Q499-z118/J327-z107/L334-k, Q499-z118/J327-z107/L334-k, Q499-z118/J327-z107/L334-k, Q499-z118/J327-z107/L334-k, Q499-z118/J327-z107/L334-k, Q499-z118/J327-z107/L334-k, Q499-z118/J327-z107/L334-k, Q499-z118/J327-z107/L377-k, and Q153-G4k/J142-G4h/L180-k were obtained as bispecific antibodies with a high F.Xa generation-promoting activity and a low F.Xase inhibitory action. In addition, the Inventors discovered Q153-G4k (SEQ ID NO: 12), Q354-z106 (SEQ ID NO: 13), Q360-G4k (SEQ ID NO: 14), Q360-z118 (SEQ ID NO: 15),
- ³⁵ Q405-G4k (SEQ ID NO: 16), Q458-z106 (SEQ ID NO: 17), Q460-z121 (SEQ ID NO: 18), Q499-z118 (SEQ ID NO: 19), and Q499-z121 (SEQ ID NO: 20) as the anti-human F.IXa antibody H chain, J232-G4h (SEQ ID NO: 21), J259-z107 (SEQ ID NO: 22), J300-z107 (SEQ ID NO: 23), J327-z107 (SEQ ID NO: 24), J327-z119 (SEQ ID NO: 25), J339-z119 (SEQ ID NO: 26), J346-z107 (SEQ ID NO: 27), J142-G4h (SEQ ID NO: 170) as the anti-human F.X antibody H chains with increased F.Xa generation-promoting activity, and L248-k (SEQ ID NO: 28), L324-k (SEQ ID NO: 29), L377-k (SEQ
- ID NO: 31), L404-k (SEQ ID NO: 32), L408-k (SEQ ID NO: 34), and L180-k (SEQ ID NO: 171) as the commonly shared antibody L chains.
 [0139] Since these antibodies have very high F.Xa generation-promoting activities while having suppressed F.Xase

inhibitory actions, they may have very useful properties for patients maintaining an F.VIII function and patients receiving treatment with F.VIII formulations. Since antibodies generally have long half-lives, and can be administered subcutaneously, these bispecific antibodies may be of great value to hemophilia A patients, when compared to existing replacement

therapy by intravenous administration of existing F.VIII formulations for hemophilia A. **[0140]** Sequence comparisons of the variable regions of each of the chains used in Example 1 and Example 2 are shown in Figs. 6A to D. For example, to enhance the F.Xa generation-promoting activity of a bispecific antibody, the following amino acids were found to be important: in the anti-human F.IXa antibody H chain, isoleucine at position 34,

45

- ⁵⁰ asparagine, glutamine, or serine at position 35, serine at position 49, arginine at position 61, glutamic acid at position 62, serine or threonine at position 96, lysine or arginine at position 98, serine or glutamic acid at position 99, phenylalanine or tyrosine at position 100, glycine at position 100b, tyrosine at position 102, and such; in the anti-human F.X antibody H chain, aspartic acid at position 35, arginine at position 53, lysine at position 73, glycine at position 76, lysine or arginine at position 96, tyrosine at position 98, tyrosine at position 100, histidine at position 100a, and such; in the commonly
- ⁵⁵ shared antibody L chain, lysine or arginine at position 27, glutamic acid at position 30, arginine at position 31, glutamine at position 32, arginine or glutamine at position 50, serine at position 52, arginine at position 53, lysine at position 54, glutamic acid at position 55, serine at position 92, serine at position 93, proline at position 94, proline at position 95, and such (the variable region amino acids are numbered by Kabat numbering (Kabat EA et al. 1991. Sequences of Proteins)

of Immunological Interest. NIH)).

Industrial Applicability

30

35

- ⁵ **[0141]** The present invention provides multispecific antigen-binding molecules having a high activity of functionally substituting for F.VIII, which are antibodies that recognize both an enzyme and its substrate. Furthermore, the present invention provides multispecific antigen-binding molecules with a high activity of functionally substituting for F.VIII and a low F.Xase inhibitory action, which are antibodies that recognize both an enzyme and its substrate.
- [0142] Since humanized antibodies may generally have high stability in blood and low immunogenicity, multispecific antibodies of the present invention may be very promising as pharmaceuticals.
 - [0143] Furthermore, the present invention relates to the following items:
- A multispecific antigen-binding molecule that functionally substitutes for blood coagulation factor VIII, which comprises a first antigen-binding site that recognizes blood coagulation factor IX and/or activated blood coagulation factor IX and a second antigen-binding site that recognizes blood coagulation factor X, wherein the functional substitution for blood coagulation factor VIII results from an activated blood coagulation factor X (F.Xa) generation-promoting activity higher than the activity of a bispecific antibody (hA69-KQ/hB26-PF/hAL-AQ) which comprises an H chain comprising SEQ ID NOs: 165 and 166, and a commonly shared L chain comprising SEQ ID NO: 167.
- 20 2. The multispecific antigen-binding molecule of item 1, which comprises a first polypeptide comprising a first antigenbinding site that recognizes blood coagulation factor IX and/or activated blood coagulation factor IX and a third polypeptide comprising a third antigen-binding site that recognizes blood coagulation factor IX and/or activated blood coagulation factor IX, as well as a second polypeptide comprising a second antigen-binding site that recognizes blood coagulation factor X and a fourth polypeptide comprising a fourth antigen-binding site that recognizes blood coagulation factor X.

3. The multispecific antigen-binding molecule of item 2, wherein the first polypeptide and the third polypeptide each comprises an antigen-binding site of an H chain or L chain of an antibody against blood coagulation factor IX or activated blood coagulation factor IX, respectively; and the second polypeptide and the fourth polypeptide each comprises an antigen-binding site of an H chain or L chain of an antibody against blood coagulation factor X, respectively.

4. The multispecific antigen-binding molecule of item 3, wherein the antigen-binding site of the first polypeptide comprises an antigen-binding site which comprises H chain CDRs consisting of any one of the amino acid sequences selected from the following (a1) to (a11), or an antigen-binding site functionally equivalent thereto, and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises H chain CDRs consisting of any one of the amino acid sequences selected from the following (b1) to (b11), or an antigen-binding site functionally equivalent thereto.

40 (a1) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 75, 76, and 77 (H chain CDRs of Q1), respectively; (a2) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 78, 79, and 80 (H chain CDRs of Q31), respectively; (a3) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 81, 45 82, and 83 (H chain CDRs of Q64), respectively; (a4) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 84, 85, and 86 (H chain CDRs of Q85), respectively; (a5) an antigen-binding site comprising the H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 87, 88, and 89 (H chain CDRs of Q153), respectively; 50 (a6) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 90, 91, and 92 (H chain CDRs of Q354), respectively; (a7) an antigen-binding site comprising the H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 93, 94, and 95 (H chain CDRs of Q360), respectively; (a8) an antigen-binding site comprising the of H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 55 96, 97, and 98 (H chain CDRs of Q405), respectively; (a9) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 99, 100, and 101 (H chain CDRs of Q458), respectively; (a10) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs:

102, 103, and 104 (H chain CDRs of Q460), respectively; (a11) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 105, 106, and 107 (H chain CDRs of Q499), respectively; (b1) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 5 108, 109, and 110 (H chain CDRs of J232), respectively; (b2) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 111, 112, and 113 (H chain CDRs of J259), respectively; (b3) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 114, 115, and 116 (H chain CDRs of J268), respectively; 10 (b4) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 117, 118, and 119 (H chain CDRs of J300), respectively; (b5) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 120, 121, and 122 (H chain CDRs of J321), respectively; (b6) an antigen-binding site comprising the H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 15 123, 124, and 125 (H chain CDRs of J326), respectively; (b7) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 126, 127, and 128 (H chain CDRs of J327), respectively; (b8) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 129, 130, and 131 (H chain CDRs of J339), respectively; 20 (b9) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 132, 133, and 134 (H chain CDRs of J344), respectively; (b10) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 135, 136, and 137 (H chain CDRs of J346), respectively; and (b11) an antigen-binding site comprising an H chain CDR 1, 2, and 3 amino acid sequences of SEQ ID NOs: 25 174, 175, and 176 (H chain CDRs of J142), respectively. 5. The multispecific antigen-binding molecule of item 3, wherein the antigen-binding site of the first polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (a1) to (a11), or an antigen-binding site functionally equivalent thereto, 30 and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11), or an antigen-binding site functionally equivalent thereto: (a1) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 35 (H 35 chain variable region of Q1); (a2) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 36 (H chain variable region of Q31); (a3) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 37 (H chain variable region of Q1); 40 (a4) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 38 (H chain variable region of Q85); (a5) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 39 (H chain variable region of Q153); (a6) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 40 (H 45 chain variable region of Q354); (a7) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 41 (H chain variable region of Q360); (a8) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 42 (H chain variable region of Q405); 50 (a9) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 43 (H chain variable region of Q458); (a10) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 44 (H chain variable region of Q460); (a11) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 45 55 (H chain variable region of Q499); (b1) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 46 (H chain variable region of J232);

(b2) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 47 (H

	chain variable region of J259);
	(b3) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 48 (H
	chain variable region of J268);
r.	(b4) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 49 (H
5	chain variable region of J300); (b5) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 50 (H
	chain variable region of J321);
	(b6) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 51 (H
	chain variable region of J326);
10	(b7) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 52 (H
	chain variable region of J327);
	(b8) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 53 (H
	chain variable region of J339);
15	(b9) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 54 (H chain variable region of J344);
10	(b10) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 55
	(H chain variable region of J346); and
	(b11) an antigen-binding site comprising an H chain variable region amino acid sequence of SEQ ID NO: 172
	(H chain variable region of J142).
20	
	6. The multispecific antigen-binding molecule of item 3, wherein the antigen-binding sites included in the third
	polypeptide and the fourth polypeptide comprise an antigen-binding site which comprises L chain CDRs consisting
	of any one of the amino acid sequences selected from the following (c1) to (c10), or an antigen-binding site functionally equivalent thereto:
25	
	(c1) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 138,
	139, and 140 (L chain CDR of L2), respectively;
	(c2) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 141,
	142, and 143 (L chain CDR of L45), respectively;
30	(c3) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 144, 145, and 146 (L chain CDR of L248), respectively;
	(c4) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 147,
	148, and 149 (L chain CDR of L324), respectively;
	(c5) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 150,
35	151, and 152 (L chain CDR of L334), respectively;
	(c6) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 153,
	154, and 155 (L chain CDR of L377), respectively;
	(c7) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 156,
40	157, and 158 (L chain CDR of L404), respectively; (c8) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 159,
	160, and 161 (L chain CDR of L406), respectively;
	(c9) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs: 137,
	138, and 139 (L chain CDR of L408), respectively; and
	(c10) an antigen-binding site comprising an L chain CDR1, 2, and 3 amino acid sequences of SEQ ID NOs:
45	177, 178, and 179 (L chain CDR of L180), respectively.
	7. The multispecific antigen-binding molecule of item 3, wherein the antigen-binding sites included in the third
	polypeptide and the fourth polypeptide comprise an antigen-binding site which comprises an L chain variable region
	consisting of any one of the amino acid sequences selected from the following (c1) to (c10), or an antigen-binding
50	site functionally equivalent thereto:
	(c1) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 56 (L
	chain variable region of L2); (a2) an antigan binding aite comprising on Labein variable region amine acid acquance of SEO ID NO: 57 (L
55	(c2) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 57 (L chain variable region of L45);
	(c3) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 58 (L
	chain variable region of L248);
	(c4) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 59 (L

	chain variable region of L324); (c5) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 60 (L
	chain variable region of L334); (c6) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 61 (L
5	chain variable region of L377);
	(c7) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 62 (L chain variable region of L404);
	(c8) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 63 (L chain variable region of L406);
10	(c9) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 64 (L chain variable region of L408); and
	(c10) an antigen-binding site comprising an L chain variable region amino acid sequence of SEQ ID NO: 173 (L chain variable region of L180).
15	8. The multispecific antigen-binding molecule of item 3, wherein the first and second polypeptides further comprise an antibody H chain constant region, and the third and fourth polypeptides comprise an antibody L chain constant region.
20	9. The multispecific antigen-binding molecule of item 3, wherein the first and second polypeptides comprise an antibody H chain constant region, and the third and fourth polypeptides comprise an antibody L chain constant region, and wherein the third polypeptide and the fourth polypeptide are a commonly shared L chain.
25	10. The multispecific antigen-binding molecule of item 8 or 9, wherein the first polypeptide comprises an antibody H chain constant region consisting of any one of the amino acid sequences selected from the group consisting of the following (d1) to (d6) or the group consisting of the following (d7) to (d9), and the second polypeptide comprises an antibody H chain constant region consisting of any one of the amino acid sequences selected from a group different from that of the above-mentioned first polypeptide:
30	 (d1) an H chain constant region of SEQ ID NO: 65 (G4k); (d2) an H chain constant region of SEQ ID NO: 66 (z7); (d3) an H chain constant region of SEQ ID NO: 67 (z55); (d4) an H chain constant region of SEQ ID NO: 68 (z106);
35	 (d4) an H chain constant region of SEQ ID NO: 69 (z118); (d5) an H chain constant region of SEQ ID NO: 70 (z121); (d7) an H chain constant region of SEQ ID NO: 71 (G4h); (d8) an H chain constant region of SEQ ID NO: 72 (z107); and (d9) an H chain constant region of SEQ ID NO: 73 (z119).
40	11. The multispecific antigen-binding molecule of item 8 or 9, wherein the third and fourth polypeptides comprise the antibody L chain constant region consisting of the following amino acid sequence of:
	(e) an L chain constant region of SEQ ID NO: 74 (k).
45	12. The multispecific antigen-binding molecule of item 8 or 9, wherein the first polypeptide comprises any one antibody H chain selected from the following (a1) to (a14), the second polypeptide comprises any one antibody H chain selected from the following (b1) to (b12), and the third polypeptide and the fourth polypeptide comprise any one antibody L chain selected from the following (c1) to (c10):
50	 (a1) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 1 (Q1-G4k); (a2) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 2 (Q31-z7); (a3) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 3 (Q64-z55); (a4) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 10 (Q64-z7);
55	 (a4) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 10 (Q04-27), (a5) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 11 (Q85-G4k); (a6) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 12 (Q153-G4k); (a7) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 13 (Q354-z106); (a8) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 14 (Q360-G4k); (a9) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 15 (Q360-z118); (a10) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 16 (Q405-G4k);

	(a11) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 17 (Q458-z106);
	(a12) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 18 (Q460-z121);
	(a13) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 19 (Q499-z118);
	(a14) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 20 (Q499-z121);
5	(b1) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 4 (J268-G4h);
	(b2) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 5 (J321-G4h);
	(b3) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 6 (J326-z107);
	(b4) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 7 (J344-z107);
	(b5) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 21 (J232-G4h);
10	(b6) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 22 (J259-z107);
	(b7) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 23 (J300-z107);
	(b8) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 24 (J327-z107);
	(b9) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 25 (J327-z119);
	(b10) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 26 (J339-z119);
15	(b11) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 27 (J346-z107);
	(b12) an antibody H chain consisting of the amino acid sequence of SEQ ID NO: 170 (J142-G4h);
	(c1) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 8 (L2-k);
	(c2) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 9 (L45-k);
	(c3) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 28 (L248-k);
20	(c4) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 29 (L324-k);
	(c5) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 30 (L334-k);
	(c6) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 31 (L377-k);
	(c7) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 32 (L404-k);
	(c8) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 33 (L406-k);
25	(c9) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 34 (L408-k); and
	(c10) an antibody L chain consisting of the amino acid sequence of SEQ ID NO: 171 (L180-k).

- 13. The multispecific antigen-binding molecule of item 1, wherein the first polypeptide comprises an antigen-binding site which binds to an epitope overlapping with an epitope that binds to an antibody consisting of the antibody H chain of any one of (a1) to (a14) and the antibody L chain of any one of (c1) to (c10) of item 12, and the second polypeptide comprises an antigen-binding site which binds to an epitope overlapping with an epitope overlapping with an epitope overlapping with an epitope that binds to an antibody consisting of the antibody L chain of any one of (c1) to (c10) of item 12, and the second an antibody consisting of the antibody H chain of any one of (b1) to (b12) and the antibody L chain of any one of (c1) to (c10) of item 12.
- ³⁵ 14. The multispecific antigen-binding molecule of item 8 or 9, wherein the first polypeptide comprises any one antibody H chain selected from the following (e1) to (e3), the second polypeptide comprises any one antibody H chain selected from the following (f1) to (f3), and the third polypeptide and the fourth polypeptide comprise any one antibody L chain selected from the following (g1) to (g4):
- 40 (e1) an H chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody consisting of an antibody H chain of any one of (a1) to (a14) and an antibody L chain of any one of (c1) to (c10), of claim 12;

45

(e2) an antibody H chain, wherein at least one amino acid residue selected from the amino acid residues at positions 34, 35, 49, 61, 62, 96, 98, 100, 100b, and 102 by Kabat numbering in any one antibody H chain selected from (e1) is substituted with another amino acid;

(e3) an antibody H chain, wherein by Kabat numbering, the amino acid residue at position 34 is isoleucine, the amino acid residue at position 35 is asparagine, glutamine, or serine, the amino acid residue at position 49 is serine, the amino acid residue at position 61 is arginine, the amino acid residue at position 62 is glutamic acid, the amino acid residue at position 96 is serine or threonine, the amino acid residue at position 98 is lysine or arginine, the amino acid residue at position 100 is phenylalanine or tyrosine, the amino acid residue at position 100 is glycine, or the amino acid residue at position 102 is tyrosine in any antibody H chain selected from (e1); (f1) an H chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody consisting of an antibody H chain of any of (b1) to (b12) of claim 12 and an antibody L chain of any of (c1) to (c10) of claim 12;

⁵⁵ (f2) an antibody H chain, wherein at least one amino acid residue selected from the amino acid residues at positions 35, 53, 73, 76, 96, 98, 100, and 100a by Kabat numbering in any antibody H chain of (f1) is substituted with another amino acid;

(f3) an antibody H chain, wherein by Kabat numbering, the amino acid residue at position 35 is aspartic acid,

the amino acid residue at position 53 is arginine, the amino acid residue at position 73 is lysine, the amino acid residue at position 76 is glycine, the amino acid residue at position 96 is lysine or arginine, the amino acid residue at position 98 is tyrosine, the amino acid residue at position 100 is tyrosine, or the amino acid residue at position 100 is tyrosine, or the amino acid residue at position 100 is histidine in any one antibody H chain selected from (f1);

⁵ (g1) an L chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody which consists of an antibody H chain of any one of (a1) to (a14) and an antibody L chain of any one of (c1) to (c10), of claim 12;

(g2) an L chain of an antibody which binds to an epitope overlapping with an epitope bound by an antibody which consists of an antibody H chain of any one of (b1) to (b12) and an antibody L chain of any one of (c1) to (c10), of claim 12;

(g3) an antibody L chain, wherein at least one amino acid residue selected from the amino acid residues at positions 27, 30, 31, 32, 50, 52, 53, 54, 55, 92, 93, 94, and 95 by Kabat numbering in the antibody L chain of either (g1) or (g2) is substituted with another amino acid; and

(g4) an antibody L chain, wherein by Kabat numbering, the amino acid residue at position 27 is lysine or arginine,
 the amino acid residue at position 30 is glutamic acid, the amino acid residue at position 31 is arginine, the amino acid residue at position 32 is glutamine, the amino acid residue at position 50 is arginine or glutamine, the amino acid residue at position 52 is serine, the amino acid residue at position 53 is arginine, the amino acid residue at position 54 is lysine, the amino acid residue at position 55 is glutamic acid, the amino acid residue at position 92 is serine, the amino acid residue at position 93 is serine, the amino acid residue at position 94 is proline, or the amino acid residue at position 95 is proline in the antibody L chain of either (g1) or (g2).

15. The multispecific antigen-binding molecule of any one of items 1 to 14, wherein the multispecific antigen-binding molecule is a multispecific antibody.

²⁵ 16. A bispecific antibody of any one of the following (a) to (u):

10

30

45

50

(a) a bispecific antibody (Q1-G4k/J268-G4h/L45-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 1, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 4, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 9;

(b) a bispecific antibody (Q1-G4k/J321-G4h/L45-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 1, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 5, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 9;

- (c) a bispecific antibody (Q31-z7/J326-z107/L2-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 2, the second polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 6, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 8;
- (d) a bispecific antibody (Q64-z55/J344-z107/L45-k), wherein the first polypeptide is an H chain consisting of
 the amino acid sequence of SEQ ID NO: 3, the second polypeptide is an H chain consisting of the amino acid
 sequence of SEQ ID NO: 7, and the third polypeptide and the fourth polypeptide are a commonly shared L chain
 of SEQ ID NO: 9;

(e) a bispecific antibody (Q64-z7/J326-z107/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of SEQ ID NO: 10, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 6, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

(f) a bispecific antibody (Q64-z7/J344-z107/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 10, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 7, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;

(g) a bispecific antibody (Q85-G4k/J268-G4h/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 11, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 4, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;

⁵⁵ (h) a bispecific antibody (Q85-G4k/J321-G4h/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 11, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 5, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;

(i) a bispecific antibody (Q153-G4k/J232-G4h/L406-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 12, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of zSEQ ID NO: 33;

- ⁵ (j) a bispecific antibody (Q354-z106/J259-z107/L324-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 13, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 22, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 29;
- (k) a bispecific antibody (Q360-G4k/J232-G4h/L406-k), wherein the first polypeptide is an H chain consisting
 of the amino acid sequence of zSEQ ID NO: 14, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 33;
 - (I) a bispecific antibody (Q360-z118/J300-z107/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 15, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 23, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;
 - (m) a bispecific antibody (Q405-G4k/J232-G4h/L248-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 16, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 28;
 - (n) a bispecific antibody (Q458-z106/J346-z107/L408-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 17, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 27, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of zSEQ ID NO: 34;
- (o) a bispecific antibody (Q460-z121/J327-z119/L334-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 18, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 30;
- (p) a bispecific antibody (Q499-z118/J327-z107/L334-k), wherein the first polypeptide is an H chain consisting
 of the amino acid sequence of zSEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino
 acid sequence of zSEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared
 L chain of SEQ ID NO: 30;
 - (q) a bispecific antibody (Q499-z118/J327-z107/L377-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 31;
 - (r) a bispecific antibody (Q499-z118/J346-z107/L248-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 19, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 27, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 28;
 - (s) a bispecific antibody (Q499-z121/J327-z119/L404-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 20, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 32;
- (t) a bispecific antibody (Q499-z121/J339-z119/L377-k), wherein the first polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 20, the second polypeptide is an H chain consisting of the amino acid sequence of zSEQ ID NO: 26, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of SEQ ID NO: 31; and
- (u) a bispecific antibody (Q153-G4k/J142-G4h/L180-k), wherein the first polypeptide is an H chain consisting
 of the amino acid sequence of SEQ ID NO: 12, the second polypeptide is an H chain consisting of the amino
 acid sequence of SEQ ID NO: 170, and the third polypeptide and the fourth polypeptide are a commonly shared
 L chain of SEQ ID NO: 171.
- 17. A nucleic acid encoding the multispecific antigen-binding molecule of any one of items 1 to 15 or the bispecific antibody of item 16.

18. A vector inserted with the nucleic acid of item 17.

15

20

35

19. A cell comprising the nucleic acid of item 17 or the vector of item 18.

20. A method for producing the multispecific antigen-binding molecule of any one of items 1 to 15 or the bispecific antibody of item 16 by culturing the cell of item 19.

- 21. A pharmaceutical composition comprising the multispecific antigen-binding molecule of any one of items 1 to 15 or the bispecific antibody of item 16, and a pharmaceutically acceptable carrier.
- 22. The composition of item 21, which is a pharmaceutical composition used for prevention and/or treatment of bleeding, a disease accompanying bleeding, or a disease caused by bleeding.

23. The composition of item 22, wherein the bleeding, the disease accompanying bleeding, or the disease caused by bleeding is a disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII.

24. The composition of item 23, wherein the disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is hemophilia A.

25. The composition of item 23, wherein the disease that develops and/or progresses due to a decrease or deficiency
 in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is a disease showing emergence of an inhibitor against blood coagulation factor VIII and/or activated blood coagulation factor VIII.

26. The composition of item 23, wherein the disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is acquired hemophilia.

25

5

15

27. The composition of item 23, wherein the disease that develops and/or progresses due to a decrease in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII is von Willebrand disease.

28. A method for preventing and/or treating bleeding, a disease accompanying bleeding, or a disease caused by
 ³⁰ bleeding, which comprises the step of administering the multispecific antigen-binding molecule of any one of items
 1 to 15 or the bispecific antibody of item 16, or the composition of any one of items 21 to 27.

29. A kit for use in the prevention and/or treatment method of item 28, which comprises at least the multispecific antigen-binding molecule of any one of items 1 to 15 or the bispecific antibody of item 16, or the composition of any one of items 21 to 27.

40

35

45

50

SEQUENCE LISTING

	<110> CHUGAI SEIYAKU KABUSHIKI KAISHA
5	<120> MULTI-SPECIFIC ANTIGEN-BINDING MOLECULE HAVING ALTERNATIVE FUNCTION TO FUNCTION OF BLOOD COAGULATION FACTOR VIII
	<130> W1740 EP/1 S3
10	<140> <141> 2011-11-17
	<150> JP 2010-257022 <151> 2010-11-17
15	<160> 179
	<170> PatentIn version 3.4
	<210> 1 <211> 448
20	<212> PRT <213> Artificial
	<220> <223> artificial sequence
25	<400> 1
	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
30	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30
35	Asp Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
10	Ala Ser Ile Ser Pro Ser Gly Gly Ser Thr Tyr Tyr Arg His Ser Val 50 55 60
40	Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80
45	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
50	Ala Arg Arg Ala Gly His Asn Leu Gly Ala Gly Trp Tyr Phe Asp Phe 100 105 110
	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly 115 120 125
55	Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser 130 135 140

	Thr 145	Ala	Ala	Leu	Gly	Cys 150	Leu	Val	Lys	Asp	Tyr 155	Phe	Pro	Glu	Pro	Val 160
5	Thr	Val	Ser	Trp	Asn 165	Ser	Gly	Ala	Leu	Thr 170	Ser	Gly	Val	His	Thr 175	Phe
10	Pro	Ala	Val	Leu 180	Gln	Ser	Ser	Gly	Leu 185	Tyr	Ser	Leu	Ser	Ser 190	Val	Val
	Thr	Val	Pro 195	Ser	Ser	Ser	Leu	Gly 200	Thr	Lys	Thr	Tyr	Thr 205	Cys	Asn	Val
15	Asp	His 210	Lys	Pro	Ser	Asn	Thr 215	Lys	Val	Asp	Lys	Arg 220	Val	Glu	Ser	Lys
20	Tyr 225	Gly	Pro	Pro	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Phe	Leu	Gly	Gly 240
25	Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
	Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	Gln	Glu
30	Asp	Pro	Glu 275	Val	Gln	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
35	Asn	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Phe	Asn 300	Ser	Thr	Tyr	Arg
40	Val 305	Val	Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
	Glu	Tyr	Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
45	Lys	Thr	Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Cys
50	Thr	Leu	Pro 355	Pro	Ser	Gln	Glu	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
	Trp	Cys 370	Leu	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
55	Glu	Ser	Asn	Gly	Gln	Pro	Glu	Asn	Asn	Tyr	Lys	Thr	Thr	Pro	Pro	Val

	385	390	395	400
5	Leu Asp Ser Asp Gly 405	Ser Phe Phe Leu Tyr 410	Ser Arg Leu Thr Va. 41.	
10	Lys Ser Arg Trp Gln 420	Glu Gly Asn Val Phe 425	Ser Cys Ser Val Me 430	t His
10	Glu Ala Leu His Asn 435	His Tyr Thr Gln Lys 440	Ser Leu Ser Leu Se 445	r Leu
15	<210> 2 <211> 448 <212> PRT <213> Artificial			
20	<220> <223> artificial se	equence		
	<400> 2			
25	Gln Val Gln Leu Val 1 5	Glu Ser Gly Gly Gly 10	Leu Val Gln Pro Gl 15	y Gly
	Ser Leu Arg Leu Ser 20	Cys Ala Ala Ser Gly 25	Phe Thr Phe Ser Ty 30	r Tyr
30	Asp Met Ala Trp Val 35	Arg Gln Ala Pro Gly 40	Lys Gly Leu Glu Tr 45	p Val
35	Ala Ser Ile Ser Pro 50	Ser Gly Gly Ser Thr 55	Tyr Tyr Arg Arg Se 60	r Val
40	Lys Gly Arg Phe Thr 65	Val Ser Arg Asp Asn 70	Ala Lys Asn Ser Le 75	u Tyr 80
10	Leu Gln Met Asn Ser 85	Leu Arg Ala Glu Asp 90	Thr Ala Val Tyr Ty 95	r Cys
45	Ala Arg Arg Ala Gly 100	His Asn Leu Gly Ala 105	Gly Trp Tyr Phe Asy 110	p Phe
50	Trp Gly Gln Gly Thr 115	Leu Val Thr Val Ser 120	Ser Ala Ser Thr Ly 125	s Gly
	Pro Ser Val Phe Pro 130	Leu Ala Pro Cys Ser 135	Arg Ser Thr Ser Gl 140	u Ser
55	Thr Ala Ala Leu Gly 145	Cys Leu Val Lys Asp 150	Tyr Phe Pro Glu Pro 155	o Val 160

	Thr	Val	Ser	Trp	Asn 165	Ser	Gly	Ala	Leu	Thr 170	Ser	Gly	Val	His	Thr 175	Phe
5	Pro	Ala	Val	Leu 180	Gln	Ser	Ser	Gly	Leu 185	Tyr	Ser	Leu	Ser	Ser 190	Val	Val
10	Thr	Val	Pro 195	Ser	Ser	Ser	Leu	Gly 200	Thr	Lys	Thr	Tyr	Thr 205	Cys	Asn	Val
	Asp	His 210	Lys	Pro	Ser	Asn	Thr 215	Lys	Val	Asp	Lys	Arg 220	Val	Glu	Ser	Lys
15	Tyr 225	Gly	Pro	Pro	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Phe	Leu	Gly	Gly 240
20	Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
25	Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	Gln	Glu
	Asp	Pro	Glu 275	Val	Gln	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
30	Asn	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Phe	Asn 300	Ser	Thr	Tyr	Arg
35	Val 305	Val	Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	As p 315	Trp	Leu	Asn	Gly	Lys 320
40	Glu	Tyr	Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Gl y 330	Leu	Pro	Ser	Ser	Ile 335	Glu
	Lys	Thr	Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
45	Thr	Leu	Pro 355	Pro	Ser	Gln	Lys	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
50	Thr	Cys 370	Leu	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
	Glu 385	Ser	Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
55	Leu	Asp	Ser	Asp	Gly	Ser	Phe	Phe	Leu	Tyr	Ser	Arg	Leu	Thr	Val	Asp

		405	410	415
5	Lys Ser Arg Trp 420	Gln Glu Gly Asn Val 425	Phe Ser Cys Ser Va 43	
	Glu Ala Leu His A 435	Asn His Tyr Thr Gln 440	Lys Ser Leu Ser Le 445	u Ser Leu
10	<210> 3 <211> 448 <212> PRT <213> Artificia	11		
15	<220> <223> artificia	l sequence		
	<400> 3			
20		Val Glu Ser Gly Gly 5	Gly Leu Val Gln Pr 10	o Gly Gly 15
25	Ser Leu Arg Leu 20	Ser Cys Ala Ala Ser 25	Gly Phe Thr Phe Se 30	
	Asp Met Ala Trp 35	Val Arg Gln Ala Pro 40	Gly Lys Gly Leu Gl 45	u Trp Val
30	Ala Ser Ile Ser 3 50	Pro Ser Gly Gly Ser 55	Thr Tyr Tyr Arg Ar 60	g Ser Val
35	Lys Gly Arg Phe 65	Thr Val Ser Arg Asp 70	Asn Ala Lys Asn Se 75	r Leu Tyr 80
40		Ser Leu Arg Ala Glu 85	Asp Thr Ala Val Ty 90	r Tyr Cys 95
	Ala Arg Arg Ala 100	Gly His Asn Phe Gly 105	Ala Gly Trp Tyr Ph 11	
45	Trp Gly Gln Gly 115	Thr Leu Val Thr Val 120	Ser Ser Ala Ser Th 125	r Lys Gly
50	Pro Ser Val Phe 1 130	Pro Leu Ala Pro Cys 135	Ser Arg Ser Thr Se 140	r Glu Ser
	Thr Ala Ala Leu 145	Gly Cys Leu Val Lys 150	Asp Tyr Phe Pro Gl 155	u Pro Val 160
55		Asn Ser Gly Ala Leu 165	Thr Ser Gly Val Hi 170	s Thr Phe 175

	Pro	Ala	Val	Leu 180	Gln	Ser	Ser	Gly	Leu 185	Tyr	Ser	Leu	Ser	Ser 190	Val	Val
5	Thr	Val	Pro 195	Ser	Ser	Ser	Leu	Gly 200	Thr	Lys	Thr	Tyr	Thr 205	Cys	Asn	Val
10	Asp	His 210	Lys	Pro	Ser	Asn	Thr 215	Lys	Val	Asp	Lys	Arg 220	Val	Glu	Ser	Lys
	Tyr 225	Gly	Pro	Pro	Cys	Pro 230	Ser	Cys	Pro	Ala	Pro 235	Glu	Phe	Leu	Gly	Gly 240
15	Pro	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
20	Ser	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	Gln	Glu
25	Asp	Pro	Glu 275	Val	Gln	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
	Asn	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Phe	Asn 300	Ser	Thr	Tyr	Arg
30	Val 305	Val	Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
35	Glu	Tyr	Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
40	Lys	Thr	Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
	Thr	Leu	Pro 355	Pro	Ser	Gln	Lys	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
45	Thr	Cys 370	Leu	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
50	Glu 385	Ser	Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
55	Leu	Asp	Ser	Asp	Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Arg	Leu	Thr	Val 415	Asp
	Lys	Ser	Arg	Trp	Gln	Glu	Gly	Asn	Val	Phe	Ser	Cys	Ser	Val	Met	His

	4	420	425	430
5	Glu Ala Leu H 435	His Asn His Tyr Thr 440	Gln Lys Ser Leu Ser 445	Leu Ser Leu
10	<210> 4 <211> 444 <212> PRT <213> Artifi	icial		
	<220> <223> artifi	icial sequence		
15	<400> 4			
	Gln Val Gln I 1	Leu Val Gln Ser Gly 5	Ser Glu Leu Lys Lys 10	Pro Gly Ala 15
20			Ser Gly Tyr Thr Phe 25	Thr Asp Asn 30
25	Asn Met Asp T 35	Irp Val Arg Gln Ala 40	Pro Gly Gln Gly Leu 45	Glu Trp Met
	Gly Asp Ile A 50	Asn Thr Arg Ser Gly 55	Gly Ser Ile Tyr Asn 60	Glu Glu Phe
30	Gln Asp Arg V 65	Val Ile Met Thr Val 70	Asp Lys Ser Thr Gly 75	Thr Ala Tyr 80
35	Met Glu Leu S	Ser Ser Leu Arg Ser 85	Glu Asp Thr Ala Val 90	Tyr His Cys 95
40			His Leu Asp Glu Trp 105	Gly Glu Gly 110
	Thr Leu Val T 115	Thr Val Ser Ser Ala 120	Ser Thr Lys Gly Pro 125	Ser Val Phe
45	Pro Leu Ala P 130	Pro Cys Ser Arg Ser 135	Thr Ser Glu Ser Thr 140	Ala Ala Leu
50	Gly Cys Leu V 145	Val Lys Asp Tyr Phe 150	Pro Glu Pro Val Thr 155	Val Ser Trp 160
	Asn Ser Gly A	Ala Leu Thr Ser Gly 165	Val His Thr Phe Pro 170	Ala Val Leu 175
55			Ser Ser Val Val Thr 185	Val Pro Ser 190

	Ser	Ser	Leu 195	Gly	Thr	Lys	Thr	Tyr 200	Thr	Cys	Asn	Val	Asp 205	His	Lys	Pro
5	Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Ser	Lys 220	Tyr	Gly	Pro	Pro
10	Cys 225	Pro	Pro	Cys	Pro	Ala 230	Pro	Glu	Phe	Leu	Gly 235	Gly	Pro	Ser	Val	Phe 240
	Leu	Phe	Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
15	Glu	Val	Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	Gln	Glu	Asp	Pro 270	Glu	Val
20	Gln	Phe	As n 275	Trp	Tyr	Val	Asp	Gly 280	Val	Glu	Val	His	As n 285	Ala	Lys	Thr
25	Lys	Pro 290	Arg	Glu	Glu	Gln	Phe 295	Asn	Ser	Thr	Tyr	Arg 300	Val	Val	Ser	Val
	Leu 305	Thr	Val	Leu	His	Gln 310	Asp	Trp	Leu	Asn	Gly 315	Lys	Glu	Tyr	Lys	Cys 320
30	Lys	Val	Ser	Asn	Lys 325	Gly	Leu	Pro	Ser	Ser 330	Ile	Glu	Lys	Thr	Ile 335	Ser
35	Lys	Ala	Lys	Gly 340	Gln	Pro	Arg	Glu	Pro 345	Gln	Val	Tyr	Thr	Le u 350	Pro	Pro
40	Ser	Gln	C ys 355	Glu	Met	Thr	Lys	As n 360	Gln	Val	Ser	Leu	Ser 365	Cys	Ala	Val
	Lys	Gly 370	Phe	Tyr	Pro	Ser	As p 375	Ile	Ala	Val	Glu	Trp 380	Glu	Ser	Asn	Gly
45	Gln 385	Pro	Glu	Asn	Asn	Tyr 390	Lys	Thr	Thr	Pro	Pro 395	Val	Leu	Asp	Ser	Asp 400
50	Gly	Ser	Phe	Phe	Leu 405	Val	Ser	Arg	Leu	Thr 410	Val	Asp	Lys	Ser	Arg 415	Trp
55	Gln	Glu	Gly	Asn 420	Val	Phe	Ser	Cys	Ser 425	Val	Met	His	Glu	Ala 430	Leu	His
55	Asn	His	Tyr	Thr	Gln	Lys	Ser	Leu	Ser	Leu	Ser	Leu				

5	<211> <212>	5 444 PRT Artificia	al												
10															
		Gln Leu	Val Gln 5	Ser Gl		Glu Leu 10	Lys Lys	Pro Gly 15	Ala						
15	Ser Val	Lys Val 20	Ser Cys	Lys Al	La Ser (25	Gly Tyr	Thr Phe	Thr Asp 30	Asn						
20	Asn Met	His Trp 35	Val Arg	Gln Al 4(Gly Gln	Gly Leu 45	Glu Trp	Met						
25	Gly Asp 50	Ile Asn	Thr Arg	Ser G] 55	ly Gly :	Ser Ile	Tyr Asn 60	Glu Glu	Phe						
	Gln Asp 65	Arg Val	Ile Met 70	Thr Va	al Asp :	Lys Ser 75	Thr Asp	Thr Ala	Tyr 80						
30	Met Glu	Leu Ser	Ser Leu 85	Arg Se		Asp Thr 90	Ala Val	Tyr His 95	Cys						
35	Ala Arg	Arg Lys 100	Ser Tyr	Gly Ty	yr His 1 105	Leu Asp	Glu Trp	Gly Glu 110	Gly						
40	Thr Leu	Val Thr 115	Val Ser	Ser Al 12		Thr Lys	Gly Pro 125	Ser Val	Phe						
	Pro Leu 130	Ala Pro	Cys Ser	Arg Se 135	er Thr :	Ser Glu	Ser Thr 140	Ala Ala	Leu						
45	Gly Cys 145	Leu Val	Lys Asp 150	Tyr Pf	ne Pro (Glu Pro 155	Val Thr	Val Ser	Trp 160						
50	Asn Ser	Gly Ala	Leu Thr 165	Ser Gl	-	His Thr 170	Phe Pro	Ala Val 175							
	Gln Ser	Ser Gly 180	Leu Tyr	Ser Le	eu Ser : 185	Ser Val	Val Thr	Val Pro 190	Ser						
55	Ser Ser	Leu Gly 195	Thr Lys	Thr T ₃ 2(Cys Asn	Val Asp 205	His Lys	Pro						

EP 3 318 633 A1 Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Cys Glu Met Thr Lys Asn Gln Val Ser Leu Ser Cys Ala Val

Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Leu Val Ser Arg Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu

<210> 6

	<2112 <2122 <2132	> PI	44 RT rtif	icia	1											
5	<220× <223×		rtif	icia	al se	equer	nce									
	<400>	> 6														
10	Gln V 1	Val (Gln	Leu	Val 5	Gln	Ser	Gly	Ser	Glu 10	Leu	Lys	Lys	Pro	Gly 15	Ala
15	Ser V	Val :	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Asn
	Asn 1		Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
20	Gly A	Asp 50	Ile	Asn	Thr	Arg	Ser 55	Gly	Gly	Ser	Ile	Tyr 60	Asn	Glu	Glu	Phe
25	Gln <i>1</i> 65	Asp 3	Arg	Val	Ile	Met 70	Thr	Val	Asp	Lys	Ser 75	Thr	Asp	Thr	Ala	Tyr 80
	Met (Glu :	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	His 95	Cys
30	Ala A	Arg i	Arg	Lys 100	Ser	Tyr	Gly	Asn	His 105	Leu	Asp	Glu	Trp	Gly 110	Glu	Gly
35	Thr 1		Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
40	Pro 1	Leu 2 130	Ala	Pro	Суз	Ser	Arg 135	Ser	Thr	Ser	Glu	Ser 140	Thr	Ala	Ala	Leu
	Gly (145	Cys :	Leu	Val	Lys	A sp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
45	Asn S	Ser (Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
50	Gln S	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
	Ser S		Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Thr	Cys	Asn	Val	As p 205	His	Lys	Pro
55	Ser 1	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Ser	Lys 220	Tyr	Gly	Pro	Pro

	Cys Pro 225) Pro Cys		Ala Pro 230	Glu	Phe I	Leu Gly 235	Gly	Pro	Ser	Val	Phe 240
5	Leu Phe	e Pro Pro) Lys 1 245	Pro Lys	Asp		Leu Met 250	Ile	Ser		Thr 255	Pro
10	Glu Val	. Thr Cys 26(Val Val	-	Val S 265	Ser Gln	Glu	Asp	Pro 270	Glu	Val
45	Gln Phe	Asn Tr <u>r</u> 275	o Tyr V	Val Asp	Gly 280	Val G	Glu Val		As n 285	Ala	Lys	Thr
15	Lys Pro 290) Arg Glu	ı Glu (Gln Tyr 295	Asn	Ser I	Chr Tyr	Arg 300	Val	Val	Ser	Val
20	Leu Thr 305	Val Leu		Gln Asp 310	Trp	Leu A	Asn Gly 315	Lys	Glu	Tyr	Lys	Cys 320
25	Lys Val	. Ser Ası	1 Lys (325	Gly Leu	Pro		Ser Ile 330	Glu	Lys	Thr	Ile 335	Ser
20	Lys Ala	1 Lys Gly 34(Pro Arg		Pro G 345	31n Val	Tyr		Leu 350	Pro	Pro
30	Ser Glr	Glu Glu 355	1 Met 1	Thr Lys	Asn 360	Gln V	/al Ser		Thr 365	Cys	Leu	Val
35	Lys Gly 37(y Phe Tyn)	Pro S	Ser Asp 375	Ile .	Ala V	Val Glu	Trp 380	Glu	Ser	Asn	Gly
40	Gln Pro 385) Glu Asr		Tyr Lys 390	Thr	Thr P	Pro Pro 395	Val	Leu	Asp	Ser	Asp 400
	Gly Ser	Phe Phe	e Leu : 405	Tyr Ser	Lys		Thr Val 110	Asp	Lys	Ser	Arg 415	Trp
45	Gln Glu	1 Gly Asr 42(Phe Ser		Ser V 425	/al Met	His		Ala 430	Leu	His
50	Asn Arc	y Tyr Thi 435	Gln (Glu Ser	Leu 440	Ser I	Leu Ser	Pro				
55	<210> <211> <212> <213>	7 444 PRT Artifici	al									

	<220> <223>	artif	licia	al se	equer	nce									
	<400>	7													
5	Gln Val 1	Gln	Leu	Val 5	Gln	Ser	Gly	Ser	Glu 10	Leu	Lys	Lys	Pro	Gly 15	Ala
10	Ser Val	Lys	Val 20	Ser	Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Asn
15	Asn Met	2 Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
	Gly Asp 50) Ile	Asn	Thr	Lys	Ser 55	Gly	Gly	Ser	Ile	Tyr 60	Asn	Glu	Glu	Phe
20	Gln As <u>r</u> 65	Arg	Val	Ile	Met 70	Thr	Val	Asp	Lys	Ser 75	Thr	Asp	Thr	Ala	Tyr 80
25	Met Glı	ı Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Thr	Tyr	His 95	Cys
22	Ala Arg	J Arg	Gln 100	Ser	Tyr	Gly	Tyr	His 105	Leu	Asp	Glu	Trp	Gly 110	Glu	Gly
30	Thr Leu	1 Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
35	Pro Leu 13(Pro	Cys	Ser	Arg 135	Ser	Thr	Ser	Glu	Ser 140	Thr	Ala	Ala	Leu
40	Gly Cys 145	3 Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
	Asn Sei	: Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
45	Gln Ser	: Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
50	Ser Sei	: Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Thr	Cys	Asn	Val	Asp 205	His	Lys	Pro
55	Ser Ası 21(Lys	Val	Asp	Lys 215	Arg	Val	Glu	Ser	Lys 220	Tyr	Gly	Pro	Pro
55	Cys Pro 225) Pro	Cys	Pro	Ala 230	Pro	Glu	Phe	Leu	Gly 235	Gly	Pro	Ser	Val	Phe 240

	Leu Phe Pro Pro Lys Pro Lys A 245	Asp Thr Leu Met Ile Ser Arg Thr Pro 250 255
5	Glu Val Thr Cys Val Val Val A 260	Asp Val Ser Gln Glu Asp Pro Glu Val 265 270
10		Gly Val Glu Val His Asn Ala Lys Thr 280
	Lys Pro Arg Glu Glu Gln Tyr A 290 295	Asn Ser Thr Tyr Arg Val Val Ser Val 300
15	Leu Thr Val Leu His Gln Asp T 305 310	Trp Leu Asn Gly Lys Glu Tyr Lys Cys 315 320
20	Lys Val Ser Asn Lys Gly Leu P 325	Pro Ser Ser Ile Glu Lys Thr Ile Ser 330 335
25	Lys Ala Lys Gly Gln Pro Arg G 340	Glu Pro Gln Val Tyr Thr Leu Pro Pro 345 350
		Asn Gln Val Ser Leu Thr Cys Leu Val 360 365
30	Lys Gly Phe Tyr Pro Ser Asp I 370 375	Ile Ala Val Glu Trp Glu Ser Asn Gly 380
35	Gln Pro Glu Asn Asn Tyr Lys T 385 390	Thr Thr Pro Pro Val Leu Asp Ser Asp 395 400
40	Gly Ser Phe Phe Leu Tyr Ser L 405	Lys Leu Thr Val Asp Lys Ser Arg Trp 410 415
	Gln Glu Gly Asn Val Phe Ser C 420	Cys Ser Val Met His Glu Ala Leu His 425 430
45	Asn Arg Tyr Thr Gln Glu Ser L 435 4	Leu Ser Leu Ser Pro 440
50	<210> 8 <211> 213 <212> PRT <213> Artificial	
55	<220> <223> artificial sequence	
	<400> 8	

	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15	
5	Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Ile Tyr Lys Asn 20 25 30	
10	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Lys Leu Leu Ile 35 40 45	
	Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Ser Gly 50 55 60	
15	Ser Arg Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80	
20	Glu Asp Leu Ala Thr Tyr Tyr Cys Gln Gln Tyr Tyr Ser Gly Leu Thr 85 90 95	
25	Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro 100 105 110	
	Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr 115 120 125	
30	Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys 130 135 140	
35	Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu 145 150 155 160	
	Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser 165 170 175	
40	Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala 180 185 190	
45	Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser Phe 195 200 205	
50	Asn Arg Gly Glu Cys 210	
55	<210> 9 <211> 214 <212> PRT <213> Artificial	
55	<220>	

	<223> artificial sequence											
	<400> 9											
5	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15											
10	Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Ile Tyr Lys Asn 20 25 30											
	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Lys Leu Leu Ile 35 40 45											
15	Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Ser Gly 50 55 60											
20	Ser Arg Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80											
25	Glu Asp Leu Ala Thr Tyr Tyr Cys Gln Gln Tyr Tyr Ser Pro Pro Leu 85 90 95											
25	Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110											
30	Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125											
35	Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140											
	Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160											
40	Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175											
45	Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190											
50	Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205											
	Phe Asn Arg Gly Glu Cys 210											
55	<210> 10 <211> 448 <212> PRT											

	<213> Art:	ficial			
-	<220> <223> art:	ificial seque	ence		
5	<400> 10				
	Gln Val Gl: 1	n Leu Val Glu 5	a Ser Gly Gly Gly 10	y Leu Val Gln P	ro Gly Gly 15
10	Ser Leu Ard	g Leu Ser Cys 20	Ala Ala Ser Gly 25	y Phe Thr Phe Se 30	
15	Asp Met Ala 35	a Trp Val Arg	g Gln Ala Pro Gly 40	y Lys Gly Leu G 45	lu Trp Val
20	Ala Ser Ilo 50	e Ser Pro Ser	r Gly Gly Ser Th 55	r Tyr Tyr Arg An 60	rg Ser Val
25	Lys Gly Arc 65	g Phe Thr Val 70	. Ser Arg Asp Ası	n Ala Lys Asn Se 75	er Leu Tyr 80
	Leu Gln Me	: Asn Ser Leu 85	n Arg Ala Glu Asp 90	p Thr Ala Val Ty	yr Tyr Cys 95
30	Ala Arg Ard	y Ala Gly His 100	3 Asn Phe Gly Ala 105		he Asp Phe 10
35	Trp Gly Gl: 11		1 Val Thr Val Sea 120	r Ser Ala Ser Tl 125	hr Lys Gly
	Pro Ser Va 130	l Phe Pro Leu	1 Ala Pro Cys Sei 135	r Arg Ser Thr Se 140	er Glu Ser
40	Thr Ala Ala 145	a Leu Gly Cys 150	s Leu Val Lys Asj)	p Tyr Phe Pro G 155	lu Pro Val 160
45	Thr Val Se	r Trp Asn Ser 165	r Gly Ala Leu Th 170	—	is Thr Phe 175
50	Pro Ala Va	L Leu Gln Ser 180	r Ser Gly Leu Ty: 185		er Val Val 90
	Thr Val Pro 19		r Leu Gly Thr Ly: 200	s Thr Tyr Thr Cy 205	ys Asn Val
55	Asp His Ly: 210	s Pro Ser Asn	n Thr Lys Val Asp 215	p Lys Arg Val G 220	lu Ser Lys

	Tyr Gl 225	y Pro	Pro	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Phe	Leu	Gly	Gly 240
5	Pro Se	r Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
10	Ser Ar	g Thr	Pro 260	Glu	Val	Thr	Суз	Val 265	Val	Val	Asp	Val	Ser 270	Gln	Glu
	Asp Pr	o Glu 275	Val	Gln	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
15	Asn Al 29		Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Phe	As n 300	Ser	Thr	Tyr	Arg
20	Val Va 305	l Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	As p 315	Trp	Leu	Asn	Gly	Lys 320
25	Glu Ty	r Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
25	Lys Th	r Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
30	Thr Le	u Pro 355	Pro	Ser	Gln	Lys	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
35	Thr Cy 37		Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
	Glu Se 385	r Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
40	Leu As	p Ser	Asp	Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Arg	Leu	Thr	Val 415	Asp
45	Lys Se	r Arg	Trp 420	Gln	Glu	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
	Glu Al	a Leu 435	His	Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Leu
50	<210> <211> <212> <213>		ficia	1											
55	<220> <223>	arti			equer	nce									

	<400> 11															
5	Gln 1	Val	Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
	Ser	Leu	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Tyr	Tyr
10	Asp	Met	Ala 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
15	Ala	Ser 50	Ile	Ser	Pro	Ser	Gly 55	Gly	Ser	Thr	Tyr	Tyr 60	Arg	Arg	Ser	Val
20	Lys 65	Gly	Arg	Phe	Thr	Val 70	Ser	Arg	Asp	Asn	Ala 75	Lys	Asn	Ser	Leu	Tyr 80
	Leu	Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
25	Ala	Arg	Arg	Ala 100	Gly	His	Asn	Tyr	Gly 105	Ala	Gly	Trp	Tyr	Phe 110	Asp	Tyr
30	Trp	Gly	Gln 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser	Ala	Ser 125	Thr	Lys	Gly
35	Pro	Ser 130	Val	Phe	Pro	Leu	Ala 135	Pro	Cys	Ser	Arg	Ser 140	Thr	Ser	Glu	Ser
	Thr 145	Ala	Ala	Leu	Gly	Cys 150	Leu	Val	Lys	Asp	Tyr 155	Phe	Pro	Glu	Pro	Val 160
40	Thr	Val	Ser	Trp	Asn 165	Ser	Gly	Ala	Leu	Thr 170	Ser	Gly	Val	His	Thr 175	Phe
45	Pro	Ala	Val	Leu 180	Gln	Ser	Ser	Gly	Leu 185	Tyr	Ser	Leu	Ser	Ser 190	Val	Val
50	Thr	Val	Pro 195	Ser	Ser	Ser	Leu	Gly 200	Thr	Lys	Thr	Tyr	Thr 205	Cys	Asn	Val
	Asp	His 210	Lys	Pro	Ser	Asn	Thr 215	Lys	Val	Asp	Lys	Arg 220	Val	Glu	Ser	Lys
55	Tyr 225	Gly	Pro	Pro	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Phe	Leu	Gly	Gly 240

	Pro Se	r Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
5	Ser Ar	g Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	Gln	Glu
10	Asp Pr	o Glu 275	Val	Gln	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
	Asn Al 29		Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Phe	As n 300	Ser	Thr	Tyr	Arg
15	Val Va 305	l Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	As p 315	Trp	Leu	Asn	Gly	Lys 320
20	Glu Ty	r Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
25	Lys Th	r Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Cys
	Thr Le	u Pro 355	Pro	Ser	Gln	Glu	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
30	Trp Cy 37	-	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
35	Glu Se 385	r Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
	Leu As	p Ser	Asp	Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Arg	Leu	Thr	Val 415	Asp
40	Lys Se	r Arg	Trp 420	Gln	Glu	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
45	Glu Al	a Leu 435	His	Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Leu
50	<210> <211> <212> <213>		ficia	al											
	<220> <223>	arti	ficia	al se	equei	nce									
55	<400>	12													
	Gln Va	l Gln	Leu	Val	Glu	Ser	Gly	Gly	Gly	Leu	Val	Gln	Pro	Gly	Gly

	1	5	10	15
5	Ser Leu Arg Leu 20	n Ser Cys Ala Ala Ser 25	_	Ser Tyr Tyr 30
10	Asp Ile Asn Trp 35	o Val Arg Gln Ala Pro 40	Gly Lys Gly Leu G 45	Glu Trp Val
	Ala Ser Ile Ser 50	Pro Ser Gly Gly Ser 55	Thr Tyr Tyr Arg A 60	Arg Ser Val
15	Lys Gly Arg Phe 65	e Thr Ile Ser Arg Asp 70	Asn Ala Lys Asn S 75	Ser Leu Tyr 80
20	Leu Gln Met Asn	n Ser Leu Arg Ala Glu 85	Asp Thr Ala Val I 90	fyr Tyr Cys 95
25	Ala Thr Arg Ala 100	n Gly His Asn Tyr Gly) 105		Phe Asp Tyr 110
25	Trp Gly Gln Gly 115	7 Thr Leu Val Thr Val 120	Ser Ser Ala Ser I 125	Thr Lys Gly
30	Pro Ser Val Phe 130	e Pro Leu Ala Pro Cys 135	Ser Arg Ser Thr S 140	Ser Glu Ser
35	Thr Ala Ala Leu 145	n Gly Cys Leu Val Lys 150	Asp Tyr Phe Pro G 155	Glu Pro Val 160
	Thr Val Ser Trp	Asn Ser Gly Ala Leu 165	Thr Ser Gly Val H 170	lis Thr Phe 175
40	Pro Ala Val Leu 180	a Gln Ser Ser Gly Leu) 185		Ser Val Val 190
45	Thr Val Pro Ser 195	r Ser Ser Leu Gly Thr 200	Lys Thr Tyr Thr C 205	Cys Asn Val
50	Asp His Lys Pro 210	o Ser Asn Thr Lys Val 215	Asp Lys Arg Val G 220	Glu Ser Lys
	Tyr Gly Pro Pro 225	o Cys Pro Pro Cys Pro 230	Ala Pro Glu Phe I 235	Leu Gly Gly 240
55	Pro Ser Val Phe	e Leu Phe Pro Pro Lys 245	Pro Lys Asp Thr I 250	Leu Met Ile 255

	Ser Arg		ro Glu 60	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	Gln	Glu
5	Asp Pro) Glu V 275	al Gln	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
10	Asn Ala 290		hr Lys	Pro	Arg 295	Glu	Glu	Gln	Phe	As n 300	Ser	Thr	Tyr	Arg
	Val Va 305	. Ser V	al Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
15	Glu Tyı	: Lys C	ys Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
20	Lys Thi	-	er Lys 40	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Cys
25	Thr Leu	1 Pro P 355	ro Ser	Gln	Glu	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
20	Trp Cy: 370		al Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
30	Glu Sei 385	Asn G	ly Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
35	Leu Asp) Ser A	sp Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Arg	Leu	Thr	Val 415	Asp
	Lys Sei	-	rp Gln 20	Glu	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
40	Glu Ala	Leu H 435	is Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Leu
45	<210> <211> <212> <213>	13 448 PRT Artifi	cial											
50	<220> <223> <400>	artifi 13	cial se	equer	ıce									
55	Gln Val 1	. Gln L	eu Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
55	Ser Leu	Arg L	eu Ser	Cys	Ala	Ala	Ser	Gly	Phe	Thr	Phe	Ser	Tyr	Tyr

		20	25	30
5	Asp Ile Asr 35	Trp Val Arg Gli	n Ala Pro Gly Lys Gly 40	Leu Glu Trp Val 45
10	Ser Ser Ile 50	e Ser Pro Ser Gly 55	y Gln Ser Thr Tyr Tyr 60	Arg Arg Glu Val
10	Lys Gly Arc 65	T Phe Thr Ile Se: 70	r Arg Asp Asn Ser Lys 75	Asn Thr Leu Tyr 80
15	Leu Gln Met	Asn Ser Leu Ard 85	g Ala Glu Asp Thr Ala 90	Val Tyr Tyr Cys 95
20	Ala Arg Arc	Ser Gly His As 100	n Tyr Gly Gly Gly Trp 105	Tyr Phe Asp Tyr 110
	Trp Gly Glr 115		l Thr Val Ser Ser Ala 120	Ser Thr Lys Gly 125
25	Pro Ser Val 130	. Phe Pro Leu Ala 13	a Pro Cys Ser Arg Ser 5 140	Thr Ser Glu Ser
30	Thr Ala Ala 145	Leu Gly Cys Lev 150	u Val Lys Asp Tyr Phe 155	Pro Glu Pro Val 160
35	Thr Val Ser	Trp Asn Ser Gly 165	y Ala Leu Thr Ser Gly 170	Val His Thr Phe 175
	Pro Ala Val	. Leu Gln Ser Se: 180	r Gly Leu Tyr Ser Leu 185	Ser Ser Val Val 190
40	Thr Val Pro 195		u Gly Thr Gln Thr Tyr 200	Thr Cys Asn Val 205
45	Asp His Lys 210	Pro Ser Asn Th: 21	r Lys Val Asp Lys Arg 5	
50	Tyr Gly Pro 225	Pro Cys Pro Pro 230	o Cys Pro Ala Pro Glu 235	Phe Leu Gly Gly 240
	Pro Ser Val	. Phe Leu Phe Pro 245	o Pro Lys Pro Lys Asp 250	Thr Leu Met Ile 255
55	Ser Arg Thr	Pro Glu Val Th 260	r Cys Val Val Val Asp 265	Val Ser Gln Glu 270

	Asp Pro	Glu Va 275	al Gln	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
5	Asn Ala 290		nr Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	As n 300	Ser	Thr	Tyr	Arg
10	Val Val 305	Ser Va	al Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
	Glu Tyr	Lys Cy	ys Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
15	Lys Thr	_	er Lys 10	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
20	Thr Leu	Pro P: 355	ro Ser	Gln	Lys	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
25	Thr Cys 370	Leu Va	al Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
25	Glu Ser 385	Asn G	Ly Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
30	Leu Asp	Ser A:	sp Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Lys	Leu	Thr	Val 415	Asp
35	Lys Ser	-	rp Gln 20	Glu	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
	Glu Ala	Leu H: 435	is Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Leu
40	<211> <212>	14 448 PRT Artific	cial											
45	<220> <223>	artifi	cial s	equei	nce									
	<400>	14												
50	Gln Val 1	Gln Le	eu Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
	Ser Leu	Arg La 20		Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Tyr	Tyr
55	Asp Ile	Gln T:	rp Val	Arg	Gln	Ala	Pro	Gly	Lys	Gly	Leu	Glu	Trp	Val

		35			40					45			
5	Ser Ser 50	lle Ser	Pro Ser	Gly 55	Gln	Ser	Thr	Tyr	Tyr 60	Arg	Arg	Glu	Val
10	Lys Gly 65	Arg Phe	Thr Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
	Leu Gln	Met Asn	Ser Leu 85	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
15	Ala Arg	Arg Ser 100	Gly His	Asn	Tyr	Gly 105	Gly	Gly	Trp	Tyr	Phe 110	Asp	Tyr
20	Trp Gly	Gln Gly 115	Thr Leu	Val	Thr 120	Val	Ser	Ser	Ala	Ser 125	Thr	Lys	Gly
25	Pro Ser 130	Val Phe	Pro Leu	Ala 135	Pro	Cys	Ser	Arg	Ser 140	Thr	Ser	Glu	Ser
	Thr Ala 145	Ala Leu	Gly Cys 150	Leu	Val	Lys	Asp	Tyr 155	Phe	Pro	Glu	Pro	Val 160
30	Thr Val	Ser Trp	Asn Ser 165	Gly	Ala	Leu	Thr 170	Ser	Gly	Val	His	Thr 175	Phe
35	Pro Ala	Val Leu 180	Gln Ser	Ser	Gly	Leu 185	Tyr	Ser	Leu	Ser	Ser 190	Val	Val
10	Thr Val	Pro Ser 195	Ser Ser	Leu	Gly 200	Thr	Lys	Thr	Tyr	Thr 205	Cys	Asn	Val
40	Asp His 210	Lys Pro	Ser Asn	Thr 215	Lys	Val	Asp	Lys	Arg 220	Val	Glu	Ser	Lys
45	Tyr Gly 225	Pro Pro	Cys Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Phe	Leu	Gly	Gly 240
50	Pro Ser	Val Phe	Leu Phe 245	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
	Ser Arg	Thr Pro 260	Glu Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	Gln	Glu
55	Asp Pro	Glu Val 275	Gln Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His

	Asn Al 29		Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Phe	A sn 300	Ser	Thr	Tyr	Arg
5	Val Va 305	l Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
10	Glu Ty	r Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
	Lys Th	r Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Cys
15	Thr Le	u Pro 355	Pro	Ser	Gln	Glu	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
20	Trp Cy 37		Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
25	Glu Se 385	r Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
20	Leu As	p Ser	Asp	Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Arg	Leu	Thr	Val 415	Asp
30	Lys Se	r Arg	Trp 420	Gln	Glu	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
35	Glu Al	a Leu 435	His	Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Leu
	<210> <211> <212> <213>	15 448 PRT Arti	ficia	al											
40	<220> <223>	arti			equei	nce									
	<400>	15													
45	Gln Va 1	l Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
50	Ser Le	u Arg	Leu 20	Ser	Суз	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Tyr	Tyr
55	Asp Il	e Gln 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
	Ser Se	r Ile	Ser	Pro	Ser	Gly	Gln	Ser	Thr	Tyr	Tyr	Arg	Arg	Glu	Val

	:	50					55					60				
5	Lys (65	Gly	Arg	Phe	Thr	Ile 70	Ser	Arg	Asp	Asn	Ser 75	Lys	Asn	Thr	Leu	Tyr 80
10	Leu (Gln	Met	Asn	Ser 85	Leu	Arg	Ala	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
	Ala i	Arg	Arg	Ser 100	Gly	His	Asn	Tyr	Gly 105	Gly	Gly	Trp	Tyr	Phe 110	Asp	Tyr
15	Trp (Gln 115	Gly	Thr	Leu	Val	Thr 120	Val	Ser	Ser	Ala	Ser 125	Thr	Lys	Gly
20	Pro :	Ser 130	Val	Phe	Pro	Leu	Ala 135	Pro	Cys	Ser	Arg	Ser 140	Thr	Ser	Glu	Ser
25	Thr 2 145	Ala	Ala	Leu	Gly	Cys 150	Leu	Val	Lys	Asp	Tyr 155	Phe	Pro	Glu	Pro	Val 160
25	Thr '	Val	Ser	Trp	Asn 165	Ser	Gly	Ala	Leu	Thr 170	Ser	Gly	Val	His	Thr 175	Phe
30	Pro 2	Ala	Val	Leu 180	Gln	Ser	Ser	Gly	Leu 185	Tyr	Ser	Leu	Ser	Ser 190	Val	Val
35	Thr '		Pro 195	Ser	Ser	Ser	Leu	Gly 200	Thr	Gln	Thr	Tyr	Thr 205	Cys	Asn	Val
	Asp 1	His 210	Lys	Pro	Ser	Asn		_		Asp	_	Arg 220	Val	Glu	Ser	Lys
40	Tyr (225	Gly	Pro	Pro	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Phe	Leu	Gly	Gly 240
45	Pro :	Ser	Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
50	Ser 2	Arg	Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	Gln	Glu
	Asp 1	Pro	Glu 275	Val	Gln	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
55	Asn i	Ala 290	Lys	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	Asn 300	Ser	Thr	Tyr	Arg

	Val Va 305	l Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
5	Glu Ty:	r Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
10	Lys Th	r Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
	Thr Le	ı Pro 355	Pro	Ser	Gln	Lys	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
15	Thr Cy: 37		Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
20	Glu Se: 385	r Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
25	Leu Asj	o Ser	Asp	Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Lys	Leu	Thr	Val 415	Asp
25	Lys Se	r Arg	Trp 420	Gln	Glu	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
30	Glu Ala	a Leu 435	His	Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Pro
35	<210> <211> <212> <213>	16 448 PRT Arti	ficia	al											
	<220> <223>	arti	ficia	al se	eque	nce									
40	<400>	16													
	Gln Va 1	l Gln	Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
45	Ser Le	ı Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Tyr	Tyr
50	Asp Il	e Ser 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Lys	Gly	Leu 45	Glu	Trp	Val
55	Ser Se 50	r Ile	Ser	Pro	Ser	Gly 55	Gln	Ser	Thr	Tyr	Tyr 60	Arg	Arg	Glu	Val
	Lys Gl	y Arg	Phe	Thr	Ile	Ser	Arg	Asp	Asn	Ser	Lys	Asn	Thr	Leu	Tyr

	65		70			75		80
5	Leu Gln		Ser Leu 35	Arg Ala	Glu Asp 90	Thr Ala Val	Tyr Tyr 95	Суз
10	Ala Arg	Arg Ser G 100	Gly His	Asn Phe	Gly Gly 105	Gly Trp Tyr	Phe Asp 110	Tyr
	Trp Gly	Gln Gly 1 115	Ihr Leu	Val Thr 120	Val Ser	Ser Ala Ser 125	-	Gly
15	Pro Ser 130		Pro Leu	Ala Pro 135	Cys Ser	Arg Ser Thr 140	Ser Glu	Ser
20	Thr Ala 145	Ala Leu G	Gly Cys 150	Leu Val	Lys Asp	Tyr Phe Pro 155	Glu Pro	Val 160
25	Thr Val	-	Asn Ser 165	Gly Ala	Leu Thr 170	Ser Gly Val	His Thr 175	Phe
25	Pro Ala	Val Leu G 180	Gln Ser	Ser Gly	Leu Tyr 185	Ser Leu Ser	Ser Val 190	Val
30	Thr Val	Pro Ser S 195	Ser Ser	Leu Gly 200	Thr Lys	Thr Tyr Thr 205	_	Val
35	Asp His 210		Ser Asn	Thr Lys 215	Val Asp	Lys Arg Val 220	Glu Ser	Lys
	Tyr Gly 225				Pro Ala	Pro Glu Phe 235	Leu Gly	Gly 240
40	Pro Ser		Leu Phe 245	Pro Pro	Lys Pro 250	Lys Asp Thr	Leu Met 255	Ile
45	Ser Arg	Thr Pro G 260	Glu Val	Thr Cys	Val Val 265	Val Asp Val	Ser Gln 270	Glu
50	Asp Pro	Glu Val G 275	Gln Phe	Asn Trp 280	Tyr Val	Asp Gly Val 285		His
	Asn Ala 290		Lys Pro	Arg Glu 295	Glu Gln	Phe Asn Ser 300	Thr Tyr	Arg
55	Val Val 305	Ser Val I	Leu Thr 310	Val Leu	His Gln	Asp Trp Leu 315	Asn Gly	Lys 320

	Glu	Tyr	Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
5	Lys	Thr	Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Cys
10	Thr	Leu	Pro 355	Pro	Ser	Gln	Glu	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
	Trp	Cys 370	Leu	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
15	Glu 385	Ser	Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
20	Leu	Asp	Ser	Asp	Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Arg	Leu	Thr	Val 415	Asp
or.	Lys	Ser	Arg	Trp 420	Gln	Glu	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
25	Glu	Ala	Leu 435	His	Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Leu
30	<210 <211 <212 <213	> 4 > 1	l7 148 PRT Artif	ficia	al											
30 35	<211 <212	> 4 > 1 > 2 >	148 PRT			equer	nce									
	<211 <212 <213 <220 <223 <400	> 4 > E > 2 > 2 > 2 > 2 > 2 > 2 > 2	148 PRT Artif Artif	ficia	al se	-										
	<211 <212 <213 <220 <223	> 4 > E > 2 > 2 > 2 > 2 > 2 > 2 > 2	148 PRT Artif Artif	ficia	al se	-		Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
35	<211 <212 <213 <220 <223 <400 Gln	> 4 > I > 7 > 7 > 7 > 7 > 7 > 7	148 PRT Artii 17 Gln	ficia Leu	al se Val 5	Glu	Ser			10					15	
35	<211 <212 <213 <220 <223 <400 Gln 1	> 4 > I > 7 > 7 > 7 > 7 > 7 > 7 Val	Artif Artif Gln Arg	Leu Leu 20	val 5 Ser	Glu Cys	Ser Ala	Ala	Ser 25	10 Gly	Phe	Thr	Phe	Ser 30	15 Tyr	Tyr
35 40	<211 <212 <213 <220 <223 <400 Gln 1 Ser Asp Ser	> 4 > I > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7	Artif Artif Gln Arg Gln 35	Leu Leu 20 Trp	val 5 Ser Val	Glu Cys Arg	Ser Ala Gln	Ala Ala 40	Ser 25 Pro	10 Gly Gly	Phe Lys	Thr Gly	Phe Leu 45	Ser 30 Glu	15 Tyr Trp	Tyr Val
35 40 45	<211 <212 <213 <220 <223 <400 Gln 1 Ser Asp Ser	> 4 > I > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7 > 7	Artif Artif Artif Gln Arg Gln 35 Ile	Leu Leu 20 Trp Ser	val 5 Ser Val Pro	Glu Cys Arg Ser	Ser Ala Gln Gly 55	Ala Ala 40 Gln	Ser 25 Pro Ser	10 Gly Gly Thr	Phe Lys Tyr	Thr Gly Tyr 60	Phe Leu 45 Arg	Ser 30 Glu Arg	15 Tyr Trp Glu	Tyr Val Val

		85	90	95
5	Ala Arg Arg Ser 10(r Gly Lys Ser Tyr Gly) 105	Gly Gly Trp Tyr Phe 110	Asp Tyr
10	Trp Gly Gln Gly 115	y Thr Leu Val Thr Val 120	Ser Ser Ala Ser Thr 125	Lys Gly
	Pro Ser Val Phe 130	e Pro Leu Ala Pro Cys 135	Ser Arg Ser Thr Ser 140	Glu Ser
15	Thr Ala Ala Leu 145	n Gly Cys Leu Val Lys 150	Asp Tyr Phe Pro Glu 155	Pro Val 160
20	Thr Val Ser Trp	Asn Ser Gly Ala Leu 165	Thr Ser Gly Val His 170	Thr Phe 175
25	Pro Ala Val Leu 180	n Gln Ser Ser Gly Leu)	Tyr Ser Leu Ser Ser 190	Val Val
20	Thr Val Pro Ser 195	r Ser Ser Leu Gly Thr 200	Gln Thr Tyr Thr Cys 205	Asn Val
30	Asp His Lys Pro 210	o Ser Asn Thr Lys Val 215	Asp Lys Arg Val Glu 220	Ser Lys
35	Tyr Gly Pro Pro 225	o Cys Pro Pro Cys Pro 230	Ala Pro Glu Phe Leu 235	Gly Gly 240
	Pro Ser Val Phe	e Leu Phe Pro Pro Lys 245	250	Met Ile 255
40	Ser Arg Thr Pro 26(o Glu Val Thr Cys Val)	Val Val Asp Val Ser 270	Gln Glu
45	Asp Pro Glu Val 275	l Gln Phe Asn Trp Tyr 280	Val Asp Gly Val Glu 285	Val His
50	Asn Ala Lys Thr 290	r Lys Pro Arg Glu Glu 295	Gln Tyr Asn Ser Thr 300	Tyr Arg
	Val Val Ser Val 305	L Leu Thr Val Leu His 310	Gln Asp Trp Leu Asn 315	Gly Lys 320
55	Glu Tyr Lys Cys	s Lys Val Ser Asn Lys 325	Gly Leu Pro Ser Ser 330	Ile Glu 335

	Lys !	Fhr	Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
5	Thr 1		Pro 355	Pro	Ser	Gln	Lys	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
10	Thr (Cys 370	Leu	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
	Glu : 385	Ser .	Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
15	Leu i	Asp	Ser	Asp	Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Lys	Leu	Thr	Val 415	Asp
20	Lys :	Ser .	Arg	Trp 420	Gln	Glu	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
25	Glu A		Leu 435	His	Asn	His	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Leu
25	<210 <211 <212 <213	> 4 > P	48 RT	icia	ıl											
30	<220: <223: <400:	> a		icia	al se	equer	ice									
35	Gln V 1			Leu	Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
40	Ser 1	Leu .	Arg	Leu 20	Ser	Cys	Ala	Ala	Ser 25	Gly	Phe	Thr	Phe	Ser 30	Tyr	Tyr
	Asp :		C 1 m	T ~~	₩ ∍1	•	a 1		D	C1.v	Lus	Glv	Leu	Glu	Trp	Val
			35	пр	Vai	Arg	GIN	40	PIO	Gry	цуб	0-1	45			
45	Ser S		35	_		_		40			-		45		-	Val
45 50	Ser S	Ser 50	35 Ile	Ser	Pro	Ser	Gly 55	40 Gln	Ser	Thr	Tyr	Tyr 60	45 Arg	Arg	Glu	
	Ser s	Ser 50 Gly .	35 Ile Arg	Ser Phe	Pro Thr	Ser Ile 70	Gly 55 Ser	40 Gln Arg	Ser Asp	Thr Asn	Tyr Ser 75	Tyr 60 Lys	45 Arg Asn	Arg Thr	Glu Leu	Tyr 80

		100	105	1	110
5	Trp Gly Glr 115	_	Val Thr Val Ser 120	Ser Ala Ser 1 125	Thr Lys Gly
10	Pro Ser Val 130	. Phe Pro Leu	Ala Pro Cys Ser 135	Arg Ser Thr S 140	Ser Glu Ser
	Thr Ala Ala 145	Leu Gly Cys 150	Leu Val Lys Asp	Tyr Phe Pro 6 155	Glu Pro Val 160
15	Thr Val Ser	Trp Asn Ser 165	Gly Ala Leu Thr 170	Ser Gly Val H	His Thr Phe 175
20	Pro Ala Val	. Leu Gln Ser 180	Ser Gly Leu Tyr 185		Ser Val Val 190
25	Thr Val Pro 195		Leu Gly Thr Gln 200	Thr Tyr Thr (205	Cys Asn Val
20	Asp His Lys 210	s Pro Ser Asn	Thr Lys Val Asp 215	Lys Arg Val 0 220	Glu Ser Lys
30	Tyr Gly Pro 225	o Pro Cys Pro 230	Pro Cys Pro Ala	Pro Glu Phe I 235	Leu Gly Gly 240
35	Pro Ser Val	. Phe Leu Phe 245	Pro Pro Lys Pro 250	Lys Asp Thr I	Leu Met Ile 255
	Ser Arg Thr	Pro Glu Val 260	Thr Cys Val Val 265	-	Ser Gln Glu 270
40	Asp Pro Glu 275		Asn Trp Tyr Val 280	Asp Gly Val 0 285	Glu Val His
45	Asn Ala Lys 290	: Thr Lys Pro	Arg Glu Glu Gln 295	Tyr Asn Ser 1 300	Ihr Tyr Arg
50	Val Val Ser 305	val Leu Thr 310	Val Leu His Gln	Asp Trp Leu A 315	Asn Gly Lys 320
	Glu Tyr Lys	Cys Lys Val 325	Ser Asn Lys Gly 330	Leu Pro Ser S	Ser Ile Glu 335
55	Lys Thr Ile	e Ser Lys Ala 340	Lys Gly Gln Pro 345	-	Gln Val Tyr 350

	Thr I		Pro 355	Pro	Ser	Gln	Lys	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
5	Thr C	C ys 370	Leu	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp
10	Glu S 385	Ser .	Asn	Gly	Gln	Pro 390	Glu	Asn	Asn	Tyr	Lys 395	Thr	Thr	Pro	Pro	Val 400
	Leu A	Asp	Ser	Asp	Gly 405	Ser	Phe	Phe	Leu	Tyr 410	Ser	Lys	Leu	Thr	Val 415	Asp
15	Lys S	Ser .	Arg	Trp 420	Gln	Glu	Gly	Asn	Val 425	Phe	Ser	Cys	Ser	Val 430	Met	His
20	Glu A		Leu 435	His	Asn	Arg	Tyr	Thr 440	Gln	Lys	Ser	Leu	Ser 445	Leu	Ser	Pro
25	<210> <211> <212> <213>	> 4 > P	9 48 RT rtif	licia	al											
	<220> <223>		rtif	icia	al se	equer	ıce									
30	<400>	> 1	9													
30	<400> Gln X 1	> 1	9		Val 5	Glu	Ser	Gly	Gly	Gly 10	Leu	Val	Gln	Pro	Gly 15	Gly
30 35	Gln V	≻ 1 /al	9 Gln	Leu	5					10					15	
	Gln V 1	> 1 /al Leu	9 Gln Arg	Leu Leu 20	5 Ser	Cys	Ala	Ala	Ser 25	10 Gly	Phe	Thr	Phe	Ser 30	15 Tyr	Tyr
35	Gln V 1 Ser I Asp I Ser S	> 1 /al Leu	9 Gln Arg Gln 35	Leu 20 Trp	5 Ser Val	Cys Arg	Ala Gln	Ala Ala 40	Ser 25 Pro	10 Gly Gly	Phe Lys	Thr Gly	Phe Leu 45	Ser 30 Glu	15 Tyr Trp	Tyr Val
35	Gln V 1 Ser I Asp I Ser S	> 1 /al Leu Ser 50	9 Gln Arg Gln 35 Ile	Leu 20 Trp Ser	5 Ser Val Pro	Cys Arg Ser	Ala Gln Gly 55	Ala Ala 40 Gln	Ser 25 Pro Ser	10 Gly Gly Thr	Phe Lys Tyr	Thr Gly Tyr 60	Phe Leu 45 Arg	Ser 30 Glu Arg	15 Tyr Trp Glu	Tyr Val Val
35 40	Gln V 1 Ser I Asp J Ser S 5	> 1 /al Leu Ele Ser 50 Gly	9 Gln Arg Gln 35 Ile Arg	Leu 20 Trp Ser Phe	5 Ser Val Pro Thr	Cys Arg Ser Ile 70	Ala Gln Gly 55 Ser	Ala 40 Gln Arg	Ser 25 Pro Ser Asp	10 Gly Gly Thr Asn	Phe Lys Tyr Ser 75	Thr Gly Tyr 60 Lys	Phe Leu 45 Arg Asn	Ser 30 Glu Arg Thr	15 Tyr Trp Glu Leu	Tyr Val Val Tyr 80
35 40 45	Gln V 1 Ser I Asp I Ser S 5 Lys 0 65	> 1 /al Leu Ile Ser 50 Sly	9 Gln Arg Gln 35 Ile Arg Met	Leu 20 Trp Ser Phe Asn	5 Ser Val Pro Thr Ser 85	Cys Arg Ser Ile 70 Leu	Ala Gln Gly 55 Ser Arg	Ala 40 Gln Arg Ala	Ser 25 Pro Ser Asp Glu	10 Gly Gly Thr Asn Asp 90	Phe Lys Tyr Ser 75 Thr	Thr Gly Tyr 60 Lys Ala	Phe Leu 45 Arg Asn Val	Ser 30 Glu Arg Thr Tyr	15 Tyr Trp Glu Leu Tyr 95	Tyr Val Val Tyr 80 Cys

		115					120					125			
5		er Val 30	Phe	Pro	Leu	Ala 135	Pro	Cys	Ser	Arg	Ser 140	Thr	Ser	Glu	Ser
10	Thr A 145	la Ala	Leu	Gly	Cys 150	Leu	Val	Lys	Asp	Tyr 155	Phe	Pro	Glu	Pro	Val 160
	Thr V	al Ser	Trp	As n 165	Ser	Gly	Ala	Leu	Thr 170	Ser	Gly	Val	His	Thr 175	Phe
15	Pro A	la Val	Leu 180	Gln	Ser	Ser	Gly	Leu 185	Tyr	Ser	Leu	Ser	Ser 190	Val	Val
20	Thr V	al Pro 195	Ser	Ser	Ser	Leu	Gly 200	Thr	Gln	Thr	Tyr	Thr 205	Cys	Asn	Val
25		is Lys 10	Pro	Ser	Asn	Thr 215	Lys	Val	Asp	Lys	Arg 220	Val	Glu	Ser	Lys
25	Tyr G 225	ly Pro	Pro	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Phe	Leu	Gly	Gly 240
30	Pro S	er Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
35	Ser A	rg Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	Gln	Glu
	Asp P	ro Glu 275	Val	Gln	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
40		la Lys 90	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	Asn 300	Ser	Thr	Tyr	Arg
45	Val V 305	al Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	As p 315	Trp	Leu	Asn	Gly	Lys 320
50	Glu T	yr Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
	Lys T	hr Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
55	Thr L	eu Pro 355	Pro	Ser	Gln	Lys	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu

	Thr Cys Le 370	u Val Lys	Gly Phe 375	Tyr Pro	Ser Asp	Ile Ala 380	Val Glu	Trp
5	Glu Ser As 385	n Gly Gln	Pro Glu 390	Asn Asn	Tyr Lys 395	Thr Thr	Pro Pro	Val 400
10	Leu Asp Se	r Asp Gly 405		Phe Leu	Tyr Ser 410	Lys Leu	Thr Val 415	Asp
	Lys Ser An	g Trp Gln 420	Glu Gly	Asn Val 425	Phe Ser	Cys Ser	Val Met 430	His
15	Glu Ala Le 43		His Tyr	Thr Gln 440	Lys Ser	Leu Ser 445	Leu Ser	Pro
20	<210> 20 <211> 448 <212> PRI <213> Art							
25		ificial s	equence					
20	<400> 20 Gln Val GJ 1	n Leu Val 5	Glu Ser	Gly Gly	Gly Leu 10	Val Gln	Pro Gly 15	Gly
30	Ser Leu Ar	g Leu Ser 20	Cys Ala	Ala Ser 25	Gly Phe	Thr Phe	Ser Tyr 30	Tyr
35	Asp Ile G 35		Arg Gln	Ala Pro 40	Gly Lys	Gly Leu 45	Glu Trp	Val
40	Ser Ser Il 50	e Ser Pro	Ser Gly 55	Gln Ser	Thr Tyr	Tyr Arg 60	Arg Glu	Val
	Lys Gly An 65	g Phe Thr	Ile Ser 70	Arg Asp	Asn Ser 75	Lys Asn	Thr Leu	Tyr 80
45	Leu Gln Me	t Asn Ser 85	· Leu Arg	Ala Glu	Asp Thr 90	Ala Val	Tyr Tyr 95	Cys
50	Ala Arg An	g Thr Gly 100	Arg Glu	Tyr Gly 105	Gly Gly	Trp Tyr	Phe Asp 110	Tyr
55	Trp Gly Gl 11		Leu Val	Thr Val 120	Ser Ser	Ala Ser 125	Thr Lys	Gly
	Pro Ser Va	l Phe Pro	Leu Ala	Pro Cys	Ser Arg	Ser Thr	Ser Glu	Ser

	13	0				135					140				
5	Thr Al 145	a Ala	Leu	Gly	Cys 150	Leu	Val	Lys	Asp	Туг 155	Phe	Pro	Glu	Pro	Val 160
10	Thr Va	l Ser	Trp	Asn 165	Ser	Gly	Ala	Leu	Thr 170	Ser	Gly	Val	His	Thr 175	Phe
	Pro Al	a Val	Leu 180	Gln	Ser	Ser	Gly	Leu 185	Tyr	Ser	Leu	Ser	Ser 190	Val	Val
15	Thr Va	l Pro 195	Ser	Ser	Ser	Leu	Gly 200	Thr	Gln	Thr	Tyr	Thr 205	Cys	Asn	Val
20	Asp Hi 21		Pro	Ser	Asn	Thr 215	Lys	Val	Asp	Lys	Arg 220	Val	Glu	Ser	Lys
	Tyr Gl 225	y Pro	Pro	Cys	Pro 230	Pro	Cys	Pro	Ala	Pro 235	Glu	Phe	Leu	Gly	Gly 240
25	Pro Se	r Val	Phe	Leu 245	Phe	Pro	Pro	Lys	Pro 250	Lys	Asp	Thr	Leu	Met 255	Ile
30	Ser Ar	g Thr	Pro 260	Glu	Val	Thr	Cys	Val 265	Val	Val	Asp	Val	Ser 270	Gln	Glu
35	Asp Pr	o Glu 275	Val	Gln	Phe	Asn	Trp 280	Tyr	Val	Asp	Gly	Val 285	Glu	Val	His
	Asn Al 29	-	Thr	Lys	Pro	Arg 295	Glu	Glu	Gln	Tyr	As n 300	Ser	Thr	Tyr	Arg
40	Val Va 305	l Ser	Val	Leu	Thr 310	Val	Leu	His	Gln	Asp 315	Trp	Leu	Asn	Gly	Lys 320
45	Glu Ty	r Lys	Cys	Lys 325	Val	Ser	Asn	Lys	Gly 330	Leu	Pro	Ser	Ser	Ile 335	Glu
50	Lys Th	r Ile	Ser 340	Lys	Ala	Lys	Gly	Gln 345	Pro	Arg	Glu	Pro	Gln 350	Val	Tyr
	Thr Le	u Pro 355	Pro	Ser	Gln	Lys	Glu 360	Met	Thr	Lys	Asn	Gln 365	Val	Ser	Leu
55	Thr Cy 37	-	Val	Lys	Gly	Phe 375	Tyr	Pro	Ser	Asp	Ile 380	Ala	Val	Glu	Trp

	Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro P 385 390 395	Pro Val 400
5	Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr V 405 410 4	/al Asp 415
10	Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val M 420 425 430	let His
	Glu Ala Leu His Asn Arg Tyr Thr Gln Lys Ser Leu Ser Leu S 435 440 445	Ser Pro
15	<210> 21 <211> 444 <212> PRT <213> Artificial	
20	<220> <223> artificial sequence	
25	<400> 21 Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro G 1 5 10 1	Gly Ala 15
30	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr A 20 25 30	Asp Asn
	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu T 35 40 45	Irp Met
35	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu G 50 55 60	Glu Phe
40	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Gly Thr A 65 70 75	Ala Tyr 80
	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr I 85 90 9	fyr Cys 95
45	Ala Arg Arg Lys Ser Tyr Gly Tyr His Leu Asp Glu Trp Gly G 100 105 110	Glu Gly
50	Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser V 115 120 125	/al Phe
55	Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala A 130 135 140	Ala Leu
	Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val S	Ser Trp

	145		1	.50			155			160
5	Asn Ser	Gly Ala	Leu T 165	hr Ser	Gly V	al His 170	Thr Ph€	e Pro Al	a Val 175	Leu
10	Gln Ser	Ser Gly 180		yr Ser		er Ser 85	Val Val	. Thr Va 19		Ser
	Ser Ser	Leu Gly 195	Thr L	ys Thr	Tyr T 200	hr Cys	Asn Val	. As p Hi 205	s Lys	Pro
15	Ser Asr 210	h Thr Lys	Val A	asp Lys 215	Arg V	al Glu	Ser Lys 22(y Pro	Pro
20	Cys Pro 225) Pro Cys		ala Pro 30	Glu P	he Leu	Gly Gly 235	Pro Se	r Val	Phe 240
25	Leu Phe	e Pro Pro	Lys P 245	ro Lys	Asp T	hr Leu 250	Met Ile	e Ser Ar	g Thr 255	Pro
25	Glu Val	. Thr Cys 260		Val Val	_	al Ser 65	Gln Glı	ı Asp Pr 27	-	Val
30	Gln Phe	Asn Trp 275	Tyr V	al Asp	Gly V 280	al Glu	Val His	Asn Al 285	a Lys	Thr
35	Lys Pro 290) Arg Glu	Glu G	ln Phe 295	Asn S	er Thr	Tyr Arc 30(l Ser	Val
	Leu Thr 305	Yal Leu		Sln Asp 310					r Lys	Cys 320
40	Lys Val	. Ser Asn	Lys G 325	ly Leu	Pro S	er Ser 330	Ile Glu	ı Lys Th	r Ile 335	Ser
45	Lys Ala	Lys Gly 340		ro Arg		ro Gln 45	Val Tyı	Thr Le 35		Pro
50	Ser Glr	Cys Glu 355	Met T	hr Lys	Asn G 360	ln Val	Ser Lei	ı Ser Cy 365	s Ala	Val
	Lys Gly 370	Phe Tyr	Pro S	ser Asp 375	Ile A	la Val	Glu Tr <u>r</u> 38(r Asn	Gly
55	Gln Pro 385) Glu Asn		yr Lys 90	Thr T	hr Pro	Pro Val 395	. Leu As	p Ser	Asp 400

	Gly Ser	Phe Phe	Leu V 405	al Ser	Arg Leu	Thr Val 410	Asp Lys	Ser Arg 415	Trp
5	Gln Glu	Gly Asn 420	Val P	he Ser	Cys Ser 425	Val Met	His Glu	Ala Leu 430	His
10	Asn His	Tyr Thr 435	Gln L	ys Ser	Leu Ser 440	Leu Ser	Leu		
15	<211> 4 <212> P	22 444 PRT Artificia	al						
		artificia	al seq	uence					
20		22 Gln Leu	Val G 5	ln Ser	Gly Ser	Glu Leu 10	Lys Lys	Pro Gly 15	Ala
25	Ser Val	Lys Val 20	Ser C	ys Lys	Ala Ser 25	Gly Tyr	Thr Phe	Thr Asp 30	Asn
30	Asn Met	Asp Trp 35	Val A	rg Gln	Ala Pro 40	Gly Gln	Gly Leu 45	Glu Trp	Met
	Gly Asp 50	Ile Asn	Thr A	rg Ser 55	Gly Gly	Ser Ile	Tyr Asn 60	Glu Glu	Phe
35	Gln Asp 65	Arg Val	Ile Ma 7		Val Asp	Lys Ser 75	Thr Gly	Thr Ala	Tyr 80
40	Met Glu	Leu Ser	Ser Lo 85	eu Arg	Ser Glu	Asp Thr 90	Ala Val	Tyr His 95	Cys
	Ala Arg	Arg Lys 100	Ser T	yr Gly	Tyr Tyr 105	Leu Asp	Glu Trp	Gly Glu 110	Gly
45	Thr Leu	Val Thr 115	Val S	er Ser	Ala Ser 120	Thr Lys	Gly Pro 125	Ser Val	Phe
50	Pro Leu 130	Ala Pro	Cys S	er Arg 135	Ser Thr	Ser Glu	Ser Thr 140	Ala Ala	Leu
55	Gly Cys 145	Leu Val	_	sp Tyr 50	Phe Pro	Glu Pro 155	Val Thr	Val Ser	Trp 160
-	Asn Ser	Gly Ala	Leu T	hr Ser	Gly Val	His Thr	Phe Pro	Ala Val	Leu

			165		170		175
5	Gln Ser	Ser Gly 180	Leu Ty	r Ser Le	eu Ser Ser 185	Val Val Thr	Val Pro Ser 190
10	Ser Ser	Leu Gly 195	Thr Gl	n Thr Ty 20		Asn Val Asp 205	o His Lys Pro
	Ser Asn 210	Thr Lys	Val As	p Lys Ar 215	g Val Glu	Ser Lys Tyr 220	: Gly Pro Pro
15	Cys Pro 225	Pro Cys	Pro Ala 23		u Phe Leu	Gly Gly Pro 235	o Ser Val Phe 240
20	Leu Phe	Pro Pro	Lys Pro 245	o Lys As	p Thr Leu 250	Met Ile Ser	Arg Thr Pro 255
25	Glu Val	Thr Cys 260	Val Va	l Val As	p Val Ser 265	Gln Glu Asp	9 Pro Glu Val 270
25	Gln Phe	Asn Trp 275	Tyr Va	l Asp Gl 28	-	Val His Asr 285	Ala Lys Thr
30	Lys Pro 290	Arg Glu	Glu Gl:	n Tyr As 295	n Ser Thr	Tyr Arg Val 300	. Val Ser Val
35	Leu Thr 305	Val Leu	His Gl: 31	_	rp Leu Asn	Gly Lys Glu 315	u Tyr Lys Cys 320
	Lys Val	Ser Asn	Lys Gl ₃ 325	y Leu Pr	o Ser Ser 330	_	Thr Ile Ser 335
40	Lys Ala	Lys Gly 340	Gln Pro	o Arg Gl	u Pro Gln 345	Val Tyr Thr	: Leu Pro Pro 350
45	Ser Gln	Glu Glu 355	Met Th	r Lys As 36		Ser Leu Thr 365	c Cys Leu Val
50	Lys Gly 370	Phe Tyr	Pro Se	r Asp Il 375	.e Ala Val	Glu Trp Glu 380	ı Ser Asn Gly
	Gln Pro 385	Glu Asn	Asn Ty: 39		r Thr Pro	Pro Val Leu 395	Asp Ser Asp 400
55	Gly Ser	Phe Phe	Leu Ty: 405	r Ser Ly	vs Leu Thr 410	Val Asp Lys	s Ser Arg Trp 415

Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His 420 425 430

5 Asn Arg Tyr Thr Gln Glu Ser Leu Ser Leu Ser Pro 435 440

10	<211> 4 <212> P	3 44 PRT Artificial	1					
15		rtificia)	l sequen	ice				
	Gln Val 1	Gln Leu V	Val Gln 5	Ser Gly	Ser Glu 10	Leu Lys	Lys Pro	Gly Ala 15
20	Ser Val	Lys Val S 20	Ser Cys	Lys Ala	Ser Gly 25	Tyr Thr	Phe Thr 30	Asp Asn
25		Asp Trp V 35	Val Arg	Gln Ala 40	Pro Gly	Gln Gly	Leu Glu 45	Trp Met
30	Gly Asp 50	Ile Asn 1	Ihr Arg	Ser Gly 55	Gly Ser	Ile Tyr 60	Asn Glu	Glu Phe
	Gln Asp 65	Arg Val 1	Ile Met 70	Thr Val	Asp Lys	Ser Thr 75	Asp Thr	Ala Tyr 80
35	Met Glu	Leu Ser S	Ser Leu 85	Arg Ser	Glu Asp 90	Thr Ala	Val Tyr	His Cys 95
40	Ala Arg	Arg Lys S 100	Ser Tyr	Gly Tyr	Tyr Leu 105	Asp Glu	Trp Gly 110	Glu Gly
45		Val Thr V 115	Val Ser	Ser Ala 120	Ser Thr	Lys Gly	Pro Ser 125	Val Phe
	Pro Leu 130	Ala Pro (Cys Ser	Arg Ser 135	Thr Ser	Glu Ser 140	Thr Ala	Ala Leu
50	Gly Cys 145	Leu Val I	Lys Asp 150	Tyr Phe	Pro Glu	Pro Val 155	Thr Val	Ser Trp 160
55	Asn Ser	Gly Ala I	Leu Thr 165	Ser Gly	Val His 170	Thr Phe	Pro Ala	Val Leu 175
	Gln Ser	Ser Gly 1	Leu Tyr	Ser Leu	Ser Ser	Val Val	Thr Val	Pro Ser

		180			185	1	190
5	Ser Ser	Leu Gly 195	Thr Gln	Thr Tyr 200	Thr Cys Asn	Val Asp H 205	His Lys Pro
10	Ser Asn 210	Thr Lys	Val Asp	Lys Arg 215	Val Glu Ser	Lys Tyr 0 220	Gly Pro Pro
	Cys Pro 225	Pro Cys	Pro Ala 230		Phe Leu Gly 235	Gly Pro S	Ser Val Phe 240
15	Leu Phe	Pro Pro	Lys Pro 245	Lys Asp	Thr Leu Met 250	Ile Ser A	Arg Thr Pro 255
20	Glu Val	Thr Cys 260		Val Asp	Val Ser Gln 265	_	Pro Glu Val 270
25	Gln Phe	Asn Trp 275	Tyr Val	Asp Gly 280	Val Glu Val	His Asn A 285	Ala Lys Thr
25	Lys Pro 290	Arg Glu	Glu Gln	Tyr Asn 295	Ser Thr Tyr	Arg Val V 300	Val Ser Val
30	Leu Thr 305	Val Leu	His Gln 310		Leu Asn Gly 315	Lys Glu I	Fyr Lys Cys 320
35	Lys Val	Ser Asn	Lys Gly 325	Leu Pro	Ser Ser Ile 330	Glu Lys I	Thr Ile Ser 335
	Lys Ala	Lys Gly 340	Gln Pro	Arg Glu	Pro Gln Val 345	_	Leu Pro Pro 350
40	Ser Gln	Glu Glu 355	Met Thr	Lys Asn 360	Gln Val Ser	Leu Thr C 365	Cys Leu Val
45	Lys Gly 370		Pro Ser	Asp Ile 375	Ala Val Glu	Trp Glu S 380	Ser Asn Gly
50	Gln Pro 385	Glu Asn	Asn Tyr 390	-	Thr Pro Pro 395	Val Leu A	Asp Ser Asp 400
	Gly Ser	Phe Phe	Leu Tyr 405	Ser Lys	Leu Thr Val 410	Asp Lys S	Ser Arg Trp 415
55	Gln Glu	Gly Asn 420	Val Phe	Ser Cys	Ser Val Met 425		Ala Leu His 430

	Asn Arg Tyr Thr Gln Glu Ser Leu Ser Leu Ser Pro 435 440	
5	<210> 24 <211> 444 <212> PRT <213> Artificial	
10	<220> <223> artificial sequence	
	<400> 24	
15	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15	
	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30	
20	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45	
25	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60	
30	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Asp Thr Ala Tyr 65	
	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr His Cys 85 90 95	
35	Ala Arg Arg Lys Ser Tyr Gly Tyr Tyr Leu Asp Glu Trp Gly Glu Gly 100 105 110	
40	Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125	
	Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu 130 135 140	
45	Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160	
50	Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175	
55	Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190	
55	Ser Ser Leu Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro	

		195		200)	205	
5	Ser Asn 210	_	Val Asp	Lys Arg 215	y Val Glu Ser	Lys Tyr Gly 220	7 Pro Pro
10	Cys Pro 225	Pro Cys	Pro Ala 230	Pro Glu	1 Phe Leu Gly 235	-	Yal Phe 240
	Leu Phe	Pro Pro	Lys Pro 245	Lys Asp	o Thr Leu Met 250	Ile Ser Arc	g Thr Pro 255
15	Glu Val	Thr Cys 260		Val Asp	val Ser Gln 265	Glu Asp Pro 27(
20	Gln Phe	Asn Trp 275	Tyr Val	Asp Gly 280	y Val Glu Val)	His Asn Ala 285	Lys Thr
	Lys Pro 290	-	Glu Gln	Tyr Asr 295	n Ser Thr Tyr	Arg Val Val 300	. Ser Val
25	Leu Thr 305	Val Leu	His Gln 310	Asp Trp	o Leu Asn Gly 315		: Lys Cys 320
30	Lys Val	Ser Asn	Lys Gly 325	Leu Pro	Ser Ser Ile 330	Glu Lys Thr	Ile Ser 335
35	Lys Ala	Lys Gly 340		Arg Glu	ı Pro Gln Val 345	Tyr Thr Leu 35(
	Ser Gln	Glu Glu 355	Met Thr	Lys Asr 360	n Gln Val Ser)	Leu Thr Cys 365	s Leu Val
40	Lys Gly 370	_	Pro Ser	Asp Ile 375	Ala Val Glu	Trp Glu Ser 380	Asn Gly
45	Gln Pro 385	Glu Asn	Asn Tyr 390		Thr Pro Pro 395		o Ser Asp 400
50	Gly Ser	Phe Phe	Leu Tyr 405	Ser Lys	s Leu Thr Val 410	Asp Lys Ser	Arg Trp 415
	Gln Glu	. Gly Asn 420		Ser Cys	s Ser Val Met 425	His Glu Ala 43(
55	Asn Arg	Tyr Thr 435	Gln Glu	Ser Leu 44(1 Ser Leu Ser)	Pro	

	<210> <211> <212> <213>	25 444 PRT Artif	icial											
5	<220> <223>	artif	icial	seque	nce									
	<400>	25												
10	Gln Va 1	l Gln	Leu Va 5	l Gln	Ser	Gly	Ser	Glu 10	Leu	Lys	Lys	Pro	Gly 15	Ala
15	Ser Va	_	Val Se 20	r Cys	Lys	Ala	Ser 25	Gly	Tyr	Thr	Phe	Thr 30	Asp	Asn
	Asn Me	t Asp 35	Trp Va	l Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
20	Gly As 50	-	Asn Th	r Arg	Ser 55	Gly	Gly	Ser	Ile	Tyr 60	Asn	Glu	Glu	Phe
25	Gln As 65	p Arg	Val Il	e Met 70	Thr	Val	Asp	Lys	Ser 75	Thr	Asp	Thr	Ala	Tyr 80
30	Met Gl	u Leu	Ser Se 85	r Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Thr	Tyr	His 95	Cys
	Ala Ar		Lys Se 100	r Tyr	Gly	Tyr	Tyr 105	Leu	Asp	Glu	Trp	Gly 110	Glu	Gly
35	Thr Le	u Val 115	Thr Va	l Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
40	Pro Le 13		Pro Cy	s Ser	Arg 135	Ser	Thr	Ser	Glu	Ser 140	Thr	Ala	Ala	Leu
	Gly Cy 145	s Leu	Val Ly	s Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
45	Asn Se	r Gly .	Ala Le 16		Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
50	Gln Se		Gly Le 180	u Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
55	Ser Se	r Leu 195	Gly Th	r Gln	Thr	Tyr 200	Thr	Cys	Asn	Val	Asp 205	His	Lys	Pro
	Ser As	n Thr	Lys Va	l Asp	Lys	Arg	Val	Glu	Ser	Lys	Tyr	Gly	Pro	Pro

	21	0				215					220				
5	Cys Pro 225	o Pro	Суз	Pro	Ala 230	Pro	Glu	Phe	Leu	Gly 235	Gly	Pro	Ser	Val	Phe 240
	Leu Pho	e Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
10	Glu Va	L Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	Gln	Glu	Asp	Pro 270	Glu	Val
15	Gln Ph	e Asn 275	Trp	Tyr	Val	Asp	Gly 280	Val	Glu	Val	His	As n 285	Ala	Lys	Thr
20	Lys Pro 29	-	Glu	Glu	Gln	Tyr 295	Asn	Ser	Thr	Tyr	Arg 300	Val	Val	Ser	Val
	Leu Th: 305	r Val	Leu	His	Gln 310	Asp	Trp	Leu	Asn	Gly 315	Lys	Glu	Tyr	Lys	Cys 320
25	Lys Va	L Ser	Asn	Lys 325	Gly	Leu	Pro	Ser	Ser 330	Ile	Glu	Lys	Thr	Ile 335	Ser
30	Lys Ala	a Lys	Gly 340	Gln	Pro	Arg	Glu	Pro 345	Gln	Val	Tyr	Thr	Leu 350	Pro	Pro
35	Ser Gl	n Glu 355	Glu	Met	Thr	Lys	Asn 360	Gln	Val	Ser	Leu	Thr 365	Cys	Leu	Val
30	Lys Gly 37		Tyr	Pro	Ser	Asp 375	Ile	Ala	Val	Glu	Trp 380	Glu	Ser	Asn	Gly
40	Gln Pro 385	o Glu	Asn	Asn	Tyr 390	Lys	Thr	Thr	Pro	Pro 395	Val	Leu	Asp	Ser	Asp 400
45	Gly Se	r Phe	Phe	Leu 405	Tyr	Ser	Lys	Leu	Thr 410	Val	Asp	Lys	Ser	Arg 415	Trp
	Gln Gl	ı Gly	As n 420	Val	Phe	Ser	Cys	Ser 425	Val	Met	His	Glu	Ala 430	Leu	His
50	Asn Hi	s Tyr 435	Thr	Gln	Glu	Ser	Leu 440	Ser	Leu	Ser	Pro				
55	<210> <211> <212> <213>	26 444 PRT Arti:	ficia	al											

	<220> <223> artificial sequence													
	<400> 26													
5	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15													
10	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30													
15	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45													
	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60													
20	Gln Asp Arg Val Ile Met Thr Val Asp Thr Ser Thr Asp Thr Ala Tyr 65 70 75 80													
25	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr His Cys 85 90 95													
30	Ala Arg Arg Lys Ser Tyr Gly Tyr His Leu Asp Glu Trp Gly Glu Gly 100 105 110													
	Thr Leu Val Thr Val Ser Ser Ala Ser Thr Lys Gly Pro Ser Val Phe 115 120 125													
35	Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu 130 135 140													
40	Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp 145 150 155 160													
	Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu 165 170 175													
45	Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser 180 185 190													
50	Ser Ser Leu Gly Thr Gln Thr Tyr Thr Cys Asn Val Asp His Lys Pro 195 200 205													
55	Ser Asn Thr Lys Val Asp Lys Arg Val Glu Ser Lys Tyr Gly Pro Pro210215220													
	Cys Pro Pro Cys Pro Ala Pro Glu Phe Leu Gly Gly Pro Ser Val Phe													

	225	230	235	240
5	Leu Phe Pro Pro Lys 245	Pro Lys Asp Thr Lev 250		Thr Pro 255
10	Glu Val Thr Cys Val 260	Val Val Asp Val Ser 265	r Gln Glu Asp Pro 270	Glu Val
	Gln Phe Asn Trp Tyr 275	Val Asp Gly Val Glu 280	ı Val His Asn Ala 285	Lys Thr
15	Lys Pro Arg Glu Glu 290	Gln Tyr Asn Ser Thr 295	r Tyr Arg Val Val 300	Ser Val
20	Leu Thr Val Leu His 305	Gln Asp Trp Leu Asr 310	n Gly Lys Glu Tyr 315	Lys Cys 320
	Lys Val Ser Asn Lys 325	Gly Leu Pro Ser Ser 330		Ile Ser 335
25	Lys Ala Lys Gly Gln 340	Pro Arg Glu Pro Glr 345	n Val Tyr Thr Leu 350	Pro Pro
30	Ser Gln Glu Glu Met 355	Thr Lys Asn Gln Val 360	L Ser Leu Thr Cys 365	Leu Val
35	Lys Gly Phe Tyr Pro 370	Ser Asp Ile Ala Val 375	L Glu Trp Glu Ser 380	Asn Gly
	Gln Pro Glu Asn Asn 385	Tyr Lys Thr Thr Pro 390	o Pro Val Leu Asp 395	Ser Asp 400
40	Gly Ser Phe Phe Leu 405	Tyr Ser Lys Leu Thr 410		Arg Trp 415
45	Gln Glu Gly Asn Val 420	Phe Ser Cys Ser Val 425	L Met His Glu Ala 430	Leu His
	Asn His Tyr Thr Gln 435	Glu Ser Leu Ser Leu 440	1 Ser Pro	
50	<210> 27 <211> 444 <212> PRT <213> Artificial			
55	<220> <223> artificial s	equence		

Thr :	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
Pro :	Leu 130	Ala	Pro	Cys	Ser	Arg 135	Ser	Thr	Ser	Glu	Ser 140	Thr	Ala	Ala	Leu
Gly (145	Суз	Leu	Val	Lys	Asp 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
Asn :	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
Gln :	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
Ser :	Ser	Leu 195	Gly	Thr	Gln	Thr	Tyr 200	Thr	Cys	Asn	Val	Asp 205	His	Lys	Pro
Ser i	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Ser	Lys 220	Tyr	Gly	Pro	Pro
Cys 1 225	Pro	Pro	Cys	Pro	Ala 230	Pro	Glu	Phe	Leu	Gly 235	Gly	Pro	Ser	Val	Phe 240
Leu 1	Phe	Pro	Pro	Lys	Pro	Lys	Asp	Thr	Leu	Met	Ile	Ser	Arg	Thr	Pro
							9	1							

				20					25					50		
10	Asn	Met	Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
15	Gly	Asp 50	Ile	Asn	Thr	Arg	Ser 55	Gly	Gly	Ser	Ile	Tyr 60	Asn	Glu	Glu	Phe
	Gln 65	Asp	Arg	Val	Ile	Me t 70	Thr	Val	Asp	Lys	Ser 75	Thr	Asp	Thr	Ala	Tyr 80
20	Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Thr	Tyr	His 95	Cys
25	Ala	Arg	Arg	Lys 100	Ser	Tyr	Gly	Tyr	His 105	Leu	Asp	Glu	Trp	Gly 110	Glu	Gly
20	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
30	Bro	Lou	Z] -	Bro	Cve	Sor	Arc	Sor	Thr	Sor	Cl	Sor	Thr	2 12	קומ	Leu

Pro Leu Ala P r Thr Ala Ala Leu 130 C 35 Gly Cys Leu V l Thr Val Ser Trp 145 160 e Pro Ala Val Leu Asn Ser Gly A 175 40 l Thr Val Pro Ser Gln Ser Ser G 190 1 45 Ser Ser Leu G l Asp His Lys Pro 195 205 Ser Asn Thr I s Tyr Gly Pro Pro 50 210 0 Cys Pro Pro C y Pro Ser Val Phe

55

EP 3 318 633 A1

Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala

Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn

25

10

15

30

<400> 27

5

20

1

		245	250	255
5	Glu Val Thr Cys 260	s Val Val Val Asp Val) 265		
10	Gln Phe Asn Trp 275	o Tyr Val Asp Gly Val 280	. Glu Val His Asn Ala 285	a Lys Thr
10	Lys Pro Arg Glu 290	ı Glu Gln Tyr Asn Ser 295	Thr Tyr Arg Val Val 300	Ser Val
15	Leu Thr Val Leu 305	n His Gln Asp Trp Leu 310	Asn Gly Lys Glu Tyr 315	r Lys Cys 320
20	Lys Val Ser Asn	n Lys Gly Leu Pro Ser 325	Ser Ile Glu Lys Thr 330	Ile Ser 335
	Lys Ala Lys Gly 340	y Gln Pro Arg Glu Pro)		
25	Ser Gln Glu Glu 355	n Met Thr Lys Asn Gln 360	a Val Ser Leu Thr Cys 365	s Leu Val
30	Lys Gly Phe Tyr 370	r Pro Ser Asp Ile Ala 375	N Val Glu Trp Glu Ser 380	Asn Gly
25	Gln Pro Glu Asn 385	n Asn Tyr Lys Thr Thr 390	Pro Pro Val Leu Asp 395	Ser Asp 400
35	Gly Ser Phe Phe	e Leu Tyr Ser Lys Leu 405	1 Thr Val Asp Lys Ser 410	r Arg Trp 415
40	Gln Glu Gly Asn 420	n Val Phe Ser Cys Ser)		
45	Asn Arg Tyr Thr 435	r Gln Glu Ser Leu Ser 440	Leu Ser Pro	
	<210> 28 <211> 214 <212> PRT	- 1		
50	<213> Artifici <220> <223> artifici	ial sequence		
55	<400> 28 Asp Ile Gln Met	: Thr Gln Ser Pro Ser	: Ser Leu Ser Ala Ser	r Val Glv
	1	5	10	15

	Asp Arg	Val Thi 20	: Ile	Thr	Cys	Lys	Ala 25	Ser	Lys	Asn	Ile	Glu 30	Arg	Asn
5	Leu Ala	Т гр Ту 35	: Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Arg 45	Leu	Leu	Ile
10	Tyr Arg 50	7 Ala Sei	r Arg	Lys	Glu 55	Ser	Gly	Val	Pro	Asp 60	Arg	Phe	Ser	Gly
	Ser Arg 65	Tyr Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
15	Glu Asp	o Ile Ala	1 Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Ser	Ser	Pro	Pro 95	Leu
20	Thr Phe	e Gly Gly 100	_	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala
25	Pro Ser	Val Phe 115	a Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly
	Thr Ala 130	Ser Val	. Val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala
30	Lys Val 145	. Gln Tr <u>r</u>) Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160
35	Glu Ser	Val Thi	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser
40	Ser Thr	: Leu Thi 180		Ser	Lys	Ala	As p 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr
	Ala Cys	Glu Val 195	. Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	Val 205	Thr	Lys	Ser
45	Phe Asn 210	Arg Gly	/ Glu	Cys										
50	<211> <212>	29 214 PRT Artific:	.al											
55		artifici	.al se	equen	ıce									
	<400>	29												

	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val G 1 5 10 15	L y
5	Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Arg Asn Ile Glu Arg As 20 25 30	3n
10	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Glu Leu Leu IJ 35 40 45	le
	Tyr Arg Ala Asp Arg Lys Glu Ser Gly Val Pro Asp Arg Phe Ser GJ 50 55 60	L y
15	Ser Arg Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pa 65 70 75 80	
20	Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Ser Pro Pro Le 85 90 95	¥u
25	Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Al 100 105 110	la
	Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser G 115 120 125	ЧY
30	Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Al 130 135 140	la
35	Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gl 145 150 155 16	
	Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Se 165 170 175	er
40	Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Ty 180 185 190	ŗr
45	Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Se 195 200 205	èr
50	Phe Asn Arg Gly Glu Cys 210	
	<210> 30 <211> 214 <212> PRT <213> Artificial	
55	<213> Artificial <220>	

	<223	3> a	artif	ficia	al se	equer	nce									
	<400)> 3	30													
5	Asp 1	Ile	Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
10	Asp	Arg	Val	Thr 20	Ile	Thr	Cys	Lys	Ala 25	Ser	Arg	Asn	Ile	Glu 30	Arg	Asn
	Leu	Ala	Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Glu 45	Leu	Leu	Ile
15	Tyr	Gln 50	Ala	Ser	Arg	Lys	Glu 55	Ser	Gly	Val	Pro	Asp 60	Arg	Phe	Ser	Gly
20	Ser 65	Arg	Tyr	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
25	Glu	Asp	Ile	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Ser	Ser	Pro	Pro 95	Leu
20	Thr	Phe	Gly	Gly 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala
30	Pro	Ser	Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly
35	Thr	Ala 130	Ser	Val	Val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala
	Lys 145		Gln	-	-		-		Ala				Gly	Asn	Ser	Gln 160
40	Glu	Ser	Val	Thr	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Leu 175	Ser
45	Ser	Thr	Leu	Thr 180	Leu	Ser	Lys	Ala	As p 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr
50	Ala	Cys	Glu 195	Val	Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	Val 205	Thr	Lys	Ser
	Phe	As n 210	Arg	Gly	Glu	Cys										
55	<21(<21) <212	L> 2	31 214 PRT													

	<213> Artificial
E	<220> <223> artificial sequence
5	<400> 31
10	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15
10	Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Arg Asn Ile Glu Arg Gln 20 25 30
15	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Glu Leu Leu Ile 35 40 45
20	Tyr Gln Ala Ser Arg Lys Glu Ser Gly Val Pro Asp Arg Phe Ser Gly 50 55 60
25	Ser Arg Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
	Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Ser Pro Pro Leu 85 90 95
30	Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110
35	Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125
	Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140
40	Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160
45	Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175
50	Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190
	Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205
55	Phe Asn Arg Gly Glu Cys 210

_	<210> <211> <212> <213>	32 214 PRT Artif	ficia	al											
5	<220> <223>	artif	ficia	al se	equer	nce									
	<400>	32													
10	Asp Il 1	e Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
15	Asp Ar	g Val	Thr 20	Ile	Thr	Cys	Lys	Ala 25	Ser	Arg	Asn	Ile	Glu 30	Arg	Gln
	Leu Al	a Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Glu 45	Leu	Leu	Ile
20	Tyr Gl 50	n Ala	Ser	Arg	Lys	Glu 55	Ser	Gly	Val	Pro	Asp 60	Arg	Phe	Ser	Gly
25	Ser Ar 65	g Tyr	Gly	Thr	As p 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
30	Glu As	p Ile	Ala	Thr 85	Tyr	Tyr	Суз	Gln	Gln 90	Tyr	Ser	Asp	Pro	Pro 95	Leu
	Thr Ph	e Gly	Gly 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys	Arg	Thr	Val 110	Ala	Ala
35	Pro Se	r Val 115	Phe	Ile	Phe	Pro	Pro 120	Ser	Asp	Glu	Gln	Leu 125	Lys	Ser	Gly
40	Thr Al 13		Val	Val	Cys	Leu 135	Leu	Asn	Asn	Phe	Tyr 140	Pro	Arg	Glu	Ala
	Lys Va 145	l Gln	Trp	Lys	Val 150	Asp	Asn	Ala	Leu	Gln 155	Ser	Gly	Asn	Ser	Gln 160
45	Glu Se	r Val	Thr	Glu 165	Gln	Asp	Ser	Lys	Asp 170	Ser	Thr	Tyr	Ser	Le u 175	Ser
50	Ser Th	r Leu	Thr 180	Leu	Ser	Lys	Ala	Asp 185	Tyr	Glu	Lys	His	Lys 190	Val	Tyr
55	Ala Cy	s Glu 195	Val	Thr	His	Gln	Gly 200	Leu	Ser	Ser	Pro	Val 205	Thr	Lys	Ser
	Phe As	n Arg	Gly	Glu	Cys										

<210> 33 <211> 214 <212> PRT <213> Artificial <220> <223> artificial sequence <400> 33 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Arg Asn Ile Glu Arg Gln Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Glu Leu Leu Ile Tyr Arg Ala Ser Arg Lys Glu Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Arg Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Asp Pro Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser

	Phe Asn Arg Gly Glu Cys 210
5	<210> 34 <211> 214 <212> PRT <213> Artificial
10	<220> <223> artificial sequence <400> 34
15	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15
20	Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Arg Asn Ile Glu Arg Gln 20 25 30
	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Glu Leu Leu Ile 35 40 45
25	Tyr Arg Ala Asp Arg Lys Glu Ser Gly Val Pro Asp Arg Phe Ser Gly 50 55 60
30	Ser Arg Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
35	Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Asp Pro Pro Leu 85 90 95
	Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys Arg Thr Val Ala Ala 100 105 110
40	Pro Ser Val Phe Ile Phe Pro Pro Ser Asp Glu Gln Leu Lys Ser Gly 115 120 125
45	Thr Ala Ser Val Val Cys Leu Leu Asn Asn Phe Tyr Pro Arg Glu Ala 130 135 140
50	Lys Val Gln Trp Lys Val Asp Asn Ala Leu Gln Ser Gly Asn Ser Gln 145 150 155 160
	Glu Ser Val Thr Glu Gln Asp Ser Lys Asp Ser Thr Tyr Ser Leu Ser 165 170 175
55	Ser Thr Leu Thr Leu Ser Lys Ala Asp Tyr Glu Lys His Lys Val Tyr 180 185 190

	Ala Cys Glu Val Thr His Gln Gly Leu Ser Ser Pro Val Thr Lys Ser 195 200 205	
5	Phe Asn Arg Gly Glu Cys 210	
10	<210> 35 <211> 123 <212> PRT <213> Artificial	
15	<220> <223> artificial sequence	
	<400> 35 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15	
20	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30	
25	Asp Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45	
30	Ala Ser Ile Ser Pro Ser Gly Gly Ser Thr Tyr Tyr Arg His Ser Val 50 55 60	
	Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80	
35	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95	
40	Ala Arg Arg Ala Gly His Asn Leu Gly Ala Gly Trp Tyr Phe Asp Phe 100 105 110	
45	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120	
45	<210> 36 <211> 123 <212> PRT	
50	<213> Artificial <220> <223> artificial sequence	
	<400> 36	
55	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15	

	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30
5	Asp Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
10	Ala Ser Ile Ser Pro Ser Gly Gly Ser Thr Tyr Tyr Arg Arg Ser Val 50 55 60
45	Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80
15	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
20	Ala Arg Arg Ala Gly His Asn Leu Gly Ala Gly Trp Tyr Phe Asp Phe 100 105 110
25	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120
30	<210> 37 <211> 123 <212> PRT <213> Artificial
	<220> <223> artificial sequence
35	<400> 37
	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
40	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30
45	Asp Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
50	Ala Ser Ile Ser Pro Ser Gly Gly Ser Thr Tyr Tyr Arg Arg Ser Val 50 55 60
	Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80
55	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

	Ala Arg Arg Ala Gly His Asn Phe Gly Ala Gly Trp Tyr Phe Asp Phe 100 105 110											
5	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120											
10	<210> 38 <211> 123 <212> PRT <213> Artificial											
	<220> <223> artificial sequence											
15	<400> 38											
20	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15											
20	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30											
25	Asp Met Ala Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45											
30	Ala Ser Ile Ser Pro Ser Gly Gly Ser Thr Tyr Tyr Arg Arg Ser Val 50 55 60											
	Lys Gly Arg Phe Thr Val Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80											
35	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95											
40	Ala Arg Arg Ala Gly His Asn Tyr Gly Ala Gly Trp Tyr Phe Asp Tyr 100 105 110											
45	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120											
45	<210> 39 <211> 123 <212> PRT											
50	<213> Artificial											
	<220> <223> artificial sequence											
55	<400> 39											
55	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15											

	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30
5	Asp Ile Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
10	Ala Ser Ile Ser Pro Ser Gly Gly Ser Thr Tyr Tyr Arg Arg Ser Val 50 55 60
15	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ala Lys Asn Ser Leu Tyr 65 70 75 80
15	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
20	Ala Thr Arg Ala Gly His Asn Tyr Gly Ala Gly Trp Tyr Phe Asp Tyr 100 105 110
25	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120
30	<210> 40 <211> 123 <212> PRT <213> Artificial
	<220> <223> artificial sequence
35	<400> 40 Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly
40	151015Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 202530
45	Asp Ile Asn Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
50	Ser Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val 50 55 60
	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
55	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

	Ala Arg Arg Ser Gly His Asn Tyr Gly Gly Gly Trp Tyr Phe Asp Tyr 100 105 110											
5	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120											
10	<210> 41 <211> 123 <212> PRT <213> Artificial											
	<220> <223> artificial sequence											
15	<400> 41											
	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15											
20	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30											
25	Asp Ile Gln Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45											
30	Ser Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val 50 55 60											
	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80											
35	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95											
40	Ala Arg Arg Ser Gly His Asn Tyr Gly Gly Gly Trp Tyr Phe Asp Tyr 100 105 110											
	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120											
45	<210> 42 <211> 123											
50	<212> PRT <213> Artificial											
	<220> <223> artificial sequence											
55	<400> 42											
	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15											

	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30
5	Asp Ile Ser Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
10	Ser Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val 50 55 60
	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
15	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
20	Ala Arg Arg Ser Gly His Asn Phe Gly Gly Gly Trp Tyr Phe Asp Tyr 100 105 110
25	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120
30	<210> 43 <211> 123 <212> PRT <213> Artificial
	<220> <223> artificial sequence
35	<400> 43
	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15
40	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30
45	Asp Ile Gln Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
50	Ser Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val 50 55 60
	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
55	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

	Ala Arg Arg Ser Gly Lys Ser Tyr Gly Gly Gly Trp Tyr Phe Asp Tyr 100 105 110											
5	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120											
10	<210> 44 <211> 123 <212> PRT <213> Artificial											
	<220> <223> artificial sequence											
15	<400> 44											
	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15											
20	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30											
25	Asp Ile Gln Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45											
30	Ser Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val 50 55 60											
	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80											
35	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95											
40	Ala Arg Arg Ser Gly Arg Glu Tyr Gly Gly Gly Trp Tyr Phe Asp Tyr 100 105 110											
	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120											
45	<210> 45											
50	<211> 123 <212> PRT <213> Artificial											
	<220> <223> artificial sequence											
55	<400> 45											
	Gln Val Gln Leu Val Glu Ser Gly Gly Gly Leu Val Gln Pro Gly Gly 1 5 10 15											

	Ser Leu Arg Leu Ser Cys Ala Ala Ser Gly Phe Thr Phe Ser Tyr Tyr 20 25 30
5	Asp Ile Gln Trp Val Arg Gln Ala Pro Gly Lys Gly Leu Glu Trp Val 35 40 45
10	Ser Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val 50 55 60
45	Lys Gly Arg Phe Thr Ile Ser Arg Asp Asn Ser Lys Asn Thr Leu Tyr 65 70 75 80
15	Leu Gln Met Asn Ser Leu Arg Ala Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95
20	Ala Arg Arg Thr Gly Arg Glu Tyr Gly Gly Gly Trp Tyr Phe Asp Tyr 100 105 110
25	Trp Gly Gln Gly Thr Leu Val Thr Val Ser Ser 115 120
30	<210> 46 <211> 119 <212> PRT <213> Artificial
	<220> <223> artificial sequence
35	<400> 46
	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15
40	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30
45	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45
50	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60
	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Gly Thr Ala Tyr 65 70 75 80
55	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr Tyr Cys 85 90 95

	Ala Arg Arg Lys Ser Tyr Gly Tyr His Leu Asp Glu Trp Gly Glu Gly 100 105 110
5	Thr Leu Val Thr Val Ser Ser 115
10	<210> 47 <211> 119 <212> PRT <213> Artificial
15	<220> <223> artificial sequence <400> 47
	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15
20	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30
25	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45
30	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60
	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Gly Thr Ala Tyr 65 70 75 80
35	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr His Cys 85 90 95
40	Ala Arg Arg Lys Ser Tyr Gly Tyr Tyr Leu Asp Glu Trp Gly Glu Gly 100 105 110
45	Thr Leu Val Thr Val Ser Ser 115
	<210> 48 <211> 119 <212> PRT
50	<213> Artificial <220> <223> artificial sequence
	<400> 48
55	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15

	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30	
5	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45	
10	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60	
	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Gly Thr Ala Tyr 65 70 75 80	
15	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr His Cys 85 90 95	
20	Ala Arg Arg Lys Ser Arg Gly Tyr His Leu Asp Glu Trp Gly Glu Gly 100 105 110	
25	Thr Leu Val Thr Val Ser Ser 115	
30	<210> 49 <211> 119 <212> PRT <213> Artificial	
	<220> <223> artificial sequence	
35	<400> 49 Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15	
40	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30	
45	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45	
50	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60	
50	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Asp Thr Ala Tyr 65 70 75 80	
55	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr His Cys 85 90 95	

	Ala Arg Arg Lys Ser Tyr Gly Tyr Tyr Leu Asp Glu Trp Gly Glu Gly 100 105 110
5	Thr Leu Val Thr Val Ser Ser 115
10	<210> 50 <211> 119 <212> PRT <213> Artificial
15	<220> <223> artificial sequence <400> 50
	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15
20	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30
25	Asn Met His Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45
30	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60
	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Asp Thr Ala Tyr 65 70 75 80
35	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr His Cys 85 90 95
40	Ala Arg Arg Lys Ser Tyr Gly Tyr His Leu Asp Glu Trp Gly Glu Gly 100 105 110
	Thr Leu Val Thr Val Ser Ser 115
45	<210> 51 <211> 119 <212> PRT
50	<213> Artificial <220>
	<223> artificial sequence <400> 51
55	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15

	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30	
5	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45	
10	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60	
	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Asp Thr Ala Tyr 65 70 75 80	
15	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Val Tyr His Cys 85 90 95	
20	Ala Arg Arg Lys Ser Tyr Gly Asn His Leu Asp Glu Trp Gly Glu Gly 100 105 110	
25	Thr Leu Val Thr Val Ser Ser 115	
30	<210> 52 <211> 119 <212> PRT <213> Artificial	
	<220> <223> artificial sequence	
35	<400> 52	
	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15	
40	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30	
45	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45	
50	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60	
	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Asp Thr Ala Tyr 65 70 75 80	
55	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr His Cys 85 90 95	

	Ala Arg Arg Lys Ser Tyr Gly Tyr Tyr Leu Asp Glu Trp Gly Glu Gly 100 105 110
5	Thr Leu Val Thr Val Ser Ser 115
10	<210> 53 <211> 119 <212> PRT <213> Artificial
15	<220> <223> artificial sequence <400> 53
20	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15
20	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30
25	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45
30	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60
	Gln Asp Arg Val Ile Met Thr Val Asp Thr Ser Thr Asp Thr Ala Tyr 65 70 75 80
35	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr His Cys 85 90 95
40	Ala Arg Arg Lys Ser Tyr Gly Tyr His Leu Asp Glu Trp Gly Glu Gly 100 105 110
45	Thr Leu Val Thr Val Ser Ser 115
45	<210> 54 <211> 119 <212> PRT
50	<213> Artificial <220> <223> artificial sequence
55	<400> 54
	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15

	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30	
5	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45	
10	Gly Asp Ile Asn Thr Lys Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60	
	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Asp Thr Ala Tyr 65 70 75 80	
15	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr His Cys 85 90 95	
20	Ala Arg Arg Gln Ser Tyr Gly Tyr His Leu Asp Glu Trp Gly Glu Gly 100 105 110	
25	Thr Leu Val Thr Val Ser Ser 115	
30	<210> 55 <211> 119 <212> PRT <213> Artificial	
	<220> <223> artificial sequence	
35	<400> 55	
	Gln Val Gln Leu Val Gln Ser Gly Ser Glu Leu Lys Lys Pro Gly Ala 1 5 10 15	
40	Ser Val Lys Val Ser Cys Lys Ala Ser Gly Tyr Thr Phe Thr Asp Asn 20 25 30	
45	Asn Met Asp Trp Val Arg Gln Ala Pro Gly Gln Gly Leu Glu Trp Met 35 40 45	
50	Gly Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe 50 55 60	
	Gln Asp Arg Val Ile Met Thr Val Asp Lys Ser Thr Asp Thr Ala Tyr 65 70 75 80	
55	Met Glu Leu Ser Ser Leu Arg Ser Glu Asp Thr Ala Thr Tyr His Cys 85 90 95	

	Ala Arg Arg Lys Ser Tyr Gly Tyr His Leu Asp Glu Trp Gly Glu Gly 100 105 110
5	Thr Leu Val Thr Val Ser Ser 115
10	<210> 56 <211> 106 <212> PRT <213> Artificial
15	<220> <223> artificial sequence <400> 56
	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15
20	Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Ile Tyr Lys Asn 20 25 30
25	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Lys Leu Leu Ile 35 40 45
30	Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Ser Gly 50 55 60
	Ser Arg Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro 65 70 75 80
35	Glu Asp Leu Ala Thr Tyr Tyr Cys Gln Gln Tyr Tyr Ser Gly Leu Thr 85 90 95
40	Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105
45	<210> 57 <211> 107 <212> PRT <213> Artificial
	<220> <223> artificial sequence
50	<400> 57
	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly 1 5 10 15
55	Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Gln Asn Ile Tyr Lys Asn 20 25 30

	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Lys Leu Leu 35 40 45	lle
5	Tyr Ser Ala Ser Tyr Arg Tyr Ser Gly Val Pro Asp Arg Phe Ser 50 55 60	Gly
10	Ser Arg Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glr 65 70 75	9 Pro 80
	Glu Asp Leu Ala Thr Tyr Tyr Cys Gln Gln Tyr Tyr Ser Pro Pro 85 90 95	Leu
15	Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105	
20	<210> 58 <211> 107 <212> PRT <213> Artificial	
25	<220> <223> artificial sequence	
	<400> 58	
30	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val 1 5 10 15	Gly
35	Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Lys Asn Ile Glu Arg 20 25 30	Asn
	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Arg Leu Leu 35 40 45	Ile Ile
40	Tyr Arg Ala Ser Arg Lys Glu Ser Gly Val Pro Asp Arg Phe Ser 50 55 60	Gly
45	Ser Arg Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Glr 65 70 75	9 Pro 80
	Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Ser Pro Pro 85 90 95	Leu
50	Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys 100 105	
55	<210> 59 <211> 107 <212> PRT	

	<213>	Artifici	al						
	<220> <223>	artifici	al seq	quence					
5	<400>	59							
	Asp Ile 1	Gln Met	Thr G 5	Gln Ser	Pro Ser	Ser Le 10	u Ser A	la Ser	Val Gly 15
10	Asp Arg	Val Thr 20	Ile I	Thr Cys	Lys Ala 25	Ser Ar	g Asn I	le Glu 30	Arg Asn
15	Leu Ala	Trp Tyr 35	Gln G	Gln Lys	Pro Gly 40	Gln Al		lu Leu 5	Leu Ile
20	Tyr Arg 50	Ala Asp	Arg I	Lys Glu 55	Ser Gly	Val Pr	o Asp A 60	arg Phe	Ser Gly
	Ser Arg 65	Tyr Gly		Asp Phe 70	Thr Leu	Thr Il 75	e Ser S	Ser Leu	Gln Pro 80
25	Glu Asp	Ile Ala	Thr 1 85	fyr Tyr	Cys Gln	Gln Ty 90	r Ser S	Ser Pro	Pro Leu 95
30	Thr Phe	Gly Gly 100	Gly T	Thr Lys	Val Glu 105	_	S		
35	<211> <212>	60 107 PRT Artifici	al						
	<220> <223>	artifici	al seq	quence					
40		60 Gln Met	Thr G 5	Gln Ser	Pro Ser	Ser Le 10	u Ser A	ala Ser	Val Gly 15
45	Asp Arg	Val Thr 20	Ile I	Thr Cys	Lys Ala 25	Ser Ar	g Asn I	le Glu 30	Arg Asn
50	Leu Ala	Trp Tyr 35	Gln G	Gln Lys	Pro Gly 40	Gln Al		lu Leu 5	Leu Ile
	Tyr Gln 50	Ala Ser	Arg I	Lys Glu 55	Ser Gly	Val Pr	o Asp A 60	arg Phe	Ser Gly
55	Ser Arg 65	Tyr Gly		Asp Phe 70	Thr Leu	Thr Il 75	e Ser S	er Leu	Gln Pro 80

Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Ser Pro Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 61 <211> 107 <212> PRT <213> Artificial <220> <223> artificial sequence <400> 61 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Arg Asn Ile Glu Arg Gln Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Glu Leu Leu Ile Tyr Gln Ala Ser Arg Lys Glu Ser Gly Val Pro Asp Arg Phe Ser Gly Ser Arg Tyr Gly Thr Asp Phe Thr Leu Thr Ile Ser Ser Leu Gln Pro Glu Asp Ile Ala Thr Tyr Tyr Cys Gln Gln Tyr Ser Ser Pro Pro Leu Thr Phe Gly Gly Gly Thr Lys Val Glu Ile Lys <210> 62 <211> 107 <212> PRT <213> Artificial <220> <223> artificial sequence <400> 62 Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val Gly

EP 3 318 633 A1

Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Arg Asn Ile Glu Arg Gln

		20	25	30
5	Leu Ala Trp 35		Pro Gly Gln Ala Pro Gl 40 45	u Leu Leu Ile
	Tyr Gln Ala 50	Ser Arg Lys Glu S 55	Ser Gly Val Pro Asp Ar 60	g Phe Ser Gly
10	Ser Arg Tyr 65	Gly Thr Asp Phe 7 70	Thr Leu Thr Ile Ser Se 75	r Leu Gln Pro 80
15	Glu Asp Ile	Ala Thr Tyr Tyr (85	Cys Gln Gln Tyr Ser As 90	p Pro Pro Leu 95
20	Thr Phe Gly	Gly Gly Thr Lys N 100	Val Glu Ile Lys 105	
25	<210> 63 <211> 107 <212> PRT <213> Arti:	ficial		
20	<220> <223> arti: <400> 63	ficial sequence		
30	Asp Ile Gln 1	Met Thr Gln Ser H 5	Pro Ser Ser Leu Ser Al 10	a Ser Val Gly 15
35	Asp Arg Val	Thr Ile Thr Cys I 20	Lys Ala Ser Arg Asn Il 25	e Glu Arg Gln 30
40	Leu Ala Trp 35		Pro Gly Gln Ala Pro Gl 40 45	u Leu Leu Ile
	Tyr Arg Ala 50	Ser Arg Lys Glu S 55	Ser Gly Val Pro Asp Ar 60	g Phe Ser Gly
45	Ser Arg Tyr 65	Gly Thr Asp Phe 7 70	Thr Leu Thr Ile Ser Se 75	r Leu Gln Pro 80
50	Glu Asp Ile	Ala Thr Tyr Tyr (85	Cys Gln Gln Tyr Ser As 90	p Pro Pro Leu 95
	Thr Phe Gly	Gly Gly Thr Lys V 100	Val Glu Ile Lys 105	
55	<210> 64 <211> 107			

	<212> <213>														
5	<220> <223>	arti	ficia	l se	equer	nce									
	<400>	64													
10	Asp Il 1	e Gln	Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
	Asp Ar	g Val	Thr 20	Ile	Thr	Cys	Lys	Ala 25	Ser	Arg	Asn	Ile	Glu 30	Arg	Gln
15	Leu Al	a Trp 35	Tyr	Gln	Gln	Lys	Pro 40	Gly	Gln	Ala	Pro	Glu 4 5	Leu	Leu	Ile
20	Tyr Ar 50	g Ala	Asp	Arg	Lys	Glu 55	Ser	Gly	Val	Pro	Asp 60	Arg	Phe	Ser	Gly
	Ser Ar 65	g Tyr	Gly	Thr	Asp 70	Phe	Thr	Leu	Thr	Ile 75	Ser	Ser	Leu	Gln	Pro 80
25	Glu As	p Ile	Ala	Thr 85	Tyr	Tyr	Cys	Gln	Gln 90	Tyr	Ser	Asp	Pro	Pro 95	Leu
30	Thr Ph	e Gly	Gly 100	Gly	Thr	Lys	Val	Glu 105	Ile	Lys					
35	<210> <211> <212> <213>	65 325 PRT Artif	ficia	ıl											
	<220> <223>	artii	ficia	l se	equer	nce									
40	<400>	65													
	Ala Se 1	r Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Cys	Ser 15	Arg
45	Ser Th	r Ser	Glu 20	Ser	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
50	Phe Pr	o Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
55	Gly Va 50	l His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
	Leu Se	r Ser	Val	Val	Thr	Val	Pro	Ser	Ser	Ser	Leu	Gly	Thr	Lys	Thr

	65					70					75					80
5	Tyr	Thr	Cys	Asn	Val 85	Asp	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
10	Arg	Val	Glu	Ser 100	Lys	Tyr	Gly	Pro	Pro 105	Cys	Pro	Pro	Cys	Pro 110	Ala	Pro
	Glu	Phe	Le u 115	Gly	Gly	Pro	Ser	Val 120	Phe	Leu	Phe	Pro	Pro 125	Lys	Pro	Lys
15	Asp	Thr 130	Leu	Met	Ile	Ser	Arg 135	Thr	Pro	Glu	Val	Thr 140	Cys	Val	Val	Val
20	Asp 145	Val	Ser	Gln	Glu	As p 150	Pro	Glu	Val	Gln	Phe 155	Asn	Trp	Tyr	Val	Asp 160
25	Gly	Val	Glu	Val	His 165	Asn	Ala	Lys	Thr	Lys 170	Pro	Arg	Glu	Glu	Gln 175	Phe
25	Asn	Ser	Thr	Tyr 180	Arg	Val	Val	Ser	Val 185	Leu	Thr	Val	Leu	His 190	Gln	Asp
30	Trp	Leu	Asn 195	Gly	Lys	Glu	Tyr	Lys 200	Cys	Lys	Val	Ser	Asn 205	Lys	Gly	Leu
35	Pro	Ser 210	Ser	Ile	Glu	Lys	Thr 215	Ile	Ser	Lys	Ala	Lys 220	Gly	Gln	Pro	Arg
	Glu 225	Pro	Gln	Val	Cys		Leu				Gln 235		Glu	Met	Thr	Lys 240
40	Asn	Gln	Val	Ser	Leu 245	Trp	Cys	Leu	Val	Lys 250	Gly	Phe	Tyr	Pro	Ser 255	Asp
45	Ile	Ala	Val	Glu 260	Trp	Glu	Ser	Asn	Gly 265	Gln	Pro	Glu	Asn	As n 270	Tyr	Lys
50	Thr	Thr	Pro 275	Pro	Val	Leu	Asp	Ser 280	Asp	Gly	Ser	Phe	Phe 285	Leu	Tyr	Ser
	Arg	Leu 290	Thr	Val	Asp	Lys	Ser 295	Arg	Trp	Gln	Glu	Gly 300	Asn	Val	Phe	Ser
55	Cys 305	Ser	Val	Met	His	Glu 310	Ala	Leu	His	Asn	His 315	Tyr	Thr	Gln	Lys	Ser 320

	Leu Se:	r Leu	Ser	Leu 325											
5	<210> <211> <212> <213>	66 325 PRT Arti:	ficia	al											
10	<220> <223>	arti	ficia	al se	equer	nce									
	<400>	66													
15	Ala Se: 1	r Thr	Lys	Gly 5	Pro	Ser	Val	Phe	Pro 10	Leu	Ala	Pro	Cys	Ser 15	Arg
	Ser Th	r Ser	Glu 20	Ser	Thr	Ala	Ala	Leu 25	Gly	Cys	Leu	Val	Lys 30	Asp	Tyr
20	Phe Pro	o Glu 35	Pro	Val	Thr	Val	Ser 40	Trp	Asn	Ser	Gly	Ala 45	Leu	Thr	Ser
25	Gly Va 50	l His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
30	Leu Se: 65	r Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Lys	Thr 80
	Tyr Th	r Cys	Asn	Val 85	Asp	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
35	Arg Va	l Glu	Ser 100	Lys	Tyr	Gly	Pro	Pro 105	Cys	Pro	Pro	Cys	Pro 110	Ala	Pro
40	Glu Pho	e Leu 115	Gly	Gly	Pro	Ser	Val 120	Phe	Leu	Phe	Pro	Pro 125	Lys	Pro	Lys
	Asp Th: 13		Met	Ile	Ser	Arg 135	Thr	Pro	Glu	Val	Thr 140	Cys	Val	Val	Val
45	Asp Va 145	l Ser	Gln	Glu	Asp 150	Pro	Glu	Val	Gln	Phe 155	Asn	Trp	Tyr	Val	Asp 160
50	Gly Va	l Glu	Val	His 165	Asn	Ala	Lys	Thr	Lys 170	Pro	Arg	Glu	Glu	Gln 175	Phe
55	Asn Se	r Thr	Tyr 180	Arg	Val	Val	Ser	Val 185	Leu	Thr	Val	Leu	His 190	Gln	Asp
	Trp Le	ı Asn	Gly	Lys	Glu	Tyr	Lys	Cys	Lys	Val	Ser	Asn	Lys	Gly	Leu

	195 200	205
5	Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys A 210 215	Ala Lys Gly Gln Pro Arg 220
10	Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser G 225 230 2	Sln Lys Glu Met Thr Lys 235 240
10	Asn Gln Val Ser Leu Thr Cys Leu Val Lys G 245 250	Sly Phe Tyr Pro Ser Asp 255
15	Ile Ala Val Glu Trp Glu Ser Asn Gly Gln F 260 265	Pro Glu Asn Asn Tyr Lys 270
20	Thr Thr Pro Pro Val Leu Asp Ser Asp Gly S 275 280	Ser Phe Phe Leu Tyr Ser 285
	Arg Leu Thr Val Asp Lys Ser Arg Trp Gln G 290 295	Glu Gly Asn Val Phe Ser 300
25	Cys Ser Val Met His Glu Ala Leu His Asn H 305 310 3	Ais Tyr Thr Gln Lys Ser 315 320
30	Leu Ser Leu 325	
35	<210> 67 <211> 325 <212> PRT <213> Artificial	
	<220> <223> artificial sequence	
40	<400> 67 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro I 1 5 10	eu Ala Pro Cys Ser Arg 15
45	Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly C 20 25	Cys Leu Val Lys Asp Tyr 30
50	Phe Pro Glu Pro Val Thr Val Ser Trp Asn S 35 40	Ser Gly Ala Leu Thr Ser 45
	Gly Val His Thr Phe Pro Ala Val Leu Gln S 50 55	Ser Ser Gly Leu Tyr Ser 60
55	Leu Ser Ser Val Val Thr Val Pro Ser Ser S 65 70 7	Ser Leu Gly Thr Lys Thr 75 80

	Tyr	Thr	Cys	Asn	Val 85	Asp	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
5	Arg	Val	Glu	Ser 100	Lys	Tyr	Gly	Pro	Pro 105	Cys	Pro	Ser	Cys	Pro 110	Ala	Pro
10	Glu	Phe	Leu 115	Gly	Gly	Pro	Ser	Val 120	Phe	Leu	Phe	Pro	Pro 125	Lys	Pro	Lys
	Asp	Thr 130	Leu	Met	Ile	Ser	Arg 135	Thr	Pro	Glu	Val	Thr 140	Cys	Val	Val	Val
15	Asp 145	Val	Ser	Gln	Glu	Asp 150	Pro	Glu	Val	Gln	Phe 155	Asn	Trp	Tyr	Val	As p 160
20	Gly	Val	Glu	Val	His 165	Asn	Ala	Lys	Thr	Lys 170	Pro	Arg	Glu	Glu	Gln 175	Phe
25	Asn	Ser	Thr	Tyr 180	Arg	Val	Val	Ser	Val 185	Leu	Thr	Val	Leu	His 190	Gln	Asp
	Trp	Leu	A sn 195	Gly	Lys	Glu	Tyr	Lys 200	Cys	Lys	Val	Ser	Asn 205	Lys	Gly	Leu
30	Pro	Ser 210	Ser	Ile	Glu	Lys	Thr 215	Ile	Ser	Lys	Ala	Lys 220	Gly	Gln	Pro	Arg
35	Glu 225	Pro	Gln	Val	Tyr	Thr 230	Leu	Pro	Pro	Ser	Gln 235	Lys	Glu	Met	Thr	Lys 240
40	Asn	Gln	Val	Ser	Leu 245	Thr	Cys	Leu	Val	Lys 250	Gly	Phe	Tyr	Pro	Ser 255	Asp
	Ile	Ala	Val	Glu 260	Trp	Glu	Ser	Asn	Gly 265	Gln	Pro	Glu	Asn	Asn 270	Tyr	Lys
45	Thr	Thr	Pro 275	Pro	Val	Leu	Asp	Ser 280	Asp	Gly	Ser	Phe	Phe 285	Leu	Tyr	Ser
50	Arg	Leu 290	Thr	Val	Asp	Lys	Ser 295	Arg	Trp	Gln	Glu	Gly 300	Asn	Val	Phe	Ser
55	C ys 305	Ser	Val	Met	His	Glu 310	Ala	Leu	His	Asn	His 315	Tyr	Thr	Gln	Lys	Ser 320
	Leu	Ser	Leu	Ser	Leu											

5	<211> <212>	68 325 PRT Artifici	al					
10		artifici 68	al seque	ence				
15	Ala Ser 1	Thr Lys	Gly Pro 5) Ser Val	Phe Pro 10	Leu Ala	Pro Cys	Ser Arg 15
	Ser Thr	Ser Glu 20	Ser Thr	Ala Ala	Leu Gly 25	Cys Leu	Val Lys 30	Asp Tyr
20	Phe Pro	Glu Pro 35	Val Thr	val Ser 40	Trp Asn	Ser Gly	Ala Leu 45	Thr Ser
25	Gly Val 50	His Thr	Phe Pro	Ala Val 55	Leu Gln	Ser Ser 60	Gly Leu	Tyr Ser
	Leu Ser 65	Ser Val	Val Thr 70	r Val Pro	Ser Ser	Ser Leu 75	Gly Thr	Gln Thr 80
30	Tyr Thr	Cys Asn	Val Asp 85) His Lys	Pro Ser 90	Asn Thr	Lys Val	Asp Lys 95
35	Arg Val	Glu Ser 100	Lys Tyr	Gly Pro	Pro Cys 105	Pro Pro	Cys Pro 110	Ala Pro
40	Glu Phe	Leu Gly 115	Gly Pro	Ser Val 120		Phe Pro	Pro Lys 125	Pro Lys
	Asp Thr 130		Ile Ser	Arg Thr 135	Pro Glu	Val Thr 140	Cys Val	Val Val
45	Asp Val 145	Ser Gln	Glu Asp 150		Val Gln	Phe Asn 155	Trp Tyr	Val Asp 160
50	Gly Val	Glu Val	His Asr 165	n Ala Lys	Thr Lys 170	Pro Arg	Glu Glu	Gln Tyr 175
	Asn Ser	Thr Tyr 180	Arg Val	. Val Ser	Val Leu 185	Thr Val	Leu His 190	Gln Asp
55	Trp Leu	Asn Gly 195	Lys Glu	1 Tyr Lys 200		Val Ser	Asn Lys 205	Gly Leu

EP 3 318 633 A1 Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Lys Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu <210> 69 <211> 325 <212> PRT <213> Artificial <220> <223> artificial sequence <400> 69

Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr

	Tyr	Thr	Cys	Asn	Val 85	Asp	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
5	Arg	Val	Glu	Ser 100	Lys	Tyr	Gly	Pro	Pro 105	Cys	Pro	Pro	Cys	Pro 110	Ala	Pro
10	Glu	Phe	Leu 115	Gly	Gly	Pro	Ser	Val 120	Phe	Leu	Phe	Pro	Pro 125	Lys	Pro	Lys
	Asp	Thr 130	Leu	Met	Ile	Ser	Arg 135	Thr	Pro	Glu	Val	Thr 140	Cys	Val	Val	Val
15	Asp 145	Val	Ser	Gln	Glu	Asp 150	Pro	Glu	Val	Gln	Phe 155	Asn	Trp	Tyr	Val	Asp 160
20	Gly	Val	Glu	Val	His 165	Asn	Ala	Lys	Thr	Lys 170	Pro	Arg	Glu	Glu	Gln 175	Tyr
25	Asn	Ser	Thr	Tyr 180	Arg	Val	Val	Ser	Val 185	Leu	Thr	Val	Leu	His 190	Gln	Asp
20	Trp	Leu	As n 195	Gly	Lys	Glu	Tyr	Lys 200	Cys	Lys	Val	Ser	Asn 205	Lys	Gly	Leu
30	Pro	Ser 210	Ser	Ile	Glu	Lys	Thr 215	Ile	Ser	Lys	Ala	Lys 220	Gly	Gln	Pro	Arg
35	Glu 225	Pro	Gln	Val	Tyr	Thr 230	Leu	Pro	Pro	Ser	Gln 235	Lys	Glu	Met	Thr	Lys 240
	Asn	Gln	Val	Ser	Leu 245	Thr	Cys	Leu	Val	Lys 250	Gly	Phe	Tyr	Pro	Ser 255	Asp
40	Ile	Ala	Val	Glu 260	Trp	Glu	Ser	Asn	Gly 265	Gln	Pro	Glu	Asn	Asn 270	Tyr	Lys
45	Thr	Thr	Pro 275	Pro	Val	Leu	Asp	Ser 280	Asp	Gly	Ser	Phe	Phe 285	Leu	Tyr	Ser
50	Lys	Leu 290	Thr	Val	Asp	Lys	Ser 295	Arg	Trp	Gln	Glu	Gly 300	Asn	Val	Phe	Ser
	Cys 305	Ser	Val	Met	His	Glu 310	Ala	Leu	His	Asn	His 315	Tyr	Thr	Gln	Lys	Ser 320
55	Leu	Ser	Leu	Ser	Pro 325											

5	<210> 70 <211> 325 <212> PRT <213> Artificial
	<220> <223> artificial sequence <400> 70
10	Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 1 5 10 15
15	Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30
20	Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45
	Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60
25	Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80
30	Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95
35	Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro 100 105 110
	Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys 115 120 125
40	Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 130 135 140
45	Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp 145 150 155 160
50	Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 165 170 175
	Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 180 185 190
55	Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu 195 200 205

EP 3 318 633 A1 Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Lys Glu Met Thr Lys Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu His Asn Arg Tyr Thr Gln Lys Ser Leu Ser Leu Ser Pro <210> 71 <211> 325 <212> PRT <213> Artificial <220> <223> artificial sequence <400> 71 Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser

⁵⁰ Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50
 ⁵⁵ Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Lys Thr 65
 70

	Tyr	Thr	Cys	Asn	Val 85	Asp	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
5	Arg	Val	Glu	Ser 100	Lys	Tyr	Gly	Pro	Pro 105	Cys	Pro	Pro	Cys	Pro 110	Ala	Pro
10	Glu	Phe	Leu 115	Gly	Gly	Pro	Ser	Val 120	Phe	Leu	Phe	Pro	Pro 125	Lys	Pro	Lys
	Asp	Thr 130	Leu	Met	Ile	Ser	Arg 135	Thr	Pro	Glu	Val	Thr 140	Cys	Val	Val	Val
15	Asp 145	Val	Ser	Gln	Glu	Asp 150	Pro	Glu	Val	Gln	Phe 155	Asn	Trp	Tyr	Val	As p 160
20	Gly	Val	Glu	Val	His 165	Asn	Ala	Lys	Thr	Lys 170	Pro	Arg	Glu	Glu	Gln 175	Phe
25	Asn	Ser	Thr	Tyr 180	Arg	Val	Val	Ser	Val 185	Leu	Thr	Val	Leu	His 190	Gln	Asp
	Trp	Leu	As n 195	Gly	Lys	Glu	Tyr	Lys 200	Cys	Lys	Val	Ser	As n 205	Lys	Gly	Leu
30	Pro	Ser 210	Ser	Ile	Glu	Lys	Thr 215	Ile	Ser	Lys	Ala	Lys 220	Gly	Gln	Pro	Arg
35	Glu 225	Pro	Gln	Val	Tyr	Thr 230	Leu	Pro	Pro	Ser	Gln 235	Cys	Glu	Met	Thr	Lys 240
	Asn	Gln	Val	Ser	Leu 245	Ser	Cys	Ala	Val	Lys 250	Gly	Phe	Tyr	Pro	Ser 255	Asp
40	Ile	Ala	Val	Glu 260	Trp	Glu	Ser	Asn	Gly 265	Gln	Pro	Glu	Asn	As n 270	Tyr	Lys
45	Thr	Thr	Pro 275	Pro	Val	Leu	Asp	Ser 280	Asp	Gly	Ser	Phe	Phe 285	Leu	Val	Ser
50	Arg	Leu 290	Thr	Val	Asp	Lys	Ser 295	Arg	Trp	Gln	Glu	Gly 300	Asn	Val	Phe	Ser
	Суз 305	Ser	Val	Met	His	Glu 310	Ala	Leu	His	Asn	His 315	Tyr	Thr	Gln	Lys	Ser 320
55	Leu	Ser	Leu	Ser	Leu 325											

_	<210> 72 <211> 325 <212> PRT <213> Artificial
5	<220> <223> artificial sequence
	<400> 72
10	Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 1 5 10 15
15	Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30
20	Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45
	Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60
25	Leu Ser Ser Val Val Thr Val Pro Ser Ser Leu Gly Thr Gln Thr 65 70 75 80
30	Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys 85 90 95
35	Arg Val Glu Ser Lys Tyr Gly Pro Pro Cys Pro Pro Cys Pro Ala Pro 100 105 110
	Glu Phe Leu Gly Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys 115 120 125
40	Asp Thr Leu Met Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val 130 135 140
45	Asp Val Ser Gln Glu Asp Pro Glu Val Gln Phe Asn Trp Tyr Val Asp 145 150 155 160
50	Gly Val Glu Val His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr 165 170 175
	Asn Ser Thr Tyr Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp 180 185 190
55	Trp Leu Asn Gly Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Gly Leu 195 200 205

	Pro Ser Ser Ile Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg 210 215 220	
5	Glu Pro Gln Val Tyr Thr Leu Pro Pro Ser Gln Glu Glu Met Thr Lys 225 230 235 240	
10	Asn Gln Val Ser Leu Thr Cys Leu Val Lys Gly Phe Tyr Pro Ser Asp 245 250 255	
	Ile Ala Val Glu Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys 260 265 270	
15	Thr Thr Pro Pro Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser 275 280 285	
20	Lys Leu Thr Val Asp Lys Ser Arg Trp Gln Glu Gly Asn Val Phe Ser 290 295 300	
25	Cys Ser Val Met His Glu Ala Leu His Asn Arg Tyr Thr Gln Glu Ser 305 310 315 320	
	Leu Ser Leu Ser Pro 325	
30	<210> 73 <211> 325 <212> PRT <213> Artificial	
35	<220> <223> artificial sequence <400> 73	
40	Ala Ser Thr Lys Gly Pro Ser Val Phe Pro Leu Ala Pro Cys Ser Arg 1 5 10 15	
	Ser Thr Ser Glu Ser Thr Ala Ala Leu Gly Cys Leu Val Lys Asp Tyr 20 25 30	
45	Phe Pro Glu Pro Val Thr Val Ser Trp Asn Ser Gly Ala Leu Thr Ser 35 40 45	
50	Gly Val His Thr Phe Pro Ala Val Leu Gln Ser Ser Gly Leu Tyr Ser 50 55 60	
55	Leu Ser Ser Val Val Thr Val Pro Ser Ser Ser Leu Gly Thr Gln Thr 65 70 75 80	
	Tyr Thr Cys Asn Val Asp His Lys Pro Ser Asn Thr Lys Val Asp Lys	

		85	90	95
5	Arg Val Glu Ser 100	r Lys Tyr Gly Pro Pr 10		Pro Ala Pro 110
10	Glu Phe Leu Gly 115	Gly Pro Ser Val Pho 120	e Leu Phe Pro Pro 125	Lys Pro Lys
	Asp Thr Leu Met 130	Ile Ser Arg Thr Pr 135	o Glu Val Thr Cys 140	Val Val Val
15	Asp Val Ser Glr 145	n Glu Asp Pro Glu Va 150	l Gln Phe Asn Trp 155	Tyr Val Asp 160
20	Gly Val Glu Val	. His Asn Ala Lys Th 165	r Lys Pro Arg Glu 170	Glu Gln Tyr 175
~	Asn Ser Thr Tyr 180	Arg Val Val Ser Va 18		His Gln Asp 190
25	Trp Leu Asn Gly 195	v Lys Glu Tyr Lys Cy 200	s Lys Val Ser Asn 205	Lys Gly Leu
30	Pro Ser Ser Ile 210	e Glu Lys Thr Ile Se 215	r Lys Ala Lys Gly 220	Gln Pro Arg
35	Glu Pro Gln Val 225	. Tyr Thr Leu Pro Pr 230	o Ser Gln Glu Glu 235	Met Thr Lys 240
	Asn Gln Val Ser	: Leu Thr Cys Leu Va 245		
40	Ile Ala Val Glu 260	n Trp Glu Ser Asn Gl 26	_	Asn Tyr Lys 270
45	Thr Thr Pro Pro 275	Val Leu Asp Ser As 280	p Gly Ser Phe Phe 285	Leu Tyr Ser
50	Lys Leu Thr Val 290	. Asp Lys Ser Arg Tr 295	p Gln Glu Gly Asn 300	Val Phe Ser
	Cys Ser Val Met 305	His Glu Ala Leu Hi 310	s Asn His Tyr Thr 315	Gln Glu Ser 320
55	Leu Ser Leu Ser	2 Pro 325		

5	<211> 1 <212> F	74 .07 PRT Artifici	al											
5	<220> <223> a	rtifici	al se	equer	ice									
	<400> 7	4												
10	Arg Thr 1	Val Ala	Ala 5	Pro	Ser	Val	Phe	Ile 10	Phe	Pro	Pro	Ser	Asp 15	Glu
15	Gln Leu	Lys Ser 20	Gly	Thr	Ala	Ser	Val 25	Val	Cys	Leu	Leu	Asn 30	Asn	Phe
	Tyr Pro	Arg Glu 35	Ala	Lys	Val	Gln 40	Trp	Lys	Val	Asp	Asn 45	Ala	Leu	Gln
20	Ser Gly 50	Asn Ser	Gln	Glu	Ser 55	Val	Thr	Glu	Gln	Asp 60	Ser	Lys	Asp	Ser
25	Thr Tyr 65	Ser Leu	Ser	Ser 70	Thr	Leu	Thr	Leu	Ser 75	Lys	Ala	Asp	Tyr	Glu 80
30	Lys His	Lys Val	Tyr 85	Ala	Cys	Glu	Val	Thr 90	His	Gln	Gly	Leu	Ser 95	Ser
	Pro Val	Thr Lys 100	Ser	Phe	Asn	Arg	Gly 105	Glu	Cys					
35	<211> 5 <212> P	75 SPRT Artifici	al											
40	<220> <223> a		al se	equer	ice									
	<400> 7	/5												
45	Tyr Tyr 1	Asp Met	Ala 5											
50	<210> 7 <211> 1 <212> F <213> A	.7 ?RT	al											
	<220> <223> a	artifici	al se	equer	ice									
55	<400> 7	6												
	Ser Ile	Ser Pro	Ser	Gly	Gly	Ser	Thr	Tyr	Tyr	Arg	His	Ser	Val	Lys

:	10	

5

1

Gly 5 <210> 77 <211> 14 <212> PRT 10 <213> Artificial <220> <223> artificial sequence <400> 77 15 Arg Ala Gly His Asn Leu Gly Ala Gly Trp Tyr Phe Asp Phe 5 10 1 20 <210> 78 <211> 5 <212> PRT <213> Artificial <220> 25 <223> artificial sequence <400> 78 Tyr Tyr Asp Met Ala 30 1 5 <210> 79 <211> 17 <212> PRT <213> Artificial 35 <220> <223> artificial sequence 40 <400> 79 Ser Ile Ser Pro Ser Gly Gly Ser Thr Tyr Tyr Arg Arg Ser Val Lys 1 5 10 15 45 Gly <210> 80 50 <211> 14 <212> PRT <213> Artificial <220> <223> artificial sequence 55 <400> 80

EP 3 318 633 A1

	Arg Ala Gly His Asn Leu Gly Ala Gly Trp Tyr Phe Asp Phe 1 5 10
5	<210> 81 <211> 5 <212> PRT <213> Artificial
10	<220> <223> artificial sequence <400> 81
15	Tyr Tyr Asp Met Ala 1 5
20	<210> 82 <211> 17 <212> PRT <213> Artificial
	<220> <223> artificial sequence
25	<400> 82 Ser Ile Ser Pro Ser Gly Gly Ser Thr Tyr Tyr Arg Arg Ser Val Lys 1 5 10 15
30	1 5 10 15 Gly
35	<210> 83 <211> 14 <212> PRT <213> Artificial
40	<220> <223> artificial sequence <400> 83
45	Arg Ala Gly His Asn Phe Gly Ala Gly Trp Tyr Phe Asp Phe 1 5 10
50	<210> 84 <211> 5 <212> PRT <213> Artificial
	<220> <223> artificial sequence <400> 84
55	Tyr Tyr Asp Met Ala 1 5

_	<210> 85 <211> 17 <212> PRT <213> Artificial
5	<220> <223> artificial sequence
	<400> 85
10	Ser Ile Ser Pro Ser Gly Gly Ser Thr Tyr Tyr Arg Arg Ser Val Lys 1 5 10 15
15	Gly
20	<210> 86 <211> 14 <212> PRT <213> Artificial
	<220> <223> artificial sequence
25	<400> 86
	Arg Ala Gly His Asn Tyr Gly Ala Gly Trp Tyr Phe Asp Tyr 1 5 10
30	<210> 87 <211> 5 <212> PRT <213> Artificial
35	<220> <223> artificial sequence
	<400> 87
40	Tyr Tyr Asp Ile Asn 1 5
45	<210> 88 <211> 17 <212> PRT <213> Artificial
	<220> <223> artificial sequence
50	<400> 88
	Ser Ile Ser Pro Ser Gly Gly Ser Thr Tyr Tyr Arg Arg Ser Val Lys151015
55	Gly

-	<210> 89 <211> 14 <212> PRT <213> Artificial
5	<220> <223> artificial sequence
	<400> 89
10	Arg Ala Gly His Asn Tyr Gly Ala Gly Trp Tyr Phe Asp Tyr 1 5 10
15	<210> 90 <211> 5 <212> PRT <213> Artificial
20	<220> <223> artificial sequence
	<400> 90
25	Tyr Tyr Asp Ile Asn 1 5
30	<210> 91 <211> 17 <212> PRT <213> Artificial
	<220> <223> artificial sequence
35	<400> 91
	Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val Lys 1 5 10 15
40	Gly
45	<210> 92 <211> 14 <212> PRT <213> Artificial
50	<220> <223> artificial sequence
	<400> 92
	Arg Ser Gly His Asn Tyr Gly Gly Gly Trp Tyr Phe Asp Tyr 1 5 10
55	<210> 93

	<211> 5 <212> PRT <213> Artificial
5	<220> <223> artificial sequence
	<400> 93
10	Tyr Tyr Asp Ile Gln
10	1 5
	<210> 94
	<211> 17 <212> PRT
15	<213> Artificial
	<220> <223> artificial sequence
20	<400> 94
	Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val Lys151015
25	Gly
	<210> 95
30	<211> 14 <212> PRT
	<213> Artificial
	<220>
35	<223> artificial sequence
	<400> 95
	Arg Ser Gly His Asn Tyr Gly Gly Gly Trp Tyr Phe Asp Tyr 1 5 10
40	
	<210> 96
	<211> 5 <212> PRT
	<213> Artificial
45	<220>
	<223> artificial sequence
	<400> 96
50	Tyr Tyr Asp Ile Ser 1 5
	<210> 97
55	<211> 17 <212> PRT
	<213> Artificial

	<220> <223> artificial sequence
	<400> 97
5	Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val Lys 1 5 10 15
10	Gly
15	<210> 98 <211> 14 <212> PRT <213> Artificial
	<220> <223> artificial sequence
20	<400> 98
	Arg Ser Gly His Asn Phe Gly Gly Gly Trp Tyr Phe Asp Tyr 1 5 10
25	<210> 99 <211> 5 <212> PRT <213> Artificial
30	<220> <223> artificial sequence
	<400> 99
35	Tyr Tyr Asp Ile Gln 1 5
40	<210> 100 <211> 17 <212> PRT <213> Artificial
45	<220> <223> artificial sequence
	<400> 100
	Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val Lys151015
50	Gly
55	<210> 101 <211> 14 <212> PRT

	<213>	Artificial										
	<220> <223>	artificial	sequence									
5	<400>	101										
	Arg Sen 1	r Gly Lys Se 5	er Tyr Gly	y Gly	Gly	Trp 10	Tyr	Phe	Asp	Tyr		
10												
	<210> <211> <212> <213>	5										
15	<220> <223>	artificial	sequence									
	<400>	102										
20	Tyr Ty	r Asp Ile Gl	Ln									
	1	- 5										
	<210> <211>											
25	<212>	PRT										
	<213>	Artificial										
	<220>											
30	<223>	artificial	sequence									
50	<400>	103										
	Ser Ile 1	e Ser Pro Se 5	er Gly Glı	n Ser	Thr	Tyr 10	Tyr	Arg	Arg	Glu	Val 15	Lys
35												
	Gly											
40	<210>	104										
40	<211>	14										
	<212> <213>	PRT Artificial										
	<220>											
45	<223>	artificial	sequence									
	<400>	104										
	Arg Se	r Gly Arg Gl	Lu Tyr Gly	y Gly	Gly	Trp	Tyr	Phe	Asp	Tyr		
50	1	5				10						
	-010-	105										
	<210> <211>	105 5										
	<212>	PRT										
55	<213>	Artificial										
	<220>											

	<223> artificial sequence
	<400> 105
5	Tyr Tyr Asp Ile Gln 1 5
10	<210> 106 <211> 17 <212> PRT <213> Artificial
	<220> <223> artificial sequence
15	<400> 106
	Ser Ile Ser Pro Ser Gly Gln Ser Thr Tyr Tyr Arg Arg Glu Val Lys 1 5 10 15
20	Gly
25	<210> 107 <211> 14 <212> PRT <213> Artificial
30	<220> <223> artificial sequence
	<400> 107
35	Arg Thr Gly Arg Glu Tyr Gly Gly Gly Trp Tyr Phe Asp Tyr 1 5 10
40	<210> 108 <211> 5 <212> PRT <213> Artificial
	<220> <223> artificial sequence
45	<400> 108
	Asp Asn Asn Met Asp 1 5
50	<210> 109 <211> 17 <212> PRT <213> Artificial
55	<220> <223> artificial sequence
	<400> 109

	Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe G 1 5 10 15	.n
5	Asp	
10	<210> 110 <211> 10 <212> PRT <213> Artificial	
15	<220> <223> artificial sequence <400> 110	
20	Arg Lys Ser Tyr Gly Tyr His Leu Asp Glu 1 5 10	
25	<210> 111 <211> 5 <212> PRT <213> Artificial	
30	<220> <223> artificial sequence <400> 111	
	Asp Asn Asn Met Asp 1 5	
35	<210> 112 <211> 17 <212> PRT <213> Artificial	
40	<220> <223> artificial sequence <400> 112	
45	Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe G 1 5 10 15	.n
	Asp	
50	<210> 113 <211> 10 <212> PRT <213> Artificial	
55	<220> <223> artificial sequence	

	<400>	113													
	Arg Lys	s Ser	Tyr	Gly	Tyr	Tyr	Leu	Asp	Glu						
	1		_	5	_	_		_	10						
5															
	<210>														
	<211>														
	<212>			. 1											
10	<213>	Artli	1018	L											
	<220>														
	<223>	artif	licia	l se	equer	nce									
	<400>	114													
15	1 1		Mat	3											
	Asp Asr 1	I ASI	Met	Asp 5											
	-			5											
00	<210> <211>														
20	<211>														
	<213>		icia	1											
	<220>			.1											
25	<223>	artii	1018	LI Se	equer	ice									
	<400>	115													
	Asp Ile	- Asn	Thr	Arg	Ser	Glv	Glv	Ser	Tle	Tur	Asn	Glu	G] 11	Dhe	Gln
	1			5	501	013	019	001	10	-1-		014	014	15	0111
30															
	-														
	Asp														
05	-01.0	110													
35	<210> <211>														
		PRT													
	<213>	Artif	licia	1											
	<220														
40	<220> <223>	artif	icia	lea	-										
	122.37	artri			squer	ice									
	<400>	116													
	Arg Lys	s Ser	Ara	Glv	Tur	His	T.011	Asn	G111						
45	1		y	5	-1-		204		10						
	<210>	117													
	<211>														
	<212>														
50	<213>		licia	1											
	-000-														
	<220> <223>	artif	licia	l s4	anier	ice									
55	<400>	117													
	1000	тт /													
	Asp Asr		Met	Aer											

5	<210> 118 <211> 17 <212> PRT <213> Artificial
10	<220> <223> artificial sequence
	<400> 118
15	Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe Gln 1 5 10 15
	Asp
20	
20	<210> 119
	<211> 10 <212> PRT
	<213> Artificial
25	<220>
	<223> artificial sequence
	<400> 119
30	Arg Lys Ser Tyr Gly Tyr Tyr Leu Asp Glu 1 5 10
	1 5 10
	<210> 120
	<210> 120<211> 5
35	<212> PRT
	<213> Artificial
	<220>
40	<223> artificial sequence
40	<400> 120
	Asp Asn Asn Met His
	1 5
45	
	<210> 121
	<211> 17 <212> PRT
	<213> Artificial
50	<220>
	<220> <223> artificial sequence
55	<400> 121
55	Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe Gln151015

	Asp
5	<210> 122 <211> 10 <212> PRT <213> Artificial
10	<220> <223> artificial sequence
	<400> 122
15	Arg Lys Ser Tyr Gly Tyr His Leu Asp Glu 1 5 10
20	<210> 123 <211> 5 <212> PRT <213> Artificial
	<220> <223> artificial sequence
25	<400> 123
	Asp Asn Asn Met Asp 1 5
30	<210> 124 <211> 17 <212> PRT <213> Artificial
35	<220> <223> artificial sequence
	<400> 124
40	Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe Gln 1 5 10 15
	Asp
45	
50	<210> 125 <211> 10 <212> PRT <213> Artificial
	<220> <223> artificial sequence
55	<400> 125
	Arg Lys Ser Tyr Gly Asn His Leu Asp Glu 1 5 10

	<210> 126 <211> 5 <212> PRT <213> Artificial
5	<220> <223> artificial sequence
	<400> 126
10	Asp Asn Asn Met Asp 1 5
15	<210> 127 <211> 17 <212> PRT <213> Artificial
20	<220> <223> artificial sequence
	<400> 127
25	Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe Gln 1 5 10 15
	Asp
30	<210> 128 <211> 10 <212> PRT <213> Artificial
35	<220> <223> artificial sequence
	<400> 128
40	Arg Lys Ser Tyr Gly Tyr Tyr Leu Asp Glu 1 5 10
45	<210> 129 <211> 5 <212> PRT <213> Artificial
	<220> <223> artificial sequence
50	<400> 129
	Asp Asn Asn Met Asp 1 5
55	<210> 130 <211> 17

	<212> PRT <213> Artificial
5	<220> <223> artificial sequence
	<400> 130
10	Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe Gln 1 5 10 15
	Asp
15	<210> 131 <211> 10 <212> PRT <213> Artificial
20	<220> <223> artificial sequence
	<400> 131
25	Arg Lys Ser Tyr Gly Tyr His Leu Asp Glu 1 5 10
30	<210> 132 <211> 5 <212> PRT <213> Artificial
	<220> <223> artificial sequence
35	<400> 132
	Asp Asn Asn Met Asp 1 5
40	<210> 133 <211> 17 <212> PRT <213> Artificial
45	<220> <223> artificial sequence
	<400> 133
50	Asp Ile Asn Thr Lys Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe Gln 1 5 10 15
	Asp
55	

<210> 134

	<211> 10 <212> PRT <213> Artificial
5	<220> <223> artificial sequence
	<400> 134
10	Arg Gln Ser Tyr Gly Tyr His Leu Asp Glu 1 5 10
15	<210> 135 <211> 5 <212> PRT <213> Artificial
	<220> <223> artificial sequence
20	<400> 135
	Asp Asn Asn Met Asp 1 5
25	<210> 136 <211> 17 <212> PRT <213> Artificial
30	<220> <223> artificial sequence
	<400> 136
35	Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe Gln 1 5 10 15
	Asp
40	
	<210> 137 <211> 10 <212> PRT <213> Artificial
45	<220> <223> artificial sequence
	<400> 137
50	Arg Lys Ser Tyr Gly Tyr His Leu Asp Glu 1 5 10
55	<210> 138 <211> 11 <212> PRT <213> Artificial

	<220> <223>	artificial sequence
	<400>	138
5		a Ser Gln Asn Ile Tyr Lys Asn Leu Ala 5 10
10	<210> <211> <212> <213>	7
15		artificial sequence
	<400>	139
20	Ser Al. 1	a Ser Tyr Arg Tyr Ser 5
25	<210> <211> <212> <213>	8
		artificial sequence
30	<400> Gln Gl: 1	140 n Tyr Tyr Ser Gly Leu Thr 5
35	<210> <211> <212> <213>	11
40	<220> <223>	artificial sequence
	<400>	141
45	Lys Al. 1	a Ser Gln Asn Ile Tyr Lys Asn Leu Ala 5 10
50	<210> <211> <212> <213>	7
	<220> <223>	artificial sequence
55	<400>	142
	Ser Ala	a Ser Tyr Arg Tyr Ser

	1 5
5	<210> 143 <211> 9 <212> PRT <213> Artificial
10	<220> <223> artificial sequence <400> 143
	Gln Gln Tyr Tyr Ser Pro Pro Leu Thr 1 5
15	<210> 144 <211> 11 <212> PRT
20	<213> Artificial <220> <223> artificial sequence
25	<400> 144 Lys Ala Ser Lys Asn Ile Glu Arg Asn Leu Ala
20	1 5 10 <210> 145 <211> 7
30	<212> PRT <213> Artificial <220>
35	<223> artificial sequence <400> 145
40	Arg Ala Ser Arg Lys Glu Ser 1 5
	<210> 146 <211> 9 <212> PRT <213> Artificial
45	<220> <223> artificial sequence
50	<400> 146 Gln Gln Tyr Ser Ser Pro Pro Leu Thr 1 5
55	<210> 147 <211> 11 <212> PRT <213> Artificial

	<220> <223>	artificial sequence
	<400>	-
5		
	Lys Al 1	a Ser Arg Asn Ile Glu Arg Asn Leu Ala 5 10
10	<210> <211> <212> <213>	7
15	<220> <223>	artificial sequence
	<400>	148
		a Asp Arg Lys Glu Ser
20	1	5
	<210> <211> <212>	9
25		Artificial
	<220> <223>	artificial sequence
30	<400>	149
	Gln Gl 1	n Tyr Ser Ser Pro Pro Leu Thr 5
35	<210>	
	<211> <212>	
	<213>	Artificial
40	<220>	
40		artificial sequence
	<400>	150
	Lys Al 1	a Ser Arg Asn Ile Glu Arg Asn Leu Ala 5 10
45	1	5 10
	<210>	151
	<211> <212>	
50		Artificial
	<220>	
		artificial sequence
55	<400>	151
	Gln Al	a Ser Arg Lys Glu Ser

	1	5			
5	<210> 15 <211> 9 <212> PF <213> Ar	RT			
10		rtificial	sequence		
	<400> 15			T	
45	1	tyr ser se 5	r Pro Pro	Leu Inr	
15	<210> 15 <211> 11 <212> PF	L RT			
20	<213> An	rtificial			
		rtificial	sequence		
25	<400> 15				
20	Lys Ala S 1	Ser Arg As 5	n Ile Glu	Arg Gln	Leu Ala 10
30	<210> 15 <211> 7 <212> PF	RT			
	<213> A1	rtificial			
35		rtificial	sequence		
	<400> 15				
	Gln Ala S 1	Ser Arg Ly 5	's Glu Ser		
40	<210> 15 <211> 9 <212> PF				
45	<213> Ar	rtificial			
	<220> <223> ai	rtificial	sequence		
	<400> 15	55			
50	Gln Gln 1 1	Fyr Ser Se 5	er Pro Pro	Leu Thr	
55	<210> 15 <211> 11 <212> PF <213> Ar	L			

	<220> <223> artificial sequence
	<400> 156
5	Lys Ala Ser Arg Asn Ile Glu Arg Gln Leu Ala 1 5 10
10	<210> 157 <211> 7 <212> PRT <213> Artificial
15	<220> <223> artificial sequence
	<400> 157
20	Gln Ala Ser Arg Lys Glu Ser 1 5
25	<210> 158 <211> 9 <212> PRT <213> Artificial
	<220> <223> artificial sequence
30	<400> 158 Gln Gln Tyr Ser Asp Pro Pro Leu Thr 1 5
35	<210> 159 <211> 11 <212> PRT <213> Artificial
40	<220> <223> artificial sequence
	<400> 159
45	Lys Ala Ser Arg Asn Ile Glu Arg Gln Leu Ala 1 5 10
50	<210> 160 <211> 7 <212> PRT <213> Artificial
	<220> <223> artificial sequence
55	<400> 160
	Arg Ala Ser Arg Lys Glu Ser

	1 5
5	<210> 161 <211> 9 <212> PRT <213> Artificial
10	<220> <223> artificial sequence <400> 161
	Gln Gln Tyr Ser Asp Pro Pro Leu Thr 1 5
15	<210> 162 <211> 11
20	<212> PRT <213> Artificial
	<220> <223> artificial sequence <400> 162
25	Lys Ala Ser Arg Asn Ile Glu Arg Gln Leu Ala 1 5 10
30	<210> 163 <211> 7 <212> PRT <213> Artificial
35	<220> <223> artificial sequence <400> 163
	Arg Ala Asp Arg Lys Glu Ser 1 5
40	<210> 164 <211> 9 <212> PRT
45	<213> Artificial <220> <223> artificial sequence
50	<400> 164 Gln Gln Tyr Ser Asp Pro Pro Leu Thr
	1 5
55	<210> 165 <211> 118 <212> PRT <213> Homo sapiens

1et
?he
'y r 30
Cys
[hr
Ala
Asn
let
?he
'yr 30
Cys

Glu Val Gln Leu Val Gln Ser Gly Ala Glu Val Gln Lys Pro Gly Ala 1 5 10 15

<400> 165

		85	90	95
5	Ala Arg Arg Arg 100	Ser Tyr Gly Tyr Tyr 105	Phe Asp Tyr Trp Gly 110	
	Thr Leu Val Thr 115	Val Ser Ser		
10	<210> 167 <211> 106 <212> PRT <213> Homo sap:	iens		
15	<400> 167			
	Asp Ile Val Met 1	Thr Gln Ser Pro Ser 5	Ser Leu Ser Ala Ser 10	Val Gly 15
20	Asp Arg Val Thr 20	Ile Thr Cys Lys Ala 25	Ser Gln Asn Val Gly 30	Thr Ala
25	Val Ala Trp Tyr 35	Gln Gln Lys Pro Gly 40	Lys Ala Pro Lys Leu 45	Leu Ile
30	Tyr Ser Ala Ser 50	Tyr Arg Ala Ser Gly 55	Val Pro Ser Arg Phe 60	Ser Gly
	Ser Arg Tyr Gly 65	Thr Asp Phe Thr Leu 70	Thr Ile Ser Ser Leu 75	Gln Pro 80
35	Glu Asp Leu Ala	Thr Tyr Tyr Cys Gln 85	Gln Tyr Ser Asn Tyr 90	lle Thr 95
40	Phe Gly Gln Gly 100	Thr Lys Val Glu Ile 105	Lys	
45	<210> 168 <211> 326 <212> PRT <213> Homo sap:	iens		
	<400> 168			
50	Ala Ser Thr Lys 1	Gly Pro Ser Val Phe 5	Pro Leu Ala Pro Cys 10	Ser Arg 15
	Ser Thr Ser Glu 20	Ser Thr Ala Ala Leu 25	Gly Cys Leu Val Lys 30	Asp Tyr
55	Phe Pro Glu Pro 35	Val Thr Val Ser Trp 40	Asn Ser Gly Ala Leu 45	Thr Ser

	Gly	Val 50	His	Thr	Phe	Pro	Ala 55	Val	Leu	Gln	Ser	Ser 60	Gly	Leu	Tyr	Ser
5	Leu 65	Ser	Ser	Val	Val	Thr 70	Val	Pro	Ser	Ser	Ser 75	Leu	Gly	Thr	Lys	Thr 80
10	Tyr	Thr	Cys	Asn	Val 85	Asp	His	Lys	Pro	Ser 90	Asn	Thr	Lys	Val	Asp 95	Lys
	Arg	Val	Glu	Ser 100	Lys	Tyr	Gly	Pro	Pro 105	Cys	Pro	Pro	Cys	Pro 110	Ala	Pro
15	Glu	Phe	Leu 115	Gly	Gly	Pro	Ser	Val 120	Phe	Leu	Phe	Pro	Pro 125	Lys	Pro	Lys
20	Asp	Thr 130	Leu	Met	Ile	Ser	Arg 135	Thr	Pro	Glu	Val	Thr 140	Cys	Val	Val	Val
25	Asp 145	Val	Ser	Gln	Glu	Asp 150	Pro	Glu	Val	Gln	Phe 155	Asn	Trp	Tyr	Val	Asp 160
	Gly	Val	Glu	Val	His 165	Asn	Ala	Lys	Thr	Lys 170	Pro	Arg	Glu	Glu	Gln 175	Phe
30	Asn	Ser	Thr	Tyr 180	Arg	Val	Val	Ser	Val 185	Leu	Thr	Val	Leu	His 190	Gln	Asp
35	Trp	Leu	As n 195	Gly	Lys	Glu	Tyr	Lys 200	Cys	Lys	Val	Ser	As n 205	Lys	Gly	Leu
40	Pro	Ser 210	Ser	Ile	Glu	Lys	Thr 215	Ile	Ser	Lys	Ala	Lys 220	Gly	Gln	Pro	Arg
	Glu 225	Pro	Gln	Val	Tyr	Thr 230	Leu	Pro	Pro	Ser	Gln 235	Glu	Glu	Met	Thr	Lys 240
45	Asn	Gln	Val	Ser	Leu 245	Thr	Cys	Leu	Val	Lys 250	Gly	Phe	Tyr	Pro	Ser 255	Asp
50	Ile	Ala	Val	Glu 260	Trp	Glu	Ser	Asn	Gly 265	Gln	Pro	Glu	Asn	Asn 270	Tyr	Lys
55	Thr	Thr	Pro 275	Pro	Val	Leu	Asp	Ser 280	Asp	Gly	Ser	Phe	Phe 285	Leu	Tyr	Ser
55	Arg	Leu	Thr	Val	Asp	Lys	Ser	Arg	Trp	Gln	Glu	Gly	Asn	Val	Phe	Ser

	290	295	300
5	Cys Ser Val Met His Glu 305 310		Tyr Thr Gln Lys Ser 320
10	Leu Ser Leu Ser Leu Gly 325		
	<210> 169 <211> 107 <212> PRT <213> Homo sapiens		
15	<400> 169		
20	Arg Thr Val Ala Ala Pro 1 5	Ser Val Phe Ile Phe 10	Pro Pro Ser Asp Glu 15
20	Gln Leu Lys Ser Gly Thr 20	Ala Ser Val Val Cys 25	Leu Leu Asn Asn Phe 30
25	Tyr Pro Arg Glu Ala Lys 35	Val Gln Trp Lys Val 40	Asp Asn Ala Leu Gln 45
30	Ser Gly Asn Ser Gln Glu 50	Ser Val Thr Glu Gln 55	Asp Ser Lys Asp Ser 60
	Thr Tyr Ser Leu Ser Ser 65 70	Thr Leu Thr Leu Ser 75	Lys Ala Asp Tyr Glu 80
35	Lys His Lys Val Tyr Ala 85	Cys Glu Val Thr His 90	Gln Gly Leu Ser Ser 95
40	Pro Val Thr Lys Ser Phe 100	Asn Arg Gly Glu Cys 105	
45	<210> 170 <211> 444 <212> PRT <213> Artificial		
	<220> <223> artificial seque	nce	
50	<400> 170		
	Gln Val Gln Leu Val Gln 1 5	Ser Gly Ser Glu Leu 10	Lys Lys Pro Gly Ala 15
55	Ser Val Lys Val Ser Cys 20	Lys Ala Ser Gly Tyr 25	Thr Phe Thr Asp Asn 30

	Asn	Met	As p 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
5	Gly	Asp 50	Ile	Asn	Thr	Arg	Ser 55	Gly	Gly	Ser	Ile	Tyr 60	Asn	Glu	Glu	Phe
10	Gln 65	Asp	Arg	Val	Thr	Met 70	Thr	Ile	Asp	Lys	Ser 75	Thr	Gly	Thr	Ala	Tyr 80
	Met	Glu	Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
15	Ala	Arg	Arg	Arg 100	Ser	Tyr	Gly	Tyr	Tyr 105	His	Asp	Glu	Trp	Gly 110	Glu	Gly
20	Thr	Leu	Val 115	Thr	Val	Ser	Ser	Ala 120	Ser	Thr	Lys	Gly	Pro 125	Ser	Val	Phe
25	Pro	Leu 130	Ala	Pro	Cys	Ser	Arg 135	Ser	Thr	Ser	Glu	Ser 140	Thr	Ala	Ala	Leu
	Gly 145	Cys	Leu	Val	Lys	As p 150	Tyr	Phe	Pro	Glu	Pro 155	Val	Thr	Val	Ser	Trp 160
30	Asn	Ser	Gly	Ala	Leu 165	Thr	Ser	Gly	Val	His 170	Thr	Phe	Pro	Ala	Val 175	Leu
35	Gln	Ser	Ser	Gly 180	Leu	Tyr	Ser	Leu	Ser 185	Ser	Val	Val	Thr	Val 190	Pro	Ser
	Ser	Ser	Leu 195	Gly	Thr	Lys	Thr	Tyr 200	Thr	Cys	Asn	Val	Asp 205	His	Lys	Pro
40	Ser	Asn 210	Thr	Lys	Val	Asp	Lys 215	Arg	Val	Glu	Ser	Lys 220	Tyr	Gly	Pro	Pro
45	Cys 225	Pro	Pro	Cys	Pro	Ala 230	Pro	Glu	Phe	Leu	Gly 235	Gly	Pro	Ser	Val	Phe 240
50	Leu	Phe	Pro	Pro	Lys 245	Pro	Lys	Asp	Thr	Leu 250	Met	Ile	Ser	Arg	Thr 255	Pro
	Glu	Val	Thr	Cys 260	Val	Val	Val	Asp	Val 265	Ser	Gln	Glu	Asp	Pro 270	Glu	Val
55	Gln	Phe	Asn 275	Trp	Tyr	Val	Asp	Gly 280	Val	Glu	Val	His	Asn 285	Ala	Lys	Thr

	Lys Pro Arg Glu Glu Gln Phe Asn Ser Thr Tyr Arg Val Val Ser 290 295 300	Val
5	Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly Lys Glu Tyr Lys 305 310 315	Cys 320
10	Lys Val Ser Asn Lys Gly Leu Pro Ser Ser Ile Glu Lys Thr Ile 325 330 335	Ser
45	Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val Tyr Thr Leu Pro 340 345 350	Pro
15	Ser Gln Cys Glu Met Thr Lys Asn Gln Val Ser Leu Ser Cys Ala 355 360 365	Val
20	Lys Gly Phe Tyr Pro Ser Asp Ile Ala Val Glu Trp Glu Ser Asn 370 375 380	Gly
25	Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro Val Leu Asp Ser 385 390 395	Asp 400
	Gly Ser Phe Phe Leu Val Ser Arg Leu Thr Val Asp Lys Ser Arg 405 410 415	Trp
30	Gln Glu Gly Asn Val Phe Ser Cys Ser Val Met His Glu Ala Leu 420 425 430	His
35	Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser Leu 435 440	
40	<210> 171 <211> 214 <212> PRT <213> Artificial	
45	<220> <223> artificial sequence <400> 171	
50	Asp Ile Gln Met Thr Gln Ser Pro Ser Ser Leu Ser Ala Ser Val 5 10 15	Gly
50	Asp Arg Val Thr Ile Thr Cys Lys Ala Ser Arg Asn Ile Glu Arg 20 25 30	Asn
55	Leu Ala Trp Tyr Gln Gln Lys Pro Gly Gln Ala Pro Glu Leu Leu 35 40 45	Ile

	Tyr Ser A 50	la Ser Ar	g Lys G 5		Gly Val	Pro Asp 60	Arg Phe	Ser Gly
5	Ser Arg T 65	yr Gly Th	r Asp Pl 70	he Thr	Leu Thr	Ile Ser 75	Ser Leu	Gln Pro 80
10	Glu Asp L	eu Ala Th 85	r Tyr Ty	yr Cys	Gln Gln 90	Tyr Tyr	Ser Pro	Pro Leu 95
15	Thr Phe G	ly Gly Gl 100	y Thr Ly	ys Val	Glu Ile 105	Lys Arg	Thr Val 110	
15	Pro Ser V 1	al Phe Il 15	e Phe Pi	ro Pro 120	Ser Asp	Glu Gln	Leu Lys 125	Ser Gly
20	Thr Ala S 130	er Val Va	-	eu Leu 35	Asn Asn	Phe Tyr 140	Pro Arg	Glu Ala
25	Lys Val G 145	ln Trp Ly	s Val As 150	sp Asn	Ala Leu	Gln Ser 155	Gly Asn	Ser Gln 160
30	Glu Ser V	al Thr Gl [.] 16		sp Ser	Lys Asp 170	Ser Thr	Tyr Ser	Leu Ser 175
30	Ser Thr L	eu Thr Le 180	ı Ser Ly	ys Ala	Asp Tyr 185	Glu Lys	His Lys 190	Val Tyr
35	Ala Cys G 1	lu Val Th 95	r His G	ln Gly 200	Leu Ser	Ser Pro	Val Thr 205	Lys Ser
40	Phe Asn A 210	rg Gly Gl	ı Cys					
45	<210> 17 <211> 11 <212> PR <213> Ar	9						
	<220> <223> ar	tificial	sequence	e				
50	<400> 17	2						
	Gln Val G 1	ln Leu Va 5	L Gln Se	er Gly	Ser Glu 10	Leu Lys	Lys Pro	Gly Ala 15
55	Ser Val L	ys Val Se 20	r Cys Ly	ys Ala	Ser Gly 25	Tyr Thr	Phe Thr 30	Asp Asn

	Asn Me	t Asp 35	Trp	Val	Arg	Gln	Ala 40	Pro	Gly	Gln	Gly	Leu 45	Glu	Trp	Met
5	Gly As 5(Asn	Thr	Arg	Ser 55	Gly	Gly	Ser	Ile	Tyr 60	Asn	Glu	Glu	Phe
10	Gln As 65	p Arg	Val	Thr	Met 70	Thr	Ile	Asp	Lys	Ser 75	Thr	Gly	Thr	Ala	Tyr 80
	Met Gl	u Leu	Ser	Ser 85	Leu	Arg	Ser	Glu	Asp 90	Thr	Ala	Val	Tyr	Tyr 95	Cys
15	Ala An	g Arg	A rg 100	Ser	Tyr	Gly	Tyr	Tyr 105	His	Asp	Glu	Trp	Gly 110	Glu	Gly
20	Thr Le	u Val 115	Thr	Val	Ser	Ser									
25	<210> <211> <212> <213>	173 107 PRT Arti	ficia	al											
	<220> <223>	arti	ficia	al se	eque	nce									
30	<400>	173		_,	~ 1	-	_	-	-	_	-	- 1	-		6 1
30	<400> Asp I] 1		Met	Thr 5	Gln	Ser	Pro	Ser	Ser 10	Leu	Ser	Ala	Ser	Val 15	Gly
30 35	Asp I]	e Gln		5					10					15	_
	Asp I] 1	e Gln g Val	Thr 20	5 Ile	Thr	Cys	Lys	Ala 25	10 Ser	Arg	Asn	Ile	Glu 30	15 Arg	Asn
35	Asp IJ 1 Asp An	e Gln rg Val a Trp 35 er Ala	Thr 20 Tyr	5 Ile Gln	Thr Gln	Cys Lys	Lys Pro 40	Ala 25 Gly	10 Ser Gln	Arg Ala	Asn Pro	Ile Glu 45	Glu 30 Leu	15 Arg Leu	Asn Ile
35	Asp II 1 Asp An Leu Al Tyr Se	e Gln rg Val a Trp 35 er Ala	Thr 20 Tyr Ser	5 Ile Gln Arg	Thr Gln Lys	Cys Lys Glu 55	Lys Pro 40 Ser	Ala 25 Gly Gly	10 Ser Gln Val	Arg Ala Pro	Asn Pro Asp 60	Ile Glu 45 Arg	Glu 30 Leu Phe	15 Arg Leu Ser	Asn Ile Gly
35 40	Asp II 1 Asp An Leu Al Tyr Se 50 Ser An	e Gln g Val a Trp 35 r Ala rg Tyr	Thr 20 Tyr Ser Gly	5 Ile Gln Arg Thr	Thr Gln Lys Asp 70	Cys Lys Glu 55 Phe	Lys Pro 40 Ser Thr	Ala 25 Gly Gly Leu	10 Ser Gln Val Thr	Arg Ala Pro Ile 75	Asn Pro Asp 60 Ser	Ile Glu 45 Arg Ser	Glu 30 Leu Phe Leu	15 Arg Leu Ser Gln	Asn Ile Gly Pro 80
35 40 45	Asp IJ 1 Asp An Leu AJ Tyr Se 50 Ser An 65	e Gln g Val a Trp 35 r Ala rg Tyr p Leu	Thr 20 Tyr Ser Gly Ala	5 Ile Gln Arg Thr Thr 85	Thr Gln Lys Asp 70 Tyr	Cys Lys Glu 55 Phe Tyr	Lys Pro 40 Ser Thr Cys	Ala 25 Gly Gly Leu Gln	10 Ser Gln Val Thr Gln 90	Arg Ala Pro Ile 75 Tyr	Asn Pro Asp 60 Ser	Ile Glu 45 Arg Ser	Glu 30 Leu Phe Leu	15 Arg Leu Ser Gln Pro	Asn Ile Gly Pro 80

	<211> 5 <212> PRT <213> Artificial	
5	<220> <223> artificial sequence	
	<400> 174	
	Asp Asn Asn Met Asp	
10	1 5	
	<210> 175	
	<211> 17	
15	<212> PRT	
10	<213> Artificial	
	<220> <223> artificial sequence	
20	<400> 175	
	Asp Ile Asn Thr Arg Ser Gly Gly Ser Ile Tyr Asn Glu Glu Phe Gln 1 5 10 15	
25	Asp	
	<210> 176 <211> 10	
30	<211> 10 <212> PRT	
	<213> Artificial	
	<220>	
25	<223> artificial sequence	
35	<400> 176	
	Arg Arg Ser Tyr Gly Tyr Tyr His Asp Glu 1 5 10	
40		
	<210> 177	
	<211> 11	
	<212> PRT	
	<213> Artificial	
45	(220)	
	<220> <223> artificial sequence	
	<400> 177	
50	Lys Ala Ser Arg Asn Ile Glu Arg Asn Leu Ala 1 5 10	
	~210\ 179	
	<210> 178 <211> 7	
55	<211> / <212> PRT	
	<213> Artificial	

	<220> <223> artificial sequence
5	<400> 178
5	Ser Ala Ser Arg Lys Glu Ser 1 5
10	<210> 179 <211> 9
	<212> PRT <213> Artificial
15	<220> <223> artificial sequence
	<400> 179
20	Gln Gln Tyr Tyr Ser Pro Pro Leu Thr 1 5

Claims

- A multispecific antibody that functionally substitutes for blood coagulation factor VIII, which comprises a first polypeptide comprising a first antigen-binding site that recognizes blood coagulation factor IX and/or activated blood coagulation factor IX, as well as a second polypeptide comprising a fourth antigen-binding site that recognizes blood coagulation factor X and a fourth polypeptide comprising a fourth antigen-binding site that recognizes blood coagulation factor X, and a fourth polypeptide comprising a fourth antigen-binding site that recognizes blood coagulation factor X, wherein the first polypeptide and the third polypeptide each comprises an antigen-binding site of an H chain or L chain of an antibody against blood coagulation factor X, respectively; and the second polypeptide and the fourth polypeptide each comprises an antigen-binding site of an H chain or L chain of an antibody against blood coagulation factor X, respectively, wherein
- (a) the antigen-binding site of the first polypeptide comprises an antigen-binding site which comprises H chain
 CDRs consisting of any one of the amino acid sequences selected from the following (a1) to (a11) and the
 antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises H chain
 CDRs consisting of any one of the amino acid sequences selected from the following (b1) to (b11):

40	(a1) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of SEQ ID NOs: 75, 76, and 77, respectively;
	(a2) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of SEQ ID NOs: 78, 79, and 80, respectively;
	(a3) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
45	with amino acid sequences of SEQ ID NOs: 81, 82, and 83, respectively;
	(a4) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of zSEQ ID NOs: 84, 85, and 86, respectively;
	(a5) an antigen-binding site comprising the H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of zSEQ ID NOs: 87, 88, and 89, respectively;
50	(a6) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of zSEQ ID NOs: 90, 91, and 92, respectively;
	(a7) an antigen-binding site comprising the H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of zSEQ ID NOs: 93, 94, and 95, respectively;
	(a8) an antigen-binding site comprising the of H chain CDR 1, 2, and 3 having at least 70% sequence
55	identity with amino acid sequences of zSEQ ID NOs: 96, 97, and 98, respectively;
	(a9) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of zSEQ ID NOs: 99, 100, and 101, respectively;
	(a10) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity

	with amino acid sequences of zSEQ ID NOs: 102, 103, and 104, respectively;
	(a11) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of SEQ ID NOs: 105, 106, and 107, respectively;
	(b1) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
5	with amino acid sequences of SEQ ID NOs: 108, 109, and 110, respectively;
	(b2) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of SEQ ID NOs: 111, 112, and 113, respectively;
	(b3) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of SEQ ID NOs: 114, 115, and 116, respectively;
10	(b4) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of SEQ ID NOs: 117, 118, and 119, respectively;
	(b5) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of SEQ ID NOs: 120, 121, and 122, respectively;
	(b6) an antigen-binding site comprising the H chain CDR 1, 2, and 3 having at least 70% sequence identity
15	with amino acid sequences of SEQ ID NOs: 123, 124, and 125, respectively;
	(b7) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of SEQ ID NOs: 126, 127, and 128, respectively;
	(b8) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
00	with amino acid sequences of SEQ ID NOs: 129, 130, and 131, respectively;
20	(b9) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
	with amino acid sequences of SEQ ID NOs: 132, 133, and 134, respectively;
	(b10) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity with amino acid sequences of SEQ ID NOs: 135, 136, and 137, respectively; and
	(b11) an antigen-binding site comprising an H chain CDR 1, 2, and 3 having at least 70% sequence identity
25	with amino acid sequences of SEQ ID NOs: 174, 175, and 176, respectively; or
20	with annual acid sequences of SEQ ID NOS. 174, 175, and 170, respectively, of
	(b) the antigen-binding site of the first polypeptide comprises an antigen-binding site which comprises an H
	(a) are an agent an and a set be the best best best and an an agent and and a set best best and a set best best
	chain variable region consisting of any one of the amino acid sequences selected from the following (a1) to
	chain variable region consisting of any one of the amino acid sequences selected from the following (a1) to (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises
30	chain variable region consisting of any one of the amino acid sequences selected from the following (a1) to (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1)
30	(a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises
30	(a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11):
30	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity
	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35;
30 35	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity
	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36;
	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity
	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36;
35	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37;
	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38;
35	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38;
35	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39;
35	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39;
35	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40;
35 40	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40;
35 40	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41;
35 40	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41; (a8) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41;
35 40	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41; (a8) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42;
35 40	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41; (a8) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41;
35 40 45	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41; (a8) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a9) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a9) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42;
35 40 45	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41; (a8) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a9) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 43; (a10) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a9) an antigen-binding s
35 40 45	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41; (a8) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a9) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a10) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a10) an antigen-binding
35 40 45 50	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41; (a8) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a9) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 43; (a10) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a10) an antigen-binding
35 40 45	 (a11) and the antigen-binding site of the second polypeptide comprises an antigen-binding site which comprises an H chain variable region consisting of any one of the amino acid sequences selected from the following (b1) to (b11): (a1) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 35; (a2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 36; (a3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 37; (a4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 38; (a5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 39; (a6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 40; (a7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 41; (a8) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a9) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a10) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 42; (a10) an antigen-binding

with the amino acid sequence of SEQ ID NO: 46; (b2) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 47;

	(b3) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 48; (b4) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 49;
5	(b5) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 50;
	(b6) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 51;
10	(b7) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 52; (b8) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity
	with the amino acid sequence of SEQ ID NO: 53; (b9) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity
15	with the amino acid sequence of SEQ ID NO: 54; (b10) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity
	with the amino acid sequence of SEQ ID NO: 55; and (b11) an antigen-binding site comprising an H chain variable region having at least 70% sequence identity
	with the amino acid sequence of SEQ ID NO: 172; and
20	wherein
	(a) the antigen-binding sites included in the third polypeptide and the fourth polypeptide comprise an antigen- binding site which comprises L chain CDRs consisting of any one of the amino acid sequences selected from the following (c1) to (c10):
25	(c1) an antigen-binding site comprising an L chain CDR1, 2, and 3 having at least 70% sequence identity
	with the amino acid sequences of SEQ ID NOs: 138, 139, and 140, respectively;
	(c2) an antigen-binding site comprising an L chain CDR1, 2, and 3 having at least 70% sequence identity
30	with the amino acid sequences of SEQ ID NOs: 141, 142, and 143, respectively; (c3) an antigen-binding site comprising an L chain CDR1, 2, and 3 having at least 70% sequence identity
	with the amino acid sequences of SEQ ID NOs: 144, 145, and 146, respectively;
	(c4) an antigen-binding site comprising an L chain CDR1, 2, and 3 having at least 70% sequence identity with the amino acid sequences of SEQ ID NOs: 147, 148, and 149, respectively;
	(c5) an antigen-binding site comprising an L chain CDR1, 2, and 3 having at least 70% sequence identity
35	with the amino acid sequences of SEQ ID NOs: 150, 151, and 152, respectively; (c6) an antigen-binding site comprising an L chain CDR1, 2, and 3 having at least 70% sequence identity
	with the amino acid sequences of SEQ ID NOs: 153, 154, and 155, respectively;
	(c7) an antigen-binding site comprising an L chain CDR1, 2, and 3 having at least 70% sequence identity with the amino acid sequences of SEQ ID NOs: 156, 157, and 158, respectively;
40	(c8) an antigen-binding site comprising an L chain CDR1, 2, and 3 having at least 70% sequence identity with the amino acid sequences of SEQ ID NOs: 159, 160, and 161, respectively;
	(c9) an antigen-binding site comprising an L chain CDR1, 2, and 3 having at least 70% sequence identity
	with the amino acid sequences of SEQ ID NOs: 137, 138, and 139, respectively; and
45	(c10) an antigen-binding site comprising an L chain CDR1, 2, and 3 having at least 70% sequence identity with the amino acid sequences of SEQ ID NOs: 177, 178, and 179, respectively; or
	(b) the antigen-binding sites included in the third polypeptide and the fourth polypeptide comprise an antigen-
	binding site which comprises an L chain variable region consisting of any one of the amino acid sequences selected from the following (c1) to (c10):
50	
	(c1) an antigen-binding site comprising an L chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 56;
	(c2) an antigen-binding site comprising an L chain variable region having at least 70% sequence identity
<i>E E</i>	with the amino acid sequence of SEQ ID NO: 57;
55	(c3) an antigen-binding site comprising an L chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 58;
	(c4) an antigen-binding site comprising an L chain variable region having at least 70% sequence identity
	with the amino acid sequence of SEQ ID NO: 59;

(c5) an antigen-binding site comprising an L chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 60;

(c6) an antigen-binding site comprising an L chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 61;

(c7) an antigen-binding site comprising an L chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 62;

(c8) an antigen-binding site comprising an L chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 63;

(c9) an antigen-binding site comprising an L chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 64; and

(c10) an antigen-binding site comprising an L chain variable region having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 173,

wherein the blood coagulation factor X (F.Xa) generation-promoting activity of the multispecific antibody is higher
 than the activity of a bispecific antibody hA69-KQ/hB26-PF/hAL-AQ which comprises an H chain comprising SEQ
 ID NOs: 165 and 166, and a commonly shared L chain comprising SEQ ID NO: 167.

- 2. The multispecific antibody of claim 1, wherein
- (a) the first and second polypeptides further comprise an antibody H chain constant region, and the third and fourth polypeptides comprise an antibody L chain constant region; or

(b) the first and second polypeptides comprise an antibody H chain constant region, and the third and fourth polypeptides comprise an antibody L chain constant region, and wherein the third polypeptide and the fourth polypeptide are a commonly shared L chain.

25

30

20

5

10

3. The multispecific antibody of claim 2, wherein

(a) the first polypeptide comprises an antibody H chain constant region consisting of any one of the amino acid sequences selected from the group consisting of the following (d1) to (d6) or the group consisting of the following (d7) to (d9), and the second polypeptide comprises an antibody H chain constant region consisting of any one of the amino acid sequences selected from a group different from that of the above-mentioned first polypeptide:

(d1) an H chain constant region having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 65; 35 (d2) an H chain constant region having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 66; (d3) an H chain constant region having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 67; (d4) an H chain constant region having at least 70% sequence identity with amino acid sequence of SEQ 40 ID NO: 68; (d5) an H chain constant region having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 69; (d6) an H chain constant region having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 70; 45 (d7) an H chain constant region having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 71; (d8) an H chain constant region having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 72; and (d9) an H chain constant region having at least 70% sequence identity with amino acid sequence of SEQ 50 ID NO: 73; and

(b) the third and fourth polypeptides comprise the antibody L chain constant region consisting of the following amino acid sequence of:

55

(e) an L chain constant region having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 74; or

(c) the first polypeptide comprises any one antibody H chain selected from the following (a1) to (a14), the second

polypeptide comprises any one antibody H chain selected from the following (b1) to (b12), and the third polypeptide and the fourth polypeptide comprise any one antibody L chain selected from the following (c1) to (c10):

(a1) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with 5 amino acid sequence of SEQ ID NO: 1; (a2) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 2; (a3) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 3; 10 (a4) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 10; (a5) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 11; (a6) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with 15 amino acid sequence of SEQ ID NO: 12; (a7) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 13; (a8) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 14; 20 (a9) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 15; (a10) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 16; (a11) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity 25 with amino acid sequence of SEQ ID NO: 17; (a12) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 18; (a13) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 19; 30 (a14) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 20; (b1) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 4; (b2) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with 35 amino acid sequence of SEQ ID NO: 5; (b3) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 6; (b4) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 7; 40 (b5) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 21; (b6) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 22; (b7) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with 45 amino acid sequence of SEQ ID NO: 23; (b8) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 24; (b9) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 25; 50 (b10) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 26; (b11) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 27; (b12) an antibody H chain consisting of the amino acid sequence having at least 70% sequence identity 55 with amino acid sequence of SEQ ID NO: 170; (c1) an antibody L chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 8; (c2) an antibody L chain consisting of the amino acid sequence having at least 70% sequence identity with

amino acid sequence of SEQ ID NO: 9; (c3) an antibody L chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 28; (c4) an antibody L chain consisting of the amino acid sequence having at least 70% sequence identity with 5 amino acid sequence of SEQ ID NO: 29; (c5) an antibody L chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 30; (c6) an antibody L chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 31; 10 (c7) an antibody L chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 32; (c8) an antibody L chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 33; (c9) an antibody L chain consisting of the amino acid sequence having at least 70% sequence identity with 15 amino acid sequence of SEQ ID NO: 34; and

- (c10) an antibody L chain consisting of the amino acid sequence having at least 70% sequence identity with amino acid sequence of SEQ ID NO: 171.
 - A bispecific antibody of any one of the following (a) to (u): 4.

20

50

(a) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 1, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 4, and the third polypeptide and the fourth polypeptide are a commonly shared L chain 25 of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 9; (b) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 1, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 5, and the third polypeptide and the fourth polypeptide are a commonly shared L chain 30 of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 9; (c) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 2, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 6, and the third polypeptide and the fourth polypeptide are a commonly shared L chain 35 of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 8; (d) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 3, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 7, and the third polypeptide and the fourth polypeptide are a commonly shared L chain 40 of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 9; (e) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 10, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 6, and the third polypeptide and the fourth polypeptide are a commonly shared L chain 45 of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 30; (f) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 10, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 7, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 33; (g) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 11, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 4, and the third polypeptide and the fourth polypeptide are a commonly shared L chain 55 of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 33; (h) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 11, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid

sequence of SEQ ID NO: 5, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 30; (i) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence having at least 70% sequence identity with the amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 12, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 12, the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 23;

(j) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 13, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 22, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 22, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 29;

5

25

30

55

- (k) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 14, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 14, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ
 ID NO: 33;
 - (I) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 15, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 23, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 30;
 - (m) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 16, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 21, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence of SEQ ID NO: 28;
- (n) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 17, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 27, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 34;
- (o) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having
 at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 18, the second polypeptide is an
 H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 30;
- (p) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 30;

(q) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 24, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 31;

(r) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 19, the second polypeptide is an

H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 27, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 28;

(s) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 20, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid SEQ ID NO: 25, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 32;

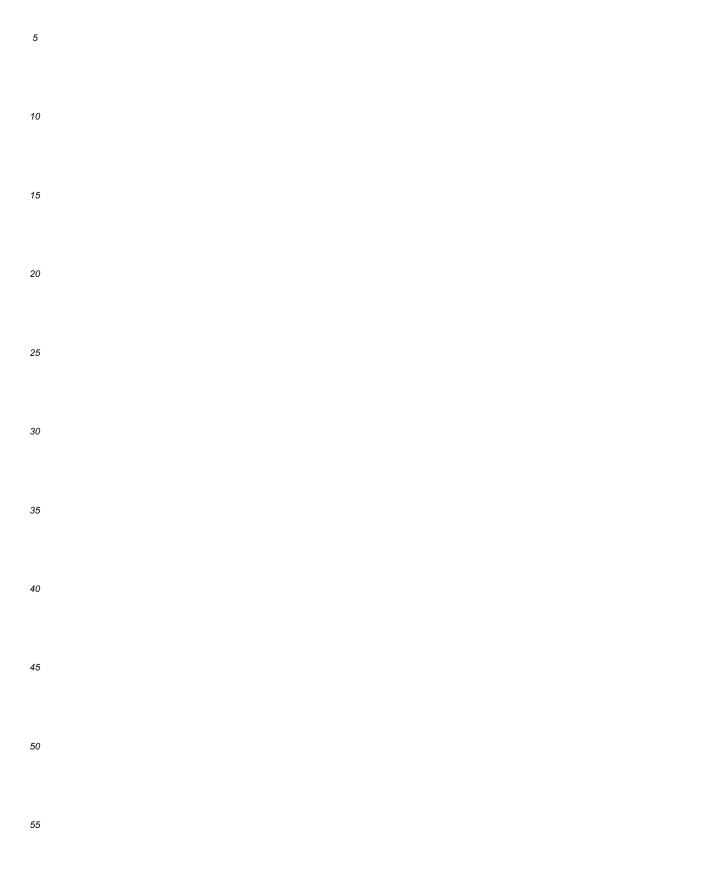
(t) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 20, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 26, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 26, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 31; and

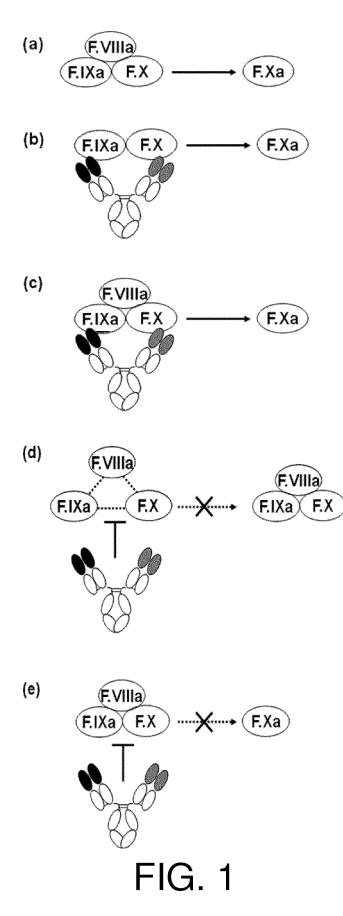
(u) a bispecific antibody, wherein the first polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 12, the second polypeptide is an H chain consisting of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 170, and the third polypeptide and the fourth polypeptide are a commonly shared L chain of an amino acid sequence having at least 70% sequence identity with the amino acid sequence of SEQ ID NO: 171,

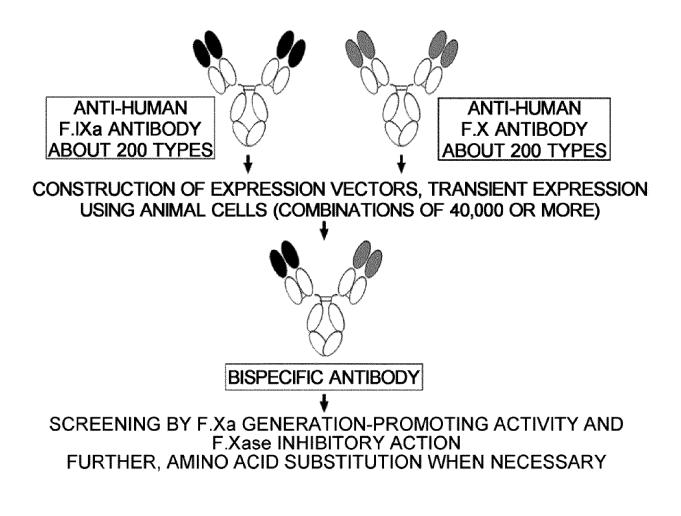
- wherein the blood coagulation factor X (F.Xa) generation-promoting activity of the bispecific antibody is higher than
 the activity of a bispecific antibody hA69-KQ/hB26-PF/hAL-AQ which comprises an H chain comprising SEQ ID
 NOs: 165 and 166, and a commonly shared L chain comprising SEQ ID NO: 167.
 - 5. A nucleic acid encoding the multispecific antibody of any one of claims 1 to 3 or the bispecific antibody of claim 4.
- 30 **6.** A vector inserted with the nucleic acid of claim 5.

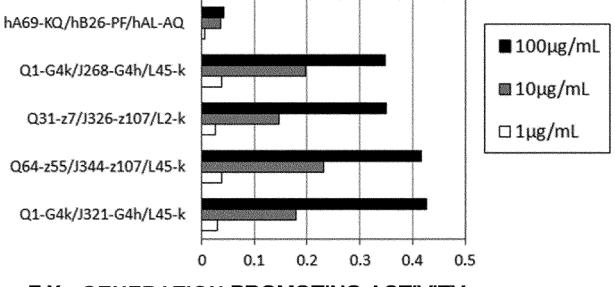
5

10

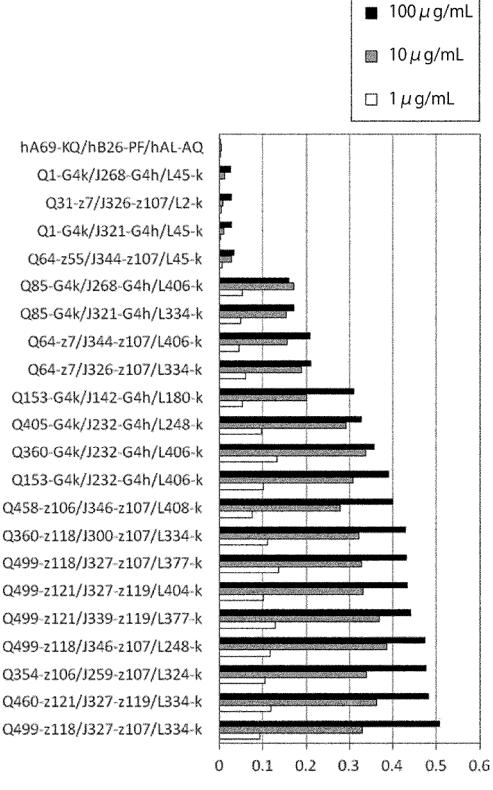

15

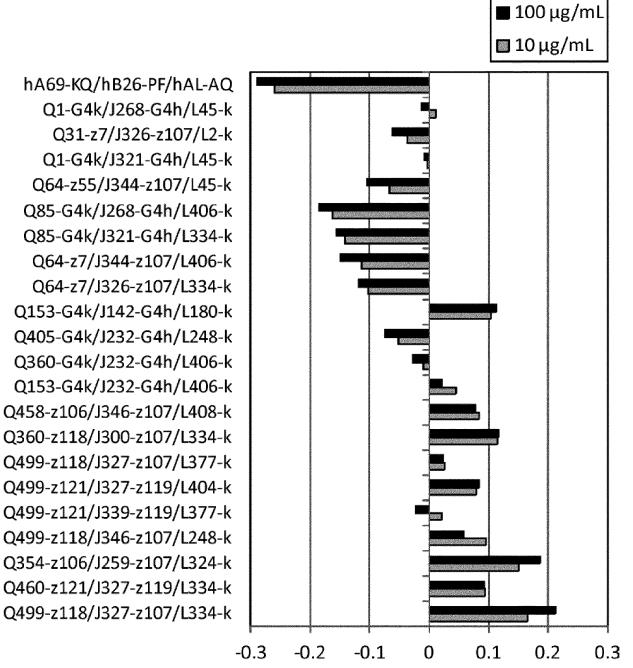

20


35

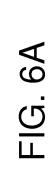

- 7. A cell comprising the nucleic acid of claim 5 or the vector of claim 6.
- 8. A method for producing the multispecific antibody of any one of claims 1 to 3 or the bispecific antibody of claim 4 by culturing the cell of claim 7.
 - **9.** A pharmaceutical composition comprising the multispecific antibody of any one of claims 1 to 3 or the bispecific antibody of claim 4, and a pharmaceutically acceptable carrier.
- **10.** The composition of claim 9, which is a pharmaceutical composition for use in prevention and/or treatment of bleeding, a disease accompanying bleeding, or a disease caused by bleeding.
 - **11.** The composition for use of claim 10, wherein the bleeding, the disease accompanying bleeding, or the disease caused by bleeding is a disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation factor VIII and/or activated blood coagulation factor VIII.
 - 12. The composition for use of claim 11, wherein
- (a) the disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation
 factor VIII and/or activated blood coagulation factor VIII is hemophilia A;
 (b) the disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation
 factor VIII and/or activated blood coagulation factor VIII is a disease showing emergence of an inhibitor against
 blood coagulation factor VIII and/or activated blood coagulation factor VIII;
 (c) the disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation
 factor VIII and/or activated blood coagulation factor VIII;
 (c) the disease that develops and/or progresses due to a decrease or deficiency in the activity of blood coagulation
 factor VIII and/or activated blood coagulation factor VIII is acquired hemophilia; or
 (d) the disease that develops and/or progresses due to a decrease in the activity of blood coagulation factor
 VIII and/or activated blood coagulation factor VIII is von Willebrand disease.

13. A kit, which comprises at least the multispecific antigen-binding molecule of any one of claims 1 to 3 or the bispecific antibody of claim 4, or the composition of any one of claims 9 to 12.





F.Xa GENERATION-PROMOTING ACTIVITY



F.Xa GENERATION-PROMOTING ACTIVITY

F.Xase INHIBITORY ACTION

		FR 1																							Ö	۵	ĸ	ч			Ĩ4	R	~										
		0														2								m	8						e			Ĺ	4								
Name	Ref	1234	ŝ	۰۲ ق	78	<u>б</u>	0	ы	3	e	47) 47	5 6	2	œ	თ	0	्य	5 5	4	ເດ	ø	5	80	0 6	H	2	ო		ຄ	a b	w o	5	ത	თ	0	1	e)	4	ŝ	ώ	~	8	9
<u>01</u>		QVQL	⊳	60) 621	0	U	U	ы	Þ	α	A	00	50	ы	R4	н	8	N U	R	S	U	E 4	EH	53 Fil	DH FA	×	A	M	A	1	X	Þ	R	a	A	P G	×	U	н	B	M	Þ	A
Q31	<u> </u>	* * *	•		:		٠	,	•			•	٠	٠	•			:	•	٠	•				-	•	•			:	•	•	•			:	•	•	٠				
Q64	<u>01</u>	• • •	•		:	•	•	•	•				•	•	•				•	•	•			•		•	•			:	•	•				:	•	•	٠		-		•
Q85	<u>61</u>	* * *				ŀ	•	ŀ					·	•					•	•	•			÷	·	•	.			Ċ	·	•	•	Ι.			·	•	•				
Q153	<u>0</u> 1	•	·		:	•	•	•				*	٠	٠				•	٠	•	٠			:	•	·	•	Г	ב		•	•	٠				•	•	•				
Q354	<u>0</u> 1	•	•		÷	•	٠	•	•		:	•	•	•				:	•	•	٠			;	•	٠	•	н	z		,	•		,			٠	•	,			<u> </u>	S
Q360	<u>0</u> 1	* • •	•		:	•	•	•	•		:	:	·	•				÷	,	•	•			:	•	·	•	Ĥ	X	:	•	•	•			÷	•	•	•				50
Q405	<u>0</u> 1	•	•		:	*	,		•		:		·	٠	•			:	•	•	•			,		·	•	н	თ	:	•	•	•			÷	•	·	•			,	02
Q458	<u>0</u> 1	•	•		:	×	•	,	•		:	•	•	•				•	•	٠	•					·		Ĥ	8	:		•			,	:	•		٠				ŝ
Q460	<u> </u>	•	•	:	:	·	•				÷	•	·	·				÷	•	·	·			:	•	·	•	н.	0	ż	•	•	·			÷	•	·	·			,	ŝ
Q499	<u> </u>	• • •	•		•		+	•	•		:		•	•		•			•		•	•			•	•	•	н	8	:	·		•				*	•					S
																																											ŧ .
		C D R 2													H	ы	щ	m																									
		ß								ľ	9					ş			5									œ											6				
Name	Ref	012a	۹	en O	34	ŝ	ဖ	7	æ	6	0 1	~	е	4	ŝ	9	7 8	8	0	-	2	ю	4	56	5 7	B	6	0	-	2 a	р 2	υ	т	4	5	67	8	6	0	ч	N	m	4
<u>0</u> 1		d S I S	1	1	0 0	σ	S	н	Я	ы Н	RH	ا س دە	>	×	U	æ	E E4	Тν	S	Ц	۵	N	A	КN	S P	Ч	Þ	ч	ã	M M	ςΩ Γ	Ч	Ц	4	E	н О	4	Ν	×	ы	υ	A	Ř
Q31	<u> 0</u> 1	•	٠		:	•	•	-	٠				•	•	÷				•	٠	٠	•		:	•	٠	٠	•			-	•	٠				•	•	•	•			

E-6-4

Ø

ĸ

Ø Ø

> H н

н

Ø w Ø

N 12 22 വ വ RE R B ы

ĸ OZ.

K K

н

• .

ø OX OI Ø Ø

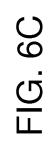
2222222222

231 264 285 285 2153 2153 2153 2350 2350 2350 2350 2405 2458 2458 2499

н

L C	-	_
(Γ	5
L	I	

		В В	-																							υ	Δ	а	-			₿±4	щ	2									
		0															64	I							l	m m	_ ا					m			4	I			l				
Name	Ref	1 1	m	4	ŝ	6 7	œ	თ	0	ন	6 10	44	S	യ	2	6 8	0	**1	0	m	47 10	56	~	œ	ი	10	2	ო	4	5 S	q	Q	~	ი 8	0		~	m	4	5 6	5	œ	9
J268		⊳ Ø	ø	H	Þ	s o	U	w	岡	1	X	P4	U	A	N N	N N		S	U	X	AS	0 0	×	H	4	о н	Z	Z	X		!	Ø	5	8	A	4	U	a	5	LE	×	Σ	U
J 321	J268	•	٠	•		•	•	٠			•	٠	•	٠			٠	·	•			•	٠	•		•	•		۱ <u>,</u> ۳	H	•	*	٠	•	٠	٠	•			•	٠	٠	,
J 326	J268		•	•		:	•	•		:	:	•	·			:	·	·			:	:	·		•	÷	•	•	•	, L·	·	•		:	·	•	·		•	:	•	·	•
J344	J268	•	•	•		•	٠	•			:	•	•			:	•	٠		•	:	:	٠	•	*	•	•	•	•	• •	•	٠		•	*	٠	•			•	•	•	•
J232	J268		•	•		!	ŀ	•	.			· ·	•	•	١.	1.	•	•	•	•	1		•	•		· ·		•	l ·		•	•	•] .	•	•	•	•			ŀ	•	•
J259	J268	•	•	•	•	,	٠	٠	,	•	•	•	٠	,	٠	•	*	٠	٠	٠	•	•	٠		٠		•	٠	+	•	٠	*		•	٠	٠	٠		•	•	•	,	•
J 346	J268	:	•	•		:	٠	•		:		•	•				•	•	•		:		•	•		<u>.</u>	•	•	•		•			:		٠	•			:	•	•	
J300	J268	•	•	٠	•	*	•	٠		•	*	•	·			•	•	٠	*	٠	:	•	٠	·	*		•	٠	•	•	•	+	•		٠	٠	٠	٠	•	•	٠	٠	
J327	J268	•	•	•	,	•	٠	٠	•	*	•	•	•				•	•	•		•	*	٠	•	*		•	•	•	•	•	*	*		•	٠	٠		•		٠	٠	•
J 339	J268	•	·	٠	•		٠	٠		•	•	·	٠	٠		•	•	٠		٠	:	•	٠	•	+	•	•	٠	·	•	•	+	•	•	•	٠	٠		•		٠	٠	٠
J142	J268	:	•	•			·	•		:	<u>:</u>	·	•	•			·	·	•			:	·	•		•	:	·	•	•	·				•	·	•			ġ	·	•	•


		M	S	•	•	•	+	•	•	٠		•	•
		2	S	٠	•	•			*	•	+	٠	•
	-1		⊳	٠	•	•	٠	•	٠	•	+	+	•
	ч	0	E+	*		•	*	•	٠	•	*	٠	
		o,	⊳	٠	•	•	٠	•	*	•	+	*	•
		ø	ы	•	•	•	•	•	٠	•	+	٠	•
		~	H	٠	•	•	٠	·	٠	•	٠	٠	•
		φ	U	•	•	•	•	•	•	•	٣	•	•
4		ŝ	a	٠	•	•	*		٠	•	٠	٠	•
щ		4	U		•	•	•	•	•	·	٠	•	•
ĥ		თ	M	٠		•	+		6	•	+	+	•
		2	踊	*		Þ	₩	Þ	Þ	ы	₽	Þ	ж
		H	Δ	-	•	•	٠	•	*	•	•	•	•
		×	1		•	•	•		•	•	•	·	•
		√ ∩	1	•	•	•	•	•	٠	•	•	•	•
			1	•	•	•	٠	·	•	•	•	٠	•
		ç	1		•	•	٠		٠	·	*	*	•
		g	1	٠	•	•	٠	•	٠	•	٠	٠	•
		44	F4		•	•	*	•	,	·	٠	٠	
		o	Þ	•	•	•			٠	•	+	٠	•
		ъ	3	٠	•	•	٠	•	•	•	٠	•	•
		U	U	·	•	•	•	•	•	•	*	•	•
		А	4	٠	*	•	•	U	Q	Q	Ċ	Q	Q
	0	៧	Q	۰.	•	•	*	,	R	•	+	*	٠
	ч	0	н	•	<u>F4</u>	¥	≥	×	₽	۶	X	×	K
		a,	Я	•	٠	•	*	7	•	•	S	ભ	
m		Ø	н	٠	•	· ·	•	•	٠	•	К	R	Ц
Ц		5	U	٠	•	•	•	•			*	•	÷
۵		φ	4	٠	•	•	•	S	S	Ŋ	S	Ś	E۲
υ	ი	ແງ	Ц		•		• '	•	,	•	•	,	÷
		Ref		Ω1	61	5	<u>0</u> 1	5	5	<u>0</u> 1	<u>0</u> 1	61	61
		Å		5	3	۲Ľ.	Ŷ	0	Ċ,	0	Ċ,	~	3
		Ø		1		10	ო	Ŧ	0	ഹ	œ	0	ი
		Name	5	<u>0</u> 31	<u>064</u>	<u>0</u> 85	Q153	Q354	Q360	Q405	Q458	Q460	Q499
		Ž		O.	O		Ö	Ó	ö	Õ	Ñ	Õ,	Ň

œ

F R 3 6

ø

C D R 2 5

\mathbf{C}	
C	0
(5
<u> </u>	_

		а Б	m																				υ	DR	m ~								ju j	В 4					
		۵	Ĩ	9						7							ω							6										Ч	0				
Name	Ref	78	0 6	r-1	ອ ເຊ	4	5 6	2	8 8	0	r4	3 19	4	56	2	6 6	0	-	3 10	4	9 2	5	6 8	1 0	~	ω 4	4	a e	U O	а С	44	67	ထ	0 6	-1	3 10	4	ŝ	67
1.2		۵ ک 1	D d .	R	S2 F4	υ	S R	₩	н U		βщ	T L	E⊶	I S	S	р П	A	E E E	н р	A	Т	₩	o U	δ	K	0 0	1 0		ı	1	1	L T	ſщ	00	ю	ЧК		E	ΙK
L45	Г2		•	•	•	٠	•	•	-	•			•		-	•	•		:	•	•	+	•	•	·		P P		•	•	•	•	•		•		•	-	
L248	г5	Ŀ		•		•	:	.		•		:	•	•		•			н.	•	·		•	•	S	4	ΡP		•	•	•	•	·		•		•		·
1324	Г2			•	•	•	:	٠	:	·		:	•	:	•	:	•	•	н.	•	:				ល	•	р Д				٠	:	•	•	•		-	,	•
L334	57			•	:	·	•	٠	:	·		:		:		:	•		н	·	:		•	:	Ø	μ.	Ъ Р	:		:	·	*	•	•			•	,	:
L377	ы			•	:	•	:	•	:	•		:	•	:		:	•		н.	•	:	•	•		Ø		ΡP	:	·	:	·	•	•	•	٠		•	,	•
L404	L2		•	•	•	٠	•	٠		•	•	•	٠	•	٠	•	•	•	H.	٠	•	٠	•	•	ß	Α	ЪЪ Б	•	,	*	٠	* *	÷	•	٠	,	•	•	:
L406	5			•	*	•	:	٠		٠			•	•	•	:	•		н.	•	•				Ø	<u>a</u>	Са Са	•	•	:	٠	•	×	•	•	•	•	,	•
L408	E2		•	•	•	٠	:	·	•	•	•	:		:	•	•	•	•	н.	٠	:	•		:	Ø	A Q	<u>д</u>	:	•	:	٠	•	•	•	•	•	•		:
L180	L2			•	•	·	•	٠		·		•		:	•	:	•	•	•	٠	•			:	Ŀ	<u>[</u> .	Ст Ст		•	:	·	•	•	•	•		•		•

		ц.	R 1														υ	۵	R 1										ju,	R 2	2									сı	DR	2		
		0						-							2		2									m			e			ľ	4							ŝ				
Name	Ref	Ч	M N	45	ø	8	a	0	2	ω 4	ыл - т	w	7 8	თ	0	N	3.4	ŝ	6 7	T a	р	c q	Ø	6 0	a	0	2	ы 4	n	9	30	6	0 1	N	e a	4	Ś	7 8	6	0	N	m	4	ø
12		۵	ĭδ	ΥМ	α	с С	S	S L	S	A S	D to	0	DR	>	T T	E4	C K	A	S S	ι α	1	I I	1	N -	ы	ΧК	N	LA	M	х	о о	м	P G	o t	AF	ЪК	Я	л Г	х	хч 02	A S	I X	RΥ	S
L45	L2		•	•	•	•	-	•	•		•	-	:	•		•	•				•	•	•	•			•				•	•	•	•		:			٠		*		:	·
L248	L2		:		•												•		1×4 •			1			<u>.</u>	ы В	Ŀ		·			•	1:	•		24	.		·	R	$\left \frac{\cdot}{\cdot} \right $	4	K E	·
L324	L2	•	•	:	·	:	•	:		:	•		:				، ۱	•	<u>н</u> ,	Ж	•	:		,	,	ы ы	,				•	•	;	•		ря ,		:	'	А		А	KE	x
L334	г2	•	:	•	٠	;	·	•	•	•	•		:	•	:	•	•	·	<u>14</u> •	А		•	•	•	•	ы К	<u> </u>	•	•	•	•	•	•	٠		р м	٠	:	•	à	Ŀ	្អ	КE	•
L377	г.2	-	:	•	٠			•	·		•	•	•	·		•	•	•	<u>4</u>	K	•	•	·	•	•	้ ผ ผ	Q	•	-		*	•	•	٠	•	M	٠		*	°.	•	R	KE	•
L404	ц2	•		:		:		;	•		·					·	•	•	<u>а</u>		•	:	•	•	,	R	0			:	•		:	•		P4 ,	·	:	,	0		R	KE	•
L406	1.2	-	•		٠	•	·		•		•		•		•	•	•	·	<u>н</u>	ਲ	٠	•	·	•	•	В В	0		+	•	•	*	•	٠	•	ря	٠	:	*	, A	<u> </u>	Ã.	KE	•
L408	L2		•	•	٠	•	•	*		*	*		•		•	*	•	•	<u>н</u> •	А		•	٠	•	+	а В	q	•	•	•	•	•	•	*	•	떠	•	•	•	K	P	а	KE	*
L180	L2	•	÷	:	•	·		:		:	•	•	÷	•	÷		• •	•	<u> </u>	י. או	•	:	•	÷		R R	Ŀļ	;	·		·		:	·		M		:	·	Ŀ	Ŀ	<u> </u>	KΒ	·

5

EUROPEAN SEARCH REPORT

Application Number EP 17 20 0495

		DOCUMENTS CONSIDI	ERED TO BE RELEVANT		
	Category	Citation of document with in of relevant passa	dication, where appropriate, lges	Relevant to claim	CLASSIFICATION OF THE APPLICATION (IPC)
10 15	A	R. J. KERSCHBAUMER: for Coagulation Fac Activity of the Int X-activating Comple JOURNAL OF BIOLOGIC vol. 279, no. 39, 1 January 2004 (200 40445-40450, XP0550	rinsic Factor x", AL CHEMISTRY, 4-01-01), pages	1-13	INV. C12N15/09 A61K39/395 A61P7/04 C07K16/36 C12N5/10 C12P21/02
20		ISSN: 0021-9258, DO 10.1074/jbc.M405966	I:		
25					
30					TECHNICAL FIELDS SEARCHED (IPC) CO7K
35					
40					
45					
1		The present search report has b	•		
04C01) 02		Place of search Munich	Date of completion of the search 30 January 2018	Mar	Examiner Finoni J-C
50 (100000) 55 (P04001) 55	X : part Y : part docu A : tech O : non	ATEGORY OF CITED DOCUMENTS icularly relevant if taken alone icularly relevant if combined with anoth ument of the same category nological background I-written disclosure rmediate document	L : document cited for	ument, but publis the application r other reasons	shed on, or

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 2005035754 A [0005]
- WO 2005035756 A [0005] [0085]
- WO 2006109592 A [0005] [0014] [0017] [0041] [0085] [0111] [0115] [0128]
- WO 2002032925 A [0015]
- WO 1995001937 A [0015]
- WO 2004044011 A [0015]
- WO 2005040229 A [0015]
- WO 2002020565 A [0015]
- EP 404097 A [0025]
- WO 9311161 A [0025]
- WO 2006106905 A [0028] [0032] [0058] [0085] [0116]
- WO 9312227 A [0038]
- WO 9203918 A [0038]
- WO 9402602 A [0038]
- WO 9425585 A [0038]
- WO 9634096 A **[0038]**

Non-patent literature cited in the description

- Blood, 1981, vol. 58, 1-13 [0006]
- Nature, 1984, vol. 312, 330-337 [0006]
- Nature, 1984, vol. 312, 337-342 [0006]
- *Biochim.Biophys.Acta*, 1986, vol. 871, 268-278 [0006]
- NYGREN et al. Current Opinion in Structural Biology, 1997, vol. 7, 463-469 [0015]
- Journal of Immunol Methods, 2004, vol. 290, 3-28
 [0015]
- BINZ et al. Nature Biotech, 2005, vol. 23, 1257-1266
 [0015]
- HOSSE et al. Protein Science, 2006, vol. 15, 14-27 [0015]
- *Curr Opin Mol Ther.,* August 2010, vol. 12 (4), 487-95 [0015]
- Drugs, 2008, vol. 68 (7), 901-12 [0015]
- BORREBAECK CAK ; LARRICK JW. THERAPEU-TIC MONOCLONAL ANTIBODIES. MACMILLAN PUBLISHERS LTD, 1990 [0020]
- HOLLIGER, P. et al. Proc. Natl. Acad. Sci. USA, 1993, vol. 90, 6444-6448 [0025]
- PLUCKTHUN. The Pharmacology of Monoclonal Antibodies. Springer Verlag, 1994, vol. 113, 269-315
 [0026]
- MILSTEIN C et al. Nature, 1983, vol. 305, 537-540
 [0027]

- WO 9633735 A [0038]
- EP 239400 A [0040]
- WO 9602576 A [0040]
- WO 9951743 A [0040]
- WO 9954342 A [0058]
- WO 0061739 A [0058]
- WO 0231140 A [0058]
- WO 2006067847 A [0058]
- WO 2006067913 A [0058]
- WO 0279255 A [0058]
- WO 2009041613 A [0058]
- WO 2007114325 A [0085]
- US 3773919 A [0102]
- EP 58481 A [0102]
- EP 133988 A [0102]
- WO 9317706 A [0104]
- US 4945050 A [0104]
- WO 1996027011 A [0116]
- RIDGWAY JB et al. Protein Engineering, 1996, vol. 9, 617-621 [0028] [0032]
- MERCHANT AM et al. Nature Biotechnology, 1998, vol. 16, 677-681 [0028] [0032]
- DAVIS JH et al. Protein Eng Des Sel., 2010, vol. 4, 195-202 [0028]
- KELER T et al. Cancer Research, 1997, vol. 57, 4008-4014 [0030]
- BRENNAN M et al. Science, 1985, vol. 229, 81-83 [0030]
- KOSTELNY SA et al. J. of Immunology, 1992, vol. 148, 1547-53 [0031]
- Protein Eng Des Sel, April 2010, vol. 23 (4), 221-8
 [0032]
- Drug Discov Today, 15 September 2005, vol. 10 (18), 1237-44 [0032]
- Nat Biotechnol., November 2007, vol. 25 (11), 1290-7
 [0032]
- MAbs, July 2009, vol. 1 (4), 339-47 [0032]
- *IDrugs,* 2010, vol. 13, 698-700 **[0032]**
- Science, 20 March 2009, vol. 323 (5921), 1610-4
 [0032]
- Immunotherapy, September 2009, vol. 1 (5), 749-51
 [0032]
- MAbs, November 2009, vol. 1 (6), 539-547 [0032]
- DAVIS JH et al. Protein Eng Des Sel, 2010, vol. 4, 195-202 [0032]

- HOLLIGER P et al. Proc Natl. Acad. Sci. USA, 1993, vol. 90, 6444-6448 [0033]
- KIPRIYANOV SM et al. J. of Molecular Biology, 1999, vol. 293, 41-56 [0034]
- ZHU Z et al. Protein Science, 1997, vol. 6, 781-788 [0034]
- IGAWA T et al. Protein Eng Des Sel, 2010, vol. 8, 667-77 [0034]
- MALLENDER WD et al. J. of Biological Chemistry, 1994, vol. 269, 199-206 [0035]
- SATO K et al. Cancer Research, 1993, vol. 53, 851-856 [0040]
- Sequences of proteins of immunological interest.
 U.S. Department of Health and Human Services, 1991 [0058]
- An efficient route to human bispecific IgG. Nature Biotechnology. Public Health Service National Institutes of Health, 1998, vol. 16, 677-681 [0058]
- Proc Natl Acad Sci USA., 14 March 2006, vol. 103 (11), 4005-10 [0058]
- MAbs, November 2009, vol. 1 (6), 572-9 [0058]
- *J Biol Chem.*, 02 March 2001, vol. 276 (9), 6591-604 **[0058]**
- Int Immunol., December 2006, vol. 18 (12), 1759-69
 [0058]
- J Biol Chem., 18 August 2006, vol. 281 (33), 23514-24 [0058]
- J Immunol Methods, 01 February 2001, vol. 248 (1-2), 7-15 [0058]
- J Biol Chem., 02 July 2010, vol. 285 (27), 20850-9
 [0058]
- Protein Eng Des Sel, April 2010, vol. 23 (4), 195-202
 [0058]
- J Clin Pharmacol., May 2010, vol. 50 (5), 494-506
 [0058]
- J Immunol Methods, 01 May 2002, vol. 263 (1-2), 133-47 [0058]
- ROSEN S; ANDERSSON M; BLOMBA[•]CK M et al. Clinical applications of a chromogenic substrate method for determination of FVIII activity. *Thromb Haemost*, 1985, vol. 54, 811-23 [0063]
- HASHIMOTO-GOTOH, T; MIZUNO, T; OGASA-HARA, Y; NAKAGAWA, M. An oligodeoxyribonucleotide-directed dual amber method for site-directed mutagenesis. *Gene*, 1995, vol. 152, 271-275 [0069]
- ZOLLER, MJ; SMITH, M. Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors. *Methods Enzymol.*, 1983, vol. 100, 468-500 [0069]
- KRAMER, W; DRUTSA, V; JANSEN, HW; KRAM-ER, B; PFLUGFELDER, M; FRITZ, HJ. The gapped duplex DNA approach to oligonucleotide-directed mutation construction. *Nucleic Acids Res.*, 1984, vol. 12, 9441-9456 [0069]
- KRAMER W; FRITZ HJ. Oligonucleotide-directed construction of mutations via gapped duplex DNA Methods. *Enzymol*, 1987, vol. 154, 350-367 [0069]

- KUNKEL, TA. Rapid and efficient site-specific mutagenesis without phenotypic selection. *Proc Natl Acad Sci USA.,* 1985, vol. 82, 488-492 [0069]
- MARK, D. F. et al. *Proc. Natl. Acad. Sci. USA*, 1984, vol. 81, 5662-6 [0071]
- ZOLLER, M. J.; SMITH, M. Nucleic Acids Res., 1982, vol. 10, 6487-500 [0071]
- WANG, A. et al. Science, 1984, vol. 224, 1431-3 [0071]
- DALBADIE-MCFARLAND, G. et al. Proc. Natl. Acad. Sci. USA, 1982, vol. 79, 6409-13 [0071]
- KARLIN ; ALTSCHUL. Proc. Natl. Acad. Sci. USA, 1993, vol. 90, 5873-7 [0074]
- ALTSCHUL et al. J. Mol. Biol., 1990, vol. 215, 403-10
 [0074]
- CO, M. S. et al. J. Immunol., 1994, vol. 152, 2968-2976 [0089]
- BETTER, M.; HORWITZ, A. H. Methods Enzymol., 1989, vol. 178, 476-496 [0089]
- PLUCKTHUN, A. ; SKERRA, A. Methods Enzymol., 1989, vol. 178, 497-515 [0089]
- LAMOYI, E. Methods Enzymol., 1986, vol. 121, 652-663 [0089]
- ROUSSEAUX, J. et al. *Methods Enzymol.*, 1986, vol. 121, 663-669 [0089]
- BIRD, R. E.; WALKER, B. W. Trends Biotechnol, 1991, vol. 9, 132-137 [0089]
- WARD et al. Nature, 1989, vol. 341, 544-546 [0090]
- FASEB J., 1992, vol. 6, 2422-2427 [0090]
- BETTER et al. Science, 1988, vol. 240, 1041-1043 [0090]
- LEI, S. P. et al. J. Bacteriol., 1987, vol. 169, 4379 [0091]
- Nucleic Acids. Res., 1990, vol. 18 (17), 5322 [0092]
- MULLIGAN et al. Nature, 1979, vol. 277, 108 [0093]
- MIZUSHIMA et al. Nucleic Acids Res., 1990, vol. 18, 5322 [0093]
- Molecular Cloning. Cold Spring Harbor Laboratory Press, 1989 [0094]
- Strategies for Protein Purification and Characterization: A Laboratory Course Manual. Cold Spring Harbor Laboratory Press, 1996 [0096]
- Antibodies : A Laboratory Manual. Cold Spring Harbor Laboratory, 1988 [0097]
- Expert Opin Drug Deliv, July 2007, vol. 4 (4), 427-40
 [0101]
- Remington's Pharmaceutical Science. 1980 [0102]
- LANGER et al. J. Biomed. Mater. Res., 1981, vol. 15, 267-277 [0102]
- LANGER. Chemtech, 1982, vol. 12, 98-105 [0102]
- SIDMAN et al. *Biopolymers*, 1983, vol. 22, 547-556
 [0102]
- ADOLPH. Viral Genome Methods. CRC Press, 1996
 [0104]
- KABAT EA et al. Sequences of Proteins of Immunological Interest. NIH, 1991 [0140]